1 //===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of the TargetRegisterInfo 10 // class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64RegisterInfo.h" 15 #include "AArch64FrameLowering.h" 16 #include "AArch64InstrInfo.h" 17 #include "AArch64MachineFunctionInfo.h" 18 #include "AArch64Subtarget.h" 19 #include "MCTargetDesc/AArch64AddressingModes.h" 20 #include "MCTargetDesc/AArch64InstPrinter.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/BinaryFormat/Dwarf.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/RegisterScavenging.h" 27 #include "llvm/CodeGen/TargetFrameLowering.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include "llvm/TargetParser/Triple.h" 34 35 using namespace llvm; 36 37 #define GET_CC_REGISTER_LISTS 38 #include "AArch64GenCallingConv.inc" 39 #define GET_REGINFO_TARGET_DESC 40 #include "AArch64GenRegisterInfo.inc" 41 42 AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT) 43 : AArch64GenRegisterInfo(AArch64::LR), TT(TT) { 44 AArch64_MC::initLLVMToCVRegMapping(this); 45 } 46 47 /// Return whether the register needs a CFI entry. Not all unwinders may know 48 /// about SVE registers, so we assume the lowest common denominator, i.e. the 49 /// callee-saves required by the base ABI. For the SVE registers z8-z15 only the 50 /// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is 51 /// returned in \p RegToUseForCFI. 52 bool AArch64RegisterInfo::regNeedsCFI(unsigned Reg, 53 unsigned &RegToUseForCFI) const { 54 if (AArch64::PPRRegClass.contains(Reg)) 55 return false; 56 57 if (AArch64::ZPRRegClass.contains(Reg)) { 58 RegToUseForCFI = getSubReg(Reg, AArch64::dsub); 59 for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) { 60 if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI) 61 return true; 62 } 63 return false; 64 } 65 66 RegToUseForCFI = Reg; 67 return true; 68 } 69 70 const MCPhysReg * 71 AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 72 assert(MF && "Invalid MachineFunction pointer."); 73 74 if (MF->getFunction().getCallingConv() == CallingConv::GHC) 75 // GHC set of callee saved regs is empty as all those regs are 76 // used for passing STG regs around 77 return CSR_AArch64_NoRegs_SaveList; 78 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) 79 return CSR_AArch64_AllRegs_SaveList; 80 81 if (MF->getFunction().getCallingConv() == CallingConv::ARM64EC_Thunk_X64) 82 return CSR_Win_AArch64_Arm64EC_Thunk_SaveList; 83 84 // Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save 85 // lists depending on that will need to have their Darwin variant as well. 86 if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin()) 87 return getDarwinCalleeSavedRegs(MF); 88 89 if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check) 90 return CSR_Win_AArch64_CFGuard_Check_SaveList; 91 if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows()) { 92 if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering() 93 ->supportSwiftError() && 94 MF->getFunction().getAttributes().hasAttrSomewhere( 95 Attribute::SwiftError)) 96 return CSR_Win_AArch64_AAPCS_SwiftError_SaveList; 97 if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail) 98 return CSR_Win_AArch64_AAPCS_SwiftTail_SaveList; 99 return CSR_Win_AArch64_AAPCS_SaveList; 100 } 101 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall) 102 return CSR_AArch64_AAVPCS_SaveList; 103 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall) 104 return CSR_AArch64_SVE_AAPCS_SaveList; 105 if (MF->getFunction().getCallingConv() == 106 CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0) 107 report_fatal_error( 108 "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is " 109 "only supported to improve calls to SME ACLE save/restore/disable-za " 110 "functions, and is not intended to be used beyond that scope."); 111 if (MF->getFunction().getCallingConv() == 112 CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2) 113 report_fatal_error( 114 "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is " 115 "only supported to improve calls to SME ACLE __arm_sme_state " 116 "and is not intended to be used beyond that scope."); 117 if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering() 118 ->supportSwiftError() && 119 MF->getFunction().getAttributes().hasAttrSomewhere( 120 Attribute::SwiftError)) 121 return CSR_AArch64_AAPCS_SwiftError_SaveList; 122 if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail) 123 return CSR_AArch64_AAPCS_SwiftTail_SaveList; 124 if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost) 125 return CSR_AArch64_RT_MostRegs_SaveList; 126 if (MF->getFunction().getCallingConv() == CallingConv::PreserveAll) 127 return CSR_AArch64_RT_AllRegs_SaveList; 128 if (MF->getFunction().getCallingConv() == CallingConv::Win64) 129 // This is for OSes other than Windows; Windows is a separate case further 130 // above. 131 return CSR_AArch64_AAPCS_X18_SaveList; 132 if (MF->getInfo<AArch64FunctionInfo>()->isSVECC()) 133 return CSR_AArch64_SVE_AAPCS_SaveList; 134 return CSR_AArch64_AAPCS_SaveList; 135 } 136 137 const MCPhysReg * 138 AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const { 139 assert(MF && "Invalid MachineFunction pointer."); 140 assert(MF->getSubtarget<AArch64Subtarget>().isTargetDarwin() && 141 "Invalid subtarget for getDarwinCalleeSavedRegs"); 142 143 if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check) 144 report_fatal_error( 145 "Calling convention CFGuard_Check is unsupported on Darwin."); 146 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall) 147 return CSR_Darwin_AArch64_AAVPCS_SaveList; 148 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall) 149 report_fatal_error( 150 "Calling convention SVE_VectorCall is unsupported on Darwin."); 151 if (MF->getFunction().getCallingConv() == 152 CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0) 153 report_fatal_error( 154 "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is " 155 "only supported to improve calls to SME ACLE save/restore/disable-za " 156 "functions, and is not intended to be used beyond that scope."); 157 if (MF->getFunction().getCallingConv() == 158 CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2) 159 report_fatal_error( 160 "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is " 161 "only supported to improve calls to SME ACLE __arm_sme_state " 162 "and is not intended to be used beyond that scope."); 163 if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS) 164 return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR() 165 ? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList 166 : CSR_Darwin_AArch64_CXX_TLS_SaveList; 167 if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering() 168 ->supportSwiftError() && 169 MF->getFunction().getAttributes().hasAttrSomewhere( 170 Attribute::SwiftError)) 171 return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList; 172 if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail) 173 return CSR_Darwin_AArch64_AAPCS_SwiftTail_SaveList; 174 if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost) 175 return CSR_Darwin_AArch64_RT_MostRegs_SaveList; 176 if (MF->getFunction().getCallingConv() == CallingConv::PreserveAll) 177 return CSR_Darwin_AArch64_RT_AllRegs_SaveList; 178 if (MF->getFunction().getCallingConv() == CallingConv::Win64) 179 return CSR_Darwin_AArch64_AAPCS_Win64_SaveList; 180 return CSR_Darwin_AArch64_AAPCS_SaveList; 181 } 182 183 const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy( 184 const MachineFunction *MF) const { 185 assert(MF && "Invalid MachineFunction pointer."); 186 if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && 187 MF->getInfo<AArch64FunctionInfo>()->isSplitCSR()) 188 return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList; 189 return nullptr; 190 } 191 192 void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs( 193 MachineFunction &MF) const { 194 const MCPhysReg *CSRs = getCalleeSavedRegs(&MF); 195 SmallVector<MCPhysReg, 32> UpdatedCSRs; 196 for (const MCPhysReg *I = CSRs; *I; ++I) 197 UpdatedCSRs.push_back(*I); 198 199 for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) { 200 if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) { 201 UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i)); 202 } 203 } 204 // Register lists are zero-terminated. 205 UpdatedCSRs.push_back(0); 206 MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs); 207 } 208 209 const TargetRegisterClass * 210 AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC, 211 unsigned Idx) const { 212 // edge case for GPR/FPR register classes 213 if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub) 214 return &AArch64::FPR32RegClass; 215 else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub) 216 return &AArch64::FPR64RegClass; 217 218 // Forward to TableGen's default version. 219 return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx); 220 } 221 222 const uint32_t * 223 AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF, 224 CallingConv::ID CC) const { 225 assert(MF.getSubtarget<AArch64Subtarget>().isTargetDarwin() && 226 "Invalid subtarget for getDarwinCallPreservedMask"); 227 228 if (CC == CallingConv::CXX_FAST_TLS) 229 return CSR_Darwin_AArch64_CXX_TLS_RegMask; 230 if (CC == CallingConv::AArch64_VectorCall) 231 return CSR_Darwin_AArch64_AAVPCS_RegMask; 232 if (CC == CallingConv::AArch64_SVE_VectorCall) 233 report_fatal_error( 234 "Calling convention SVE_VectorCall is unsupported on Darwin."); 235 if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0) 236 report_fatal_error( 237 "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is " 238 "unsupported on Darwin."); 239 if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2) 240 report_fatal_error( 241 "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is " 242 "unsupported on Darwin."); 243 if (CC == CallingConv::CFGuard_Check) 244 report_fatal_error( 245 "Calling convention CFGuard_Check is unsupported on Darwin."); 246 if (MF.getSubtarget<AArch64Subtarget>() 247 .getTargetLowering() 248 ->supportSwiftError() && 249 MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 250 return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask; 251 if (CC == CallingConv::SwiftTail) 252 return CSR_Darwin_AArch64_AAPCS_SwiftTail_RegMask; 253 if (CC == CallingConv::PreserveMost) 254 return CSR_Darwin_AArch64_RT_MostRegs_RegMask; 255 if (CC == CallingConv::PreserveAll) 256 return CSR_Darwin_AArch64_RT_AllRegs_RegMask; 257 return CSR_Darwin_AArch64_AAPCS_RegMask; 258 } 259 260 const uint32_t * 261 AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF, 262 CallingConv::ID CC) const { 263 bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack); 264 if (CC == CallingConv::GHC) 265 // This is academic because all GHC calls are (supposed to be) tail calls 266 return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask; 267 if (CC == CallingConv::AnyReg) 268 return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask; 269 270 // All the following calling conventions are handled differently on Darwin. 271 if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) { 272 if (SCS) 273 report_fatal_error("ShadowCallStack attribute not supported on Darwin."); 274 return getDarwinCallPreservedMask(MF, CC); 275 } 276 277 if (CC == CallingConv::AArch64_VectorCall) 278 return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask; 279 if (CC == CallingConv::AArch64_SVE_VectorCall) 280 return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask 281 : CSR_AArch64_SVE_AAPCS_RegMask; 282 if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0) 283 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask; 284 if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2) 285 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2_RegMask; 286 if (CC == CallingConv::CFGuard_Check) 287 return CSR_Win_AArch64_CFGuard_Check_RegMask; 288 if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering() 289 ->supportSwiftError() && 290 MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 291 return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask 292 : CSR_AArch64_AAPCS_SwiftError_RegMask; 293 if (CC == CallingConv::SwiftTail) { 294 if (SCS) 295 report_fatal_error("ShadowCallStack attribute not supported with swifttail"); 296 return CSR_AArch64_AAPCS_SwiftTail_RegMask; 297 } 298 if (CC == CallingConv::PreserveMost) 299 return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask 300 : CSR_AArch64_RT_MostRegs_RegMask; 301 else if (CC == CallingConv::PreserveAll) 302 return SCS ? CSR_AArch64_RT_AllRegs_SCS_RegMask 303 : CSR_AArch64_RT_AllRegs_RegMask; 304 305 else 306 return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask; 307 } 308 309 const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask( 310 const MachineFunction &MF) const { 311 if (MF.getSubtarget<AArch64Subtarget>().isTargetLinux()) 312 return CSR_AArch64_AAPCS_RegMask; 313 314 return nullptr; 315 } 316 317 const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const { 318 if (TT.isOSDarwin()) 319 return CSR_Darwin_AArch64_TLS_RegMask; 320 321 assert(TT.isOSBinFormatELF() && "Invalid target"); 322 return CSR_AArch64_TLS_ELF_RegMask; 323 } 324 325 void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF, 326 const uint32_t **Mask) const { 327 uint32_t *UpdatedMask = MF.allocateRegMask(); 328 unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs()); 329 memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize); 330 331 for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) { 332 if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) { 333 for (MCPhysReg SubReg : 334 subregs_inclusive(AArch64::GPR64commonRegClass.getRegister(i))) { 335 // See TargetRegisterInfo::getCallPreservedMask for how to interpret the 336 // register mask. 337 UpdatedMask[SubReg / 32] |= 1u << (SubReg % 32); 338 } 339 } 340 } 341 *Mask = UpdatedMask; 342 } 343 344 const uint32_t *AArch64RegisterInfo::getSMStartStopCallPreservedMask() const { 345 return CSR_AArch64_SMStartStop_RegMask; 346 } 347 348 const uint32_t * 349 AArch64RegisterInfo::SMEABISupportRoutinesCallPreservedMaskFromX0() const { 350 return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask; 351 } 352 353 const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const { 354 return CSR_AArch64_NoRegs_RegMask; 355 } 356 357 const uint32_t * 358 AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF, 359 CallingConv::ID CC) const { 360 // This should return a register mask that is the same as that returned by 361 // getCallPreservedMask but that additionally preserves the register used for 362 // the first i64 argument (which must also be the register used to return a 363 // single i64 return value) 364 // 365 // In case that the calling convention does not use the same register for 366 // both, the function should return NULL (does not currently apply) 367 assert(CC != CallingConv::GHC && "should not be GHC calling convention."); 368 if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) 369 return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask; 370 return CSR_AArch64_AAPCS_ThisReturn_RegMask; 371 } 372 373 const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const { 374 return CSR_AArch64_StackProbe_Windows_RegMask; 375 } 376 377 std::optional<std::string> 378 AArch64RegisterInfo::explainReservedReg(const MachineFunction &MF, 379 MCRegister PhysReg) const { 380 if (hasBasePointer(MF) && MCRegisterInfo::regsOverlap(PhysReg, AArch64::X19)) 381 return std::string("X19 is used as the frame base pointer register."); 382 383 if (MF.getSubtarget<AArch64Subtarget>().isWindowsArm64EC()) { 384 bool warn = false; 385 if (MCRegisterInfo::regsOverlap(PhysReg, AArch64::X13) || 386 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X14) || 387 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X23) || 388 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X24) || 389 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X28)) 390 warn = true; 391 392 for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i) 393 if (MCRegisterInfo::regsOverlap(PhysReg, i)) 394 warn = true; 395 396 if (warn) 397 return std::string(AArch64InstPrinter::getRegisterName(PhysReg)) + 398 " is clobbered by asynchronous signals when using Arm64EC."; 399 } 400 401 return {}; 402 } 403 404 BitVector 405 AArch64RegisterInfo::getStrictlyReservedRegs(const MachineFunction &MF) const { 406 const AArch64FrameLowering *TFI = getFrameLowering(MF); 407 408 // FIXME: avoid re-calculating this every time. 409 BitVector Reserved(getNumRegs()); 410 markSuperRegs(Reserved, AArch64::WSP); 411 markSuperRegs(Reserved, AArch64::WZR); 412 413 if (TFI->hasFP(MF) || TT.isOSDarwin()) 414 markSuperRegs(Reserved, AArch64::W29); 415 416 if (MF.getSubtarget<AArch64Subtarget>().isWindowsArm64EC()) { 417 // x13, x14, x23, x24, x28, and v16-v31 are clobbered by asynchronous 418 // signals, so we can't ever use them. 419 markSuperRegs(Reserved, AArch64::W13); 420 markSuperRegs(Reserved, AArch64::W14); 421 markSuperRegs(Reserved, AArch64::W23); 422 markSuperRegs(Reserved, AArch64::W24); 423 markSuperRegs(Reserved, AArch64::W28); 424 for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i) 425 markSuperRegs(Reserved, i); 426 } 427 428 for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) { 429 if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i)) 430 markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i)); 431 } 432 433 if (hasBasePointer(MF)) 434 markSuperRegs(Reserved, AArch64::W19); 435 436 // SLH uses register W16/X16 as the taint register. 437 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) 438 markSuperRegs(Reserved, AArch64::W16); 439 440 // SME tiles are not allocatable. 441 if (MF.getSubtarget<AArch64Subtarget>().hasSME()) { 442 for (MCPhysReg SubReg : subregs_inclusive(AArch64::ZA)) 443 Reserved.set(SubReg); 444 } 445 446 if (MF.getSubtarget<AArch64Subtarget>().hasSME2()) { 447 for (MCSubRegIterator SubReg(AArch64::ZT0, this, /*self=*/true); 448 SubReg.isValid(); ++SubReg) 449 Reserved.set(*SubReg); 450 } 451 452 markSuperRegs(Reserved, AArch64::FPCR); 453 454 if (MF.getFunction().getCallingConv() == CallingConv::GRAAL) { 455 markSuperRegs(Reserved, AArch64::X27); 456 markSuperRegs(Reserved, AArch64::X28); 457 markSuperRegs(Reserved, AArch64::W27); 458 markSuperRegs(Reserved, AArch64::W28); 459 } 460 461 assert(checkAllSuperRegsMarked(Reserved)); 462 return Reserved; 463 } 464 465 BitVector 466 AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 467 BitVector Reserved = getStrictlyReservedRegs(MF); 468 469 for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) { 470 if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReservedForRA(i)) 471 markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i)); 472 } 473 474 assert(checkAllSuperRegsMarked(Reserved)); 475 return Reserved; 476 } 477 478 bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF, 479 MCRegister Reg) const { 480 return getReservedRegs(MF)[Reg]; 481 } 482 483 bool AArch64RegisterInfo::isStrictlyReservedReg(const MachineFunction &MF, 484 MCRegister Reg) const { 485 return getStrictlyReservedRegs(MF)[Reg]; 486 } 487 488 bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const { 489 return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) { 490 return isStrictlyReservedReg(MF, r); 491 }); 492 } 493 494 void AArch64RegisterInfo::emitReservedArgRegCallError( 495 const MachineFunction &MF) const { 496 const Function &F = MF.getFunction(); 497 F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support" 498 " function calls if any of the argument registers is reserved.")}); 499 } 500 501 bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF, 502 MCRegister PhysReg) const { 503 // SLH uses register X16 as the taint register but it will fallback to a different 504 // method if the user clobbers it. So X16 is not reserved for inline asm but is 505 // for normal codegen. 506 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening) && 507 MCRegisterInfo::regsOverlap(PhysReg, AArch64::X16)) 508 return true; 509 510 return !isReservedReg(MF, PhysReg); 511 } 512 513 const TargetRegisterClass * 514 AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF, 515 unsigned Kind) const { 516 return &AArch64::GPR64spRegClass; 517 } 518 519 const TargetRegisterClass * 520 AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 521 if (RC == &AArch64::CCRRegClass) 522 return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV. 523 return RC; 524 } 525 526 unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; } 527 528 bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const { 529 const MachineFrameInfo &MFI = MF.getFrameInfo(); 530 531 // In the presence of variable sized objects or funclets, if the fixed stack 532 // size is large enough that referencing from the FP won't result in things 533 // being in range relatively often, we can use a base pointer to allow access 534 // from the other direction like the SP normally works. 535 // 536 // Furthermore, if both variable sized objects are present, and the 537 // stack needs to be dynamically re-aligned, the base pointer is the only 538 // reliable way to reference the locals. 539 if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) { 540 if (hasStackRealignment(MF)) 541 return true; 542 543 if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) { 544 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 545 // Frames that have variable sized objects and scalable SVE objects, 546 // should always use a basepointer. 547 if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE()) 548 return true; 549 } 550 551 // Conservatively estimate whether the negative offset from the frame 552 // pointer will be sufficient to reach. If a function has a smallish 553 // frame, it's less likely to have lots of spills and callee saved 554 // space, so it's all more likely to be within range of the frame pointer. 555 // If it's wrong, we'll materialize the constant and still get to the 556 // object; it's just suboptimal. Negative offsets use the unscaled 557 // load/store instructions, which have a 9-bit signed immediate. 558 return MFI.getLocalFrameSize() >= 256; 559 } 560 561 return false; 562 } 563 564 bool AArch64RegisterInfo::isArgumentRegister(const MachineFunction &MF, 565 MCRegister Reg) const { 566 CallingConv::ID CC = MF.getFunction().getCallingConv(); 567 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 568 bool IsVarArg = STI.isCallingConvWin64(MF.getFunction().getCallingConv()); 569 570 auto HasReg = [](ArrayRef<MCRegister> RegList, MCRegister Reg) { 571 return llvm::is_contained(RegList, Reg); 572 }; 573 574 switch (CC) { 575 default: 576 report_fatal_error("Unsupported calling convention."); 577 case CallingConv::GHC: 578 return HasReg(CC_AArch64_GHC_ArgRegs, Reg); 579 case CallingConv::C: 580 case CallingConv::Fast: 581 case CallingConv::PreserveMost: 582 case CallingConv::PreserveAll: 583 case CallingConv::CXX_FAST_TLS: 584 case CallingConv::Swift: 585 case CallingConv::SwiftTail: 586 case CallingConv::Tail: 587 if (STI.isTargetWindows()) { 588 if (IsVarArg) 589 return HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg); 590 switch (CC) { 591 default: 592 return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg); 593 case CallingConv::Swift: 594 case CallingConv::SwiftTail: 595 return HasReg(CC_AArch64_Win64PCS_Swift_ArgRegs, Reg) || 596 HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg); 597 } 598 } 599 if (!STI.isTargetDarwin()) { 600 switch (CC) { 601 default: 602 return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg); 603 case CallingConv::Swift: 604 case CallingConv::SwiftTail: 605 return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg) || 606 HasReg(CC_AArch64_AAPCS_Swift_ArgRegs, Reg); 607 } 608 } 609 if (!IsVarArg) { 610 switch (CC) { 611 default: 612 return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg); 613 case CallingConv::Swift: 614 case CallingConv::SwiftTail: 615 return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg) || 616 HasReg(CC_AArch64_DarwinPCS_Swift_ArgRegs, Reg); 617 } 618 } 619 if (STI.isTargetILP32()) 620 return HasReg(CC_AArch64_DarwinPCS_ILP32_VarArg_ArgRegs, Reg); 621 return HasReg(CC_AArch64_DarwinPCS_VarArg_ArgRegs, Reg); 622 case CallingConv::Win64: 623 if (IsVarArg) 624 HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg); 625 return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg); 626 case CallingConv::CFGuard_Check: 627 return HasReg(CC_AArch64_Win64_CFGuard_Check_ArgRegs, Reg); 628 case CallingConv::AArch64_VectorCall: 629 case CallingConv::AArch64_SVE_VectorCall: 630 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0: 631 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2: 632 if (STI.isTargetWindows()) 633 return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg); 634 return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg); 635 } 636 } 637 638 Register 639 AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const { 640 const AArch64FrameLowering *TFI = getFrameLowering(MF); 641 return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP; 642 } 643 644 bool AArch64RegisterInfo::requiresRegisterScavenging( 645 const MachineFunction &MF) const { 646 return true; 647 } 648 649 bool AArch64RegisterInfo::requiresVirtualBaseRegisters( 650 const MachineFunction &MF) const { 651 return true; 652 } 653 654 bool 655 AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const { 656 // This function indicates whether the emergency spillslot should be placed 657 // close to the beginning of the stackframe (closer to FP) or the end 658 // (closer to SP). 659 // 660 // The beginning works most reliably if we have a frame pointer. 661 // In the presence of any non-constant space between FP and locals, 662 // (e.g. in case of stack realignment or a scalable SVE area), it is 663 // better to use SP or BP. 664 const AArch64FrameLowering &TFI = *getFrameLowering(MF); 665 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 666 assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() || 667 AFI->hasCalculatedStackSizeSVE()) && 668 "Expected SVE area to be calculated by this point"); 669 return TFI.hasFP(MF) && !hasStackRealignment(MF) && !AFI->getStackSizeSVE(); 670 } 671 672 bool AArch64RegisterInfo::requiresFrameIndexScavenging( 673 const MachineFunction &MF) const { 674 return true; 675 } 676 677 bool 678 AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const { 679 const MachineFrameInfo &MFI = MF.getFrameInfo(); 680 if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack()) 681 return true; 682 return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken(); 683 } 684 685 /// needsFrameBaseReg - Returns true if the instruction's frame index 686 /// reference would be better served by a base register other than FP 687 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 688 /// references it should create new base registers for. 689 bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI, 690 int64_t Offset) const { 691 for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) 692 assert(i < MI->getNumOperands() && 693 "Instr doesn't have FrameIndex operand!"); 694 695 // It's the load/store FI references that cause issues, as it can be difficult 696 // to materialize the offset if it won't fit in the literal field. Estimate 697 // based on the size of the local frame and some conservative assumptions 698 // about the rest of the stack frame (note, this is pre-regalloc, so 699 // we don't know everything for certain yet) whether this offset is likely 700 // to be out of range of the immediate. Return true if so. 701 702 // We only generate virtual base registers for loads and stores, so 703 // return false for everything else. 704 if (!MI->mayLoad() && !MI->mayStore()) 705 return false; 706 707 // Without a virtual base register, if the function has variable sized 708 // objects, all fixed-size local references will be via the frame pointer, 709 // Approximate the offset and see if it's legal for the instruction. 710 // Note that the incoming offset is based on the SP value at function entry, 711 // so it'll be negative. 712 MachineFunction &MF = *MI->getParent()->getParent(); 713 const AArch64FrameLowering *TFI = getFrameLowering(MF); 714 MachineFrameInfo &MFI = MF.getFrameInfo(); 715 716 // Estimate an offset from the frame pointer. 717 // Conservatively assume all GPR callee-saved registers get pushed. 718 // FP, LR, X19-X28, D8-D15. 64-bits each. 719 int64_t FPOffset = Offset - 16 * 20; 720 // Estimate an offset from the stack pointer. 721 // The incoming offset is relating to the SP at the start of the function, 722 // but when we access the local it'll be relative to the SP after local 723 // allocation, so adjust our SP-relative offset by that allocation size. 724 Offset += MFI.getLocalFrameSize(); 725 // Assume that we'll have at least some spill slots allocated. 726 // FIXME: This is a total SWAG number. We should run some statistics 727 // and pick a real one. 728 Offset += 128; // 128 bytes of spill slots 729 730 // If there is a frame pointer, try using it. 731 // The FP is only available if there is no dynamic realignment. We 732 // don't know for sure yet whether we'll need that, so we guess based 733 // on whether there are any local variables that would trigger it. 734 if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset)) 735 return false; 736 737 // If we can reference via the stack pointer or base pointer, try that. 738 // FIXME: This (and the code that resolves the references) can be improved 739 // to only disallow SP relative references in the live range of 740 // the VLA(s). In practice, it's unclear how much difference that 741 // would make, but it may be worth doing. 742 if (isFrameOffsetLegal(MI, AArch64::SP, Offset)) 743 return false; 744 745 // If even offset 0 is illegal, we don't want a virtual base register. 746 if (!isFrameOffsetLegal(MI, AArch64::SP, 0)) 747 return false; 748 749 // The offset likely isn't legal; we want to allocate a virtual base register. 750 return true; 751 } 752 753 bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, 754 Register BaseReg, 755 int64_t Offset) const { 756 assert(MI && "Unable to get the legal offset for nil instruction."); 757 StackOffset SaveOffset = StackOffset::getFixed(Offset); 758 return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal; 759 } 760 761 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx 762 /// at the beginning of the basic block. 763 Register 764 AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, 765 int FrameIdx, 766 int64_t Offset) const { 767 MachineBasicBlock::iterator Ins = MBB->begin(); 768 DebugLoc DL; // Defaults to "unknown" 769 if (Ins != MBB->end()) 770 DL = Ins->getDebugLoc(); 771 const MachineFunction &MF = *MBB->getParent(); 772 const AArch64InstrInfo *TII = 773 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 774 const MCInstrDesc &MCID = TII->get(AArch64::ADDXri); 775 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 776 Register BaseReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass); 777 MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF)); 778 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0); 779 780 BuildMI(*MBB, Ins, DL, MCID, BaseReg) 781 .addFrameIndex(FrameIdx) 782 .addImm(Offset) 783 .addImm(Shifter); 784 785 return BaseReg; 786 } 787 788 void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, 789 int64_t Offset) const { 790 // ARM doesn't need the general 64-bit offsets 791 StackOffset Off = StackOffset::getFixed(Offset); 792 793 unsigned i = 0; 794 while (!MI.getOperand(i).isFI()) { 795 ++i; 796 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 797 } 798 799 const MachineFunction *MF = MI.getParent()->getParent(); 800 const AArch64InstrInfo *TII = 801 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 802 bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII); 803 assert(Done && "Unable to resolve frame index!"); 804 (void)Done; 805 } 806 807 // Create a scratch register for the frame index elimination in an instruction. 808 // This function has special handling of stack tagging loop pseudos, in which 809 // case it can also change the instruction opcode. 810 static Register 811 createScratchRegisterForInstruction(MachineInstr &MI, unsigned FIOperandNum, 812 const AArch64InstrInfo *TII) { 813 // ST*Gloop have a reserved scratch register in operand 1. Use it, and also 814 // replace the instruction with the writeback variant because it will now 815 // satisfy the operand constraints for it. 816 Register ScratchReg; 817 if (MI.getOpcode() == AArch64::STGloop || 818 MI.getOpcode() == AArch64::STZGloop) { 819 assert(FIOperandNum == 3 && 820 "Wrong frame index operand for STGloop/STZGloop"); 821 unsigned Op = MI.getOpcode() == AArch64::STGloop ? AArch64::STGloop_wback 822 : AArch64::STZGloop_wback; 823 ScratchReg = MI.getOperand(1).getReg(); 824 MI.getOperand(3).ChangeToRegister(ScratchReg, false, false, true); 825 MI.setDesc(TII->get(Op)); 826 MI.tieOperands(1, 3); 827 } else { 828 ScratchReg = 829 MI.getMF()->getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass); 830 MI.getOperand(FIOperandNum) 831 .ChangeToRegister(ScratchReg, false, false, true); 832 } 833 return ScratchReg; 834 } 835 836 void AArch64RegisterInfo::getOffsetOpcodes( 837 const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const { 838 // The smallest scalable element supported by scaled SVE addressing 839 // modes are predicates, which are 2 scalable bytes in size. So the scalable 840 // byte offset must always be a multiple of 2. 841 assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset"); 842 843 // Add fixed-sized offset using existing DIExpression interface. 844 DIExpression::appendOffset(Ops, Offset.getFixed()); 845 846 unsigned VG = getDwarfRegNum(AArch64::VG, true); 847 int64_t VGSized = Offset.getScalable() / 2; 848 if (VGSized > 0) { 849 Ops.push_back(dwarf::DW_OP_constu); 850 Ops.push_back(VGSized); 851 Ops.append({dwarf::DW_OP_bregx, VG, 0ULL}); 852 Ops.push_back(dwarf::DW_OP_mul); 853 Ops.push_back(dwarf::DW_OP_plus); 854 } else if (VGSized < 0) { 855 Ops.push_back(dwarf::DW_OP_constu); 856 Ops.push_back(-VGSized); 857 Ops.append({dwarf::DW_OP_bregx, VG, 0ULL}); 858 Ops.push_back(dwarf::DW_OP_mul); 859 Ops.push_back(dwarf::DW_OP_minus); 860 } 861 } 862 863 bool AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 864 int SPAdj, unsigned FIOperandNum, 865 RegScavenger *RS) const { 866 assert(SPAdj == 0 && "Unexpected"); 867 868 MachineInstr &MI = *II; 869 MachineBasicBlock &MBB = *MI.getParent(); 870 MachineFunction &MF = *MBB.getParent(); 871 const MachineFrameInfo &MFI = MF.getFrameInfo(); 872 const AArch64InstrInfo *TII = 873 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 874 const AArch64FrameLowering *TFI = getFrameLowering(MF); 875 int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); 876 bool Tagged = 877 MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED; 878 Register FrameReg; 879 880 // Special handling of dbg_value, stackmap patchpoint statepoint instructions. 881 if (MI.getOpcode() == TargetOpcode::STACKMAP || 882 MI.getOpcode() == TargetOpcode::PATCHPOINT || 883 MI.getOpcode() == TargetOpcode::STATEPOINT) { 884 StackOffset Offset = 885 TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg, 886 /*PreferFP=*/true, 887 /*ForSimm=*/false); 888 Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm()); 889 MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/); 890 MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed()); 891 return false; 892 } 893 894 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) { 895 MachineOperand &FI = MI.getOperand(FIOperandNum); 896 StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex); 897 assert(!Offset.getScalable() && 898 "Frame offsets with a scalable component are not supported"); 899 FI.ChangeToImmediate(Offset.getFixed()); 900 return false; 901 } 902 903 StackOffset Offset; 904 if (MI.getOpcode() == AArch64::TAGPstack) { 905 // TAGPstack must use the virtual frame register in its 3rd operand. 906 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 907 FrameReg = MI.getOperand(3).getReg(); 908 Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) + 909 AFI->getTaggedBasePointerOffset()); 910 } else if (Tagged) { 911 StackOffset SPOffset = StackOffset::getFixed( 912 MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize()); 913 if (MFI.hasVarSizedObjects() || 914 isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) != 915 (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) { 916 // Can't update to SP + offset in place. Precalculate the tagged pointer 917 // in a scratch register. 918 Offset = TFI->resolveFrameIndexReference( 919 MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true); 920 Register ScratchReg = 921 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass); 922 emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, 923 TII); 924 BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg) 925 .addReg(ScratchReg) 926 .addReg(ScratchReg) 927 .addImm(0); 928 MI.getOperand(FIOperandNum) 929 .ChangeToRegister(ScratchReg, false, false, true); 930 return false; 931 } 932 FrameReg = AArch64::SP; 933 Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) + 934 (int64_t)MFI.getStackSize()); 935 } else { 936 Offset = TFI->resolveFrameIndexReference( 937 MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true); 938 } 939 940 // Modify MI as necessary to handle as much of 'Offset' as possible 941 if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII)) 942 return true; 943 944 assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) && 945 "Emergency spill slot is out of reach"); 946 947 // If we get here, the immediate doesn't fit into the instruction. We folded 948 // as much as possible above. Handle the rest, providing a register that is 949 // SP+LargeImm. 950 Register ScratchReg = 951 createScratchRegisterForInstruction(MI, FIOperandNum, TII); 952 emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII); 953 return false; 954 } 955 956 unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, 957 MachineFunction &MF) const { 958 const AArch64FrameLowering *TFI = getFrameLowering(MF); 959 960 switch (RC->getID()) { 961 default: 962 return 0; 963 case AArch64::GPR32RegClassID: 964 case AArch64::GPR32spRegClassID: 965 case AArch64::GPR32allRegClassID: 966 case AArch64::GPR64spRegClassID: 967 case AArch64::GPR64allRegClassID: 968 case AArch64::GPR64RegClassID: 969 case AArch64::GPR32commonRegClassID: 970 case AArch64::GPR64commonRegClassID: 971 return 32 - 1 // XZR/SP 972 - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP 973 - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved() 974 - hasBasePointer(MF); // X19 975 case AArch64::FPR8RegClassID: 976 case AArch64::FPR16RegClassID: 977 case AArch64::FPR32RegClassID: 978 case AArch64::FPR64RegClassID: 979 case AArch64::FPR128RegClassID: 980 return 32; 981 982 case AArch64::MatrixIndexGPR32_8_11RegClassID: 983 case AArch64::MatrixIndexGPR32_12_15RegClassID: 984 return 4; 985 986 case AArch64::DDRegClassID: 987 case AArch64::DDDRegClassID: 988 case AArch64::DDDDRegClassID: 989 case AArch64::QQRegClassID: 990 case AArch64::QQQRegClassID: 991 case AArch64::QQQQRegClassID: 992 return 32; 993 994 case AArch64::FPR128_loRegClassID: 995 case AArch64::FPR64_loRegClassID: 996 case AArch64::FPR16_loRegClassID: 997 return 16; 998 case AArch64::FPR128_0to7RegClassID: 999 return 8; 1000 } 1001 } 1002 1003 unsigned AArch64RegisterInfo::getLocalAddressRegister( 1004 const MachineFunction &MF) const { 1005 const auto &MFI = MF.getFrameInfo(); 1006 if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects()) 1007 return AArch64::SP; 1008 else if (hasStackRealignment(MF)) 1009 return getBaseRegister(); 1010 return getFrameRegister(MF); 1011 } 1012 1013 /// SrcRC and DstRC will be morphed into NewRC if this returns true 1014 bool AArch64RegisterInfo::shouldCoalesce( 1015 MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, 1016 const TargetRegisterClass *DstRC, unsigned DstSubReg, 1017 const TargetRegisterClass *NewRC, LiveIntervals &LIS) const { 1018 if (MI->isCopy() && 1019 ((DstRC->getID() == AArch64::GPR64RegClassID) || 1020 (DstRC->getID() == AArch64::GPR64commonRegClassID)) && 1021 MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg()) 1022 // Do not coalesce in the case of a 32-bit subregister copy 1023 // which implements a 32 to 64 bit zero extension 1024 // which relies on the upper 32 bits being zeroed. 1025 return false; 1026 return true; 1027 } 1028