xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64RegisterInfo.cpp (revision 7a6dacaca14b62ca4b74406814becb87a3fefac0)
1 //===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64RegisterInfo.h"
15 #include "AArch64FrameLowering.h"
16 #include "AArch64InstrInfo.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "MCTargetDesc/AArch64AddressingModes.h"
20 #include "MCTargetDesc/AArch64InstPrinter.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/BinaryFormat/Dwarf.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterScavenging.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/TargetParser/Triple.h"
34 
35 using namespace llvm;
36 
37 #define GET_CC_REGISTER_LISTS
38 #include "AArch64GenCallingConv.inc"
39 #define GET_REGINFO_TARGET_DESC
40 #include "AArch64GenRegisterInfo.inc"
41 
42 AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT)
43     : AArch64GenRegisterInfo(AArch64::LR), TT(TT) {
44   AArch64_MC::initLLVMToCVRegMapping(this);
45 }
46 
47 /// Return whether the register needs a CFI entry. Not all unwinders may know
48 /// about SVE registers, so we assume the lowest common denominator, i.e. the
49 /// callee-saves required by the base ABI. For the SVE registers z8-z15 only the
50 /// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is
51 /// returned in \p RegToUseForCFI.
52 bool AArch64RegisterInfo::regNeedsCFI(unsigned Reg,
53                                       unsigned &RegToUseForCFI) const {
54   if (AArch64::PPRRegClass.contains(Reg))
55     return false;
56 
57   if (AArch64::ZPRRegClass.contains(Reg)) {
58     RegToUseForCFI = getSubReg(Reg, AArch64::dsub);
59     for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) {
60       if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI)
61         return true;
62     }
63     return false;
64   }
65 
66   RegToUseForCFI = Reg;
67   return true;
68 }
69 
70 const MCPhysReg *
71 AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
72   assert(MF && "Invalid MachineFunction pointer.");
73 
74   if (MF->getFunction().getCallingConv() == CallingConv::GHC)
75     // GHC set of callee saved regs is empty as all those regs are
76     // used for passing STG regs around
77     return CSR_AArch64_NoRegs_SaveList;
78   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
79     return CSR_AArch64_AllRegs_SaveList;
80 
81   if (MF->getFunction().getCallingConv() == CallingConv::ARM64EC_Thunk_X64)
82     return CSR_Win_AArch64_Arm64EC_Thunk_SaveList;
83 
84   // Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save
85   // lists depending on that will need to have their Darwin variant as well.
86   if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin())
87     return getDarwinCalleeSavedRegs(MF);
88 
89   if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
90     return CSR_Win_AArch64_CFGuard_Check_SaveList;
91   if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows()) {
92     if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
93             ->supportSwiftError() &&
94         MF->getFunction().getAttributes().hasAttrSomewhere(
95             Attribute::SwiftError))
96       return CSR_Win_AArch64_AAPCS_SwiftError_SaveList;
97     if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
98       return CSR_Win_AArch64_AAPCS_SwiftTail_SaveList;
99     return CSR_Win_AArch64_AAPCS_SaveList;
100   }
101   if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
102     return CSR_AArch64_AAVPCS_SaveList;
103   if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
104     return CSR_AArch64_SVE_AAPCS_SaveList;
105   if (MF->getFunction().getCallingConv() ==
106           CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
107     report_fatal_error(
108         "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is "
109         "only supported to improve calls to SME ACLE save/restore/disable-za "
110         "functions, and is not intended to be used beyond that scope.");
111   if (MF->getFunction().getCallingConv() ==
112           CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
113     report_fatal_error(
114         "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is "
115         "only supported to improve calls to SME ACLE __arm_sme_state "
116         "and is not intended to be used beyond that scope.");
117   if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
118           ->supportSwiftError() &&
119       MF->getFunction().getAttributes().hasAttrSomewhere(
120           Attribute::SwiftError))
121     return CSR_AArch64_AAPCS_SwiftError_SaveList;
122   if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
123     return CSR_AArch64_AAPCS_SwiftTail_SaveList;
124   if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
125     return CSR_AArch64_RT_MostRegs_SaveList;
126   if (MF->getFunction().getCallingConv() == CallingConv::PreserveAll)
127     return CSR_AArch64_RT_AllRegs_SaveList;
128   if (MF->getFunction().getCallingConv() == CallingConv::Win64)
129     // This is for OSes other than Windows; Windows is a separate case further
130     // above.
131     return CSR_AArch64_AAPCS_X18_SaveList;
132   if (MF->getInfo<AArch64FunctionInfo>()->isSVECC())
133     return CSR_AArch64_SVE_AAPCS_SaveList;
134   return CSR_AArch64_AAPCS_SaveList;
135 }
136 
137 const MCPhysReg *
138 AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const {
139   assert(MF && "Invalid MachineFunction pointer.");
140   assert(MF->getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
141          "Invalid subtarget for getDarwinCalleeSavedRegs");
142 
143   if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
144     report_fatal_error(
145         "Calling convention CFGuard_Check is unsupported on Darwin.");
146   if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
147     return CSR_Darwin_AArch64_AAVPCS_SaveList;
148   if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
149     report_fatal_error(
150         "Calling convention SVE_VectorCall is unsupported on Darwin.");
151   if (MF->getFunction().getCallingConv() ==
152           CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
153     report_fatal_error(
154         "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is "
155         "only supported to improve calls to SME ACLE save/restore/disable-za "
156         "functions, and is not intended to be used beyond that scope.");
157   if (MF->getFunction().getCallingConv() ==
158           CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
159     report_fatal_error(
160         "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is "
161         "only supported to improve calls to SME ACLE __arm_sme_state "
162         "and is not intended to be used beyond that scope.");
163   if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS)
164     return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR()
165                ? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList
166                : CSR_Darwin_AArch64_CXX_TLS_SaveList;
167   if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
168           ->supportSwiftError() &&
169       MF->getFunction().getAttributes().hasAttrSomewhere(
170           Attribute::SwiftError))
171     return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList;
172   if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
173     return CSR_Darwin_AArch64_AAPCS_SwiftTail_SaveList;
174   if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
175     return CSR_Darwin_AArch64_RT_MostRegs_SaveList;
176   if (MF->getFunction().getCallingConv() == CallingConv::PreserveAll)
177     return CSR_Darwin_AArch64_RT_AllRegs_SaveList;
178   if (MF->getFunction().getCallingConv() == CallingConv::Win64)
179     return CSR_Darwin_AArch64_AAPCS_Win64_SaveList;
180   return CSR_Darwin_AArch64_AAPCS_SaveList;
181 }
182 
183 const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
184     const MachineFunction *MF) const {
185   assert(MF && "Invalid MachineFunction pointer.");
186   if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
187       MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
188     return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList;
189   return nullptr;
190 }
191 
192 void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs(
193     MachineFunction &MF) const {
194   const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
195   SmallVector<MCPhysReg, 32> UpdatedCSRs;
196   for (const MCPhysReg *I = CSRs; *I; ++I)
197     UpdatedCSRs.push_back(*I);
198 
199   for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
200     if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
201       UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
202     }
203   }
204   // Register lists are zero-terminated.
205   UpdatedCSRs.push_back(0);
206   MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
207 }
208 
209 const TargetRegisterClass *
210 AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
211                                        unsigned Idx) const {
212   // edge case for GPR/FPR register classes
213   if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
214     return &AArch64::FPR32RegClass;
215   else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
216     return &AArch64::FPR64RegClass;
217 
218   // Forward to TableGen's default version.
219   return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
220 }
221 
222 const uint32_t *
223 AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF,
224                                                 CallingConv::ID CC) const {
225   assert(MF.getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
226          "Invalid subtarget for getDarwinCallPreservedMask");
227 
228   if (CC == CallingConv::CXX_FAST_TLS)
229     return CSR_Darwin_AArch64_CXX_TLS_RegMask;
230   if (CC == CallingConv::AArch64_VectorCall)
231     return CSR_Darwin_AArch64_AAVPCS_RegMask;
232   if (CC == CallingConv::AArch64_SVE_VectorCall)
233     report_fatal_error(
234         "Calling convention SVE_VectorCall is unsupported on Darwin.");
235   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
236     report_fatal_error(
237         "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 is "
238         "unsupported on Darwin.");
239   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
240     report_fatal_error(
241         "Calling convention AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 is "
242         "unsupported on Darwin.");
243   if (CC == CallingConv::CFGuard_Check)
244     report_fatal_error(
245         "Calling convention CFGuard_Check is unsupported on Darwin.");
246   if (MF.getSubtarget<AArch64Subtarget>()
247           .getTargetLowering()
248           ->supportSwiftError() &&
249       MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
250     return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask;
251   if (CC == CallingConv::SwiftTail)
252     return CSR_Darwin_AArch64_AAPCS_SwiftTail_RegMask;
253   if (CC == CallingConv::PreserveMost)
254     return CSR_Darwin_AArch64_RT_MostRegs_RegMask;
255   if (CC == CallingConv::PreserveAll)
256     return CSR_Darwin_AArch64_RT_AllRegs_RegMask;
257   return CSR_Darwin_AArch64_AAPCS_RegMask;
258 }
259 
260 const uint32_t *
261 AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
262                                           CallingConv::ID CC) const {
263   bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
264   if (CC == CallingConv::GHC)
265     // This is academic because all GHC calls are (supposed to be) tail calls
266     return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
267   if (CC == CallingConv::AnyReg)
268     return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;
269 
270   // All the following calling conventions are handled differently on Darwin.
271   if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) {
272     if (SCS)
273       report_fatal_error("ShadowCallStack attribute not supported on Darwin.");
274     return getDarwinCallPreservedMask(MF, CC);
275   }
276 
277   if (CC == CallingConv::AArch64_VectorCall)
278     return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
279   if (CC == CallingConv::AArch64_SVE_VectorCall)
280     return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask
281                : CSR_AArch64_SVE_AAPCS_RegMask;
282   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0)
283     return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
284   if (CC == CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2)
285     return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2_RegMask;
286   if (CC == CallingConv::CFGuard_Check)
287     return CSR_Win_AArch64_CFGuard_Check_RegMask;
288   if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
289           ->supportSwiftError() &&
290       MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
291     return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
292                : CSR_AArch64_AAPCS_SwiftError_RegMask;
293   if (CC == CallingConv::SwiftTail) {
294     if (SCS)
295       report_fatal_error("ShadowCallStack attribute not supported with swifttail");
296     return CSR_AArch64_AAPCS_SwiftTail_RegMask;
297   }
298   if (CC == CallingConv::PreserveMost)
299     return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
300                : CSR_AArch64_RT_MostRegs_RegMask;
301   else if (CC == CallingConv::PreserveAll)
302     return SCS ? CSR_AArch64_RT_AllRegs_SCS_RegMask
303                : CSR_AArch64_RT_AllRegs_RegMask;
304 
305   else
306     return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
307 }
308 
309 const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask(
310     const MachineFunction &MF) const {
311   if (MF.getSubtarget<AArch64Subtarget>().isTargetLinux())
312     return CSR_AArch64_AAPCS_RegMask;
313 
314   return nullptr;
315 }
316 
317 const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
318   if (TT.isOSDarwin())
319     return CSR_Darwin_AArch64_TLS_RegMask;
320 
321   assert(TT.isOSBinFormatELF() && "Invalid target");
322   return CSR_AArch64_TLS_ELF_RegMask;
323 }
324 
325 void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF,
326                                                  const uint32_t **Mask) const {
327   uint32_t *UpdatedMask = MF.allocateRegMask();
328   unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
329   memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);
330 
331   for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
332     if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
333       for (MCPhysReg SubReg :
334            subregs_inclusive(AArch64::GPR64commonRegClass.getRegister(i))) {
335         // See TargetRegisterInfo::getCallPreservedMask for how to interpret the
336         // register mask.
337         UpdatedMask[SubReg / 32] |= 1u << (SubReg % 32);
338       }
339     }
340   }
341   *Mask = UpdatedMask;
342 }
343 
344 const uint32_t *AArch64RegisterInfo::getSMStartStopCallPreservedMask() const {
345   return CSR_AArch64_SMStartStop_RegMask;
346 }
347 
348 const uint32_t *
349 AArch64RegisterInfo::SMEABISupportRoutinesCallPreservedMaskFromX0() const {
350   return CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0_RegMask;
351 }
352 
353 const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const {
354   return CSR_AArch64_NoRegs_RegMask;
355 }
356 
357 const uint32_t *
358 AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
359                                                 CallingConv::ID CC) const {
360   // This should return a register mask that is the same as that returned by
361   // getCallPreservedMask but that additionally preserves the register used for
362   // the first i64 argument (which must also be the register used to return a
363   // single i64 return value)
364   //
365   // In case that the calling convention does not use the same register for
366   // both, the function should return NULL (does not currently apply)
367   assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
368   if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin())
369     return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask;
370   return CSR_AArch64_AAPCS_ThisReturn_RegMask;
371 }
372 
373 const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const {
374   return CSR_AArch64_StackProbe_Windows_RegMask;
375 }
376 
377 std::optional<std::string>
378 AArch64RegisterInfo::explainReservedReg(const MachineFunction &MF,
379                                         MCRegister PhysReg) const {
380   if (hasBasePointer(MF) && MCRegisterInfo::regsOverlap(PhysReg, AArch64::X19))
381     return std::string("X19 is used as the frame base pointer register.");
382 
383   if (MF.getSubtarget<AArch64Subtarget>().isWindowsArm64EC()) {
384     bool warn = false;
385     if (MCRegisterInfo::regsOverlap(PhysReg, AArch64::X13) ||
386         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X14) ||
387         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X23) ||
388         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X24) ||
389         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X28))
390       warn = true;
391 
392     for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i)
393       if (MCRegisterInfo::regsOverlap(PhysReg, i))
394         warn = true;
395 
396     if (warn)
397       return std::string(AArch64InstPrinter::getRegisterName(PhysReg)) +
398              " is clobbered by asynchronous signals when using Arm64EC.";
399   }
400 
401   return {};
402 }
403 
404 BitVector
405 AArch64RegisterInfo::getStrictlyReservedRegs(const MachineFunction &MF) const {
406   const AArch64FrameLowering *TFI = getFrameLowering(MF);
407 
408   // FIXME: avoid re-calculating this every time.
409   BitVector Reserved(getNumRegs());
410   markSuperRegs(Reserved, AArch64::WSP);
411   markSuperRegs(Reserved, AArch64::WZR);
412 
413   if (TFI->hasFP(MF) || TT.isOSDarwin())
414     markSuperRegs(Reserved, AArch64::W29);
415 
416   if (MF.getSubtarget<AArch64Subtarget>().isWindowsArm64EC()) {
417     // x13, x14, x23, x24, x28, and v16-v31 are clobbered by asynchronous
418     // signals, so we can't ever use them.
419     markSuperRegs(Reserved, AArch64::W13);
420     markSuperRegs(Reserved, AArch64::W14);
421     markSuperRegs(Reserved, AArch64::W23);
422     markSuperRegs(Reserved, AArch64::W24);
423     markSuperRegs(Reserved, AArch64::W28);
424     for (unsigned i = AArch64::B16; i <= AArch64::B31; ++i)
425       markSuperRegs(Reserved, i);
426   }
427 
428   for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
429     if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
430       markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
431   }
432 
433   if (hasBasePointer(MF))
434     markSuperRegs(Reserved, AArch64::W19);
435 
436   // SLH uses register W16/X16 as the taint register.
437   if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
438     markSuperRegs(Reserved, AArch64::W16);
439 
440   // SME tiles are not allocatable.
441   if (MF.getSubtarget<AArch64Subtarget>().hasSME()) {
442     for (MCPhysReg SubReg : subregs_inclusive(AArch64::ZA))
443       Reserved.set(SubReg);
444   }
445 
446   if (MF.getSubtarget<AArch64Subtarget>().hasSME2()) {
447     for (MCSubRegIterator SubReg(AArch64::ZT0, this, /*self=*/true);
448          SubReg.isValid(); ++SubReg)
449       Reserved.set(*SubReg);
450   }
451 
452   markSuperRegs(Reserved, AArch64::FPCR);
453 
454   if (MF.getFunction().getCallingConv() == CallingConv::GRAAL) {
455     markSuperRegs(Reserved, AArch64::X27);
456     markSuperRegs(Reserved, AArch64::X28);
457     markSuperRegs(Reserved, AArch64::W27);
458     markSuperRegs(Reserved, AArch64::W28);
459   }
460 
461   assert(checkAllSuperRegsMarked(Reserved));
462   return Reserved;
463 }
464 
465 BitVector
466 AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
467   BitVector Reserved = getStrictlyReservedRegs(MF);
468 
469   for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
470     if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReservedForRA(i))
471       markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
472   }
473 
474   assert(checkAllSuperRegsMarked(Reserved));
475   return Reserved;
476 }
477 
478 bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
479                                         MCRegister Reg) const {
480   return getReservedRegs(MF)[Reg];
481 }
482 
483 bool AArch64RegisterInfo::isStrictlyReservedReg(const MachineFunction &MF,
484                                                 MCRegister Reg) const {
485   return getStrictlyReservedRegs(MF)[Reg];
486 }
487 
488 bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const {
489   return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) {
490     return isStrictlyReservedReg(MF, r);
491   });
492 }
493 
494 void AArch64RegisterInfo::emitReservedArgRegCallError(
495     const MachineFunction &MF) const {
496   const Function &F = MF.getFunction();
497   F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support"
498     " function calls if any of the argument registers is reserved.")});
499 }
500 
501 bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF,
502                                           MCRegister PhysReg) const {
503   // SLH uses register X16 as the taint register but it will fallback to a different
504   // method if the user clobbers it. So X16 is not reserved for inline asm but is
505   // for normal codegen.
506   if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening) &&
507         MCRegisterInfo::regsOverlap(PhysReg, AArch64::X16))
508     return true;
509 
510   return !isReservedReg(MF, PhysReg);
511 }
512 
513 const TargetRegisterClass *
514 AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
515                                       unsigned Kind) const {
516   return &AArch64::GPR64spRegClass;
517 }
518 
519 const TargetRegisterClass *
520 AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
521   if (RC == &AArch64::CCRRegClass)
522     return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
523   return RC;
524 }
525 
526 unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }
527 
528 bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
529   const MachineFrameInfo &MFI = MF.getFrameInfo();
530 
531   // In the presence of variable sized objects or funclets, if the fixed stack
532   // size is large enough that referencing from the FP won't result in things
533   // being in range relatively often, we can use a base pointer to allow access
534   // from the other direction like the SP normally works.
535   //
536   // Furthermore, if both variable sized objects are present, and the
537   // stack needs to be dynamically re-aligned, the base pointer is the only
538   // reliable way to reference the locals.
539   if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
540     if (hasStackRealignment(MF))
541       return true;
542 
543     if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
544       const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
545       // Frames that have variable sized objects and scalable SVE objects,
546       // should always use a basepointer.
547       if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE())
548         return true;
549     }
550 
551     // Conservatively estimate whether the negative offset from the frame
552     // pointer will be sufficient to reach. If a function has a smallish
553     // frame, it's less likely to have lots of spills and callee saved
554     // space, so it's all more likely to be within range of the frame pointer.
555     // If it's wrong, we'll materialize the constant and still get to the
556     // object; it's just suboptimal. Negative offsets use the unscaled
557     // load/store instructions, which have a 9-bit signed immediate.
558     return MFI.getLocalFrameSize() >= 256;
559   }
560 
561   return false;
562 }
563 
564 bool AArch64RegisterInfo::isArgumentRegister(const MachineFunction &MF,
565                                              MCRegister Reg) const {
566   CallingConv::ID CC = MF.getFunction().getCallingConv();
567   const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
568   bool IsVarArg = STI.isCallingConvWin64(MF.getFunction().getCallingConv());
569 
570   auto HasReg = [](ArrayRef<MCRegister> RegList, MCRegister Reg) {
571     return llvm::is_contained(RegList, Reg);
572   };
573 
574   switch (CC) {
575   default:
576     report_fatal_error("Unsupported calling convention.");
577   case CallingConv::GHC:
578     return HasReg(CC_AArch64_GHC_ArgRegs, Reg);
579   case CallingConv::C:
580   case CallingConv::Fast:
581   case CallingConv::PreserveMost:
582   case CallingConv::PreserveAll:
583   case CallingConv::CXX_FAST_TLS:
584   case CallingConv::Swift:
585   case CallingConv::SwiftTail:
586   case CallingConv::Tail:
587     if (STI.isTargetWindows()) {
588       if (IsVarArg)
589         return HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg);
590       switch (CC) {
591       default:
592         return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
593       case CallingConv::Swift:
594       case CallingConv::SwiftTail:
595         return HasReg(CC_AArch64_Win64PCS_Swift_ArgRegs, Reg) ||
596                HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
597       }
598     }
599     if (!STI.isTargetDarwin()) {
600       switch (CC) {
601       default:
602         return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg);
603       case CallingConv::Swift:
604       case CallingConv::SwiftTail:
605         return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg) ||
606                HasReg(CC_AArch64_AAPCS_Swift_ArgRegs, Reg);
607       }
608     }
609     if (!IsVarArg) {
610       switch (CC) {
611       default:
612         return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg);
613       case CallingConv::Swift:
614       case CallingConv::SwiftTail:
615         return HasReg(CC_AArch64_DarwinPCS_ArgRegs, Reg) ||
616                HasReg(CC_AArch64_DarwinPCS_Swift_ArgRegs, Reg);
617       }
618     }
619     if (STI.isTargetILP32())
620       return HasReg(CC_AArch64_DarwinPCS_ILP32_VarArg_ArgRegs, Reg);
621     return HasReg(CC_AArch64_DarwinPCS_VarArg_ArgRegs, Reg);
622   case CallingConv::Win64:
623     if (IsVarArg)
624       HasReg(CC_AArch64_Win64_VarArg_ArgRegs, Reg);
625     return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
626   case CallingConv::CFGuard_Check:
627     return HasReg(CC_AArch64_Win64_CFGuard_Check_ArgRegs, Reg);
628   case CallingConv::AArch64_VectorCall:
629   case CallingConv::AArch64_SVE_VectorCall:
630   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
631   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
632     if (STI.isTargetWindows())
633       return HasReg(CC_AArch64_Win64PCS_ArgRegs, Reg);
634     return HasReg(CC_AArch64_AAPCS_ArgRegs, Reg);
635   }
636 }
637 
638 Register
639 AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
640   const AArch64FrameLowering *TFI = getFrameLowering(MF);
641   return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
642 }
643 
644 bool AArch64RegisterInfo::requiresRegisterScavenging(
645     const MachineFunction &MF) const {
646   return true;
647 }
648 
649 bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
650     const MachineFunction &MF) const {
651   return true;
652 }
653 
654 bool
655 AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
656   // This function indicates whether the emergency spillslot should be placed
657   // close to the beginning of the stackframe (closer to FP) or the end
658   // (closer to SP).
659   //
660   // The beginning works most reliably if we have a frame pointer.
661   // In the presence of any non-constant space between FP and locals,
662   // (e.g. in case of stack realignment or a scalable SVE area), it is
663   // better to use SP or BP.
664   const AArch64FrameLowering &TFI = *getFrameLowering(MF);
665   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
666   assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() ||
667           AFI->hasCalculatedStackSizeSVE()) &&
668          "Expected SVE area to be calculated by this point");
669   return TFI.hasFP(MF) && !hasStackRealignment(MF) && !AFI->getStackSizeSVE();
670 }
671 
672 bool AArch64RegisterInfo::requiresFrameIndexScavenging(
673     const MachineFunction &MF) const {
674   return true;
675 }
676 
677 bool
678 AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
679   const MachineFrameInfo &MFI = MF.getFrameInfo();
680   if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
681     return true;
682   return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
683 }
684 
685 /// needsFrameBaseReg - Returns true if the instruction's frame index
686 /// reference would be better served by a base register other than FP
687 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
688 /// references it should create new base registers for.
689 bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
690                                             int64_t Offset) const {
691   for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
692     assert(i < MI->getNumOperands() &&
693            "Instr doesn't have FrameIndex operand!");
694 
695   // It's the load/store FI references that cause issues, as it can be difficult
696   // to materialize the offset if it won't fit in the literal field. Estimate
697   // based on the size of the local frame and some conservative assumptions
698   // about the rest of the stack frame (note, this is pre-regalloc, so
699   // we don't know everything for certain yet) whether this offset is likely
700   // to be out of range of the immediate. Return true if so.
701 
702   // We only generate virtual base registers for loads and stores, so
703   // return false for everything else.
704   if (!MI->mayLoad() && !MI->mayStore())
705     return false;
706 
707   // Without a virtual base register, if the function has variable sized
708   // objects, all fixed-size local references will be via the frame pointer,
709   // Approximate the offset and see if it's legal for the instruction.
710   // Note that the incoming offset is based on the SP value at function entry,
711   // so it'll be negative.
712   MachineFunction &MF = *MI->getParent()->getParent();
713   const AArch64FrameLowering *TFI = getFrameLowering(MF);
714   MachineFrameInfo &MFI = MF.getFrameInfo();
715 
716   // Estimate an offset from the frame pointer.
717   // Conservatively assume all GPR callee-saved registers get pushed.
718   // FP, LR, X19-X28, D8-D15. 64-bits each.
719   int64_t FPOffset = Offset - 16 * 20;
720   // Estimate an offset from the stack pointer.
721   // The incoming offset is relating to the SP at the start of the function,
722   // but when we access the local it'll be relative to the SP after local
723   // allocation, so adjust our SP-relative offset by that allocation size.
724   Offset += MFI.getLocalFrameSize();
725   // Assume that we'll have at least some spill slots allocated.
726   // FIXME: This is a total SWAG number. We should run some statistics
727   //        and pick a real one.
728   Offset += 128; // 128 bytes of spill slots
729 
730   // If there is a frame pointer, try using it.
731   // The FP is only available if there is no dynamic realignment. We
732   // don't know for sure yet whether we'll need that, so we guess based
733   // on whether there are any local variables that would trigger it.
734   if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
735     return false;
736 
737   // If we can reference via the stack pointer or base pointer, try that.
738   // FIXME: This (and the code that resolves the references) can be improved
739   //        to only disallow SP relative references in the live range of
740   //        the VLA(s). In practice, it's unclear how much difference that
741   //        would make, but it may be worth doing.
742   if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
743     return false;
744 
745   // If even offset 0 is illegal, we don't want a virtual base register.
746   if (!isFrameOffsetLegal(MI, AArch64::SP, 0))
747     return false;
748 
749   // The offset likely isn't legal; we want to allocate a virtual base register.
750   return true;
751 }
752 
753 bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
754                                              Register BaseReg,
755                                              int64_t Offset) const {
756   assert(MI && "Unable to get the legal offset for nil instruction.");
757   StackOffset SaveOffset = StackOffset::getFixed(Offset);
758   return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
759 }
760 
761 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
762 /// at the beginning of the basic block.
763 Register
764 AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
765                                                   int FrameIdx,
766                                                   int64_t Offset) const {
767   MachineBasicBlock::iterator Ins = MBB->begin();
768   DebugLoc DL; // Defaults to "unknown"
769   if (Ins != MBB->end())
770     DL = Ins->getDebugLoc();
771   const MachineFunction &MF = *MBB->getParent();
772   const AArch64InstrInfo *TII =
773       MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
774   const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
775   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
776   Register BaseReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
777   MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
778   unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
779 
780   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
781       .addFrameIndex(FrameIdx)
782       .addImm(Offset)
783       .addImm(Shifter);
784 
785   return BaseReg;
786 }
787 
788 void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
789                                             int64_t Offset) const {
790   // ARM doesn't need the general 64-bit offsets
791   StackOffset Off = StackOffset::getFixed(Offset);
792 
793   unsigned i = 0;
794   while (!MI.getOperand(i).isFI()) {
795     ++i;
796     assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
797   }
798 
799   const MachineFunction *MF = MI.getParent()->getParent();
800   const AArch64InstrInfo *TII =
801       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
802   bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
803   assert(Done && "Unable to resolve frame index!");
804   (void)Done;
805 }
806 
807 // Create a scratch register for the frame index elimination in an instruction.
808 // This function has special handling of stack tagging loop pseudos, in which
809 // case it can also change the instruction opcode.
810 static Register
811 createScratchRegisterForInstruction(MachineInstr &MI, unsigned FIOperandNum,
812                                     const AArch64InstrInfo *TII) {
813   // ST*Gloop have a reserved scratch register in operand 1. Use it, and also
814   // replace the instruction with the writeback variant because it will now
815   // satisfy the operand constraints for it.
816   Register ScratchReg;
817   if (MI.getOpcode() == AArch64::STGloop ||
818       MI.getOpcode() == AArch64::STZGloop) {
819     assert(FIOperandNum == 3 &&
820            "Wrong frame index operand for STGloop/STZGloop");
821     unsigned Op = MI.getOpcode() == AArch64::STGloop ? AArch64::STGloop_wback
822                                                      : AArch64::STZGloop_wback;
823     ScratchReg = MI.getOperand(1).getReg();
824     MI.getOperand(3).ChangeToRegister(ScratchReg, false, false, true);
825     MI.setDesc(TII->get(Op));
826     MI.tieOperands(1, 3);
827   } else {
828     ScratchReg =
829         MI.getMF()->getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
830     MI.getOperand(FIOperandNum)
831         .ChangeToRegister(ScratchReg, false, false, true);
832   }
833   return ScratchReg;
834 }
835 
836 void AArch64RegisterInfo::getOffsetOpcodes(
837     const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
838   // The smallest scalable element supported by scaled SVE addressing
839   // modes are predicates, which are 2 scalable bytes in size. So the scalable
840   // byte offset must always be a multiple of 2.
841   assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
842 
843   // Add fixed-sized offset using existing DIExpression interface.
844   DIExpression::appendOffset(Ops, Offset.getFixed());
845 
846   unsigned VG = getDwarfRegNum(AArch64::VG, true);
847   int64_t VGSized = Offset.getScalable() / 2;
848   if (VGSized > 0) {
849     Ops.push_back(dwarf::DW_OP_constu);
850     Ops.push_back(VGSized);
851     Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
852     Ops.push_back(dwarf::DW_OP_mul);
853     Ops.push_back(dwarf::DW_OP_plus);
854   } else if (VGSized < 0) {
855     Ops.push_back(dwarf::DW_OP_constu);
856     Ops.push_back(-VGSized);
857     Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
858     Ops.push_back(dwarf::DW_OP_mul);
859     Ops.push_back(dwarf::DW_OP_minus);
860   }
861 }
862 
863 bool AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
864                                               int SPAdj, unsigned FIOperandNum,
865                                               RegScavenger *RS) const {
866   assert(SPAdj == 0 && "Unexpected");
867 
868   MachineInstr &MI = *II;
869   MachineBasicBlock &MBB = *MI.getParent();
870   MachineFunction &MF = *MBB.getParent();
871   const MachineFrameInfo &MFI = MF.getFrameInfo();
872   const AArch64InstrInfo *TII =
873       MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
874   const AArch64FrameLowering *TFI = getFrameLowering(MF);
875   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
876   bool Tagged =
877       MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
878   Register FrameReg;
879 
880   // Special handling of dbg_value, stackmap patchpoint statepoint instructions.
881   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
882       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
883       MI.getOpcode() == TargetOpcode::STATEPOINT) {
884     StackOffset Offset =
885         TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
886                                         /*PreferFP=*/true,
887                                         /*ForSimm=*/false);
888     Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
889     MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
890     MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
891     return false;
892   }
893 
894   if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
895     MachineOperand &FI = MI.getOperand(FIOperandNum);
896     StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex);
897     assert(!Offset.getScalable() &&
898            "Frame offsets with a scalable component are not supported");
899     FI.ChangeToImmediate(Offset.getFixed());
900     return false;
901   }
902 
903   StackOffset Offset;
904   if (MI.getOpcode() == AArch64::TAGPstack) {
905     // TAGPstack must use the virtual frame register in its 3rd operand.
906     const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
907     FrameReg = MI.getOperand(3).getReg();
908     Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
909                                       AFI->getTaggedBasePointerOffset());
910   } else if (Tagged) {
911     StackOffset SPOffset = StackOffset::getFixed(
912         MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize());
913     if (MFI.hasVarSizedObjects() ||
914         isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
915             (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) {
916       // Can't update to SP + offset in place. Precalculate the tagged pointer
917       // in a scratch register.
918       Offset = TFI->resolveFrameIndexReference(
919           MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
920       Register ScratchReg =
921           MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
922       emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
923                       TII);
924       BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
925           .addReg(ScratchReg)
926           .addReg(ScratchReg)
927           .addImm(0);
928       MI.getOperand(FIOperandNum)
929           .ChangeToRegister(ScratchReg, false, false, true);
930       return false;
931     }
932     FrameReg = AArch64::SP;
933     Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
934                                    (int64_t)MFI.getStackSize());
935   } else {
936     Offset = TFI->resolveFrameIndexReference(
937         MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
938   }
939 
940   // Modify MI as necessary to handle as much of 'Offset' as possible
941   if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
942     return true;
943 
944   assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
945          "Emergency spill slot is out of reach");
946 
947   // If we get here, the immediate doesn't fit into the instruction.  We folded
948   // as much as possible above.  Handle the rest, providing a register that is
949   // SP+LargeImm.
950   Register ScratchReg =
951       createScratchRegisterForInstruction(MI, FIOperandNum, TII);
952   emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
953   return false;
954 }
955 
956 unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
957                                                   MachineFunction &MF) const {
958   const AArch64FrameLowering *TFI = getFrameLowering(MF);
959 
960   switch (RC->getID()) {
961   default:
962     return 0;
963   case AArch64::GPR32RegClassID:
964   case AArch64::GPR32spRegClassID:
965   case AArch64::GPR32allRegClassID:
966   case AArch64::GPR64spRegClassID:
967   case AArch64::GPR64allRegClassID:
968   case AArch64::GPR64RegClassID:
969   case AArch64::GPR32commonRegClassID:
970   case AArch64::GPR64commonRegClassID:
971     return 32 - 1                                   // XZR/SP
972               - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
973               - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
974               - hasBasePointer(MF);  // X19
975   case AArch64::FPR8RegClassID:
976   case AArch64::FPR16RegClassID:
977   case AArch64::FPR32RegClassID:
978   case AArch64::FPR64RegClassID:
979   case AArch64::FPR128RegClassID:
980     return 32;
981 
982   case AArch64::MatrixIndexGPR32_8_11RegClassID:
983   case AArch64::MatrixIndexGPR32_12_15RegClassID:
984     return 4;
985 
986   case AArch64::DDRegClassID:
987   case AArch64::DDDRegClassID:
988   case AArch64::DDDDRegClassID:
989   case AArch64::QQRegClassID:
990   case AArch64::QQQRegClassID:
991   case AArch64::QQQQRegClassID:
992     return 32;
993 
994   case AArch64::FPR128_loRegClassID:
995   case AArch64::FPR64_loRegClassID:
996   case AArch64::FPR16_loRegClassID:
997     return 16;
998   case AArch64::FPR128_0to7RegClassID:
999     return 8;
1000   }
1001 }
1002 
1003 unsigned AArch64RegisterInfo::getLocalAddressRegister(
1004   const MachineFunction &MF) const {
1005   const auto &MFI = MF.getFrameInfo();
1006   if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
1007     return AArch64::SP;
1008   else if (hasStackRealignment(MF))
1009     return getBaseRegister();
1010   return getFrameRegister(MF);
1011 }
1012 
1013 /// SrcRC and DstRC will be morphed into NewRC if this returns true
1014 bool AArch64RegisterInfo::shouldCoalesce(
1015     MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
1016     const TargetRegisterClass *DstRC, unsigned DstSubReg,
1017     const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
1018   if (MI->isCopy() &&
1019       ((DstRC->getID() == AArch64::GPR64RegClassID) ||
1020        (DstRC->getID() == AArch64::GPR64commonRegClassID)) &&
1021       MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg())
1022     // Do not coalesce in the case of a 32-bit subregister copy
1023     // which implements a 32 to 64 bit zero extension
1024     // which relies on the upper 32 bits being zeroed.
1025     return false;
1026   return true;
1027 }
1028