1 //===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of the TargetRegisterInfo 10 // class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64RegisterInfo.h" 15 #include "AArch64FrameLowering.h" 16 #include "AArch64InstrInfo.h" 17 #include "AArch64MachineFunctionInfo.h" 18 #include "AArch64Subtarget.h" 19 #include "MCTargetDesc/AArch64AddressingModes.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterScavenging.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetOptions.h" 32 33 using namespace llvm; 34 35 #define GET_REGINFO_TARGET_DESC 36 #include "AArch64GenRegisterInfo.inc" 37 38 AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT) 39 : AArch64GenRegisterInfo(AArch64::LR), TT(TT) { 40 AArch64_MC::initLLVMToCVRegMapping(this); 41 } 42 43 /// Return whether the register needs a CFI entry. Not all unwinders may know 44 /// about SVE registers, so we assume the lowest common denominator, i.e. the 45 /// callee-saves required by the base ABI. For the SVE registers z8-z15 only the 46 /// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is 47 /// returned in \p RegToUseForCFI. 48 bool AArch64RegisterInfo::regNeedsCFI(unsigned Reg, 49 unsigned &RegToUseForCFI) const { 50 if (AArch64::PPRRegClass.contains(Reg)) 51 return false; 52 53 if (AArch64::ZPRRegClass.contains(Reg)) { 54 RegToUseForCFI = getSubReg(Reg, AArch64::dsub); 55 for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) { 56 if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI) 57 return true; 58 } 59 return false; 60 } 61 62 RegToUseForCFI = Reg; 63 return true; 64 } 65 66 bool AArch64RegisterInfo::hasSVEArgsOrReturn(const MachineFunction *MF) { 67 const Function &F = MF->getFunction(); 68 return isa<ScalableVectorType>(F.getReturnType()) || 69 any_of(F.args(), [](const Argument &Arg) { 70 return isa<ScalableVectorType>(Arg.getType()); 71 }); 72 } 73 74 const MCPhysReg * 75 AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 76 assert(MF && "Invalid MachineFunction pointer."); 77 78 if (MF->getFunction().getCallingConv() == CallingConv::GHC) 79 // GHC set of callee saved regs is empty as all those regs are 80 // used for passing STG regs around 81 return CSR_AArch64_NoRegs_SaveList; 82 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) 83 return CSR_AArch64_AllRegs_SaveList; 84 85 // Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save 86 // lists depending on that will need to have their Darwin variant as well. 87 if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin()) 88 return getDarwinCalleeSavedRegs(MF); 89 90 if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check) 91 return CSR_Win_AArch64_CFGuard_Check_SaveList; 92 if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows()) 93 return CSR_Win_AArch64_AAPCS_SaveList; 94 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall) 95 return CSR_AArch64_AAVPCS_SaveList; 96 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall) 97 return CSR_AArch64_SVE_AAPCS_SaveList; 98 if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering() 99 ->supportSwiftError() && 100 MF->getFunction().getAttributes().hasAttrSomewhere( 101 Attribute::SwiftError)) 102 return CSR_AArch64_AAPCS_SwiftError_SaveList; 103 if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail) 104 return CSR_AArch64_AAPCS_SwiftTail_SaveList; 105 if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost) 106 return CSR_AArch64_RT_MostRegs_SaveList; 107 if (MF->getFunction().getCallingConv() == CallingConv::Win64) 108 // This is for OSes other than Windows; Windows is a separate case further 109 // above. 110 return CSR_AArch64_AAPCS_X18_SaveList; 111 if (hasSVEArgsOrReturn(MF)) 112 return CSR_AArch64_SVE_AAPCS_SaveList; 113 return CSR_AArch64_AAPCS_SaveList; 114 } 115 116 const MCPhysReg * 117 AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const { 118 assert(MF && "Invalid MachineFunction pointer."); 119 assert(MF->getSubtarget<AArch64Subtarget>().isTargetDarwin() && 120 "Invalid subtarget for getDarwinCalleeSavedRegs"); 121 122 if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check) 123 report_fatal_error( 124 "Calling convention CFGuard_Check is unsupported on Darwin."); 125 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall) 126 return CSR_Darwin_AArch64_AAVPCS_SaveList; 127 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall) 128 report_fatal_error( 129 "Calling convention SVE_VectorCall is unsupported on Darwin."); 130 if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS) 131 return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR() 132 ? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList 133 : CSR_Darwin_AArch64_CXX_TLS_SaveList; 134 if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering() 135 ->supportSwiftError() && 136 MF->getFunction().getAttributes().hasAttrSomewhere( 137 Attribute::SwiftError)) 138 return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList; 139 if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail) 140 return CSR_Darwin_AArch64_AAPCS_SwiftTail_SaveList; 141 if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost) 142 return CSR_Darwin_AArch64_RT_MostRegs_SaveList; 143 return CSR_Darwin_AArch64_AAPCS_SaveList; 144 } 145 146 const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy( 147 const MachineFunction *MF) const { 148 assert(MF && "Invalid MachineFunction pointer."); 149 if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && 150 MF->getInfo<AArch64FunctionInfo>()->isSplitCSR()) 151 return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList; 152 return nullptr; 153 } 154 155 void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs( 156 MachineFunction &MF) const { 157 const MCPhysReg *CSRs = getCalleeSavedRegs(&MF); 158 SmallVector<MCPhysReg, 32> UpdatedCSRs; 159 for (const MCPhysReg *I = CSRs; *I; ++I) 160 UpdatedCSRs.push_back(*I); 161 162 for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) { 163 if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) { 164 UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i)); 165 } 166 } 167 // Register lists are zero-terminated. 168 UpdatedCSRs.push_back(0); 169 MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs); 170 } 171 172 const TargetRegisterClass * 173 AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC, 174 unsigned Idx) const { 175 // edge case for GPR/FPR register classes 176 if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub) 177 return &AArch64::FPR32RegClass; 178 else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub) 179 return &AArch64::FPR64RegClass; 180 181 // Forward to TableGen's default version. 182 return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx); 183 } 184 185 const uint32_t * 186 AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF, 187 CallingConv::ID CC) const { 188 assert(MF.getSubtarget<AArch64Subtarget>().isTargetDarwin() && 189 "Invalid subtarget for getDarwinCallPreservedMask"); 190 191 if (CC == CallingConv::CXX_FAST_TLS) 192 return CSR_Darwin_AArch64_CXX_TLS_RegMask; 193 if (CC == CallingConv::AArch64_VectorCall) 194 return CSR_Darwin_AArch64_AAVPCS_RegMask; 195 if (CC == CallingConv::AArch64_SVE_VectorCall) 196 report_fatal_error( 197 "Calling convention SVE_VectorCall is unsupported on Darwin."); 198 if (CC == CallingConv::CFGuard_Check) 199 report_fatal_error( 200 "Calling convention CFGuard_Check is unsupported on Darwin."); 201 if (MF.getSubtarget<AArch64Subtarget>() 202 .getTargetLowering() 203 ->supportSwiftError() && 204 MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 205 return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask; 206 if (CC == CallingConv::SwiftTail) 207 return CSR_Darwin_AArch64_AAPCS_SwiftTail_RegMask; 208 if (CC == CallingConv::PreserveMost) 209 return CSR_Darwin_AArch64_RT_MostRegs_RegMask; 210 return CSR_Darwin_AArch64_AAPCS_RegMask; 211 } 212 213 const uint32_t * 214 AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF, 215 CallingConv::ID CC) const { 216 bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack); 217 if (CC == CallingConv::GHC) 218 // This is academic because all GHC calls are (supposed to be) tail calls 219 return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask; 220 if (CC == CallingConv::AnyReg) 221 return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask; 222 223 // All the following calling conventions are handled differently on Darwin. 224 if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) { 225 if (SCS) 226 report_fatal_error("ShadowCallStack attribute not supported on Darwin."); 227 return getDarwinCallPreservedMask(MF, CC); 228 } 229 230 if (CC == CallingConv::AArch64_VectorCall) 231 return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask; 232 if (CC == CallingConv::AArch64_SVE_VectorCall) 233 return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask 234 : CSR_AArch64_SVE_AAPCS_RegMask; 235 if (CC == CallingConv::CFGuard_Check) 236 return CSR_Win_AArch64_CFGuard_Check_RegMask; 237 if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering() 238 ->supportSwiftError() && 239 MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 240 return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask 241 : CSR_AArch64_AAPCS_SwiftError_RegMask; 242 if (CC == CallingConv::SwiftTail) { 243 if (SCS) 244 report_fatal_error("ShadowCallStack attribute not supported with swifttail"); 245 return CSR_AArch64_AAPCS_SwiftTail_RegMask; 246 } 247 if (CC == CallingConv::PreserveMost) 248 return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask 249 : CSR_AArch64_RT_MostRegs_RegMask; 250 else 251 return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask; 252 } 253 254 const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask( 255 const MachineFunction &MF) const { 256 if (MF.getSubtarget<AArch64Subtarget>().isTargetLinux()) 257 return CSR_AArch64_AAPCS_RegMask; 258 259 return nullptr; 260 } 261 262 const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const { 263 if (TT.isOSDarwin()) 264 return CSR_Darwin_AArch64_TLS_RegMask; 265 266 assert(TT.isOSBinFormatELF() && "Invalid target"); 267 return CSR_AArch64_TLS_ELF_RegMask; 268 } 269 270 void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF, 271 const uint32_t **Mask) const { 272 uint32_t *UpdatedMask = MF.allocateRegMask(); 273 unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs()); 274 memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize); 275 276 for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) { 277 if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) { 278 for (MCSubRegIterator SubReg(AArch64::GPR64commonRegClass.getRegister(i), 279 this, true); 280 SubReg.isValid(); ++SubReg) { 281 // See TargetRegisterInfo::getCallPreservedMask for how to interpret the 282 // register mask. 283 UpdatedMask[*SubReg / 32] |= 1u << (*SubReg % 32); 284 } 285 } 286 } 287 *Mask = UpdatedMask; 288 } 289 290 const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const { 291 return CSR_AArch64_NoRegs_RegMask; 292 } 293 294 const uint32_t * 295 AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF, 296 CallingConv::ID CC) const { 297 // This should return a register mask that is the same as that returned by 298 // getCallPreservedMask but that additionally preserves the register used for 299 // the first i64 argument (which must also be the register used to return a 300 // single i64 return value) 301 // 302 // In case that the calling convention does not use the same register for 303 // both, the function should return NULL (does not currently apply) 304 assert(CC != CallingConv::GHC && "should not be GHC calling convention."); 305 if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) 306 return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask; 307 return CSR_AArch64_AAPCS_ThisReturn_RegMask; 308 } 309 310 const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const { 311 return CSR_AArch64_StackProbe_Windows_RegMask; 312 } 313 314 BitVector 315 AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 316 const AArch64FrameLowering *TFI = getFrameLowering(MF); 317 318 // FIXME: avoid re-calculating this every time. 319 BitVector Reserved(getNumRegs()); 320 markSuperRegs(Reserved, AArch64::WSP); 321 markSuperRegs(Reserved, AArch64::WZR); 322 323 if (TFI->hasFP(MF) || TT.isOSDarwin()) 324 markSuperRegs(Reserved, AArch64::W29); 325 326 for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) { 327 if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i)) 328 markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i)); 329 } 330 331 if (hasBasePointer(MF)) 332 markSuperRegs(Reserved, AArch64::W19); 333 334 // SLH uses register W16/X16 as the taint register. 335 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) 336 markSuperRegs(Reserved, AArch64::W16); 337 338 assert(checkAllSuperRegsMarked(Reserved)); 339 return Reserved; 340 } 341 342 bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF, 343 MCRegister Reg) const { 344 return getReservedRegs(MF)[Reg]; 345 } 346 347 bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const { 348 return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) { 349 return isReservedReg(MF, r); 350 }); 351 } 352 353 void AArch64RegisterInfo::emitReservedArgRegCallError( 354 const MachineFunction &MF) const { 355 const Function &F = MF.getFunction(); 356 F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support" 357 " function calls if any of the argument registers is reserved.")}); 358 } 359 360 bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF, 361 MCRegister PhysReg) const { 362 return !isReservedReg(MF, PhysReg); 363 } 364 365 bool AArch64RegisterInfo::isConstantPhysReg(MCRegister PhysReg) const { 366 return PhysReg == AArch64::WZR || PhysReg == AArch64::XZR; 367 } 368 369 const TargetRegisterClass * 370 AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF, 371 unsigned Kind) const { 372 return &AArch64::GPR64spRegClass; 373 } 374 375 const TargetRegisterClass * 376 AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 377 if (RC == &AArch64::CCRRegClass) 378 return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV. 379 return RC; 380 } 381 382 unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; } 383 384 bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const { 385 const MachineFrameInfo &MFI = MF.getFrameInfo(); 386 387 // In the presence of variable sized objects or funclets, if the fixed stack 388 // size is large enough that referencing from the FP won't result in things 389 // being in range relatively often, we can use a base pointer to allow access 390 // from the other direction like the SP normally works. 391 // 392 // Furthermore, if both variable sized objects are present, and the 393 // stack needs to be dynamically re-aligned, the base pointer is the only 394 // reliable way to reference the locals. 395 if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) { 396 if (hasStackRealignment(MF)) 397 return true; 398 399 if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) { 400 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 401 // Frames that have variable sized objects and scalable SVE objects, 402 // should always use a basepointer. 403 if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE()) 404 return true; 405 } 406 407 // Conservatively estimate whether the negative offset from the frame 408 // pointer will be sufficient to reach. If a function has a smallish 409 // frame, it's less likely to have lots of spills and callee saved 410 // space, so it's all more likely to be within range of the frame pointer. 411 // If it's wrong, we'll materialize the constant and still get to the 412 // object; it's just suboptimal. Negative offsets use the unscaled 413 // load/store instructions, which have a 9-bit signed immediate. 414 return MFI.getLocalFrameSize() >= 256; 415 } 416 417 return false; 418 } 419 420 Register 421 AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const { 422 const AArch64FrameLowering *TFI = getFrameLowering(MF); 423 return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP; 424 } 425 426 bool AArch64RegisterInfo::requiresRegisterScavenging( 427 const MachineFunction &MF) const { 428 return true; 429 } 430 431 bool AArch64RegisterInfo::requiresVirtualBaseRegisters( 432 const MachineFunction &MF) const { 433 return true; 434 } 435 436 bool 437 AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const { 438 // This function indicates whether the emergency spillslot should be placed 439 // close to the beginning of the stackframe (closer to FP) or the end 440 // (closer to SP). 441 // 442 // The beginning works most reliably if we have a frame pointer. 443 // In the presence of any non-constant space between FP and locals, 444 // (e.g. in case of stack realignment or a scalable SVE area), it is 445 // better to use SP or BP. 446 const AArch64FrameLowering &TFI = *getFrameLowering(MF); 447 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 448 assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() || 449 AFI->hasCalculatedStackSizeSVE()) && 450 "Expected SVE area to be calculated by this point"); 451 return TFI.hasFP(MF) && !hasStackRealignment(MF) && !AFI->getStackSizeSVE(); 452 } 453 454 bool AArch64RegisterInfo::requiresFrameIndexScavenging( 455 const MachineFunction &MF) const { 456 return true; 457 } 458 459 bool 460 AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const { 461 const MachineFrameInfo &MFI = MF.getFrameInfo(); 462 if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack()) 463 return true; 464 return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken(); 465 } 466 467 /// needsFrameBaseReg - Returns true if the instruction's frame index 468 /// reference would be better served by a base register other than FP 469 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 470 /// references it should create new base registers for. 471 bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI, 472 int64_t Offset) const { 473 for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) 474 assert(i < MI->getNumOperands() && 475 "Instr doesn't have FrameIndex operand!"); 476 477 // It's the load/store FI references that cause issues, as it can be difficult 478 // to materialize the offset if it won't fit in the literal field. Estimate 479 // based on the size of the local frame and some conservative assumptions 480 // about the rest of the stack frame (note, this is pre-regalloc, so 481 // we don't know everything for certain yet) whether this offset is likely 482 // to be out of range of the immediate. Return true if so. 483 484 // We only generate virtual base registers for loads and stores, so 485 // return false for everything else. 486 if (!MI->mayLoad() && !MI->mayStore()) 487 return false; 488 489 // Without a virtual base register, if the function has variable sized 490 // objects, all fixed-size local references will be via the frame pointer, 491 // Approximate the offset and see if it's legal for the instruction. 492 // Note that the incoming offset is based on the SP value at function entry, 493 // so it'll be negative. 494 MachineFunction &MF = *MI->getParent()->getParent(); 495 const AArch64FrameLowering *TFI = getFrameLowering(MF); 496 MachineFrameInfo &MFI = MF.getFrameInfo(); 497 498 // Estimate an offset from the frame pointer. 499 // Conservatively assume all GPR callee-saved registers get pushed. 500 // FP, LR, X19-X28, D8-D15. 64-bits each. 501 int64_t FPOffset = Offset - 16 * 20; 502 // Estimate an offset from the stack pointer. 503 // The incoming offset is relating to the SP at the start of the function, 504 // but when we access the local it'll be relative to the SP after local 505 // allocation, so adjust our SP-relative offset by that allocation size. 506 Offset += MFI.getLocalFrameSize(); 507 // Assume that we'll have at least some spill slots allocated. 508 // FIXME: This is a total SWAG number. We should run some statistics 509 // and pick a real one. 510 Offset += 128; // 128 bytes of spill slots 511 512 // If there is a frame pointer, try using it. 513 // The FP is only available if there is no dynamic realignment. We 514 // don't know for sure yet whether we'll need that, so we guess based 515 // on whether there are any local variables that would trigger it. 516 if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset)) 517 return false; 518 519 // If we can reference via the stack pointer or base pointer, try that. 520 // FIXME: This (and the code that resolves the references) can be improved 521 // to only disallow SP relative references in the live range of 522 // the VLA(s). In practice, it's unclear how much difference that 523 // would make, but it may be worth doing. 524 if (isFrameOffsetLegal(MI, AArch64::SP, Offset)) 525 return false; 526 527 // If even offset 0 is illegal, we don't want a virtual base register. 528 if (!isFrameOffsetLegal(MI, AArch64::SP, 0)) 529 return false; 530 531 // The offset likely isn't legal; we want to allocate a virtual base register. 532 return true; 533 } 534 535 bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, 536 Register BaseReg, 537 int64_t Offset) const { 538 assert(MI && "Unable to get the legal offset for nil instruction."); 539 StackOffset SaveOffset = StackOffset::getFixed(Offset); 540 return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal; 541 } 542 543 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx 544 /// at the beginning of the basic block. 545 Register 546 AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, 547 int FrameIdx, 548 int64_t Offset) const { 549 MachineBasicBlock::iterator Ins = MBB->begin(); 550 DebugLoc DL; // Defaults to "unknown" 551 if (Ins != MBB->end()) 552 DL = Ins->getDebugLoc(); 553 const MachineFunction &MF = *MBB->getParent(); 554 const AArch64InstrInfo *TII = 555 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 556 const MCInstrDesc &MCID = TII->get(AArch64::ADDXri); 557 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 558 Register BaseReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass); 559 MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF)); 560 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0); 561 562 BuildMI(*MBB, Ins, DL, MCID, BaseReg) 563 .addFrameIndex(FrameIdx) 564 .addImm(Offset) 565 .addImm(Shifter); 566 567 return BaseReg; 568 } 569 570 void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, 571 int64_t Offset) const { 572 // ARM doesn't need the general 64-bit offsets 573 StackOffset Off = StackOffset::getFixed(Offset); 574 575 unsigned i = 0; 576 while (!MI.getOperand(i).isFI()) { 577 ++i; 578 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 579 } 580 581 const MachineFunction *MF = MI.getParent()->getParent(); 582 const AArch64InstrInfo *TII = 583 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 584 bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII); 585 assert(Done && "Unable to resolve frame index!"); 586 (void)Done; 587 } 588 589 // Create a scratch register for the frame index elimination in an instruction. 590 // This function has special handling of stack tagging loop pseudos, in which 591 // case it can also change the instruction opcode (but not the operands). 592 static Register 593 createScratchRegisterForInstruction(MachineInstr &MI, 594 const AArch64InstrInfo *TII) { 595 // ST*Gloop have a reserved scratch register in operand 1. Use it, and also 596 // replace the instruction with the writeback variant because it will now 597 // satisfy the operand constraints for it. 598 if (MI.getOpcode() == AArch64::STGloop) { 599 MI.setDesc(TII->get(AArch64::STGloop_wback)); 600 return MI.getOperand(1).getReg(); 601 } else if (MI.getOpcode() == AArch64::STZGloop) { 602 MI.setDesc(TII->get(AArch64::STZGloop_wback)); 603 return MI.getOperand(1).getReg(); 604 } else { 605 return MI.getMF()->getRegInfo().createVirtualRegister( 606 &AArch64::GPR64RegClass); 607 } 608 } 609 610 void AArch64RegisterInfo::getOffsetOpcodes( 611 const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const { 612 // The smallest scalable element supported by scaled SVE addressing 613 // modes are predicates, which are 2 scalable bytes in size. So the scalable 614 // byte offset must always be a multiple of 2. 615 assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset"); 616 617 // Add fixed-sized offset using existing DIExpression interface. 618 DIExpression::appendOffset(Ops, Offset.getFixed()); 619 620 unsigned VG = getDwarfRegNum(AArch64::VG, true); 621 int64_t VGSized = Offset.getScalable() / 2; 622 if (VGSized > 0) { 623 Ops.push_back(dwarf::DW_OP_constu); 624 Ops.push_back(VGSized); 625 Ops.append({dwarf::DW_OP_bregx, VG, 0ULL}); 626 Ops.push_back(dwarf::DW_OP_mul); 627 Ops.push_back(dwarf::DW_OP_plus); 628 } else if (VGSized < 0) { 629 Ops.push_back(dwarf::DW_OP_constu); 630 Ops.push_back(-VGSized); 631 Ops.append({dwarf::DW_OP_bregx, VG, 0ULL}); 632 Ops.push_back(dwarf::DW_OP_mul); 633 Ops.push_back(dwarf::DW_OP_minus); 634 } 635 } 636 637 void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 638 int SPAdj, unsigned FIOperandNum, 639 RegScavenger *RS) const { 640 assert(SPAdj == 0 && "Unexpected"); 641 642 MachineInstr &MI = *II; 643 MachineBasicBlock &MBB = *MI.getParent(); 644 MachineFunction &MF = *MBB.getParent(); 645 const MachineFrameInfo &MFI = MF.getFrameInfo(); 646 const AArch64InstrInfo *TII = 647 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 648 const AArch64FrameLowering *TFI = getFrameLowering(MF); 649 int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); 650 bool Tagged = 651 MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED; 652 Register FrameReg; 653 654 // Special handling of dbg_value, stackmap patchpoint statepoint instructions. 655 if (MI.getOpcode() == TargetOpcode::STACKMAP || 656 MI.getOpcode() == TargetOpcode::PATCHPOINT || 657 MI.getOpcode() == TargetOpcode::STATEPOINT) { 658 StackOffset Offset = 659 TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg, 660 /*PreferFP=*/true, 661 /*ForSimm=*/false); 662 Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm()); 663 MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/); 664 MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed()); 665 return; 666 } 667 668 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) { 669 MachineOperand &FI = MI.getOperand(FIOperandNum); 670 StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex); 671 assert(!Offset.getScalable() && 672 "Frame offsets with a scalable component are not supported"); 673 FI.ChangeToImmediate(Offset.getFixed()); 674 return; 675 } 676 677 StackOffset Offset; 678 if (MI.getOpcode() == AArch64::TAGPstack) { 679 // TAGPstack must use the virtual frame register in its 3rd operand. 680 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 681 FrameReg = MI.getOperand(3).getReg(); 682 Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) + 683 AFI->getTaggedBasePointerOffset()); 684 } else if (Tagged) { 685 StackOffset SPOffset = StackOffset::getFixed( 686 MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize()); 687 if (MFI.hasVarSizedObjects() || 688 isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) != 689 (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) { 690 // Can't update to SP + offset in place. Precalculate the tagged pointer 691 // in a scratch register. 692 Offset = TFI->resolveFrameIndexReference( 693 MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true); 694 Register ScratchReg = 695 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass); 696 emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, 697 TII); 698 BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg) 699 .addReg(ScratchReg) 700 .addReg(ScratchReg) 701 .addImm(0); 702 MI.getOperand(FIOperandNum) 703 .ChangeToRegister(ScratchReg, false, false, true); 704 return; 705 } 706 FrameReg = AArch64::SP; 707 Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) + 708 (int64_t)MFI.getStackSize()); 709 } else { 710 Offset = TFI->resolveFrameIndexReference( 711 MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true); 712 } 713 714 // Modify MI as necessary to handle as much of 'Offset' as possible 715 if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII)) 716 return; 717 718 assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) && 719 "Emergency spill slot is out of reach"); 720 721 // If we get here, the immediate doesn't fit into the instruction. We folded 722 // as much as possible above. Handle the rest, providing a register that is 723 // SP+LargeImm. 724 Register ScratchReg = createScratchRegisterForInstruction(MI, TII); 725 emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII); 726 MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true); 727 } 728 729 unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, 730 MachineFunction &MF) const { 731 const AArch64FrameLowering *TFI = getFrameLowering(MF); 732 733 switch (RC->getID()) { 734 default: 735 return 0; 736 case AArch64::GPR32RegClassID: 737 case AArch64::GPR32spRegClassID: 738 case AArch64::GPR32allRegClassID: 739 case AArch64::GPR64spRegClassID: 740 case AArch64::GPR64allRegClassID: 741 case AArch64::GPR64RegClassID: 742 case AArch64::GPR32commonRegClassID: 743 case AArch64::GPR64commonRegClassID: 744 return 32 - 1 // XZR/SP 745 - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP 746 - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved() 747 - hasBasePointer(MF); // X19 748 case AArch64::FPR8RegClassID: 749 case AArch64::FPR16RegClassID: 750 case AArch64::FPR32RegClassID: 751 case AArch64::FPR64RegClassID: 752 case AArch64::FPR128RegClassID: 753 return 32; 754 755 case AArch64::MatrixIndexGPR32_12_15RegClassID: 756 return 4; 757 758 case AArch64::DDRegClassID: 759 case AArch64::DDDRegClassID: 760 case AArch64::DDDDRegClassID: 761 case AArch64::QQRegClassID: 762 case AArch64::QQQRegClassID: 763 case AArch64::QQQQRegClassID: 764 return 32; 765 766 case AArch64::FPR128_loRegClassID: 767 case AArch64::FPR64_loRegClassID: 768 case AArch64::FPR16_loRegClassID: 769 return 16; 770 } 771 } 772 773 unsigned AArch64RegisterInfo::getLocalAddressRegister( 774 const MachineFunction &MF) const { 775 const auto &MFI = MF.getFrameInfo(); 776 if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects()) 777 return AArch64::SP; 778 else if (hasStackRealignment(MF)) 779 return getBaseRegister(); 780 return getFrameRegister(MF); 781 } 782 783 /// SrcRC and DstRC will be morphed into NewRC if this returns true 784 bool AArch64RegisterInfo::shouldCoalesce( 785 MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, 786 const TargetRegisterClass *DstRC, unsigned DstSubReg, 787 const TargetRegisterClass *NewRC, LiveIntervals &LIS) const { 788 if (MI->isCopy() && 789 ((DstRC->getID() == AArch64::GPR64RegClassID) || 790 (DstRC->getID() == AArch64::GPR64commonRegClassID)) && 791 MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg()) 792 // Do not coalesce in the case of a 32-bit subregister copy 793 // which implements a 32 to 64 bit zero extension 794 // which relies on the upper 32 bits being zeroed. 795 return false; 796 return true; 797 } 798