xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64RedundantCopyElimination.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 // This pass removes unnecessary copies/moves in BBs based on a dominating
8 // condition.
9 //
10 // We handle three cases:
11 // 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
12 //    the CBZ/CBNZ source register is zero on the taken/not-taken path. For
13 //    instance, the copy instruction in the code below can be removed because
14 //    the CBZW jumps to %bb.2 when w0 is zero.
15 //
16 //  %bb.1:
17 //    cbz w0, .LBB0_2
18 //  .LBB0_2:
19 //    mov w0, wzr  ; <-- redundant
20 //
21 // 2. If the flag setting instruction defines a register other than WZR/XZR, we
22 //    can remove a zero copy in some cases.
23 //
24 //  %bb.0:
25 //    subs w0, w1, w2
26 //    str w0, [x1]
27 //    b.ne .LBB0_2
28 //  %bb.1:
29 //    mov w0, wzr  ; <-- redundant
30 //    str w0, [x2]
31 //  .LBB0_2
32 //
33 // 3. Finally, if the flag setting instruction is a comparison against a
34 //    constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
35 //    in some cases.
36 //
37 //  %bb.0:
38 //    subs xzr, x0, #1
39 //    b.eq .LBB0_1
40 //  .LBB0_1:
41 //    orr x0, xzr, #0x1  ; <-- redundant
42 //
43 // This pass should be run after register allocation.
44 //
45 // FIXME: This could also be extended to check the whole dominance subtree below
46 // the comparison if the compile time regression is acceptable.
47 //
48 // FIXME: Add support for handling CCMP instructions.
49 // FIXME: If the known register value is zero, we should be able to rewrite uses
50 //        to use WZR/XZR directly in some cases.
51 //===----------------------------------------------------------------------===//
52 #include "AArch64.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/ADT/iterator_range.h"
56 #include "llvm/CodeGen/LiveRegUnits.h"
57 #include "llvm/CodeGen/MachineFunctionPass.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/Support/Debug.h"
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "aarch64-copyelim"
64 
65 STATISTIC(NumCopiesRemoved, "Number of copies removed.");
66 
67 namespace {
68 class AArch64RedundantCopyElimination : public MachineFunctionPass {
69   const MachineRegisterInfo *MRI;
70   const TargetRegisterInfo *TRI;
71 
72   // DomBBClobberedRegs is used when computing known values in the dominating
73   // BB.
74   LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;
75 
76   // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
77   LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;
78 
79 public:
80   static char ID;
81   AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {
82     initializeAArch64RedundantCopyEliminationPass(
83         *PassRegistry::getPassRegistry());
84   }
85 
86   struct RegImm {
87     MCPhysReg Reg;
88     int32_t Imm;
89     RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
90   };
91 
92   bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
93                           SmallVectorImpl<RegImm> &KnownRegs,
94                           MachineBasicBlock::iterator &FirstUse);
95   bool optimizeBlock(MachineBasicBlock *MBB);
96   bool runOnMachineFunction(MachineFunction &MF) override;
97   MachineFunctionProperties getRequiredProperties() const override {
98     return MachineFunctionProperties().set(
99         MachineFunctionProperties::Property::NoVRegs);
100   }
101   StringRef getPassName() const override {
102     return "AArch64 Redundant Copy Elimination";
103   }
104 };
105 char AArch64RedundantCopyElimination::ID = 0;
106 }
107 
108 INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
109                 "AArch64 redundant copy elimination pass", false, false)
110 
111 /// It's possible to determine the value of a register based on a dominating
112 /// condition.  To do so, this function checks to see if the basic block \p MBB
113 /// is the target of a conditional branch \p CondBr with an equality comparison.
114 /// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
115 /// in \p MBB for some cases.  Otherwise, we find and inspect the NZCV setting
116 /// instruction (e.g., SUBS, ADDS).  If this instruction defines a register
117 /// other than WZR/XZR, we know the value of the destination register is zero in
118 /// \p MMB for some cases.  In addition, if the NZCV setting instruction is
119 /// comparing against a constant we know the other source register is equal to
120 /// the constant in \p MBB for some cases.  If we find any constant values, push
121 /// a physical register and constant value pair onto the KnownRegs vector and
122 /// return true.  Otherwise, return false if no known values were found.
123 bool AArch64RedundantCopyElimination::knownRegValInBlock(
124     MachineInstr &CondBr, MachineBasicBlock *MBB,
125     SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
126   unsigned Opc = CondBr.getOpcode();
127 
128   // Check if the current basic block is the target block to which the
129   // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
130   if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
131        MBB == CondBr.getOperand(1).getMBB()) ||
132       ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
133        MBB != CondBr.getOperand(1).getMBB())) {
134     FirstUse = CondBr;
135     KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
136     return true;
137   }
138 
139   // Otherwise, must be a conditional branch.
140   if (Opc != AArch64::Bcc)
141     return false;
142 
143   // Must be an equality check (i.e., == or !=).
144   AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
145   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
146     return false;
147 
148   MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
149   if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
150       (CC == AArch64CC::NE && BrTarget == MBB))
151     return false;
152 
153   // Stop if we get to the beginning of PredMBB.
154   MachineBasicBlock *PredMBB = *MBB->pred_begin();
155   assert(PredMBB == CondBr.getParent() &&
156          "Conditional branch not in predecessor block!");
157   if (CondBr == PredMBB->begin())
158     return false;
159 
160   // Registers clobbered in PredMBB between CondBr instruction and current
161   // instruction being checked in loop.
162   DomBBClobberedRegs.clear();
163   DomBBUsedRegs.clear();
164 
165   // Find compare instruction that sets NZCV used by CondBr.
166   MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
167   for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {
168 
169     bool IsCMN = false;
170     switch (PredI.getOpcode()) {
171     default:
172       break;
173 
174     // CMN is an alias for ADDS with a dead destination register.
175     case AArch64::ADDSWri:
176     case AArch64::ADDSXri:
177       IsCMN = true;
178       [[fallthrough]];
179     // CMP is an alias for SUBS with a dead destination register.
180     case AArch64::SUBSWri:
181     case AArch64::SUBSXri: {
182       // Sometimes the first operand is a FrameIndex. Bail if tht happens.
183       if (!PredI.getOperand(1).isReg())
184         return false;
185       MCPhysReg DstReg = PredI.getOperand(0).getReg();
186       MCPhysReg SrcReg = PredI.getOperand(1).getReg();
187 
188       bool Res = false;
189       // If we're comparing against a non-symbolic immediate and the source
190       // register of the compare is not modified (including a self-clobbering
191       // compare) between the compare and conditional branch we known the value
192       // of the 1st source operand.
193       if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
194           SrcReg != DstReg) {
195         // We've found the instruction that sets NZCV.
196         int32_t KnownImm = PredI.getOperand(2).getImm();
197         int32_t Shift = PredI.getOperand(3).getImm();
198         KnownImm <<= Shift;
199         if (IsCMN)
200           KnownImm = -KnownImm;
201         FirstUse = PredI;
202         KnownRegs.push_back(RegImm(SrcReg, KnownImm));
203         Res = true;
204       }
205 
206       // If this instructions defines something other than WZR/XZR, we know it's
207       // result is zero in some cases.
208       if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
209         return Res;
210 
211       // The destination register must not be modified between the NZCV setting
212       // instruction and the conditional branch.
213       if (!DomBBClobberedRegs.available(DstReg))
214         return Res;
215 
216       FirstUse = PredI;
217       KnownRegs.push_back(RegImm(DstReg, 0));
218       return true;
219     }
220 
221     // Look for NZCV setting instructions that define something other than
222     // WZR/XZR.
223     case AArch64::ADCSWr:
224     case AArch64::ADCSXr:
225     case AArch64::ADDSWrr:
226     case AArch64::ADDSWrs:
227     case AArch64::ADDSWrx:
228     case AArch64::ADDSXrr:
229     case AArch64::ADDSXrs:
230     case AArch64::ADDSXrx:
231     case AArch64::ADDSXrx64:
232     case AArch64::ANDSWri:
233     case AArch64::ANDSWrr:
234     case AArch64::ANDSWrs:
235     case AArch64::ANDSXri:
236     case AArch64::ANDSXrr:
237     case AArch64::ANDSXrs:
238     case AArch64::BICSWrr:
239     case AArch64::BICSWrs:
240     case AArch64::BICSXrs:
241     case AArch64::BICSXrr:
242     case AArch64::SBCSWr:
243     case AArch64::SBCSXr:
244     case AArch64::SUBSWrr:
245     case AArch64::SUBSWrs:
246     case AArch64::SUBSWrx:
247     case AArch64::SUBSXrr:
248     case AArch64::SUBSXrs:
249     case AArch64::SUBSXrx:
250     case AArch64::SUBSXrx64: {
251       MCPhysReg DstReg = PredI.getOperand(0).getReg();
252       if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
253         return false;
254 
255       // The destination register of the NZCV setting instruction must not be
256       // modified before the conditional branch.
257       if (!DomBBClobberedRegs.available(DstReg))
258         return false;
259 
260       // We've found the instruction that sets NZCV whose DstReg == 0.
261       FirstUse = PredI;
262       KnownRegs.push_back(RegImm(DstReg, 0));
263       return true;
264     }
265     }
266 
267     // Bail if we see an instruction that defines NZCV that we don't handle.
268     if (PredI.definesRegister(AArch64::NZCV))
269       return false;
270 
271     // Track clobbered and used registers.
272     LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
273                                       TRI);
274   }
275   return false;
276 }
277 
278 bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
279   // Check if the current basic block has a single predecessor.
280   if (MBB->pred_size() != 1)
281     return false;
282 
283   // Check if the predecessor has two successors, implying the block ends in a
284   // conditional branch.
285   MachineBasicBlock *PredMBB = *MBB->pred_begin();
286   if (PredMBB->succ_size() != 2)
287     return false;
288 
289   MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr();
290   if (CondBr == PredMBB->end())
291     return false;
292 
293   // Keep track of the earliest point in the PredMBB block where kill markers
294   // need to be removed if a COPY is removed.
295   MachineBasicBlock::iterator FirstUse;
296   // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
297   // or a compare (i.e., SUBS).  In the latter case, we must take care when
298   // updating FirstUse when scanning for COPY instructions.  In particular, if
299   // there's a COPY in between the compare and branch the COPY should not
300   // update FirstUse.
301   bool SeenFirstUse = false;
302   // Registers that contain a known value at the start of MBB.
303   SmallVector<RegImm, 4> KnownRegs;
304 
305   MachineBasicBlock::iterator Itr = std::next(CondBr);
306   do {
307     --Itr;
308 
309     if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
310       continue;
311 
312     // Reset the clobbered and used register units.
313     OptBBClobberedRegs.clear();
314     OptBBUsedRegs.clear();
315 
316     // Look backward in PredMBB for COPYs from the known reg to find other
317     // registers that are known to be a constant value.
318     for (auto PredI = Itr;; --PredI) {
319       if (FirstUse == PredI)
320         SeenFirstUse = true;
321 
322       if (PredI->isCopy()) {
323         MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
324         MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
325         for (auto &KnownReg : KnownRegs) {
326           if (!OptBBClobberedRegs.available(KnownReg.Reg))
327             continue;
328           // If we have X = COPY Y, and Y is known to be zero, then now X is
329           // known to be zero.
330           if (CopySrcReg == KnownReg.Reg &&
331               OptBBClobberedRegs.available(CopyDstReg)) {
332             KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
333             if (SeenFirstUse)
334               FirstUse = PredI;
335             break;
336           }
337           // If we have X = COPY Y, and X is known to be zero, then now Y is
338           // known to be zero.
339           if (CopyDstReg == KnownReg.Reg &&
340               OptBBClobberedRegs.available(CopySrcReg)) {
341             KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
342             if (SeenFirstUse)
343               FirstUse = PredI;
344             break;
345           }
346         }
347       }
348 
349       // Stop if we get to the beginning of PredMBB.
350       if (PredI == PredMBB->begin())
351         break;
352 
353       LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
354                                         OptBBUsedRegs, TRI);
355       // Stop if all of the known-zero regs have been clobbered.
356       if (all_of(KnownRegs, [&](RegImm KnownReg) {
357             return !OptBBClobberedRegs.available(KnownReg.Reg);
358           }))
359         break;
360     }
361     break;
362 
363   } while (Itr != PredMBB->begin() && Itr->isTerminator());
364 
365   // We've not found a registers with a known value, time to bail out.
366   if (KnownRegs.empty())
367     return false;
368 
369   bool Changed = false;
370   // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
371   SmallSetVector<unsigned, 4> UsedKnownRegs;
372   MachineBasicBlock::iterator LastChange = MBB->begin();
373   // Remove redundant copy/move instructions unless KnownReg is modified.
374   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
375     MachineInstr *MI = &*I;
376     ++I;
377     bool RemovedMI = false;
378     bool IsCopy = MI->isCopy();
379     bool IsMoveImm = MI->isMoveImmediate();
380     if (IsCopy || IsMoveImm) {
381       Register DefReg = MI->getOperand(0).getReg();
382       Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register();
383       int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
384       if (!MRI->isReserved(DefReg) &&
385           ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
386            IsMoveImm)) {
387         for (RegImm &KnownReg : KnownRegs) {
388           if (KnownReg.Reg != DefReg &&
389               !TRI->isSuperRegister(DefReg, KnownReg.Reg))
390             continue;
391 
392           // For a copy, the known value must be a zero.
393           if (IsCopy && KnownReg.Imm != 0)
394             continue;
395 
396           if (IsMoveImm) {
397             // For a move immediate, the known immediate must match the source
398             // immediate.
399             if (KnownReg.Imm != SrcImm)
400               continue;
401 
402             // Don't remove a move immediate that implicitly defines the upper
403             // bits when only the lower 32 bits are known.
404             MCPhysReg CmpReg = KnownReg.Reg;
405             if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
406                   return !O.isDead() && O.isReg() && O.isDef() &&
407                          O.getReg() != CmpReg;
408                 }))
409               continue;
410 
411             // Don't remove a move immediate that implicitly defines the upper
412             // bits as different.
413             if (TRI->isSuperRegister(DefReg, KnownReg.Reg) && KnownReg.Imm < 0)
414               continue;
415           }
416 
417           if (IsCopy)
418             LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
419           else
420             LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);
421 
422           MI->eraseFromParent();
423           Changed = true;
424           LastChange = I;
425           NumCopiesRemoved++;
426           UsedKnownRegs.insert(KnownReg.Reg);
427           RemovedMI = true;
428           break;
429         }
430       }
431     }
432 
433     // Skip to the next instruction if we removed the COPY/MovImm.
434     if (RemovedMI)
435       continue;
436 
437     // Remove any regs the MI clobbers from the KnownConstRegs set.
438     for (unsigned RI = 0; RI < KnownRegs.size();)
439       if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
440         std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
441         KnownRegs.pop_back();
442         // Don't increment RI since we need to now check the swapped-in
443         // KnownRegs[RI].
444       } else {
445         ++RI;
446       }
447 
448     // Continue until the KnownRegs set is empty.
449     if (KnownRegs.empty())
450       break;
451   }
452 
453   if (!Changed)
454     return false;
455 
456   // Add newly used regs to the block's live-in list if they aren't there
457   // already.
458   for (MCPhysReg KnownReg : UsedKnownRegs)
459     if (!MBB->isLiveIn(KnownReg))
460       MBB->addLiveIn(KnownReg);
461 
462   // Clear kills in the range where changes were made.  This is conservative,
463   // but should be okay since kill markers are being phased out.
464   LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
465                     << "\tLastChange: ";
466              if (LastChange == MBB->end()) dbgs() << "<end>\n";
467              else dbgs() << *LastChange);
468   for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
469     MMI.clearKillInfo();
470   for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
471     MMI.clearKillInfo();
472 
473   return true;
474 }
475 
476 bool AArch64RedundantCopyElimination::runOnMachineFunction(
477     MachineFunction &MF) {
478   if (skipFunction(MF.getFunction()))
479     return false;
480   TRI = MF.getSubtarget().getRegisterInfo();
481   MRI = &MF.getRegInfo();
482 
483   // Resize the clobbered and used register unit trackers.  We do this once per
484   // function.
485   DomBBClobberedRegs.init(*TRI);
486   DomBBUsedRegs.init(*TRI);
487   OptBBClobberedRegs.init(*TRI);
488   OptBBUsedRegs.init(*TRI);
489 
490   bool Changed = false;
491   for (MachineBasicBlock &MBB : MF)
492     Changed |= optimizeBlock(&MBB);
493   return Changed;
494 }
495 
496 FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() {
497   return new AArch64RedundantCopyElimination();
498 }
499