xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64RedundantCopyElimination.cpp (revision c7a063741720ef81d4caa4613242579d12f1d605)
1 //=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 // This pass removes unnecessary copies/moves in BBs based on a dominating
8 // condition.
9 //
10 // We handle three cases:
11 // 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
12 //    the CBZ/CBNZ source register is zero on the taken/not-taken path. For
13 //    instance, the copy instruction in the code below can be removed because
14 //    the CBZW jumps to %bb.2 when w0 is zero.
15 //
16 //  %bb.1:
17 //    cbz w0, .LBB0_2
18 //  .LBB0_2:
19 //    mov w0, wzr  ; <-- redundant
20 //
21 // 2. If the flag setting instruction defines a register other than WZR/XZR, we
22 //    can remove a zero copy in some cases.
23 //
24 //  %bb.0:
25 //    subs w0, w1, w2
26 //    str w0, [x1]
27 //    b.ne .LBB0_2
28 //  %bb.1:
29 //    mov w0, wzr  ; <-- redundant
30 //    str w0, [x2]
31 //  .LBB0_2
32 //
33 // 3. Finally, if the flag setting instruction is a comparison against a
34 //    constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
35 //    in some cases.
36 //
37 //  %bb.0:
38 //    subs xzr, x0, #1
39 //    b.eq .LBB0_1
40 //  .LBB0_1:
41 //    orr x0, xzr, #0x1  ; <-- redundant
42 //
43 // This pass should be run after register allocation.
44 //
45 // FIXME: This could also be extended to check the whole dominance subtree below
46 // the comparison if the compile time regression is acceptable.
47 //
48 // FIXME: Add support for handling CCMP instructions.
49 // FIXME: If the known register value is zero, we should be able to rewrite uses
50 //        to use WZR/XZR directly in some cases.
51 //===----------------------------------------------------------------------===//
52 #include "AArch64.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/SetVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/ADT/iterator_range.h"
57 #include "llvm/CodeGen/LiveRegUnits.h"
58 #include "llvm/CodeGen/MachineFunctionPass.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/Support/Debug.h"
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "aarch64-copyelim"
65 
66 STATISTIC(NumCopiesRemoved, "Number of copies removed.");
67 
68 namespace {
69 class AArch64RedundantCopyElimination : public MachineFunctionPass {
70   const MachineRegisterInfo *MRI;
71   const TargetRegisterInfo *TRI;
72 
73   // DomBBClobberedRegs is used when computing known values in the dominating
74   // BB.
75   LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;
76 
77   // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
78   LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;
79 
80 public:
81   static char ID;
82   AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {
83     initializeAArch64RedundantCopyEliminationPass(
84         *PassRegistry::getPassRegistry());
85   }
86 
87   struct RegImm {
88     MCPhysReg Reg;
89     int32_t Imm;
90     RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
91   };
92 
93   bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
94                           SmallVectorImpl<RegImm> &KnownRegs,
95                           MachineBasicBlock::iterator &FirstUse);
96   bool optimizeBlock(MachineBasicBlock *MBB);
97   bool runOnMachineFunction(MachineFunction &MF) override;
98   MachineFunctionProperties getRequiredProperties() const override {
99     return MachineFunctionProperties().set(
100         MachineFunctionProperties::Property::NoVRegs);
101   }
102   StringRef getPassName() const override {
103     return "AArch64 Redundant Copy Elimination";
104   }
105 };
106 char AArch64RedundantCopyElimination::ID = 0;
107 }
108 
109 INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
110                 "AArch64 redundant copy elimination pass", false, false)
111 
112 /// It's possible to determine the value of a register based on a dominating
113 /// condition.  To do so, this function checks to see if the basic block \p MBB
114 /// is the target of a conditional branch \p CondBr with an equality comparison.
115 /// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
116 /// in \p MBB for some cases.  Otherwise, we find and inspect the NZCV setting
117 /// instruction (e.g., SUBS, ADDS).  If this instruction defines a register
118 /// other than WZR/XZR, we know the value of the destination register is zero in
119 /// \p MMB for some cases.  In addition, if the NZCV setting instruction is
120 /// comparing against a constant we know the other source register is equal to
121 /// the constant in \p MBB for some cases.  If we find any constant values, push
122 /// a physical register and constant value pair onto the KnownRegs vector and
123 /// return true.  Otherwise, return false if no known values were found.
124 bool AArch64RedundantCopyElimination::knownRegValInBlock(
125     MachineInstr &CondBr, MachineBasicBlock *MBB,
126     SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
127   unsigned Opc = CondBr.getOpcode();
128 
129   // Check if the current basic block is the target block to which the
130   // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
131   if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
132        MBB == CondBr.getOperand(1).getMBB()) ||
133       ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
134        MBB != CondBr.getOperand(1).getMBB())) {
135     FirstUse = CondBr;
136     KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
137     return true;
138   }
139 
140   // Otherwise, must be a conditional branch.
141   if (Opc != AArch64::Bcc)
142     return false;
143 
144   // Must be an equality check (i.e., == or !=).
145   AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
146   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
147     return false;
148 
149   MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
150   if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
151       (CC == AArch64CC::NE && BrTarget == MBB))
152     return false;
153 
154   // Stop if we get to the beginning of PredMBB.
155   MachineBasicBlock *PredMBB = *MBB->pred_begin();
156   assert(PredMBB == CondBr.getParent() &&
157          "Conditional branch not in predecessor block!");
158   if (CondBr == PredMBB->begin())
159     return false;
160 
161   // Registers clobbered in PredMBB between CondBr instruction and current
162   // instruction being checked in loop.
163   DomBBClobberedRegs.clear();
164   DomBBUsedRegs.clear();
165 
166   // Find compare instruction that sets NZCV used by CondBr.
167   MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
168   for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {
169 
170     bool IsCMN = false;
171     switch (PredI.getOpcode()) {
172     default:
173       break;
174 
175     // CMN is an alias for ADDS with a dead destination register.
176     case AArch64::ADDSWri:
177     case AArch64::ADDSXri:
178       IsCMN = true;
179       LLVM_FALLTHROUGH;
180     // CMP is an alias for SUBS with a dead destination register.
181     case AArch64::SUBSWri:
182     case AArch64::SUBSXri: {
183       // Sometimes the first operand is a FrameIndex. Bail if tht happens.
184       if (!PredI.getOperand(1).isReg())
185         return false;
186       MCPhysReg DstReg = PredI.getOperand(0).getReg();
187       MCPhysReg SrcReg = PredI.getOperand(1).getReg();
188 
189       bool Res = false;
190       // If we're comparing against a non-symbolic immediate and the source
191       // register of the compare is not modified (including a self-clobbering
192       // compare) between the compare and conditional branch we known the value
193       // of the 1st source operand.
194       if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
195           SrcReg != DstReg) {
196         // We've found the instruction that sets NZCV.
197         int32_t KnownImm = PredI.getOperand(2).getImm();
198         int32_t Shift = PredI.getOperand(3).getImm();
199         KnownImm <<= Shift;
200         if (IsCMN)
201           KnownImm = -KnownImm;
202         FirstUse = PredI;
203         KnownRegs.push_back(RegImm(SrcReg, KnownImm));
204         Res = true;
205       }
206 
207       // If this instructions defines something other than WZR/XZR, we know it's
208       // result is zero in some cases.
209       if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
210         return Res;
211 
212       // The destination register must not be modified between the NZCV setting
213       // instruction and the conditional branch.
214       if (!DomBBClobberedRegs.available(DstReg))
215         return Res;
216 
217       FirstUse = PredI;
218       KnownRegs.push_back(RegImm(DstReg, 0));
219       return true;
220     }
221 
222     // Look for NZCV setting instructions that define something other than
223     // WZR/XZR.
224     case AArch64::ADCSWr:
225     case AArch64::ADCSXr:
226     case AArch64::ADDSWrr:
227     case AArch64::ADDSWrs:
228     case AArch64::ADDSWrx:
229     case AArch64::ADDSXrr:
230     case AArch64::ADDSXrs:
231     case AArch64::ADDSXrx:
232     case AArch64::ADDSXrx64:
233     case AArch64::ANDSWri:
234     case AArch64::ANDSWrr:
235     case AArch64::ANDSWrs:
236     case AArch64::ANDSXri:
237     case AArch64::ANDSXrr:
238     case AArch64::ANDSXrs:
239     case AArch64::BICSWrr:
240     case AArch64::BICSWrs:
241     case AArch64::BICSXrs:
242     case AArch64::BICSXrr:
243     case AArch64::SBCSWr:
244     case AArch64::SBCSXr:
245     case AArch64::SUBSWrr:
246     case AArch64::SUBSWrs:
247     case AArch64::SUBSWrx:
248     case AArch64::SUBSXrr:
249     case AArch64::SUBSXrs:
250     case AArch64::SUBSXrx:
251     case AArch64::SUBSXrx64: {
252       MCPhysReg DstReg = PredI.getOperand(0).getReg();
253       if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
254         return false;
255 
256       // The destination register of the NZCV setting instruction must not be
257       // modified before the conditional branch.
258       if (!DomBBClobberedRegs.available(DstReg))
259         return false;
260 
261       // We've found the instruction that sets NZCV whose DstReg == 0.
262       FirstUse = PredI;
263       KnownRegs.push_back(RegImm(DstReg, 0));
264       return true;
265     }
266     }
267 
268     // Bail if we see an instruction that defines NZCV that we don't handle.
269     if (PredI.definesRegister(AArch64::NZCV))
270       return false;
271 
272     // Track clobbered and used registers.
273     LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
274                                       TRI);
275   }
276   return false;
277 }
278 
279 bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
280   // Check if the current basic block has a single predecessor.
281   if (MBB->pred_size() != 1)
282     return false;
283 
284   // Check if the predecessor has two successors, implying the block ends in a
285   // conditional branch.
286   MachineBasicBlock *PredMBB = *MBB->pred_begin();
287   if (PredMBB->succ_size() != 2)
288     return false;
289 
290   MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr();
291   if (CondBr == PredMBB->end())
292     return false;
293 
294   // Keep track of the earliest point in the PredMBB block where kill markers
295   // need to be removed if a COPY is removed.
296   MachineBasicBlock::iterator FirstUse;
297   // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
298   // or a compare (i.e., SUBS).  In the latter case, we must take care when
299   // updating FirstUse when scanning for COPY instructions.  In particular, if
300   // there's a COPY in between the compare and branch the COPY should not
301   // update FirstUse.
302   bool SeenFirstUse = false;
303   // Registers that contain a known value at the start of MBB.
304   SmallVector<RegImm, 4> KnownRegs;
305 
306   MachineBasicBlock::iterator Itr = std::next(CondBr);
307   do {
308     --Itr;
309 
310     if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
311       continue;
312 
313     // Reset the clobbered and used register units.
314     OptBBClobberedRegs.clear();
315     OptBBUsedRegs.clear();
316 
317     // Look backward in PredMBB for COPYs from the known reg to find other
318     // registers that are known to be a constant value.
319     for (auto PredI = Itr;; --PredI) {
320       if (FirstUse == PredI)
321         SeenFirstUse = true;
322 
323       if (PredI->isCopy()) {
324         MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
325         MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
326         for (auto &KnownReg : KnownRegs) {
327           if (!OptBBClobberedRegs.available(KnownReg.Reg))
328             continue;
329           // If we have X = COPY Y, and Y is known to be zero, then now X is
330           // known to be zero.
331           if (CopySrcReg == KnownReg.Reg &&
332               OptBBClobberedRegs.available(CopyDstReg)) {
333             KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
334             if (SeenFirstUse)
335               FirstUse = PredI;
336             break;
337           }
338           // If we have X = COPY Y, and X is known to be zero, then now Y is
339           // known to be zero.
340           if (CopyDstReg == KnownReg.Reg &&
341               OptBBClobberedRegs.available(CopySrcReg)) {
342             KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
343             if (SeenFirstUse)
344               FirstUse = PredI;
345             break;
346           }
347         }
348       }
349 
350       // Stop if we get to the beginning of PredMBB.
351       if (PredI == PredMBB->begin())
352         break;
353 
354       LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
355                                         OptBBUsedRegs, TRI);
356       // Stop if all of the known-zero regs have been clobbered.
357       if (all_of(KnownRegs, [&](RegImm KnownReg) {
358             return !OptBBClobberedRegs.available(KnownReg.Reg);
359           }))
360         break;
361     }
362     break;
363 
364   } while (Itr != PredMBB->begin() && Itr->isTerminator());
365 
366   // We've not found a registers with a known value, time to bail out.
367   if (KnownRegs.empty())
368     return false;
369 
370   bool Changed = false;
371   // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
372   SmallSetVector<unsigned, 4> UsedKnownRegs;
373   MachineBasicBlock::iterator LastChange = MBB->begin();
374   // Remove redundant copy/move instructions unless KnownReg is modified.
375   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
376     MachineInstr *MI = &*I;
377     ++I;
378     bool RemovedMI = false;
379     bool IsCopy = MI->isCopy();
380     bool IsMoveImm = MI->isMoveImmediate();
381     if (IsCopy || IsMoveImm) {
382       Register DefReg = MI->getOperand(0).getReg();
383       Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register();
384       int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
385       if (!MRI->isReserved(DefReg) &&
386           ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
387            IsMoveImm)) {
388         for (RegImm &KnownReg : KnownRegs) {
389           if (KnownReg.Reg != DefReg &&
390               !TRI->isSuperRegister(DefReg, KnownReg.Reg))
391             continue;
392 
393           // For a copy, the known value must be a zero.
394           if (IsCopy && KnownReg.Imm != 0)
395             continue;
396 
397           if (IsMoveImm) {
398             // For a move immediate, the known immediate must match the source
399             // immediate.
400             if (KnownReg.Imm != SrcImm)
401               continue;
402 
403             // Don't remove a move immediate that implicitly defines the upper
404             // bits when only the lower 32 bits are known.
405             MCPhysReg CmpReg = KnownReg.Reg;
406             if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
407                   return !O.isDead() && O.isReg() && O.isDef() &&
408                          O.getReg() != CmpReg;
409                 }))
410               continue;
411 
412             // Don't remove a move immediate that implicitly defines the upper
413             // bits as different.
414             if (TRI->isSuperRegister(DefReg, KnownReg.Reg) && KnownReg.Imm < 0)
415               continue;
416           }
417 
418           if (IsCopy)
419             LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
420           else
421             LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);
422 
423           MI->eraseFromParent();
424           Changed = true;
425           LastChange = I;
426           NumCopiesRemoved++;
427           UsedKnownRegs.insert(KnownReg.Reg);
428           RemovedMI = true;
429           break;
430         }
431       }
432     }
433 
434     // Skip to the next instruction if we removed the COPY/MovImm.
435     if (RemovedMI)
436       continue;
437 
438     // Remove any regs the MI clobbers from the KnownConstRegs set.
439     for (unsigned RI = 0; RI < KnownRegs.size();)
440       if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
441         std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
442         KnownRegs.pop_back();
443         // Don't increment RI since we need to now check the swapped-in
444         // KnownRegs[RI].
445       } else {
446         ++RI;
447       }
448 
449     // Continue until the KnownRegs set is empty.
450     if (KnownRegs.empty())
451       break;
452   }
453 
454   if (!Changed)
455     return false;
456 
457   // Add newly used regs to the block's live-in list if they aren't there
458   // already.
459   for (MCPhysReg KnownReg : UsedKnownRegs)
460     if (!MBB->isLiveIn(KnownReg))
461       MBB->addLiveIn(KnownReg);
462 
463   // Clear kills in the range where changes were made.  This is conservative,
464   // but should be okay since kill markers are being phased out.
465   LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
466                     << "\tLastChange: " << *LastChange);
467   for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
468     MMI.clearKillInfo();
469   for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
470     MMI.clearKillInfo();
471 
472   return true;
473 }
474 
475 bool AArch64RedundantCopyElimination::runOnMachineFunction(
476     MachineFunction &MF) {
477   if (skipFunction(MF.getFunction()))
478     return false;
479   TRI = MF.getSubtarget().getRegisterInfo();
480   MRI = &MF.getRegInfo();
481 
482   // Resize the clobbered and used register unit trackers.  We do this once per
483   // function.
484   DomBBClobberedRegs.init(*TRI);
485   DomBBUsedRegs.init(*TRI);
486   OptBBClobberedRegs.init(*TRI);
487   OptBBUsedRegs.init(*TRI);
488 
489   bool Changed = false;
490   for (MachineBasicBlock &MBB : MF)
491     Changed |= optimizeBlock(&MBB);
492   return Changed;
493 }
494 
495 FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() {
496   return new AArch64RedundantCopyElimination();
497 }
498