1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 // The pass runs after the PrologEpilogInserter where we emit the CFI 13 // instructions. In order to preserve the correctness of the unwind informaiton, 14 // the pass should not change the order of any two instructions, one of which 15 // has the FrameSetup/FrameDestroy flag or, alternatively, apply an add-hoc fix 16 // to unwind information. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "AArch64InstrInfo.h" 21 #include "AArch64MachineFunctionInfo.h" 22 #include "AArch64Subtarget.h" 23 #include "MCTargetDesc/AArch64AddressingModes.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCDwarf.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/DebugCounter.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <functional> 51 #include <iterator> 52 #include <limits> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "aarch64-ldst-opt" 57 58 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 59 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 60 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 61 STATISTIC(NumUnscaledPairCreated, 62 "Number of load/store from unscaled generated"); 63 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 64 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 65 66 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 67 "Controls which pairs are considered for renaming"); 68 69 // The LdStLimit limits how far we search for load/store pairs. 70 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 71 cl::init(20), cl::Hidden); 72 73 // The UpdateLimit limits how far we search for update instructions when we form 74 // pre-/post-index instructions. 75 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 76 cl::Hidden); 77 78 // Enable register renaming to find additional store pairing opportunities. 79 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming", 80 cl::init(true), cl::Hidden); 81 82 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 83 84 namespace { 85 86 using LdStPairFlags = struct LdStPairFlags { 87 // If a matching instruction is found, MergeForward is set to true if the 88 // merge is to remove the first instruction and replace the second with 89 // a pair-wise insn, and false if the reverse is true. 90 bool MergeForward = false; 91 92 // SExtIdx gives the index of the result of the load pair that must be 93 // extended. The value of SExtIdx assumes that the paired load produces the 94 // value in this order: (I, returned iterator), i.e., -1 means no value has 95 // to be extended, 0 means I, and 1 means the returned iterator. 96 int SExtIdx = -1; 97 98 // If not none, RenameReg can be used to rename the result register of the 99 // first store in a pair. Currently this only works when merging stores 100 // forward. 101 Optional<MCPhysReg> RenameReg = None; 102 103 LdStPairFlags() = default; 104 105 void setMergeForward(bool V = true) { MergeForward = V; } 106 bool getMergeForward() const { return MergeForward; } 107 108 void setSExtIdx(int V) { SExtIdx = V; } 109 int getSExtIdx() const { return SExtIdx; } 110 111 void setRenameReg(MCPhysReg R) { RenameReg = R; } 112 void clearRenameReg() { RenameReg = None; } 113 Optional<MCPhysReg> getRenameReg() const { return RenameReg; } 114 }; 115 116 struct AArch64LoadStoreOpt : public MachineFunctionPass { 117 static char ID; 118 119 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 120 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 121 } 122 123 AliasAnalysis *AA; 124 const AArch64InstrInfo *TII; 125 const TargetRegisterInfo *TRI; 126 const AArch64Subtarget *Subtarget; 127 128 // Track which register units have been modified and used. 129 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 130 LiveRegUnits DefinedInBB; 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.addRequired<AAResultsWrapperPass>(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 } 136 137 // Scan the instructions looking for a load/store that can be combined 138 // with the current instruction into a load/store pair. 139 // Return the matching instruction if one is found, else MBB->end(). 140 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 141 LdStPairFlags &Flags, 142 unsigned Limit, 143 bool FindNarrowMerge); 144 145 // Scan the instructions looking for a store that writes to the address from 146 // which the current load instruction reads. Return true if one is found. 147 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 148 MachineBasicBlock::iterator &StoreI); 149 150 // Merge the two instructions indicated into a wider narrow store instruction. 151 MachineBasicBlock::iterator 152 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 153 MachineBasicBlock::iterator MergeMI, 154 const LdStPairFlags &Flags); 155 156 // Merge the two instructions indicated into a single pair-wise instruction. 157 MachineBasicBlock::iterator 158 mergePairedInsns(MachineBasicBlock::iterator I, 159 MachineBasicBlock::iterator Paired, 160 const LdStPairFlags &Flags); 161 162 // Promote the load that reads directly from the address stored to. 163 MachineBasicBlock::iterator 164 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 165 MachineBasicBlock::iterator StoreI); 166 167 // Scan the instruction list to find a base register update that can 168 // be combined with the current instruction (a load or store) using 169 // pre or post indexed addressing with writeback. Scan forwards. 170 MachineBasicBlock::iterator 171 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 172 int UnscaledOffset, unsigned Limit); 173 174 // Scan the instruction list to find a base register update that can 175 // be combined with the current instruction (a load or store) using 176 // pre or post indexed addressing with writeback. Scan backwards. 177 MachineBasicBlock::iterator 178 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 179 180 // Find an instruction that updates the base register of the ld/st 181 // instruction. 182 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 183 unsigned BaseReg, int Offset); 184 185 // Merge a pre- or post-index base register update into a ld/st instruction. 186 MachineBasicBlock::iterator 187 mergeUpdateInsn(MachineBasicBlock::iterator I, 188 MachineBasicBlock::iterator Update, bool IsPreIdx); 189 190 // Find and merge zero store instructions. 191 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 192 193 // Find and pair ldr/str instructions. 194 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 195 196 // Find and promote load instructions which read directly from store. 197 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 198 199 // Find and merge a base register updates before or after a ld/st instruction. 200 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 201 202 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 203 204 bool runOnMachineFunction(MachineFunction &Fn) override; 205 206 MachineFunctionProperties getRequiredProperties() const override { 207 return MachineFunctionProperties().set( 208 MachineFunctionProperties::Property::NoVRegs); 209 } 210 211 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 212 }; 213 214 char AArch64LoadStoreOpt::ID = 0; 215 216 } // end anonymous namespace 217 218 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 219 AARCH64_LOAD_STORE_OPT_NAME, false, false) 220 221 static bool isNarrowStore(unsigned Opc) { 222 switch (Opc) { 223 default: 224 return false; 225 case AArch64::STRBBui: 226 case AArch64::STURBBi: 227 case AArch64::STRHHui: 228 case AArch64::STURHHi: 229 return true; 230 } 231 } 232 233 // These instruction set memory tag and either keep memory contents unchanged or 234 // set it to zero, ignoring the address part of the source register. 235 static bool isTagStore(const MachineInstr &MI) { 236 switch (MI.getOpcode()) { 237 default: 238 return false; 239 case AArch64::STGOffset: 240 case AArch64::STZGOffset: 241 case AArch64::ST2GOffset: 242 case AArch64::STZ2GOffset: 243 return true; 244 } 245 } 246 247 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 248 bool *IsValidLdStrOpc = nullptr) { 249 if (IsValidLdStrOpc) 250 *IsValidLdStrOpc = true; 251 switch (Opc) { 252 default: 253 if (IsValidLdStrOpc) 254 *IsValidLdStrOpc = false; 255 return std::numeric_limits<unsigned>::max(); 256 case AArch64::STRDui: 257 case AArch64::STURDi: 258 case AArch64::STRDpre: 259 case AArch64::STRQui: 260 case AArch64::STURQi: 261 case AArch64::STRQpre: 262 case AArch64::STRBBui: 263 case AArch64::STURBBi: 264 case AArch64::STRHHui: 265 case AArch64::STURHHi: 266 case AArch64::STRWui: 267 case AArch64::STRWpre: 268 case AArch64::STURWi: 269 case AArch64::STRXui: 270 case AArch64::STRXpre: 271 case AArch64::STURXi: 272 case AArch64::LDRDui: 273 case AArch64::LDURDi: 274 case AArch64::LDRDpre: 275 case AArch64::LDRQui: 276 case AArch64::LDURQi: 277 case AArch64::LDRQpre: 278 case AArch64::LDRWui: 279 case AArch64::LDURWi: 280 case AArch64::LDRWpre: 281 case AArch64::LDRXui: 282 case AArch64::LDURXi: 283 case AArch64::LDRXpre: 284 case AArch64::STRSui: 285 case AArch64::STURSi: 286 case AArch64::STRSpre: 287 case AArch64::LDRSui: 288 case AArch64::LDURSi: 289 case AArch64::LDRSpre: 290 return Opc; 291 case AArch64::LDRSWui: 292 return AArch64::LDRWui; 293 case AArch64::LDURSWi: 294 return AArch64::LDURWi; 295 } 296 } 297 298 static unsigned getMatchingWideOpcode(unsigned Opc) { 299 switch (Opc) { 300 default: 301 llvm_unreachable("Opcode has no wide equivalent!"); 302 case AArch64::STRBBui: 303 return AArch64::STRHHui; 304 case AArch64::STRHHui: 305 return AArch64::STRWui; 306 case AArch64::STURBBi: 307 return AArch64::STURHHi; 308 case AArch64::STURHHi: 309 return AArch64::STURWi; 310 case AArch64::STURWi: 311 return AArch64::STURXi; 312 case AArch64::STRWui: 313 return AArch64::STRXui; 314 } 315 } 316 317 static unsigned getMatchingPairOpcode(unsigned Opc) { 318 switch (Opc) { 319 default: 320 llvm_unreachable("Opcode has no pairwise equivalent!"); 321 case AArch64::STRSui: 322 case AArch64::STURSi: 323 return AArch64::STPSi; 324 case AArch64::STRSpre: 325 return AArch64::STPSpre; 326 case AArch64::STRDui: 327 case AArch64::STURDi: 328 return AArch64::STPDi; 329 case AArch64::STRDpre: 330 return AArch64::STPDpre; 331 case AArch64::STRQui: 332 case AArch64::STURQi: 333 return AArch64::STPQi; 334 case AArch64::STRQpre: 335 return AArch64::STPQpre; 336 case AArch64::STRWui: 337 case AArch64::STURWi: 338 return AArch64::STPWi; 339 case AArch64::STRWpre: 340 return AArch64::STPWpre; 341 case AArch64::STRXui: 342 case AArch64::STURXi: 343 return AArch64::STPXi; 344 case AArch64::STRXpre: 345 return AArch64::STPXpre; 346 case AArch64::LDRSui: 347 case AArch64::LDURSi: 348 return AArch64::LDPSi; 349 case AArch64::LDRSpre: 350 return AArch64::LDPSpre; 351 case AArch64::LDRDui: 352 case AArch64::LDURDi: 353 return AArch64::LDPDi; 354 case AArch64::LDRDpre: 355 return AArch64::LDPDpre; 356 case AArch64::LDRQui: 357 case AArch64::LDURQi: 358 return AArch64::LDPQi; 359 case AArch64::LDRQpre: 360 return AArch64::LDPQpre; 361 case AArch64::LDRWui: 362 case AArch64::LDURWi: 363 return AArch64::LDPWi; 364 case AArch64::LDRWpre: 365 return AArch64::LDPWpre; 366 case AArch64::LDRXui: 367 case AArch64::LDURXi: 368 return AArch64::LDPXi; 369 case AArch64::LDRXpre: 370 return AArch64::LDPXpre; 371 case AArch64::LDRSWui: 372 case AArch64::LDURSWi: 373 return AArch64::LDPSWi; 374 } 375 } 376 377 static unsigned isMatchingStore(MachineInstr &LoadInst, 378 MachineInstr &StoreInst) { 379 unsigned LdOpc = LoadInst.getOpcode(); 380 unsigned StOpc = StoreInst.getOpcode(); 381 switch (LdOpc) { 382 default: 383 llvm_unreachable("Unsupported load instruction!"); 384 case AArch64::LDRBBui: 385 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 386 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 387 case AArch64::LDURBBi: 388 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 389 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 390 case AArch64::LDRHHui: 391 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 392 StOpc == AArch64::STRXui; 393 case AArch64::LDURHHi: 394 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 395 StOpc == AArch64::STURXi; 396 case AArch64::LDRWui: 397 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 398 case AArch64::LDURWi: 399 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 400 case AArch64::LDRXui: 401 return StOpc == AArch64::STRXui; 402 case AArch64::LDURXi: 403 return StOpc == AArch64::STURXi; 404 } 405 } 406 407 static unsigned getPreIndexedOpcode(unsigned Opc) { 408 // FIXME: We don't currently support creating pre-indexed loads/stores when 409 // the load or store is the unscaled version. If we decide to perform such an 410 // optimization in the future the cases for the unscaled loads/stores will 411 // need to be added here. 412 switch (Opc) { 413 default: 414 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 415 case AArch64::STRSui: 416 return AArch64::STRSpre; 417 case AArch64::STRDui: 418 return AArch64::STRDpre; 419 case AArch64::STRQui: 420 return AArch64::STRQpre; 421 case AArch64::STRBBui: 422 return AArch64::STRBBpre; 423 case AArch64::STRHHui: 424 return AArch64::STRHHpre; 425 case AArch64::STRWui: 426 return AArch64::STRWpre; 427 case AArch64::STRXui: 428 return AArch64::STRXpre; 429 case AArch64::LDRSui: 430 return AArch64::LDRSpre; 431 case AArch64::LDRDui: 432 return AArch64::LDRDpre; 433 case AArch64::LDRQui: 434 return AArch64::LDRQpre; 435 case AArch64::LDRBBui: 436 return AArch64::LDRBBpre; 437 case AArch64::LDRHHui: 438 return AArch64::LDRHHpre; 439 case AArch64::LDRWui: 440 return AArch64::LDRWpre; 441 case AArch64::LDRXui: 442 return AArch64::LDRXpre; 443 case AArch64::LDRSWui: 444 return AArch64::LDRSWpre; 445 case AArch64::LDPSi: 446 return AArch64::LDPSpre; 447 case AArch64::LDPSWi: 448 return AArch64::LDPSWpre; 449 case AArch64::LDPDi: 450 return AArch64::LDPDpre; 451 case AArch64::LDPQi: 452 return AArch64::LDPQpre; 453 case AArch64::LDPWi: 454 return AArch64::LDPWpre; 455 case AArch64::LDPXi: 456 return AArch64::LDPXpre; 457 case AArch64::STPSi: 458 return AArch64::STPSpre; 459 case AArch64::STPDi: 460 return AArch64::STPDpre; 461 case AArch64::STPQi: 462 return AArch64::STPQpre; 463 case AArch64::STPWi: 464 return AArch64::STPWpre; 465 case AArch64::STPXi: 466 return AArch64::STPXpre; 467 case AArch64::STGOffset: 468 return AArch64::STGPreIndex; 469 case AArch64::STZGOffset: 470 return AArch64::STZGPreIndex; 471 case AArch64::ST2GOffset: 472 return AArch64::ST2GPreIndex; 473 case AArch64::STZ2GOffset: 474 return AArch64::STZ2GPreIndex; 475 case AArch64::STGPi: 476 return AArch64::STGPpre; 477 } 478 } 479 480 static unsigned getPostIndexedOpcode(unsigned Opc) { 481 switch (Opc) { 482 default: 483 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 484 case AArch64::STRSui: 485 case AArch64::STURSi: 486 return AArch64::STRSpost; 487 case AArch64::STRDui: 488 case AArch64::STURDi: 489 return AArch64::STRDpost; 490 case AArch64::STRQui: 491 case AArch64::STURQi: 492 return AArch64::STRQpost; 493 case AArch64::STRBBui: 494 return AArch64::STRBBpost; 495 case AArch64::STRHHui: 496 return AArch64::STRHHpost; 497 case AArch64::STRWui: 498 case AArch64::STURWi: 499 return AArch64::STRWpost; 500 case AArch64::STRXui: 501 case AArch64::STURXi: 502 return AArch64::STRXpost; 503 case AArch64::LDRSui: 504 case AArch64::LDURSi: 505 return AArch64::LDRSpost; 506 case AArch64::LDRDui: 507 case AArch64::LDURDi: 508 return AArch64::LDRDpost; 509 case AArch64::LDRQui: 510 case AArch64::LDURQi: 511 return AArch64::LDRQpost; 512 case AArch64::LDRBBui: 513 return AArch64::LDRBBpost; 514 case AArch64::LDRHHui: 515 return AArch64::LDRHHpost; 516 case AArch64::LDRWui: 517 case AArch64::LDURWi: 518 return AArch64::LDRWpost; 519 case AArch64::LDRXui: 520 case AArch64::LDURXi: 521 return AArch64::LDRXpost; 522 case AArch64::LDRSWui: 523 return AArch64::LDRSWpost; 524 case AArch64::LDPSi: 525 return AArch64::LDPSpost; 526 case AArch64::LDPSWi: 527 return AArch64::LDPSWpost; 528 case AArch64::LDPDi: 529 return AArch64::LDPDpost; 530 case AArch64::LDPQi: 531 return AArch64::LDPQpost; 532 case AArch64::LDPWi: 533 return AArch64::LDPWpost; 534 case AArch64::LDPXi: 535 return AArch64::LDPXpost; 536 case AArch64::STPSi: 537 return AArch64::STPSpost; 538 case AArch64::STPDi: 539 return AArch64::STPDpost; 540 case AArch64::STPQi: 541 return AArch64::STPQpost; 542 case AArch64::STPWi: 543 return AArch64::STPWpost; 544 case AArch64::STPXi: 545 return AArch64::STPXpost; 546 case AArch64::STGOffset: 547 return AArch64::STGPostIndex; 548 case AArch64::STZGOffset: 549 return AArch64::STZGPostIndex; 550 case AArch64::ST2GOffset: 551 return AArch64::ST2GPostIndex; 552 case AArch64::STZ2GOffset: 553 return AArch64::STZ2GPostIndex; 554 case AArch64::STGPi: 555 return AArch64::STGPpost; 556 } 557 } 558 559 static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI) { 560 561 unsigned OpcA = FirstMI.getOpcode(); 562 unsigned OpcB = MI.getOpcode(); 563 564 switch (OpcA) { 565 default: 566 return false; 567 case AArch64::STRSpre: 568 return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi); 569 case AArch64::STRDpre: 570 return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi); 571 case AArch64::STRQpre: 572 return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi); 573 case AArch64::STRWpre: 574 return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi); 575 case AArch64::STRXpre: 576 return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi); 577 case AArch64::LDRSpre: 578 return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi); 579 case AArch64::LDRDpre: 580 return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi); 581 case AArch64::LDRQpre: 582 return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi); 583 case AArch64::LDRWpre: 584 return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi); 585 case AArch64::LDRXpre: 586 return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi); 587 } 588 } 589 590 // Returns the scale and offset range of pre/post indexed variants of MI. 591 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 592 int &MinOffset, int &MaxOffset) { 593 bool IsPaired = AArch64InstrInfo::isPairedLdSt(MI); 594 bool IsTagStore = isTagStore(MI); 595 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 596 // as in the "unsigned offset" variant. 597 // All other pre/post indexed ldst instructions are unscaled. 598 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; 599 600 if (IsPaired) { 601 MinOffset = -64; 602 MaxOffset = 63; 603 } else { 604 MinOffset = -256; 605 MaxOffset = 255; 606 } 607 } 608 609 static MachineOperand &getLdStRegOp(MachineInstr &MI, 610 unsigned PairedRegOp = 0) { 611 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 612 bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI); 613 if (IsPreLdSt) 614 PairedRegOp += 1; 615 unsigned Idx = 616 AArch64InstrInfo::isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0; 617 return MI.getOperand(Idx); 618 } 619 620 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 621 MachineInstr &StoreInst, 622 const AArch64InstrInfo *TII) { 623 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 624 int LoadSize = TII->getMemScale(LoadInst); 625 int StoreSize = TII->getMemScale(StoreInst); 626 int UnscaledStOffset = 627 TII->hasUnscaledLdStOffset(StoreInst) 628 ? AArch64InstrInfo::getLdStOffsetOp(StoreInst).getImm() 629 : AArch64InstrInfo::getLdStOffsetOp(StoreInst).getImm() * StoreSize; 630 int UnscaledLdOffset = 631 TII->hasUnscaledLdStOffset(LoadInst) 632 ? AArch64InstrInfo::getLdStOffsetOp(LoadInst).getImm() 633 : AArch64InstrInfo::getLdStOffsetOp(LoadInst).getImm() * LoadSize; 634 return (UnscaledStOffset <= UnscaledLdOffset) && 635 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 636 } 637 638 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 639 unsigned Opc = MI.getOpcode(); 640 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 641 isNarrowStore(Opc)) && 642 getLdStRegOp(MI).getReg() == AArch64::WZR; 643 } 644 645 static bool isPromotableLoadFromStore(MachineInstr &MI) { 646 switch (MI.getOpcode()) { 647 default: 648 return false; 649 // Scaled instructions. 650 case AArch64::LDRBBui: 651 case AArch64::LDRHHui: 652 case AArch64::LDRWui: 653 case AArch64::LDRXui: 654 // Unscaled instructions. 655 case AArch64::LDURBBi: 656 case AArch64::LDURHHi: 657 case AArch64::LDURWi: 658 case AArch64::LDURXi: 659 return true; 660 } 661 } 662 663 static bool isMergeableLdStUpdate(MachineInstr &MI) { 664 unsigned Opc = MI.getOpcode(); 665 switch (Opc) { 666 default: 667 return false; 668 // Scaled instructions. 669 case AArch64::STRSui: 670 case AArch64::STRDui: 671 case AArch64::STRQui: 672 case AArch64::STRXui: 673 case AArch64::STRWui: 674 case AArch64::STRHHui: 675 case AArch64::STRBBui: 676 case AArch64::LDRSui: 677 case AArch64::LDRDui: 678 case AArch64::LDRQui: 679 case AArch64::LDRXui: 680 case AArch64::LDRWui: 681 case AArch64::LDRHHui: 682 case AArch64::LDRBBui: 683 case AArch64::STGOffset: 684 case AArch64::STZGOffset: 685 case AArch64::ST2GOffset: 686 case AArch64::STZ2GOffset: 687 case AArch64::STGPi: 688 // Unscaled instructions. 689 case AArch64::STURSi: 690 case AArch64::STURDi: 691 case AArch64::STURQi: 692 case AArch64::STURWi: 693 case AArch64::STURXi: 694 case AArch64::LDURSi: 695 case AArch64::LDURDi: 696 case AArch64::LDURQi: 697 case AArch64::LDURWi: 698 case AArch64::LDURXi: 699 // Paired instructions. 700 case AArch64::LDPSi: 701 case AArch64::LDPSWi: 702 case AArch64::LDPDi: 703 case AArch64::LDPQi: 704 case AArch64::LDPWi: 705 case AArch64::LDPXi: 706 case AArch64::STPSi: 707 case AArch64::STPDi: 708 case AArch64::STPQi: 709 case AArch64::STPWi: 710 case AArch64::STPXi: 711 // Make sure this is a reg+imm (as opposed to an address reloc). 712 if (!AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) 713 return false; 714 715 return true; 716 } 717 } 718 719 MachineBasicBlock::iterator 720 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 721 MachineBasicBlock::iterator MergeMI, 722 const LdStPairFlags &Flags) { 723 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 724 "Expected promotable zero stores."); 725 726 MachineBasicBlock::iterator E = I->getParent()->end(); 727 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 728 // If NextI is the second of the two instructions to be merged, we need 729 // to skip one further. Either way we merge will invalidate the iterator, 730 // and we don't need to scan the new instruction, as it's a pairwise 731 // instruction, which we're not considering for further action anyway. 732 if (NextI == MergeMI) 733 NextI = next_nodbg(NextI, E); 734 735 unsigned Opc = I->getOpcode(); 736 bool IsScaled = !TII->hasUnscaledLdStOffset(Opc); 737 int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I); 738 739 bool MergeForward = Flags.getMergeForward(); 740 // Insert our new paired instruction after whichever of the paired 741 // instructions MergeForward indicates. 742 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 743 // Also based on MergeForward is from where we copy the base register operand 744 // so we get the flags compatible with the input code. 745 const MachineOperand &BaseRegOp = 746 MergeForward ? AArch64InstrInfo::getLdStBaseOp(*MergeMI) 747 : AArch64InstrInfo::getLdStBaseOp(*I); 748 749 // Which register is Rt and which is Rt2 depends on the offset order. 750 MachineInstr *RtMI; 751 if (AArch64InstrInfo::getLdStOffsetOp(*I).getImm() == 752 AArch64InstrInfo::getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 753 RtMI = &*MergeMI; 754 else 755 RtMI = &*I; 756 757 int OffsetImm = AArch64InstrInfo::getLdStOffsetOp(*RtMI).getImm(); 758 // Change the scaled offset from small to large type. 759 if (IsScaled) { 760 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 761 OffsetImm /= 2; 762 } 763 764 // Construct the new instruction. 765 DebugLoc DL = I->getDebugLoc(); 766 MachineBasicBlock *MBB = I->getParent(); 767 MachineInstrBuilder MIB; 768 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 769 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 770 .add(BaseRegOp) 771 .addImm(OffsetImm) 772 .cloneMergedMemRefs({&*I, &*MergeMI}) 773 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 774 (void)MIB; 775 776 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 777 LLVM_DEBUG(I->print(dbgs())); 778 LLVM_DEBUG(dbgs() << " "); 779 LLVM_DEBUG(MergeMI->print(dbgs())); 780 LLVM_DEBUG(dbgs() << " with instruction:\n "); 781 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 782 LLVM_DEBUG(dbgs() << "\n"); 783 784 // Erase the old instructions. 785 I->eraseFromParent(); 786 MergeMI->eraseFromParent(); 787 return NextI; 788 } 789 790 // Apply Fn to all instructions between MI and the beginning of the block, until 791 // a def for DefReg is reached. Returns true, iff Fn returns true for all 792 // visited instructions. Stop after visiting Limit iterations. 793 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 794 const TargetRegisterInfo *TRI, unsigned Limit, 795 std::function<bool(MachineInstr &, bool)> &Fn) { 796 auto MBB = MI.getParent(); 797 for (MachineInstr &I : 798 instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) { 799 if (!Limit) 800 return false; 801 --Limit; 802 803 bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) { 804 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 805 TRI->regsOverlap(MOP.getReg(), DefReg); 806 }); 807 if (!Fn(I, isDef)) 808 return false; 809 if (isDef) 810 break; 811 } 812 return true; 813 } 814 815 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 816 const TargetRegisterInfo *TRI) { 817 818 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 819 if (MOP.isReg() && MOP.isKill()) 820 Units.removeReg(MOP.getReg()); 821 822 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 823 if (MOP.isReg() && !MOP.isKill()) 824 Units.addReg(MOP.getReg()); 825 } 826 827 MachineBasicBlock::iterator 828 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 829 MachineBasicBlock::iterator Paired, 830 const LdStPairFlags &Flags) { 831 MachineBasicBlock::iterator E = I->getParent()->end(); 832 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 833 // If NextI is the second of the two instructions to be merged, we need 834 // to skip one further. Either way we merge will invalidate the iterator, 835 // and we don't need to scan the new instruction, as it's a pairwise 836 // instruction, which we're not considering for further action anyway. 837 if (NextI == Paired) 838 NextI = next_nodbg(NextI, E); 839 840 int SExtIdx = Flags.getSExtIdx(); 841 unsigned Opc = 842 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 843 bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc); 844 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; 845 846 bool MergeForward = Flags.getMergeForward(); 847 848 Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 849 if (MergeForward && RenameReg) { 850 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 851 DefinedInBB.addReg(*RenameReg); 852 853 // Return the sub/super register for RenameReg, matching the size of 854 // OriginalReg. 855 auto GetMatchingSubReg = [this, 856 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 857 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 858 if (TRI->getMinimalPhysRegClass(OriginalReg) == 859 TRI->getMinimalPhysRegClass(SubOrSuper)) 860 return SubOrSuper; 861 llvm_unreachable("Should have found matching sub or super register!"); 862 }; 863 864 std::function<bool(MachineInstr &, bool)> UpdateMIs = 865 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 866 if (IsDef) { 867 bool SeenDef = false; 868 for (auto &MOP : MI.operands()) { 869 // Rename the first explicit definition and all implicit 870 // definitions matching RegToRename. 871 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 872 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 873 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 874 assert((MOP.isImplicit() || 875 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 876 "Need renamable operands"); 877 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 878 SeenDef = true; 879 } 880 } 881 } else { 882 for (auto &MOP : MI.operands()) { 883 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 884 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 885 assert((MOP.isImplicit() || 886 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 887 "Need renamable operands"); 888 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 889 } 890 } 891 } 892 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 893 return true; 894 }; 895 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 896 897 #if !defined(NDEBUG) 898 // Make sure the register used for renaming is not used between the paired 899 // instructions. That would trash the content before the new paired 900 // instruction. 901 for (auto &MI : 902 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 903 std::next(I), std::next(Paired))) 904 assert(all_of(MI.operands(), 905 [this, &RenameReg](const MachineOperand &MOP) { 906 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 907 MOP.isUndef() || 908 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 909 }) && 910 "Rename register used between paired instruction, trashing the " 911 "content"); 912 #endif 913 } 914 915 // Insert our new paired instruction after whichever of the paired 916 // instructions MergeForward indicates. 917 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 918 // Also based on MergeForward is from where we copy the base register operand 919 // so we get the flags compatible with the input code. 920 const MachineOperand &BaseRegOp = 921 MergeForward ? AArch64InstrInfo::getLdStBaseOp(*Paired) 922 : AArch64InstrInfo::getLdStBaseOp(*I); 923 924 int Offset = AArch64InstrInfo::getLdStOffsetOp(*I).getImm(); 925 int PairedOffset = AArch64InstrInfo::getLdStOffsetOp(*Paired).getImm(); 926 bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode()); 927 if (IsUnscaled != PairedIsUnscaled) { 928 // We're trying to pair instructions that differ in how they are scaled. If 929 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 930 // the opposite (i.e., make Paired's offset unscaled). 931 int MemSize = TII->getMemScale(*Paired); 932 if (PairedIsUnscaled) { 933 // If the unscaled offset isn't a multiple of the MemSize, we can't 934 // pair the operations together. 935 assert(!(PairedOffset % TII->getMemScale(*Paired)) && 936 "Offset should be a multiple of the stride!"); 937 PairedOffset /= MemSize; 938 } else { 939 PairedOffset *= MemSize; 940 } 941 } 942 943 // Which register is Rt and which is Rt2 depends on the offset order. 944 // However, for pre load/stores the Rt should be the one of the pre 945 // load/store. 946 MachineInstr *RtMI, *Rt2MI; 947 if (Offset == PairedOffset + OffsetStride && 948 !AArch64InstrInfo::isPreLdSt(*I)) { 949 RtMI = &*Paired; 950 Rt2MI = &*I; 951 // Here we swapped the assumption made for SExtIdx. 952 // I.e., we turn ldp I, Paired into ldp Paired, I. 953 // Update the index accordingly. 954 if (SExtIdx != -1) 955 SExtIdx = (SExtIdx + 1) % 2; 956 } else { 957 RtMI = &*I; 958 Rt2MI = &*Paired; 959 } 960 int OffsetImm = AArch64InstrInfo::getLdStOffsetOp(*RtMI).getImm(); 961 // Scale the immediate offset, if necessary. 962 if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) { 963 assert(!(OffsetImm % TII->getMemScale(*RtMI)) && 964 "Unscaled offset cannot be scaled."); 965 OffsetImm /= TII->getMemScale(*RtMI); 966 } 967 968 // Construct the new instruction. 969 MachineInstrBuilder MIB; 970 DebugLoc DL = I->getDebugLoc(); 971 MachineBasicBlock *MBB = I->getParent(); 972 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 973 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 974 // Kill flags may become invalid when moving stores for pairing. 975 if (RegOp0.isUse()) { 976 if (!MergeForward) { 977 // Clear kill flags on store if moving upwards. Example: 978 // STRWui %w0, ... 979 // USE %w1 980 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 981 RegOp0.setIsKill(false); 982 RegOp1.setIsKill(false); 983 } else { 984 // Clear kill flags of the first stores register. Example: 985 // STRWui %w1, ... 986 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 987 // STRW %w0 988 Register Reg = getLdStRegOp(*I).getReg(); 989 for (MachineInstr &MI : make_range(std::next(I), Paired)) 990 MI.clearRegisterKills(Reg, TRI); 991 } 992 } 993 994 unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc); 995 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode)); 996 997 // Adds the pre-index operand for pre-indexed ld/st pairs. 998 if (AArch64InstrInfo::isPreLdSt(*RtMI)) 999 MIB.addReg(BaseRegOp.getReg(), RegState::Define); 1000 1001 MIB.add(RegOp0) 1002 .add(RegOp1) 1003 .add(BaseRegOp) 1004 .addImm(OffsetImm) 1005 .cloneMergedMemRefs({&*I, &*Paired}) 1006 .setMIFlags(I->mergeFlagsWith(*Paired)); 1007 1008 (void)MIB; 1009 1010 LLVM_DEBUG( 1011 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 1012 LLVM_DEBUG(I->print(dbgs())); 1013 LLVM_DEBUG(dbgs() << " "); 1014 LLVM_DEBUG(Paired->print(dbgs())); 1015 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1016 if (SExtIdx != -1) { 1017 // Generate the sign extension for the proper result of the ldp. 1018 // I.e., with X1, that would be: 1019 // %w1 = KILL %w1, implicit-def %x1 1020 // %x1 = SBFMXri killed %x1, 0, 31 1021 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 1022 // Right now, DstMO has the extended register, since it comes from an 1023 // extended opcode. 1024 Register DstRegX = DstMO.getReg(); 1025 // Get the W variant of that register. 1026 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 1027 // Update the result of LDP to use the W instead of the X variant. 1028 DstMO.setReg(DstRegW); 1029 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1030 LLVM_DEBUG(dbgs() << "\n"); 1031 // Make the machine verifier happy by providing a definition for 1032 // the X register. 1033 // Insert this definition right after the generated LDP, i.e., before 1034 // InsertionPoint. 1035 MachineInstrBuilder MIBKill = 1036 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 1037 .addReg(DstRegW) 1038 .addReg(DstRegX, RegState::Define); 1039 MIBKill->getOperand(2).setImplicit(); 1040 // Create the sign extension. 1041 MachineInstrBuilder MIBSXTW = 1042 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 1043 .addReg(DstRegX) 1044 .addImm(0) 1045 .addImm(31); 1046 (void)MIBSXTW; 1047 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 1048 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 1049 } else { 1050 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1051 } 1052 LLVM_DEBUG(dbgs() << "\n"); 1053 1054 if (MergeForward) 1055 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 1056 if (MOP.isReg() && MOP.isKill()) 1057 DefinedInBB.addReg(MOP.getReg()); 1058 1059 // Erase the old instructions. 1060 I->eraseFromParent(); 1061 Paired->eraseFromParent(); 1062 1063 return NextI; 1064 } 1065 1066 MachineBasicBlock::iterator 1067 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1068 MachineBasicBlock::iterator StoreI) { 1069 MachineBasicBlock::iterator NextI = 1070 next_nodbg(LoadI, LoadI->getParent()->end()); 1071 1072 int LoadSize = TII->getMemScale(*LoadI); 1073 int StoreSize = TII->getMemScale(*StoreI); 1074 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1075 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1076 Register StRt = getLdStRegOp(*StoreI).getReg(); 1077 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1078 1079 assert((IsStoreXReg || 1080 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1081 "Unexpected RegClass"); 1082 1083 MachineInstr *BitExtMI; 1084 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1085 // Remove the load, if the destination register of the loads is the same 1086 // register for stored value. 1087 if (StRt == LdRt && LoadSize == 8) { 1088 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1089 LoadI->getIterator())) { 1090 if (MI.killsRegister(StRt, TRI)) { 1091 MI.clearRegisterKills(StRt, TRI); 1092 break; 1093 } 1094 } 1095 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1096 LLVM_DEBUG(LoadI->print(dbgs())); 1097 LLVM_DEBUG(dbgs() << "\n"); 1098 LoadI->eraseFromParent(); 1099 return NextI; 1100 } 1101 // Replace the load with a mov if the load and store are in the same size. 1102 BitExtMI = 1103 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1104 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1105 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1106 .add(StMO) 1107 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1108 .setMIFlags(LoadI->getFlags()); 1109 } else { 1110 // FIXME: Currently we disable this transformation in big-endian targets as 1111 // performance and correctness are verified only in little-endian. 1112 if (!Subtarget->isLittleEndian()) 1113 return NextI; 1114 bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI); 1115 assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) && 1116 "Unsupported ld/st match"); 1117 assert(LoadSize <= StoreSize && "Invalid load size"); 1118 int UnscaledLdOffset = 1119 IsUnscaled 1120 ? AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() 1121 : AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1122 int UnscaledStOffset = 1123 IsUnscaled 1124 ? AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() 1125 : AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1126 int Width = LoadSize * 8; 1127 Register DestReg = 1128 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1129 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1130 : LdRt; 1131 1132 assert((UnscaledLdOffset >= UnscaledStOffset && 1133 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1134 "Invalid offset"); 1135 1136 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1137 int Imms = Immr + Width - 1; 1138 if (UnscaledLdOffset == UnscaledStOffset) { 1139 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1140 | ((Immr) << 6) // immr 1141 | ((Imms) << 0) // imms 1142 ; 1143 1144 BitExtMI = 1145 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1146 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1147 DestReg) 1148 .add(StMO) 1149 .addImm(AndMaskEncoded) 1150 .setMIFlags(LoadI->getFlags()); 1151 } else { 1152 BitExtMI = 1153 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1154 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1155 DestReg) 1156 .add(StMO) 1157 .addImm(Immr) 1158 .addImm(Imms) 1159 .setMIFlags(LoadI->getFlags()); 1160 } 1161 } 1162 1163 // Clear kill flags between store and load. 1164 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1165 BitExtMI->getIterator())) 1166 if (MI.killsRegister(StRt, TRI)) { 1167 MI.clearRegisterKills(StRt, TRI); 1168 break; 1169 } 1170 1171 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1172 LLVM_DEBUG(StoreI->print(dbgs())); 1173 LLVM_DEBUG(dbgs() << " "); 1174 LLVM_DEBUG(LoadI->print(dbgs())); 1175 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1176 LLVM_DEBUG(StoreI->print(dbgs())); 1177 LLVM_DEBUG(dbgs() << " "); 1178 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1179 LLVM_DEBUG(dbgs() << "\n"); 1180 1181 // Erase the old instructions. 1182 LoadI->eraseFromParent(); 1183 return NextI; 1184 } 1185 1186 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1187 // Convert the byte-offset used by unscaled into an "element" offset used 1188 // by the scaled pair load/store instructions. 1189 if (IsUnscaled) { 1190 // If the byte-offset isn't a multiple of the stride, there's no point 1191 // trying to match it. 1192 if (Offset % OffsetStride) 1193 return false; 1194 Offset /= OffsetStride; 1195 } 1196 return Offset <= 63 && Offset >= -64; 1197 } 1198 1199 // Do alignment, specialized to power of 2 and for signed ints, 1200 // avoiding having to do a C-style cast from uint_64t to int when 1201 // using alignTo from include/llvm/Support/MathExtras.h. 1202 // FIXME: Move this function to include/MathExtras.h? 1203 static int alignTo(int Num, int PowOf2) { 1204 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1205 } 1206 1207 static bool mayAlias(MachineInstr &MIa, 1208 SmallVectorImpl<MachineInstr *> &MemInsns, 1209 AliasAnalysis *AA) { 1210 for (MachineInstr *MIb : MemInsns) 1211 if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) 1212 return true; 1213 1214 return false; 1215 } 1216 1217 bool AArch64LoadStoreOpt::findMatchingStore( 1218 MachineBasicBlock::iterator I, unsigned Limit, 1219 MachineBasicBlock::iterator &StoreI) { 1220 MachineBasicBlock::iterator B = I->getParent()->begin(); 1221 MachineBasicBlock::iterator MBBI = I; 1222 MachineInstr &LoadMI = *I; 1223 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(LoadMI).getReg(); 1224 1225 // If the load is the first instruction in the block, there's obviously 1226 // not any matching store. 1227 if (MBBI == B) 1228 return false; 1229 1230 // Track which register units have been modified and used between the first 1231 // insn and the second insn. 1232 ModifiedRegUnits.clear(); 1233 UsedRegUnits.clear(); 1234 1235 unsigned Count = 0; 1236 do { 1237 MBBI = prev_nodbg(MBBI, B); 1238 MachineInstr &MI = *MBBI; 1239 1240 // Don't count transient instructions towards the search limit since there 1241 // may be different numbers of them if e.g. debug information is present. 1242 if (!MI.isTransient()) 1243 ++Count; 1244 1245 // If the load instruction reads directly from the address to which the 1246 // store instruction writes and the stored value is not modified, we can 1247 // promote the load. Since we do not handle stores with pre-/post-index, 1248 // it's unnecessary to check if BaseReg is modified by the store itself. 1249 // Also we can't handle stores without an immediate offset operand, 1250 // while the operand might be the address for a global variable. 1251 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1252 BaseReg == AArch64InstrInfo::getLdStBaseOp(MI).getReg() && 1253 AArch64InstrInfo::getLdStOffsetOp(MI).isImm() && 1254 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1255 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1256 StoreI = MBBI; 1257 return true; 1258 } 1259 1260 if (MI.isCall()) 1261 return false; 1262 1263 // Update modified / uses register units. 1264 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1265 1266 // Otherwise, if the base register is modified, we have no match, so 1267 // return early. 1268 if (!ModifiedRegUnits.available(BaseReg)) 1269 return false; 1270 1271 // If we encounter a store aliased with the load, return early. 1272 if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false)) 1273 return false; 1274 } while (MBBI != B && Count < Limit); 1275 return false; 1276 } 1277 1278 // Returns true if FirstMI and MI are candidates for merging or pairing. 1279 // Otherwise, returns false. 1280 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1281 LdStPairFlags &Flags, 1282 const AArch64InstrInfo *TII) { 1283 // If this is volatile or if pairing is suppressed, not a candidate. 1284 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1285 return false; 1286 1287 // We should have already checked FirstMI for pair suppression and volatility. 1288 assert(!FirstMI.hasOrderedMemoryRef() && 1289 !TII->isLdStPairSuppressed(FirstMI) && 1290 "FirstMI shouldn't get here if either of these checks are true."); 1291 1292 unsigned OpcA = FirstMI.getOpcode(); 1293 unsigned OpcB = MI.getOpcode(); 1294 1295 // Opcodes match: If the opcodes are pre ld/st there is nothing more to check. 1296 if (OpcA == OpcB) 1297 return !AArch64InstrInfo::isPreLdSt(FirstMI); 1298 1299 // Try to match a sign-extended load/store with a zero-extended load/store. 1300 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1301 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1302 assert(IsValidLdStrOpc && 1303 "Given Opc should be a Load or Store with an immediate"); 1304 // OpcA will be the first instruction in the pair. 1305 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1306 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1307 return true; 1308 } 1309 1310 // If the second instruction isn't even a mergable/pairable load/store, bail 1311 // out. 1312 if (!PairIsValidLdStrOpc) 1313 return false; 1314 1315 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1316 // offsets. 1317 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1318 return false; 1319 1320 // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and 1321 // LDR<S,D,Q,W,X>pre-LDR<S,D,Q,W,X>ui 1322 // are candidate pairs that can be merged. 1323 if (isPreLdStPairCandidate(FirstMI, MI)) 1324 return true; 1325 1326 // Try to match an unscaled load/store with a scaled load/store. 1327 return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) && 1328 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1329 1330 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1331 } 1332 1333 static bool 1334 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1335 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1336 const TargetRegisterInfo *TRI) { 1337 if (!FirstMI.mayStore()) 1338 return false; 1339 1340 // Check if we can find an unused register which we can use to rename 1341 // the register used by the first load/store. 1342 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1343 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1344 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1345 return false; 1346 1347 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1348 // For now, we only rename if the store operand gets killed at the store. 1349 if (!getLdStRegOp(FirstMI).isKill() && 1350 !any_of(FirstMI.operands(), 1351 [TRI, RegToRename](const MachineOperand &MOP) { 1352 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1353 MOP.isImplicit() && MOP.isKill() && 1354 TRI->regsOverlap(RegToRename, MOP.getReg()); 1355 })) { 1356 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1357 return false; 1358 } 1359 auto canRenameMOP = [TRI](const MachineOperand &MOP) { 1360 if (MOP.isReg()) { 1361 auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg()); 1362 // Renaming registers with multiple disjunct sub-registers (e.g. the 1363 // result of a LD3) means that all sub-registers are renamed, potentially 1364 // impacting other instructions we did not check. Bail out. 1365 // Note that this relies on the structure of the AArch64 register file. In 1366 // particular, a subregister cannot be written without overwriting the 1367 // whole register. 1368 if (RegClass->HasDisjunctSubRegs) { 1369 LLVM_DEBUG( 1370 dbgs() 1371 << " Cannot rename operands with multiple disjunct subregisters (" 1372 << MOP << ")\n"); 1373 return false; 1374 } 1375 } 1376 return MOP.isImplicit() || 1377 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1378 }; 1379 1380 bool FoundDef = false; 1381 1382 // For each instruction between FirstMI and the previous def for RegToRename, 1383 // we 1384 // * check if we can rename RegToRename in this instruction 1385 // * collect the registers used and required register classes for RegToRename. 1386 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1387 bool IsDef) { 1388 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1389 // Currently we do not try to rename across frame-setup instructions. 1390 if (MI.getFlag(MachineInstr::FrameSetup)) { 1391 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1392 << MI << ")\n"); 1393 return false; 1394 } 1395 1396 UsedInBetween.accumulate(MI); 1397 1398 // For a definition, check that we can rename the definition and exit the 1399 // loop. 1400 FoundDef = IsDef; 1401 1402 // For defs, check if we can rename the first def of RegToRename. 1403 if (FoundDef) { 1404 // For some pseudo instructions, we might not generate code in the end 1405 // (e.g. KILL) and we would end up without a correct def for the rename 1406 // register. 1407 // TODO: This might be overly conservative and we could handle those cases 1408 // in multiple ways: 1409 // 1. Insert an extra copy, to materialize the def. 1410 // 2. Skip pseudo-defs until we find an non-pseudo def. 1411 if (MI.isPseudo()) { 1412 LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI 1413 << "\n"); 1414 return false; 1415 } 1416 1417 for (auto &MOP : MI.operands()) { 1418 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1419 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1420 continue; 1421 if (!canRenameMOP(MOP)) { 1422 LLVM_DEBUG(dbgs() 1423 << " Cannot rename " << MOP << " in " << MI << "\n"); 1424 return false; 1425 } 1426 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1427 } 1428 return true; 1429 } else { 1430 for (auto &MOP : MI.operands()) { 1431 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1432 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1433 continue; 1434 1435 if (!canRenameMOP(MOP)) { 1436 LLVM_DEBUG(dbgs() 1437 << " Cannot rename " << MOP << " in " << MI << "\n"); 1438 return false; 1439 } 1440 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1441 } 1442 } 1443 return true; 1444 }; 1445 1446 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1447 return false; 1448 1449 if (!FoundDef) { 1450 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1451 return false; 1452 } 1453 return true; 1454 } 1455 1456 // Check if we can find a physical register for renaming \p Reg. This register 1457 // must: 1458 // * not be defined already in \p DefinedInBB; DefinedInBB must contain all 1459 // defined registers up to the point where the renamed register will be used, 1460 // * not used in \p UsedInBetween; UsedInBetween must contain all accessed 1461 // registers in the range the rename register will be used, 1462 // * is available in all used register classes (checked using RequiredClasses). 1463 static Optional<MCPhysReg> tryToFindRegisterToRename( 1464 const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB, 1465 LiveRegUnits &UsedInBetween, 1466 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1467 const TargetRegisterInfo *TRI) { 1468 const MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1469 1470 // Checks if any sub- or super-register of PR is callee saved. 1471 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1472 return any_of(TRI->sub_and_superregs_inclusive(PR), 1473 [&MF, TRI](MCPhysReg SubOrSuper) { 1474 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1475 }); 1476 }; 1477 1478 // Check if PR or one of its sub- or super-registers can be used for all 1479 // required register classes. 1480 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1481 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1482 return any_of(TRI->sub_and_superregs_inclusive(PR), 1483 [C, TRI](MCPhysReg SubOrSuper) { 1484 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1485 }); 1486 }); 1487 }; 1488 1489 auto *RegClass = TRI->getMinimalPhysRegClass(Reg); 1490 for (const MCPhysReg &PR : *RegClass) { 1491 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1492 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && 1493 CanBeUsedForAllClasses(PR)) { 1494 DefinedInBB.addReg(PR); 1495 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1496 << "\n"); 1497 return {PR}; 1498 } 1499 } 1500 LLVM_DEBUG(dbgs() << "No rename register found from " 1501 << TRI->getRegClassName(RegClass) << "\n"); 1502 return None; 1503 } 1504 1505 /// Scan the instructions looking for a load/store that can be combined with the 1506 /// current instruction into a wider equivalent or a load/store pair. 1507 MachineBasicBlock::iterator 1508 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1509 LdStPairFlags &Flags, unsigned Limit, 1510 bool FindNarrowMerge) { 1511 MachineBasicBlock::iterator E = I->getParent()->end(); 1512 MachineBasicBlock::iterator MBBI = I; 1513 MachineBasicBlock::iterator MBBIWithRenameReg; 1514 MachineInstr &FirstMI = *I; 1515 MBBI = next_nodbg(MBBI, E); 1516 1517 bool MayLoad = FirstMI.mayLoad(); 1518 bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI); 1519 Register Reg = getLdStRegOp(FirstMI).getReg(); 1520 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(FirstMI).getReg(); 1521 int Offset = AArch64InstrInfo::getLdStOffsetOp(FirstMI).getImm(); 1522 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; 1523 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1524 1525 Optional<bool> MaybeCanRename = None; 1526 if (!EnableRenaming) 1527 MaybeCanRename = {false}; 1528 1529 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1530 LiveRegUnits UsedInBetween; 1531 UsedInBetween.init(*TRI); 1532 1533 Flags.clearRenameReg(); 1534 1535 // Track which register units have been modified and used between the first 1536 // insn (inclusive) and the second insn. 1537 ModifiedRegUnits.clear(); 1538 UsedRegUnits.clear(); 1539 1540 // Remember any instructions that read/write memory between FirstMI and MI. 1541 SmallVector<MachineInstr *, 4> MemInsns; 1542 1543 for (unsigned Count = 0; MBBI != E && Count < Limit; 1544 MBBI = next_nodbg(MBBI, E)) { 1545 MachineInstr &MI = *MBBI; 1546 1547 UsedInBetween.accumulate(MI); 1548 1549 // Don't count transient instructions towards the search limit since there 1550 // may be different numbers of them if e.g. debug information is present. 1551 if (!MI.isTransient()) 1552 ++Count; 1553 1554 Flags.setSExtIdx(-1); 1555 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1556 AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) { 1557 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1558 // If we've found another instruction with the same opcode, check to see 1559 // if the base and offset are compatible with our starting instruction. 1560 // These instructions all have scaled immediate operands, so we just 1561 // check for +1/-1. Make sure to check the new instruction offset is 1562 // actually an immediate and not a symbolic reference destined for 1563 // a relocation. 1564 Register MIBaseReg = AArch64InstrInfo::getLdStBaseOp(MI).getReg(); 1565 int MIOffset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm(); 1566 bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI); 1567 if (IsUnscaled != MIIsUnscaled) { 1568 // We're trying to pair instructions that differ in how they are scaled. 1569 // If FirstMI is scaled then scale the offset of MI accordingly. 1570 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1571 int MemSize = TII->getMemScale(MI); 1572 if (MIIsUnscaled) { 1573 // If the unscaled offset isn't a multiple of the MemSize, we can't 1574 // pair the operations together: bail and keep looking. 1575 if (MIOffset % MemSize) { 1576 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1577 UsedRegUnits, TRI); 1578 MemInsns.push_back(&MI); 1579 continue; 1580 } 1581 MIOffset /= MemSize; 1582 } else { 1583 MIOffset *= MemSize; 1584 } 1585 } 1586 1587 bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI); 1588 1589 if (BaseReg == MIBaseReg) { 1590 // If the offset of the second ld/st is not equal to the size of the 1591 // destination register it can’t be paired with a pre-index ld/st 1592 // pair. Additionally if the base reg is used or modified the operations 1593 // can't be paired: bail and keep looking. 1594 if (IsPreLdSt) { 1595 bool IsOutOfBounds = MIOffset != TII->getMemScale(MI); 1596 bool IsBaseRegUsed = !UsedRegUnits.available( 1597 AArch64InstrInfo::getLdStBaseOp(MI).getReg()); 1598 bool IsBaseRegModified = !ModifiedRegUnits.available( 1599 AArch64InstrInfo::getLdStBaseOp(MI).getReg()); 1600 // If the stored value and the address of the second instruction is 1601 // the same, it needs to be using the updated register and therefore 1602 // it must not be folded. 1603 bool IsMIRegTheSame = 1604 TRI->regsOverlap(getLdStRegOp(MI).getReg(), 1605 AArch64InstrInfo::getLdStBaseOp(MI).getReg()); 1606 if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified || 1607 IsMIRegTheSame) { 1608 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1609 UsedRegUnits, TRI); 1610 MemInsns.push_back(&MI); 1611 continue; 1612 } 1613 } else { 1614 if ((Offset != MIOffset + OffsetStride) && 1615 (Offset + OffsetStride != MIOffset)) { 1616 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1617 UsedRegUnits, TRI); 1618 MemInsns.push_back(&MI); 1619 continue; 1620 } 1621 } 1622 1623 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1624 if (FindNarrowMerge) { 1625 // If the alignment requirements of the scaled wide load/store 1626 // instruction can't express the offset of the scaled narrow input, 1627 // bail and keep looking. For promotable zero stores, allow only when 1628 // the stored value is the same (i.e., WZR). 1629 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1630 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1631 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1632 UsedRegUnits, TRI); 1633 MemInsns.push_back(&MI); 1634 continue; 1635 } 1636 } else { 1637 // Pairwise instructions have a 7-bit signed offset field. Single 1638 // insns have a 12-bit unsigned offset field. If the resultant 1639 // immediate offset of merging these instructions is out of range for 1640 // a pairwise instruction, bail and keep looking. 1641 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1642 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1643 UsedRegUnits, TRI); 1644 MemInsns.push_back(&MI); 1645 continue; 1646 } 1647 // If the alignment requirements of the paired (scaled) instruction 1648 // can't express the offset of the unscaled input, bail and keep 1649 // looking. 1650 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1651 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1652 UsedRegUnits, TRI); 1653 MemInsns.push_back(&MI); 1654 continue; 1655 } 1656 } 1657 // If the destination register of one load is the same register or a 1658 // sub/super register of the other load, bail and keep looking. A 1659 // load-pair instruction with both destination registers the same is 1660 // UNPREDICTABLE and will result in an exception. 1661 if (MayLoad && 1662 TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) { 1663 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1664 TRI); 1665 MemInsns.push_back(&MI); 1666 continue; 1667 } 1668 1669 // If the BaseReg has been modified, then we cannot do the optimization. 1670 // For example, in the following pattern 1671 // ldr x1 [x2] 1672 // ldr x2 [x3] 1673 // ldr x4 [x2, #8], 1674 // the first and third ldr cannot be converted to ldp x1, x4, [x2] 1675 if (!ModifiedRegUnits.available(BaseReg)) 1676 return E; 1677 1678 // If the Rt of the second instruction was not modified or used between 1679 // the two instructions and none of the instructions between the second 1680 // and first alias with the second, we can combine the second into the 1681 // first. 1682 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1683 !(MI.mayLoad() && 1684 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1685 !mayAlias(MI, MemInsns, AA)) { 1686 1687 Flags.setMergeForward(false); 1688 Flags.clearRenameReg(); 1689 return MBBI; 1690 } 1691 1692 // Likewise, if the Rt of the first instruction is not modified or used 1693 // between the two instructions and none of the instructions between the 1694 // first and the second alias with the first, we can combine the first 1695 // into the second. 1696 if (!(MayLoad && 1697 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1698 !mayAlias(FirstMI, MemInsns, AA)) { 1699 1700 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1701 Flags.setMergeForward(true); 1702 Flags.clearRenameReg(); 1703 return MBBI; 1704 } 1705 1706 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1707 if (!MaybeCanRename) 1708 MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, 1709 RequiredClasses, TRI)}; 1710 1711 if (*MaybeCanRename) { 1712 Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( 1713 *FirstMI.getParent()->getParent(), Reg, DefinedInBB, 1714 UsedInBetween, RequiredClasses, TRI); 1715 if (MaybeRenameReg) { 1716 Flags.setRenameReg(*MaybeRenameReg); 1717 Flags.setMergeForward(true); 1718 MBBIWithRenameReg = MBBI; 1719 } 1720 } 1721 } 1722 } 1723 // Unable to combine these instructions due to interference in between. 1724 // Keep looking. 1725 } 1726 } 1727 1728 if (Flags.getRenameReg()) 1729 return MBBIWithRenameReg; 1730 1731 // If the instruction wasn't a matching load or store. Stop searching if we 1732 // encounter a call instruction that might modify memory. 1733 if (MI.isCall()) 1734 return E; 1735 1736 // Update modified / uses register units. 1737 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1738 1739 // Otherwise, if the base register is modified, we have no match, so 1740 // return early. 1741 if (!ModifiedRegUnits.available(BaseReg)) 1742 return E; 1743 1744 // Update list of instructions that read/write memory. 1745 if (MI.mayLoadOrStore()) 1746 MemInsns.push_back(&MI); 1747 } 1748 return E; 1749 } 1750 1751 static MachineBasicBlock::iterator 1752 maybeMoveCFI(MachineInstr &MI, MachineBasicBlock::iterator MaybeCFI) { 1753 auto End = MI.getParent()->end(); 1754 if (MaybeCFI == End || 1755 MaybeCFI->getOpcode() != TargetOpcode::CFI_INSTRUCTION || 1756 !(MI.getFlag(MachineInstr::FrameSetup) || 1757 MI.getFlag(MachineInstr::FrameDestroy)) || 1758 AArch64InstrInfo::getLdStBaseOp(MI).getReg() != AArch64::SP) 1759 return End; 1760 1761 const MachineFunction &MF = *MI.getParent()->getParent(); 1762 unsigned CFIIndex = MaybeCFI->getOperand(0).getCFIIndex(); 1763 const MCCFIInstruction &CFI = MF.getFrameInstructions()[CFIIndex]; 1764 switch (CFI.getOperation()) { 1765 case MCCFIInstruction::OpDefCfa: 1766 case MCCFIInstruction::OpDefCfaOffset: 1767 return MaybeCFI; 1768 default: 1769 return End; 1770 } 1771 } 1772 1773 MachineBasicBlock::iterator 1774 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1775 MachineBasicBlock::iterator Update, 1776 bool IsPreIdx) { 1777 assert((Update->getOpcode() == AArch64::ADDXri || 1778 Update->getOpcode() == AArch64::SUBXri) && 1779 "Unexpected base register update instruction to merge!"); 1780 MachineBasicBlock::iterator E = I->getParent()->end(); 1781 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 1782 1783 // If updating the SP and the following instruction is CFA offset related CFI 1784 // instruction move it after the merged instruction. 1785 MachineBasicBlock::iterator CFI = 1786 IsPreIdx ? maybeMoveCFI(*Update, next_nodbg(Update, E)) : E; 1787 1788 // Return the instruction following the merged instruction, which is 1789 // the instruction following our unmerged load. Unless that's the add/sub 1790 // instruction we're merging, in which case it's the one after that. 1791 if (NextI == Update) 1792 NextI = next_nodbg(NextI, E); 1793 1794 int Value = Update->getOperand(2).getImm(); 1795 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1796 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1797 if (Update->getOpcode() == AArch64::SUBXri) 1798 Value = -Value; 1799 1800 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1801 : getPostIndexedOpcode(I->getOpcode()); 1802 MachineInstrBuilder MIB; 1803 int Scale, MinOffset, MaxOffset; 1804 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1805 if (!AArch64InstrInfo::isPairedLdSt(*I)) { 1806 // Non-paired instruction. 1807 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1808 .add(getLdStRegOp(*Update)) 1809 .add(getLdStRegOp(*I)) 1810 .add(AArch64InstrInfo::getLdStBaseOp(*I)) 1811 .addImm(Value / Scale) 1812 .setMemRefs(I->memoperands()) 1813 .setMIFlags(I->mergeFlagsWith(*Update)); 1814 } else { 1815 // Paired instruction. 1816 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1817 .add(getLdStRegOp(*Update)) 1818 .add(getLdStRegOp(*I, 0)) 1819 .add(getLdStRegOp(*I, 1)) 1820 .add(AArch64InstrInfo::getLdStBaseOp(*I)) 1821 .addImm(Value / Scale) 1822 .setMemRefs(I->memoperands()) 1823 .setMIFlags(I->mergeFlagsWith(*Update)); 1824 } 1825 if (CFI != E) { 1826 MachineBasicBlock *MBB = I->getParent(); 1827 MBB->splice(std::next(MIB.getInstr()->getIterator()), MBB, CFI); 1828 } 1829 1830 if (IsPreIdx) { 1831 ++NumPreFolded; 1832 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1833 } else { 1834 ++NumPostFolded; 1835 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1836 } 1837 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1838 LLVM_DEBUG(I->print(dbgs())); 1839 LLVM_DEBUG(dbgs() << " "); 1840 LLVM_DEBUG(Update->print(dbgs())); 1841 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1842 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1843 LLVM_DEBUG(dbgs() << "\n"); 1844 1845 // Erase the old instructions for the block. 1846 I->eraseFromParent(); 1847 Update->eraseFromParent(); 1848 1849 return NextI; 1850 } 1851 1852 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1853 MachineInstr &MI, 1854 unsigned BaseReg, int Offset) { 1855 switch (MI.getOpcode()) { 1856 default: 1857 break; 1858 case AArch64::SUBXri: 1859 case AArch64::ADDXri: 1860 // Make sure it's a vanilla immediate operand, not a relocation or 1861 // anything else we can't handle. 1862 if (!MI.getOperand(2).isImm()) 1863 break; 1864 // Watch out for 1 << 12 shifted value. 1865 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1866 break; 1867 1868 // The update instruction source and destination register must be the 1869 // same as the load/store base register. 1870 if (MI.getOperand(0).getReg() != BaseReg || 1871 MI.getOperand(1).getReg() != BaseReg) 1872 break; 1873 1874 int UpdateOffset = MI.getOperand(2).getImm(); 1875 if (MI.getOpcode() == AArch64::SUBXri) 1876 UpdateOffset = -UpdateOffset; 1877 1878 // The immediate must be a multiple of the scaling factor of the pre/post 1879 // indexed instruction. 1880 int Scale, MinOffset, MaxOffset; 1881 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1882 if (UpdateOffset % Scale != 0) 1883 break; 1884 1885 // Scaled offset must fit in the instruction immediate. 1886 int ScaledOffset = UpdateOffset / Scale; 1887 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1888 break; 1889 1890 // If we have a non-zero Offset, we check that it matches the amount 1891 // we're adding to the register. 1892 if (!Offset || Offset == UpdateOffset) 1893 return true; 1894 break; 1895 } 1896 return false; 1897 } 1898 1899 static bool needsWinCFI(const MachineFunction *MF) { 1900 return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && 1901 MF->getFunction().needsUnwindTableEntry(); 1902 } 1903 1904 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1905 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1906 MachineBasicBlock::iterator E = I->getParent()->end(); 1907 MachineInstr &MemMI = *I; 1908 MachineBasicBlock::iterator MBBI = I; 1909 1910 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(MemMI).getReg(); 1911 int MIUnscaledOffset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm() * 1912 TII->getMemScale(MemMI); 1913 1914 // Scan forward looking for post-index opportunities. Updating instructions 1915 // can't be formed if the memory instruction doesn't have the offset we're 1916 // looking for. 1917 if (MIUnscaledOffset != UnscaledOffset) 1918 return E; 1919 1920 // If the base register overlaps a source/destination register, we can't 1921 // merge the update. This does not apply to tag store instructions which 1922 // ignore the address part of the source register. 1923 // This does not apply to STGPi as well, which does not have unpredictable 1924 // behavior in this case unlike normal stores, and always performs writeback 1925 // after reading the source register value. 1926 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1927 bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI); 1928 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1929 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1930 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1931 return E; 1932 } 1933 } 1934 1935 // Track which register units have been modified and used between the first 1936 // insn (inclusive) and the second insn. 1937 ModifiedRegUnits.clear(); 1938 UsedRegUnits.clear(); 1939 MBBI = next_nodbg(MBBI, E); 1940 1941 // We can't post-increment the stack pointer if any instruction between 1942 // the memory access (I) and the increment (MBBI) can access the memory 1943 // region defined by [SP, MBBI]. 1944 const bool BaseRegSP = BaseReg == AArch64::SP; 1945 if (BaseRegSP && needsWinCFI(I->getMF())) { 1946 // FIXME: For now, we always block the optimization over SP in windows 1947 // targets as it requires to adjust the unwind/debug info, messing up 1948 // the unwind info can actually cause a miscompile. 1949 return E; 1950 } 1951 1952 for (unsigned Count = 0; MBBI != E && Count < Limit; 1953 MBBI = next_nodbg(MBBI, E)) { 1954 MachineInstr &MI = *MBBI; 1955 1956 // Don't count transient instructions towards the search limit since there 1957 // may be different numbers of them if e.g. debug information is present. 1958 if (!MI.isTransient()) 1959 ++Count; 1960 1961 // If we found a match, return it. 1962 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1963 return MBBI; 1964 1965 // Update the status of what the instruction clobbered and used. 1966 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1967 1968 // Otherwise, if the base register is used or modified, we have no match, so 1969 // return early. 1970 // If we are optimizing SP, do not allow instructions that may load or store 1971 // in between the load and the optimized value update. 1972 if (!ModifiedRegUnits.available(BaseReg) || 1973 !UsedRegUnits.available(BaseReg) || 1974 (BaseRegSP && MBBI->mayLoadOrStore())) 1975 return E; 1976 } 1977 return E; 1978 } 1979 1980 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1981 MachineBasicBlock::iterator I, unsigned Limit) { 1982 MachineBasicBlock::iterator B = I->getParent()->begin(); 1983 MachineBasicBlock::iterator E = I->getParent()->end(); 1984 MachineInstr &MemMI = *I; 1985 MachineBasicBlock::iterator MBBI = I; 1986 MachineFunction &MF = *MemMI.getMF(); 1987 1988 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(MemMI).getReg(); 1989 int Offset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm(); 1990 1991 // If the load/store is the first instruction in the block, there's obviously 1992 // not any matching update. Ditto if the memory offset isn't zero. 1993 if (MBBI == B || Offset != 0) 1994 return E; 1995 // If the base register overlaps a destination register, we can't 1996 // merge the update. 1997 if (!isTagStore(MemMI)) { 1998 bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI); 1999 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 2000 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 2001 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 2002 return E; 2003 } 2004 } 2005 2006 const bool BaseRegSP = BaseReg == AArch64::SP; 2007 if (BaseRegSP && needsWinCFI(I->getMF())) { 2008 // FIXME: For now, we always block the optimization over SP in windows 2009 // targets as it requires to adjust the unwind/debug info, messing up 2010 // the unwind info can actually cause a miscompile. 2011 return E; 2012 } 2013 2014 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2015 unsigned RedZoneSize = 2016 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 2017 2018 // Track which register units have been modified and used between the first 2019 // insn (inclusive) and the second insn. 2020 ModifiedRegUnits.clear(); 2021 UsedRegUnits.clear(); 2022 unsigned Count = 0; 2023 bool MemAcessBeforeSPPreInc = false; 2024 do { 2025 MBBI = prev_nodbg(MBBI, B); 2026 MachineInstr &MI = *MBBI; 2027 2028 // Don't count transient instructions towards the search limit since there 2029 // may be different numbers of them if e.g. debug information is present. 2030 if (!MI.isTransient()) 2031 ++Count; 2032 2033 // If we found a match, return it. 2034 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) { 2035 // Check that the update value is within our red zone limit (which may be 2036 // zero). 2037 if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize) 2038 return E; 2039 return MBBI; 2040 } 2041 2042 // Update the status of what the instruction clobbered and used. 2043 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 2044 2045 // Otherwise, if the base register is used or modified, we have no match, so 2046 // return early. 2047 if (!ModifiedRegUnits.available(BaseReg) || 2048 !UsedRegUnits.available(BaseReg)) 2049 return E; 2050 // Keep track if we have a memory access before an SP pre-increment, in this 2051 // case we need to validate later that the update amount respects the red 2052 // zone. 2053 if (BaseRegSP && MBBI->mayLoadOrStore()) 2054 MemAcessBeforeSPPreInc = true; 2055 } while (MBBI != B && Count < Limit); 2056 return E; 2057 } 2058 2059 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 2060 MachineBasicBlock::iterator &MBBI) { 2061 MachineInstr &MI = *MBBI; 2062 // If this is a volatile load, don't mess with it. 2063 if (MI.hasOrderedMemoryRef()) 2064 return false; 2065 2066 // Make sure this is a reg+imm. 2067 // FIXME: It is possible to extend it to handle reg+reg cases. 2068 if (!AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) 2069 return false; 2070 2071 // Look backward up to LdStLimit instructions. 2072 MachineBasicBlock::iterator StoreI; 2073 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 2074 ++NumLoadsFromStoresPromoted; 2075 // Promote the load. Keeping the iterator straight is a 2076 // pain, so we let the merge routine tell us what the next instruction 2077 // is after it's done mucking about. 2078 MBBI = promoteLoadFromStore(MBBI, StoreI); 2079 return true; 2080 } 2081 return false; 2082 } 2083 2084 // Merge adjacent zero stores into a wider store. 2085 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 2086 MachineBasicBlock::iterator &MBBI) { 2087 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 2088 MachineInstr &MI = *MBBI; 2089 MachineBasicBlock::iterator E = MI.getParent()->end(); 2090 2091 if (!TII->isCandidateToMergeOrPair(MI)) 2092 return false; 2093 2094 // Look ahead up to LdStLimit instructions for a mergable instruction. 2095 LdStPairFlags Flags; 2096 MachineBasicBlock::iterator MergeMI = 2097 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 2098 if (MergeMI != E) { 2099 ++NumZeroStoresPromoted; 2100 2101 // Keeping the iterator straight is a pain, so we let the merge routine tell 2102 // us what the next instruction is after it's done mucking about. 2103 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 2104 return true; 2105 } 2106 return false; 2107 } 2108 2109 // Find loads and stores that can be merged into a single load or store pair 2110 // instruction. 2111 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 2112 MachineInstr &MI = *MBBI; 2113 MachineBasicBlock::iterator E = MI.getParent()->end(); 2114 2115 if (!TII->isCandidateToMergeOrPair(MI)) 2116 return false; 2117 2118 // Early exit if the offset is not possible to match. (6 bits of positive 2119 // range, plus allow an extra one in case we find a later insn that matches 2120 // with Offset-1) 2121 bool IsUnscaled = TII->hasUnscaledLdStOffset(MI); 2122 int Offset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm(); 2123 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; 2124 // Allow one more for offset. 2125 if (Offset > 0) 2126 Offset -= OffsetStride; 2127 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 2128 return false; 2129 2130 // Look ahead up to LdStLimit instructions for a pairable instruction. 2131 LdStPairFlags Flags; 2132 MachineBasicBlock::iterator Paired = 2133 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 2134 if (Paired != E) { 2135 ++NumPairCreated; 2136 if (TII->hasUnscaledLdStOffset(MI)) 2137 ++NumUnscaledPairCreated; 2138 // Keeping the iterator straight is a pain, so we let the merge routine tell 2139 // us what the next instruction is after it's done mucking about. 2140 auto Prev = std::prev(MBBI); 2141 MBBI = mergePairedInsns(MBBI, Paired, Flags); 2142 // Collect liveness info for instructions between Prev and the new position 2143 // MBBI. 2144 for (auto I = std::next(Prev); I != MBBI; I++) 2145 updateDefinedRegisters(*I, DefinedInBB, TRI); 2146 2147 return true; 2148 } 2149 return false; 2150 } 2151 2152 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 2153 (MachineBasicBlock::iterator &MBBI) { 2154 MachineInstr &MI = *MBBI; 2155 MachineBasicBlock::iterator E = MI.getParent()->end(); 2156 MachineBasicBlock::iterator Update; 2157 2158 // Look forward to try to form a post-index instruction. For example, 2159 // ldr x0, [x20] 2160 // add x20, x20, #32 2161 // merged into: 2162 // ldr x0, [x20], #32 2163 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 2164 if (Update != E) { 2165 // Merge the update into the ld/st. 2166 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 2167 return true; 2168 } 2169 2170 // Don't know how to handle unscaled pre/post-index versions below, so bail. 2171 if (TII->hasUnscaledLdStOffset(MI.getOpcode())) 2172 return false; 2173 2174 // Look back to try to find a pre-index instruction. For example, 2175 // add x0, x0, #8 2176 // ldr x1, [x0] 2177 // merged into: 2178 // ldr x1, [x0, #8]! 2179 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 2180 if (Update != E) { 2181 // Merge the update into the ld/st. 2182 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2183 return true; 2184 } 2185 2186 // The immediate in the load/store is scaled by the size of the memory 2187 // operation. The immediate in the add we're looking for, 2188 // however, is not, so adjust here. 2189 int UnscaledOffset = 2190 AArch64InstrInfo::getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); 2191 2192 // Look forward to try to find a pre-index instruction. For example, 2193 // ldr x1, [x0, #64] 2194 // add x0, x0, #64 2195 // merged into: 2196 // ldr x1, [x0, #64]! 2197 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 2198 if (Update != E) { 2199 // Merge the update into the ld/st. 2200 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2201 return true; 2202 } 2203 2204 return false; 2205 } 2206 2207 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2208 bool EnableNarrowZeroStOpt) { 2209 2210 bool Modified = false; 2211 // Four tranformations to do here: 2212 // 1) Find loads that directly read from stores and promote them by 2213 // replacing with mov instructions. If the store is wider than the load, 2214 // the load will be replaced with a bitfield extract. 2215 // e.g., 2216 // str w1, [x0, #4] 2217 // ldrh w2, [x0, #6] 2218 // ; becomes 2219 // str w1, [x0, #4] 2220 // lsr w2, w1, #16 2221 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2222 MBBI != E;) { 2223 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2224 Modified = true; 2225 else 2226 ++MBBI; 2227 } 2228 // 2) Merge adjacent zero stores into a wider store. 2229 // e.g., 2230 // strh wzr, [x0] 2231 // strh wzr, [x0, #2] 2232 // ; becomes 2233 // str wzr, [x0] 2234 // e.g., 2235 // str wzr, [x0] 2236 // str wzr, [x0, #4] 2237 // ; becomes 2238 // str xzr, [x0] 2239 if (EnableNarrowZeroStOpt) 2240 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2241 MBBI != E;) { 2242 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2243 Modified = true; 2244 else 2245 ++MBBI; 2246 } 2247 // 3) Find loads and stores that can be merged into a single load or store 2248 // pair instruction. 2249 // e.g., 2250 // ldr x0, [x2] 2251 // ldr x1, [x2, #8] 2252 // ; becomes 2253 // ldp x0, x1, [x2] 2254 2255 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2256 DefinedInBB.clear(); 2257 DefinedInBB.addLiveIns(MBB); 2258 } 2259 2260 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2261 MBBI != E;) { 2262 // Track currently live registers up to this point, to help with 2263 // searching for a rename register on demand. 2264 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2265 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2266 Modified = true; 2267 else 2268 ++MBBI; 2269 } 2270 // 4) Find base register updates that can be merged into the load or store 2271 // as a base-reg writeback. 2272 // e.g., 2273 // ldr x0, [x2] 2274 // add x2, x2, #4 2275 // ; becomes 2276 // ldr x0, [x2], #4 2277 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2278 MBBI != E;) { 2279 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2280 Modified = true; 2281 else 2282 ++MBBI; 2283 } 2284 2285 return Modified; 2286 } 2287 2288 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2289 if (skipFunction(Fn.getFunction())) 2290 return false; 2291 2292 Subtarget = &Fn.getSubtarget<AArch64Subtarget>(); 2293 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2294 TRI = Subtarget->getRegisterInfo(); 2295 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2296 2297 // Resize the modified and used register unit trackers. We do this once 2298 // per function and then clear the register units each time we optimize a load 2299 // or store. 2300 ModifiedRegUnits.init(*TRI); 2301 UsedRegUnits.init(*TRI); 2302 DefinedInBB.init(*TRI); 2303 2304 bool Modified = false; 2305 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2306 for (auto &MBB : Fn) { 2307 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2308 Modified |= M; 2309 } 2310 2311 return Modified; 2312 } 2313 2314 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2315 // stores near one another? Note: The pre-RA instruction scheduler already has 2316 // hooks to try and schedule pairable loads/stores together to improve pairing 2317 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2318 2319 // FIXME: When pairing store instructions it's very possible for this pass to 2320 // hoist a store with a KILL marker above another use (without a KILL marker). 2321 // The resulting IR is invalid, but nothing uses the KILL markers after this 2322 // pass, so it's never caused a problem in practice. 2323 2324 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2325 /// load / store optimization pass. 2326 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2327 return new AArch64LoadStoreOpt(); 2328 } 2329