1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64InstrInfo.h" 15 #include "AArch64Subtarget.h" 16 #include "MCTargetDesc/AArch64AddressingModes.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/DebugCounter.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <functional> 43 #include <iterator> 44 #include <limits> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "aarch64-ldst-opt" 49 50 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 51 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 52 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 53 STATISTIC(NumUnscaledPairCreated, 54 "Number of load/store from unscaled generated"); 55 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 56 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 57 58 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 59 "Controls which pairs are considered for renaming"); 60 61 // The LdStLimit limits how far we search for load/store pairs. 62 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 63 cl::init(20), cl::Hidden); 64 65 // The UpdateLimit limits how far we search for update instructions when we form 66 // pre-/post-index instructions. 67 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 68 cl::Hidden); 69 70 // Enable register renaming to find additional store pairing opportunities. 71 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming", 72 cl::init(true), cl::Hidden); 73 74 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 75 76 namespace { 77 78 using LdStPairFlags = struct LdStPairFlags { 79 // If a matching instruction is found, MergeForward is set to true if the 80 // merge is to remove the first instruction and replace the second with 81 // a pair-wise insn, and false if the reverse is true. 82 bool MergeForward = false; 83 84 // SExtIdx gives the index of the result of the load pair that must be 85 // extended. The value of SExtIdx assumes that the paired load produces the 86 // value in this order: (I, returned iterator), i.e., -1 means no value has 87 // to be extended, 0 means I, and 1 means the returned iterator. 88 int SExtIdx = -1; 89 90 // If not none, RenameReg can be used to rename the result register of the 91 // first store in a pair. Currently this only works when merging stores 92 // forward. 93 Optional<MCPhysReg> RenameReg = None; 94 95 LdStPairFlags() = default; 96 97 void setMergeForward(bool V = true) { MergeForward = V; } 98 bool getMergeForward() const { return MergeForward; } 99 100 void setSExtIdx(int V) { SExtIdx = V; } 101 int getSExtIdx() const { return SExtIdx; } 102 103 void setRenameReg(MCPhysReg R) { RenameReg = R; } 104 void clearRenameReg() { RenameReg = None; } 105 Optional<MCPhysReg> getRenameReg() const { return RenameReg; } 106 }; 107 108 struct AArch64LoadStoreOpt : public MachineFunctionPass { 109 static char ID; 110 111 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 112 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 113 } 114 115 AliasAnalysis *AA; 116 const AArch64InstrInfo *TII; 117 const TargetRegisterInfo *TRI; 118 const AArch64Subtarget *Subtarget; 119 120 // Track which register units have been modified and used. 121 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 122 LiveRegUnits DefinedInBB; 123 124 void getAnalysisUsage(AnalysisUsage &AU) const override { 125 AU.addRequired<AAResultsWrapperPass>(); 126 MachineFunctionPass::getAnalysisUsage(AU); 127 } 128 129 // Scan the instructions looking for a load/store that can be combined 130 // with the current instruction into a load/store pair. 131 // Return the matching instruction if one is found, else MBB->end(). 132 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 133 LdStPairFlags &Flags, 134 unsigned Limit, 135 bool FindNarrowMerge); 136 137 // Scan the instructions looking for a store that writes to the address from 138 // which the current load instruction reads. Return true if one is found. 139 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 140 MachineBasicBlock::iterator &StoreI); 141 142 // Merge the two instructions indicated into a wider narrow store instruction. 143 MachineBasicBlock::iterator 144 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 145 MachineBasicBlock::iterator MergeMI, 146 const LdStPairFlags &Flags); 147 148 // Merge the two instructions indicated into a single pair-wise instruction. 149 MachineBasicBlock::iterator 150 mergePairedInsns(MachineBasicBlock::iterator I, 151 MachineBasicBlock::iterator Paired, 152 const LdStPairFlags &Flags); 153 154 // Promote the load that reads directly from the address stored to. 155 MachineBasicBlock::iterator 156 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 157 MachineBasicBlock::iterator StoreI); 158 159 // Scan the instruction list to find a base register update that can 160 // be combined with the current instruction (a load or store) using 161 // pre or post indexed addressing with writeback. Scan forwards. 162 MachineBasicBlock::iterator 163 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 164 int UnscaledOffset, unsigned Limit); 165 166 // Scan the instruction list to find a base register update that can 167 // be combined with the current instruction (a load or store) using 168 // pre or post indexed addressing with writeback. Scan backwards. 169 MachineBasicBlock::iterator 170 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 171 172 // Find an instruction that updates the base register of the ld/st 173 // instruction. 174 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 175 unsigned BaseReg, int Offset); 176 177 // Merge a pre- or post-index base register update into a ld/st instruction. 178 MachineBasicBlock::iterator 179 mergeUpdateInsn(MachineBasicBlock::iterator I, 180 MachineBasicBlock::iterator Update, bool IsPreIdx); 181 182 // Find and merge zero store instructions. 183 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 184 185 // Find and pair ldr/str instructions. 186 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 187 188 // Find and promote load instructions which read directly from store. 189 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 190 191 // Find and merge a base register updates before or after a ld/st instruction. 192 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 193 194 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 195 196 bool runOnMachineFunction(MachineFunction &Fn) override; 197 198 MachineFunctionProperties getRequiredProperties() const override { 199 return MachineFunctionProperties().set( 200 MachineFunctionProperties::Property::NoVRegs); 201 } 202 203 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 204 }; 205 206 char AArch64LoadStoreOpt::ID = 0; 207 208 } // end anonymous namespace 209 210 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 211 AARCH64_LOAD_STORE_OPT_NAME, false, false) 212 213 static bool isNarrowStore(unsigned Opc) { 214 switch (Opc) { 215 default: 216 return false; 217 case AArch64::STRBBui: 218 case AArch64::STURBBi: 219 case AArch64::STRHHui: 220 case AArch64::STURHHi: 221 return true; 222 } 223 } 224 225 // These instruction set memory tag and either keep memory contents unchanged or 226 // set it to zero, ignoring the address part of the source register. 227 static bool isTagStore(const MachineInstr &MI) { 228 switch (MI.getOpcode()) { 229 default: 230 return false; 231 case AArch64::STGOffset: 232 case AArch64::STZGOffset: 233 case AArch64::ST2GOffset: 234 case AArch64::STZ2GOffset: 235 return true; 236 } 237 } 238 239 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 240 bool *IsValidLdStrOpc = nullptr) { 241 if (IsValidLdStrOpc) 242 *IsValidLdStrOpc = true; 243 switch (Opc) { 244 default: 245 if (IsValidLdStrOpc) 246 *IsValidLdStrOpc = false; 247 return std::numeric_limits<unsigned>::max(); 248 case AArch64::STRDui: 249 case AArch64::STURDi: 250 case AArch64::STRQui: 251 case AArch64::STURQi: 252 case AArch64::STRBBui: 253 case AArch64::STURBBi: 254 case AArch64::STRHHui: 255 case AArch64::STURHHi: 256 case AArch64::STRWui: 257 case AArch64::STURWi: 258 case AArch64::STRXui: 259 case AArch64::STURXi: 260 case AArch64::LDRDui: 261 case AArch64::LDURDi: 262 case AArch64::LDRQui: 263 case AArch64::LDURQi: 264 case AArch64::LDRWui: 265 case AArch64::LDURWi: 266 case AArch64::LDRXui: 267 case AArch64::LDURXi: 268 case AArch64::STRSui: 269 case AArch64::STURSi: 270 case AArch64::LDRSui: 271 case AArch64::LDURSi: 272 return Opc; 273 case AArch64::LDRSWui: 274 return AArch64::LDRWui; 275 case AArch64::LDURSWi: 276 return AArch64::LDURWi; 277 } 278 } 279 280 static unsigned getMatchingWideOpcode(unsigned Opc) { 281 switch (Opc) { 282 default: 283 llvm_unreachable("Opcode has no wide equivalent!"); 284 case AArch64::STRBBui: 285 return AArch64::STRHHui; 286 case AArch64::STRHHui: 287 return AArch64::STRWui; 288 case AArch64::STURBBi: 289 return AArch64::STURHHi; 290 case AArch64::STURHHi: 291 return AArch64::STURWi; 292 case AArch64::STURWi: 293 return AArch64::STURXi; 294 case AArch64::STRWui: 295 return AArch64::STRXui; 296 } 297 } 298 299 static unsigned getMatchingPairOpcode(unsigned Opc) { 300 switch (Opc) { 301 default: 302 llvm_unreachable("Opcode has no pairwise equivalent!"); 303 case AArch64::STRSui: 304 case AArch64::STURSi: 305 return AArch64::STPSi; 306 case AArch64::STRDui: 307 case AArch64::STURDi: 308 return AArch64::STPDi; 309 case AArch64::STRQui: 310 case AArch64::STURQi: 311 return AArch64::STPQi; 312 case AArch64::STRWui: 313 case AArch64::STURWi: 314 return AArch64::STPWi; 315 case AArch64::STRXui: 316 case AArch64::STURXi: 317 return AArch64::STPXi; 318 case AArch64::LDRSui: 319 case AArch64::LDURSi: 320 return AArch64::LDPSi; 321 case AArch64::LDRDui: 322 case AArch64::LDURDi: 323 return AArch64::LDPDi; 324 case AArch64::LDRQui: 325 case AArch64::LDURQi: 326 return AArch64::LDPQi; 327 case AArch64::LDRWui: 328 case AArch64::LDURWi: 329 return AArch64::LDPWi; 330 case AArch64::LDRXui: 331 case AArch64::LDURXi: 332 return AArch64::LDPXi; 333 case AArch64::LDRSWui: 334 case AArch64::LDURSWi: 335 return AArch64::LDPSWi; 336 } 337 } 338 339 static unsigned isMatchingStore(MachineInstr &LoadInst, 340 MachineInstr &StoreInst) { 341 unsigned LdOpc = LoadInst.getOpcode(); 342 unsigned StOpc = StoreInst.getOpcode(); 343 switch (LdOpc) { 344 default: 345 llvm_unreachable("Unsupported load instruction!"); 346 case AArch64::LDRBBui: 347 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 348 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 349 case AArch64::LDURBBi: 350 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 351 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 352 case AArch64::LDRHHui: 353 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 354 StOpc == AArch64::STRXui; 355 case AArch64::LDURHHi: 356 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 357 StOpc == AArch64::STURXi; 358 case AArch64::LDRWui: 359 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 360 case AArch64::LDURWi: 361 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 362 case AArch64::LDRXui: 363 return StOpc == AArch64::STRXui; 364 case AArch64::LDURXi: 365 return StOpc == AArch64::STURXi; 366 } 367 } 368 369 static unsigned getPreIndexedOpcode(unsigned Opc) { 370 // FIXME: We don't currently support creating pre-indexed loads/stores when 371 // the load or store is the unscaled version. If we decide to perform such an 372 // optimization in the future the cases for the unscaled loads/stores will 373 // need to be added here. 374 switch (Opc) { 375 default: 376 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 377 case AArch64::STRSui: 378 return AArch64::STRSpre; 379 case AArch64::STRDui: 380 return AArch64::STRDpre; 381 case AArch64::STRQui: 382 return AArch64::STRQpre; 383 case AArch64::STRBBui: 384 return AArch64::STRBBpre; 385 case AArch64::STRHHui: 386 return AArch64::STRHHpre; 387 case AArch64::STRWui: 388 return AArch64::STRWpre; 389 case AArch64::STRXui: 390 return AArch64::STRXpre; 391 case AArch64::LDRSui: 392 return AArch64::LDRSpre; 393 case AArch64::LDRDui: 394 return AArch64::LDRDpre; 395 case AArch64::LDRQui: 396 return AArch64::LDRQpre; 397 case AArch64::LDRBBui: 398 return AArch64::LDRBBpre; 399 case AArch64::LDRHHui: 400 return AArch64::LDRHHpre; 401 case AArch64::LDRWui: 402 return AArch64::LDRWpre; 403 case AArch64::LDRXui: 404 return AArch64::LDRXpre; 405 case AArch64::LDRSWui: 406 return AArch64::LDRSWpre; 407 case AArch64::LDPSi: 408 return AArch64::LDPSpre; 409 case AArch64::LDPSWi: 410 return AArch64::LDPSWpre; 411 case AArch64::LDPDi: 412 return AArch64::LDPDpre; 413 case AArch64::LDPQi: 414 return AArch64::LDPQpre; 415 case AArch64::LDPWi: 416 return AArch64::LDPWpre; 417 case AArch64::LDPXi: 418 return AArch64::LDPXpre; 419 case AArch64::STPSi: 420 return AArch64::STPSpre; 421 case AArch64::STPDi: 422 return AArch64::STPDpre; 423 case AArch64::STPQi: 424 return AArch64::STPQpre; 425 case AArch64::STPWi: 426 return AArch64::STPWpre; 427 case AArch64::STPXi: 428 return AArch64::STPXpre; 429 case AArch64::STGOffset: 430 return AArch64::STGPreIndex; 431 case AArch64::STZGOffset: 432 return AArch64::STZGPreIndex; 433 case AArch64::ST2GOffset: 434 return AArch64::ST2GPreIndex; 435 case AArch64::STZ2GOffset: 436 return AArch64::STZ2GPreIndex; 437 case AArch64::STGPi: 438 return AArch64::STGPpre; 439 } 440 } 441 442 static unsigned getPostIndexedOpcode(unsigned Opc) { 443 switch (Opc) { 444 default: 445 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 446 case AArch64::STRSui: 447 case AArch64::STURSi: 448 return AArch64::STRSpost; 449 case AArch64::STRDui: 450 case AArch64::STURDi: 451 return AArch64::STRDpost; 452 case AArch64::STRQui: 453 case AArch64::STURQi: 454 return AArch64::STRQpost; 455 case AArch64::STRBBui: 456 return AArch64::STRBBpost; 457 case AArch64::STRHHui: 458 return AArch64::STRHHpost; 459 case AArch64::STRWui: 460 case AArch64::STURWi: 461 return AArch64::STRWpost; 462 case AArch64::STRXui: 463 case AArch64::STURXi: 464 return AArch64::STRXpost; 465 case AArch64::LDRSui: 466 case AArch64::LDURSi: 467 return AArch64::LDRSpost; 468 case AArch64::LDRDui: 469 case AArch64::LDURDi: 470 return AArch64::LDRDpost; 471 case AArch64::LDRQui: 472 case AArch64::LDURQi: 473 return AArch64::LDRQpost; 474 case AArch64::LDRBBui: 475 return AArch64::LDRBBpost; 476 case AArch64::LDRHHui: 477 return AArch64::LDRHHpost; 478 case AArch64::LDRWui: 479 case AArch64::LDURWi: 480 return AArch64::LDRWpost; 481 case AArch64::LDRXui: 482 case AArch64::LDURXi: 483 return AArch64::LDRXpost; 484 case AArch64::LDRSWui: 485 return AArch64::LDRSWpost; 486 case AArch64::LDPSi: 487 return AArch64::LDPSpost; 488 case AArch64::LDPSWi: 489 return AArch64::LDPSWpost; 490 case AArch64::LDPDi: 491 return AArch64::LDPDpost; 492 case AArch64::LDPQi: 493 return AArch64::LDPQpost; 494 case AArch64::LDPWi: 495 return AArch64::LDPWpost; 496 case AArch64::LDPXi: 497 return AArch64::LDPXpost; 498 case AArch64::STPSi: 499 return AArch64::STPSpost; 500 case AArch64::STPDi: 501 return AArch64::STPDpost; 502 case AArch64::STPQi: 503 return AArch64::STPQpost; 504 case AArch64::STPWi: 505 return AArch64::STPWpost; 506 case AArch64::STPXi: 507 return AArch64::STPXpost; 508 case AArch64::STGOffset: 509 return AArch64::STGPostIndex; 510 case AArch64::STZGOffset: 511 return AArch64::STZGPostIndex; 512 case AArch64::ST2GOffset: 513 return AArch64::ST2GPostIndex; 514 case AArch64::STZ2GOffset: 515 return AArch64::STZ2GPostIndex; 516 case AArch64::STGPi: 517 return AArch64::STGPpost; 518 } 519 } 520 521 static bool isPairedLdSt(const MachineInstr &MI) { 522 switch (MI.getOpcode()) { 523 default: 524 return false; 525 case AArch64::LDPSi: 526 case AArch64::LDPSWi: 527 case AArch64::LDPDi: 528 case AArch64::LDPQi: 529 case AArch64::LDPWi: 530 case AArch64::LDPXi: 531 case AArch64::STPSi: 532 case AArch64::STPDi: 533 case AArch64::STPQi: 534 case AArch64::STPWi: 535 case AArch64::STPXi: 536 case AArch64::STGPi: 537 return true; 538 } 539 } 540 541 // Returns the scale and offset range of pre/post indexed variants of MI. 542 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 543 int &MinOffset, int &MaxOffset) { 544 bool IsPaired = isPairedLdSt(MI); 545 bool IsTagStore = isTagStore(MI); 546 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 547 // as in the "unsigned offset" variant. 548 // All other pre/post indexed ldst instructions are unscaled. 549 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; 550 551 if (IsPaired) { 552 MinOffset = -64; 553 MaxOffset = 63; 554 } else { 555 MinOffset = -256; 556 MaxOffset = 255; 557 } 558 } 559 560 static MachineOperand &getLdStRegOp(MachineInstr &MI, 561 unsigned PairedRegOp = 0) { 562 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 563 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 564 return MI.getOperand(Idx); 565 } 566 567 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 568 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 569 return MI.getOperand(Idx); 570 } 571 572 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 573 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 574 return MI.getOperand(Idx); 575 } 576 577 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 578 MachineInstr &StoreInst, 579 const AArch64InstrInfo *TII) { 580 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 581 int LoadSize = TII->getMemScale(LoadInst); 582 int StoreSize = TII->getMemScale(StoreInst); 583 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 584 ? getLdStOffsetOp(StoreInst).getImm() 585 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 586 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 587 ? getLdStOffsetOp(LoadInst).getImm() 588 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 589 return (UnscaledStOffset <= UnscaledLdOffset) && 590 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 591 } 592 593 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 594 unsigned Opc = MI.getOpcode(); 595 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 596 isNarrowStore(Opc)) && 597 getLdStRegOp(MI).getReg() == AArch64::WZR; 598 } 599 600 static bool isPromotableLoadFromStore(MachineInstr &MI) { 601 switch (MI.getOpcode()) { 602 default: 603 return false; 604 // Scaled instructions. 605 case AArch64::LDRBBui: 606 case AArch64::LDRHHui: 607 case AArch64::LDRWui: 608 case AArch64::LDRXui: 609 // Unscaled instructions. 610 case AArch64::LDURBBi: 611 case AArch64::LDURHHi: 612 case AArch64::LDURWi: 613 case AArch64::LDURXi: 614 return true; 615 } 616 } 617 618 static bool isMergeableLdStUpdate(MachineInstr &MI) { 619 unsigned Opc = MI.getOpcode(); 620 switch (Opc) { 621 default: 622 return false; 623 // Scaled instructions. 624 case AArch64::STRSui: 625 case AArch64::STRDui: 626 case AArch64::STRQui: 627 case AArch64::STRXui: 628 case AArch64::STRWui: 629 case AArch64::STRHHui: 630 case AArch64::STRBBui: 631 case AArch64::LDRSui: 632 case AArch64::LDRDui: 633 case AArch64::LDRQui: 634 case AArch64::LDRXui: 635 case AArch64::LDRWui: 636 case AArch64::LDRHHui: 637 case AArch64::LDRBBui: 638 case AArch64::STGOffset: 639 case AArch64::STZGOffset: 640 case AArch64::ST2GOffset: 641 case AArch64::STZ2GOffset: 642 case AArch64::STGPi: 643 // Unscaled instructions. 644 case AArch64::STURSi: 645 case AArch64::STURDi: 646 case AArch64::STURQi: 647 case AArch64::STURWi: 648 case AArch64::STURXi: 649 case AArch64::LDURSi: 650 case AArch64::LDURDi: 651 case AArch64::LDURQi: 652 case AArch64::LDURWi: 653 case AArch64::LDURXi: 654 // Paired instructions. 655 case AArch64::LDPSi: 656 case AArch64::LDPSWi: 657 case AArch64::LDPDi: 658 case AArch64::LDPQi: 659 case AArch64::LDPWi: 660 case AArch64::LDPXi: 661 case AArch64::STPSi: 662 case AArch64::STPDi: 663 case AArch64::STPQi: 664 case AArch64::STPWi: 665 case AArch64::STPXi: 666 // Make sure this is a reg+imm (as opposed to an address reloc). 667 if (!getLdStOffsetOp(MI).isImm()) 668 return false; 669 670 return true; 671 } 672 } 673 674 MachineBasicBlock::iterator 675 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 676 MachineBasicBlock::iterator MergeMI, 677 const LdStPairFlags &Flags) { 678 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 679 "Expected promotable zero stores."); 680 681 MachineBasicBlock::iterator E = I->getParent()->end(); 682 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 683 // If NextI is the second of the two instructions to be merged, we need 684 // to skip one further. Either way we merge will invalidate the iterator, 685 // and we don't need to scan the new instruction, as it's a pairwise 686 // instruction, which we're not considering for further action anyway. 687 if (NextI == MergeMI) 688 NextI = next_nodbg(NextI, E); 689 690 unsigned Opc = I->getOpcode(); 691 bool IsScaled = !TII->isUnscaledLdSt(Opc); 692 int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I); 693 694 bool MergeForward = Flags.getMergeForward(); 695 // Insert our new paired instruction after whichever of the paired 696 // instructions MergeForward indicates. 697 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 698 // Also based on MergeForward is from where we copy the base register operand 699 // so we get the flags compatible with the input code. 700 const MachineOperand &BaseRegOp = 701 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 702 703 // Which register is Rt and which is Rt2 depends on the offset order. 704 MachineInstr *RtMI; 705 if (getLdStOffsetOp(*I).getImm() == 706 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 707 RtMI = &*MergeMI; 708 else 709 RtMI = &*I; 710 711 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 712 // Change the scaled offset from small to large type. 713 if (IsScaled) { 714 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 715 OffsetImm /= 2; 716 } 717 718 // Construct the new instruction. 719 DebugLoc DL = I->getDebugLoc(); 720 MachineBasicBlock *MBB = I->getParent(); 721 MachineInstrBuilder MIB; 722 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 723 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 724 .add(BaseRegOp) 725 .addImm(OffsetImm) 726 .cloneMergedMemRefs({&*I, &*MergeMI}) 727 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 728 (void)MIB; 729 730 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 731 LLVM_DEBUG(I->print(dbgs())); 732 LLVM_DEBUG(dbgs() << " "); 733 LLVM_DEBUG(MergeMI->print(dbgs())); 734 LLVM_DEBUG(dbgs() << " with instruction:\n "); 735 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 736 LLVM_DEBUG(dbgs() << "\n"); 737 738 // Erase the old instructions. 739 I->eraseFromParent(); 740 MergeMI->eraseFromParent(); 741 return NextI; 742 } 743 744 // Apply Fn to all instructions between MI and the beginning of the block, until 745 // a def for DefReg is reached. Returns true, iff Fn returns true for all 746 // visited instructions. Stop after visiting Limit iterations. 747 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 748 const TargetRegisterInfo *TRI, unsigned Limit, 749 std::function<bool(MachineInstr &, bool)> &Fn) { 750 auto MBB = MI.getParent(); 751 for (MachineInstr &I : 752 instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) { 753 if (!Limit) 754 return false; 755 --Limit; 756 757 bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) { 758 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 759 TRI->regsOverlap(MOP.getReg(), DefReg); 760 }); 761 if (!Fn(I, isDef)) 762 return false; 763 if (isDef) 764 break; 765 } 766 return true; 767 } 768 769 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 770 const TargetRegisterInfo *TRI) { 771 772 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 773 if (MOP.isReg() && MOP.isKill()) 774 Units.removeReg(MOP.getReg()); 775 776 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 777 if (MOP.isReg() && !MOP.isKill()) 778 Units.addReg(MOP.getReg()); 779 } 780 781 MachineBasicBlock::iterator 782 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 783 MachineBasicBlock::iterator Paired, 784 const LdStPairFlags &Flags) { 785 MachineBasicBlock::iterator E = I->getParent()->end(); 786 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 787 // If NextI is the second of the two instructions to be merged, we need 788 // to skip one further. Either way we merge will invalidate the iterator, 789 // and we don't need to scan the new instruction, as it's a pairwise 790 // instruction, which we're not considering for further action anyway. 791 if (NextI == Paired) 792 NextI = next_nodbg(NextI, E); 793 794 int SExtIdx = Flags.getSExtIdx(); 795 unsigned Opc = 796 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 797 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 798 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; 799 800 bool MergeForward = Flags.getMergeForward(); 801 802 Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 803 if (MergeForward && RenameReg) { 804 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 805 DefinedInBB.addReg(*RenameReg); 806 807 // Return the sub/super register for RenameReg, matching the size of 808 // OriginalReg. 809 auto GetMatchingSubReg = [this, 810 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 811 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 812 if (TRI->getMinimalPhysRegClass(OriginalReg) == 813 TRI->getMinimalPhysRegClass(SubOrSuper)) 814 return SubOrSuper; 815 llvm_unreachable("Should have found matching sub or super register!"); 816 }; 817 818 std::function<bool(MachineInstr &, bool)> UpdateMIs = 819 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 820 if (IsDef) { 821 bool SeenDef = false; 822 for (auto &MOP : MI.operands()) { 823 // Rename the first explicit definition and all implicit 824 // definitions matching RegToRename. 825 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 826 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 827 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 828 assert((MOP.isImplicit() || 829 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 830 "Need renamable operands"); 831 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 832 SeenDef = true; 833 } 834 } 835 } else { 836 for (auto &MOP : MI.operands()) { 837 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 838 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 839 assert((MOP.isImplicit() || 840 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 841 "Need renamable operands"); 842 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 843 } 844 } 845 } 846 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 847 return true; 848 }; 849 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 850 851 #if !defined(NDEBUG) 852 // Make sure the register used for renaming is not used between the paired 853 // instructions. That would trash the content before the new paired 854 // instruction. 855 for (auto &MI : 856 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 857 std::next(I), std::next(Paired))) 858 assert(all_of(MI.operands(), 859 [this, &RenameReg](const MachineOperand &MOP) { 860 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 861 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 862 }) && 863 "Rename register used between paired instruction, trashing the " 864 "content"); 865 #endif 866 } 867 868 // Insert our new paired instruction after whichever of the paired 869 // instructions MergeForward indicates. 870 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 871 // Also based on MergeForward is from where we copy the base register operand 872 // so we get the flags compatible with the input code. 873 const MachineOperand &BaseRegOp = 874 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 875 876 int Offset = getLdStOffsetOp(*I).getImm(); 877 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 878 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 879 if (IsUnscaled != PairedIsUnscaled) { 880 // We're trying to pair instructions that differ in how they are scaled. If 881 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 882 // the opposite (i.e., make Paired's offset unscaled). 883 int MemSize = TII->getMemScale(*Paired); 884 if (PairedIsUnscaled) { 885 // If the unscaled offset isn't a multiple of the MemSize, we can't 886 // pair the operations together. 887 assert(!(PairedOffset % TII->getMemScale(*Paired)) && 888 "Offset should be a multiple of the stride!"); 889 PairedOffset /= MemSize; 890 } else { 891 PairedOffset *= MemSize; 892 } 893 } 894 895 // Which register is Rt and which is Rt2 depends on the offset order. 896 MachineInstr *RtMI, *Rt2MI; 897 if (Offset == PairedOffset + OffsetStride) { 898 RtMI = &*Paired; 899 Rt2MI = &*I; 900 // Here we swapped the assumption made for SExtIdx. 901 // I.e., we turn ldp I, Paired into ldp Paired, I. 902 // Update the index accordingly. 903 if (SExtIdx != -1) 904 SExtIdx = (SExtIdx + 1) % 2; 905 } else { 906 RtMI = &*I; 907 Rt2MI = &*Paired; 908 } 909 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 910 // Scale the immediate offset, if necessary. 911 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 912 assert(!(OffsetImm % TII->getMemScale(*RtMI)) && 913 "Unscaled offset cannot be scaled."); 914 OffsetImm /= TII->getMemScale(*RtMI); 915 } 916 917 // Construct the new instruction. 918 MachineInstrBuilder MIB; 919 DebugLoc DL = I->getDebugLoc(); 920 MachineBasicBlock *MBB = I->getParent(); 921 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 922 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 923 // Kill flags may become invalid when moving stores for pairing. 924 if (RegOp0.isUse()) { 925 if (!MergeForward) { 926 // Clear kill flags on store if moving upwards. Example: 927 // STRWui %w0, ... 928 // USE %w1 929 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 930 RegOp0.setIsKill(false); 931 RegOp1.setIsKill(false); 932 } else { 933 // Clear kill flags of the first stores register. Example: 934 // STRWui %w1, ... 935 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 936 // STRW %w0 937 Register Reg = getLdStRegOp(*I).getReg(); 938 for (MachineInstr &MI : make_range(std::next(I), Paired)) 939 MI.clearRegisterKills(Reg, TRI); 940 } 941 } 942 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 943 .add(RegOp0) 944 .add(RegOp1) 945 .add(BaseRegOp) 946 .addImm(OffsetImm) 947 .cloneMergedMemRefs({&*I, &*Paired}) 948 .setMIFlags(I->mergeFlagsWith(*Paired)); 949 950 (void)MIB; 951 952 LLVM_DEBUG( 953 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 954 LLVM_DEBUG(I->print(dbgs())); 955 LLVM_DEBUG(dbgs() << " "); 956 LLVM_DEBUG(Paired->print(dbgs())); 957 LLVM_DEBUG(dbgs() << " with instruction:\n "); 958 if (SExtIdx != -1) { 959 // Generate the sign extension for the proper result of the ldp. 960 // I.e., with X1, that would be: 961 // %w1 = KILL %w1, implicit-def %x1 962 // %x1 = SBFMXri killed %x1, 0, 31 963 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 964 // Right now, DstMO has the extended register, since it comes from an 965 // extended opcode. 966 Register DstRegX = DstMO.getReg(); 967 // Get the W variant of that register. 968 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 969 // Update the result of LDP to use the W instead of the X variant. 970 DstMO.setReg(DstRegW); 971 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 972 LLVM_DEBUG(dbgs() << "\n"); 973 // Make the machine verifier happy by providing a definition for 974 // the X register. 975 // Insert this definition right after the generated LDP, i.e., before 976 // InsertionPoint. 977 MachineInstrBuilder MIBKill = 978 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 979 .addReg(DstRegW) 980 .addReg(DstRegX, RegState::Define); 981 MIBKill->getOperand(2).setImplicit(); 982 // Create the sign extension. 983 MachineInstrBuilder MIBSXTW = 984 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 985 .addReg(DstRegX) 986 .addImm(0) 987 .addImm(31); 988 (void)MIBSXTW; 989 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 990 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 991 } else { 992 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 993 } 994 LLVM_DEBUG(dbgs() << "\n"); 995 996 if (MergeForward) 997 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 998 if (MOP.isReg() && MOP.isKill()) 999 DefinedInBB.addReg(MOP.getReg()); 1000 1001 // Erase the old instructions. 1002 I->eraseFromParent(); 1003 Paired->eraseFromParent(); 1004 1005 return NextI; 1006 } 1007 1008 MachineBasicBlock::iterator 1009 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1010 MachineBasicBlock::iterator StoreI) { 1011 MachineBasicBlock::iterator NextI = 1012 next_nodbg(LoadI, LoadI->getParent()->end()); 1013 1014 int LoadSize = TII->getMemScale(*LoadI); 1015 int StoreSize = TII->getMemScale(*StoreI); 1016 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1017 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1018 Register StRt = getLdStRegOp(*StoreI).getReg(); 1019 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1020 1021 assert((IsStoreXReg || 1022 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1023 "Unexpected RegClass"); 1024 1025 MachineInstr *BitExtMI; 1026 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1027 // Remove the load, if the destination register of the loads is the same 1028 // register for stored value. 1029 if (StRt == LdRt && LoadSize == 8) { 1030 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1031 LoadI->getIterator())) { 1032 if (MI.killsRegister(StRt, TRI)) { 1033 MI.clearRegisterKills(StRt, TRI); 1034 break; 1035 } 1036 } 1037 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1038 LLVM_DEBUG(LoadI->print(dbgs())); 1039 LLVM_DEBUG(dbgs() << "\n"); 1040 LoadI->eraseFromParent(); 1041 return NextI; 1042 } 1043 // Replace the load with a mov if the load and store are in the same size. 1044 BitExtMI = 1045 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1046 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1047 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1048 .add(StMO) 1049 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1050 .setMIFlags(LoadI->getFlags()); 1051 } else { 1052 // FIXME: Currently we disable this transformation in big-endian targets as 1053 // performance and correctness are verified only in little-endian. 1054 if (!Subtarget->isLittleEndian()) 1055 return NextI; 1056 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 1057 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 1058 "Unsupported ld/st match"); 1059 assert(LoadSize <= StoreSize && "Invalid load size"); 1060 int UnscaledLdOffset = IsUnscaled 1061 ? getLdStOffsetOp(*LoadI).getImm() 1062 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1063 int UnscaledStOffset = IsUnscaled 1064 ? getLdStOffsetOp(*StoreI).getImm() 1065 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1066 int Width = LoadSize * 8; 1067 unsigned DestReg = 1068 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1069 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1070 : LdRt; 1071 1072 assert((UnscaledLdOffset >= UnscaledStOffset && 1073 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1074 "Invalid offset"); 1075 1076 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1077 int Imms = Immr + Width - 1; 1078 if (UnscaledLdOffset == UnscaledStOffset) { 1079 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1080 | ((Immr) << 6) // immr 1081 | ((Imms) << 0) // imms 1082 ; 1083 1084 BitExtMI = 1085 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1086 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1087 DestReg) 1088 .add(StMO) 1089 .addImm(AndMaskEncoded) 1090 .setMIFlags(LoadI->getFlags()); 1091 } else { 1092 BitExtMI = 1093 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1094 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1095 DestReg) 1096 .add(StMO) 1097 .addImm(Immr) 1098 .addImm(Imms) 1099 .setMIFlags(LoadI->getFlags()); 1100 } 1101 } 1102 1103 // Clear kill flags between store and load. 1104 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1105 BitExtMI->getIterator())) 1106 if (MI.killsRegister(StRt, TRI)) { 1107 MI.clearRegisterKills(StRt, TRI); 1108 break; 1109 } 1110 1111 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1112 LLVM_DEBUG(StoreI->print(dbgs())); 1113 LLVM_DEBUG(dbgs() << " "); 1114 LLVM_DEBUG(LoadI->print(dbgs())); 1115 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1116 LLVM_DEBUG(StoreI->print(dbgs())); 1117 LLVM_DEBUG(dbgs() << " "); 1118 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1119 LLVM_DEBUG(dbgs() << "\n"); 1120 1121 // Erase the old instructions. 1122 LoadI->eraseFromParent(); 1123 return NextI; 1124 } 1125 1126 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1127 // Convert the byte-offset used by unscaled into an "element" offset used 1128 // by the scaled pair load/store instructions. 1129 if (IsUnscaled) { 1130 // If the byte-offset isn't a multiple of the stride, there's no point 1131 // trying to match it. 1132 if (Offset % OffsetStride) 1133 return false; 1134 Offset /= OffsetStride; 1135 } 1136 return Offset <= 63 && Offset >= -64; 1137 } 1138 1139 // Do alignment, specialized to power of 2 and for signed ints, 1140 // avoiding having to do a C-style cast from uint_64t to int when 1141 // using alignTo from include/llvm/Support/MathExtras.h. 1142 // FIXME: Move this function to include/MathExtras.h? 1143 static int alignTo(int Num, int PowOf2) { 1144 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1145 } 1146 1147 static bool mayAlias(MachineInstr &MIa, 1148 SmallVectorImpl<MachineInstr *> &MemInsns, 1149 AliasAnalysis *AA) { 1150 for (MachineInstr *MIb : MemInsns) 1151 if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) 1152 return true; 1153 1154 return false; 1155 } 1156 1157 bool AArch64LoadStoreOpt::findMatchingStore( 1158 MachineBasicBlock::iterator I, unsigned Limit, 1159 MachineBasicBlock::iterator &StoreI) { 1160 MachineBasicBlock::iterator B = I->getParent()->begin(); 1161 MachineBasicBlock::iterator MBBI = I; 1162 MachineInstr &LoadMI = *I; 1163 Register BaseReg = getLdStBaseOp(LoadMI).getReg(); 1164 1165 // If the load is the first instruction in the block, there's obviously 1166 // not any matching store. 1167 if (MBBI == B) 1168 return false; 1169 1170 // Track which register units have been modified and used between the first 1171 // insn and the second insn. 1172 ModifiedRegUnits.clear(); 1173 UsedRegUnits.clear(); 1174 1175 unsigned Count = 0; 1176 do { 1177 MBBI = prev_nodbg(MBBI, B); 1178 MachineInstr &MI = *MBBI; 1179 1180 // Don't count transient instructions towards the search limit since there 1181 // may be different numbers of them if e.g. debug information is present. 1182 if (!MI.isTransient()) 1183 ++Count; 1184 1185 // If the load instruction reads directly from the address to which the 1186 // store instruction writes and the stored value is not modified, we can 1187 // promote the load. Since we do not handle stores with pre-/post-index, 1188 // it's unnecessary to check if BaseReg is modified by the store itself. 1189 // Also we can't handle stores without an immediate offset operand, 1190 // while the operand might be the address for a global variable. 1191 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1192 BaseReg == getLdStBaseOp(MI).getReg() && getLdStOffsetOp(MI).isImm() && 1193 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1194 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1195 StoreI = MBBI; 1196 return true; 1197 } 1198 1199 if (MI.isCall()) 1200 return false; 1201 1202 // Update modified / uses register units. 1203 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1204 1205 // Otherwise, if the base register is modified, we have no match, so 1206 // return early. 1207 if (!ModifiedRegUnits.available(BaseReg)) 1208 return false; 1209 1210 // If we encounter a store aliased with the load, return early. 1211 if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false)) 1212 return false; 1213 } while (MBBI != B && Count < Limit); 1214 return false; 1215 } 1216 1217 // Returns true if FirstMI and MI are candidates for merging or pairing. 1218 // Otherwise, returns false. 1219 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1220 LdStPairFlags &Flags, 1221 const AArch64InstrInfo *TII) { 1222 // If this is volatile or if pairing is suppressed, not a candidate. 1223 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1224 return false; 1225 1226 // We should have already checked FirstMI for pair suppression and volatility. 1227 assert(!FirstMI.hasOrderedMemoryRef() && 1228 !TII->isLdStPairSuppressed(FirstMI) && 1229 "FirstMI shouldn't get here if either of these checks are true."); 1230 1231 unsigned OpcA = FirstMI.getOpcode(); 1232 unsigned OpcB = MI.getOpcode(); 1233 1234 // Opcodes match: nothing more to check. 1235 if (OpcA == OpcB) 1236 return true; 1237 1238 // Try to match a sign-extended load/store with a zero-extended load/store. 1239 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1240 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1241 assert(IsValidLdStrOpc && 1242 "Given Opc should be a Load or Store with an immediate"); 1243 // OpcA will be the first instruction in the pair. 1244 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1245 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1246 return true; 1247 } 1248 1249 // If the second instruction isn't even a mergable/pairable load/store, bail 1250 // out. 1251 if (!PairIsValidLdStrOpc) 1252 return false; 1253 1254 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1255 // offsets. 1256 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1257 return false; 1258 1259 // Try to match an unscaled load/store with a scaled load/store. 1260 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1261 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1262 1263 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1264 } 1265 1266 static bool 1267 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1268 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1269 const TargetRegisterInfo *TRI) { 1270 if (!FirstMI.mayStore()) 1271 return false; 1272 1273 // Check if we can find an unused register which we can use to rename 1274 // the register used by the first load/store. 1275 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1276 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1277 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1278 return false; 1279 1280 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1281 // For now, we only rename if the store operand gets killed at the store. 1282 if (!getLdStRegOp(FirstMI).isKill() && 1283 !any_of(FirstMI.operands(), 1284 [TRI, RegToRename](const MachineOperand &MOP) { 1285 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1286 MOP.isImplicit() && MOP.isKill() && 1287 TRI->regsOverlap(RegToRename, MOP.getReg()); 1288 })) { 1289 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1290 return false; 1291 } 1292 auto canRenameMOP = [TRI](const MachineOperand &MOP) { 1293 if (MOP.isReg()) { 1294 auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg()); 1295 // Renaming registers with multiple disjunct sub-registers (e.g. the 1296 // result of a LD3) means that all sub-registers are renamed, potentially 1297 // impacting other instructions we did not check. Bail out. 1298 // Note that this relies on the structure of the AArch64 register file. In 1299 // particular, a subregister cannot be written without overwriting the 1300 // whole register. 1301 if (RegClass->HasDisjunctSubRegs) { 1302 LLVM_DEBUG( 1303 dbgs() 1304 << " Cannot rename operands with multiple disjunct subregisters (" 1305 << MOP << ")\n"); 1306 return false; 1307 } 1308 } 1309 return MOP.isImplicit() || 1310 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1311 }; 1312 1313 bool FoundDef = false; 1314 1315 // For each instruction between FirstMI and the previous def for RegToRename, 1316 // we 1317 // * check if we can rename RegToRename in this instruction 1318 // * collect the registers used and required register classes for RegToRename. 1319 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1320 bool IsDef) { 1321 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1322 // Currently we do not try to rename across frame-setup instructions. 1323 if (MI.getFlag(MachineInstr::FrameSetup)) { 1324 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1325 << MI << ")\n"); 1326 return false; 1327 } 1328 1329 UsedInBetween.accumulate(MI); 1330 1331 // For a definition, check that we can rename the definition and exit the 1332 // loop. 1333 FoundDef = IsDef; 1334 1335 // For defs, check if we can rename the first def of RegToRename. 1336 if (FoundDef) { 1337 // For some pseudo instructions, we might not generate code in the end 1338 // (e.g. KILL) and we would end up without a correct def for the rename 1339 // register. 1340 // TODO: This might be overly conservative and we could handle those cases 1341 // in multiple ways: 1342 // 1. Insert an extra copy, to materialize the def. 1343 // 2. Skip pseudo-defs until we find an non-pseudo def. 1344 if (MI.isPseudo()) { 1345 LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI 1346 << "\n"); 1347 return false; 1348 } 1349 1350 for (auto &MOP : MI.operands()) { 1351 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1352 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1353 continue; 1354 if (!canRenameMOP(MOP)) { 1355 LLVM_DEBUG(dbgs() 1356 << " Cannot rename " << MOP << " in " << MI << "\n"); 1357 return false; 1358 } 1359 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1360 } 1361 return true; 1362 } else { 1363 for (auto &MOP : MI.operands()) { 1364 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1365 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1366 continue; 1367 1368 if (!canRenameMOP(MOP)) { 1369 LLVM_DEBUG(dbgs() 1370 << " Cannot rename " << MOP << " in " << MI << "\n"); 1371 return false; 1372 } 1373 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1374 } 1375 } 1376 return true; 1377 }; 1378 1379 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1380 return false; 1381 1382 if (!FoundDef) { 1383 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1384 return false; 1385 } 1386 return true; 1387 } 1388 1389 // Check if we can find a physical register for renaming. This register must: 1390 // * not be defined up to FirstMI (checking DefinedInBB) 1391 // * not used between the MI and the defining instruction of the register to 1392 // rename (checked using UsedInBetween). 1393 // * is available in all used register classes (checked using RequiredClasses). 1394 static Optional<MCPhysReg> tryToFindRegisterToRename( 1395 MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB, 1396 LiveRegUnits &UsedInBetween, 1397 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1398 const TargetRegisterInfo *TRI) { 1399 auto &MF = *FirstMI.getParent()->getParent(); 1400 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1401 1402 // Checks if any sub- or super-register of PR is callee saved. 1403 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1404 return any_of(TRI->sub_and_superregs_inclusive(PR), 1405 [&MF, TRI](MCPhysReg SubOrSuper) { 1406 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1407 }); 1408 }; 1409 1410 // Check if PR or one of its sub- or super-registers can be used for all 1411 // required register classes. 1412 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1413 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1414 return any_of(TRI->sub_and_superregs_inclusive(PR), 1415 [C, TRI](MCPhysReg SubOrSuper) { 1416 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1417 }); 1418 }); 1419 }; 1420 1421 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1422 for (const MCPhysReg &PR : *RegClass) { 1423 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1424 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && 1425 CanBeUsedForAllClasses(PR)) { 1426 DefinedInBB.addReg(PR); 1427 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1428 << "\n"); 1429 return {PR}; 1430 } 1431 } 1432 LLVM_DEBUG(dbgs() << "No rename register found from " 1433 << TRI->getRegClassName(RegClass) << "\n"); 1434 return None; 1435 } 1436 1437 /// Scan the instructions looking for a load/store that can be combined with the 1438 /// current instruction into a wider equivalent or a load/store pair. 1439 MachineBasicBlock::iterator 1440 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1441 LdStPairFlags &Flags, unsigned Limit, 1442 bool FindNarrowMerge) { 1443 MachineBasicBlock::iterator E = I->getParent()->end(); 1444 MachineBasicBlock::iterator MBBI = I; 1445 MachineBasicBlock::iterator MBBIWithRenameReg; 1446 MachineInstr &FirstMI = *I; 1447 MBBI = next_nodbg(MBBI, E); 1448 1449 bool MayLoad = FirstMI.mayLoad(); 1450 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1451 Register Reg = getLdStRegOp(FirstMI).getReg(); 1452 Register BaseReg = getLdStBaseOp(FirstMI).getReg(); 1453 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1454 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; 1455 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1456 1457 Optional<bool> MaybeCanRename = None; 1458 if (!EnableRenaming) 1459 MaybeCanRename = {false}; 1460 1461 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1462 LiveRegUnits UsedInBetween; 1463 UsedInBetween.init(*TRI); 1464 1465 Flags.clearRenameReg(); 1466 1467 // Track which register units have been modified and used between the first 1468 // insn (inclusive) and the second insn. 1469 ModifiedRegUnits.clear(); 1470 UsedRegUnits.clear(); 1471 1472 // Remember any instructions that read/write memory between FirstMI and MI. 1473 SmallVector<MachineInstr *, 4> MemInsns; 1474 1475 for (unsigned Count = 0; MBBI != E && Count < Limit; 1476 MBBI = next_nodbg(MBBI, E)) { 1477 MachineInstr &MI = *MBBI; 1478 1479 UsedInBetween.accumulate(MI); 1480 1481 // Don't count transient instructions towards the search limit since there 1482 // may be different numbers of them if e.g. debug information is present. 1483 if (!MI.isTransient()) 1484 ++Count; 1485 1486 Flags.setSExtIdx(-1); 1487 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1488 getLdStOffsetOp(MI).isImm()) { 1489 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1490 // If we've found another instruction with the same opcode, check to see 1491 // if the base and offset are compatible with our starting instruction. 1492 // These instructions all have scaled immediate operands, so we just 1493 // check for +1/-1. Make sure to check the new instruction offset is 1494 // actually an immediate and not a symbolic reference destined for 1495 // a relocation. 1496 Register MIBaseReg = getLdStBaseOp(MI).getReg(); 1497 int MIOffset = getLdStOffsetOp(MI).getImm(); 1498 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1499 if (IsUnscaled != MIIsUnscaled) { 1500 // We're trying to pair instructions that differ in how they are scaled. 1501 // If FirstMI is scaled then scale the offset of MI accordingly. 1502 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1503 int MemSize = TII->getMemScale(MI); 1504 if (MIIsUnscaled) { 1505 // If the unscaled offset isn't a multiple of the MemSize, we can't 1506 // pair the operations together: bail and keep looking. 1507 if (MIOffset % MemSize) { 1508 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1509 UsedRegUnits, TRI); 1510 MemInsns.push_back(&MI); 1511 continue; 1512 } 1513 MIOffset /= MemSize; 1514 } else { 1515 MIOffset *= MemSize; 1516 } 1517 } 1518 1519 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1520 (Offset + OffsetStride == MIOffset))) { 1521 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1522 if (FindNarrowMerge) { 1523 // If the alignment requirements of the scaled wide load/store 1524 // instruction can't express the offset of the scaled narrow input, 1525 // bail and keep looking. For promotable zero stores, allow only when 1526 // the stored value is the same (i.e., WZR). 1527 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1528 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1529 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1530 UsedRegUnits, TRI); 1531 MemInsns.push_back(&MI); 1532 continue; 1533 } 1534 } else { 1535 // Pairwise instructions have a 7-bit signed offset field. Single 1536 // insns have a 12-bit unsigned offset field. If the resultant 1537 // immediate offset of merging these instructions is out of range for 1538 // a pairwise instruction, bail and keep looking. 1539 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1540 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1541 UsedRegUnits, TRI); 1542 MemInsns.push_back(&MI); 1543 continue; 1544 } 1545 // If the alignment requirements of the paired (scaled) instruction 1546 // can't express the offset of the unscaled input, bail and keep 1547 // looking. 1548 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1549 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1550 UsedRegUnits, TRI); 1551 MemInsns.push_back(&MI); 1552 continue; 1553 } 1554 } 1555 // If the destination register of one load is the same register or a 1556 // sub/super register of the other load, bail and keep looking. A 1557 // load-pair instruction with both destination registers the same is 1558 // UNPREDICTABLE and will result in an exception. 1559 if (MayLoad && 1560 TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) { 1561 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1562 TRI); 1563 MemInsns.push_back(&MI); 1564 continue; 1565 } 1566 1567 // If the BaseReg has been modified, then we cannot do the optimization. 1568 // For example, in the following pattern 1569 // ldr x1 [x2] 1570 // ldr x2 [x3] 1571 // ldr x4 [x2, #8], 1572 // the first and third ldr cannot be converted to ldp x1, x4, [x2] 1573 if (!ModifiedRegUnits.available(BaseReg)) 1574 return E; 1575 1576 // If the Rt of the second instruction was not modified or used between 1577 // the two instructions and none of the instructions between the second 1578 // and first alias with the second, we can combine the second into the 1579 // first. 1580 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1581 !(MI.mayLoad() && 1582 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1583 !mayAlias(MI, MemInsns, AA)) { 1584 1585 Flags.setMergeForward(false); 1586 Flags.clearRenameReg(); 1587 return MBBI; 1588 } 1589 1590 // Likewise, if the Rt of the first instruction is not modified or used 1591 // between the two instructions and none of the instructions between the 1592 // first and the second alias with the first, we can combine the first 1593 // into the second. 1594 if (!(MayLoad && 1595 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1596 !mayAlias(FirstMI, MemInsns, AA)) { 1597 1598 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1599 Flags.setMergeForward(true); 1600 Flags.clearRenameReg(); 1601 return MBBI; 1602 } 1603 1604 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1605 if (!MaybeCanRename) 1606 MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, 1607 RequiredClasses, TRI)}; 1608 1609 if (*MaybeCanRename) { 1610 Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( 1611 FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses, 1612 TRI); 1613 if (MaybeRenameReg) { 1614 Flags.setRenameReg(*MaybeRenameReg); 1615 Flags.setMergeForward(true); 1616 MBBIWithRenameReg = MBBI; 1617 } 1618 } 1619 } 1620 } 1621 // Unable to combine these instructions due to interference in between. 1622 // Keep looking. 1623 } 1624 } 1625 1626 if (Flags.getRenameReg()) 1627 return MBBIWithRenameReg; 1628 1629 // If the instruction wasn't a matching load or store. Stop searching if we 1630 // encounter a call instruction that might modify memory. 1631 if (MI.isCall()) 1632 return E; 1633 1634 // Update modified / uses register units. 1635 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1636 1637 // Otherwise, if the base register is modified, we have no match, so 1638 // return early. 1639 if (!ModifiedRegUnits.available(BaseReg)) 1640 return E; 1641 1642 // Update list of instructions that read/write memory. 1643 if (MI.mayLoadOrStore()) 1644 MemInsns.push_back(&MI); 1645 } 1646 return E; 1647 } 1648 1649 MachineBasicBlock::iterator 1650 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1651 MachineBasicBlock::iterator Update, 1652 bool IsPreIdx) { 1653 assert((Update->getOpcode() == AArch64::ADDXri || 1654 Update->getOpcode() == AArch64::SUBXri) && 1655 "Unexpected base register update instruction to merge!"); 1656 MachineBasicBlock::iterator E = I->getParent()->end(); 1657 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 1658 // Return the instruction following the merged instruction, which is 1659 // the instruction following our unmerged load. Unless that's the add/sub 1660 // instruction we're merging, in which case it's the one after that. 1661 if (NextI == Update) 1662 NextI = next_nodbg(NextI, E); 1663 1664 int Value = Update->getOperand(2).getImm(); 1665 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1666 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1667 if (Update->getOpcode() == AArch64::SUBXri) 1668 Value = -Value; 1669 1670 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1671 : getPostIndexedOpcode(I->getOpcode()); 1672 MachineInstrBuilder MIB; 1673 int Scale, MinOffset, MaxOffset; 1674 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1675 if (!isPairedLdSt(*I)) { 1676 // Non-paired instruction. 1677 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1678 .add(getLdStRegOp(*Update)) 1679 .add(getLdStRegOp(*I)) 1680 .add(getLdStBaseOp(*I)) 1681 .addImm(Value / Scale) 1682 .setMemRefs(I->memoperands()) 1683 .setMIFlags(I->mergeFlagsWith(*Update)); 1684 } else { 1685 // Paired instruction. 1686 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1687 .add(getLdStRegOp(*Update)) 1688 .add(getLdStRegOp(*I, 0)) 1689 .add(getLdStRegOp(*I, 1)) 1690 .add(getLdStBaseOp(*I)) 1691 .addImm(Value / Scale) 1692 .setMemRefs(I->memoperands()) 1693 .setMIFlags(I->mergeFlagsWith(*Update)); 1694 } 1695 (void)MIB; 1696 1697 if (IsPreIdx) { 1698 ++NumPreFolded; 1699 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1700 } else { 1701 ++NumPostFolded; 1702 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1703 } 1704 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1705 LLVM_DEBUG(I->print(dbgs())); 1706 LLVM_DEBUG(dbgs() << " "); 1707 LLVM_DEBUG(Update->print(dbgs())); 1708 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1709 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1710 LLVM_DEBUG(dbgs() << "\n"); 1711 1712 // Erase the old instructions for the block. 1713 I->eraseFromParent(); 1714 Update->eraseFromParent(); 1715 1716 return NextI; 1717 } 1718 1719 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1720 MachineInstr &MI, 1721 unsigned BaseReg, int Offset) { 1722 switch (MI.getOpcode()) { 1723 default: 1724 break; 1725 case AArch64::SUBXri: 1726 case AArch64::ADDXri: 1727 // Make sure it's a vanilla immediate operand, not a relocation or 1728 // anything else we can't handle. 1729 if (!MI.getOperand(2).isImm()) 1730 break; 1731 // Watch out for 1 << 12 shifted value. 1732 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1733 break; 1734 1735 // The update instruction source and destination register must be the 1736 // same as the load/store base register. 1737 if (MI.getOperand(0).getReg() != BaseReg || 1738 MI.getOperand(1).getReg() != BaseReg) 1739 break; 1740 1741 int UpdateOffset = MI.getOperand(2).getImm(); 1742 if (MI.getOpcode() == AArch64::SUBXri) 1743 UpdateOffset = -UpdateOffset; 1744 1745 // The immediate must be a multiple of the scaling factor of the pre/post 1746 // indexed instruction. 1747 int Scale, MinOffset, MaxOffset; 1748 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1749 if (UpdateOffset % Scale != 0) 1750 break; 1751 1752 // Scaled offset must fit in the instruction immediate. 1753 int ScaledOffset = UpdateOffset / Scale; 1754 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1755 break; 1756 1757 // If we have a non-zero Offset, we check that it matches the amount 1758 // we're adding to the register. 1759 if (!Offset || Offset == UpdateOffset) 1760 return true; 1761 break; 1762 } 1763 return false; 1764 } 1765 1766 static bool needsWinCFI(const MachineFunction *MF) { 1767 return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && 1768 MF->getFunction().needsUnwindTableEntry(); 1769 } 1770 1771 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1772 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1773 MachineBasicBlock::iterator E = I->getParent()->end(); 1774 MachineInstr &MemMI = *I; 1775 MachineBasicBlock::iterator MBBI = I; 1776 1777 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1778 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI); 1779 1780 // Scan forward looking for post-index opportunities. Updating instructions 1781 // can't be formed if the memory instruction doesn't have the offset we're 1782 // looking for. 1783 if (MIUnscaledOffset != UnscaledOffset) 1784 return E; 1785 1786 // If the base register overlaps a source/destination register, we can't 1787 // merge the update. This does not apply to tag store instructions which 1788 // ignore the address part of the source register. 1789 // This does not apply to STGPi as well, which does not have unpredictable 1790 // behavior in this case unlike normal stores, and always performs writeback 1791 // after reading the source register value. 1792 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1793 bool IsPairedInsn = isPairedLdSt(MemMI); 1794 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1795 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1796 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1797 return E; 1798 } 1799 } 1800 1801 // Track which register units have been modified and used between the first 1802 // insn (inclusive) and the second insn. 1803 ModifiedRegUnits.clear(); 1804 UsedRegUnits.clear(); 1805 MBBI = next_nodbg(MBBI, E); 1806 1807 // We can't post-increment the stack pointer if any instruction between 1808 // the memory access (I) and the increment (MBBI) can access the memory 1809 // region defined by [SP, MBBI]. 1810 const bool BaseRegSP = BaseReg == AArch64::SP; 1811 if (BaseRegSP && needsWinCFI(I->getMF())) { 1812 // FIXME: For now, we always block the optimization over SP in windows 1813 // targets as it requires to adjust the unwind/debug info, messing up 1814 // the unwind info can actually cause a miscompile. 1815 return E; 1816 } 1817 1818 for (unsigned Count = 0; MBBI != E && Count < Limit; 1819 MBBI = next_nodbg(MBBI, E)) { 1820 MachineInstr &MI = *MBBI; 1821 1822 // Don't count transient instructions towards the search limit since there 1823 // may be different numbers of them if e.g. debug information is present. 1824 if (!MI.isTransient()) 1825 ++Count; 1826 1827 // If we found a match, return it. 1828 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1829 return MBBI; 1830 1831 // Update the status of what the instruction clobbered and used. 1832 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1833 1834 // Otherwise, if the base register is used or modified, we have no match, so 1835 // return early. 1836 // If we are optimizing SP, do not allow instructions that may load or store 1837 // in between the load and the optimized value update. 1838 if (!ModifiedRegUnits.available(BaseReg) || 1839 !UsedRegUnits.available(BaseReg) || 1840 (BaseRegSP && MBBI->mayLoadOrStore())) 1841 return E; 1842 } 1843 return E; 1844 } 1845 1846 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1847 MachineBasicBlock::iterator I, unsigned Limit) { 1848 MachineBasicBlock::iterator B = I->getParent()->begin(); 1849 MachineBasicBlock::iterator E = I->getParent()->end(); 1850 MachineInstr &MemMI = *I; 1851 MachineBasicBlock::iterator MBBI = I; 1852 1853 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1854 int Offset = getLdStOffsetOp(MemMI).getImm(); 1855 1856 // If the load/store is the first instruction in the block, there's obviously 1857 // not any matching update. Ditto if the memory offset isn't zero. 1858 if (MBBI == B || Offset != 0) 1859 return E; 1860 // If the base register overlaps a destination register, we can't 1861 // merge the update. 1862 if (!isTagStore(MemMI)) { 1863 bool IsPairedInsn = isPairedLdSt(MemMI); 1864 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1865 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1866 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1867 return E; 1868 } 1869 } 1870 1871 const bool BaseRegSP = BaseReg == AArch64::SP; 1872 if (BaseRegSP && needsWinCFI(I->getMF())) { 1873 // FIXME: For now, we always block the optimization over SP in windows 1874 // targets as it requires to adjust the unwind/debug info, messing up 1875 // the unwind info can actually cause a miscompile. 1876 return E; 1877 } 1878 1879 // Track which register units have been modified and used between the first 1880 // insn (inclusive) and the second insn. 1881 ModifiedRegUnits.clear(); 1882 UsedRegUnits.clear(); 1883 unsigned Count = 0; 1884 do { 1885 MBBI = prev_nodbg(MBBI, B); 1886 MachineInstr &MI = *MBBI; 1887 1888 // Don't count transient instructions towards the search limit since there 1889 // may be different numbers of them if e.g. debug information is present. 1890 if (!MI.isTransient()) 1891 ++Count; 1892 1893 // If we found a match, return it. 1894 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1895 return MBBI; 1896 1897 // Update the status of what the instruction clobbered and used. 1898 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1899 1900 // Otherwise, if the base register is used or modified, we have no match, so 1901 // return early. 1902 if (!ModifiedRegUnits.available(BaseReg) || 1903 !UsedRegUnits.available(BaseReg)) 1904 return E; 1905 } while (MBBI != B && Count < Limit); 1906 return E; 1907 } 1908 1909 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1910 MachineBasicBlock::iterator &MBBI) { 1911 MachineInstr &MI = *MBBI; 1912 // If this is a volatile load, don't mess with it. 1913 if (MI.hasOrderedMemoryRef()) 1914 return false; 1915 1916 // Make sure this is a reg+imm. 1917 // FIXME: It is possible to extend it to handle reg+reg cases. 1918 if (!getLdStOffsetOp(MI).isImm()) 1919 return false; 1920 1921 // Look backward up to LdStLimit instructions. 1922 MachineBasicBlock::iterator StoreI; 1923 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1924 ++NumLoadsFromStoresPromoted; 1925 // Promote the load. Keeping the iterator straight is a 1926 // pain, so we let the merge routine tell us what the next instruction 1927 // is after it's done mucking about. 1928 MBBI = promoteLoadFromStore(MBBI, StoreI); 1929 return true; 1930 } 1931 return false; 1932 } 1933 1934 // Merge adjacent zero stores into a wider store. 1935 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1936 MachineBasicBlock::iterator &MBBI) { 1937 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1938 MachineInstr &MI = *MBBI; 1939 MachineBasicBlock::iterator E = MI.getParent()->end(); 1940 1941 if (!TII->isCandidateToMergeOrPair(MI)) 1942 return false; 1943 1944 // Look ahead up to LdStLimit instructions for a mergable instruction. 1945 LdStPairFlags Flags; 1946 MachineBasicBlock::iterator MergeMI = 1947 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1948 if (MergeMI != E) { 1949 ++NumZeroStoresPromoted; 1950 1951 // Keeping the iterator straight is a pain, so we let the merge routine tell 1952 // us what the next instruction is after it's done mucking about. 1953 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1954 return true; 1955 } 1956 return false; 1957 } 1958 1959 // Find loads and stores that can be merged into a single load or store pair 1960 // instruction. 1961 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1962 MachineInstr &MI = *MBBI; 1963 MachineBasicBlock::iterator E = MI.getParent()->end(); 1964 1965 if (!TII->isCandidateToMergeOrPair(MI)) 1966 return false; 1967 1968 // Early exit if the offset is not possible to match. (6 bits of positive 1969 // range, plus allow an extra one in case we find a later insn that matches 1970 // with Offset-1) 1971 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1972 int Offset = getLdStOffsetOp(MI).getImm(); 1973 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; 1974 // Allow one more for offset. 1975 if (Offset > 0) 1976 Offset -= OffsetStride; 1977 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1978 return false; 1979 1980 // Look ahead up to LdStLimit instructions for a pairable instruction. 1981 LdStPairFlags Flags; 1982 MachineBasicBlock::iterator Paired = 1983 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1984 if (Paired != E) { 1985 ++NumPairCreated; 1986 if (TII->isUnscaledLdSt(MI)) 1987 ++NumUnscaledPairCreated; 1988 // Keeping the iterator straight is a pain, so we let the merge routine tell 1989 // us what the next instruction is after it's done mucking about. 1990 auto Prev = std::prev(MBBI); 1991 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1992 // Collect liveness info for instructions between Prev and the new position 1993 // MBBI. 1994 for (auto I = std::next(Prev); I != MBBI; I++) 1995 updateDefinedRegisters(*I, DefinedInBB, TRI); 1996 1997 return true; 1998 } 1999 return false; 2000 } 2001 2002 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 2003 (MachineBasicBlock::iterator &MBBI) { 2004 MachineInstr &MI = *MBBI; 2005 MachineBasicBlock::iterator E = MI.getParent()->end(); 2006 MachineBasicBlock::iterator Update; 2007 2008 // Look forward to try to form a post-index instruction. For example, 2009 // ldr x0, [x20] 2010 // add x20, x20, #32 2011 // merged into: 2012 // ldr x0, [x20], #32 2013 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 2014 if (Update != E) { 2015 // Merge the update into the ld/st. 2016 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 2017 return true; 2018 } 2019 2020 // Don't know how to handle unscaled pre/post-index versions below, so bail. 2021 if (TII->isUnscaledLdSt(MI.getOpcode())) 2022 return false; 2023 2024 // Look back to try to find a pre-index instruction. For example, 2025 // add x0, x0, #8 2026 // ldr x1, [x0] 2027 // merged into: 2028 // ldr x1, [x0, #8]! 2029 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 2030 if (Update != E) { 2031 // Merge the update into the ld/st. 2032 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2033 return true; 2034 } 2035 2036 // The immediate in the load/store is scaled by the size of the memory 2037 // operation. The immediate in the add we're looking for, 2038 // however, is not, so adjust here. 2039 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); 2040 2041 // Look forward to try to find a pre-index instruction. For example, 2042 // ldr x1, [x0, #64] 2043 // add x0, x0, #64 2044 // merged into: 2045 // ldr x1, [x0, #64]! 2046 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 2047 if (Update != E) { 2048 // Merge the update into the ld/st. 2049 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2050 return true; 2051 } 2052 2053 return false; 2054 } 2055 2056 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2057 bool EnableNarrowZeroStOpt) { 2058 2059 bool Modified = false; 2060 // Four tranformations to do here: 2061 // 1) Find loads that directly read from stores and promote them by 2062 // replacing with mov instructions. If the store is wider than the load, 2063 // the load will be replaced with a bitfield extract. 2064 // e.g., 2065 // str w1, [x0, #4] 2066 // ldrh w2, [x0, #6] 2067 // ; becomes 2068 // str w1, [x0, #4] 2069 // lsr w2, w1, #16 2070 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2071 MBBI != E;) { 2072 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2073 Modified = true; 2074 else 2075 ++MBBI; 2076 } 2077 // 2) Merge adjacent zero stores into a wider store. 2078 // e.g., 2079 // strh wzr, [x0] 2080 // strh wzr, [x0, #2] 2081 // ; becomes 2082 // str wzr, [x0] 2083 // e.g., 2084 // str wzr, [x0] 2085 // str wzr, [x0, #4] 2086 // ; becomes 2087 // str xzr, [x0] 2088 if (EnableNarrowZeroStOpt) 2089 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2090 MBBI != E;) { 2091 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2092 Modified = true; 2093 else 2094 ++MBBI; 2095 } 2096 // 3) Find loads and stores that can be merged into a single load or store 2097 // pair instruction. 2098 // e.g., 2099 // ldr x0, [x2] 2100 // ldr x1, [x2, #8] 2101 // ; becomes 2102 // ldp x0, x1, [x2] 2103 2104 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2105 DefinedInBB.clear(); 2106 DefinedInBB.addLiveIns(MBB); 2107 } 2108 2109 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2110 MBBI != E;) { 2111 // Track currently live registers up to this point, to help with 2112 // searching for a rename register on demand. 2113 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2114 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2115 Modified = true; 2116 else 2117 ++MBBI; 2118 } 2119 // 4) Find base register updates that can be merged into the load or store 2120 // as a base-reg writeback. 2121 // e.g., 2122 // ldr x0, [x2] 2123 // add x2, x2, #4 2124 // ; becomes 2125 // ldr x0, [x2], #4 2126 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2127 MBBI != E;) { 2128 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2129 Modified = true; 2130 else 2131 ++MBBI; 2132 } 2133 2134 return Modified; 2135 } 2136 2137 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2138 if (skipFunction(Fn.getFunction())) 2139 return false; 2140 2141 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 2142 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2143 TRI = Subtarget->getRegisterInfo(); 2144 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2145 2146 // Resize the modified and used register unit trackers. We do this once 2147 // per function and then clear the register units each time we optimize a load 2148 // or store. 2149 ModifiedRegUnits.init(*TRI); 2150 UsedRegUnits.init(*TRI); 2151 DefinedInBB.init(*TRI); 2152 2153 bool Modified = false; 2154 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2155 for (auto &MBB : Fn) { 2156 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2157 Modified |= M; 2158 } 2159 2160 return Modified; 2161 } 2162 2163 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2164 // stores near one another? Note: The pre-RA instruction scheduler already has 2165 // hooks to try and schedule pairable loads/stores together to improve pairing 2166 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2167 2168 // FIXME: When pairing store instructions it's very possible for this pass to 2169 // hoist a store with a KILL marker above another use (without a KILL marker). 2170 // The resulting IR is invalid, but nothing uses the KILL markers after this 2171 // pass, so it's never caused a problem in practice. 2172 2173 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2174 /// load / store optimization pass. 2175 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2176 return new AArch64LoadStoreOpt(); 2177 } 2178