xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64LoadStoreOptimizer.cpp (revision 25038e8de6b4e5f2ffca821565b50a633eea499a)
1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that performs load / store related peephole
10 // optimizations. This pass should be run after register allocation.
11 //
12 // The pass runs after the PrologEpilogInserter where we emit the CFI
13 // instructions. In order to preserve the correctness of the unwind informaiton,
14 // the pass should not change the order of any two instructions, one of which
15 // has the FrameSetup/FrameDestroy flag or, alternatively, apply an add-hoc fix
16 // to unwind information.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "AArch64InstrInfo.h"
21 #include "AArch64MachineFunctionInfo.h"
22 #include "AArch64Subtarget.h"
23 #include "MCTargetDesc/AArch64AddressingModes.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCDwarf.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/DebugCounter.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <cassert>
48 #include <cstdint>
49 #include <functional>
50 #include <iterator>
51 #include <limits>
52 #include <optional>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "aarch64-ldst-opt"
57 
58 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
59 STATISTIC(NumPostFolded, "Number of post-index updates folded");
60 STATISTIC(NumPreFolded, "Number of pre-index updates folded");
61 STATISTIC(NumUnscaledPairCreated,
62           "Number of load/store from unscaled generated");
63 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
64 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
65 
66 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming",
67               "Controls which pairs are considered for renaming");
68 
69 // The LdStLimit limits how far we search for load/store pairs.
70 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
71                                    cl::init(20), cl::Hidden);
72 
73 // The UpdateLimit limits how far we search for update instructions when we form
74 // pre-/post-index instructions.
75 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
76                                      cl::Hidden);
77 
78 // Enable register renaming to find additional store pairing opportunities.
79 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming",
80                                     cl::init(true), cl::Hidden);
81 
82 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
83 
84 namespace {
85 
86 using LdStPairFlags = struct LdStPairFlags {
87   // If a matching instruction is found, MergeForward is set to true if the
88   // merge is to remove the first instruction and replace the second with
89   // a pair-wise insn, and false if the reverse is true.
90   bool MergeForward = false;
91 
92   // SExtIdx gives the index of the result of the load pair that must be
93   // extended. The value of SExtIdx assumes that the paired load produces the
94   // value in this order: (I, returned iterator), i.e., -1 means no value has
95   // to be extended, 0 means I, and 1 means the returned iterator.
96   int SExtIdx = -1;
97 
98   // If not none, RenameReg can be used to rename the result register of the
99   // first store in a pair. Currently this only works when merging stores
100   // forward.
101   std::optional<MCPhysReg> RenameReg;
102 
103   LdStPairFlags() = default;
104 
105   void setMergeForward(bool V = true) { MergeForward = V; }
106   bool getMergeForward() const { return MergeForward; }
107 
108   void setSExtIdx(int V) { SExtIdx = V; }
109   int getSExtIdx() const { return SExtIdx; }
110 
111   void setRenameReg(MCPhysReg R) { RenameReg = R; }
112   void clearRenameReg() { RenameReg = std::nullopt; }
113   std::optional<MCPhysReg> getRenameReg() const { return RenameReg; }
114 };
115 
116 struct AArch64LoadStoreOpt : public MachineFunctionPass {
117   static char ID;
118 
119   AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
120     initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry());
121   }
122 
123   AliasAnalysis *AA;
124   const AArch64InstrInfo *TII;
125   const TargetRegisterInfo *TRI;
126   const AArch64Subtarget *Subtarget;
127 
128   // Track which register units have been modified and used.
129   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
130   LiveRegUnits DefinedInBB;
131 
132   void getAnalysisUsage(AnalysisUsage &AU) const override {
133     AU.addRequired<AAResultsWrapperPass>();
134     MachineFunctionPass::getAnalysisUsage(AU);
135   }
136 
137   // Scan the instructions looking for a load/store that can be combined
138   // with the current instruction into a load/store pair.
139   // Return the matching instruction if one is found, else MBB->end().
140   MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
141                                                LdStPairFlags &Flags,
142                                                unsigned Limit,
143                                                bool FindNarrowMerge);
144 
145   // Scan the instructions looking for a store that writes to the address from
146   // which the current load instruction reads. Return true if one is found.
147   bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
148                          MachineBasicBlock::iterator &StoreI);
149 
150   // Merge the two instructions indicated into a wider narrow store instruction.
151   MachineBasicBlock::iterator
152   mergeNarrowZeroStores(MachineBasicBlock::iterator I,
153                         MachineBasicBlock::iterator MergeMI,
154                         const LdStPairFlags &Flags);
155 
156   // Merge the two instructions indicated into a single pair-wise instruction.
157   MachineBasicBlock::iterator
158   mergePairedInsns(MachineBasicBlock::iterator I,
159                    MachineBasicBlock::iterator Paired,
160                    const LdStPairFlags &Flags);
161 
162   // Promote the load that reads directly from the address stored to.
163   MachineBasicBlock::iterator
164   promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
165                        MachineBasicBlock::iterator StoreI);
166 
167   // Scan the instruction list to find a base register update that can
168   // be combined with the current instruction (a load or store) using
169   // pre or post indexed addressing with writeback. Scan forwards.
170   MachineBasicBlock::iterator
171   findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
172                                 int UnscaledOffset, unsigned Limit);
173 
174   // Scan the instruction list to find a base register update that can
175   // be combined with the current instruction (a load or store) using
176   // pre or post indexed addressing with writeback. Scan backwards.
177   MachineBasicBlock::iterator
178   findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
179 
180   // Find an instruction that updates the base register of the ld/st
181   // instruction.
182   bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI,
183                             unsigned BaseReg, int Offset);
184 
185   // Merge a pre- or post-index base register update into a ld/st instruction.
186   MachineBasicBlock::iterator
187   mergeUpdateInsn(MachineBasicBlock::iterator I,
188                   MachineBasicBlock::iterator Update, bool IsPreIdx);
189 
190   // Find and merge zero store instructions.
191   bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI);
192 
193   // Find and pair ldr/str instructions.
194   bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
195 
196   // Find and promote load instructions which read directly from store.
197   bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
198 
199   // Find and merge a base register updates before or after a ld/st instruction.
200   bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI);
201 
202   bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt);
203 
204   bool runOnMachineFunction(MachineFunction &Fn) override;
205 
206   MachineFunctionProperties getRequiredProperties() const override {
207     return MachineFunctionProperties().set(
208         MachineFunctionProperties::Property::NoVRegs);
209   }
210 
211   StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; }
212 };
213 
214 char AArch64LoadStoreOpt::ID = 0;
215 
216 } // end anonymous namespace
217 
218 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
219                 AARCH64_LOAD_STORE_OPT_NAME, false, false)
220 
221 static bool isNarrowStore(unsigned Opc) {
222   switch (Opc) {
223   default:
224     return false;
225   case AArch64::STRBBui:
226   case AArch64::STURBBi:
227   case AArch64::STRHHui:
228   case AArch64::STURHHi:
229     return true;
230   }
231 }
232 
233 // These instruction set memory tag and either keep memory contents unchanged or
234 // set it to zero, ignoring the address part of the source register.
235 static bool isTagStore(const MachineInstr &MI) {
236   switch (MI.getOpcode()) {
237   default:
238     return false;
239   case AArch64::STGi:
240   case AArch64::STZGi:
241   case AArch64::ST2Gi:
242   case AArch64::STZ2Gi:
243     return true;
244   }
245 }
246 
247 static unsigned getMatchingNonSExtOpcode(unsigned Opc,
248                                          bool *IsValidLdStrOpc = nullptr) {
249   if (IsValidLdStrOpc)
250     *IsValidLdStrOpc = true;
251   switch (Opc) {
252   default:
253     if (IsValidLdStrOpc)
254       *IsValidLdStrOpc = false;
255     return std::numeric_limits<unsigned>::max();
256   case AArch64::STRDui:
257   case AArch64::STURDi:
258   case AArch64::STRDpre:
259   case AArch64::STRQui:
260   case AArch64::STURQi:
261   case AArch64::STRQpre:
262   case AArch64::STRBBui:
263   case AArch64::STURBBi:
264   case AArch64::STRHHui:
265   case AArch64::STURHHi:
266   case AArch64::STRWui:
267   case AArch64::STRWpre:
268   case AArch64::STURWi:
269   case AArch64::STRXui:
270   case AArch64::STRXpre:
271   case AArch64::STURXi:
272   case AArch64::LDRDui:
273   case AArch64::LDURDi:
274   case AArch64::LDRDpre:
275   case AArch64::LDRQui:
276   case AArch64::LDURQi:
277   case AArch64::LDRQpre:
278   case AArch64::LDRWui:
279   case AArch64::LDURWi:
280   case AArch64::LDRWpre:
281   case AArch64::LDRXui:
282   case AArch64::LDURXi:
283   case AArch64::LDRXpre:
284   case AArch64::STRSui:
285   case AArch64::STURSi:
286   case AArch64::STRSpre:
287   case AArch64::LDRSui:
288   case AArch64::LDURSi:
289   case AArch64::LDRSpre:
290     return Opc;
291   case AArch64::LDRSWui:
292     return AArch64::LDRWui;
293   case AArch64::LDURSWi:
294     return AArch64::LDURWi;
295   case AArch64::LDRSWpre:
296     return AArch64::LDRWpre;
297   }
298 }
299 
300 static unsigned getMatchingWideOpcode(unsigned Opc) {
301   switch (Opc) {
302   default:
303     llvm_unreachable("Opcode has no wide equivalent!");
304   case AArch64::STRBBui:
305     return AArch64::STRHHui;
306   case AArch64::STRHHui:
307     return AArch64::STRWui;
308   case AArch64::STURBBi:
309     return AArch64::STURHHi;
310   case AArch64::STURHHi:
311     return AArch64::STURWi;
312   case AArch64::STURWi:
313     return AArch64::STURXi;
314   case AArch64::STRWui:
315     return AArch64::STRXui;
316   }
317 }
318 
319 static unsigned getMatchingPairOpcode(unsigned Opc) {
320   switch (Opc) {
321   default:
322     llvm_unreachable("Opcode has no pairwise equivalent!");
323   case AArch64::STRSui:
324   case AArch64::STURSi:
325     return AArch64::STPSi;
326   case AArch64::STRSpre:
327     return AArch64::STPSpre;
328   case AArch64::STRDui:
329   case AArch64::STURDi:
330     return AArch64::STPDi;
331   case AArch64::STRDpre:
332     return AArch64::STPDpre;
333   case AArch64::STRQui:
334   case AArch64::STURQi:
335     return AArch64::STPQi;
336   case AArch64::STRQpre:
337     return AArch64::STPQpre;
338   case AArch64::STRWui:
339   case AArch64::STURWi:
340     return AArch64::STPWi;
341   case AArch64::STRWpre:
342     return AArch64::STPWpre;
343   case AArch64::STRXui:
344   case AArch64::STURXi:
345     return AArch64::STPXi;
346   case AArch64::STRXpre:
347     return AArch64::STPXpre;
348   case AArch64::LDRSui:
349   case AArch64::LDURSi:
350     return AArch64::LDPSi;
351   case AArch64::LDRSpre:
352     return AArch64::LDPSpre;
353   case AArch64::LDRDui:
354   case AArch64::LDURDi:
355     return AArch64::LDPDi;
356   case AArch64::LDRDpre:
357     return AArch64::LDPDpre;
358   case AArch64::LDRQui:
359   case AArch64::LDURQi:
360     return AArch64::LDPQi;
361   case AArch64::LDRQpre:
362     return AArch64::LDPQpre;
363   case AArch64::LDRWui:
364   case AArch64::LDURWi:
365     return AArch64::LDPWi;
366   case AArch64::LDRWpre:
367     return AArch64::LDPWpre;
368   case AArch64::LDRXui:
369   case AArch64::LDURXi:
370     return AArch64::LDPXi;
371   case AArch64::LDRXpre:
372     return AArch64::LDPXpre;
373   case AArch64::LDRSWui:
374   case AArch64::LDURSWi:
375     return AArch64::LDPSWi;
376   case AArch64::LDRSWpre:
377     return AArch64::LDPSWpre;
378   }
379 }
380 
381 static unsigned isMatchingStore(MachineInstr &LoadInst,
382                                 MachineInstr &StoreInst) {
383   unsigned LdOpc = LoadInst.getOpcode();
384   unsigned StOpc = StoreInst.getOpcode();
385   switch (LdOpc) {
386   default:
387     llvm_unreachable("Unsupported load instruction!");
388   case AArch64::LDRBBui:
389     return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
390            StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
391   case AArch64::LDURBBi:
392     return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
393            StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
394   case AArch64::LDRHHui:
395     return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
396            StOpc == AArch64::STRXui;
397   case AArch64::LDURHHi:
398     return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
399            StOpc == AArch64::STURXi;
400   case AArch64::LDRWui:
401     return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
402   case AArch64::LDURWi:
403     return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
404   case AArch64::LDRXui:
405     return StOpc == AArch64::STRXui;
406   case AArch64::LDURXi:
407     return StOpc == AArch64::STURXi;
408   }
409 }
410 
411 static unsigned getPreIndexedOpcode(unsigned Opc) {
412   // FIXME: We don't currently support creating pre-indexed loads/stores when
413   // the load or store is the unscaled version.  If we decide to perform such an
414   // optimization in the future the cases for the unscaled loads/stores will
415   // need to be added here.
416   switch (Opc) {
417   default:
418     llvm_unreachable("Opcode has no pre-indexed equivalent!");
419   case AArch64::STRSui:
420     return AArch64::STRSpre;
421   case AArch64::STRDui:
422     return AArch64::STRDpre;
423   case AArch64::STRQui:
424     return AArch64::STRQpre;
425   case AArch64::STRBBui:
426     return AArch64::STRBBpre;
427   case AArch64::STRHHui:
428     return AArch64::STRHHpre;
429   case AArch64::STRWui:
430     return AArch64::STRWpre;
431   case AArch64::STRXui:
432     return AArch64::STRXpre;
433   case AArch64::LDRSui:
434     return AArch64::LDRSpre;
435   case AArch64::LDRDui:
436     return AArch64::LDRDpre;
437   case AArch64::LDRQui:
438     return AArch64::LDRQpre;
439   case AArch64::LDRBBui:
440     return AArch64::LDRBBpre;
441   case AArch64::LDRHHui:
442     return AArch64::LDRHHpre;
443   case AArch64::LDRWui:
444     return AArch64::LDRWpre;
445   case AArch64::LDRXui:
446     return AArch64::LDRXpre;
447   case AArch64::LDRSWui:
448     return AArch64::LDRSWpre;
449   case AArch64::LDPSi:
450     return AArch64::LDPSpre;
451   case AArch64::LDPSWi:
452     return AArch64::LDPSWpre;
453   case AArch64::LDPDi:
454     return AArch64::LDPDpre;
455   case AArch64::LDPQi:
456     return AArch64::LDPQpre;
457   case AArch64::LDPWi:
458     return AArch64::LDPWpre;
459   case AArch64::LDPXi:
460     return AArch64::LDPXpre;
461   case AArch64::STPSi:
462     return AArch64::STPSpre;
463   case AArch64::STPDi:
464     return AArch64::STPDpre;
465   case AArch64::STPQi:
466     return AArch64::STPQpre;
467   case AArch64::STPWi:
468     return AArch64::STPWpre;
469   case AArch64::STPXi:
470     return AArch64::STPXpre;
471   case AArch64::STGi:
472     return AArch64::STGPreIndex;
473   case AArch64::STZGi:
474     return AArch64::STZGPreIndex;
475   case AArch64::ST2Gi:
476     return AArch64::ST2GPreIndex;
477   case AArch64::STZ2Gi:
478     return AArch64::STZ2GPreIndex;
479   case AArch64::STGPi:
480     return AArch64::STGPpre;
481   }
482 }
483 
484 static unsigned getPostIndexedOpcode(unsigned Opc) {
485   switch (Opc) {
486   default:
487     llvm_unreachable("Opcode has no post-indexed wise equivalent!");
488   case AArch64::STRSui:
489   case AArch64::STURSi:
490     return AArch64::STRSpost;
491   case AArch64::STRDui:
492   case AArch64::STURDi:
493     return AArch64::STRDpost;
494   case AArch64::STRQui:
495   case AArch64::STURQi:
496     return AArch64::STRQpost;
497   case AArch64::STRBBui:
498     return AArch64::STRBBpost;
499   case AArch64::STRHHui:
500     return AArch64::STRHHpost;
501   case AArch64::STRWui:
502   case AArch64::STURWi:
503     return AArch64::STRWpost;
504   case AArch64::STRXui:
505   case AArch64::STURXi:
506     return AArch64::STRXpost;
507   case AArch64::LDRSui:
508   case AArch64::LDURSi:
509     return AArch64::LDRSpost;
510   case AArch64::LDRDui:
511   case AArch64::LDURDi:
512     return AArch64::LDRDpost;
513   case AArch64::LDRQui:
514   case AArch64::LDURQi:
515     return AArch64::LDRQpost;
516   case AArch64::LDRBBui:
517     return AArch64::LDRBBpost;
518   case AArch64::LDRHHui:
519     return AArch64::LDRHHpost;
520   case AArch64::LDRWui:
521   case AArch64::LDURWi:
522     return AArch64::LDRWpost;
523   case AArch64::LDRXui:
524   case AArch64::LDURXi:
525     return AArch64::LDRXpost;
526   case AArch64::LDRSWui:
527     return AArch64::LDRSWpost;
528   case AArch64::LDPSi:
529     return AArch64::LDPSpost;
530   case AArch64::LDPSWi:
531     return AArch64::LDPSWpost;
532   case AArch64::LDPDi:
533     return AArch64::LDPDpost;
534   case AArch64::LDPQi:
535     return AArch64::LDPQpost;
536   case AArch64::LDPWi:
537     return AArch64::LDPWpost;
538   case AArch64::LDPXi:
539     return AArch64::LDPXpost;
540   case AArch64::STPSi:
541     return AArch64::STPSpost;
542   case AArch64::STPDi:
543     return AArch64::STPDpost;
544   case AArch64::STPQi:
545     return AArch64::STPQpost;
546   case AArch64::STPWi:
547     return AArch64::STPWpost;
548   case AArch64::STPXi:
549     return AArch64::STPXpost;
550   case AArch64::STGi:
551     return AArch64::STGPostIndex;
552   case AArch64::STZGi:
553     return AArch64::STZGPostIndex;
554   case AArch64::ST2Gi:
555     return AArch64::ST2GPostIndex;
556   case AArch64::STZ2Gi:
557     return AArch64::STZ2GPostIndex;
558   case AArch64::STGPi:
559     return AArch64::STGPpost;
560   }
561 }
562 
563 static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI) {
564 
565   unsigned OpcA = FirstMI.getOpcode();
566   unsigned OpcB = MI.getOpcode();
567 
568   switch (OpcA) {
569   default:
570     return false;
571   case AArch64::STRSpre:
572     return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi);
573   case AArch64::STRDpre:
574     return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi);
575   case AArch64::STRQpre:
576     return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi);
577   case AArch64::STRWpre:
578     return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi);
579   case AArch64::STRXpre:
580     return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi);
581   case AArch64::LDRSpre:
582     return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi);
583   case AArch64::LDRDpre:
584     return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi);
585   case AArch64::LDRQpre:
586     return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi);
587   case AArch64::LDRWpre:
588     return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi);
589   case AArch64::LDRXpre:
590     return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi);
591   case AArch64::LDRSWpre:
592     return (OpcB == AArch64::LDRSWui) || (OpcB == AArch64::LDURSWi);
593   }
594 }
595 
596 // Returns the scale and offset range of pre/post indexed variants of MI.
597 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale,
598                                        int &MinOffset, int &MaxOffset) {
599   bool IsPaired = AArch64InstrInfo::isPairedLdSt(MI);
600   bool IsTagStore = isTagStore(MI);
601   // ST*G and all paired ldst have the same scale in pre/post-indexed variants
602   // as in the "unsigned offset" variant.
603   // All other pre/post indexed ldst instructions are unscaled.
604   Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1;
605 
606   if (IsPaired) {
607     MinOffset = -64;
608     MaxOffset = 63;
609   } else {
610     MinOffset = -256;
611     MaxOffset = 255;
612   }
613 }
614 
615 static MachineOperand &getLdStRegOp(MachineInstr &MI,
616                                     unsigned PairedRegOp = 0) {
617   assert(PairedRegOp < 2 && "Unexpected register operand idx.");
618   bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI);
619   if (IsPreLdSt)
620     PairedRegOp += 1;
621   unsigned Idx =
622       AArch64InstrInfo::isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0;
623   return MI.getOperand(Idx);
624 }
625 
626 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst,
627                                   MachineInstr &StoreInst,
628                                   const AArch64InstrInfo *TII) {
629   assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
630   int LoadSize = TII->getMemScale(LoadInst);
631   int StoreSize = TII->getMemScale(StoreInst);
632   int UnscaledStOffset =
633       TII->hasUnscaledLdStOffset(StoreInst)
634           ? AArch64InstrInfo::getLdStOffsetOp(StoreInst).getImm()
635           : AArch64InstrInfo::getLdStOffsetOp(StoreInst).getImm() * StoreSize;
636   int UnscaledLdOffset =
637       TII->hasUnscaledLdStOffset(LoadInst)
638           ? AArch64InstrInfo::getLdStOffsetOp(LoadInst).getImm()
639           : AArch64InstrInfo::getLdStOffsetOp(LoadInst).getImm() * LoadSize;
640   return (UnscaledStOffset <= UnscaledLdOffset) &&
641          (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
642 }
643 
644 static bool isPromotableZeroStoreInst(MachineInstr &MI) {
645   unsigned Opc = MI.getOpcode();
646   return (Opc == AArch64::STRWui || Opc == AArch64::STURWi ||
647           isNarrowStore(Opc)) &&
648          getLdStRegOp(MI).getReg() == AArch64::WZR;
649 }
650 
651 static bool isPromotableLoadFromStore(MachineInstr &MI) {
652   switch (MI.getOpcode()) {
653   default:
654     return false;
655   // Scaled instructions.
656   case AArch64::LDRBBui:
657   case AArch64::LDRHHui:
658   case AArch64::LDRWui:
659   case AArch64::LDRXui:
660   // Unscaled instructions.
661   case AArch64::LDURBBi:
662   case AArch64::LDURHHi:
663   case AArch64::LDURWi:
664   case AArch64::LDURXi:
665     return true;
666   }
667 }
668 
669 static bool isMergeableLdStUpdate(MachineInstr &MI) {
670   unsigned Opc = MI.getOpcode();
671   switch (Opc) {
672   default:
673     return false;
674   // Scaled instructions.
675   case AArch64::STRSui:
676   case AArch64::STRDui:
677   case AArch64::STRQui:
678   case AArch64::STRXui:
679   case AArch64::STRWui:
680   case AArch64::STRHHui:
681   case AArch64::STRBBui:
682   case AArch64::LDRSui:
683   case AArch64::LDRDui:
684   case AArch64::LDRQui:
685   case AArch64::LDRXui:
686   case AArch64::LDRWui:
687   case AArch64::LDRHHui:
688   case AArch64::LDRBBui:
689   case AArch64::STGi:
690   case AArch64::STZGi:
691   case AArch64::ST2Gi:
692   case AArch64::STZ2Gi:
693   case AArch64::STGPi:
694   // Unscaled instructions.
695   case AArch64::STURSi:
696   case AArch64::STURDi:
697   case AArch64::STURQi:
698   case AArch64::STURWi:
699   case AArch64::STURXi:
700   case AArch64::LDURSi:
701   case AArch64::LDURDi:
702   case AArch64::LDURQi:
703   case AArch64::LDURWi:
704   case AArch64::LDURXi:
705   // Paired instructions.
706   case AArch64::LDPSi:
707   case AArch64::LDPSWi:
708   case AArch64::LDPDi:
709   case AArch64::LDPQi:
710   case AArch64::LDPWi:
711   case AArch64::LDPXi:
712   case AArch64::STPSi:
713   case AArch64::STPDi:
714   case AArch64::STPQi:
715   case AArch64::STPWi:
716   case AArch64::STPXi:
717     // Make sure this is a reg+imm (as opposed to an address reloc).
718     if (!AArch64InstrInfo::getLdStOffsetOp(MI).isImm())
719       return false;
720 
721     return true;
722   }
723 }
724 
725 static bool isRewritableImplicitDef(unsigned Opc) {
726   switch (Opc) {
727   default:
728     return false;
729   case AArch64::ORRWrs:
730   case AArch64::ADDWri:
731     return true;
732   }
733 }
734 
735 MachineBasicBlock::iterator
736 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I,
737                                            MachineBasicBlock::iterator MergeMI,
738                                            const LdStPairFlags &Flags) {
739   assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) &&
740          "Expected promotable zero stores.");
741 
742   MachineBasicBlock::iterator E = I->getParent()->end();
743   MachineBasicBlock::iterator NextI = next_nodbg(I, E);
744   // If NextI is the second of the two instructions to be merged, we need
745   // to skip one further. Either way we merge will invalidate the iterator,
746   // and we don't need to scan the new instruction, as it's a pairwise
747   // instruction, which we're not considering for further action anyway.
748   if (NextI == MergeMI)
749     NextI = next_nodbg(NextI, E);
750 
751   unsigned Opc = I->getOpcode();
752   unsigned MergeMIOpc = MergeMI->getOpcode();
753   bool IsScaled = !TII->hasUnscaledLdStOffset(Opc);
754   bool IsMergedMIScaled = !TII->hasUnscaledLdStOffset(MergeMIOpc);
755   int OffsetStride = IsScaled ? TII->getMemScale(*I) : 1;
756   int MergeMIOffsetStride = IsMergedMIScaled ? TII->getMemScale(*MergeMI) : 1;
757 
758   bool MergeForward = Flags.getMergeForward();
759   // Insert our new paired instruction after whichever of the paired
760   // instructions MergeForward indicates.
761   MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
762   // Also based on MergeForward is from where we copy the base register operand
763   // so we get the flags compatible with the input code.
764   const MachineOperand &BaseRegOp =
765       MergeForward ? AArch64InstrInfo::getLdStBaseOp(*MergeMI)
766                    : AArch64InstrInfo::getLdStBaseOp(*I);
767 
768   // Which register is Rt and which is Rt2 depends on the offset order.
769   int64_t IOffsetInBytes =
770       AArch64InstrInfo::getLdStOffsetOp(*I).getImm() * OffsetStride;
771   int64_t MIOffsetInBytes =
772       AArch64InstrInfo::getLdStOffsetOp(*MergeMI).getImm() *
773       MergeMIOffsetStride;
774   // Select final offset based on the offset order.
775   int64_t OffsetImm;
776   if (IOffsetInBytes > MIOffsetInBytes)
777     OffsetImm = MIOffsetInBytes;
778   else
779     OffsetImm = IOffsetInBytes;
780 
781   int NewOpcode = getMatchingWideOpcode(Opc);
782   bool FinalIsScaled = !TII->hasUnscaledLdStOffset(NewOpcode);
783 
784   // Adjust final offset if the result opcode is a scaled store.
785   if (FinalIsScaled) {
786     int NewOffsetStride = FinalIsScaled ? TII->getMemScale(NewOpcode) : 1;
787     assert(((OffsetImm % NewOffsetStride) == 0) &&
788            "Offset should be a multiple of the store memory scale");
789     OffsetImm = OffsetImm / NewOffsetStride;
790   }
791 
792   // Construct the new instruction.
793   DebugLoc DL = I->getDebugLoc();
794   MachineBasicBlock *MBB = I->getParent();
795   MachineInstrBuilder MIB;
796   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
797             .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
798             .add(BaseRegOp)
799             .addImm(OffsetImm)
800             .cloneMergedMemRefs({&*I, &*MergeMI})
801             .setMIFlags(I->mergeFlagsWith(*MergeMI));
802   (void)MIB;
803 
804   LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n    ");
805   LLVM_DEBUG(I->print(dbgs()));
806   LLVM_DEBUG(dbgs() << "    ");
807   LLVM_DEBUG(MergeMI->print(dbgs()));
808   LLVM_DEBUG(dbgs() << "  with instruction:\n    ");
809   LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
810   LLVM_DEBUG(dbgs() << "\n");
811 
812   // Erase the old instructions.
813   I->eraseFromParent();
814   MergeMI->eraseFromParent();
815   return NextI;
816 }
817 
818 // Apply Fn to all instructions between MI and the beginning of the block, until
819 // a def for DefReg is reached. Returns true, iff Fn returns true for all
820 // visited instructions. Stop after visiting Limit iterations.
821 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg,
822                               const TargetRegisterInfo *TRI, unsigned Limit,
823                               std::function<bool(MachineInstr &, bool)> &Fn) {
824   auto MBB = MI.getParent();
825   for (MachineInstr &I :
826        instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) {
827     if (!Limit)
828       return false;
829     --Limit;
830 
831     bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) {
832       return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() &&
833              TRI->regsOverlap(MOP.getReg(), DefReg);
834     });
835     if (!Fn(I, isDef))
836       return false;
837     if (isDef)
838       break;
839   }
840   return true;
841 }
842 
843 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units,
844                                    const TargetRegisterInfo *TRI) {
845 
846   for (const MachineOperand &MOP : phys_regs_and_masks(MI))
847     if (MOP.isReg() && MOP.isKill())
848       Units.removeReg(MOP.getReg());
849 
850   for (const MachineOperand &MOP : phys_regs_and_masks(MI))
851     if (MOP.isReg() && !MOP.isKill())
852       Units.addReg(MOP.getReg());
853 }
854 
855 MachineBasicBlock::iterator
856 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
857                                       MachineBasicBlock::iterator Paired,
858                                       const LdStPairFlags &Flags) {
859   MachineBasicBlock::iterator E = I->getParent()->end();
860   MachineBasicBlock::iterator NextI = next_nodbg(I, E);
861   // If NextI is the second of the two instructions to be merged, we need
862   // to skip one further. Either way we merge will invalidate the iterator,
863   // and we don't need to scan the new instruction, as it's a pairwise
864   // instruction, which we're not considering for further action anyway.
865   if (NextI == Paired)
866     NextI = next_nodbg(NextI, E);
867 
868   int SExtIdx = Flags.getSExtIdx();
869   unsigned Opc =
870       SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
871   bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc);
872   int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1;
873 
874   bool MergeForward = Flags.getMergeForward();
875 
876   std::optional<MCPhysReg> RenameReg = Flags.getRenameReg();
877   if (RenameReg) {
878     MCRegister RegToRename = getLdStRegOp(*I).getReg();
879     DefinedInBB.addReg(*RenameReg);
880 
881     // Return the sub/super register for RenameReg, matching the size of
882     // OriginalReg.
883     auto GetMatchingSubReg =
884         [this, RenameReg](const TargetRegisterClass *C) -> MCPhysReg {
885       for (MCPhysReg SubOrSuper :
886            TRI->sub_and_superregs_inclusive(*RenameReg)) {
887         if (C->contains(SubOrSuper))
888           return SubOrSuper;
889       }
890       llvm_unreachable("Should have found matching sub or super register!");
891     };
892 
893     std::function<bool(MachineInstr &, bool)> UpdateMIs =
894         [this, RegToRename, GetMatchingSubReg, MergeForward](MachineInstr &MI,
895                                                              bool IsDef) {
896           if (IsDef) {
897             bool SeenDef = false;
898             for (unsigned OpIdx = 0; OpIdx < MI.getNumOperands(); ++OpIdx) {
899               MachineOperand &MOP = MI.getOperand(OpIdx);
900               // Rename the first explicit definition and all implicit
901               // definitions matching RegToRename.
902               if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
903                   (!MergeForward || !SeenDef ||
904                    (MOP.isDef() && MOP.isImplicit())) &&
905                   TRI->regsOverlap(MOP.getReg(), RegToRename)) {
906                 assert((MOP.isImplicit() ||
907                         (MOP.isRenamable() && !MOP.isEarlyClobber())) &&
908                        "Need renamable operands");
909                 Register MatchingReg;
910                 if (const TargetRegisterClass *RC =
911                         MI.getRegClassConstraint(OpIdx, TII, TRI))
912                   MatchingReg = GetMatchingSubReg(RC);
913                 else {
914                   if (!isRewritableImplicitDef(MI.getOpcode()))
915                     continue;
916                   MatchingReg = GetMatchingSubReg(
917                       TRI->getMinimalPhysRegClass(MOP.getReg()));
918                 }
919                 MOP.setReg(MatchingReg);
920                 SeenDef = true;
921               }
922             }
923           } else {
924             for (unsigned OpIdx = 0; OpIdx < MI.getNumOperands(); ++OpIdx) {
925               MachineOperand &MOP = MI.getOperand(OpIdx);
926               if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
927                   TRI->regsOverlap(MOP.getReg(), RegToRename)) {
928                 assert((MOP.isImplicit() ||
929                         (MOP.isRenamable() && !MOP.isEarlyClobber())) &&
930                            "Need renamable operands");
931                 Register MatchingReg;
932                 if (const TargetRegisterClass *RC =
933                         MI.getRegClassConstraint(OpIdx, TII, TRI))
934                   MatchingReg = GetMatchingSubReg(RC);
935                 else
936                   MatchingReg = GetMatchingSubReg(
937                       TRI->getMinimalPhysRegClass(MOP.getReg()));
938                 assert(MatchingReg != AArch64::NoRegister &&
939                        "Cannot find matching regs for renaming");
940                 MOP.setReg(MatchingReg);
941               }
942             }
943           }
944           LLVM_DEBUG(dbgs() << "Renamed " << MI);
945           return true;
946         };
947     forAllMIsUntilDef(MergeForward ? *I : *std::prev(Paired), RegToRename, TRI,
948                       UINT32_MAX, UpdateMIs);
949 
950 #if !defined(NDEBUG)
951     // For forward merging store:
952     // Make sure the register used for renaming is not used between the
953     // paired instructions. That would trash the content before the new
954     // paired instruction.
955     MCPhysReg RegToCheck = *RenameReg;
956     // For backward merging load:
957     // Make sure the register being renamed is not used between the
958     // paired instructions. That would trash the content after the new
959     // paired instruction.
960     if (!MergeForward)
961       RegToCheck = RegToRename;
962     for (auto &MI :
963          iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>(
964              MergeForward ? std::next(I) : I,
965              MergeForward ? std::next(Paired) : Paired))
966       assert(all_of(MI.operands(),
967                     [this, RegToCheck](const MachineOperand &MOP) {
968                       return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
969                              MOP.isUndef() ||
970                              !TRI->regsOverlap(MOP.getReg(), RegToCheck);
971                     }) &&
972              "Rename register used between paired instruction, trashing the "
973              "content");
974 #endif
975   }
976 
977   // Insert our new paired instruction after whichever of the paired
978   // instructions MergeForward indicates.
979   MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
980   // Also based on MergeForward is from where we copy the base register operand
981   // so we get the flags compatible with the input code.
982   const MachineOperand &BaseRegOp =
983       MergeForward ? AArch64InstrInfo::getLdStBaseOp(*Paired)
984                    : AArch64InstrInfo::getLdStBaseOp(*I);
985 
986   int Offset = AArch64InstrInfo::getLdStOffsetOp(*I).getImm();
987   int PairedOffset = AArch64InstrInfo::getLdStOffsetOp(*Paired).getImm();
988   bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode());
989   if (IsUnscaled != PairedIsUnscaled) {
990     // We're trying to pair instructions that differ in how they are scaled.  If
991     // I is scaled then scale the offset of Paired accordingly.  Otherwise, do
992     // the opposite (i.e., make Paired's offset unscaled).
993     int MemSize = TII->getMemScale(*Paired);
994     if (PairedIsUnscaled) {
995       // If the unscaled offset isn't a multiple of the MemSize, we can't
996       // pair the operations together.
997       assert(!(PairedOffset % TII->getMemScale(*Paired)) &&
998              "Offset should be a multiple of the stride!");
999       PairedOffset /= MemSize;
1000     } else {
1001       PairedOffset *= MemSize;
1002     }
1003   }
1004 
1005   // Which register is Rt and which is Rt2 depends on the offset order.
1006   // However, for pre load/stores the Rt should be the one of the pre
1007   // load/store.
1008   MachineInstr *RtMI, *Rt2MI;
1009   if (Offset == PairedOffset + OffsetStride &&
1010       !AArch64InstrInfo::isPreLdSt(*I)) {
1011     RtMI = &*Paired;
1012     Rt2MI = &*I;
1013     // Here we swapped the assumption made for SExtIdx.
1014     // I.e., we turn ldp I, Paired into ldp Paired, I.
1015     // Update the index accordingly.
1016     if (SExtIdx != -1)
1017       SExtIdx = (SExtIdx + 1) % 2;
1018   } else {
1019     RtMI = &*I;
1020     Rt2MI = &*Paired;
1021   }
1022   int OffsetImm = AArch64InstrInfo::getLdStOffsetOp(*RtMI).getImm();
1023   // Scale the immediate offset, if necessary.
1024   if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) {
1025     assert(!(OffsetImm % TII->getMemScale(*RtMI)) &&
1026            "Unscaled offset cannot be scaled.");
1027     OffsetImm /= TII->getMemScale(*RtMI);
1028   }
1029 
1030   // Construct the new instruction.
1031   MachineInstrBuilder MIB;
1032   DebugLoc DL = I->getDebugLoc();
1033   MachineBasicBlock *MBB = I->getParent();
1034   MachineOperand RegOp0 = getLdStRegOp(*RtMI);
1035   MachineOperand RegOp1 = getLdStRegOp(*Rt2MI);
1036   MachineOperand &PairedRegOp = RtMI == &*Paired ? RegOp0 : RegOp1;
1037   // Kill flags may become invalid when moving stores for pairing.
1038   if (RegOp0.isUse()) {
1039     if (!MergeForward) {
1040       // Clear kill flags on store if moving upwards. Example:
1041       //   STRWui kill %w0, ...
1042       //   USE %w1
1043       //   STRWui kill %w1  ; need to clear kill flag when moving STRWui upwards
1044       // We are about to move the store of w1, so its kill flag may become
1045       // invalid; not the case for w0.
1046       // Since w1 is used between the stores, the kill flag on w1 is cleared
1047       // after merging.
1048       //   STPWi kill %w0, %w1, ...
1049       //   USE %w1
1050       for (auto It = std::next(I); It != Paired && PairedRegOp.isKill(); ++It)
1051         if (It->readsRegister(PairedRegOp.getReg(), TRI))
1052           PairedRegOp.setIsKill(false);
1053     } else {
1054       // Clear kill flags of the first stores register. Example:
1055       //   STRWui %w1, ...
1056       //   USE kill %w1   ; need to clear kill flag when moving STRWui downwards
1057       //   STRW %w0
1058       Register Reg = getLdStRegOp(*I).getReg();
1059       for (MachineInstr &MI : make_range(std::next(I), Paired))
1060         MI.clearRegisterKills(Reg, TRI);
1061     }
1062   }
1063 
1064   unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc);
1065   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode));
1066 
1067   // Adds the pre-index operand for pre-indexed ld/st pairs.
1068   if (AArch64InstrInfo::isPreLdSt(*RtMI))
1069     MIB.addReg(BaseRegOp.getReg(), RegState::Define);
1070 
1071   MIB.add(RegOp0)
1072       .add(RegOp1)
1073       .add(BaseRegOp)
1074       .addImm(OffsetImm)
1075       .cloneMergedMemRefs({&*I, &*Paired})
1076       .setMIFlags(I->mergeFlagsWith(*Paired));
1077 
1078   (void)MIB;
1079 
1080   LLVM_DEBUG(
1081       dbgs() << "Creating pair load/store. Replacing instructions:\n    ");
1082   LLVM_DEBUG(I->print(dbgs()));
1083   LLVM_DEBUG(dbgs() << "    ");
1084   LLVM_DEBUG(Paired->print(dbgs()));
1085   LLVM_DEBUG(dbgs() << "  with instruction:\n    ");
1086   if (SExtIdx != -1) {
1087     // Generate the sign extension for the proper result of the ldp.
1088     // I.e., with X1, that would be:
1089     // %w1 = KILL %w1, implicit-def %x1
1090     // %x1 = SBFMXri killed %x1, 0, 31
1091     MachineOperand &DstMO = MIB->getOperand(SExtIdx);
1092     // Right now, DstMO has the extended register, since it comes from an
1093     // extended opcode.
1094     Register DstRegX = DstMO.getReg();
1095     // Get the W variant of that register.
1096     Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
1097     // Update the result of LDP to use the W instead of the X variant.
1098     DstMO.setReg(DstRegW);
1099     LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1100     LLVM_DEBUG(dbgs() << "\n");
1101     // Make the machine verifier happy by providing a definition for
1102     // the X register.
1103     // Insert this definition right after the generated LDP, i.e., before
1104     // InsertionPoint.
1105     MachineInstrBuilder MIBKill =
1106         BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
1107             .addReg(DstRegW)
1108             .addReg(DstRegX, RegState::Define);
1109     MIBKill->getOperand(2).setImplicit();
1110     // Create the sign extension.
1111     MachineInstrBuilder MIBSXTW =
1112         BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
1113             .addReg(DstRegX)
1114             .addImm(0)
1115             .addImm(31);
1116     (void)MIBSXTW;
1117     LLVM_DEBUG(dbgs() << "  Extend operand:\n    ");
1118     LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
1119   } else {
1120     LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1121   }
1122   LLVM_DEBUG(dbgs() << "\n");
1123 
1124   if (MergeForward)
1125     for (const MachineOperand &MOP : phys_regs_and_masks(*I))
1126       if (MOP.isReg() && MOP.isKill())
1127         DefinedInBB.addReg(MOP.getReg());
1128 
1129   // Erase the old instructions.
1130   I->eraseFromParent();
1131   Paired->eraseFromParent();
1132 
1133   return NextI;
1134 }
1135 
1136 MachineBasicBlock::iterator
1137 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
1138                                           MachineBasicBlock::iterator StoreI) {
1139   MachineBasicBlock::iterator NextI =
1140       next_nodbg(LoadI, LoadI->getParent()->end());
1141 
1142   int LoadSize = TII->getMemScale(*LoadI);
1143   int StoreSize = TII->getMemScale(*StoreI);
1144   Register LdRt = getLdStRegOp(*LoadI).getReg();
1145   const MachineOperand &StMO = getLdStRegOp(*StoreI);
1146   Register StRt = getLdStRegOp(*StoreI).getReg();
1147   bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
1148 
1149   assert((IsStoreXReg ||
1150           TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
1151          "Unexpected RegClass");
1152 
1153   MachineInstr *BitExtMI;
1154   if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
1155     // Remove the load, if the destination register of the loads is the same
1156     // register for stored value.
1157     if (StRt == LdRt && LoadSize == 8) {
1158       for (MachineInstr &MI : make_range(StoreI->getIterator(),
1159                                          LoadI->getIterator())) {
1160         if (MI.killsRegister(StRt, TRI)) {
1161           MI.clearRegisterKills(StRt, TRI);
1162           break;
1163         }
1164       }
1165       LLVM_DEBUG(dbgs() << "Remove load instruction:\n    ");
1166       LLVM_DEBUG(LoadI->print(dbgs()));
1167       LLVM_DEBUG(dbgs() << "\n");
1168       LoadI->eraseFromParent();
1169       return NextI;
1170     }
1171     // Replace the load with a mov if the load and store are in the same size.
1172     BitExtMI =
1173         BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1174                 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
1175             .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
1176             .add(StMO)
1177             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1178             .setMIFlags(LoadI->getFlags());
1179   } else {
1180     // FIXME: Currently we disable this transformation in big-endian targets as
1181     // performance and correctness are verified only in little-endian.
1182     if (!Subtarget->isLittleEndian())
1183       return NextI;
1184     bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI);
1185     assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) &&
1186            "Unsupported ld/st match");
1187     assert(LoadSize <= StoreSize && "Invalid load size");
1188     int UnscaledLdOffset =
1189         IsUnscaled
1190             ? AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm()
1191             : AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() * LoadSize;
1192     int UnscaledStOffset =
1193         IsUnscaled
1194             ? AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm()
1195             : AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() * StoreSize;
1196     int Width = LoadSize * 8;
1197     Register DestReg =
1198         IsStoreXReg ? Register(TRI->getMatchingSuperReg(
1199                           LdRt, AArch64::sub_32, &AArch64::GPR64RegClass))
1200                     : LdRt;
1201 
1202     assert((UnscaledLdOffset >= UnscaledStOffset &&
1203             (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
1204            "Invalid offset");
1205 
1206     int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
1207     int Imms = Immr + Width - 1;
1208     if (UnscaledLdOffset == UnscaledStOffset) {
1209       uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
1210                                 | ((Immr) << 6)               // immr
1211                                 | ((Imms) << 0)               // imms
1212           ;
1213 
1214       BitExtMI =
1215           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1216                   TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
1217                   DestReg)
1218               .add(StMO)
1219               .addImm(AndMaskEncoded)
1220               .setMIFlags(LoadI->getFlags());
1221     } else {
1222       BitExtMI =
1223           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1224                   TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
1225                   DestReg)
1226               .add(StMO)
1227               .addImm(Immr)
1228               .addImm(Imms)
1229               .setMIFlags(LoadI->getFlags());
1230     }
1231   }
1232 
1233   // Clear kill flags between store and load.
1234   for (MachineInstr &MI : make_range(StoreI->getIterator(),
1235                                      BitExtMI->getIterator()))
1236     if (MI.killsRegister(StRt, TRI)) {
1237       MI.clearRegisterKills(StRt, TRI);
1238       break;
1239     }
1240 
1241   LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n    ");
1242   LLVM_DEBUG(StoreI->print(dbgs()));
1243   LLVM_DEBUG(dbgs() << "    ");
1244   LLVM_DEBUG(LoadI->print(dbgs()));
1245   LLVM_DEBUG(dbgs() << "  with instructions:\n    ");
1246   LLVM_DEBUG(StoreI->print(dbgs()));
1247   LLVM_DEBUG(dbgs() << "    ");
1248   LLVM_DEBUG((BitExtMI)->print(dbgs()));
1249   LLVM_DEBUG(dbgs() << "\n");
1250 
1251   // Erase the old instructions.
1252   LoadI->eraseFromParent();
1253   return NextI;
1254 }
1255 
1256 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
1257   // Convert the byte-offset used by unscaled into an "element" offset used
1258   // by the scaled pair load/store instructions.
1259   if (IsUnscaled) {
1260     // If the byte-offset isn't a multiple of the stride, there's no point
1261     // trying to match it.
1262     if (Offset % OffsetStride)
1263       return false;
1264     Offset /= OffsetStride;
1265   }
1266   return Offset <= 63 && Offset >= -64;
1267 }
1268 
1269 // Do alignment, specialized to power of 2 and for signed ints,
1270 // avoiding having to do a C-style cast from uint_64t to int when
1271 // using alignTo from include/llvm/Support/MathExtras.h.
1272 // FIXME: Move this function to include/MathExtras.h?
1273 static int alignTo(int Num, int PowOf2) {
1274   return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
1275 }
1276 
1277 static bool mayAlias(MachineInstr &MIa,
1278                      SmallVectorImpl<MachineInstr *> &MemInsns,
1279                      AliasAnalysis *AA) {
1280   for (MachineInstr *MIb : MemInsns) {
1281     if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) {
1282       LLVM_DEBUG(dbgs() << "Aliasing with: "; MIb->dump());
1283       return true;
1284     }
1285   }
1286 
1287   LLVM_DEBUG(dbgs() << "No aliases found\n");
1288   return false;
1289 }
1290 
1291 bool AArch64LoadStoreOpt::findMatchingStore(
1292     MachineBasicBlock::iterator I, unsigned Limit,
1293     MachineBasicBlock::iterator &StoreI) {
1294   MachineBasicBlock::iterator B = I->getParent()->begin();
1295   MachineBasicBlock::iterator MBBI = I;
1296   MachineInstr &LoadMI = *I;
1297   Register BaseReg = AArch64InstrInfo::getLdStBaseOp(LoadMI).getReg();
1298 
1299   // If the load is the first instruction in the block, there's obviously
1300   // not any matching store.
1301   if (MBBI == B)
1302     return false;
1303 
1304   // Track which register units have been modified and used between the first
1305   // insn and the second insn.
1306   ModifiedRegUnits.clear();
1307   UsedRegUnits.clear();
1308 
1309   unsigned Count = 0;
1310   do {
1311     MBBI = prev_nodbg(MBBI, B);
1312     MachineInstr &MI = *MBBI;
1313 
1314     // Don't count transient instructions towards the search limit since there
1315     // may be different numbers of them if e.g. debug information is present.
1316     if (!MI.isTransient())
1317       ++Count;
1318 
1319     // If the load instruction reads directly from the address to which the
1320     // store instruction writes and the stored value is not modified, we can
1321     // promote the load. Since we do not handle stores with pre-/post-index,
1322     // it's unnecessary to check if BaseReg is modified by the store itself.
1323     // Also we can't handle stores without an immediate offset operand,
1324     // while the operand might be the address for a global variable.
1325     if (MI.mayStore() && isMatchingStore(LoadMI, MI) &&
1326         BaseReg == AArch64InstrInfo::getLdStBaseOp(MI).getReg() &&
1327         AArch64InstrInfo::getLdStOffsetOp(MI).isImm() &&
1328         isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
1329         ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) {
1330       StoreI = MBBI;
1331       return true;
1332     }
1333 
1334     if (MI.isCall())
1335       return false;
1336 
1337     // Update modified / uses register units.
1338     LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
1339 
1340     // Otherwise, if the base register is modified, we have no match, so
1341     // return early.
1342     if (!ModifiedRegUnits.available(BaseReg))
1343       return false;
1344 
1345     // If we encounter a store aliased with the load, return early.
1346     if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false))
1347       return false;
1348   } while (MBBI != B && Count < Limit);
1349   return false;
1350 }
1351 
1352 static bool needsWinCFI(const MachineFunction *MF) {
1353   return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1354          MF->getFunction().needsUnwindTableEntry();
1355 }
1356 
1357 // Returns true if FirstMI and MI are candidates for merging or pairing.
1358 // Otherwise, returns false.
1359 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI,
1360                                        LdStPairFlags &Flags,
1361                                        const AArch64InstrInfo *TII) {
1362   // If this is volatile or if pairing is suppressed, not a candidate.
1363   if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
1364     return false;
1365 
1366   // We should have already checked FirstMI for pair suppression and volatility.
1367   assert(!FirstMI.hasOrderedMemoryRef() &&
1368          !TII->isLdStPairSuppressed(FirstMI) &&
1369          "FirstMI shouldn't get here if either of these checks are true.");
1370 
1371   if (needsWinCFI(MI.getMF()) && (MI.getFlag(MachineInstr::FrameSetup) ||
1372                                   MI.getFlag(MachineInstr::FrameDestroy)))
1373     return false;
1374 
1375   unsigned OpcA = FirstMI.getOpcode();
1376   unsigned OpcB = MI.getOpcode();
1377 
1378   // Opcodes match: If the opcodes are pre ld/st there is nothing more to check.
1379   if (OpcA == OpcB)
1380     return !AArch64InstrInfo::isPreLdSt(FirstMI);
1381 
1382   // Two pre ld/st of different opcodes cannot be merged either
1383   if (AArch64InstrInfo::isPreLdSt(FirstMI) && AArch64InstrInfo::isPreLdSt(MI))
1384     return false;
1385 
1386   // Try to match a sign-extended load/store with a zero-extended load/store.
1387   bool IsValidLdStrOpc, PairIsValidLdStrOpc;
1388   unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
1389   assert(IsValidLdStrOpc &&
1390          "Given Opc should be a Load or Store with an immediate");
1391   // OpcA will be the first instruction in the pair.
1392   if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
1393     Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
1394     return true;
1395   }
1396 
1397   // If the second instruction isn't even a mergable/pairable load/store, bail
1398   // out.
1399   if (!PairIsValidLdStrOpc)
1400     return false;
1401 
1402   // FIXME: We don't support merging narrow stores with mixed scaled/unscaled
1403   // offsets.
1404   if (isNarrowStore(OpcA) || isNarrowStore(OpcB))
1405     return false;
1406 
1407   // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and
1408   // LDR<S,D,Q,W,X,SW>pre-LDR<S,D,Q,W,X,SW>ui
1409   // are candidate pairs that can be merged.
1410   if (isPreLdStPairCandidate(FirstMI, MI))
1411     return true;
1412 
1413   // Try to match an unscaled load/store with a scaled load/store.
1414   return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) &&
1415          getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB);
1416 
1417   // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
1418 }
1419 
1420 static bool canRenameMOP(const MachineOperand &MOP,
1421                          const TargetRegisterInfo *TRI) {
1422   if (MOP.isReg()) {
1423     auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg());
1424     // Renaming registers with multiple disjunct sub-registers (e.g. the
1425     // result of a LD3) means that all sub-registers are renamed, potentially
1426     // impacting other instructions we did not check. Bail out.
1427     // Note that this relies on the structure of the AArch64 register file. In
1428     // particular, a subregister cannot be written without overwriting the
1429     // whole register.
1430     if (RegClass->HasDisjunctSubRegs) {
1431       LLVM_DEBUG(
1432           dbgs()
1433           << "  Cannot rename operands with multiple disjunct subregisters ("
1434           << MOP << ")\n");
1435       return false;
1436     }
1437 
1438     // We cannot rename arbitrary implicit-defs, the specific rule to rewrite
1439     // them must be known. For example, in ORRWrs the implicit-def
1440     // corresponds to the result register.
1441     if (MOP.isImplicit() && MOP.isDef()) {
1442       if (!isRewritableImplicitDef(MOP.getParent()->getOpcode()))
1443         return false;
1444       return TRI->isSuperOrSubRegisterEq(
1445           MOP.getParent()->getOperand(0).getReg(), MOP.getReg());
1446     }
1447   }
1448   return MOP.isImplicit() ||
1449          (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied());
1450 }
1451 
1452 static bool
1453 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween,
1454                  SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
1455                  const TargetRegisterInfo *TRI) {
1456   if (!FirstMI.mayStore())
1457     return false;
1458 
1459   // Check if we can find an unused register which we can use to rename
1460   // the register used by the first load/store.
1461 
1462   auto RegToRename = getLdStRegOp(FirstMI).getReg();
1463   // For now, we only rename if the store operand gets killed at the store.
1464   if (!getLdStRegOp(FirstMI).isKill() &&
1465       !any_of(FirstMI.operands(),
1466               [TRI, RegToRename](const MachineOperand &MOP) {
1467                 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
1468                        MOP.isImplicit() && MOP.isKill() &&
1469                        TRI->regsOverlap(RegToRename, MOP.getReg());
1470               })) {
1471     LLVM_DEBUG(dbgs() << "  Operand not killed at " << FirstMI);
1472     return false;
1473   }
1474 
1475   bool FoundDef = false;
1476 
1477   // For each instruction between FirstMI and the previous def for RegToRename,
1478   // we
1479   // * check if we can rename RegToRename in this instruction
1480   // * collect the registers used and required register classes for RegToRename.
1481   std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI,
1482                                                            bool IsDef) {
1483     LLVM_DEBUG(dbgs() << "Checking " << MI);
1484     // Currently we do not try to rename across frame-setup instructions.
1485     if (MI.getFlag(MachineInstr::FrameSetup)) {
1486       LLVM_DEBUG(dbgs() << "  Cannot rename framesetup instructions "
1487                         << "currently\n");
1488       return false;
1489     }
1490 
1491     UsedInBetween.accumulate(MI);
1492 
1493     // For a definition, check that we can rename the definition and exit the
1494     // loop.
1495     FoundDef = IsDef;
1496 
1497     // For defs, check if we can rename the first def of RegToRename.
1498     if (FoundDef) {
1499       // For some pseudo instructions, we might not generate code in the end
1500       // (e.g. KILL) and we would end up without a correct def for the rename
1501       // register.
1502       // TODO: This might be overly conservative and we could handle those cases
1503       // in multiple ways:
1504       //       1. Insert an extra copy, to materialize the def.
1505       //       2. Skip pseudo-defs until we find an non-pseudo def.
1506       if (MI.isPseudo()) {
1507         LLVM_DEBUG(dbgs() << "  Cannot rename pseudo/bundle instruction\n");
1508         return false;
1509       }
1510 
1511       for (auto &MOP : MI.operands()) {
1512         if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() ||
1513             !TRI->regsOverlap(MOP.getReg(), RegToRename))
1514           continue;
1515         if (!canRenameMOP(MOP, TRI)) {
1516           LLVM_DEBUG(dbgs() << "  Cannot rename " << MOP << " in " << MI);
1517           return false;
1518         }
1519         RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1520       }
1521       return true;
1522     } else {
1523       for (auto &MOP : MI.operands()) {
1524         if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1525             !TRI->regsOverlap(MOP.getReg(), RegToRename))
1526           continue;
1527 
1528         if (!canRenameMOP(MOP, TRI)) {
1529           LLVM_DEBUG(dbgs() << "  Cannot rename " << MOP << " in " << MI);
1530           return false;
1531         }
1532         RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1533       }
1534     }
1535     return true;
1536   };
1537 
1538   if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs))
1539     return false;
1540 
1541   if (!FoundDef) {
1542     LLVM_DEBUG(dbgs() << "  Did not find definition for register in BB\n");
1543     return false;
1544   }
1545   return true;
1546 }
1547 
1548 // We want to merge the second load into the first by rewriting the usages of
1549 // the same reg between first (incl.) and second (excl.). We don't need to care
1550 // about any insns before FirstLoad or after SecondLoad.
1551 // 1. The second load writes new value into the same reg.
1552 //    - The renaming is impossible to impact later use of the reg.
1553 //    - The second load always trash the value written by the first load which
1554 //      means the reg must be killed before the second load.
1555 // 2. The first load must be a def for the same reg so we don't need to look
1556 //    into anything before it.
1557 static bool canRenameUntilSecondLoad(
1558     MachineInstr &FirstLoad, MachineInstr &SecondLoad,
1559     LiveRegUnits &UsedInBetween,
1560     SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
1561     const TargetRegisterInfo *TRI) {
1562   if (FirstLoad.isPseudo())
1563     return false;
1564 
1565   UsedInBetween.accumulate(FirstLoad);
1566   auto RegToRename = getLdStRegOp(FirstLoad).getReg();
1567   bool Success = std::all_of(
1568       FirstLoad.getIterator(), SecondLoad.getIterator(),
1569       [&](MachineInstr &MI) {
1570         LLVM_DEBUG(dbgs() << "Checking " << MI);
1571         // Currently we do not try to rename across frame-setup instructions.
1572         if (MI.getFlag(MachineInstr::FrameSetup)) {
1573           LLVM_DEBUG(dbgs() << "  Cannot rename framesetup instructions "
1574                             << "currently\n");
1575           return false;
1576         }
1577 
1578         for (auto &MOP : MI.operands()) {
1579           if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1580               !TRI->regsOverlap(MOP.getReg(), RegToRename))
1581             continue;
1582           if (!canRenameMOP(MOP, TRI)) {
1583             LLVM_DEBUG(dbgs() << "  Cannot rename " << MOP << " in " << MI);
1584             return false;
1585           }
1586           RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1587         }
1588 
1589         return true;
1590       });
1591   return Success;
1592 }
1593 
1594 // Check if we can find a physical register for renaming \p Reg. This register
1595 // must:
1596 // * not be defined already in \p DefinedInBB; DefinedInBB must contain all
1597 //   defined registers up to the point where the renamed register will be used,
1598 // * not used in \p UsedInBetween; UsedInBetween must contain all accessed
1599 //   registers in the range the rename register will be used,
1600 // * is available in all used register classes (checked using RequiredClasses).
1601 static std::optional<MCPhysReg> tryToFindRegisterToRename(
1602     const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB,
1603     LiveRegUnits &UsedInBetween,
1604     SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
1605     const TargetRegisterInfo *TRI) {
1606   const MachineRegisterInfo &RegInfo = MF.getRegInfo();
1607 
1608   // Checks if any sub- or super-register of PR is callee saved.
1609   auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) {
1610     return any_of(TRI->sub_and_superregs_inclusive(PR),
1611                   [&MF, TRI](MCPhysReg SubOrSuper) {
1612                     return TRI->isCalleeSavedPhysReg(SubOrSuper, MF);
1613                   });
1614   };
1615 
1616   // Check if PR or one of its sub- or super-registers can be used for all
1617   // required register classes.
1618   auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) {
1619     return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) {
1620       return any_of(
1621           TRI->sub_and_superregs_inclusive(PR),
1622           [C](MCPhysReg SubOrSuper) { return C->contains(SubOrSuper); });
1623     });
1624   };
1625 
1626   auto *RegClass = TRI->getMinimalPhysRegClass(Reg);
1627   for (const MCPhysReg &PR : *RegClass) {
1628     if (DefinedInBB.available(PR) && UsedInBetween.available(PR) &&
1629         !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) &&
1630         CanBeUsedForAllClasses(PR)) {
1631       DefinedInBB.addReg(PR);
1632       LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI)
1633                         << "\n");
1634       return {PR};
1635     }
1636   }
1637   LLVM_DEBUG(dbgs() << "No rename register found from "
1638                     << TRI->getRegClassName(RegClass) << "\n");
1639   return std::nullopt;
1640 }
1641 
1642 // For store pairs: returns a register from FirstMI to the beginning of the
1643 // block that can be renamed.
1644 // For load pairs: returns a register from FirstMI to MI that can be renamed.
1645 static std::optional<MCPhysReg> findRenameRegForSameLdStRegPair(
1646     std::optional<bool> MaybeCanRename, MachineInstr &FirstMI, MachineInstr &MI,
1647     Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween,
1648     SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
1649     const TargetRegisterInfo *TRI) {
1650   std::optional<MCPhysReg> RenameReg;
1651   if (!DebugCounter::shouldExecute(RegRenamingCounter))
1652     return RenameReg;
1653 
1654   auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
1655   MachineFunction &MF = *FirstMI.getParent()->getParent();
1656   if (!RegClass || !MF.getRegInfo().tracksLiveness())
1657     return RenameReg;
1658 
1659   const bool IsLoad = FirstMI.mayLoad();
1660 
1661   if (!MaybeCanRename) {
1662     if (IsLoad)
1663       MaybeCanRename = {canRenameUntilSecondLoad(FirstMI, MI, UsedInBetween,
1664                                                  RequiredClasses, TRI)};
1665     else
1666       MaybeCanRename = {
1667           canRenameUpToDef(FirstMI, UsedInBetween, RequiredClasses, TRI)};
1668   }
1669 
1670   if (*MaybeCanRename) {
1671     RenameReg = tryToFindRegisterToRename(MF, Reg, DefinedInBB, UsedInBetween,
1672                                           RequiredClasses, TRI);
1673   }
1674   return RenameReg;
1675 }
1676 
1677 /// Scan the instructions looking for a load/store that can be combined with the
1678 /// current instruction into a wider equivalent or a load/store pair.
1679 MachineBasicBlock::iterator
1680 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
1681                                       LdStPairFlags &Flags, unsigned Limit,
1682                                       bool FindNarrowMerge) {
1683   MachineBasicBlock::iterator E = I->getParent()->end();
1684   MachineBasicBlock::iterator MBBI = I;
1685   MachineBasicBlock::iterator MBBIWithRenameReg;
1686   MachineInstr &FirstMI = *I;
1687   MBBI = next_nodbg(MBBI, E);
1688 
1689   bool MayLoad = FirstMI.mayLoad();
1690   bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI);
1691   Register Reg = getLdStRegOp(FirstMI).getReg();
1692   Register BaseReg = AArch64InstrInfo::getLdStBaseOp(FirstMI).getReg();
1693   int Offset = AArch64InstrInfo::getLdStOffsetOp(FirstMI).getImm();
1694   int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1;
1695   bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
1696 
1697   std::optional<bool> MaybeCanRename;
1698   if (!EnableRenaming)
1699     MaybeCanRename = {false};
1700 
1701   SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses;
1702   LiveRegUnits UsedInBetween;
1703   UsedInBetween.init(*TRI);
1704 
1705   Flags.clearRenameReg();
1706 
1707   // Track which register units have been modified and used between the first
1708   // insn (inclusive) and the second insn.
1709   ModifiedRegUnits.clear();
1710   UsedRegUnits.clear();
1711 
1712   // Remember any instructions that read/write memory between FirstMI and MI.
1713   SmallVector<MachineInstr *, 4> MemInsns;
1714 
1715   LLVM_DEBUG(dbgs() << "Find match for: "; FirstMI.dump());
1716   for (unsigned Count = 0; MBBI != E && Count < Limit;
1717        MBBI = next_nodbg(MBBI, E)) {
1718     MachineInstr &MI = *MBBI;
1719     LLVM_DEBUG(dbgs() << "Analysing 2nd insn: "; MI.dump());
1720 
1721     UsedInBetween.accumulate(MI);
1722 
1723     // Don't count transient instructions towards the search limit since there
1724     // may be different numbers of them if e.g. debug information is present.
1725     if (!MI.isTransient())
1726       ++Count;
1727 
1728     Flags.setSExtIdx(-1);
1729     if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) &&
1730         AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) {
1731       assert(MI.mayLoadOrStore() && "Expected memory operation.");
1732       // If we've found another instruction with the same opcode, check to see
1733       // if the base and offset are compatible with our starting instruction.
1734       // These instructions all have scaled immediate operands, so we just
1735       // check for +1/-1. Make sure to check the new instruction offset is
1736       // actually an immediate and not a symbolic reference destined for
1737       // a relocation.
1738       Register MIBaseReg = AArch64InstrInfo::getLdStBaseOp(MI).getReg();
1739       int MIOffset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm();
1740       bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI);
1741       if (IsUnscaled != MIIsUnscaled) {
1742         // We're trying to pair instructions that differ in how they are scaled.
1743         // If FirstMI is scaled then scale the offset of MI accordingly.
1744         // Otherwise, do the opposite (i.e., make MI's offset unscaled).
1745         int MemSize = TII->getMemScale(MI);
1746         if (MIIsUnscaled) {
1747           // If the unscaled offset isn't a multiple of the MemSize, we can't
1748           // pair the operations together: bail and keep looking.
1749           if (MIOffset % MemSize) {
1750             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1751                                               UsedRegUnits, TRI);
1752             MemInsns.push_back(&MI);
1753             continue;
1754           }
1755           MIOffset /= MemSize;
1756         } else {
1757           MIOffset *= MemSize;
1758         }
1759       }
1760 
1761       bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI);
1762 
1763       if (BaseReg == MIBaseReg) {
1764         // If the offset of the second ld/st is not equal to the size of the
1765         // destination register it can’t be paired with a pre-index ld/st
1766         // pair. Additionally if the base reg is used or modified the operations
1767         // can't be paired: bail and keep looking.
1768         if (IsPreLdSt) {
1769           bool IsOutOfBounds = MIOffset != TII->getMemScale(MI);
1770           bool IsBaseRegUsed = !UsedRegUnits.available(
1771               AArch64InstrInfo::getLdStBaseOp(MI).getReg());
1772           bool IsBaseRegModified = !ModifiedRegUnits.available(
1773               AArch64InstrInfo::getLdStBaseOp(MI).getReg());
1774           // If the stored value and the address of the second instruction is
1775           // the same, it needs to be using the updated register and therefore
1776           // it must not be folded.
1777           bool IsMIRegTheSame =
1778               TRI->regsOverlap(getLdStRegOp(MI).getReg(),
1779                                AArch64InstrInfo::getLdStBaseOp(MI).getReg());
1780           if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified ||
1781               IsMIRegTheSame) {
1782             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1783                                               UsedRegUnits, TRI);
1784             MemInsns.push_back(&MI);
1785             continue;
1786           }
1787         } else {
1788           if ((Offset != MIOffset + OffsetStride) &&
1789               (Offset + OffsetStride != MIOffset)) {
1790             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1791                                               UsedRegUnits, TRI);
1792             MemInsns.push_back(&MI);
1793             continue;
1794           }
1795         }
1796 
1797         int MinOffset = Offset < MIOffset ? Offset : MIOffset;
1798         if (FindNarrowMerge) {
1799           // If the alignment requirements of the scaled wide load/store
1800           // instruction can't express the offset of the scaled narrow input,
1801           // bail and keep looking. For promotable zero stores, allow only when
1802           // the stored value is the same (i.e., WZR).
1803           if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
1804               (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
1805             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1806                                               UsedRegUnits, TRI);
1807             MemInsns.push_back(&MI);
1808             continue;
1809           }
1810         } else {
1811           // Pairwise instructions have a 7-bit signed offset field. Single
1812           // insns have a 12-bit unsigned offset field.  If the resultant
1813           // immediate offset of merging these instructions is out of range for
1814           // a pairwise instruction, bail and keep looking.
1815           if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
1816             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1817                                               UsedRegUnits, TRI);
1818             MemInsns.push_back(&MI);
1819             LLVM_DEBUG(dbgs() << "Offset doesn't fit in immediate, "
1820                               << "keep looking.\n");
1821             continue;
1822           }
1823           // If the alignment requirements of the paired (scaled) instruction
1824           // can't express the offset of the unscaled input, bail and keep
1825           // looking.
1826           if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
1827             LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1828                                               UsedRegUnits, TRI);
1829             MemInsns.push_back(&MI);
1830             LLVM_DEBUG(dbgs()
1831                        << "Offset doesn't fit due to alignment requirements, "
1832                        << "keep looking.\n");
1833             continue;
1834           }
1835         }
1836 
1837         // If the BaseReg has been modified, then we cannot do the optimization.
1838         // For example, in the following pattern
1839         //   ldr x1 [x2]
1840         //   ldr x2 [x3]
1841         //   ldr x4 [x2, #8],
1842         // the first and third ldr cannot be converted to ldp x1, x4, [x2]
1843         if (!ModifiedRegUnits.available(BaseReg))
1844           return E;
1845 
1846         const bool SameLoadReg = MayLoad && TRI->isSuperOrSubRegisterEq(
1847                                                 Reg, getLdStRegOp(MI).getReg());
1848 
1849         // If the Rt of the second instruction (destination register of the
1850         // load) was not modified or used between the two instructions and none
1851         // of the instructions between the second and first alias with the
1852         // second, we can combine the second into the first.
1853         bool RtNotModified =
1854             ModifiedRegUnits.available(getLdStRegOp(MI).getReg());
1855         bool RtNotUsed = !(MI.mayLoad() && !SameLoadReg &&
1856                            !UsedRegUnits.available(getLdStRegOp(MI).getReg()));
1857 
1858         LLVM_DEBUG(dbgs() << "Checking, can combine 2nd into 1st insn:\n"
1859                           << "Reg '" << getLdStRegOp(MI) << "' not modified: "
1860                           << (RtNotModified ? "true" : "false") << "\n"
1861                           << "Reg '" << getLdStRegOp(MI) << "' not used: "
1862                           << (RtNotUsed ? "true" : "false") << "\n");
1863 
1864         if (RtNotModified && RtNotUsed && !mayAlias(MI, MemInsns, AA)) {
1865           // For pairs loading into the same reg, try to find a renaming
1866           // opportunity to allow the renaming of Reg between FirstMI and MI
1867           // and combine MI into FirstMI; otherwise bail and keep looking.
1868           if (SameLoadReg) {
1869             std::optional<MCPhysReg> RenameReg =
1870                 findRenameRegForSameLdStRegPair(MaybeCanRename, FirstMI, MI,
1871                                                 Reg, DefinedInBB, UsedInBetween,
1872                                                 RequiredClasses, TRI);
1873             if (!RenameReg) {
1874               LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
1875                                                 UsedRegUnits, TRI);
1876               MemInsns.push_back(&MI);
1877               LLVM_DEBUG(dbgs() << "Can't find reg for renaming, "
1878                                 << "keep looking.\n");
1879               continue;
1880             }
1881             Flags.setRenameReg(*RenameReg);
1882           }
1883 
1884           Flags.setMergeForward(false);
1885           if (!SameLoadReg)
1886             Flags.clearRenameReg();
1887           return MBBI;
1888         }
1889 
1890         // Likewise, if the Rt of the first instruction is not modified or used
1891         // between the two instructions and none of the instructions between the
1892         // first and the second alias with the first, we can combine the first
1893         // into the second.
1894         RtNotModified = !(
1895             MayLoad && !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg()));
1896 
1897         LLVM_DEBUG(dbgs() << "Checking, can combine 1st into 2nd insn:\n"
1898                           << "Reg '" << getLdStRegOp(FirstMI)
1899                           << "' not modified: "
1900                           << (RtNotModified ? "true" : "false") << "\n");
1901 
1902         if (RtNotModified && !mayAlias(FirstMI, MemInsns, AA)) {
1903           if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) {
1904             Flags.setMergeForward(true);
1905             Flags.clearRenameReg();
1906             return MBBI;
1907           }
1908 
1909           std::optional<MCPhysReg> RenameReg = findRenameRegForSameLdStRegPair(
1910               MaybeCanRename, FirstMI, MI, Reg, DefinedInBB, UsedInBetween,
1911               RequiredClasses, TRI);
1912           if (RenameReg) {
1913             Flags.setMergeForward(true);
1914             Flags.setRenameReg(*RenameReg);
1915             MBBIWithRenameReg = MBBI;
1916           }
1917         }
1918         LLVM_DEBUG(dbgs() << "Unable to combine these instructions due to "
1919                           << "interference in between, keep looking.\n");
1920       }
1921     }
1922 
1923     if (Flags.getRenameReg())
1924       return MBBIWithRenameReg;
1925 
1926     // If the instruction wasn't a matching load or store.  Stop searching if we
1927     // encounter a call instruction that might modify memory.
1928     if (MI.isCall()) {
1929       LLVM_DEBUG(dbgs() << "Found a call, stop looking.\n");
1930       return E;
1931     }
1932 
1933     // Update modified / uses register units.
1934     LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
1935 
1936     // Otherwise, if the base register is modified, we have no match, so
1937     // return early.
1938     if (!ModifiedRegUnits.available(BaseReg)) {
1939       LLVM_DEBUG(dbgs() << "Base reg is modified, stop looking.\n");
1940       return E;
1941     }
1942 
1943     // Update list of instructions that read/write memory.
1944     if (MI.mayLoadOrStore())
1945       MemInsns.push_back(&MI);
1946   }
1947   return E;
1948 }
1949 
1950 static MachineBasicBlock::iterator
1951 maybeMoveCFI(MachineInstr &MI, MachineBasicBlock::iterator MaybeCFI) {
1952   auto End = MI.getParent()->end();
1953   if (MaybeCFI == End ||
1954       MaybeCFI->getOpcode() != TargetOpcode::CFI_INSTRUCTION ||
1955       !(MI.getFlag(MachineInstr::FrameSetup) ||
1956         MI.getFlag(MachineInstr::FrameDestroy)) ||
1957       AArch64InstrInfo::getLdStBaseOp(MI).getReg() != AArch64::SP)
1958     return End;
1959 
1960   const MachineFunction &MF = *MI.getParent()->getParent();
1961   unsigned CFIIndex = MaybeCFI->getOperand(0).getCFIIndex();
1962   const MCCFIInstruction &CFI = MF.getFrameInstructions()[CFIIndex];
1963   switch (CFI.getOperation()) {
1964   case MCCFIInstruction::OpDefCfa:
1965   case MCCFIInstruction::OpDefCfaOffset:
1966     return MaybeCFI;
1967   default:
1968     return End;
1969   }
1970 }
1971 
1972 MachineBasicBlock::iterator
1973 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I,
1974                                      MachineBasicBlock::iterator Update,
1975                                      bool IsPreIdx) {
1976   assert((Update->getOpcode() == AArch64::ADDXri ||
1977           Update->getOpcode() == AArch64::SUBXri) &&
1978          "Unexpected base register update instruction to merge!");
1979   MachineBasicBlock::iterator E = I->getParent()->end();
1980   MachineBasicBlock::iterator NextI = next_nodbg(I, E);
1981 
1982   // If updating the SP and the following instruction is CFA offset related CFI
1983   // instruction move it after the merged instruction.
1984   MachineBasicBlock::iterator CFI =
1985       IsPreIdx ? maybeMoveCFI(*Update, next_nodbg(Update, E)) : E;
1986 
1987   // Return the instruction following the merged instruction, which is
1988   // the instruction following our unmerged load. Unless that's the add/sub
1989   // instruction we're merging, in which case it's the one after that.
1990   if (NextI == Update)
1991     NextI = next_nodbg(NextI, E);
1992 
1993   int Value = Update->getOperand(2).getImm();
1994   assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
1995          "Can't merge 1 << 12 offset into pre-/post-indexed load / store");
1996   if (Update->getOpcode() == AArch64::SUBXri)
1997     Value = -Value;
1998 
1999   unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
2000                              : getPostIndexedOpcode(I->getOpcode());
2001   MachineInstrBuilder MIB;
2002   int Scale, MinOffset, MaxOffset;
2003   getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset);
2004   if (!AArch64InstrInfo::isPairedLdSt(*I)) {
2005     // Non-paired instruction.
2006     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
2007               .add(getLdStRegOp(*Update))
2008               .add(getLdStRegOp(*I))
2009               .add(AArch64InstrInfo::getLdStBaseOp(*I))
2010               .addImm(Value / Scale)
2011               .setMemRefs(I->memoperands())
2012               .setMIFlags(I->mergeFlagsWith(*Update));
2013   } else {
2014     // Paired instruction.
2015     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
2016               .add(getLdStRegOp(*Update))
2017               .add(getLdStRegOp(*I, 0))
2018               .add(getLdStRegOp(*I, 1))
2019               .add(AArch64InstrInfo::getLdStBaseOp(*I))
2020               .addImm(Value / Scale)
2021               .setMemRefs(I->memoperands())
2022               .setMIFlags(I->mergeFlagsWith(*Update));
2023   }
2024   if (CFI != E) {
2025     MachineBasicBlock *MBB = I->getParent();
2026     MBB->splice(std::next(MIB.getInstr()->getIterator()), MBB, CFI);
2027   }
2028 
2029   if (IsPreIdx) {
2030     ++NumPreFolded;
2031     LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store.");
2032   } else {
2033     ++NumPostFolded;
2034     LLVM_DEBUG(dbgs() << "Creating post-indexed load/store.");
2035   }
2036   LLVM_DEBUG(dbgs() << "    Replacing instructions:\n    ");
2037   LLVM_DEBUG(I->print(dbgs()));
2038   LLVM_DEBUG(dbgs() << "    ");
2039   LLVM_DEBUG(Update->print(dbgs()));
2040   LLVM_DEBUG(dbgs() << "  with instruction:\n    ");
2041   LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
2042   LLVM_DEBUG(dbgs() << "\n");
2043 
2044   // Erase the old instructions for the block.
2045   I->eraseFromParent();
2046   Update->eraseFromParent();
2047 
2048   return NextI;
2049 }
2050 
2051 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
2052                                                MachineInstr &MI,
2053                                                unsigned BaseReg, int Offset) {
2054   switch (MI.getOpcode()) {
2055   default:
2056     break;
2057   case AArch64::SUBXri:
2058   case AArch64::ADDXri:
2059     // Make sure it's a vanilla immediate operand, not a relocation or
2060     // anything else we can't handle.
2061     if (!MI.getOperand(2).isImm())
2062       break;
2063     // Watch out for 1 << 12 shifted value.
2064     if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm()))
2065       break;
2066 
2067     // The update instruction source and destination register must be the
2068     // same as the load/store base register.
2069     if (MI.getOperand(0).getReg() != BaseReg ||
2070         MI.getOperand(1).getReg() != BaseReg)
2071       break;
2072 
2073     int UpdateOffset = MI.getOperand(2).getImm();
2074     if (MI.getOpcode() == AArch64::SUBXri)
2075       UpdateOffset = -UpdateOffset;
2076 
2077     // The immediate must be a multiple of the scaling factor of the pre/post
2078     // indexed instruction.
2079     int Scale, MinOffset, MaxOffset;
2080     getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset);
2081     if (UpdateOffset % Scale != 0)
2082       break;
2083 
2084     // Scaled offset must fit in the instruction immediate.
2085     int ScaledOffset = UpdateOffset / Scale;
2086     if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset)
2087       break;
2088 
2089     // If we have a non-zero Offset, we check that it matches the amount
2090     // we're adding to the register.
2091     if (!Offset || Offset == UpdateOffset)
2092       return true;
2093     break;
2094   }
2095   return false;
2096 }
2097 
2098 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
2099     MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
2100   MachineBasicBlock::iterator E = I->getParent()->end();
2101   MachineInstr &MemMI = *I;
2102   MachineBasicBlock::iterator MBBI = I;
2103 
2104   Register BaseReg = AArch64InstrInfo::getLdStBaseOp(MemMI).getReg();
2105   int MIUnscaledOffset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm() *
2106                          TII->getMemScale(MemMI);
2107 
2108   // Scan forward looking for post-index opportunities.  Updating instructions
2109   // can't be formed if the memory instruction doesn't have the offset we're
2110   // looking for.
2111   if (MIUnscaledOffset != UnscaledOffset)
2112     return E;
2113 
2114   // If the base register overlaps a source/destination register, we can't
2115   // merge the update. This does not apply to tag store instructions which
2116   // ignore the address part of the source register.
2117   // This does not apply to STGPi as well, which does not have unpredictable
2118   // behavior in this case unlike normal stores, and always performs writeback
2119   // after reading the source register value.
2120   if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) {
2121     bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI);
2122     for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
2123       Register DestReg = getLdStRegOp(MemMI, i).getReg();
2124       if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
2125         return E;
2126     }
2127   }
2128 
2129   // Track which register units have been modified and used between the first
2130   // insn (inclusive) and the second insn.
2131   ModifiedRegUnits.clear();
2132   UsedRegUnits.clear();
2133   MBBI = next_nodbg(MBBI, E);
2134 
2135   // We can't post-increment the stack pointer if any instruction between
2136   // the memory access (I) and the increment (MBBI) can access the memory
2137   // region defined by [SP, MBBI].
2138   const bool BaseRegSP = BaseReg == AArch64::SP;
2139   if (BaseRegSP && needsWinCFI(I->getMF())) {
2140     // FIXME: For now, we always block the optimization over SP in windows
2141     // targets as it requires to adjust the unwind/debug info, messing up
2142     // the unwind info can actually cause a miscompile.
2143     return E;
2144   }
2145 
2146   for (unsigned Count = 0; MBBI != E && Count < Limit;
2147        MBBI = next_nodbg(MBBI, E)) {
2148     MachineInstr &MI = *MBBI;
2149 
2150     // Don't count transient instructions towards the search limit since there
2151     // may be different numbers of them if e.g. debug information is present.
2152     if (!MI.isTransient())
2153       ++Count;
2154 
2155     // If we found a match, return it.
2156     if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset))
2157       return MBBI;
2158 
2159     // Update the status of what the instruction clobbered and used.
2160     LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2161 
2162     // Otherwise, if the base register is used or modified, we have no match, so
2163     // return early.
2164     // If we are optimizing SP, do not allow instructions that may load or store
2165     // in between the load and the optimized value update.
2166     if (!ModifiedRegUnits.available(BaseReg) ||
2167         !UsedRegUnits.available(BaseReg) ||
2168         (BaseRegSP && MBBI->mayLoadOrStore()))
2169       return E;
2170   }
2171   return E;
2172 }
2173 
2174 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
2175     MachineBasicBlock::iterator I, unsigned Limit) {
2176   MachineBasicBlock::iterator B = I->getParent()->begin();
2177   MachineBasicBlock::iterator E = I->getParent()->end();
2178   MachineInstr &MemMI = *I;
2179   MachineBasicBlock::iterator MBBI = I;
2180   MachineFunction &MF = *MemMI.getMF();
2181 
2182   Register BaseReg = AArch64InstrInfo::getLdStBaseOp(MemMI).getReg();
2183   int Offset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm();
2184 
2185   // If the load/store is the first instruction in the block, there's obviously
2186   // not any matching update. Ditto if the memory offset isn't zero.
2187   if (MBBI == B || Offset != 0)
2188     return E;
2189   // If the base register overlaps a destination register, we can't
2190   // merge the update.
2191   if (!isTagStore(MemMI)) {
2192     bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI);
2193     for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
2194       Register DestReg = getLdStRegOp(MemMI, i).getReg();
2195       if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
2196         return E;
2197     }
2198   }
2199 
2200   const bool BaseRegSP = BaseReg == AArch64::SP;
2201   if (BaseRegSP && needsWinCFI(I->getMF())) {
2202     // FIXME: For now, we always block the optimization over SP in windows
2203     // targets as it requires to adjust the unwind/debug info, messing up
2204     // the unwind info can actually cause a miscompile.
2205     return E;
2206   }
2207 
2208   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2209   unsigned RedZoneSize =
2210       Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
2211 
2212   // Track which register units have been modified and used between the first
2213   // insn (inclusive) and the second insn.
2214   ModifiedRegUnits.clear();
2215   UsedRegUnits.clear();
2216   unsigned Count = 0;
2217   bool MemAcessBeforeSPPreInc = false;
2218   do {
2219     MBBI = prev_nodbg(MBBI, B);
2220     MachineInstr &MI = *MBBI;
2221 
2222     // Don't count transient instructions towards the search limit since there
2223     // may be different numbers of them if e.g. debug information is present.
2224     if (!MI.isTransient())
2225       ++Count;
2226 
2227     // If we found a match, return it.
2228     if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) {
2229       // Check that the update value is within our red zone limit (which may be
2230       // zero).
2231       if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize)
2232         return E;
2233       return MBBI;
2234     }
2235 
2236     // Update the status of what the instruction clobbered and used.
2237     LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2238 
2239     // Otherwise, if the base register is used or modified, we have no match, so
2240     // return early.
2241     if (!ModifiedRegUnits.available(BaseReg) ||
2242         !UsedRegUnits.available(BaseReg))
2243       return E;
2244     // Keep track if we have a memory access before an SP pre-increment, in this
2245     // case we need to validate later that the update amount respects the red
2246     // zone.
2247     if (BaseRegSP && MBBI->mayLoadOrStore())
2248       MemAcessBeforeSPPreInc = true;
2249   } while (MBBI != B && Count < Limit);
2250   return E;
2251 }
2252 
2253 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
2254     MachineBasicBlock::iterator &MBBI) {
2255   MachineInstr &MI = *MBBI;
2256   // If this is a volatile load, don't mess with it.
2257   if (MI.hasOrderedMemoryRef())
2258     return false;
2259 
2260   if (needsWinCFI(MI.getMF()) && MI.getFlag(MachineInstr::FrameDestroy))
2261     return false;
2262 
2263   // Make sure this is a reg+imm.
2264   // FIXME: It is possible to extend it to handle reg+reg cases.
2265   if (!AArch64InstrInfo::getLdStOffsetOp(MI).isImm())
2266     return false;
2267 
2268   // Look backward up to LdStLimit instructions.
2269   MachineBasicBlock::iterator StoreI;
2270   if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
2271     ++NumLoadsFromStoresPromoted;
2272     // Promote the load. Keeping the iterator straight is a
2273     // pain, so we let the merge routine tell us what the next instruction
2274     // is after it's done mucking about.
2275     MBBI = promoteLoadFromStore(MBBI, StoreI);
2276     return true;
2277   }
2278   return false;
2279 }
2280 
2281 // Merge adjacent zero stores into a wider store.
2282 bool AArch64LoadStoreOpt::tryToMergeZeroStInst(
2283     MachineBasicBlock::iterator &MBBI) {
2284   assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store.");
2285   MachineInstr &MI = *MBBI;
2286   MachineBasicBlock::iterator E = MI.getParent()->end();
2287 
2288   if (!TII->isCandidateToMergeOrPair(MI))
2289     return false;
2290 
2291   // Look ahead up to LdStLimit instructions for a mergable instruction.
2292   LdStPairFlags Flags;
2293   MachineBasicBlock::iterator MergeMI =
2294       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
2295   if (MergeMI != E) {
2296     ++NumZeroStoresPromoted;
2297 
2298     // Keeping the iterator straight is a pain, so we let the merge routine tell
2299     // us what the next instruction is after it's done mucking about.
2300     MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags);
2301     return true;
2302   }
2303   return false;
2304 }
2305 
2306 // Find loads and stores that can be merged into a single load or store pair
2307 // instruction.
2308 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
2309   MachineInstr &MI = *MBBI;
2310   MachineBasicBlock::iterator E = MI.getParent()->end();
2311 
2312   if (!TII->isCandidateToMergeOrPair(MI))
2313     return false;
2314 
2315   // If disable-ldp feature is opted, do not emit ldp.
2316   if (MI.mayLoad() && Subtarget->hasDisableLdp())
2317     return false;
2318 
2319   // If disable-stp feature is opted, do not emit stp.
2320   if (MI.mayStore() && Subtarget->hasDisableStp())
2321     return false;
2322 
2323   // Early exit if the offset is not possible to match. (6 bits of positive
2324   // range, plus allow an extra one in case we find a later insn that matches
2325   // with Offset-1)
2326   bool IsUnscaled = TII->hasUnscaledLdStOffset(MI);
2327   int Offset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm();
2328   int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1;
2329   // Allow one more for offset.
2330   if (Offset > 0)
2331     Offset -= OffsetStride;
2332   if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
2333     return false;
2334 
2335   // Look ahead up to LdStLimit instructions for a pairable instruction.
2336   LdStPairFlags Flags;
2337   MachineBasicBlock::iterator Paired =
2338       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
2339   if (Paired != E) {
2340     ++NumPairCreated;
2341     if (TII->hasUnscaledLdStOffset(MI))
2342       ++NumUnscaledPairCreated;
2343     // Keeping the iterator straight is a pain, so we let the merge routine tell
2344     // us what the next instruction is after it's done mucking about.
2345     auto Prev = std::prev(MBBI);
2346 
2347     // Fetch the memoperand of the load/store that is a candidate for
2348     // combination.
2349     MachineMemOperand *MemOp =
2350         MI.memoperands_empty() ? nullptr : MI.memoperands().front();
2351 
2352     // Get the needed alignments to check them if
2353     // ldp-aligned-only/stp-aligned-only features are opted.
2354     uint64_t MemAlignment = MemOp ? MemOp->getAlign().value() : -1;
2355     uint64_t TypeAlignment = MemOp ? Align(MemOp->getSize()).value() : -1;
2356 
2357     // If a load arrives and ldp-aligned-only feature is opted, check that the
2358     // alignment of the source pointer is at least double the alignment of the
2359     // type.
2360     if (MI.mayLoad() && Subtarget->hasLdpAlignedOnly() && MemOp &&
2361         MemAlignment < 2 * TypeAlignment)
2362       return false;
2363 
2364     // If a store arrives and stp-aligned-only feature is opted, check that the
2365     // alignment of the source pointer is at least double the alignment of the
2366     // type.
2367     if (MI.mayStore() && Subtarget->hasStpAlignedOnly() && MemOp &&
2368         MemAlignment < 2 * TypeAlignment)
2369       return false;
2370 
2371     MBBI = mergePairedInsns(MBBI, Paired, Flags);
2372     // Collect liveness info for instructions between Prev and the new position
2373     // MBBI.
2374     for (auto I = std::next(Prev); I != MBBI; I++)
2375       updateDefinedRegisters(*I, DefinedInBB, TRI);
2376 
2377     return true;
2378   }
2379   return false;
2380 }
2381 
2382 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate
2383     (MachineBasicBlock::iterator &MBBI) {
2384   MachineInstr &MI = *MBBI;
2385   MachineBasicBlock::iterator E = MI.getParent()->end();
2386   MachineBasicBlock::iterator Update;
2387 
2388   // Look forward to try to form a post-index instruction. For example,
2389   // ldr x0, [x20]
2390   // add x20, x20, #32
2391   //   merged into:
2392   // ldr x0, [x20], #32
2393   Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
2394   if (Update != E) {
2395     // Merge the update into the ld/st.
2396     MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false);
2397     return true;
2398   }
2399 
2400   // Don't know how to handle unscaled pre/post-index versions below, so bail.
2401   if (TII->hasUnscaledLdStOffset(MI.getOpcode()))
2402     return false;
2403 
2404   // Look back to try to find a pre-index instruction. For example,
2405   // add x0, x0, #8
2406   // ldr x1, [x0]
2407   //   merged into:
2408   // ldr x1, [x0, #8]!
2409   Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit);
2410   if (Update != E) {
2411     // Merge the update into the ld/st.
2412     MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
2413     return true;
2414   }
2415 
2416   // The immediate in the load/store is scaled by the size of the memory
2417   // operation. The immediate in the add we're looking for,
2418   // however, is not, so adjust here.
2419   int UnscaledOffset =
2420       AArch64InstrInfo::getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI);
2421 
2422   // Look forward to try to find a pre-index instruction. For example,
2423   // ldr x1, [x0, #64]
2424   // add x0, x0, #64
2425   //   merged into:
2426   // ldr x1, [x0, #64]!
2427   Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
2428   if (Update != E) {
2429     // Merge the update into the ld/st.
2430     MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
2431     return true;
2432   }
2433 
2434   return false;
2435 }
2436 
2437 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
2438                                         bool EnableNarrowZeroStOpt) {
2439 
2440   bool Modified = false;
2441   // Four tranformations to do here:
2442   // 1) Find loads that directly read from stores and promote them by
2443   //    replacing with mov instructions. If the store is wider than the load,
2444   //    the load will be replaced with a bitfield extract.
2445   //      e.g.,
2446   //        str w1, [x0, #4]
2447   //        ldrh w2, [x0, #6]
2448   //        ; becomes
2449   //        str w1, [x0, #4]
2450   //        lsr w2, w1, #16
2451   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
2452        MBBI != E;) {
2453     if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI))
2454       Modified = true;
2455     else
2456       ++MBBI;
2457   }
2458   // 2) Merge adjacent zero stores into a wider store.
2459   //      e.g.,
2460   //        strh wzr, [x0]
2461   //        strh wzr, [x0, #2]
2462   //        ; becomes
2463   //        str wzr, [x0]
2464   //      e.g.,
2465   //        str wzr, [x0]
2466   //        str wzr, [x0, #4]
2467   //        ; becomes
2468   //        str xzr, [x0]
2469   if (EnableNarrowZeroStOpt)
2470     for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
2471          MBBI != E;) {
2472       if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI))
2473         Modified = true;
2474       else
2475         ++MBBI;
2476     }
2477   // 3) Find loads and stores that can be merged into a single load or store
2478   //    pair instruction.
2479   //      e.g.,
2480   //        ldr x0, [x2]
2481   //        ldr x1, [x2, #8]
2482   //        ; becomes
2483   //        ldp x0, x1, [x2]
2484 
2485   if (MBB.getParent()->getRegInfo().tracksLiveness()) {
2486     DefinedInBB.clear();
2487     DefinedInBB.addLiveIns(MBB);
2488   }
2489 
2490   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
2491        MBBI != E;) {
2492     // Track currently live registers up to this point, to help with
2493     // searching for a rename register on demand.
2494     updateDefinedRegisters(*MBBI, DefinedInBB, TRI);
2495     if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI))
2496       Modified = true;
2497     else
2498       ++MBBI;
2499   }
2500   // 4) Find base register updates that can be merged into the load or store
2501   //    as a base-reg writeback.
2502   //      e.g.,
2503   //        ldr x0, [x2]
2504   //        add x2, x2, #4
2505   //        ; becomes
2506   //        ldr x0, [x2], #4
2507   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
2508        MBBI != E;) {
2509     if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI))
2510       Modified = true;
2511     else
2512       ++MBBI;
2513   }
2514 
2515   return Modified;
2516 }
2517 
2518 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2519   if (skipFunction(Fn.getFunction()))
2520     return false;
2521 
2522   Subtarget = &Fn.getSubtarget<AArch64Subtarget>();
2523   TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
2524   TRI = Subtarget->getRegisterInfo();
2525   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2526 
2527   // Resize the modified and used register unit trackers.  We do this once
2528   // per function and then clear the register units each time we optimize a load
2529   // or store.
2530   ModifiedRegUnits.init(*TRI);
2531   UsedRegUnits.init(*TRI);
2532   DefinedInBB.init(*TRI);
2533 
2534   bool Modified = false;
2535   bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign();
2536   for (auto &MBB : Fn) {
2537     auto M = optimizeBlock(MBB, enableNarrowZeroStOpt);
2538     Modified |= M;
2539   }
2540 
2541   return Modified;
2542 }
2543 
2544 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and
2545 // stores near one another?  Note: The pre-RA instruction scheduler already has
2546 // hooks to try and schedule pairable loads/stores together to improve pairing
2547 // opportunities.  Thus, pre-RA pairing pass may not be worth the effort.
2548 
2549 // FIXME: When pairing store instructions it's very possible for this pass to
2550 // hoist a store with a KILL marker above another use (without a KILL marker).
2551 // The resulting IR is invalid, but nothing uses the KILL markers after this
2552 // pass, so it's never caused a problem in practice.
2553 
2554 /// createAArch64LoadStoreOptimizationPass - returns an instance of the
2555 /// load / store optimization pass.
2556 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
2557   return new AArch64LoadStoreOpt();
2558 }
2559