1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 // The pass runs after the PrologEpilogInserter where we emit the CFI 13 // instructions. In order to preserve the correctness of the unwind informaiton, 14 // the pass should not change the order of any two instructions, one of which 15 // has the FrameSetup/FrameDestroy flag or, alternatively, apply an add-hoc fix 16 // to unwind information. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "AArch64InstrInfo.h" 21 #include "AArch64MachineFunctionInfo.h" 22 #include "AArch64Subtarget.h" 23 #include "MCTargetDesc/AArch64AddressingModes.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCDwarf.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/DebugCounter.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <functional> 51 #include <iterator> 52 #include <limits> 53 #include <optional> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "aarch64-ldst-opt" 58 59 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 60 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 61 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 62 STATISTIC(NumUnscaledPairCreated, 63 "Number of load/store from unscaled generated"); 64 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 65 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 66 67 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 68 "Controls which pairs are considered for renaming"); 69 70 // The LdStLimit limits how far we search for load/store pairs. 71 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 72 cl::init(20), cl::Hidden); 73 74 // The UpdateLimit limits how far we search for update instructions when we form 75 // pre-/post-index instructions. 76 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 77 cl::Hidden); 78 79 // Enable register renaming to find additional store pairing opportunities. 80 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming", 81 cl::init(true), cl::Hidden); 82 83 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 84 85 namespace { 86 87 using LdStPairFlags = struct LdStPairFlags { 88 // If a matching instruction is found, MergeForward is set to true if the 89 // merge is to remove the first instruction and replace the second with 90 // a pair-wise insn, and false if the reverse is true. 91 bool MergeForward = false; 92 93 // SExtIdx gives the index of the result of the load pair that must be 94 // extended. The value of SExtIdx assumes that the paired load produces the 95 // value in this order: (I, returned iterator), i.e., -1 means no value has 96 // to be extended, 0 means I, and 1 means the returned iterator. 97 int SExtIdx = -1; 98 99 // If not none, RenameReg can be used to rename the result register of the 100 // first store in a pair. Currently this only works when merging stores 101 // forward. 102 std::optional<MCPhysReg> RenameReg; 103 104 LdStPairFlags() = default; 105 106 void setMergeForward(bool V = true) { MergeForward = V; } 107 bool getMergeForward() const { return MergeForward; } 108 109 void setSExtIdx(int V) { SExtIdx = V; } 110 int getSExtIdx() const { return SExtIdx; } 111 112 void setRenameReg(MCPhysReg R) { RenameReg = R; } 113 void clearRenameReg() { RenameReg = std::nullopt; } 114 std::optional<MCPhysReg> getRenameReg() const { return RenameReg; } 115 }; 116 117 struct AArch64LoadStoreOpt : public MachineFunctionPass { 118 static char ID; 119 120 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 121 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 122 } 123 124 AliasAnalysis *AA; 125 const AArch64InstrInfo *TII; 126 const TargetRegisterInfo *TRI; 127 const AArch64Subtarget *Subtarget; 128 129 // Track which register units have been modified and used. 130 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 131 LiveRegUnits DefinedInBB; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<AAResultsWrapperPass>(); 135 MachineFunctionPass::getAnalysisUsage(AU); 136 } 137 138 // Scan the instructions looking for a load/store that can be combined 139 // with the current instruction into a load/store pair. 140 // Return the matching instruction if one is found, else MBB->end(). 141 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 142 LdStPairFlags &Flags, 143 unsigned Limit, 144 bool FindNarrowMerge); 145 146 // Scan the instructions looking for a store that writes to the address from 147 // which the current load instruction reads. Return true if one is found. 148 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 149 MachineBasicBlock::iterator &StoreI); 150 151 // Merge the two instructions indicated into a wider narrow store instruction. 152 MachineBasicBlock::iterator 153 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 154 MachineBasicBlock::iterator MergeMI, 155 const LdStPairFlags &Flags); 156 157 // Merge the two instructions indicated into a single pair-wise instruction. 158 MachineBasicBlock::iterator 159 mergePairedInsns(MachineBasicBlock::iterator I, 160 MachineBasicBlock::iterator Paired, 161 const LdStPairFlags &Flags); 162 163 // Promote the load that reads directly from the address stored to. 164 MachineBasicBlock::iterator 165 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 166 MachineBasicBlock::iterator StoreI); 167 168 // Scan the instruction list to find a base register update that can 169 // be combined with the current instruction (a load or store) using 170 // pre or post indexed addressing with writeback. Scan forwards. 171 MachineBasicBlock::iterator 172 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 173 int UnscaledOffset, unsigned Limit); 174 175 // Scan the instruction list to find a base register update that can 176 // be combined with the current instruction (a load or store) using 177 // pre or post indexed addressing with writeback. Scan backwards. 178 MachineBasicBlock::iterator 179 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 180 181 // Find an instruction that updates the base register of the ld/st 182 // instruction. 183 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 184 unsigned BaseReg, int Offset); 185 186 // Merge a pre- or post-index base register update into a ld/st instruction. 187 MachineBasicBlock::iterator 188 mergeUpdateInsn(MachineBasicBlock::iterator I, 189 MachineBasicBlock::iterator Update, bool IsPreIdx); 190 191 // Find and merge zero store instructions. 192 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 193 194 // Find and pair ldr/str instructions. 195 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 196 197 // Find and promote load instructions which read directly from store. 198 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 199 200 // Find and merge a base register updates before or after a ld/st instruction. 201 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 202 203 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 204 205 bool runOnMachineFunction(MachineFunction &Fn) override; 206 207 MachineFunctionProperties getRequiredProperties() const override { 208 return MachineFunctionProperties().set( 209 MachineFunctionProperties::Property::NoVRegs); 210 } 211 212 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 213 }; 214 215 char AArch64LoadStoreOpt::ID = 0; 216 217 } // end anonymous namespace 218 219 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 220 AARCH64_LOAD_STORE_OPT_NAME, false, false) 221 222 static bool isNarrowStore(unsigned Opc) { 223 switch (Opc) { 224 default: 225 return false; 226 case AArch64::STRBBui: 227 case AArch64::STURBBi: 228 case AArch64::STRHHui: 229 case AArch64::STURHHi: 230 return true; 231 } 232 } 233 234 // These instruction set memory tag and either keep memory contents unchanged or 235 // set it to zero, ignoring the address part of the source register. 236 static bool isTagStore(const MachineInstr &MI) { 237 switch (MI.getOpcode()) { 238 default: 239 return false; 240 case AArch64::STGi: 241 case AArch64::STZGi: 242 case AArch64::ST2Gi: 243 case AArch64::STZ2Gi: 244 return true; 245 } 246 } 247 248 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 249 bool *IsValidLdStrOpc = nullptr) { 250 if (IsValidLdStrOpc) 251 *IsValidLdStrOpc = true; 252 switch (Opc) { 253 default: 254 if (IsValidLdStrOpc) 255 *IsValidLdStrOpc = false; 256 return std::numeric_limits<unsigned>::max(); 257 case AArch64::STRDui: 258 case AArch64::STURDi: 259 case AArch64::STRDpre: 260 case AArch64::STRQui: 261 case AArch64::STURQi: 262 case AArch64::STRQpre: 263 case AArch64::STRBBui: 264 case AArch64::STURBBi: 265 case AArch64::STRHHui: 266 case AArch64::STURHHi: 267 case AArch64::STRWui: 268 case AArch64::STRWpre: 269 case AArch64::STURWi: 270 case AArch64::STRXui: 271 case AArch64::STRXpre: 272 case AArch64::STURXi: 273 case AArch64::LDRDui: 274 case AArch64::LDURDi: 275 case AArch64::LDRDpre: 276 case AArch64::LDRQui: 277 case AArch64::LDURQi: 278 case AArch64::LDRQpre: 279 case AArch64::LDRWui: 280 case AArch64::LDURWi: 281 case AArch64::LDRWpre: 282 case AArch64::LDRXui: 283 case AArch64::LDURXi: 284 case AArch64::LDRXpre: 285 case AArch64::STRSui: 286 case AArch64::STURSi: 287 case AArch64::STRSpre: 288 case AArch64::LDRSui: 289 case AArch64::LDURSi: 290 case AArch64::LDRSpre: 291 return Opc; 292 case AArch64::LDRSWui: 293 return AArch64::LDRWui; 294 case AArch64::LDURSWi: 295 return AArch64::LDURWi; 296 case AArch64::LDRSWpre: 297 return AArch64::LDRWpre; 298 } 299 } 300 301 static unsigned getMatchingWideOpcode(unsigned Opc) { 302 switch (Opc) { 303 default: 304 llvm_unreachable("Opcode has no wide equivalent!"); 305 case AArch64::STRBBui: 306 return AArch64::STRHHui; 307 case AArch64::STRHHui: 308 return AArch64::STRWui; 309 case AArch64::STURBBi: 310 return AArch64::STURHHi; 311 case AArch64::STURHHi: 312 return AArch64::STURWi; 313 case AArch64::STURWi: 314 return AArch64::STURXi; 315 case AArch64::STRWui: 316 return AArch64::STRXui; 317 } 318 } 319 320 static unsigned getMatchingPairOpcode(unsigned Opc) { 321 switch (Opc) { 322 default: 323 llvm_unreachable("Opcode has no pairwise equivalent!"); 324 case AArch64::STRSui: 325 case AArch64::STURSi: 326 return AArch64::STPSi; 327 case AArch64::STRSpre: 328 return AArch64::STPSpre; 329 case AArch64::STRDui: 330 case AArch64::STURDi: 331 return AArch64::STPDi; 332 case AArch64::STRDpre: 333 return AArch64::STPDpre; 334 case AArch64::STRQui: 335 case AArch64::STURQi: 336 return AArch64::STPQi; 337 case AArch64::STRQpre: 338 return AArch64::STPQpre; 339 case AArch64::STRWui: 340 case AArch64::STURWi: 341 return AArch64::STPWi; 342 case AArch64::STRWpre: 343 return AArch64::STPWpre; 344 case AArch64::STRXui: 345 case AArch64::STURXi: 346 return AArch64::STPXi; 347 case AArch64::STRXpre: 348 return AArch64::STPXpre; 349 case AArch64::LDRSui: 350 case AArch64::LDURSi: 351 return AArch64::LDPSi; 352 case AArch64::LDRSpre: 353 return AArch64::LDPSpre; 354 case AArch64::LDRDui: 355 case AArch64::LDURDi: 356 return AArch64::LDPDi; 357 case AArch64::LDRDpre: 358 return AArch64::LDPDpre; 359 case AArch64::LDRQui: 360 case AArch64::LDURQi: 361 return AArch64::LDPQi; 362 case AArch64::LDRQpre: 363 return AArch64::LDPQpre; 364 case AArch64::LDRWui: 365 case AArch64::LDURWi: 366 return AArch64::LDPWi; 367 case AArch64::LDRWpre: 368 return AArch64::LDPWpre; 369 case AArch64::LDRXui: 370 case AArch64::LDURXi: 371 return AArch64::LDPXi; 372 case AArch64::LDRXpre: 373 return AArch64::LDPXpre; 374 case AArch64::LDRSWui: 375 case AArch64::LDURSWi: 376 return AArch64::LDPSWi; 377 case AArch64::LDRSWpre: 378 return AArch64::LDPSWpre; 379 } 380 } 381 382 static unsigned isMatchingStore(MachineInstr &LoadInst, 383 MachineInstr &StoreInst) { 384 unsigned LdOpc = LoadInst.getOpcode(); 385 unsigned StOpc = StoreInst.getOpcode(); 386 switch (LdOpc) { 387 default: 388 llvm_unreachable("Unsupported load instruction!"); 389 case AArch64::LDRBBui: 390 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 391 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 392 case AArch64::LDURBBi: 393 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 394 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 395 case AArch64::LDRHHui: 396 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 397 StOpc == AArch64::STRXui; 398 case AArch64::LDURHHi: 399 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 400 StOpc == AArch64::STURXi; 401 case AArch64::LDRWui: 402 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 403 case AArch64::LDURWi: 404 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 405 case AArch64::LDRXui: 406 return StOpc == AArch64::STRXui; 407 case AArch64::LDURXi: 408 return StOpc == AArch64::STURXi; 409 } 410 } 411 412 static unsigned getPreIndexedOpcode(unsigned Opc) { 413 // FIXME: We don't currently support creating pre-indexed loads/stores when 414 // the load or store is the unscaled version. If we decide to perform such an 415 // optimization in the future the cases for the unscaled loads/stores will 416 // need to be added here. 417 switch (Opc) { 418 default: 419 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 420 case AArch64::STRSui: 421 return AArch64::STRSpre; 422 case AArch64::STRDui: 423 return AArch64::STRDpre; 424 case AArch64::STRQui: 425 return AArch64::STRQpre; 426 case AArch64::STRBBui: 427 return AArch64::STRBBpre; 428 case AArch64::STRHHui: 429 return AArch64::STRHHpre; 430 case AArch64::STRWui: 431 return AArch64::STRWpre; 432 case AArch64::STRXui: 433 return AArch64::STRXpre; 434 case AArch64::LDRSui: 435 return AArch64::LDRSpre; 436 case AArch64::LDRDui: 437 return AArch64::LDRDpre; 438 case AArch64::LDRQui: 439 return AArch64::LDRQpre; 440 case AArch64::LDRBBui: 441 return AArch64::LDRBBpre; 442 case AArch64::LDRHHui: 443 return AArch64::LDRHHpre; 444 case AArch64::LDRWui: 445 return AArch64::LDRWpre; 446 case AArch64::LDRXui: 447 return AArch64::LDRXpre; 448 case AArch64::LDRSWui: 449 return AArch64::LDRSWpre; 450 case AArch64::LDPSi: 451 return AArch64::LDPSpre; 452 case AArch64::LDPSWi: 453 return AArch64::LDPSWpre; 454 case AArch64::LDPDi: 455 return AArch64::LDPDpre; 456 case AArch64::LDPQi: 457 return AArch64::LDPQpre; 458 case AArch64::LDPWi: 459 return AArch64::LDPWpre; 460 case AArch64::LDPXi: 461 return AArch64::LDPXpre; 462 case AArch64::STPSi: 463 return AArch64::STPSpre; 464 case AArch64::STPDi: 465 return AArch64::STPDpre; 466 case AArch64::STPQi: 467 return AArch64::STPQpre; 468 case AArch64::STPWi: 469 return AArch64::STPWpre; 470 case AArch64::STPXi: 471 return AArch64::STPXpre; 472 case AArch64::STGi: 473 return AArch64::STGPreIndex; 474 case AArch64::STZGi: 475 return AArch64::STZGPreIndex; 476 case AArch64::ST2Gi: 477 return AArch64::ST2GPreIndex; 478 case AArch64::STZ2Gi: 479 return AArch64::STZ2GPreIndex; 480 case AArch64::STGPi: 481 return AArch64::STGPpre; 482 } 483 } 484 485 static unsigned getPostIndexedOpcode(unsigned Opc) { 486 switch (Opc) { 487 default: 488 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 489 case AArch64::STRSui: 490 case AArch64::STURSi: 491 return AArch64::STRSpost; 492 case AArch64::STRDui: 493 case AArch64::STURDi: 494 return AArch64::STRDpost; 495 case AArch64::STRQui: 496 case AArch64::STURQi: 497 return AArch64::STRQpost; 498 case AArch64::STRBBui: 499 return AArch64::STRBBpost; 500 case AArch64::STRHHui: 501 return AArch64::STRHHpost; 502 case AArch64::STRWui: 503 case AArch64::STURWi: 504 return AArch64::STRWpost; 505 case AArch64::STRXui: 506 case AArch64::STURXi: 507 return AArch64::STRXpost; 508 case AArch64::LDRSui: 509 case AArch64::LDURSi: 510 return AArch64::LDRSpost; 511 case AArch64::LDRDui: 512 case AArch64::LDURDi: 513 return AArch64::LDRDpost; 514 case AArch64::LDRQui: 515 case AArch64::LDURQi: 516 return AArch64::LDRQpost; 517 case AArch64::LDRBBui: 518 return AArch64::LDRBBpost; 519 case AArch64::LDRHHui: 520 return AArch64::LDRHHpost; 521 case AArch64::LDRWui: 522 case AArch64::LDURWi: 523 return AArch64::LDRWpost; 524 case AArch64::LDRXui: 525 case AArch64::LDURXi: 526 return AArch64::LDRXpost; 527 case AArch64::LDRSWui: 528 return AArch64::LDRSWpost; 529 case AArch64::LDPSi: 530 return AArch64::LDPSpost; 531 case AArch64::LDPSWi: 532 return AArch64::LDPSWpost; 533 case AArch64::LDPDi: 534 return AArch64::LDPDpost; 535 case AArch64::LDPQi: 536 return AArch64::LDPQpost; 537 case AArch64::LDPWi: 538 return AArch64::LDPWpost; 539 case AArch64::LDPXi: 540 return AArch64::LDPXpost; 541 case AArch64::STPSi: 542 return AArch64::STPSpost; 543 case AArch64::STPDi: 544 return AArch64::STPDpost; 545 case AArch64::STPQi: 546 return AArch64::STPQpost; 547 case AArch64::STPWi: 548 return AArch64::STPWpost; 549 case AArch64::STPXi: 550 return AArch64::STPXpost; 551 case AArch64::STGi: 552 return AArch64::STGPostIndex; 553 case AArch64::STZGi: 554 return AArch64::STZGPostIndex; 555 case AArch64::ST2Gi: 556 return AArch64::ST2GPostIndex; 557 case AArch64::STZ2Gi: 558 return AArch64::STZ2GPostIndex; 559 case AArch64::STGPi: 560 return AArch64::STGPpost; 561 } 562 } 563 564 static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI) { 565 566 unsigned OpcA = FirstMI.getOpcode(); 567 unsigned OpcB = MI.getOpcode(); 568 569 switch (OpcA) { 570 default: 571 return false; 572 case AArch64::STRSpre: 573 return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi); 574 case AArch64::STRDpre: 575 return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi); 576 case AArch64::STRQpre: 577 return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi); 578 case AArch64::STRWpre: 579 return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi); 580 case AArch64::STRXpre: 581 return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi); 582 case AArch64::LDRSpre: 583 return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi); 584 case AArch64::LDRDpre: 585 return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi); 586 case AArch64::LDRQpre: 587 return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi); 588 case AArch64::LDRWpre: 589 return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi); 590 case AArch64::LDRXpre: 591 return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi); 592 case AArch64::LDRSWpre: 593 return (OpcB == AArch64::LDRSWui) || (OpcB == AArch64::LDURSWi); 594 } 595 } 596 597 // Returns the scale and offset range of pre/post indexed variants of MI. 598 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 599 int &MinOffset, int &MaxOffset) { 600 bool IsPaired = AArch64InstrInfo::isPairedLdSt(MI); 601 bool IsTagStore = isTagStore(MI); 602 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 603 // as in the "unsigned offset" variant. 604 // All other pre/post indexed ldst instructions are unscaled. 605 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; 606 607 if (IsPaired) { 608 MinOffset = -64; 609 MaxOffset = 63; 610 } else { 611 MinOffset = -256; 612 MaxOffset = 255; 613 } 614 } 615 616 static MachineOperand &getLdStRegOp(MachineInstr &MI, 617 unsigned PairedRegOp = 0) { 618 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 619 bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI); 620 if (IsPreLdSt) 621 PairedRegOp += 1; 622 unsigned Idx = 623 AArch64InstrInfo::isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0; 624 return MI.getOperand(Idx); 625 } 626 627 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 628 MachineInstr &StoreInst, 629 const AArch64InstrInfo *TII) { 630 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 631 int LoadSize = TII->getMemScale(LoadInst); 632 int StoreSize = TII->getMemScale(StoreInst); 633 int UnscaledStOffset = 634 TII->hasUnscaledLdStOffset(StoreInst) 635 ? AArch64InstrInfo::getLdStOffsetOp(StoreInst).getImm() 636 : AArch64InstrInfo::getLdStOffsetOp(StoreInst).getImm() * StoreSize; 637 int UnscaledLdOffset = 638 TII->hasUnscaledLdStOffset(LoadInst) 639 ? AArch64InstrInfo::getLdStOffsetOp(LoadInst).getImm() 640 : AArch64InstrInfo::getLdStOffsetOp(LoadInst).getImm() * LoadSize; 641 return (UnscaledStOffset <= UnscaledLdOffset) && 642 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 643 } 644 645 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 646 unsigned Opc = MI.getOpcode(); 647 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 648 isNarrowStore(Opc)) && 649 getLdStRegOp(MI).getReg() == AArch64::WZR; 650 } 651 652 static bool isPromotableLoadFromStore(MachineInstr &MI) { 653 switch (MI.getOpcode()) { 654 default: 655 return false; 656 // Scaled instructions. 657 case AArch64::LDRBBui: 658 case AArch64::LDRHHui: 659 case AArch64::LDRWui: 660 case AArch64::LDRXui: 661 // Unscaled instructions. 662 case AArch64::LDURBBi: 663 case AArch64::LDURHHi: 664 case AArch64::LDURWi: 665 case AArch64::LDURXi: 666 return true; 667 } 668 } 669 670 static bool isMergeableLdStUpdate(MachineInstr &MI) { 671 unsigned Opc = MI.getOpcode(); 672 switch (Opc) { 673 default: 674 return false; 675 // Scaled instructions. 676 case AArch64::STRSui: 677 case AArch64::STRDui: 678 case AArch64::STRQui: 679 case AArch64::STRXui: 680 case AArch64::STRWui: 681 case AArch64::STRHHui: 682 case AArch64::STRBBui: 683 case AArch64::LDRSui: 684 case AArch64::LDRDui: 685 case AArch64::LDRQui: 686 case AArch64::LDRXui: 687 case AArch64::LDRWui: 688 case AArch64::LDRHHui: 689 case AArch64::LDRBBui: 690 case AArch64::STGi: 691 case AArch64::STZGi: 692 case AArch64::ST2Gi: 693 case AArch64::STZ2Gi: 694 case AArch64::STGPi: 695 // Unscaled instructions. 696 case AArch64::STURSi: 697 case AArch64::STURDi: 698 case AArch64::STURQi: 699 case AArch64::STURWi: 700 case AArch64::STURXi: 701 case AArch64::LDURSi: 702 case AArch64::LDURDi: 703 case AArch64::LDURQi: 704 case AArch64::LDURWi: 705 case AArch64::LDURXi: 706 // Paired instructions. 707 case AArch64::LDPSi: 708 case AArch64::LDPSWi: 709 case AArch64::LDPDi: 710 case AArch64::LDPQi: 711 case AArch64::LDPWi: 712 case AArch64::LDPXi: 713 case AArch64::STPSi: 714 case AArch64::STPDi: 715 case AArch64::STPQi: 716 case AArch64::STPWi: 717 case AArch64::STPXi: 718 // Make sure this is a reg+imm (as opposed to an address reloc). 719 if (!AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) 720 return false; 721 722 return true; 723 } 724 } 725 726 MachineBasicBlock::iterator 727 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 728 MachineBasicBlock::iterator MergeMI, 729 const LdStPairFlags &Flags) { 730 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 731 "Expected promotable zero stores."); 732 733 MachineBasicBlock::iterator E = I->getParent()->end(); 734 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 735 // If NextI is the second of the two instructions to be merged, we need 736 // to skip one further. Either way we merge will invalidate the iterator, 737 // and we don't need to scan the new instruction, as it's a pairwise 738 // instruction, which we're not considering for further action anyway. 739 if (NextI == MergeMI) 740 NextI = next_nodbg(NextI, E); 741 742 unsigned Opc = I->getOpcode(); 743 unsigned MergeMIOpc = MergeMI->getOpcode(); 744 bool IsScaled = !TII->hasUnscaledLdStOffset(Opc); 745 bool IsMergedMIScaled = !TII->hasUnscaledLdStOffset(MergeMIOpc); 746 int OffsetStride = IsScaled ? TII->getMemScale(*I) : 1; 747 int MergeMIOffsetStride = IsMergedMIScaled ? TII->getMemScale(*MergeMI) : 1; 748 749 bool MergeForward = Flags.getMergeForward(); 750 // Insert our new paired instruction after whichever of the paired 751 // instructions MergeForward indicates. 752 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 753 // Also based on MergeForward is from where we copy the base register operand 754 // so we get the flags compatible with the input code. 755 const MachineOperand &BaseRegOp = 756 MergeForward ? AArch64InstrInfo::getLdStBaseOp(*MergeMI) 757 : AArch64InstrInfo::getLdStBaseOp(*I); 758 759 // Which register is Rt and which is Rt2 depends on the offset order. 760 int64_t IOffsetInBytes = 761 AArch64InstrInfo::getLdStOffsetOp(*I).getImm() * OffsetStride; 762 int64_t MIOffsetInBytes = 763 AArch64InstrInfo::getLdStOffsetOp(*MergeMI).getImm() * 764 MergeMIOffsetStride; 765 // Select final offset based on the offset order. 766 int64_t OffsetImm; 767 if (IOffsetInBytes > MIOffsetInBytes) 768 OffsetImm = MIOffsetInBytes; 769 else 770 OffsetImm = IOffsetInBytes; 771 772 int NewOpcode = getMatchingWideOpcode(Opc); 773 bool FinalIsScaled = !TII->hasUnscaledLdStOffset(NewOpcode); 774 775 // Adjust final offset if the result opcode is a scaled store. 776 if (FinalIsScaled) { 777 int NewOffsetStride = FinalIsScaled ? TII->getMemScale(NewOpcode) : 1; 778 assert(((OffsetImm % NewOffsetStride) == 0) && 779 "Offset should be a multiple of the store memory scale"); 780 OffsetImm = OffsetImm / NewOffsetStride; 781 } 782 783 // Construct the new instruction. 784 DebugLoc DL = I->getDebugLoc(); 785 MachineBasicBlock *MBB = I->getParent(); 786 MachineInstrBuilder MIB; 787 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 788 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 789 .add(BaseRegOp) 790 .addImm(OffsetImm) 791 .cloneMergedMemRefs({&*I, &*MergeMI}) 792 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 793 (void)MIB; 794 795 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 796 LLVM_DEBUG(I->print(dbgs())); 797 LLVM_DEBUG(dbgs() << " "); 798 LLVM_DEBUG(MergeMI->print(dbgs())); 799 LLVM_DEBUG(dbgs() << " with instruction:\n "); 800 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 801 LLVM_DEBUG(dbgs() << "\n"); 802 803 // Erase the old instructions. 804 I->eraseFromParent(); 805 MergeMI->eraseFromParent(); 806 return NextI; 807 } 808 809 // Apply Fn to all instructions between MI and the beginning of the block, until 810 // a def for DefReg is reached. Returns true, iff Fn returns true for all 811 // visited instructions. Stop after visiting Limit iterations. 812 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 813 const TargetRegisterInfo *TRI, unsigned Limit, 814 std::function<bool(MachineInstr &, bool)> &Fn) { 815 auto MBB = MI.getParent(); 816 for (MachineInstr &I : 817 instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) { 818 if (!Limit) 819 return false; 820 --Limit; 821 822 bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) { 823 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 824 TRI->regsOverlap(MOP.getReg(), DefReg); 825 }); 826 if (!Fn(I, isDef)) 827 return false; 828 if (isDef) 829 break; 830 } 831 return true; 832 } 833 834 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 835 const TargetRegisterInfo *TRI) { 836 837 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 838 if (MOP.isReg() && MOP.isKill()) 839 Units.removeReg(MOP.getReg()); 840 841 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 842 if (MOP.isReg() && !MOP.isKill()) 843 Units.addReg(MOP.getReg()); 844 } 845 846 MachineBasicBlock::iterator 847 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 848 MachineBasicBlock::iterator Paired, 849 const LdStPairFlags &Flags) { 850 MachineBasicBlock::iterator E = I->getParent()->end(); 851 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 852 // If NextI is the second of the two instructions to be merged, we need 853 // to skip one further. Either way we merge will invalidate the iterator, 854 // and we don't need to scan the new instruction, as it's a pairwise 855 // instruction, which we're not considering for further action anyway. 856 if (NextI == Paired) 857 NextI = next_nodbg(NextI, E); 858 859 int SExtIdx = Flags.getSExtIdx(); 860 unsigned Opc = 861 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 862 bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc); 863 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; 864 865 bool MergeForward = Flags.getMergeForward(); 866 867 std::optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 868 if (MergeForward && RenameReg) { 869 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 870 DefinedInBB.addReg(*RenameReg); 871 872 // Return the sub/super register for RenameReg, matching the size of 873 // OriginalReg. 874 auto GetMatchingSubReg = [this, 875 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 876 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 877 if (TRI->getMinimalPhysRegClass(OriginalReg) == 878 TRI->getMinimalPhysRegClass(SubOrSuper)) 879 return SubOrSuper; 880 llvm_unreachable("Should have found matching sub or super register!"); 881 }; 882 883 std::function<bool(MachineInstr &, bool)> UpdateMIs = 884 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 885 if (IsDef) { 886 bool SeenDef = false; 887 for (auto &MOP : MI.operands()) { 888 // Rename the first explicit definition and all implicit 889 // definitions matching RegToRename. 890 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 891 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 892 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 893 assert((MOP.isImplicit() || 894 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 895 "Need renamable operands"); 896 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 897 SeenDef = true; 898 } 899 } 900 } else { 901 for (auto &MOP : MI.operands()) { 902 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 903 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 904 assert((MOP.isImplicit() || 905 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 906 "Need renamable operands"); 907 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 908 } 909 } 910 } 911 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 912 return true; 913 }; 914 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 915 916 #if !defined(NDEBUG) 917 // Make sure the register used for renaming is not used between the paired 918 // instructions. That would trash the content before the new paired 919 // instruction. 920 for (auto &MI : 921 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 922 std::next(I), std::next(Paired))) 923 assert(all_of(MI.operands(), 924 [this, &RenameReg](const MachineOperand &MOP) { 925 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 926 MOP.isUndef() || 927 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 928 }) && 929 "Rename register used between paired instruction, trashing the " 930 "content"); 931 #endif 932 } 933 934 // Insert our new paired instruction after whichever of the paired 935 // instructions MergeForward indicates. 936 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 937 // Also based on MergeForward is from where we copy the base register operand 938 // so we get the flags compatible with the input code. 939 const MachineOperand &BaseRegOp = 940 MergeForward ? AArch64InstrInfo::getLdStBaseOp(*Paired) 941 : AArch64InstrInfo::getLdStBaseOp(*I); 942 943 int Offset = AArch64InstrInfo::getLdStOffsetOp(*I).getImm(); 944 int PairedOffset = AArch64InstrInfo::getLdStOffsetOp(*Paired).getImm(); 945 bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode()); 946 if (IsUnscaled != PairedIsUnscaled) { 947 // We're trying to pair instructions that differ in how they are scaled. If 948 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 949 // the opposite (i.e., make Paired's offset unscaled). 950 int MemSize = TII->getMemScale(*Paired); 951 if (PairedIsUnscaled) { 952 // If the unscaled offset isn't a multiple of the MemSize, we can't 953 // pair the operations together. 954 assert(!(PairedOffset % TII->getMemScale(*Paired)) && 955 "Offset should be a multiple of the stride!"); 956 PairedOffset /= MemSize; 957 } else { 958 PairedOffset *= MemSize; 959 } 960 } 961 962 // Which register is Rt and which is Rt2 depends on the offset order. 963 // However, for pre load/stores the Rt should be the one of the pre 964 // load/store. 965 MachineInstr *RtMI, *Rt2MI; 966 if (Offset == PairedOffset + OffsetStride && 967 !AArch64InstrInfo::isPreLdSt(*I)) { 968 RtMI = &*Paired; 969 Rt2MI = &*I; 970 // Here we swapped the assumption made for SExtIdx. 971 // I.e., we turn ldp I, Paired into ldp Paired, I. 972 // Update the index accordingly. 973 if (SExtIdx != -1) 974 SExtIdx = (SExtIdx + 1) % 2; 975 } else { 976 RtMI = &*I; 977 Rt2MI = &*Paired; 978 } 979 int OffsetImm = AArch64InstrInfo::getLdStOffsetOp(*RtMI).getImm(); 980 // Scale the immediate offset, if necessary. 981 if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) { 982 assert(!(OffsetImm % TII->getMemScale(*RtMI)) && 983 "Unscaled offset cannot be scaled."); 984 OffsetImm /= TII->getMemScale(*RtMI); 985 } 986 987 // Construct the new instruction. 988 MachineInstrBuilder MIB; 989 DebugLoc DL = I->getDebugLoc(); 990 MachineBasicBlock *MBB = I->getParent(); 991 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 992 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 993 // Kill flags may become invalid when moving stores for pairing. 994 if (RegOp0.isUse()) { 995 if (!MergeForward) { 996 // Clear kill flags on store if moving upwards. Example: 997 // STRWui %w0, ... 998 // USE %w1 999 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 1000 RegOp0.setIsKill(false); 1001 RegOp1.setIsKill(false); 1002 } else { 1003 // Clear kill flags of the first stores register. Example: 1004 // STRWui %w1, ... 1005 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 1006 // STRW %w0 1007 Register Reg = getLdStRegOp(*I).getReg(); 1008 for (MachineInstr &MI : make_range(std::next(I), Paired)) 1009 MI.clearRegisterKills(Reg, TRI); 1010 } 1011 } 1012 1013 unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc); 1014 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode)); 1015 1016 // Adds the pre-index operand for pre-indexed ld/st pairs. 1017 if (AArch64InstrInfo::isPreLdSt(*RtMI)) 1018 MIB.addReg(BaseRegOp.getReg(), RegState::Define); 1019 1020 MIB.add(RegOp0) 1021 .add(RegOp1) 1022 .add(BaseRegOp) 1023 .addImm(OffsetImm) 1024 .cloneMergedMemRefs({&*I, &*Paired}) 1025 .setMIFlags(I->mergeFlagsWith(*Paired)); 1026 1027 (void)MIB; 1028 1029 LLVM_DEBUG( 1030 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 1031 LLVM_DEBUG(I->print(dbgs())); 1032 LLVM_DEBUG(dbgs() << " "); 1033 LLVM_DEBUG(Paired->print(dbgs())); 1034 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1035 if (SExtIdx != -1) { 1036 // Generate the sign extension for the proper result of the ldp. 1037 // I.e., with X1, that would be: 1038 // %w1 = KILL %w1, implicit-def %x1 1039 // %x1 = SBFMXri killed %x1, 0, 31 1040 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 1041 // Right now, DstMO has the extended register, since it comes from an 1042 // extended opcode. 1043 Register DstRegX = DstMO.getReg(); 1044 // Get the W variant of that register. 1045 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 1046 // Update the result of LDP to use the W instead of the X variant. 1047 DstMO.setReg(DstRegW); 1048 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1049 LLVM_DEBUG(dbgs() << "\n"); 1050 // Make the machine verifier happy by providing a definition for 1051 // the X register. 1052 // Insert this definition right after the generated LDP, i.e., before 1053 // InsertionPoint. 1054 MachineInstrBuilder MIBKill = 1055 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 1056 .addReg(DstRegW) 1057 .addReg(DstRegX, RegState::Define); 1058 MIBKill->getOperand(2).setImplicit(); 1059 // Create the sign extension. 1060 MachineInstrBuilder MIBSXTW = 1061 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 1062 .addReg(DstRegX) 1063 .addImm(0) 1064 .addImm(31); 1065 (void)MIBSXTW; 1066 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 1067 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 1068 } else { 1069 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1070 } 1071 LLVM_DEBUG(dbgs() << "\n"); 1072 1073 if (MergeForward) 1074 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 1075 if (MOP.isReg() && MOP.isKill()) 1076 DefinedInBB.addReg(MOP.getReg()); 1077 1078 // Erase the old instructions. 1079 I->eraseFromParent(); 1080 Paired->eraseFromParent(); 1081 1082 return NextI; 1083 } 1084 1085 MachineBasicBlock::iterator 1086 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1087 MachineBasicBlock::iterator StoreI) { 1088 MachineBasicBlock::iterator NextI = 1089 next_nodbg(LoadI, LoadI->getParent()->end()); 1090 1091 int LoadSize = TII->getMemScale(*LoadI); 1092 int StoreSize = TII->getMemScale(*StoreI); 1093 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1094 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1095 Register StRt = getLdStRegOp(*StoreI).getReg(); 1096 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1097 1098 assert((IsStoreXReg || 1099 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1100 "Unexpected RegClass"); 1101 1102 MachineInstr *BitExtMI; 1103 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1104 // Remove the load, if the destination register of the loads is the same 1105 // register for stored value. 1106 if (StRt == LdRt && LoadSize == 8) { 1107 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1108 LoadI->getIterator())) { 1109 if (MI.killsRegister(StRt, TRI)) { 1110 MI.clearRegisterKills(StRt, TRI); 1111 break; 1112 } 1113 } 1114 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1115 LLVM_DEBUG(LoadI->print(dbgs())); 1116 LLVM_DEBUG(dbgs() << "\n"); 1117 LoadI->eraseFromParent(); 1118 return NextI; 1119 } 1120 // Replace the load with a mov if the load and store are in the same size. 1121 BitExtMI = 1122 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1123 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1124 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1125 .add(StMO) 1126 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1127 .setMIFlags(LoadI->getFlags()); 1128 } else { 1129 // FIXME: Currently we disable this transformation in big-endian targets as 1130 // performance and correctness are verified only in little-endian. 1131 if (!Subtarget->isLittleEndian()) 1132 return NextI; 1133 bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI); 1134 assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) && 1135 "Unsupported ld/st match"); 1136 assert(LoadSize <= StoreSize && "Invalid load size"); 1137 int UnscaledLdOffset = 1138 IsUnscaled 1139 ? AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() 1140 : AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1141 int UnscaledStOffset = 1142 IsUnscaled 1143 ? AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() 1144 : AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1145 int Width = LoadSize * 8; 1146 Register DestReg = 1147 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1148 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1149 : LdRt; 1150 1151 assert((UnscaledLdOffset >= UnscaledStOffset && 1152 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1153 "Invalid offset"); 1154 1155 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1156 int Imms = Immr + Width - 1; 1157 if (UnscaledLdOffset == UnscaledStOffset) { 1158 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1159 | ((Immr) << 6) // immr 1160 | ((Imms) << 0) // imms 1161 ; 1162 1163 BitExtMI = 1164 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1165 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1166 DestReg) 1167 .add(StMO) 1168 .addImm(AndMaskEncoded) 1169 .setMIFlags(LoadI->getFlags()); 1170 } else { 1171 BitExtMI = 1172 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1173 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1174 DestReg) 1175 .add(StMO) 1176 .addImm(Immr) 1177 .addImm(Imms) 1178 .setMIFlags(LoadI->getFlags()); 1179 } 1180 } 1181 1182 // Clear kill flags between store and load. 1183 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1184 BitExtMI->getIterator())) 1185 if (MI.killsRegister(StRt, TRI)) { 1186 MI.clearRegisterKills(StRt, TRI); 1187 break; 1188 } 1189 1190 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1191 LLVM_DEBUG(StoreI->print(dbgs())); 1192 LLVM_DEBUG(dbgs() << " "); 1193 LLVM_DEBUG(LoadI->print(dbgs())); 1194 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1195 LLVM_DEBUG(StoreI->print(dbgs())); 1196 LLVM_DEBUG(dbgs() << " "); 1197 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1198 LLVM_DEBUG(dbgs() << "\n"); 1199 1200 // Erase the old instructions. 1201 LoadI->eraseFromParent(); 1202 return NextI; 1203 } 1204 1205 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1206 // Convert the byte-offset used by unscaled into an "element" offset used 1207 // by the scaled pair load/store instructions. 1208 if (IsUnscaled) { 1209 // If the byte-offset isn't a multiple of the stride, there's no point 1210 // trying to match it. 1211 if (Offset % OffsetStride) 1212 return false; 1213 Offset /= OffsetStride; 1214 } 1215 return Offset <= 63 && Offset >= -64; 1216 } 1217 1218 // Do alignment, specialized to power of 2 and for signed ints, 1219 // avoiding having to do a C-style cast from uint_64t to int when 1220 // using alignTo from include/llvm/Support/MathExtras.h. 1221 // FIXME: Move this function to include/MathExtras.h? 1222 static int alignTo(int Num, int PowOf2) { 1223 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1224 } 1225 1226 static bool mayAlias(MachineInstr &MIa, 1227 SmallVectorImpl<MachineInstr *> &MemInsns, 1228 AliasAnalysis *AA) { 1229 for (MachineInstr *MIb : MemInsns) 1230 if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) 1231 return true; 1232 1233 return false; 1234 } 1235 1236 bool AArch64LoadStoreOpt::findMatchingStore( 1237 MachineBasicBlock::iterator I, unsigned Limit, 1238 MachineBasicBlock::iterator &StoreI) { 1239 MachineBasicBlock::iterator B = I->getParent()->begin(); 1240 MachineBasicBlock::iterator MBBI = I; 1241 MachineInstr &LoadMI = *I; 1242 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(LoadMI).getReg(); 1243 1244 // If the load is the first instruction in the block, there's obviously 1245 // not any matching store. 1246 if (MBBI == B) 1247 return false; 1248 1249 // Track which register units have been modified and used between the first 1250 // insn and the second insn. 1251 ModifiedRegUnits.clear(); 1252 UsedRegUnits.clear(); 1253 1254 unsigned Count = 0; 1255 do { 1256 MBBI = prev_nodbg(MBBI, B); 1257 MachineInstr &MI = *MBBI; 1258 1259 // Don't count transient instructions towards the search limit since there 1260 // may be different numbers of them if e.g. debug information is present. 1261 if (!MI.isTransient()) 1262 ++Count; 1263 1264 // If the load instruction reads directly from the address to which the 1265 // store instruction writes and the stored value is not modified, we can 1266 // promote the load. Since we do not handle stores with pre-/post-index, 1267 // it's unnecessary to check if BaseReg is modified by the store itself. 1268 // Also we can't handle stores without an immediate offset operand, 1269 // while the operand might be the address for a global variable. 1270 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1271 BaseReg == AArch64InstrInfo::getLdStBaseOp(MI).getReg() && 1272 AArch64InstrInfo::getLdStOffsetOp(MI).isImm() && 1273 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1274 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1275 StoreI = MBBI; 1276 return true; 1277 } 1278 1279 if (MI.isCall()) 1280 return false; 1281 1282 // Update modified / uses register units. 1283 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1284 1285 // Otherwise, if the base register is modified, we have no match, so 1286 // return early. 1287 if (!ModifiedRegUnits.available(BaseReg)) 1288 return false; 1289 1290 // If we encounter a store aliased with the load, return early. 1291 if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false)) 1292 return false; 1293 } while (MBBI != B && Count < Limit); 1294 return false; 1295 } 1296 1297 static bool needsWinCFI(const MachineFunction *MF) { 1298 return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && 1299 MF->getFunction().needsUnwindTableEntry(); 1300 } 1301 1302 // Returns true if FirstMI and MI are candidates for merging or pairing. 1303 // Otherwise, returns false. 1304 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1305 LdStPairFlags &Flags, 1306 const AArch64InstrInfo *TII) { 1307 // If this is volatile or if pairing is suppressed, not a candidate. 1308 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1309 return false; 1310 1311 // We should have already checked FirstMI for pair suppression and volatility. 1312 assert(!FirstMI.hasOrderedMemoryRef() && 1313 !TII->isLdStPairSuppressed(FirstMI) && 1314 "FirstMI shouldn't get here if either of these checks are true."); 1315 1316 if (needsWinCFI(MI.getMF()) && (MI.getFlag(MachineInstr::FrameSetup) || 1317 MI.getFlag(MachineInstr::FrameDestroy))) 1318 return false; 1319 1320 unsigned OpcA = FirstMI.getOpcode(); 1321 unsigned OpcB = MI.getOpcode(); 1322 1323 // Opcodes match: If the opcodes are pre ld/st there is nothing more to check. 1324 if (OpcA == OpcB) 1325 return !AArch64InstrInfo::isPreLdSt(FirstMI); 1326 1327 // Try to match a sign-extended load/store with a zero-extended load/store. 1328 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1329 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1330 assert(IsValidLdStrOpc && 1331 "Given Opc should be a Load or Store with an immediate"); 1332 // OpcA will be the first instruction in the pair. 1333 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1334 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1335 return true; 1336 } 1337 1338 // If the second instruction isn't even a mergable/pairable load/store, bail 1339 // out. 1340 if (!PairIsValidLdStrOpc) 1341 return false; 1342 1343 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1344 // offsets. 1345 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1346 return false; 1347 1348 // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and 1349 // LDR<S,D,Q,W,X,SW>pre-LDR<S,D,Q,W,X,SW>ui 1350 // are candidate pairs that can be merged. 1351 if (isPreLdStPairCandidate(FirstMI, MI)) 1352 return true; 1353 1354 // Try to match an unscaled load/store with a scaled load/store. 1355 return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) && 1356 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1357 1358 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1359 } 1360 1361 static bool 1362 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1363 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1364 const TargetRegisterInfo *TRI) { 1365 if (!FirstMI.mayStore()) 1366 return false; 1367 1368 // Check if we can find an unused register which we can use to rename 1369 // the register used by the first load/store. 1370 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1371 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1372 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1373 return false; 1374 1375 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1376 // For now, we only rename if the store operand gets killed at the store. 1377 if (!getLdStRegOp(FirstMI).isKill() && 1378 !any_of(FirstMI.operands(), 1379 [TRI, RegToRename](const MachineOperand &MOP) { 1380 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1381 MOP.isImplicit() && MOP.isKill() && 1382 TRI->regsOverlap(RegToRename, MOP.getReg()); 1383 })) { 1384 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1385 return false; 1386 } 1387 auto canRenameMOP = [TRI](const MachineOperand &MOP) { 1388 if (MOP.isReg()) { 1389 auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg()); 1390 // Renaming registers with multiple disjunct sub-registers (e.g. the 1391 // result of a LD3) means that all sub-registers are renamed, potentially 1392 // impacting other instructions we did not check. Bail out. 1393 // Note that this relies on the structure of the AArch64 register file. In 1394 // particular, a subregister cannot be written without overwriting the 1395 // whole register. 1396 if (RegClass->HasDisjunctSubRegs) { 1397 LLVM_DEBUG( 1398 dbgs() 1399 << " Cannot rename operands with multiple disjunct subregisters (" 1400 << MOP << ")\n"); 1401 return false; 1402 } 1403 } 1404 return MOP.isImplicit() || 1405 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1406 }; 1407 1408 bool FoundDef = false; 1409 1410 // For each instruction between FirstMI and the previous def for RegToRename, 1411 // we 1412 // * check if we can rename RegToRename in this instruction 1413 // * collect the registers used and required register classes for RegToRename. 1414 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1415 bool IsDef) { 1416 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1417 // Currently we do not try to rename across frame-setup instructions. 1418 if (MI.getFlag(MachineInstr::FrameSetup)) { 1419 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1420 << MI << ")\n"); 1421 return false; 1422 } 1423 1424 UsedInBetween.accumulate(MI); 1425 1426 // For a definition, check that we can rename the definition and exit the 1427 // loop. 1428 FoundDef = IsDef; 1429 1430 // For defs, check if we can rename the first def of RegToRename. 1431 if (FoundDef) { 1432 // For some pseudo instructions, we might not generate code in the end 1433 // (e.g. KILL) and we would end up without a correct def for the rename 1434 // register. 1435 // TODO: This might be overly conservative and we could handle those cases 1436 // in multiple ways: 1437 // 1. Insert an extra copy, to materialize the def. 1438 // 2. Skip pseudo-defs until we find an non-pseudo def. 1439 if (MI.isPseudo()) { 1440 LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI 1441 << "\n"); 1442 return false; 1443 } 1444 1445 for (auto &MOP : MI.operands()) { 1446 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1447 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1448 continue; 1449 if (!canRenameMOP(MOP)) { 1450 LLVM_DEBUG(dbgs() 1451 << " Cannot rename " << MOP << " in " << MI << "\n"); 1452 return false; 1453 } 1454 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1455 } 1456 return true; 1457 } else { 1458 for (auto &MOP : MI.operands()) { 1459 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1460 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1461 continue; 1462 1463 if (!canRenameMOP(MOP)) { 1464 LLVM_DEBUG(dbgs() 1465 << " Cannot rename " << MOP << " in " << MI << "\n"); 1466 return false; 1467 } 1468 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1469 } 1470 } 1471 return true; 1472 }; 1473 1474 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1475 return false; 1476 1477 if (!FoundDef) { 1478 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1479 return false; 1480 } 1481 return true; 1482 } 1483 1484 // Check if we can find a physical register for renaming \p Reg. This register 1485 // must: 1486 // * not be defined already in \p DefinedInBB; DefinedInBB must contain all 1487 // defined registers up to the point where the renamed register will be used, 1488 // * not used in \p UsedInBetween; UsedInBetween must contain all accessed 1489 // registers in the range the rename register will be used, 1490 // * is available in all used register classes (checked using RequiredClasses). 1491 static std::optional<MCPhysReg> tryToFindRegisterToRename( 1492 const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB, 1493 LiveRegUnits &UsedInBetween, 1494 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1495 const TargetRegisterInfo *TRI) { 1496 const MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1497 1498 // Checks if any sub- or super-register of PR is callee saved. 1499 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1500 return any_of(TRI->sub_and_superregs_inclusive(PR), 1501 [&MF, TRI](MCPhysReg SubOrSuper) { 1502 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1503 }); 1504 }; 1505 1506 // Check if PR or one of its sub- or super-registers can be used for all 1507 // required register classes. 1508 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1509 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1510 return any_of(TRI->sub_and_superregs_inclusive(PR), 1511 [C, TRI](MCPhysReg SubOrSuper) { 1512 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1513 }); 1514 }); 1515 }; 1516 1517 auto *RegClass = TRI->getMinimalPhysRegClass(Reg); 1518 for (const MCPhysReg &PR : *RegClass) { 1519 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1520 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && 1521 CanBeUsedForAllClasses(PR)) { 1522 DefinedInBB.addReg(PR); 1523 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1524 << "\n"); 1525 return {PR}; 1526 } 1527 } 1528 LLVM_DEBUG(dbgs() << "No rename register found from " 1529 << TRI->getRegClassName(RegClass) << "\n"); 1530 return std::nullopt; 1531 } 1532 1533 /// Scan the instructions looking for a load/store that can be combined with the 1534 /// current instruction into a wider equivalent or a load/store pair. 1535 MachineBasicBlock::iterator 1536 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1537 LdStPairFlags &Flags, unsigned Limit, 1538 bool FindNarrowMerge) { 1539 MachineBasicBlock::iterator E = I->getParent()->end(); 1540 MachineBasicBlock::iterator MBBI = I; 1541 MachineBasicBlock::iterator MBBIWithRenameReg; 1542 MachineInstr &FirstMI = *I; 1543 MBBI = next_nodbg(MBBI, E); 1544 1545 bool MayLoad = FirstMI.mayLoad(); 1546 bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI); 1547 Register Reg = getLdStRegOp(FirstMI).getReg(); 1548 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(FirstMI).getReg(); 1549 int Offset = AArch64InstrInfo::getLdStOffsetOp(FirstMI).getImm(); 1550 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; 1551 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1552 1553 std::optional<bool> MaybeCanRename; 1554 if (!EnableRenaming) 1555 MaybeCanRename = {false}; 1556 1557 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1558 LiveRegUnits UsedInBetween; 1559 UsedInBetween.init(*TRI); 1560 1561 Flags.clearRenameReg(); 1562 1563 // Track which register units have been modified and used between the first 1564 // insn (inclusive) and the second insn. 1565 ModifiedRegUnits.clear(); 1566 UsedRegUnits.clear(); 1567 1568 // Remember any instructions that read/write memory between FirstMI and MI. 1569 SmallVector<MachineInstr *, 4> MemInsns; 1570 1571 for (unsigned Count = 0; MBBI != E && Count < Limit; 1572 MBBI = next_nodbg(MBBI, E)) { 1573 MachineInstr &MI = *MBBI; 1574 1575 UsedInBetween.accumulate(MI); 1576 1577 // Don't count transient instructions towards the search limit since there 1578 // may be different numbers of them if e.g. debug information is present. 1579 if (!MI.isTransient()) 1580 ++Count; 1581 1582 Flags.setSExtIdx(-1); 1583 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1584 AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) { 1585 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1586 // If we've found another instruction with the same opcode, check to see 1587 // if the base and offset are compatible with our starting instruction. 1588 // These instructions all have scaled immediate operands, so we just 1589 // check for +1/-1. Make sure to check the new instruction offset is 1590 // actually an immediate and not a symbolic reference destined for 1591 // a relocation. 1592 Register MIBaseReg = AArch64InstrInfo::getLdStBaseOp(MI).getReg(); 1593 int MIOffset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm(); 1594 bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI); 1595 if (IsUnscaled != MIIsUnscaled) { 1596 // We're trying to pair instructions that differ in how they are scaled. 1597 // If FirstMI is scaled then scale the offset of MI accordingly. 1598 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1599 int MemSize = TII->getMemScale(MI); 1600 if (MIIsUnscaled) { 1601 // If the unscaled offset isn't a multiple of the MemSize, we can't 1602 // pair the operations together: bail and keep looking. 1603 if (MIOffset % MemSize) { 1604 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1605 UsedRegUnits, TRI); 1606 MemInsns.push_back(&MI); 1607 continue; 1608 } 1609 MIOffset /= MemSize; 1610 } else { 1611 MIOffset *= MemSize; 1612 } 1613 } 1614 1615 bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI); 1616 1617 if (BaseReg == MIBaseReg) { 1618 // If the offset of the second ld/st is not equal to the size of the 1619 // destination register it can’t be paired with a pre-index ld/st 1620 // pair. Additionally if the base reg is used or modified the operations 1621 // can't be paired: bail and keep looking. 1622 if (IsPreLdSt) { 1623 bool IsOutOfBounds = MIOffset != TII->getMemScale(MI); 1624 bool IsBaseRegUsed = !UsedRegUnits.available( 1625 AArch64InstrInfo::getLdStBaseOp(MI).getReg()); 1626 bool IsBaseRegModified = !ModifiedRegUnits.available( 1627 AArch64InstrInfo::getLdStBaseOp(MI).getReg()); 1628 // If the stored value and the address of the second instruction is 1629 // the same, it needs to be using the updated register and therefore 1630 // it must not be folded. 1631 bool IsMIRegTheSame = 1632 TRI->regsOverlap(getLdStRegOp(MI).getReg(), 1633 AArch64InstrInfo::getLdStBaseOp(MI).getReg()); 1634 if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified || 1635 IsMIRegTheSame) { 1636 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1637 UsedRegUnits, TRI); 1638 MemInsns.push_back(&MI); 1639 continue; 1640 } 1641 } else { 1642 if ((Offset != MIOffset + OffsetStride) && 1643 (Offset + OffsetStride != MIOffset)) { 1644 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1645 UsedRegUnits, TRI); 1646 MemInsns.push_back(&MI); 1647 continue; 1648 } 1649 } 1650 1651 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1652 if (FindNarrowMerge) { 1653 // If the alignment requirements of the scaled wide load/store 1654 // instruction can't express the offset of the scaled narrow input, 1655 // bail and keep looking. For promotable zero stores, allow only when 1656 // the stored value is the same (i.e., WZR). 1657 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1658 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1659 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1660 UsedRegUnits, TRI); 1661 MemInsns.push_back(&MI); 1662 continue; 1663 } 1664 } else { 1665 // Pairwise instructions have a 7-bit signed offset field. Single 1666 // insns have a 12-bit unsigned offset field. If the resultant 1667 // immediate offset of merging these instructions is out of range for 1668 // a pairwise instruction, bail and keep looking. 1669 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1670 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1671 UsedRegUnits, TRI); 1672 MemInsns.push_back(&MI); 1673 continue; 1674 } 1675 // If the alignment requirements of the paired (scaled) instruction 1676 // can't express the offset of the unscaled input, bail and keep 1677 // looking. 1678 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1679 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1680 UsedRegUnits, TRI); 1681 MemInsns.push_back(&MI); 1682 continue; 1683 } 1684 } 1685 // If the destination register of one load is the same register or a 1686 // sub/super register of the other load, bail and keep looking. A 1687 // load-pair instruction with both destination registers the same is 1688 // UNPREDICTABLE and will result in an exception. 1689 if (MayLoad && 1690 TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) { 1691 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1692 TRI); 1693 MemInsns.push_back(&MI); 1694 continue; 1695 } 1696 1697 // If the BaseReg has been modified, then we cannot do the optimization. 1698 // For example, in the following pattern 1699 // ldr x1 [x2] 1700 // ldr x2 [x3] 1701 // ldr x4 [x2, #8], 1702 // the first and third ldr cannot be converted to ldp x1, x4, [x2] 1703 if (!ModifiedRegUnits.available(BaseReg)) 1704 return E; 1705 1706 // If the Rt of the second instruction was not modified or used between 1707 // the two instructions and none of the instructions between the second 1708 // and first alias with the second, we can combine the second into the 1709 // first. 1710 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1711 !(MI.mayLoad() && 1712 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1713 !mayAlias(MI, MemInsns, AA)) { 1714 1715 Flags.setMergeForward(false); 1716 Flags.clearRenameReg(); 1717 return MBBI; 1718 } 1719 1720 // Likewise, if the Rt of the first instruction is not modified or used 1721 // between the two instructions and none of the instructions between the 1722 // first and the second alias with the first, we can combine the first 1723 // into the second. 1724 if (!(MayLoad && 1725 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1726 !mayAlias(FirstMI, MemInsns, AA)) { 1727 1728 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1729 Flags.setMergeForward(true); 1730 Flags.clearRenameReg(); 1731 return MBBI; 1732 } 1733 1734 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1735 if (!MaybeCanRename) 1736 MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, 1737 RequiredClasses, TRI)}; 1738 1739 if (*MaybeCanRename) { 1740 std::optional<MCPhysReg> MaybeRenameReg = 1741 tryToFindRegisterToRename(*FirstMI.getParent()->getParent(), 1742 Reg, DefinedInBB, UsedInBetween, 1743 RequiredClasses, TRI); 1744 if (MaybeRenameReg) { 1745 Flags.setRenameReg(*MaybeRenameReg); 1746 Flags.setMergeForward(true); 1747 MBBIWithRenameReg = MBBI; 1748 } 1749 } 1750 } 1751 } 1752 // Unable to combine these instructions due to interference in between. 1753 // Keep looking. 1754 } 1755 } 1756 1757 if (Flags.getRenameReg()) 1758 return MBBIWithRenameReg; 1759 1760 // If the instruction wasn't a matching load or store. Stop searching if we 1761 // encounter a call instruction that might modify memory. 1762 if (MI.isCall()) 1763 return E; 1764 1765 // Update modified / uses register units. 1766 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1767 1768 // Otherwise, if the base register is modified, we have no match, so 1769 // return early. 1770 if (!ModifiedRegUnits.available(BaseReg)) 1771 return E; 1772 1773 // Update list of instructions that read/write memory. 1774 if (MI.mayLoadOrStore()) 1775 MemInsns.push_back(&MI); 1776 } 1777 return E; 1778 } 1779 1780 static MachineBasicBlock::iterator 1781 maybeMoveCFI(MachineInstr &MI, MachineBasicBlock::iterator MaybeCFI) { 1782 auto End = MI.getParent()->end(); 1783 if (MaybeCFI == End || 1784 MaybeCFI->getOpcode() != TargetOpcode::CFI_INSTRUCTION || 1785 !(MI.getFlag(MachineInstr::FrameSetup) || 1786 MI.getFlag(MachineInstr::FrameDestroy)) || 1787 AArch64InstrInfo::getLdStBaseOp(MI).getReg() != AArch64::SP) 1788 return End; 1789 1790 const MachineFunction &MF = *MI.getParent()->getParent(); 1791 unsigned CFIIndex = MaybeCFI->getOperand(0).getCFIIndex(); 1792 const MCCFIInstruction &CFI = MF.getFrameInstructions()[CFIIndex]; 1793 switch (CFI.getOperation()) { 1794 case MCCFIInstruction::OpDefCfa: 1795 case MCCFIInstruction::OpDefCfaOffset: 1796 return MaybeCFI; 1797 default: 1798 return End; 1799 } 1800 } 1801 1802 MachineBasicBlock::iterator 1803 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1804 MachineBasicBlock::iterator Update, 1805 bool IsPreIdx) { 1806 assert((Update->getOpcode() == AArch64::ADDXri || 1807 Update->getOpcode() == AArch64::SUBXri) && 1808 "Unexpected base register update instruction to merge!"); 1809 MachineBasicBlock::iterator E = I->getParent()->end(); 1810 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 1811 1812 // If updating the SP and the following instruction is CFA offset related CFI 1813 // instruction move it after the merged instruction. 1814 MachineBasicBlock::iterator CFI = 1815 IsPreIdx ? maybeMoveCFI(*Update, next_nodbg(Update, E)) : E; 1816 1817 // Return the instruction following the merged instruction, which is 1818 // the instruction following our unmerged load. Unless that's the add/sub 1819 // instruction we're merging, in which case it's the one after that. 1820 if (NextI == Update) 1821 NextI = next_nodbg(NextI, E); 1822 1823 int Value = Update->getOperand(2).getImm(); 1824 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1825 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1826 if (Update->getOpcode() == AArch64::SUBXri) 1827 Value = -Value; 1828 1829 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1830 : getPostIndexedOpcode(I->getOpcode()); 1831 MachineInstrBuilder MIB; 1832 int Scale, MinOffset, MaxOffset; 1833 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1834 if (!AArch64InstrInfo::isPairedLdSt(*I)) { 1835 // Non-paired instruction. 1836 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1837 .add(getLdStRegOp(*Update)) 1838 .add(getLdStRegOp(*I)) 1839 .add(AArch64InstrInfo::getLdStBaseOp(*I)) 1840 .addImm(Value / Scale) 1841 .setMemRefs(I->memoperands()) 1842 .setMIFlags(I->mergeFlagsWith(*Update)); 1843 } else { 1844 // Paired instruction. 1845 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1846 .add(getLdStRegOp(*Update)) 1847 .add(getLdStRegOp(*I, 0)) 1848 .add(getLdStRegOp(*I, 1)) 1849 .add(AArch64InstrInfo::getLdStBaseOp(*I)) 1850 .addImm(Value / Scale) 1851 .setMemRefs(I->memoperands()) 1852 .setMIFlags(I->mergeFlagsWith(*Update)); 1853 } 1854 if (CFI != E) { 1855 MachineBasicBlock *MBB = I->getParent(); 1856 MBB->splice(std::next(MIB.getInstr()->getIterator()), MBB, CFI); 1857 } 1858 1859 if (IsPreIdx) { 1860 ++NumPreFolded; 1861 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1862 } else { 1863 ++NumPostFolded; 1864 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1865 } 1866 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1867 LLVM_DEBUG(I->print(dbgs())); 1868 LLVM_DEBUG(dbgs() << " "); 1869 LLVM_DEBUG(Update->print(dbgs())); 1870 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1871 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1872 LLVM_DEBUG(dbgs() << "\n"); 1873 1874 // Erase the old instructions for the block. 1875 I->eraseFromParent(); 1876 Update->eraseFromParent(); 1877 1878 return NextI; 1879 } 1880 1881 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1882 MachineInstr &MI, 1883 unsigned BaseReg, int Offset) { 1884 switch (MI.getOpcode()) { 1885 default: 1886 break; 1887 case AArch64::SUBXri: 1888 case AArch64::ADDXri: 1889 // Make sure it's a vanilla immediate operand, not a relocation or 1890 // anything else we can't handle. 1891 if (!MI.getOperand(2).isImm()) 1892 break; 1893 // Watch out for 1 << 12 shifted value. 1894 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1895 break; 1896 1897 // The update instruction source and destination register must be the 1898 // same as the load/store base register. 1899 if (MI.getOperand(0).getReg() != BaseReg || 1900 MI.getOperand(1).getReg() != BaseReg) 1901 break; 1902 1903 int UpdateOffset = MI.getOperand(2).getImm(); 1904 if (MI.getOpcode() == AArch64::SUBXri) 1905 UpdateOffset = -UpdateOffset; 1906 1907 // The immediate must be a multiple of the scaling factor of the pre/post 1908 // indexed instruction. 1909 int Scale, MinOffset, MaxOffset; 1910 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1911 if (UpdateOffset % Scale != 0) 1912 break; 1913 1914 // Scaled offset must fit in the instruction immediate. 1915 int ScaledOffset = UpdateOffset / Scale; 1916 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1917 break; 1918 1919 // If we have a non-zero Offset, we check that it matches the amount 1920 // we're adding to the register. 1921 if (!Offset || Offset == UpdateOffset) 1922 return true; 1923 break; 1924 } 1925 return false; 1926 } 1927 1928 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1929 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1930 MachineBasicBlock::iterator E = I->getParent()->end(); 1931 MachineInstr &MemMI = *I; 1932 MachineBasicBlock::iterator MBBI = I; 1933 1934 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(MemMI).getReg(); 1935 int MIUnscaledOffset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm() * 1936 TII->getMemScale(MemMI); 1937 1938 // Scan forward looking for post-index opportunities. Updating instructions 1939 // can't be formed if the memory instruction doesn't have the offset we're 1940 // looking for. 1941 if (MIUnscaledOffset != UnscaledOffset) 1942 return E; 1943 1944 // If the base register overlaps a source/destination register, we can't 1945 // merge the update. This does not apply to tag store instructions which 1946 // ignore the address part of the source register. 1947 // This does not apply to STGPi as well, which does not have unpredictable 1948 // behavior in this case unlike normal stores, and always performs writeback 1949 // after reading the source register value. 1950 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1951 bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI); 1952 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1953 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1954 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1955 return E; 1956 } 1957 } 1958 1959 // Track which register units have been modified and used between the first 1960 // insn (inclusive) and the second insn. 1961 ModifiedRegUnits.clear(); 1962 UsedRegUnits.clear(); 1963 MBBI = next_nodbg(MBBI, E); 1964 1965 // We can't post-increment the stack pointer if any instruction between 1966 // the memory access (I) and the increment (MBBI) can access the memory 1967 // region defined by [SP, MBBI]. 1968 const bool BaseRegSP = BaseReg == AArch64::SP; 1969 if (BaseRegSP && needsWinCFI(I->getMF())) { 1970 // FIXME: For now, we always block the optimization over SP in windows 1971 // targets as it requires to adjust the unwind/debug info, messing up 1972 // the unwind info can actually cause a miscompile. 1973 return E; 1974 } 1975 1976 for (unsigned Count = 0; MBBI != E && Count < Limit; 1977 MBBI = next_nodbg(MBBI, E)) { 1978 MachineInstr &MI = *MBBI; 1979 1980 // Don't count transient instructions towards the search limit since there 1981 // may be different numbers of them if e.g. debug information is present. 1982 if (!MI.isTransient()) 1983 ++Count; 1984 1985 // If we found a match, return it. 1986 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1987 return MBBI; 1988 1989 // Update the status of what the instruction clobbered and used. 1990 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1991 1992 // Otherwise, if the base register is used or modified, we have no match, so 1993 // return early. 1994 // If we are optimizing SP, do not allow instructions that may load or store 1995 // in between the load and the optimized value update. 1996 if (!ModifiedRegUnits.available(BaseReg) || 1997 !UsedRegUnits.available(BaseReg) || 1998 (BaseRegSP && MBBI->mayLoadOrStore())) 1999 return E; 2000 } 2001 return E; 2002 } 2003 2004 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 2005 MachineBasicBlock::iterator I, unsigned Limit) { 2006 MachineBasicBlock::iterator B = I->getParent()->begin(); 2007 MachineBasicBlock::iterator E = I->getParent()->end(); 2008 MachineInstr &MemMI = *I; 2009 MachineBasicBlock::iterator MBBI = I; 2010 MachineFunction &MF = *MemMI.getMF(); 2011 2012 Register BaseReg = AArch64InstrInfo::getLdStBaseOp(MemMI).getReg(); 2013 int Offset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm(); 2014 2015 // If the load/store is the first instruction in the block, there's obviously 2016 // not any matching update. Ditto if the memory offset isn't zero. 2017 if (MBBI == B || Offset != 0) 2018 return E; 2019 // If the base register overlaps a destination register, we can't 2020 // merge the update. 2021 if (!isTagStore(MemMI)) { 2022 bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI); 2023 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 2024 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 2025 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 2026 return E; 2027 } 2028 } 2029 2030 const bool BaseRegSP = BaseReg == AArch64::SP; 2031 if (BaseRegSP && needsWinCFI(I->getMF())) { 2032 // FIXME: For now, we always block the optimization over SP in windows 2033 // targets as it requires to adjust the unwind/debug info, messing up 2034 // the unwind info can actually cause a miscompile. 2035 return E; 2036 } 2037 2038 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2039 unsigned RedZoneSize = 2040 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 2041 2042 // Track which register units have been modified and used between the first 2043 // insn (inclusive) and the second insn. 2044 ModifiedRegUnits.clear(); 2045 UsedRegUnits.clear(); 2046 unsigned Count = 0; 2047 bool MemAcessBeforeSPPreInc = false; 2048 do { 2049 MBBI = prev_nodbg(MBBI, B); 2050 MachineInstr &MI = *MBBI; 2051 2052 // Don't count transient instructions towards the search limit since there 2053 // may be different numbers of them if e.g. debug information is present. 2054 if (!MI.isTransient()) 2055 ++Count; 2056 2057 // If we found a match, return it. 2058 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) { 2059 // Check that the update value is within our red zone limit (which may be 2060 // zero). 2061 if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize) 2062 return E; 2063 return MBBI; 2064 } 2065 2066 // Update the status of what the instruction clobbered and used. 2067 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 2068 2069 // Otherwise, if the base register is used or modified, we have no match, so 2070 // return early. 2071 if (!ModifiedRegUnits.available(BaseReg) || 2072 !UsedRegUnits.available(BaseReg)) 2073 return E; 2074 // Keep track if we have a memory access before an SP pre-increment, in this 2075 // case we need to validate later that the update amount respects the red 2076 // zone. 2077 if (BaseRegSP && MBBI->mayLoadOrStore()) 2078 MemAcessBeforeSPPreInc = true; 2079 } while (MBBI != B && Count < Limit); 2080 return E; 2081 } 2082 2083 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 2084 MachineBasicBlock::iterator &MBBI) { 2085 MachineInstr &MI = *MBBI; 2086 // If this is a volatile load, don't mess with it. 2087 if (MI.hasOrderedMemoryRef()) 2088 return false; 2089 2090 if (needsWinCFI(MI.getMF()) && MI.getFlag(MachineInstr::FrameDestroy)) 2091 return false; 2092 2093 // Make sure this is a reg+imm. 2094 // FIXME: It is possible to extend it to handle reg+reg cases. 2095 if (!AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) 2096 return false; 2097 2098 // Look backward up to LdStLimit instructions. 2099 MachineBasicBlock::iterator StoreI; 2100 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 2101 ++NumLoadsFromStoresPromoted; 2102 // Promote the load. Keeping the iterator straight is a 2103 // pain, so we let the merge routine tell us what the next instruction 2104 // is after it's done mucking about. 2105 MBBI = promoteLoadFromStore(MBBI, StoreI); 2106 return true; 2107 } 2108 return false; 2109 } 2110 2111 // Merge adjacent zero stores into a wider store. 2112 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 2113 MachineBasicBlock::iterator &MBBI) { 2114 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 2115 MachineInstr &MI = *MBBI; 2116 MachineBasicBlock::iterator E = MI.getParent()->end(); 2117 2118 if (!TII->isCandidateToMergeOrPair(MI)) 2119 return false; 2120 2121 // Look ahead up to LdStLimit instructions for a mergable instruction. 2122 LdStPairFlags Flags; 2123 MachineBasicBlock::iterator MergeMI = 2124 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 2125 if (MergeMI != E) { 2126 ++NumZeroStoresPromoted; 2127 2128 // Keeping the iterator straight is a pain, so we let the merge routine tell 2129 // us what the next instruction is after it's done mucking about. 2130 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 2131 return true; 2132 } 2133 return false; 2134 } 2135 2136 // Find loads and stores that can be merged into a single load or store pair 2137 // instruction. 2138 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 2139 MachineInstr &MI = *MBBI; 2140 MachineBasicBlock::iterator E = MI.getParent()->end(); 2141 2142 if (!TII->isCandidateToMergeOrPair(MI)) 2143 return false; 2144 2145 // Early exit if the offset is not possible to match. (6 bits of positive 2146 // range, plus allow an extra one in case we find a later insn that matches 2147 // with Offset-1) 2148 bool IsUnscaled = TII->hasUnscaledLdStOffset(MI); 2149 int Offset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm(); 2150 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; 2151 // Allow one more for offset. 2152 if (Offset > 0) 2153 Offset -= OffsetStride; 2154 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 2155 return false; 2156 2157 // Look ahead up to LdStLimit instructions for a pairable instruction. 2158 LdStPairFlags Flags; 2159 MachineBasicBlock::iterator Paired = 2160 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 2161 if (Paired != E) { 2162 ++NumPairCreated; 2163 if (TII->hasUnscaledLdStOffset(MI)) 2164 ++NumUnscaledPairCreated; 2165 // Keeping the iterator straight is a pain, so we let the merge routine tell 2166 // us what the next instruction is after it's done mucking about. 2167 auto Prev = std::prev(MBBI); 2168 MBBI = mergePairedInsns(MBBI, Paired, Flags); 2169 // Collect liveness info for instructions between Prev and the new position 2170 // MBBI. 2171 for (auto I = std::next(Prev); I != MBBI; I++) 2172 updateDefinedRegisters(*I, DefinedInBB, TRI); 2173 2174 return true; 2175 } 2176 return false; 2177 } 2178 2179 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 2180 (MachineBasicBlock::iterator &MBBI) { 2181 MachineInstr &MI = *MBBI; 2182 MachineBasicBlock::iterator E = MI.getParent()->end(); 2183 MachineBasicBlock::iterator Update; 2184 2185 // Look forward to try to form a post-index instruction. For example, 2186 // ldr x0, [x20] 2187 // add x20, x20, #32 2188 // merged into: 2189 // ldr x0, [x20], #32 2190 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 2191 if (Update != E) { 2192 // Merge the update into the ld/st. 2193 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 2194 return true; 2195 } 2196 2197 // Don't know how to handle unscaled pre/post-index versions below, so bail. 2198 if (TII->hasUnscaledLdStOffset(MI.getOpcode())) 2199 return false; 2200 2201 // Look back to try to find a pre-index instruction. For example, 2202 // add x0, x0, #8 2203 // ldr x1, [x0] 2204 // merged into: 2205 // ldr x1, [x0, #8]! 2206 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 2207 if (Update != E) { 2208 // Merge the update into the ld/st. 2209 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2210 return true; 2211 } 2212 2213 // The immediate in the load/store is scaled by the size of the memory 2214 // operation. The immediate in the add we're looking for, 2215 // however, is not, so adjust here. 2216 int UnscaledOffset = 2217 AArch64InstrInfo::getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); 2218 2219 // Look forward to try to find a pre-index instruction. For example, 2220 // ldr x1, [x0, #64] 2221 // add x0, x0, #64 2222 // merged into: 2223 // ldr x1, [x0, #64]! 2224 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 2225 if (Update != E) { 2226 // Merge the update into the ld/st. 2227 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2228 return true; 2229 } 2230 2231 return false; 2232 } 2233 2234 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2235 bool EnableNarrowZeroStOpt) { 2236 2237 bool Modified = false; 2238 // Four tranformations to do here: 2239 // 1) Find loads that directly read from stores and promote them by 2240 // replacing with mov instructions. If the store is wider than the load, 2241 // the load will be replaced with a bitfield extract. 2242 // e.g., 2243 // str w1, [x0, #4] 2244 // ldrh w2, [x0, #6] 2245 // ; becomes 2246 // str w1, [x0, #4] 2247 // lsr w2, w1, #16 2248 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2249 MBBI != E;) { 2250 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2251 Modified = true; 2252 else 2253 ++MBBI; 2254 } 2255 // 2) Merge adjacent zero stores into a wider store. 2256 // e.g., 2257 // strh wzr, [x0] 2258 // strh wzr, [x0, #2] 2259 // ; becomes 2260 // str wzr, [x0] 2261 // e.g., 2262 // str wzr, [x0] 2263 // str wzr, [x0, #4] 2264 // ; becomes 2265 // str xzr, [x0] 2266 if (EnableNarrowZeroStOpt) 2267 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2268 MBBI != E;) { 2269 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2270 Modified = true; 2271 else 2272 ++MBBI; 2273 } 2274 // 3) Find loads and stores that can be merged into a single load or store 2275 // pair instruction. 2276 // e.g., 2277 // ldr x0, [x2] 2278 // ldr x1, [x2, #8] 2279 // ; becomes 2280 // ldp x0, x1, [x2] 2281 2282 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2283 DefinedInBB.clear(); 2284 DefinedInBB.addLiveIns(MBB); 2285 } 2286 2287 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2288 MBBI != E;) { 2289 // Track currently live registers up to this point, to help with 2290 // searching for a rename register on demand. 2291 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2292 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2293 Modified = true; 2294 else 2295 ++MBBI; 2296 } 2297 // 4) Find base register updates that can be merged into the load or store 2298 // as a base-reg writeback. 2299 // e.g., 2300 // ldr x0, [x2] 2301 // add x2, x2, #4 2302 // ; becomes 2303 // ldr x0, [x2], #4 2304 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2305 MBBI != E;) { 2306 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2307 Modified = true; 2308 else 2309 ++MBBI; 2310 } 2311 2312 return Modified; 2313 } 2314 2315 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2316 if (skipFunction(Fn.getFunction())) 2317 return false; 2318 2319 Subtarget = &Fn.getSubtarget<AArch64Subtarget>(); 2320 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2321 TRI = Subtarget->getRegisterInfo(); 2322 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2323 2324 // Resize the modified and used register unit trackers. We do this once 2325 // per function and then clear the register units each time we optimize a load 2326 // or store. 2327 ModifiedRegUnits.init(*TRI); 2328 UsedRegUnits.init(*TRI); 2329 DefinedInBB.init(*TRI); 2330 2331 bool Modified = false; 2332 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2333 for (auto &MBB : Fn) { 2334 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2335 Modified |= M; 2336 } 2337 2338 return Modified; 2339 } 2340 2341 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2342 // stores near one another? Note: The pre-RA instruction scheduler already has 2343 // hooks to try and schedule pairable loads/stores together to improve pairing 2344 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2345 2346 // FIXME: When pairing store instructions it's very possible for this pass to 2347 // hoist a store with a KILL marker above another use (without a KILL marker). 2348 // The resulting IR is invalid, but nothing uses the KILL markers after this 2349 // pass, so it's never caused a problem in practice. 2350 2351 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2352 /// load / store optimization pass. 2353 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2354 return new AArch64LoadStoreOpt(); 2355 } 2356