1//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// AArch64 Instruction definitions. 10// 11//===----------------------------------------------------------------------===// 12 13 14//===----------------------------------------------------------------------===// 15// ARM Instruction Predicate Definitions. 16// 17 18class AssemblerPredicateWithAll<dag cond, string name=""> 19 : AssemblerPredicate<(any_of FeatureAll, cond), name>; 20 21def HasV8_0a : Predicate<"Subtarget->hasV8_0aOps()">, 22 AssemblerPredicate<(all_of HasV8_0aOps), "armv8.0a">; 23def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">, 24 AssemblerPredicateWithAll<(all_of HasV8_1aOps), "armv8.1a">; 25def HasV8_2a : Predicate<"Subtarget->hasV8_2aOps()">, 26 AssemblerPredicateWithAll<(all_of HasV8_2aOps), "armv8.2a">; 27def HasV8_3a : Predicate<"Subtarget->hasV8_3aOps()">, 28 AssemblerPredicateWithAll<(all_of HasV8_3aOps), "armv8.3a">; 29def HasV8_4a : Predicate<"Subtarget->hasV8_4aOps()">, 30 AssemblerPredicateWithAll<(all_of HasV8_4aOps), "armv8.4a">; 31def HasV8_5a : Predicate<"Subtarget->hasV8_5aOps()">, 32 AssemblerPredicateWithAll<(all_of HasV8_5aOps), "armv8.5a">; 33def HasV8_6a : Predicate<"Subtarget->hasV8_6aOps()">, 34 AssemblerPredicateWithAll<(all_of HasV8_6aOps), "armv8.6a">; 35def HasV8_7a : Predicate<"Subtarget->hasV8_7aOps()">, 36 AssemblerPredicateWithAll<(all_of HasV8_7aOps), "armv8.7a">; 37def HasV8_8a : Predicate<"Subtarget->hasV8_8aOps()">, 38 AssemblerPredicateWithAll<(all_of HasV8_8aOps), "armv8.8a">; 39def HasV8_9a : Predicate<"Subtarget->hasV8_9aOps()">, 40 AssemblerPredicateWithAll<(all_of HasV8_9aOps), "armv8.9a">; 41def HasV9_0a : Predicate<"Subtarget->hasV9_0aOps()">, 42 AssemblerPredicateWithAll<(all_of HasV9_0aOps), "armv9-a">; 43def HasV9_1a : Predicate<"Subtarget->hasV9_1aOps()">, 44 AssemblerPredicateWithAll<(all_of HasV9_1aOps), "armv9.1a">; 45def HasV9_2a : Predicate<"Subtarget->hasV9_2aOps()">, 46 AssemblerPredicateWithAll<(all_of HasV9_2aOps), "armv9.2a">; 47def HasV9_3a : Predicate<"Subtarget->hasV9_3aOps()">, 48 AssemblerPredicateWithAll<(all_of HasV9_3aOps), "armv9.3a">; 49def HasV9_4a : Predicate<"Subtarget->hasV9_4aOps()">, 50 AssemblerPredicateWithAll<(all_of HasV9_4aOps), "armv9.4a">; 51def HasV8_0r : Predicate<"Subtarget->hasV8_0rOps()">, 52 AssemblerPredicateWithAll<(all_of HasV8_0rOps), "armv8-r">; 53 54def HasEL2VMSA : Predicate<"Subtarget->hasEL2VMSA()">, 55 AssemblerPredicateWithAll<(all_of FeatureEL2VMSA), "el2vmsa">; 56 57def HasEL3 : Predicate<"Subtarget->hasEL3()">, 58 AssemblerPredicateWithAll<(all_of FeatureEL3), "el3">; 59 60def HasVH : Predicate<"Subtarget->hasVH()">, 61 AssemblerPredicateWithAll<(all_of FeatureVH), "vh">; 62 63def HasLOR : Predicate<"Subtarget->hasLOR()">, 64 AssemblerPredicateWithAll<(all_of FeatureLOR), "lor">; 65 66def HasPAuth : Predicate<"Subtarget->hasPAuth()">, 67 AssemblerPredicateWithAll<(all_of FeaturePAuth), "pauth">; 68 69def HasPAuthLR : Predicate<"Subtarget->hasPAuthLR()">, 70 AssemblerPredicateWithAll<(all_of FeaturePAuthLR), "pauth-lr">; 71 72def HasJS : Predicate<"Subtarget->hasJS()">, 73 AssemblerPredicateWithAll<(all_of FeatureJS), "jsconv">; 74 75def HasCCIDX : Predicate<"Subtarget->hasCCIDX()">, 76 AssemblerPredicateWithAll<(all_of FeatureCCIDX), "ccidx">; 77 78def HasComplxNum : Predicate<"Subtarget->hasComplxNum()">, 79 AssemblerPredicateWithAll<(all_of FeatureComplxNum), "complxnum">; 80 81def HasNV : Predicate<"Subtarget->hasNV()">, 82 AssemblerPredicateWithAll<(all_of FeatureNV), "nv">; 83 84def HasMPAM : Predicate<"Subtarget->hasMPAM()">, 85 AssemblerPredicateWithAll<(all_of FeatureMPAM), "mpam">; 86 87def HasDIT : Predicate<"Subtarget->hasDIT()">, 88 AssemblerPredicateWithAll<(all_of FeatureDIT), "dit">; 89 90def HasTRACEV8_4 : Predicate<"Subtarget->hasTRACEV8_4()">, 91 AssemblerPredicateWithAll<(all_of FeatureTRACEV8_4), "tracev8.4">; 92 93def HasAM : Predicate<"Subtarget->hasAM()">, 94 AssemblerPredicateWithAll<(all_of FeatureAM), "am">; 95 96def HasSEL2 : Predicate<"Subtarget->hasSEL2()">, 97 AssemblerPredicateWithAll<(all_of FeatureSEL2), "sel2">; 98 99def HasTLB_RMI : Predicate<"Subtarget->hasTLB_RMI()">, 100 AssemblerPredicateWithAll<(all_of FeatureTLB_RMI), "tlb-rmi">; 101 102def HasFlagM : Predicate<"Subtarget->hasFlagM()">, 103 AssemblerPredicateWithAll<(all_of FeatureFlagM), "flagm">; 104 105def HasRCPC_IMMO : Predicate<"Subtarget->hasRCPC_IMMO()">, 106 AssemblerPredicateWithAll<(all_of FeatureRCPC_IMMO), "rcpc-immo">; 107 108def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">, 109 AssemblerPredicateWithAll<(all_of FeatureFPARMv8), "fp-armv8">; 110def HasNEON : Predicate<"Subtarget->isNeonAvailable()">, 111 AssemblerPredicateWithAll<(all_of FeatureNEON), "neon">; 112def HasSM4 : Predicate<"Subtarget->hasSM4()">, 113 AssemblerPredicateWithAll<(all_of FeatureSM4), "sm4">; 114def HasSHA3 : Predicate<"Subtarget->hasSHA3()">, 115 AssemblerPredicateWithAll<(all_of FeatureSHA3), "sha3">; 116def HasSHA2 : Predicate<"Subtarget->hasSHA2()">, 117 AssemblerPredicateWithAll<(all_of FeatureSHA2), "sha2">; 118def HasAES : Predicate<"Subtarget->hasAES()">, 119 AssemblerPredicateWithAll<(all_of FeatureAES), "aes">; 120def HasDotProd : Predicate<"Subtarget->hasDotProd()">, 121 AssemblerPredicateWithAll<(all_of FeatureDotProd), "dotprod">; 122def HasCRC : Predicate<"Subtarget->hasCRC()">, 123 AssemblerPredicateWithAll<(all_of FeatureCRC), "crc">; 124def HasCSSC : Predicate<"Subtarget->hasCSSC()">, 125 AssemblerPredicateWithAll<(all_of FeatureCSSC), "cssc">; 126def HasNoCSSC : Predicate<"!Subtarget->hasCSSC()">; 127def HasLSE : Predicate<"Subtarget->hasLSE()">, 128 AssemblerPredicateWithAll<(all_of FeatureLSE), "lse">; 129def HasNoLSE : Predicate<"!Subtarget->hasLSE()">; 130def HasRAS : Predicate<"Subtarget->hasRAS()">, 131 AssemblerPredicateWithAll<(all_of FeatureRAS), "ras">; 132def HasRDM : Predicate<"Subtarget->hasRDM()">, 133 AssemblerPredicateWithAll<(all_of FeatureRDM), "rdm">; 134def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">, 135 AssemblerPredicateWithAll<(all_of FeatureFullFP16), "fullfp16">; 136def HasNoFullFP16 : Predicate<"!Subtarget->hasFullFP16()">; 137def HasFP16FML : Predicate<"Subtarget->hasFP16FML()">, 138 AssemblerPredicateWithAll<(all_of FeatureFP16FML), "fp16fml">; 139def HasSPE : Predicate<"Subtarget->hasSPE()">, 140 AssemblerPredicateWithAll<(all_of FeatureSPE), "spe">; 141def HasFuseAES : Predicate<"Subtarget->hasFuseAES()">, 142 AssemblerPredicateWithAll<(all_of FeatureFuseAES), 143 "fuse-aes">; 144def HasSVE : Predicate<"Subtarget->isSVEAvailable()">, 145 AssemblerPredicateWithAll<(all_of FeatureSVE), "sve">; 146def HasSVE2 : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2()">, 147 AssemblerPredicateWithAll<(all_of FeatureSVE2), "sve2">; 148def HasSVE2p1 : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2p1()">, 149 AssemblerPredicateWithAll<(all_of FeatureSVE2p1), "sve2p1">; 150def HasSVE2AES : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2AES()">, 151 AssemblerPredicateWithAll<(all_of FeatureSVE2AES), "sve2-aes">; 152def HasSVE2SM4 : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2SM4()">, 153 AssemblerPredicateWithAll<(all_of FeatureSVE2SM4), "sve2-sm4">; 154def HasSVE2SHA3 : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2SHA3()">, 155 AssemblerPredicateWithAll<(all_of FeatureSVE2SHA3), "sve2-sha3">; 156def HasSVE2BitPerm : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2BitPerm()">, 157 AssemblerPredicateWithAll<(all_of FeatureSVE2BitPerm), "sve2-bitperm">; 158def HasB16B16 : Predicate<"Subtarget->hasB16B16()">, 159 AssemblerPredicateWithAll<(all_of FeatureB16B16), "b16b16">; 160def HasSMEandIsNonStreamingSafe 161 : Predicate<"Subtarget->hasSME()">, 162 AssemblerPredicateWithAll<(all_of FeatureSME), "sme">; 163def HasSME : Predicate<"Subtarget->isStreaming() && Subtarget->hasSME()">, 164 AssemblerPredicateWithAll<(all_of FeatureSME), "sme">; 165def HasSMEF64F64 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEF64F64()">, 166 AssemblerPredicateWithAll<(all_of FeatureSMEF64F64), "sme-f64f64">; 167def HasSMEF16F16 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEF16F16()">, 168 AssemblerPredicateWithAll<(all_of FeatureSMEF16F16), "sme-f16f16">; 169def HasSMEFA64 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEFA64()">, 170 AssemblerPredicateWithAll<(all_of FeatureSMEFA64), "sme-fa64">; 171def HasSMEI16I64 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEI16I64()">, 172 AssemblerPredicateWithAll<(all_of FeatureSMEI16I64), "sme-i16i64">; 173def HasSME2andIsNonStreamingSafe 174 : Predicate<"Subtarget->hasSME2()">, 175 AssemblerPredicateWithAll<(all_of FeatureSME2), "sme2">; 176def HasSME2 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSME2()">, 177 AssemblerPredicateWithAll<(all_of FeatureSME2), "sme2">; 178def HasSME2p1 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSME2p1()">, 179 AssemblerPredicateWithAll<(all_of FeatureSME2p1), "sme2p1">; 180def HasFP8 : Predicate<"Subtarget->hasFP8()">, 181 AssemblerPredicateWithAll<(all_of FeatureFP8), "fp8">; 182def HasFAMINMAX : Predicate<"Subtarget->hasFAMINMAX()">, 183 AssemblerPredicateWithAll<(all_of FeatureFAMINMAX), "faminmax">; 184def HasFP8FMA : Predicate<"Subtarget->hasFP8FMA()">, 185 AssemblerPredicateWithAll<(all_of FeatureFP8FMA), "fp8fma">; 186def HasSSVE_FP8FMA : Predicate<"Subtarget->hasSSVE_FP8FMA() || " 187 "(Subtarget->hasSVE2() && Subtarget->hasFP8FMA())">, 188 AssemblerPredicateWithAll<(any_of FeatureSSVE_FP8FMA, 189 (all_of FeatureSVE2, FeatureFP8FMA)), 190 "ssve-fp8fma or (sve2 and fp8fma)">; 191def HasFP8DOT2 : Predicate<"Subtarget->hasFP8DOT2()">, 192 AssemblerPredicateWithAll<(all_of FeatureFP8DOT2), "fp8dot2">; 193def HasSSVE_FP8DOT2 : Predicate<"Subtarget->hasSSVE_FP8DOT2() || " 194 "(Subtarget->hasSVE2() && Subtarget->hasFP8DOT2())">, 195 AssemblerPredicateWithAll<(any_of FeatureSSVE_FP8DOT2, 196 (all_of FeatureSVE2, FeatureFP8DOT2)), 197 "ssve-fp8dot2 or (sve2 and fp8dot2)">; 198def HasFP8DOT4 : Predicate<"Subtarget->hasFP8DOT4()">, 199 AssemblerPredicateWithAll<(all_of FeatureFP8DOT4), "fp8dot4">; 200def HasSSVE_FP8DOT4 : Predicate<"Subtarget->hasSSVE_FP8DOT4() || " 201 "(Subtarget->hasSVE2() && Subtarget->hasFP8DOT4())">, 202 AssemblerPredicateWithAll<(any_of FeatureSSVE_FP8DOT4, 203 (all_of FeatureSVE2, FeatureFP8DOT4)), 204 "ssve-fp8dot4 or (sve2 and fp8dot4)">; 205def HasLUT : Predicate<"Subtarget->hasLUT()">, 206 AssemblerPredicateWithAll<(all_of FeatureLUT), "lut">; 207def HasSME_LUTv2 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSME_LUTv2()">, 208 AssemblerPredicateWithAll<(all_of FeatureSME_LUTv2), "sme-lutv2">; 209def HasSMEF8F16 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEF8F16()">, 210 AssemblerPredicateWithAll<(all_of FeatureSMEF8F16), "sme-f8f16">; 211def HasSMEF8F32 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEF8F32()">, 212 AssemblerPredicateWithAll<(all_of FeatureSMEF8F32), "sme-f8f32">; 213 214// A subset of SVE(2) instructions are legal in Streaming SVE execution mode, 215// they should be enabled if either has been specified. 216def HasSVEorSME 217 : Predicate<"Subtarget->hasSVE() || (Subtarget->isStreaming() && Subtarget->hasSME())">, 218 AssemblerPredicateWithAll<(any_of FeatureSVE, FeatureSME), 219 "sve or sme">; 220def HasSVE2orSME 221 : Predicate<"Subtarget->hasSVE2() || (Subtarget->isStreaming() && Subtarget->hasSME())">, 222 AssemblerPredicateWithAll<(any_of FeatureSVE2, FeatureSME), 223 "sve2 or sme">; 224def HasSVE2orSME2 225 : Predicate<"Subtarget->hasSVE2() || (Subtarget->isStreaming() && Subtarget->hasSME2())">, 226 AssemblerPredicateWithAll<(any_of FeatureSVE2, FeatureSME2), 227 "sve2 or sme2">; 228def HasSVE2p1_or_HasSME 229 : Predicate<"Subtarget->hasSVE2p1() || (Subtarget->isStreaming() && Subtarget->hasSME())">, 230 AssemblerPredicateWithAll<(any_of FeatureSME, FeatureSVE2p1), "sme or sve2p1">; 231def HasSVE2p1_or_HasSME2 232 : Predicate<"Subtarget->hasSVE2p1() || (Subtarget->isStreaming() && Subtarget->hasSME2())">, 233 AssemblerPredicateWithAll<(any_of FeatureSME2, FeatureSVE2p1), "sme2 or sve2p1">; 234def HasSVE2p1_or_HasSME2p1 235 : Predicate<"Subtarget->hasSVE2p1() || (Subtarget->isStreaming() && Subtarget->hasSME2p1())">, 236 AssemblerPredicateWithAll<(any_of FeatureSME2p1, FeatureSVE2p1), "sme2p1 or sve2p1">; 237 238def HasSMEF16F16orSMEF8F16 239 : Predicate<"Subtarget->isStreaming() && (Subtarget->hasSMEF16F16() || Subtarget->hasSMEF8F16())">, 240 AssemblerPredicateWithAll<(any_of FeatureSMEF16F16, FeatureSMEF8F16), 241 "sme-f16f16 or sme-f8f16">; 242 243// A subset of NEON instructions are legal in Streaming SVE execution mode, 244// so don't need the additional check for 'isNeonAvailable'. 245def HasNEONandIsStreamingSafe 246 : Predicate<"Subtarget->hasNEON()">, 247 AssemblerPredicateWithAll<(any_of FeatureNEON), "neon">; 248def HasRCPC : Predicate<"Subtarget->hasRCPC()">, 249 AssemblerPredicateWithAll<(all_of FeatureRCPC), "rcpc">; 250def HasAltNZCV : Predicate<"Subtarget->hasAlternativeNZCV()">, 251 AssemblerPredicateWithAll<(all_of FeatureAltFPCmp), "altnzcv">; 252def HasFRInt3264 : Predicate<"Subtarget->hasFRInt3264()">, 253 AssemblerPredicateWithAll<(all_of FeatureFRInt3264), "frint3264">; 254def HasSB : Predicate<"Subtarget->hasSB()">, 255 AssemblerPredicateWithAll<(all_of FeatureSB), "sb">; 256def HasPredRes : Predicate<"Subtarget->hasPredRes()">, 257 AssemblerPredicateWithAll<(all_of FeaturePredRes), "predres">; 258def HasCCDP : Predicate<"Subtarget->hasCCDP()">, 259 AssemblerPredicateWithAll<(all_of FeatureCacheDeepPersist), "ccdp">; 260def HasBTI : Predicate<"Subtarget->hasBTI()">, 261 AssemblerPredicateWithAll<(all_of FeatureBranchTargetId), "bti">; 262def HasMTE : Predicate<"Subtarget->hasMTE()">, 263 AssemblerPredicateWithAll<(all_of FeatureMTE), "mte">; 264def HasTME : Predicate<"Subtarget->hasTME()">, 265 AssemblerPredicateWithAll<(all_of FeatureTME), "tme">; 266def HasETE : Predicate<"Subtarget->hasETE()">, 267 AssemblerPredicateWithAll<(all_of FeatureETE), "ete">; 268def HasTRBE : Predicate<"Subtarget->hasTRBE()">, 269 AssemblerPredicateWithAll<(all_of FeatureTRBE), "trbe">; 270def HasBF16 : Predicate<"Subtarget->hasBF16()">, 271 AssemblerPredicateWithAll<(all_of FeatureBF16), "bf16">; 272def HasNoBF16 : Predicate<"!Subtarget->hasBF16()">; 273def HasMatMulInt8 : Predicate<"Subtarget->hasMatMulInt8()">, 274 AssemblerPredicateWithAll<(all_of FeatureMatMulInt8), "i8mm">; 275def HasMatMulFP32 : Predicate<"Subtarget->hasMatMulFP32()">, 276 AssemblerPredicateWithAll<(all_of FeatureMatMulFP32), "f32mm">; 277def HasMatMulFP64 : Predicate<"Subtarget->hasMatMulFP64()">, 278 AssemblerPredicateWithAll<(all_of FeatureMatMulFP64), "f64mm">; 279def HasFPAC : Predicate<"Subtarget->hasFPAC())">, 280 AssemblerPredicateWithAll<(all_of FeatureFPAC), "fpac">; 281def HasXS : Predicate<"Subtarget->hasXS()">, 282 AssemblerPredicateWithAll<(all_of FeatureXS), "xs">; 283def HasWFxT : Predicate<"Subtarget->hasWFxT()">, 284 AssemblerPredicateWithAll<(all_of FeatureWFxT), "wfxt">; 285def HasLS64 : Predicate<"Subtarget->hasLS64()">, 286 AssemblerPredicateWithAll<(all_of FeatureLS64), "ls64">; 287def HasBRBE : Predicate<"Subtarget->hasBRBE()">, 288 AssemblerPredicateWithAll<(all_of FeatureBRBE), "brbe">; 289def HasSPE_EEF : Predicate<"Subtarget->hasSPE_EEF()">, 290 AssemblerPredicateWithAll<(all_of FeatureSPE_EEF), "spe-eef">; 291def HasHBC : Predicate<"Subtarget->hasHBC()">, 292 AssemblerPredicateWithAll<(all_of FeatureHBC), "hbc">; 293def HasMOPS : Predicate<"Subtarget->hasMOPS()">, 294 AssemblerPredicateWithAll<(all_of FeatureMOPS), "mops">; 295def HasCLRBHB : Predicate<"Subtarget->hasCLRBHB()">, 296 AssemblerPredicateWithAll<(all_of FeatureCLRBHB), "clrbhb">; 297def HasSPECRES2 : Predicate<"Subtarget->hasSPECRES2()">, 298 AssemblerPredicateWithAll<(all_of FeatureSPECRES2), "specres2">; 299def HasITE : Predicate<"Subtarget->hasITE()">, 300 AssemblerPredicateWithAll<(all_of FeatureITE), "ite">; 301def HasTHE : Predicate<"Subtarget->hasTHE()">, 302 AssemblerPredicateWithAll<(all_of FeatureTHE), "the">; 303def HasRCPC3 : Predicate<"Subtarget->hasRCPC3()">, 304 AssemblerPredicateWithAll<(all_of FeatureRCPC3), "rcpc3">; 305def HasLSE128 : Predicate<"Subtarget->hasLSE128()">, 306 AssemblerPredicateWithAll<(all_of FeatureLSE128), "lse128">; 307def HasD128 : Predicate<"Subtarget->hasD128()">, 308 AssemblerPredicateWithAll<(all_of FeatureD128), "d128">; 309def HasCHK : Predicate<"Subtarget->hasCHK()">, 310 AssemblerPredicateWithAll<(all_of FeatureCHK), "chk">; 311def HasGCS : Predicate<"Subtarget->hasGCS()">, 312 AssemblerPredicateWithAll<(all_of FeatureGCS), "gcs">; 313def HasCPA : Predicate<"Subtarget->hasCPA()">, 314 AssemblerPredicateWithAll<(all_of FeatureCPA), "cpa">; 315def IsLE : Predicate<"Subtarget->isLittleEndian()">; 316def IsBE : Predicate<"!Subtarget->isLittleEndian()">; 317def IsWindows : Predicate<"Subtarget->isTargetWindows()">; 318def UseExperimentalZeroingPseudos 319 : Predicate<"Subtarget->useExperimentalZeroingPseudos()">; 320def UseAlternateSExtLoadCVTF32 321 : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">; 322 323def UseNegativeImmediates 324 : Predicate<"false">, AssemblerPredicate<(all_of (not FeatureNoNegativeImmediates)), 325 "NegativeImmediates">; 326 327def UseScalarIncVL : Predicate<"Subtarget->useScalarIncVL()">; 328 329def NoUseScalarIncVL : Predicate<"!Subtarget->useScalarIncVL()">; 330 331def UseSVEFPLD1R : Predicate<"!Subtarget->noSVEFPLD1R()">; 332 333def AArch64LocalRecover : SDNode<"ISD::LOCAL_RECOVER", 334 SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, 335 SDTCisInt<1>]>>; 336 337 338//===----------------------------------------------------------------------===// 339// AArch64-specific DAG Nodes. 340// 341 342// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS 343def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2, 344 [SDTCisSameAs<0, 2>, 345 SDTCisSameAs<0, 3>, 346 SDTCisInt<0>, SDTCisVT<1, i32>]>; 347 348// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS 349def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3, 350 [SDTCisSameAs<0, 1>, 351 SDTCisSameAs<0, 2>, 352 SDTCisInt<0>, 353 SDTCisVT<3, i32>]>; 354 355// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS 356def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, 357 [SDTCisSameAs<0, 2>, 358 SDTCisSameAs<0, 3>, 359 SDTCisInt<0>, 360 SDTCisVT<1, i32>, 361 SDTCisVT<4, i32>]>; 362 363def SDT_AArch64Brcond : SDTypeProfile<0, 3, 364 [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>, 365 SDTCisVT<2, i32>]>; 366def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>; 367def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, 368 SDTCisVT<2, OtherVT>]>; 369 370 371def SDT_AArch64CSel : SDTypeProfile<1, 4, 372 [SDTCisSameAs<0, 1>, 373 SDTCisSameAs<0, 2>, 374 SDTCisInt<3>, 375 SDTCisVT<4, i32>]>; 376def SDT_AArch64CCMP : SDTypeProfile<1, 5, 377 [SDTCisVT<0, i32>, 378 SDTCisInt<1>, 379 SDTCisSameAs<1, 2>, 380 SDTCisInt<3>, 381 SDTCisInt<4>, 382 SDTCisVT<5, i32>]>; 383def SDT_AArch64FCCMP : SDTypeProfile<1, 5, 384 [SDTCisVT<0, i32>, 385 SDTCisFP<1>, 386 SDTCisSameAs<1, 2>, 387 SDTCisInt<3>, 388 SDTCisInt<4>, 389 SDTCisVT<5, i32>]>; 390def SDT_AArch64FCmp : SDTypeProfile<0, 2, 391 [SDTCisFP<0>, 392 SDTCisSameAs<0, 1>]>; 393def SDT_AArch64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>; 394def SDT_AArch64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>; 395def SDT_AArch64Insr : SDTypeProfile<1, 2, [SDTCisVec<0>]>; 396def SDT_AArch64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>, 397 SDTCisSameAs<0, 1>, 398 SDTCisSameAs<0, 2>]>; 399def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>; 400def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; 401def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, 402 SDTCisInt<2>, SDTCisInt<3>]>; 403def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; 404def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, 405 SDTCisSameAs<0,2>, SDTCisInt<3>]>; 406def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>; 407def SDT_AArch64Dot: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, 408 SDTCisVec<2>, SDTCisSameAs<2,3>]>; 409 410def SDT_AArch64vshiftinsert : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<3>, 411 SDTCisSameAs<0,1>, 412 SDTCisSameAs<0,2>]>; 413 414def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; 415def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>; 416def SDT_AArch64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>; 417def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, 418 SDTCisSameAs<0,2>]>; 419def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, 420 SDTCisSameAs<0,2>, 421 SDTCisSameAs<0,3>]>; 422def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>; 423def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>; 424 425def SDT_AArch64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>; 426 427def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, 428 SDTCisPtrTy<1>]>; 429 430def SDT_AArch64uaddlp : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>]>; 431 432def SDT_AArch64ldp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 433def SDT_AArch64ldiapp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 434def SDT_AArch64ldnp : SDTypeProfile<2, 1, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 435def SDT_AArch64stp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 436def SDT_AArch64stilp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 437def SDT_AArch64stnp : SDTypeProfile<0, 3, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 438 439// Generates the general dynamic sequences, i.e. 440// adrp x0, :tlsdesc:var 441// ldr x1, [x0, #:tlsdesc_lo12:var] 442// add x0, x0, #:tlsdesc_lo12:var 443// .tlsdesccall var 444// blr x1 445 446// (the TPIDR_EL0 offset is put directly in X0, hence no "result" here) 447// number of operands (the variable) 448def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1, 449 [SDTCisPtrTy<0>]>; 450 451def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4, 452 [SDTCisVT<0, i64>, SDTCisVT<1, i32>, 453 SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, 454 SDTCisSameAs<1, 4>]>; 455 456def SDT_AArch64TBL : SDTypeProfile<1, 2, [ 457 SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2> 458]>; 459 460// non-extending masked load fragment. 461def nonext_masked_load : 462 PatFrag<(ops node:$ptr, node:$pred, node:$def), 463 (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ 464 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD && 465 cast<MaskedLoadSDNode>(N)->isUnindexed() && 466 !cast<MaskedLoadSDNode>(N)->isNonTemporal(); 467}]>; 468// Any/Zero extending masked load fragments. 469def azext_masked_load : 470 PatFrag<(ops node:$ptr, node:$pred, node:$def), 471 (masked_ld node:$ptr, undef, node:$pred, node:$def),[{ 472 return (cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD || 473 cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD) && 474 cast<MaskedLoadSDNode>(N)->isUnindexed(); 475}]>; 476def azext_masked_load_i8 : 477 PatFrag<(ops node:$ptr, node:$pred, node:$def), 478 (azext_masked_load node:$ptr, node:$pred, node:$def), [{ 479 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 480}]>; 481def azext_masked_load_i16 : 482 PatFrag<(ops node:$ptr, node:$pred, node:$def), 483 (azext_masked_load node:$ptr, node:$pred, node:$def), [{ 484 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16; 485}]>; 486def azext_masked_load_i32 : 487 PatFrag<(ops node:$ptr, node:$pred, node:$def), 488 (azext_masked_load node:$ptr, node:$pred, node:$def), [{ 489 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32; 490}]>; 491// Sign extending masked load fragments. 492def sext_masked_load : 493 PatFrag<(ops node:$ptr, node:$pred, node:$def), 494 (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ 495 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD && 496 cast<MaskedLoadSDNode>(N)->isUnindexed(); 497}]>; 498def sext_masked_load_i8 : 499 PatFrag<(ops node:$ptr, node:$pred, node:$def), 500 (sext_masked_load node:$ptr, node:$pred, node:$def), [{ 501 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 502}]>; 503def sext_masked_load_i16 : 504 PatFrag<(ops node:$ptr, node:$pred, node:$def), 505 (sext_masked_load node:$ptr, node:$pred, node:$def), [{ 506 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16; 507}]>; 508def sext_masked_load_i32 : 509 PatFrag<(ops node:$ptr, node:$pred, node:$def), 510 (sext_masked_load node:$ptr, node:$pred, node:$def), [{ 511 return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32; 512}]>; 513 514def non_temporal_load : 515 PatFrag<(ops node:$ptr, node:$pred, node:$def), 516 (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ 517 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD && 518 cast<MaskedLoadSDNode>(N)->isUnindexed() && 519 cast<MaskedLoadSDNode>(N)->isNonTemporal(); 520}]>; 521 522// non-truncating masked store fragment. 523def nontrunc_masked_store : 524 PatFrag<(ops node:$val, node:$ptr, node:$pred), 525 (masked_st node:$val, node:$ptr, undef, node:$pred), [{ 526 return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() && 527 cast<MaskedStoreSDNode>(N)->isUnindexed() && 528 !cast<MaskedStoreSDNode>(N)->isNonTemporal(); 529}]>; 530// truncating masked store fragments. 531def trunc_masked_store : 532 PatFrag<(ops node:$val, node:$ptr, node:$pred), 533 (masked_st node:$val, node:$ptr, undef, node:$pred), [{ 534 return cast<MaskedStoreSDNode>(N)->isTruncatingStore() && 535 cast<MaskedStoreSDNode>(N)->isUnindexed(); 536}]>; 537def trunc_masked_store_i8 : 538 PatFrag<(ops node:$val, node:$ptr, node:$pred), 539 (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ 540 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 541}]>; 542def trunc_masked_store_i16 : 543 PatFrag<(ops node:$val, node:$ptr, node:$pred), 544 (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ 545 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16; 546}]>; 547def trunc_masked_store_i32 : 548 PatFrag<(ops node:$val, node:$ptr, node:$pred), 549 (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ 550 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32; 551}]>; 552 553def non_temporal_store : 554 PatFrag<(ops node:$val, node:$ptr, node:$pred), 555 (masked_st node:$val, node:$ptr, undef, node:$pred), [{ 556 return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() && 557 cast<MaskedStoreSDNode>(N)->isUnindexed() && 558 cast<MaskedStoreSDNode>(N)->isNonTemporal(); 559}]>; 560 561multiclass masked_gather_scatter<PatFrags GatherScatterOp> { 562 // offsets = (signed)Index << sizeof(elt) 563 def NAME#_signed_scaled : 564 PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), 565 (GatherScatterOp node:$val, node:$pred, node:$ptr, node:$idx),[{ 566 auto MGS = cast<MaskedGatherScatterSDNode>(N); 567 bool Signed = MGS->isIndexSigned() || 568 MGS->getIndex().getValueType().getVectorElementType() == MVT::i64; 569 return Signed && MGS->isIndexScaled(); 570 }]>; 571 // offsets = (signed)Index 572 def NAME#_signed_unscaled : 573 PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), 574 (GatherScatterOp node:$val, node:$pred, node:$ptr, node:$idx),[{ 575 auto MGS = cast<MaskedGatherScatterSDNode>(N); 576 bool Signed = MGS->isIndexSigned() || 577 MGS->getIndex().getValueType().getVectorElementType() == MVT::i64; 578 return Signed && !MGS->isIndexScaled(); 579 }]>; 580 // offsets = (unsigned)Index << sizeof(elt) 581 def NAME#_unsigned_scaled : 582 PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), 583 (GatherScatterOp node:$val, node:$pred, node:$ptr, node:$idx),[{ 584 auto MGS = cast<MaskedGatherScatterSDNode>(N); 585 bool Signed = MGS->isIndexSigned() || 586 MGS->getIndex().getValueType().getVectorElementType() == MVT::i64; 587 return !Signed && MGS->isIndexScaled(); 588 }]>; 589 // offsets = (unsigned)Index 590 def NAME#_unsigned_unscaled : 591 PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), 592 (GatherScatterOp node:$val, node:$pred, node:$ptr, node:$idx),[{ 593 auto MGS = cast<MaskedGatherScatterSDNode>(N); 594 bool Signed = MGS->isIndexSigned() || 595 MGS->getIndex().getValueType().getVectorElementType() == MVT::i64; 596 return !Signed && !MGS->isIndexScaled(); 597 }]>; 598} 599 600defm nonext_masked_gather : masked_gather_scatter<nonext_masked_gather>; 601defm azext_masked_gather_i8 : masked_gather_scatter<azext_masked_gather_i8>; 602defm azext_masked_gather_i16 : masked_gather_scatter<azext_masked_gather_i16>; 603defm azext_masked_gather_i32 : masked_gather_scatter<azext_masked_gather_i32>; 604defm sext_masked_gather_i8 : masked_gather_scatter<sext_masked_gather_i8>; 605defm sext_masked_gather_i16 : masked_gather_scatter<sext_masked_gather_i16>; 606defm sext_masked_gather_i32 : masked_gather_scatter<sext_masked_gather_i32>; 607 608defm nontrunc_masked_scatter : masked_gather_scatter<nontrunc_masked_scatter>; 609defm trunc_masked_scatter_i8 : masked_gather_scatter<trunc_masked_scatter_i8>; 610defm trunc_masked_scatter_i16 : masked_gather_scatter<trunc_masked_scatter_i16>; 611defm trunc_masked_scatter_i32 : masked_gather_scatter<trunc_masked_scatter_i32>; 612 613// top16Zero - answer true if the upper 16 bits of $src are 0, false otherwise 614def top16Zero: PatLeaf<(i32 GPR32:$src), [{ 615 return SDValue(N,0)->getValueType(0) == MVT::i32 && 616 CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 16)); 617 }]>; 618 619// top32Zero - answer true if the upper 32 bits of $src are 0, false otherwise 620def top32Zero: PatLeaf<(i64 GPR64:$src), [{ 621 return SDValue(N,0)->getValueType(0) == MVT::i64 && 622 CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(64, 32)); 623 }]>; 624 625// topbitsallzero - Return true if all bits except the lowest bit are known zero 626def topbitsallzero32: PatLeaf<(i32 GPR32:$src), [{ 627 return SDValue(N,0)->getValueType(0) == MVT::i32 && 628 CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 31)); 629 }]>; 630def topbitsallzero64: PatLeaf<(i64 GPR64:$src), [{ 631 return SDValue(N,0)->getValueType(0) == MVT::i64 && 632 CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(64, 63)); 633 }]>; 634 635// Node definitions. 636def AArch64adrp : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>; 637def AArch64adr : SDNode<"AArch64ISD::ADR", SDTIntUnaryOp, []>; 638def AArch64addlow : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>; 639def AArch64LOADgot : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>; 640def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", 641 SDCallSeqStart<[ SDTCisVT<0, i32>, 642 SDTCisVT<1, i32> ]>, 643 [SDNPHasChain, SDNPOutGlue]>; 644def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", 645 SDCallSeqEnd<[ SDTCisVT<0, i32>, 646 SDTCisVT<1, i32> ]>, 647 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 648def AArch64call : SDNode<"AArch64ISD::CALL", 649 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, 650 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 651 SDNPVariadic]>; 652 653def AArch64call_bti : SDNode<"AArch64ISD::CALL_BTI", 654 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, 655 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 656 SDNPVariadic]>; 657 658def AArch64call_rvmarker: SDNode<"AArch64ISD::CALL_RVMARKER", 659 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, 660 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 661 SDNPVariadic]>; 662 663def AArch64call_arm64ec_to_x64 : SDNode<"AArch64ISD::CALL_ARM64EC_TO_X64", 664 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, 665 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 666 SDNPVariadic]>; 667 668def AArch64authcall : SDNode<"AArch64ISD::AUTH_CALL", 669 SDTypeProfile<0, -1, [SDTCisPtrTy<0>, 670 SDTCisVT<1, i32>, 671 SDTCisVT<2, i64>, 672 SDTCisVT<3, i64>]>, 673 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 674 SDNPVariadic]>; 675 676def AArch64authtcret: SDNode<"AArch64ISD::AUTH_TC_RETURN", 677 SDTypeProfile<0, 5, [SDTCisPtrTy<0>, 678 SDTCisVT<2, i32>, 679 SDTCisVT<3, i64>, 680 SDTCisVT<4, i64>]>, 681 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 682 683def AArch64authcall_rvmarker : SDNode<"AArch64ISD::AUTH_CALL_RVMARKER", 684 SDTypeProfile<0, -1, [SDTCisPtrTy<0>, 685 SDTCisPtrTy<1>, 686 SDTCisVT<2, i32>, 687 SDTCisVT<3, i64>, 688 SDTCisVT<4, i64>]>, 689 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 690 SDNPVariadic]>; 691 692def AArch64brcond : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond, 693 [SDNPHasChain]>; 694def AArch64cbz : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz, 695 [SDNPHasChain]>; 696def AArch64cbnz : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz, 697 [SDNPHasChain]>; 698def AArch64tbz : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz, 699 [SDNPHasChain]>; 700def AArch64tbnz : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz, 701 [SDNPHasChain]>; 702 703 704def AArch64csel : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>; 705def AArch64csinv : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>; 706def AArch64csneg : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>; 707def AArch64csinc : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>; 708def AArch64retglue : SDNode<"AArch64ISD::RET_GLUE", SDTNone, 709 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 710def AArch64adc : SDNode<"AArch64ISD::ADC", SDTBinaryArithWithFlagsIn >; 711def AArch64sbc : SDNode<"AArch64ISD::SBC", SDTBinaryArithWithFlagsIn>; 712def AArch64add_flag : SDNode<"AArch64ISD::ADDS", SDTBinaryArithWithFlagsOut, 713 [SDNPCommutative]>; 714def AArch64sub_flag : SDNode<"AArch64ISD::SUBS", SDTBinaryArithWithFlagsOut>; 715def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut, 716 [SDNPCommutative]>; 717def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>; 718def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>; 719 720def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>; 721def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>; 722def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>; 723 724def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>; 725 726def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>; 727def AArch64strict_fcmp : SDNode<"AArch64ISD::STRICT_FCMP", SDT_AArch64FCmp, 728 [SDNPHasChain]>; 729def AArch64strict_fcmpe : SDNode<"AArch64ISD::STRICT_FCMPE", SDT_AArch64FCmp, 730 [SDNPHasChain]>; 731def AArch64any_fcmp : PatFrags<(ops node:$lhs, node:$rhs), 732 [(AArch64strict_fcmp node:$lhs, node:$rhs), 733 (AArch64fcmp node:$lhs, node:$rhs)]>; 734 735def AArch64dup : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>; 736def AArch64duplane8 : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>; 737def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>; 738def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>; 739def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>; 740def AArch64duplane128 : SDNode<"AArch64ISD::DUPLANE128", SDT_AArch64DupLane>; 741 742def AArch64insr : SDNode<"AArch64ISD::INSR", SDT_AArch64Insr>; 743 744def AArch64zip1 : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>; 745def AArch64zip2 : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>; 746def AArch64uzp1 : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>; 747def AArch64uzp2 : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>; 748def AArch64trn1 : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>; 749def AArch64trn2 : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>; 750 751def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>; 752def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>; 753def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>; 754def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>; 755def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>; 756def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>; 757def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>; 758 759def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>; 760def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>; 761def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>; 762def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>; 763 764def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>; 765 766def AArch64vashr_exact : PatFrag<(ops node:$lhs, node:$rhs), 767 (AArch64vashr node:$lhs, node:$rhs), [{ 768 return N->getFlags().hasExact(); 769}]>; 770 771def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>; 772def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>; 773def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>; 774def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>; 775def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>; 776def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>; 777def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>; 778def AArch64vsli : SDNode<"AArch64ISD::VSLI", SDT_AArch64vshiftinsert>; 779def AArch64vsri : SDNode<"AArch64ISD::VSRI", SDT_AArch64vshiftinsert>; 780 781def AArch64bsp: SDNode<"AArch64ISD::BSP", SDT_AArch64trivec>; 782 783def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>; 784def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>; 785def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>; 786def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>; 787def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>; 788 789def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>; 790def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>; 791def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>; 792 793def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>; 794def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>; 795def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>; 796def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>; 797def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>; 798def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS), 799 (vnot (AArch64cmeqz (and node:$LHS, node:$RHS)))>; 800 801def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>; 802def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>; 803def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>; 804def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>; 805def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>; 806 807def AArch64fcvtxn_n: SDNode<"AArch64ISD::FCVTXN", SDTFPRoundOp>; 808def AArch64fcvtxnsdr: PatFrags<(ops node:$Rn), 809 [(f32 (int_aarch64_sisd_fcvtxn (f64 node:$Rn))), 810 (f32 (AArch64fcvtxn_n (f64 node:$Rn)))]>; 811def AArch64fcvtxnv: PatFrags<(ops node:$Rn), 812 [(int_aarch64_neon_fcvtxn node:$Rn), 813 (AArch64fcvtxn_n node:$Rn)]>; 814 815//def Aarch64softf32tobf16v8: SDNode<"AArch64ISD::", SDTFPRoundOp>; 816 817def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>; 818def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>; 819 820def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET, 821 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 822 823def AArch64Prefetch : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH, 824 [SDNPHasChain, SDNPSideEffect]>; 825 826def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>; 827def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>; 828 829def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ", 830 SDT_AArch64TLSDescCallSeq, 831 [SDNPInGlue, SDNPOutGlue, SDNPHasChain, 832 SDNPVariadic]>; 833 834 835def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge", 836 SDT_AArch64WrapperLarge>; 837 838def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>; 839 840def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, 841 SDTCisSameAs<1, 2>]>; 842def AArch64pmull : SDNode<"AArch64ISD::PMULL", SDT_AArch64mull, 843 [SDNPCommutative]>; 844def AArch64smull : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull, 845 [SDNPCommutative]>; 846def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull, 847 [SDNPCommutative]>; 848 849def AArch64frecpe : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>; 850def AArch64frecps : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>; 851def AArch64frsqrte : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>; 852def AArch64frsqrts : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>; 853 854def AArch64sdot : SDNode<"AArch64ISD::SDOT", SDT_AArch64Dot>; 855def AArch64udot : SDNode<"AArch64ISD::UDOT", SDT_AArch64Dot>; 856 857def AArch64saddv : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>; 858def AArch64uaddv : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>; 859def AArch64sminv : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>; 860def AArch64uminv : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>; 861def AArch64smaxv : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>; 862def AArch64umaxv : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>; 863def AArch64uaddlv : SDNode<"AArch64ISD::UADDLV", SDT_AArch64uaddlp>; 864def AArch64saddlv : SDNode<"AArch64ISD::SADDLV", SDT_AArch64uaddlp>; 865 866def AArch64uabd : PatFrags<(ops node:$lhs, node:$rhs), 867 [(abdu node:$lhs, node:$rhs), 868 (int_aarch64_neon_uabd node:$lhs, node:$rhs)]>; 869def AArch64sabd : PatFrags<(ops node:$lhs, node:$rhs), 870 [(abds node:$lhs, node:$rhs), 871 (int_aarch64_neon_sabd node:$lhs, node:$rhs)]>; 872 873def AArch64addp_n : SDNode<"AArch64ISD::ADDP", SDT_AArch64Zip>; 874def AArch64uaddlp_n : SDNode<"AArch64ISD::UADDLP", SDT_AArch64uaddlp>; 875def AArch64saddlp_n : SDNode<"AArch64ISD::SADDLP", SDT_AArch64uaddlp>; 876def AArch64addp : PatFrags<(ops node:$Rn, node:$Rm), 877 [(AArch64addp_n node:$Rn, node:$Rm), 878 (int_aarch64_neon_addp node:$Rn, node:$Rm)]>; 879def AArch64uaddlp : PatFrags<(ops node:$src), 880 [(AArch64uaddlp_n node:$src), 881 (int_aarch64_neon_uaddlp node:$src)]>; 882def AArch64saddlp : PatFrags<(ops node:$src), 883 [(AArch64saddlp_n node:$src), 884 (int_aarch64_neon_saddlp node:$src)]>; 885def AArch64faddp : PatFrags<(ops node:$Rn, node:$Rm), 886 [(AArch64addp_n node:$Rn, node:$Rm), 887 (int_aarch64_neon_faddp node:$Rn, node:$Rm)]>; 888def AArch64roundingvlshr : ComplexPattern<vAny, 2, "SelectRoundingVLShr", [AArch64vlshr]>; 889def AArch64rshrn : PatFrags<(ops node:$LHS, node:$RHS), 890 [(trunc (AArch64roundingvlshr node:$LHS, node:$RHS)), 891 (int_aarch64_neon_rshrn node:$LHS, node:$RHS)]>; 892def AArch64facge : PatFrags<(ops node:$Rn, node:$Rm), 893 [(AArch64fcmge (fabs node:$Rn), (fabs node:$Rm)), 894 (int_aarch64_neon_facge node:$Rn, node:$Rm)]>; 895def AArch64facgt : PatFrags<(ops node:$Rn, node:$Rm), 896 [(AArch64fcmgt (fabs node:$Rn), (fabs node:$Rm)), 897 (int_aarch64_neon_facgt node:$Rn, node:$Rm)]>; 898 899def AArch64fmaxnmv : PatFrags<(ops node:$Rn), 900 [(vecreduce_fmax node:$Rn), 901 (int_aarch64_neon_fmaxnmv node:$Rn)]>; 902def AArch64fminnmv : PatFrags<(ops node:$Rn), 903 [(vecreduce_fmin node:$Rn), 904 (int_aarch64_neon_fminnmv node:$Rn)]>; 905def AArch64fmaxv : PatFrags<(ops node:$Rn), 906 [(vecreduce_fmaximum node:$Rn), 907 (int_aarch64_neon_fmaxv node:$Rn)]>; 908def AArch64fminv : PatFrags<(ops node:$Rn), 909 [(vecreduce_fminimum node:$Rn), 910 (int_aarch64_neon_fminv node:$Rn)]>; 911 912def SDT_AArch64SETTAG : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 913def AArch64stg : SDNode<"AArch64ISD::STG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 914def AArch64stzg : SDNode<"AArch64ISD::STZG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 915def AArch64st2g : SDNode<"AArch64ISD::ST2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 916def AArch64stz2g : SDNode<"AArch64ISD::STZ2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 917 918def SDT_AArch64unpk : SDTypeProfile<1, 1, [ 919 SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0> 920]>; 921def AArch64sunpkhi : SDNode<"AArch64ISD::SUNPKHI", SDT_AArch64unpk>; 922def AArch64sunpklo : SDNode<"AArch64ISD::SUNPKLO", SDT_AArch64unpk>; 923def AArch64uunpkhi : SDNode<"AArch64ISD::UUNPKHI", SDT_AArch64unpk>; 924def AArch64uunpklo : SDNode<"AArch64ISD::UUNPKLO", SDT_AArch64unpk>; 925 926def AArch64ldp : SDNode<"AArch64ISD::LDP", SDT_AArch64ldp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 927def AArch64ldiapp : SDNode<"AArch64ISD::LDIAPP", SDT_AArch64ldiapp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 928def AArch64ldnp : SDNode<"AArch64ISD::LDNP", SDT_AArch64ldnp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; 929def AArch64stp : SDNode<"AArch64ISD::STP", SDT_AArch64stp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 930def AArch64stilp : SDNode<"AArch64ISD::STILP", SDT_AArch64stilp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 931def AArch64stnp : SDNode<"AArch64ISD::STNP", SDT_AArch64stnp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; 932 933def AArch64tbl : SDNode<"AArch64ISD::TBL", SDT_AArch64TBL>; 934 935def AArch64probedalloca 936 : SDNode<"AArch64ISD::PROBED_ALLOCA", 937 SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>, 938 [SDNPHasChain, SDNPMayStore]>; 939 940def AArch64mrs : SDNode<"AArch64ISD::MRS", 941 SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, i32>]>, 942 [SDNPHasChain, SDNPOutGlue]>; 943 944def SD_AArch64rshrnb : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<2>]>; 945def AArch64rshrnb : SDNode<"AArch64ISD::RSHRNB_I", SD_AArch64rshrnb>; 946def AArch64rshrnb_pf : PatFrags<(ops node:$rs, node:$i), 947 [(AArch64rshrnb node:$rs, node:$i), 948 (int_aarch64_sve_rshrnb node:$rs, node:$i)]>; 949 950def AArch64CttzElts : SDNode<"AArch64ISD::CTTZ_ELTS", SDTypeProfile<1, 1, 951 [SDTCisInt<0>, SDTCisVec<1>]>, []>; 952 953// Match add node and also treat an 'or' node is as an 'add' if the or'ed operands 954// have no common bits. 955def add_and_or_is_add : PatFrags<(ops node:$lhs, node:$rhs), 956 [(add node:$lhs, node:$rhs), (or node:$lhs, node:$rhs)],[{ 957 if (N->getOpcode() == ISD::ADD) 958 return true; 959 return CurDAG->isADDLike(SDValue(N,0)); 960}]> { 961 let GISelPredicateCode = [{ 962 // Only handle G_ADD for now. FIXME. build capability to compute whether 963 // operands of G_OR have common bits set or not. 964 return MI.getOpcode() == TargetOpcode::G_ADD; 965 }]; 966} 967 968// Match mul with enough sign-bits. Can be reduced to a smaller mul operand. 969def smullwithsignbits : PatFrag<(ops node:$l, node:$r), (mul node:$l, node:$r), [{ 970 return CurDAG->ComputeNumSignBits(N->getOperand(0)) > 32 && 971 CurDAG->ComputeNumSignBits(N->getOperand(1)) > 32; 972}]>; 973 974//===----------------------------------------------------------------------===// 975 976//===----------------------------------------------------------------------===// 977 978// AArch64 Instruction Predicate Definitions. 979// We could compute these on a per-module basis but doing so requires accessing 980// the Function object through the <Target>Subtarget and objections were raised 981// to that (see post-commit review comments for r301750). 982let RecomputePerFunction = 1 in { 983 def ForCodeSize : Predicate<"shouldOptForSize(MF)">; 984 def NotForCodeSize : Predicate<"!shouldOptForSize(MF)">; 985 // Avoid generating STRQro if it is slow, unless we're optimizing for code size. 986 def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || shouldOptForSize(MF)">; 987 988 // Register restrictions for indirect tail-calls: 989 // - If branch target enforcement is enabled, indirect calls must use x16 or 990 // x17, because these are the only registers which can target the BTI C 991 // instruction. 992 // - If PAuthLR is enabled, x16 is used in the epilogue to hold the address 993 // of the signing instruction. This can't be changed because it is used by a 994 // HINT instruction which only accepts x16. We can't load anything from the 995 // stack after this because the authentication instruction checks that SP is 996 // the same as it was at function entry, so we can't have anything on the 997 // stack. 998 999 // BTI on, PAuthLR off: x16 or x17 1000 def TailCallX16X17 : Predicate<[{ MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() && !MF->getInfo<AArch64FunctionInfo>()->branchProtectionPAuthLR() }]>; 1001 // BTI on, PAuthLR on: x17 only 1002 def TailCallX17 : Predicate<[{ MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() && MF->getInfo<AArch64FunctionInfo>()->branchProtectionPAuthLR() }]>; 1003 // BTI off, PAuthLR on: Any non-callee-saved register except x16 1004 def TailCallNotX16 : Predicate<[{ !MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() && MF->getInfo<AArch64FunctionInfo>()->branchProtectionPAuthLR() }]>; 1005 // BTI off, PAuthLR off: Any non-callee-saved register 1006 def TailCallAny : Predicate<[{ !MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() && !MF->getInfo<AArch64FunctionInfo>()->branchProtectionPAuthLR() }]>; 1007 1008 def SLSBLRMitigation : Predicate<[{ MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>; 1009 def NoSLSBLRMitigation : Predicate<[{ !MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>; 1010 // Toggles patterns which aren't beneficial in GlobalISel when we aren't 1011 // optimizing. This allows us to selectively use patterns without impacting 1012 // SelectionDAG's behaviour. 1013 // FIXME: One day there will probably be a nicer way to check for this, but 1014 // today is not that day. 1015 def OptimizedGISelOrOtherSelector : Predicate<"!MF->getFunction().hasOptNone() || MF->getProperties().hasProperty(MachineFunctionProperties::Property::FailedISel) || !MF->getProperties().hasProperty(MachineFunctionProperties::Property::Legalized)">; 1016} 1017 1018include "AArch64InstrFormats.td" 1019include "SVEInstrFormats.td" 1020include "SMEInstrFormats.td" 1021 1022//===----------------------------------------------------------------------===// 1023 1024//===----------------------------------------------------------------------===// 1025// Miscellaneous instructions. 1026//===----------------------------------------------------------------------===// 1027 1028let hasSideEffects = 1, isCodeGenOnly = 1 in { 1029let Defs = [SP], Uses = [SP] in { 1030// We set Sched to empty list because we expect these instructions to simply get 1031// removed in most cases. 1032def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 1033 [(AArch64callseq_start timm:$amt1, timm:$amt2)]>, 1034 Sched<[]>; 1035def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 1036 [(AArch64callseq_end timm:$amt1, timm:$amt2)]>, 1037 Sched<[]>; 1038 1039} 1040 1041let Defs = [SP, NZCV], Uses = [SP] in { 1042// Probed stack allocation of a constant size, used in function prologues when 1043// stack-clash protection is enabled. 1044def PROBED_STACKALLOC : Pseudo<(outs GPR64:$scratch), 1045 (ins i64imm:$stacksize, i64imm:$fixed_offset, 1046 i64imm:$scalable_offset), 1047 []>, 1048 Sched<[]>; 1049 1050// Probed stack allocation of a variable size, used in function prologues when 1051// stack-clash protection is enabled. 1052def PROBED_STACKALLOC_VAR : Pseudo<(outs), 1053 (ins GPR64sp:$target), 1054 []>, 1055 Sched<[]>; 1056 1057// Probed stack allocations of a variable size, used for allocas of unknown size 1058// when stack-clash protection is enabled. 1059let usesCustomInserter = 1 in 1060def PROBED_STACKALLOC_DYN : Pseudo<(outs), 1061 (ins GPR64common:$target), 1062 [(AArch64probedalloca GPR64common:$target)]>, 1063 Sched<[]>; 1064 1065} // Defs = [SP, NZCV], Uses = [SP] in 1066} // hasSideEffects = 1, isCodeGenOnly = 1 1067 1068let isReMaterializable = 1, isCodeGenOnly = 1 in { 1069// FIXME: The following pseudo instructions are only needed because remat 1070// cannot handle multiple instructions. When that changes, they can be 1071// removed, along with the AArch64Wrapper node. 1072 1073let AddedComplexity = 10 in 1074def LOADgot : Pseudo<(outs GPR64common:$dst), (ins i64imm:$addr), 1075 [(set GPR64common:$dst, (AArch64LOADgot tglobaladdr:$addr))]>, 1076 Sched<[WriteLDAdr]>; 1077 1078// The MOVaddr instruction should match only when the add is not folded 1079// into a load or store address. 1080def MOVaddr 1081 : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), 1082 [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi), 1083 tglobaladdr:$low))]>, 1084 Sched<[WriteAdrAdr]>; 1085def MOVaddrJT 1086 : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), 1087 [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi), 1088 tjumptable:$low))]>, 1089 Sched<[WriteAdrAdr]>; 1090def MOVaddrCP 1091 : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), 1092 [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi), 1093 tconstpool:$low))]>, 1094 Sched<[WriteAdrAdr]>; 1095def MOVaddrBA 1096 : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), 1097 [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi), 1098 tblockaddress:$low))]>, 1099 Sched<[WriteAdrAdr]>; 1100def MOVaddrTLS 1101 : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), 1102 [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi), 1103 tglobaltlsaddr:$low))]>, 1104 Sched<[WriteAdrAdr]>; 1105def MOVaddrEXT 1106 : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), 1107 [(set GPR64common:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi), 1108 texternalsym:$low))]>, 1109 Sched<[WriteAdrAdr]>; 1110// Normally AArch64addlow either gets folded into a following ldr/str, 1111// or together with an adrp into MOVaddr above. For cases with TLS, it 1112// might appear without either of them, so allow lowering it into a plain 1113// add. 1114def ADDlowTLS 1115 : Pseudo<(outs GPR64sp:$dst), (ins GPR64sp:$src, i64imm:$low), 1116 [(set GPR64sp:$dst, (AArch64addlow GPR64sp:$src, 1117 tglobaltlsaddr:$low))]>, 1118 Sched<[WriteAdr]>; 1119 1120} // isReMaterializable, isCodeGenOnly 1121 1122def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr), 1123 (LOADgot tglobaltlsaddr:$addr)>; 1124 1125def : Pat<(AArch64LOADgot texternalsym:$addr), 1126 (LOADgot texternalsym:$addr)>; 1127 1128def : Pat<(AArch64LOADgot tconstpool:$addr), 1129 (LOADgot tconstpool:$addr)>; 1130 1131// In general these get lowered into a sequence of three 4-byte instructions. 1132// 32-bit jump table destination is actually only 2 instructions since we can 1133// use the table itself as a PC-relative base. But optimization occurs after 1134// branch relaxation so be pessimistic. 1135let Size = 12, Constraints = "@earlyclobber $dst,@earlyclobber $scratch", 1136 isNotDuplicable = 1 in { 1137def JumpTableDest32 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), 1138 (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, 1139 Sched<[]>; 1140def JumpTableDest16 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), 1141 (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, 1142 Sched<[]>; 1143def JumpTableDest8 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), 1144 (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, 1145 Sched<[]>; 1146} 1147 1148// A hardened but more expensive version of jump-table dispatch. 1149// This combines the target address computation (otherwise done using the 1150// JumpTableDest pseudos above) with the branch itself (otherwise done using 1151// a plain BR) in a single non-attackable sequence. 1152// 1153// We take the final entry index as an operand to allow isel freedom. This does 1154// mean that the index can be attacker-controlled. To address that, we also do 1155// limited checking of the offset, mainly ensuring it still points within the 1156// jump-table array. When it doesn't, this branches to the first entry. 1157// We might want to trap instead. 1158// 1159// This is intended for use in conjunction with ptrauth for other code pointers, 1160// to avoid signing jump-table entries and turning them into pointers. 1161// 1162// Entry index is passed in x16. Clobbers x16/x17/nzcv. 1163let isNotDuplicable = 1 in 1164def BR_JumpTable : Pseudo<(outs), (ins i32imm:$jti), []>, Sched<[]> { 1165 let isBranch = 1; 1166 let isTerminator = 1; 1167 let isIndirectBranch = 1; 1168 let isBarrier = 1; 1169 let isNotDuplicable = 1; 1170 let Defs = [X16,X17,NZCV]; 1171 let Uses = [X16]; 1172 let Size = 44; // 28 fixed + 16 variable, for table size materialization 1173} 1174 1175// Space-consuming pseudo to aid testing of placement and reachability 1176// algorithms. Immediate operand is the number of bytes this "instruction" 1177// occupies; register operands can be used to enforce dependency and constrain 1178// the scheduler. 1179let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in 1180def SPACE : Pseudo<(outs GPR64:$Rd), (ins i32imm:$size, GPR64:$Rn), 1181 [(set GPR64:$Rd, (int_aarch64_space imm:$size, GPR64:$Rn))]>, 1182 Sched<[]>; 1183 1184let hasSideEffects = 1, isCodeGenOnly = 1 in { 1185 def SpeculationSafeValueX 1186 : Pseudo<(outs GPR64:$dst), (ins GPR64:$src), []>, Sched<[]>; 1187 def SpeculationSafeValueW 1188 : Pseudo<(outs GPR32:$dst), (ins GPR32:$src), []>, Sched<[]>; 1189} 1190 1191// SpeculationBarrierEndBB must only be used after an unconditional control 1192// flow, i.e. after a terminator for which isBarrier is True. 1193let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in { 1194 // This gets lowered to a pair of 4-byte instructions. 1195 let Size = 8 in 1196 def SpeculationBarrierISBDSBEndBB 1197 : Pseudo<(outs), (ins), []>, Sched<[]>; 1198 // This gets lowered to a 4-byte instruction. 1199 let Size = 4 in 1200 def SpeculationBarrierSBEndBB 1201 : Pseudo<(outs), (ins), []>, Sched<[]>; 1202} 1203 1204//===----------------------------------------------------------------------===// 1205// System instructions. 1206//===----------------------------------------------------------------------===// 1207 1208def HINT : HintI<"hint">; 1209def : InstAlias<"nop", (HINT 0b000)>; 1210def : InstAlias<"yield",(HINT 0b001)>; 1211def : InstAlias<"wfe", (HINT 0b010)>; 1212def : InstAlias<"wfi", (HINT 0b011)>; 1213def : InstAlias<"sev", (HINT 0b100)>; 1214def : InstAlias<"sevl", (HINT 0b101)>; 1215def : InstAlias<"dgh", (HINT 0b110)>; 1216def : InstAlias<"esb", (HINT 0b10000)>, Requires<[HasRAS]>; 1217def : InstAlias<"csdb", (HINT 20)>; 1218// In order to be able to write readable assembly, LLVM should accept assembly 1219// inputs that use Branch Target Indentification mnemonics, even with BTI disabled. 1220// However, in order to be compatible with other assemblers (e.g. GAS), LLVM 1221// should not emit these mnemonics unless BTI is enabled. 1222def : InstAlias<"bti", (HINT 32), 0>; 1223def : InstAlias<"bti $op", (HINT btihint_op:$op), 0>; 1224def : InstAlias<"bti", (HINT 32)>, Requires<[HasBTI]>; 1225def : InstAlias<"bti $op", (HINT btihint_op:$op)>, Requires<[HasBTI]>; 1226 1227// v8.2a Statistical Profiling extension 1228def : InstAlias<"psb $op", (HINT psbhint_op:$op)>, Requires<[HasSPE]>; 1229 1230// As far as LLVM is concerned this writes to the system's exclusive monitors. 1231let mayLoad = 1, mayStore = 1 in 1232def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">; 1233 1234// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot 1235// model patterns with sufficiently fine granularity. 1236let mayLoad = ?, mayStore = ? in { 1237def DMB : CRmSystemI<barrier_op, 0b101, "dmb", 1238 [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>; 1239 1240def DSB : CRmSystemI<barrier_op, 0b100, "dsb", 1241 [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>; 1242 1243def ISB : CRmSystemI<barrier_op, 0b110, "isb", 1244 [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>; 1245 1246def TSB : CRmSystemI<barrier_op, 0b010, "tsb", []> { 1247 let CRm = 0b0010; 1248 let Inst{12} = 0; 1249 let Predicates = [HasTRACEV8_4]; 1250} 1251 1252def DSBnXS : CRmSystemI<barrier_nxs_op, 0b001, "dsb"> { 1253 let CRm{1-0} = 0b11; 1254 let Inst{9-8} = 0b10; 1255 let Predicates = [HasXS]; 1256} 1257 1258let Predicates = [HasWFxT] in { 1259def WFET : RegInputSystemI<0b0000, 0b000, "wfet">; 1260def WFIT : RegInputSystemI<0b0000, 0b001, "wfit">; 1261} 1262 1263// Branch Record Buffer two-word mnemonic instructions 1264class BRBEI<bits<3> op2, string keyword> 1265 : SimpleSystemI<0, (ins), "brb", keyword>, Sched<[WriteSys]> { 1266 let Inst{31-8} = 0b110101010000100101110010; 1267 let Inst{7-5} = op2; 1268 let Predicates = [HasBRBE]; 1269} 1270def BRB_IALL: BRBEI<0b100, "\tiall">; 1271def BRB_INJ: BRBEI<0b101, "\tinj">; 1272 1273} 1274 1275// Allow uppercase and lowercase keyword arguments for BRB IALL and BRB INJ 1276def : TokenAlias<"INJ", "inj">; 1277def : TokenAlias<"IALL", "iall">; 1278 1279 1280// ARMv9.4-A Guarded Control Stack 1281class GCSNoOp<bits<3> op2, string mnemonic> 1282 : SimpleSystemI<0, (ins), mnemonic, "">, Sched<[]> { 1283 let Inst{20-8} = 0b0100001110111; 1284 let Inst{7-5} = op2; 1285 let Predicates = [HasGCS]; 1286} 1287def GCSPUSHX : GCSNoOp<0b100, "gcspushx">; 1288def GCSPOPCX : GCSNoOp<0b101, "gcspopcx">; 1289def GCSPOPX : GCSNoOp<0b110, "gcspopx">; 1290 1291class GCSRtIn<bits<3> op1, bits<3> op2, string mnemonic, 1292 list<dag> pattern = []> 1293 : RtSystemI<0, (outs), (ins GPR64:$Rt), mnemonic, "\t$Rt", pattern> { 1294 let Inst{20-19} = 0b01; 1295 let Inst{18-16} = op1; 1296 let Inst{15-8} = 0b01110111; 1297 let Inst{7-5} = op2; 1298 let Predicates = [HasGCS]; 1299 let hasSideEffects = 1; 1300} 1301 1302let mayStore = 1, mayLoad = 1 in 1303def GCSSS1 : GCSRtIn<0b011, 0b010, "gcsss1">; 1304let mayStore = 1 in 1305def GCSPUSHM : GCSRtIn<0b011, 0b000, "gcspushm">; 1306 1307class GCSRtOut<bits<3> op1, bits<3> op2, string mnemonic, 1308 list<dag> pattern = []> 1309 : RtSystemI<1, (outs GPR64:$Rt), (ins GPR64:$src), mnemonic, "\t$Rt", pattern> { 1310 let Inst{20-19} = 0b01; 1311 let Inst{18-16} = op1; 1312 let Inst{15-8} = 0b01110111; 1313 let Inst{7-5} = op2; 1314 let Predicates = [HasGCS]; 1315 let hasSideEffects = 1; 1316 // The input register is unchanged when GCS is disabled, so we need it as 1317 // both an input and output operand. 1318 let Constraints = "$src = $Rt"; 1319} 1320 1321let mayStore = 1, mayLoad = 1 in 1322def GCSSS2 : GCSRtOut<0b011, 0b011, "gcsss2">; 1323// FIXME: mayStore = 1 only needed to match the intrinsic definition 1324let mayStore = 1, mayLoad = 1 in 1325def GCSPOPM : GCSRtOut<0b011, 0b001, "gcspopm", 1326 [(set GPR64:$Rt, (int_aarch64_gcspopm GPR64:$src))]>; 1327def GCSPOPM_NoOp : InstAlias<"gcspopm", (GCSPOPM XZR)>, Requires<[HasGCS]>; // Rt defaults to XZR if absent 1328 1329def GCSB_DSYNC_disable : InstAlias<"gcsb\tdsync", (HINT 19), 0>; 1330def GCSB_DSYNC : InstAlias<"gcsb\tdsync", (HINT 19), 1>, Requires<[HasGCS]>; 1331 1332def : TokenAlias<"DSYNC", "dsync">; 1333 1334let Uses = [X16], Defs = [X16], CRm = 0b0101 in { 1335 def CHKFEAT : SystemNoOperands<0b000, "hint\t#40", 1336 [(set X16, (int_aarch64_chkfeat X16))]>; 1337} 1338def : InstAlias<"chkfeat\tx16", (CHKFEAT), 0>; 1339def : InstAlias<"chkfeat\tx16", (CHKFEAT), 1>, Requires<[HasCHK]>; 1340 1341class GCSSt<string mnemonic, bits<3> op> 1342 : I<(outs), (ins GPR64:$Rt, GPR64sp:$Rn), mnemonic, "\t$Rt, [$Rn]", "", []>, Sched<[]> { 1343 bits<5> Rt; 1344 bits<5> Rn; 1345 let Inst{31-15} = 0b11011001000111110; 1346 let Inst{14-12} = op; 1347 let Inst{11-10} = 0b11; 1348 let Inst{9-5} = Rn; 1349 let Inst{4-0} = Rt; 1350 let Predicates = [HasGCS]; 1351} 1352def GCSSTR : GCSSt<"gcsstr", 0b000>; 1353def GCSSTTR : GCSSt<"gcssttr", 0b001>; 1354 1355// ARMv8.2-A Dot Product 1356let Predicates = [HasDotProd] in { 1357defm SDOT : SIMDThreeSameVectorDot<0, 0, "sdot", AArch64sdot>; 1358defm UDOT : SIMDThreeSameVectorDot<1, 0, "udot", AArch64udot>; 1359defm SDOTlane : SIMDThreeSameVectorDotIndex<0, 0, 0b10, "sdot", AArch64sdot>; 1360defm UDOTlane : SIMDThreeSameVectorDotIndex<1, 0, 0b10, "udot", AArch64udot>; 1361} 1362 1363// ARMv8.6-A BFloat 1364let Predicates = [HasNEON, HasBF16] in { 1365defm BFDOT : SIMDThreeSameVectorBFDot<1, "bfdot">; 1366defm BF16DOTlane : SIMDThreeSameVectorBF16DotI<0, "bfdot">; 1367def BFMMLA : SIMDThreeSameVectorBF16MatrixMul<"bfmmla">; 1368def BFMLALB : SIMDBF16MLAL<0, "bfmlalb", int_aarch64_neon_bfmlalb>; 1369def BFMLALT : SIMDBF16MLAL<1, "bfmlalt", int_aarch64_neon_bfmlalt>; 1370def BFMLALBIdx : SIMDBF16MLALIndex<0, "bfmlalb", int_aarch64_neon_bfmlalb>; 1371def BFMLALTIdx : SIMDBF16MLALIndex<1, "bfmlalt", int_aarch64_neon_bfmlalt>; 1372def BFCVTN : SIMD_BFCVTN; 1373def BFCVTN2 : SIMD_BFCVTN2; 1374 1375def : Pat<(v4bf16 (any_fpround (v4f32 V128:$Rn))), 1376 (EXTRACT_SUBREG (BFCVTN V128:$Rn), dsub)>; 1377 1378// Vector-scalar BFDOT: 1379// The second source operand of the 64-bit variant of BF16DOTlane is a 128-bit 1380// register (the instruction uses a single 32-bit lane from it), so the pattern 1381// is a bit tricky. 1382def : Pat<(v2f32 (int_aarch64_neon_bfdot 1383 (v2f32 V64:$Rd), (v4bf16 V64:$Rn), 1384 (v4bf16 (bitconvert 1385 (v2i32 (AArch64duplane32 1386 (v4i32 (bitconvert 1387 (v8bf16 (insert_subvector undef, 1388 (v4bf16 V64:$Rm), 1389 (i64 0))))), 1390 VectorIndexS:$idx)))))), 1391 (BF16DOTlanev4bf16 (v2f32 V64:$Rd), (v4bf16 V64:$Rn), 1392 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), 1393 VectorIndexS:$idx)>; 1394} 1395 1396let Predicates = [HasNEONandIsStreamingSafe, HasBF16] in { 1397def BFCVT : BF16ToSinglePrecision<"bfcvt">; 1398// Round FP32 to BF16. 1399def : Pat<(bf16 (any_fpround (f32 FPR32:$Rn))), (BFCVT $Rn)>; 1400} 1401 1402// ARMv8.6A AArch64 matrix multiplication 1403let Predicates = [HasMatMulInt8] in { 1404def SMMLA : SIMDThreeSameVectorMatMul<0, 0, "smmla", int_aarch64_neon_smmla>; 1405def UMMLA : SIMDThreeSameVectorMatMul<0, 1, "ummla", int_aarch64_neon_ummla>; 1406def USMMLA : SIMDThreeSameVectorMatMul<1, 0, "usmmla", int_aarch64_neon_usmmla>; 1407defm USDOT : SIMDThreeSameVectorDot<0, 1, "usdot", int_aarch64_neon_usdot>; 1408defm USDOTlane : SIMDThreeSameVectorDotIndex<0, 1, 0b10, "usdot", int_aarch64_neon_usdot>; 1409 1410// sudot lane has a pattern where usdot is expected (there is no sudot). 1411// The second operand is used in the dup operation to repeat the indexed 1412// element. 1413class BaseSIMDSUDOTIndex<bit Q, string dst_kind, string lhs_kind, 1414 string rhs_kind, RegisterOperand RegType, 1415 ValueType AccumType, ValueType InputType> 1416 : BaseSIMDThreeSameVectorIndexS<Q, 0, 0b00, 0b1111, "sudot", dst_kind, 1417 lhs_kind, rhs_kind, RegType, AccumType, 1418 InputType, null_frag> { 1419 let Pattern = [(set (AccumType RegType:$dst), 1420 (AccumType (int_aarch64_neon_usdot (AccumType RegType:$Rd), 1421 (InputType (bitconvert (AccumType 1422 (AArch64duplane32 (v4i32 V128:$Rm), 1423 VectorIndexS:$idx)))), 1424 (InputType RegType:$Rn))))]; 1425} 1426 1427multiclass SIMDSUDOTIndex { 1428 def v8i8 : BaseSIMDSUDOTIndex<0, ".2s", ".8b", ".4b", V64, v2i32, v8i8>; 1429 def v16i8 : BaseSIMDSUDOTIndex<1, ".4s", ".16b", ".4b", V128, v4i32, v16i8>; 1430} 1431 1432defm SUDOTlane : SIMDSUDOTIndex; 1433 1434} 1435 1436// ARMv8.2-A FP16 Fused Multiply-Add Long 1437let Predicates = [HasNEON, HasFP16FML] in { 1438defm FMLAL : SIMDThreeSameVectorFML<0, 1, 0b001, "fmlal", int_aarch64_neon_fmlal>; 1439defm FMLSL : SIMDThreeSameVectorFML<0, 1, 0b101, "fmlsl", int_aarch64_neon_fmlsl>; 1440defm FMLAL2 : SIMDThreeSameVectorFML<1, 0, 0b001, "fmlal2", int_aarch64_neon_fmlal2>; 1441defm FMLSL2 : SIMDThreeSameVectorFML<1, 0, 0b101, "fmlsl2", int_aarch64_neon_fmlsl2>; 1442defm FMLALlane : SIMDThreeSameVectorFMLIndex<0, 0b0000, "fmlal", int_aarch64_neon_fmlal>; 1443defm FMLSLlane : SIMDThreeSameVectorFMLIndex<0, 0b0100, "fmlsl", int_aarch64_neon_fmlsl>; 1444defm FMLAL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1000, "fmlal2", int_aarch64_neon_fmlal2>; 1445defm FMLSL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1100, "fmlsl2", int_aarch64_neon_fmlsl2>; 1446} 1447 1448// Armv8.2-A Crypto extensions 1449let Predicates = [HasSHA3] in { 1450def SHA512H : CryptoRRRTied<0b0, 0b00, "sha512h">; 1451def SHA512H2 : CryptoRRRTied<0b0, 0b01, "sha512h2">; 1452def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">; 1453def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">; 1454def RAX1 : CryptoRRR_2D<0b0,0b11, "rax1">; 1455def EOR3 : CryptoRRRR_16B<0b00, "eor3">; 1456def BCAX : CryptoRRRR_16B<0b01, "bcax">; 1457def XAR : CryptoRRRi6<"xar">; 1458 1459class SHA3_pattern<Instruction INST, Intrinsic OpNode, ValueType VecTy> 1460 : Pat<(VecTy (OpNode (VecTy V128:$Vd), (VecTy V128:$Vn), (VecTy V128:$Vm))), 1461 (INST (VecTy V128:$Vd), (VecTy V128:$Vn), (VecTy V128:$Vm))>; 1462 1463def : Pat<(v2i64 (int_aarch64_crypto_sha512su0 (v2i64 V128:$Vn), (v2i64 V128:$Vm))), 1464 (SHA512SU0 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>; 1465 1466def : SHA3_pattern<SHA512H, int_aarch64_crypto_sha512h, v2i64>; 1467def : SHA3_pattern<SHA512H2, int_aarch64_crypto_sha512h2, v2i64>; 1468def : SHA3_pattern<SHA512SU1, int_aarch64_crypto_sha512su1, v2i64>; 1469 1470def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v16i8>; 1471def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v8i16>; 1472def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v4i32>; 1473def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v2i64>; 1474 1475class EOR3_pattern<ValueType VecTy> 1476 : Pat<(xor (xor (VecTy V128:$Vn), (VecTy V128:$Vm)), (VecTy V128:$Va)), 1477 (EOR3 (VecTy V128:$Vn), (VecTy V128:$Vm), (VecTy V128:$Va))>; 1478 1479def : EOR3_pattern<v16i8>; 1480def : EOR3_pattern<v8i16>; 1481def : EOR3_pattern<v4i32>; 1482def : EOR3_pattern<v2i64>; 1483 1484class BCAX_pattern<ValueType VecTy> 1485 : Pat<(xor (VecTy V128:$Vn), (and (VecTy V128:$Vm), (vnot (VecTy V128:$Va)))), 1486 (BCAX (VecTy V128:$Vn), (VecTy V128:$Vm), (VecTy V128:$Va))>; 1487 1488def : BCAX_pattern<v16i8>; 1489def : BCAX_pattern<v8i16>; 1490def : BCAX_pattern<v4i32>; 1491def : BCAX_pattern<v2i64>; 1492 1493def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v16i8>; 1494def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v8i16>; 1495def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v4i32>; 1496def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v2i64>; 1497 1498def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v16i8>; 1499def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v8i16>; 1500def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v4i32>; 1501def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v2i64>; 1502 1503def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v16i8>; 1504def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v8i16>; 1505def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v4i32>; 1506def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v2i64>; 1507 1508def : Pat<(v2i64 (int_aarch64_crypto_rax1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))), 1509 (RAX1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>; 1510 1511def : Pat<(v2i64 (int_aarch64_crypto_xar (v2i64 V128:$Vn), (v2i64 V128:$Vm), (i64 timm0_63:$imm))), 1512 (XAR (v2i64 V128:$Vn), (v2i64 V128:$Vm), (timm0_63:$imm))>; 1513 1514def : Pat<(xor (v2i64 V128:$Vn), (or (AArch64vlshr (v2i64 V128:$Vm), (i32 63)), (AArch64vshl (v2i64 V128:$Vm), (i32 1)))), 1515 (RAX1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>; 1516 1517} // HasSHA3 1518 1519let Predicates = [HasSM4] in { 1520def SM3TT1A : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">; 1521def SM3TT1B : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">; 1522def SM3TT2A : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">; 1523def SM3TT2B : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">; 1524def SM3SS1 : CryptoRRRR_4S<0b10, "sm3ss1">; 1525def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">; 1526def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">; 1527def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">; 1528def SM4E : CryptoRRTied_4S<0b0, 0b01, "sm4e">; 1529 1530def : Pat<(v4i32 (int_aarch64_crypto_sm3ss1 (v4i32 V128:$Vn), (v4i32 V128:$Vm), (v4i32 V128:$Va))), 1531 (SM3SS1 (v4i32 V128:$Vn), (v4i32 V128:$Vm), (v4i32 V128:$Va))>; 1532 1533class SM3PARTW_pattern<Instruction INST, Intrinsic OpNode> 1534 : Pat<(v4i32 (OpNode (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm))), 1535 (INST (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm))>; 1536 1537class SM3TT_pattern<Instruction INST, Intrinsic OpNode> 1538 : Pat<(v4i32 (OpNode (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm), (i64 VectorIndexS_timm:$imm) )), 1539 (INST (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm), (VectorIndexS_timm:$imm))>; 1540 1541class SM4_pattern<Instruction INST, Intrinsic OpNode> 1542 : Pat<(v4i32 (OpNode (v4i32 V128:$Vn), (v4i32 V128:$Vm))), 1543 (INST (v4i32 V128:$Vn), (v4i32 V128:$Vm))>; 1544 1545def : SM3PARTW_pattern<SM3PARTW1, int_aarch64_crypto_sm3partw1>; 1546def : SM3PARTW_pattern<SM3PARTW2, int_aarch64_crypto_sm3partw2>; 1547 1548def : SM3TT_pattern<SM3TT1A, int_aarch64_crypto_sm3tt1a>; 1549def : SM3TT_pattern<SM3TT1B, int_aarch64_crypto_sm3tt1b>; 1550def : SM3TT_pattern<SM3TT2A, int_aarch64_crypto_sm3tt2a>; 1551def : SM3TT_pattern<SM3TT2B, int_aarch64_crypto_sm3tt2b>; 1552 1553def : SM4_pattern<SM4ENCKEY, int_aarch64_crypto_sm4ekey>; 1554def : SM4_pattern<SM4E, int_aarch64_crypto_sm4e>; 1555} // HasSM4 1556 1557let Predicates = [HasRCPC] in { 1558 // v8.3 Release Consistent Processor Consistent support, optional in v8.2. 1559 def LDAPRB : RCPCLoad<0b00, "ldaprb", GPR32>; 1560 def LDAPRH : RCPCLoad<0b01, "ldaprh", GPR32>; 1561 def LDAPRW : RCPCLoad<0b10, "ldapr", GPR32>; 1562 def LDAPRX : RCPCLoad<0b11, "ldapr", GPR64>; 1563} 1564 1565// v8.3a complex add and multiply-accumulate. No predicate here, that is done 1566// inside the multiclass as the FP16 versions need different predicates. 1567defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop, 1568 "fcmla", null_frag>; 1569defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd, 1570 "fcadd", null_frag>; 1571defm FCMLA : SIMDIndexedTiedComplexHSD<0, 1, complexrotateop, "fcmla">; 1572 1573let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in { 1574 def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot90 (v4f16 V64:$Rn), (v4f16 V64:$Rm))), 1575 (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 0))>; 1576 def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot270 (v4f16 V64:$Rn), (v4f16 V64:$Rm))), 1577 (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 1))>; 1578 def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot90 (v8f16 V128:$Rn), (v8f16 V128:$Rm))), 1579 (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 0))>; 1580 def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot270 (v8f16 V128:$Rn), (v8f16 V128:$Rm))), 1581 (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 1))>; 1582} 1583 1584let Predicates = [HasComplxNum, HasNEON] in { 1585 def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot90 (v2f32 V64:$Rn), (v2f32 V64:$Rm))), 1586 (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 0))>; 1587 def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot270 (v2f32 V64:$Rn), (v2f32 V64:$Rm))), 1588 (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 1))>; 1589 foreach Ty = [v4f32, v2f64] in { 1590 def : Pat<(Ty (int_aarch64_neon_vcadd_rot90 (Ty V128:$Rn), (Ty V128:$Rm))), 1591 (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 0))>; 1592 def : Pat<(Ty (int_aarch64_neon_vcadd_rot270 (Ty V128:$Rn), (Ty V128:$Rm))), 1593 (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 1))>; 1594 } 1595} 1596 1597multiclass FCMLA_PATS<ValueType ty, DAGOperand Reg> { 1598 def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), 1599 (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 0)>; 1600 def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), 1601 (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 1)>; 1602 def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), 1603 (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 2)>; 1604 def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), 1605 (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 3)>; 1606} 1607 1608multiclass FCMLA_LANE_PATS<ValueType ty, DAGOperand Reg, dag RHSDup> { 1609 def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), 1610 (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 0)>; 1611 def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), 1612 (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 1)>; 1613 def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), 1614 (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 2)>; 1615 def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), 1616 (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 3)>; 1617} 1618 1619 1620let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in { 1621 defm : FCMLA_PATS<v4f16, V64>; 1622 defm : FCMLA_PATS<v8f16, V128>; 1623 1624 defm : FCMLA_LANE_PATS<v4f16, V64, 1625 (v4f16 (bitconvert (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexD:$idx))))>; 1626 defm : FCMLA_LANE_PATS<v8f16, V128, 1627 (v8f16 (bitconvert (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))>; 1628} 1629let Predicates = [HasComplxNum, HasNEON] in { 1630 defm : FCMLA_PATS<v2f32, V64>; 1631 defm : FCMLA_PATS<v4f32, V128>; 1632 defm : FCMLA_PATS<v2f64, V128>; 1633 1634 defm : FCMLA_LANE_PATS<v4f32, V128, 1635 (v4f32 (bitconvert (v2i64 (AArch64duplane64 (v2i64 V128:$Rm), VectorIndexD:$idx))))>; 1636} 1637 1638// v8.3a Pointer Authentication 1639// These instructions inhabit part of the hint space and so can be used for 1640// armv8 targets. Keeping the old HINT mnemonic when compiling without PA is 1641// important for compatibility with other assemblers (e.g. GAS) when building 1642// software compatible with both CPUs that do or don't implement PA. 1643let Uses = [LR], Defs = [LR] in { 1644 def PACIAZ : SystemNoOperands<0b000, "hint\t#24">; 1645 def PACIBZ : SystemNoOperands<0b010, "hint\t#26">; 1646 let isAuthenticated = 1 in { 1647 def AUTIAZ : SystemNoOperands<0b100, "hint\t#28">; 1648 def AUTIBZ : SystemNoOperands<0b110, "hint\t#30">; 1649 } 1650} 1651let Uses = [LR, SP], Defs = [LR] in { 1652 def PACIASP : SystemNoOperands<0b001, "hint\t#25">; 1653 def PACIBSP : SystemNoOperands<0b011, "hint\t#27">; 1654 let isAuthenticated = 1 in { 1655 def AUTIASP : SystemNoOperands<0b101, "hint\t#29">; 1656 def AUTIBSP : SystemNoOperands<0b111, "hint\t#31">; 1657 } 1658} 1659let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in { 1660 def PACIA1716 : SystemNoOperands<0b000, "hint\t#8">; 1661 def PACIB1716 : SystemNoOperands<0b010, "hint\t#10">; 1662 let isAuthenticated = 1 in { 1663 def AUTIA1716 : SystemNoOperands<0b100, "hint\t#12">; 1664 def AUTIB1716 : SystemNoOperands<0b110, "hint\t#14">; 1665 } 1666} 1667 1668let Uses = [LR], Defs = [LR], CRm = 0b0000 in { 1669 def XPACLRI : SystemNoOperands<0b111, "hint\t#7">; 1670} 1671 1672// In order to be able to write readable assembly, LLVM should accept assembly 1673// inputs that use pointer authentication mnemonics, even with PA disabled. 1674// However, in order to be compatible with other assemblers (e.g. GAS), LLVM 1675// should not emit these mnemonics unless PA is enabled. 1676def : InstAlias<"paciaz", (PACIAZ), 0>; 1677def : InstAlias<"pacibz", (PACIBZ), 0>; 1678def : InstAlias<"autiaz", (AUTIAZ), 0>; 1679def : InstAlias<"autibz", (AUTIBZ), 0>; 1680def : InstAlias<"paciasp", (PACIASP), 0>; 1681def : InstAlias<"pacibsp", (PACIBSP), 0>; 1682def : InstAlias<"autiasp", (AUTIASP), 0>; 1683def : InstAlias<"autibsp", (AUTIBSP), 0>; 1684def : InstAlias<"pacia1716", (PACIA1716), 0>; 1685def : InstAlias<"pacib1716", (PACIB1716), 0>; 1686def : InstAlias<"autia1716", (AUTIA1716), 0>; 1687def : InstAlias<"autib1716", (AUTIB1716), 0>; 1688def : InstAlias<"xpaclri", (XPACLRI), 0>; 1689 1690// Pseudos 1691 1692let Uses = [LR, SP], Defs = [LR] in { 1693// Insertion point of LR signing code. 1694def PAUTH_PROLOGUE : Pseudo<(outs), (ins), []>, Sched<[]>; 1695// Insertion point of LR authentication code. 1696// The RET terminator of the containing machine basic block may be replaced 1697// with a combined RETA(A|B) instruction when rewriting this Pseudo. 1698def PAUTH_EPILOGUE : Pseudo<(outs), (ins), []>, Sched<[]>; 1699} 1700 1701def PAUTH_BLEND : Pseudo<(outs GPR64:$disc), 1702 (ins GPR64:$addr_disc, i32imm:$int_disc), []>, Sched<[]>; 1703 1704// These pointer authentication instructions require armv8.3a 1705let Predicates = [HasPAuth] in { 1706 1707 // When PA is enabled, a better mnemonic should be emitted. 1708 def : InstAlias<"paciaz", (PACIAZ), 1>; 1709 def : InstAlias<"pacibz", (PACIBZ), 1>; 1710 def : InstAlias<"autiaz", (AUTIAZ), 1>; 1711 def : InstAlias<"autibz", (AUTIBZ), 1>; 1712 def : InstAlias<"paciasp", (PACIASP), 1>; 1713 def : InstAlias<"pacibsp", (PACIBSP), 1>; 1714 def : InstAlias<"autiasp", (AUTIASP), 1>; 1715 def : InstAlias<"autibsp", (AUTIBSP), 1>; 1716 def : InstAlias<"pacia1716", (PACIA1716), 1>; 1717 def : InstAlias<"pacib1716", (PACIB1716), 1>; 1718 def : InstAlias<"autia1716", (AUTIA1716), 1>; 1719 def : InstAlias<"autib1716", (AUTIB1716), 1>; 1720 def : InstAlias<"xpaclri", (XPACLRI), 1>; 1721 1722 multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm, 1723 SDPatternOperator op> { 1724 def IA : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia"), op>; 1725 def IB : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib"), op>; 1726 def DA : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da"), op>; 1727 def DB : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db"), op>; 1728 def IZA : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza"), op>; 1729 def DZA : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza"), op>; 1730 def IZB : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb"), op>; 1731 def DZB : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb"), op>; 1732 } 1733 1734 defm PAC : SignAuth<0b000, 0b010, "pac", int_ptrauth_sign>; 1735 defm AUT : SignAuth<0b001, 0b011, "aut", null_frag>; 1736 1737 def XPACI : ClearAuth<0, "xpaci">; 1738 def : Pat<(int_ptrauth_strip GPR64:$Rd, 0), (XPACI GPR64:$Rd)>; 1739 def : Pat<(int_ptrauth_strip GPR64:$Rd, 1), (XPACI GPR64:$Rd)>; 1740 1741 def XPACD : ClearAuth<1, "xpacd">; 1742 def : Pat<(int_ptrauth_strip GPR64:$Rd, 2), (XPACD GPR64:$Rd)>; 1743 def : Pat<(int_ptrauth_strip GPR64:$Rd, 3), (XPACD GPR64:$Rd)>; 1744 1745 def PACGA : SignAuthTwoOperand<0b1100, "pacga", int_ptrauth_sign_generic>; 1746 1747 // Combined Instructions 1748 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 1749 def BRAA : AuthBranchTwoOperands<0, 0, "braa">; 1750 def BRAB : AuthBranchTwoOperands<0, 1, "brab">; 1751 } 1752 let isCall = 1, Defs = [LR], Uses = [SP] in { 1753 def BLRAA : AuthBranchTwoOperands<1, 0, "blraa">; 1754 def BLRAB : AuthBranchTwoOperands<1, 1, "blrab">; 1755 } 1756 1757 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 1758 def BRAAZ : AuthOneOperand<0b000, 0, "braaz">; 1759 def BRABZ : AuthOneOperand<0b000, 1, "brabz">; 1760 } 1761 let isCall = 1, Defs = [LR], Uses = [SP] in { 1762 def BLRAAZ : AuthOneOperand<0b001, 0, "blraaz">; 1763 def BLRABZ : AuthOneOperand<0b001, 1, "blrabz">; 1764 } 1765 1766 // BLRA pseudo, a generalized version of BLRAA/BLRAB/Z. 1767 // This directly manipulates x16/x17 to materialize the discriminator. 1768 // x16/x17 are generally used as the safe registers for sensitive ptrauth 1769 // operations (such as raw address manipulation or discriminator 1770 // materialization here), in part because they're handled in a safer way by 1771 // the kernel, notably on Darwin. 1772 def BLRA : Pseudo<(outs), (ins GPR64noip:$Rn, i32imm:$Key, i64imm:$Disc, 1773 GPR64noip:$AddrDisc), 1774 [(AArch64authcall GPR64noip:$Rn, timm:$Key, timm:$Disc, 1775 GPR64noip:$AddrDisc)]>, Sched<[]> { 1776 let isCodeGenOnly = 1; 1777 let hasSideEffects = 1; 1778 let mayStore = 0; 1779 let mayLoad = 0; 1780 let isCall = 1; 1781 let Size = 12; // 4 fixed + 8 variable, to compute discriminator. 1782 let Defs = [X17,LR]; 1783 let Uses = [SP]; 1784 } 1785 1786 def BLRA_RVMARKER : Pseudo< 1787 (outs), (ins i64imm:$rvfunc, GPR64noip:$Rn, i32imm:$Key, i64imm:$Disc, 1788 GPR64noip:$AddrDisc), 1789 [(AArch64authcall_rvmarker tglobaladdr:$rvfunc, 1790 GPR64noip:$Rn, timm:$Key, timm:$Disc, 1791 GPR64noip:$AddrDisc)]>, Sched<[]> { 1792 let isCodeGenOnly = 1; 1793 let isCall = 1; 1794 let Defs = [X17,LR]; 1795 let Uses = [SP]; 1796 } 1797 1798 // BRA pseudo, generalized version of BRAA/BRAB/Z. 1799 // This directly manipulates x16/x17, which are the only registers the OS 1800 // guarantees are safe to use for sensitive operations. 1801 def BRA : Pseudo<(outs), (ins GPR64noip:$Rn, i32imm:$Key, i64imm:$Disc, 1802 GPR64noip:$AddrDisc), []>, Sched<[]> { 1803 let isCodeGenOnly = 1; 1804 let hasNoSchedulingInfo = 1; 1805 let hasSideEffects = 1; 1806 let mayStore = 0; 1807 let mayLoad = 0; 1808 let isBranch = 1; 1809 let isTerminator = 1; 1810 let isBarrier = 1; 1811 let isIndirectBranch = 1; 1812 let Size = 12; // 4 fixed + 8 variable, to compute discriminator. 1813 let Defs = [X17]; 1814 } 1815 1816 let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 1817 def RETAA : AuthReturn<0b010, 0, "retaa">; 1818 def RETAB : AuthReturn<0b010, 1, "retab">; 1819 def ERETAA : AuthReturn<0b100, 0, "eretaa">; 1820 def ERETAB : AuthReturn<0b100, 1, "eretab">; 1821 } 1822 1823 defm LDRAA : AuthLoad<0, "ldraa", simm10Scaled>; 1824 defm LDRAB : AuthLoad<1, "ldrab", simm10Scaled>; 1825 1826 // AUT pseudo. 1827 // This directly manipulates x16/x17, which are the only registers the OS 1828 // guarantees are safe to use for sensitive operations. 1829 def AUT : Pseudo<(outs), (ins i32imm:$Key, i64imm:$Disc, GPR64noip:$AddrDisc), 1830 []>, Sched<[WriteI, ReadI]> { 1831 let isCodeGenOnly = 1; 1832 let hasSideEffects = 1; 1833 let mayStore = 0; 1834 let mayLoad = 0; 1835 let Size = 32; 1836 let Defs = [X16,X17,NZCV]; 1837 let Uses = [X16]; 1838 } 1839 1840 // AUT and re-PAC a value, using different keys/data. 1841 // This directly manipulates x16/x17, which are the only registers the OS 1842 // guarantees are safe to use for sensitive operations. 1843 def AUTPAC 1844 : Pseudo<(outs), 1845 (ins i32imm:$AUTKey, i64imm:$AUTDisc, GPR64noip:$AUTAddrDisc, 1846 i32imm:$PACKey, i64imm:$PACDisc, GPR64noip:$PACAddrDisc), 1847 []>, Sched<[WriteI, ReadI]> { 1848 let isCodeGenOnly = 1; 1849 let hasSideEffects = 1; 1850 let mayStore = 0; 1851 let mayLoad = 0; 1852 let Size = 48; 1853 let Defs = [X16,X17,NZCV]; 1854 let Uses = [X16]; 1855 } 1856 1857 // Materialize a signed global address, with adrp+add and PAC. 1858 def MOVaddrPAC : Pseudo<(outs), 1859 (ins i64imm:$Addr, i32imm:$Key, 1860 GPR64noip:$AddrDisc, i64imm:$Disc), []>, 1861 Sched<[WriteI, ReadI]> { 1862 let isReMaterializable = 1; 1863 let isCodeGenOnly = 1; 1864 let Size = 40; // 12 fixed + 28 variable, for pointer offset, and discriminator 1865 let Defs = [X16,X17]; 1866 } 1867 1868 // Materialize a signed global address, using a GOT load and PAC. 1869 def LOADgotPAC : Pseudo<(outs), 1870 (ins i64imm:$Addr, i32imm:$Key, 1871 GPR64noip:$AddrDisc, i64imm:$Disc), []>, 1872 Sched<[WriteI, ReadI]> { 1873 let isReMaterializable = 1; 1874 let isCodeGenOnly = 1; 1875 let Size = 40; // 12 fixed + 28 variable, for pointer offset, and discriminator 1876 let Defs = [X16,X17]; 1877 } 1878 1879 // Load a signed global address from a special $auth_ptr$ stub slot. 1880 def LOADauthptrstatic : Pseudo<(outs GPR64:$dst), 1881 (ins i64imm:$Addr, i32imm:$Key, 1882 i64imm:$Disc), []>, 1883 Sched<[WriteI, ReadI]> { 1884 let isReMaterializable = 1; 1885 let isCodeGenOnly = 1; 1886 let Size = 8; 1887 } 1888 1889 // Size 16: 4 fixed + 8 variable, to compute discriminator. 1890 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Size = 16, 1891 Uses = [SP] in { 1892 def AUTH_TCRETURN 1893 : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff, i32imm:$Key, 1894 i64imm:$Disc, tcGPR64:$AddrDisc), 1895 []>, Sched<[WriteBrReg]>; 1896 def AUTH_TCRETURN_BTI 1897 : Pseudo<(outs), (ins tcGPRx16x17:$dst, i32imm:$FPDiff, i32imm:$Key, 1898 i64imm:$Disc, tcGPR64:$AddrDisc), 1899 []>, Sched<[WriteBrReg]>; 1900 } 1901 1902 let Predicates = [TailCallAny] in 1903 def : Pat<(AArch64authtcret tcGPR64:$dst, (i32 timm:$FPDiff), (i32 timm:$Key), 1904 (i64 timm:$Disc), tcGPR64:$AddrDisc), 1905 (AUTH_TCRETURN tcGPR64:$dst, imm:$FPDiff, imm:$Key, imm:$Disc, 1906 tcGPR64:$AddrDisc)>; 1907 1908 let Predicates = [TailCallX16X17] in 1909 def : Pat<(AArch64authtcret tcGPRx16x17:$dst, (i32 timm:$FPDiff), 1910 (i32 timm:$Key), (i64 timm:$Disc), 1911 tcGPR64:$AddrDisc), 1912 (AUTH_TCRETURN_BTI tcGPRx16x17:$dst, imm:$FPDiff, imm:$Key, 1913 imm:$Disc, tcGPR64:$AddrDisc)>; 1914} 1915 1916// v9.5-A pointer authentication extensions 1917 1918// Always accept "pacm" as an alias for "hint #39", but don't emit it when 1919// disassembling if we don't have the pauth-lr feature. 1920let CRm = 0b0100 in { 1921 def PACM : SystemNoOperands<0b111, "hint\t#39">; 1922} 1923def : InstAlias<"pacm", (PACM), 0>; 1924 1925let Predicates = [HasPAuthLR] in { 1926 let Defs = [LR], Uses = [LR, SP] in { 1927 // opcode2, opcode, asm 1928 def PACIASPPC : SignAuthFixedRegs<0b00001, 0b101000, "paciasppc">; 1929 def PACIBSPPC : SignAuthFixedRegs<0b00001, 0b101001, "pacibsppc">; 1930 def PACNBIASPPC : SignAuthFixedRegs<0b00001, 0b100000, "pacnbiasppc">; 1931 def PACNBIBSPPC : SignAuthFixedRegs<0b00001, 0b100001, "pacnbibsppc">; 1932 // opc, asm 1933 def AUTIASPPCi : SignAuthPCRel<0b00, "autiasppc">; 1934 def AUTIBSPPCi : SignAuthPCRel<0b01, "autibsppc">; 1935 // opcode2, opcode, asm 1936 def AUTIASPPCr : SignAuthOneReg<0b00001, 0b100100, "autiasppcr">; 1937 def AUTIBSPPCr : SignAuthOneReg<0b00001, 0b100101, "autibsppcr">; 1938 // opcode2, opcode, asm 1939 def PACIA171615 : SignAuthFixedRegs<0b00001, 0b100010, "pacia171615">; 1940 def PACIB171615 : SignAuthFixedRegs<0b00001, 0b100011, "pacib171615">; 1941 def AUTIA171615 : SignAuthFixedRegs<0b00001, 0b101110, "autia171615">; 1942 def AUTIB171615 : SignAuthFixedRegs<0b00001, 0b101111, "autib171615">; 1943 } 1944 1945 let Uses = [LR, SP], isReturn = 1, isTerminator = 1, isBarrier = 1 in { 1946 // opc, op2, asm 1947 def RETAASPPCi : SignAuthReturnPCRel<0b000, 0b11111, "retaasppc">; 1948 def RETABSPPCi : SignAuthReturnPCRel<0b001, 0b11111, "retabsppc">; 1949 // op3, asm 1950 def RETAASPPCr : SignAuthReturnReg<0b000010, "retaasppcr">; 1951 def RETABSPPCr : SignAuthReturnReg<0b000011, "retabsppcr">; 1952 } 1953 def : InstAlias<"pacm", (PACM), 1>; 1954} 1955 1956 1957// v8.3a floating point conversion for javascript 1958let Predicates = [HasJS, HasFPARMv8], Defs = [NZCV] in 1959def FJCVTZS : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32, 1960 "fjcvtzs", 1961 [(set GPR32:$Rd, 1962 (int_aarch64_fjcvtzs FPR64:$Rn))]> { 1963 let Inst{31} = 0; 1964} // HasJS, HasFPARMv8 1965 1966// v8.4 Flag manipulation instructions 1967let Predicates = [HasFlagM], Defs = [NZCV], Uses = [NZCV] in { 1968def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> { 1969 let Inst{20-5} = 0b0000001000000000; 1970} 1971def SETF8 : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">; 1972def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">; 1973def RMIF : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif", 1974 "{\t$Rn, $imm, $mask}">; 1975} // HasFlagM 1976 1977// v8.5 flag manipulation instructions 1978let Predicates = [HasAltNZCV], Uses = [NZCV], Defs = [NZCV] in { 1979 1980def XAFLAG : PstateWriteSimple<(ins), "xaflag", "">, Sched<[WriteSys]> { 1981 let Inst{18-16} = 0b000; 1982 let Inst{11-8} = 0b0000; 1983 let Unpredictable{11-8} = 0b1111; 1984 let Inst{7-5} = 0b001; 1985} 1986 1987def AXFLAG : PstateWriteSimple<(ins), "axflag", "">, Sched<[WriteSys]> { 1988 let Inst{18-16} = 0b000; 1989 let Inst{11-8} = 0b0000; 1990 let Unpredictable{11-8} = 0b1111; 1991 let Inst{7-5} = 0b010; 1992} 1993} // HasAltNZCV 1994 1995 1996// Armv8.5-A speculation barrier 1997def SB : SimpleSystemI<0, (ins), "sb", "">, Sched<[]> { 1998 let Inst{20-5} = 0b0001100110000111; 1999 let Unpredictable{11-8} = 0b1111; 2000 let Predicates = [HasSB]; 2001 let hasSideEffects = 1; 2002} 2003 2004def : InstAlias<"clrex", (CLREX 0xf)>; 2005def : InstAlias<"isb", (ISB 0xf)>; 2006def : InstAlias<"ssbb", (DSB 0)>; 2007def : InstAlias<"pssbb", (DSB 4)>; 2008def : InstAlias<"dfb", (DSB 0b1100)>, Requires<[HasV8_0r]>; 2009 2010def MRS : MRSI; 2011def MSR : MSRI; 2012def MSRpstateImm1 : MSRpstateImm0_1; 2013def MSRpstateImm4 : MSRpstateImm0_15; 2014 2015def : Pat<(AArch64mrs imm:$id), 2016 (MRS imm:$id)>; 2017 2018// The thread pointer (on Linux, at least, where this has been implemented) is 2019// TPIDR_EL0. 2020def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins), 2021 [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>; 2022 2023// This gets lowered into a 24-byte instruction sequence 2024let Defs = [ X9, X16, X17, NZCV ], Size = 24 in { 2025def KCFI_CHECK : Pseudo< 2026 (outs), (ins GPR64:$ptr, i32imm:$type), []>, Sched<[]>; 2027} 2028 2029let Uses = [ X9 ], Defs = [ X16, X17, LR, NZCV ] in { 2030def HWASAN_CHECK_MEMACCESS : Pseudo< 2031 (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo), 2032 [(int_hwasan_check_memaccess X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>, 2033 Sched<[]>; 2034} 2035 2036let Uses = [ X20 ], Defs = [ X16, X17, LR, NZCV ] in { 2037def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo< 2038 (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo), 2039 [(int_hwasan_check_memaccess_shortgranules X20, GPR64noip:$ptr, (i32 timm:$accessinfo))]>, 2040 Sched<[]>; 2041} 2042 2043let Defs = [ X16, X17, LR, NZCV ] in { 2044def HWASAN_CHECK_MEMACCESS_FIXEDSHADOW : Pseudo< 2045 (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo, i64imm:$fixed_shadow), 2046 [(int_hwasan_check_memaccess_fixedshadow GPR64noip:$ptr, (i32 timm:$accessinfo), (i64 timm:$fixed_shadow))]>, 2047 Sched<[]>; 2048} 2049 2050let Defs = [ X16, X17, LR, NZCV ] in { 2051def HWASAN_CHECK_MEMACCESS_SHORTGRANULES_FIXEDSHADOW : Pseudo< 2052 (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo, i64imm:$fixed_shadow), 2053 [(int_hwasan_check_memaccess_shortgranules_fixedshadow GPR64noip:$ptr, (i32 timm:$accessinfo), (i64 timm:$fixed_shadow))]>, 2054 Sched<[]>; 2055} 2056 2057// The virtual cycle counter register is CNTVCT_EL0. 2058def : Pat<(readcyclecounter), (MRS 0xdf02)>; 2059 2060// FPCR and FPSR registers. 2061let Uses = [FPCR] in 2062def MRS_FPCR : Pseudo<(outs GPR64:$dst), (ins), 2063 [(set GPR64:$dst, (int_aarch64_get_fpcr))]>, 2064 PseudoInstExpansion<(MRS GPR64:$dst, 0xda20)>, 2065 Sched<[WriteSys]>; 2066let Defs = [FPCR] in 2067def MSR_FPCR : Pseudo<(outs), (ins GPR64:$val), 2068 [(int_aarch64_set_fpcr i64:$val)]>, 2069 PseudoInstExpansion<(MSR 0xda20, GPR64:$val)>, 2070 Sched<[WriteSys]>; 2071 2072let Uses = [FPSR] in 2073def MRS_FPSR : Pseudo<(outs GPR64:$dst), (ins), 2074 [(set GPR64:$dst, (int_aarch64_get_fpsr))]>, 2075 PseudoInstExpansion<(MRS GPR64:$dst, 0xda21)>, 2076 Sched<[WriteSys]>; 2077let Defs = [FPSR] in 2078def MSR_FPSR : Pseudo<(outs), (ins GPR64:$val), 2079 [(int_aarch64_set_fpsr i64:$val)]>, 2080 PseudoInstExpansion<(MSR 0xda21, GPR64:$val)>, 2081 Sched<[WriteSys]>; 2082 2083// Generic system instructions 2084def SYSxt : SystemXtI<0, "sys">; 2085def SYSLxt : SystemLXtI<1, "sysl">; 2086 2087def : InstAlias<"sys $op1, $Cn, $Cm, $op2", 2088 (SYSxt imm0_7:$op1, sys_cr_op:$Cn, 2089 sys_cr_op:$Cm, imm0_7:$op2, XZR)>; 2090 2091 2092let Predicates = [HasTME] in { 2093 2094def TSTART : TMSystemI<0b0000, "tstart", 2095 [(set GPR64:$Rt, (int_aarch64_tstart))]>; 2096 2097def TCOMMIT : TMSystemINoOperand<0b0000, "tcommit", [(int_aarch64_tcommit)]>; 2098 2099def TCANCEL : TMSystemException<0b011, "tcancel", 2100 [(int_aarch64_tcancel timm64_0_65535:$imm)]>; 2101 2102def TTEST : TMSystemI<0b0001, "ttest", [(set GPR64:$Rt, (int_aarch64_ttest))]> { 2103 let mayLoad = 0; 2104 let mayStore = 0; 2105} 2106} // HasTME 2107 2108//===----------------------------------------------------------------------===// 2109// Move immediate instructions. 2110//===----------------------------------------------------------------------===// 2111 2112defm MOVK : InsertImmediate<0b11, "movk">; 2113defm MOVN : MoveImmediate<0b00, "movn">; 2114 2115let PostEncoderMethod = "fixMOVZ" in 2116defm MOVZ : MoveImmediate<0b10, "movz">; 2117 2118// First group of aliases covers an implicit "lsl #0". 2119def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, timm32_0_65535:$imm, 0), 0>; 2120def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, timm32_0_65535:$imm, 0), 0>; 2121def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, timm32_0_65535:$imm, 0)>; 2122def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, timm32_0_65535:$imm, 0)>; 2123def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, timm32_0_65535:$imm, 0)>; 2124def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, timm32_0_65535:$imm, 0)>; 2125 2126// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax. 2127def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>; 2128def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>; 2129def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>; 2130def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>; 2131 2132def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>; 2133def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>; 2134def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>; 2135def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>; 2136 2137def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g3:$sym, 48), 0>; 2138def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g2:$sym, 32), 0>; 2139def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g1:$sym, 16), 0>; 2140def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g0:$sym, 0), 0>; 2141 2142def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>; 2143def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>; 2144 2145def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>; 2146def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>; 2147 2148def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g1:$sym, 16), 0>; 2149def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g0:$sym, 0), 0>; 2150 2151// Final group of aliases covers true "mov $Rd, $imm" cases. 2152multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR, 2153 int width, int shift> { 2154 def _asmoperand : AsmOperandClass { 2155 let Name = basename # width # "_lsl" # shift # "MovAlias"; 2156 let PredicateMethod = "is" # basename # "MovAlias<" # width # ", " 2157 # shift # ">"; 2158 let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">"; 2159 } 2160 2161 def _movimm : Operand<i32> { 2162 let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand"); 2163 } 2164 2165 def : InstAlias<"mov $Rd, $imm", 2166 (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>; 2167} 2168 2169defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>; 2170defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>; 2171 2172defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>; 2173defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>; 2174defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>; 2175defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>; 2176 2177defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>; 2178defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>; 2179 2180defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>; 2181defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>; 2182defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>; 2183defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>; 2184 2185let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1, 2186 isAsCheapAsAMove = 1 in { 2187// FIXME: The following pseudo instructions are only needed because remat 2188// cannot handle multiple instructions. When that changes, we can select 2189// directly to the real instructions and get rid of these pseudos. 2190 2191def MOVi32imm 2192 : Pseudo<(outs GPR32:$dst), (ins i32imm:$src), 2193 [(set GPR32:$dst, imm:$src)]>, 2194 Sched<[WriteImm]>; 2195def MOVi64imm 2196 : Pseudo<(outs GPR64:$dst), (ins i64imm:$src), 2197 [(set GPR64:$dst, imm:$src)]>, 2198 Sched<[WriteImm]>; 2199} // isReMaterializable, isCodeGenOnly 2200 2201// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the 2202// eventual expansion code fewer bits to worry about getting right. Marshalling 2203// the types is a little tricky though: 2204def i64imm_32bit : ImmLeaf<i64, [{ 2205 return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm); 2206}]>; 2207 2208def s64imm_32bit : ImmLeaf<i64, [{ 2209 int64_t Imm64 = static_cast<int64_t>(Imm); 2210 return Imm64 >= std::numeric_limits<int32_t>::min() && 2211 Imm64 <= std::numeric_limits<int32_t>::max(); 2212}]>; 2213 2214def trunc_imm : SDNodeXForm<imm, [{ 2215 return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32); 2216}]>; 2217 2218def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">, 2219 GISDNodeXFormEquiv<trunc_imm>; 2220 2221let Predicates = [OptimizedGISelOrOtherSelector] in { 2222// The SUBREG_TO_REG isn't eliminated at -O0, which can result in pointless 2223// copies. 2224def : Pat<(i64 i64imm_32bit:$src), 2225 (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>; 2226} 2227 2228// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model). 2229def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{ 2230return CurDAG->getTargetConstant( 2231 N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32); 2232}]>; 2233 2234def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{ 2235return CurDAG->getTargetConstant( 2236 N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64); 2237}]>; 2238 2239 2240def : Pat<(f32 fpimm:$in), 2241 (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>; 2242def : Pat<(f64 fpimm:$in), 2243 (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>; 2244 2245 2246// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK 2247// sequences. 2248def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2, 2249 tglobaladdr:$g1, tglobaladdr:$g0), 2250 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0), 2251 tglobaladdr:$g1, 16), 2252 tglobaladdr:$g2, 32), 2253 tglobaladdr:$g3, 48)>; 2254 2255def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2, 2256 tblockaddress:$g1, tblockaddress:$g0), 2257 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0), 2258 tblockaddress:$g1, 16), 2259 tblockaddress:$g2, 32), 2260 tblockaddress:$g3, 48)>; 2261 2262def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2, 2263 tconstpool:$g1, tconstpool:$g0), 2264 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0), 2265 tconstpool:$g1, 16), 2266 tconstpool:$g2, 32), 2267 tconstpool:$g3, 48)>; 2268 2269def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2, 2270 tjumptable:$g1, tjumptable:$g0), 2271 (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0), 2272 tjumptable:$g1, 16), 2273 tjumptable:$g2, 32), 2274 tjumptable:$g3, 48)>; 2275 2276 2277//===----------------------------------------------------------------------===// 2278// Arithmetic instructions. 2279//===----------------------------------------------------------------------===// 2280 2281// Add/subtract with carry. 2282defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>; 2283defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>; 2284 2285def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>; 2286def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>; 2287def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>; 2288def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>; 2289 2290// Add/subtract 2291defm ADD : AddSub<0, "add", "sub", add>; 2292defm SUB : AddSub<1, "sub", "add">; 2293 2294def : InstAlias<"mov $dst, $src", 2295 (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>; 2296def : InstAlias<"mov $dst, $src", 2297 (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>; 2298def : InstAlias<"mov $dst, $src", 2299 (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>; 2300def : InstAlias<"mov $dst, $src", 2301 (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>; 2302 2303defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">; 2304defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">; 2305 2306def copyFromSP: PatLeaf<(i64 GPR64:$src), [{ 2307 return N->getOpcode() == ISD::CopyFromReg && 2308 cast<RegisterSDNode>(N->getOperand(1))->getReg() == AArch64::SP; 2309}]>; 2310 2311// Use SUBS instead of SUB to enable CSE between SUBS and SUB. 2312def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm), 2313 (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>; 2314def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm), 2315 (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>; 2316def : Pat<(sub GPR32:$Rn, GPR32:$Rm), 2317 (SUBSWrr GPR32:$Rn, GPR32:$Rm)>; 2318def : Pat<(sub GPR64:$Rn, GPR64:$Rm), 2319 (SUBSXrr GPR64:$Rn, GPR64:$Rm)>; 2320def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm), 2321 (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>; 2322def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm), 2323 (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>; 2324let AddedComplexity = 1 in { 2325def : Pat<(sub GPR32sp:$R2, arith_extended_reg32_i32:$R3), 2326 (SUBSWrx GPR32sp:$R2, arith_extended_reg32_i32:$R3)>; 2327def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64_i64:$R3), 2328 (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64_i64:$R3)>; 2329def : Pat<(sub copyFromSP:$R2, (arith_uxtx GPR64:$R3, arith_extendlsl64:$imm)), 2330 (SUBXrx64 GPR64sp:$R2, GPR64:$R3, arith_extendlsl64:$imm)>; 2331} 2332 2333// Because of the immediate format for add/sub-imm instructions, the 2334// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1). 2335// These patterns capture that transformation. 2336let AddedComplexity = 1 in { 2337def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm), 2338 (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; 2339def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm), 2340 (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; 2341def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm), 2342 (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; 2343def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm), 2344 (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; 2345} 2346 2347// Because of the immediate format for add/sub-imm instructions, the 2348// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1). 2349// These patterns capture that transformation. 2350let AddedComplexity = 1 in { 2351def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm), 2352 (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; 2353def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm), 2354 (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; 2355def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm), 2356 (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; 2357def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm), 2358 (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; 2359} 2360 2361def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>; 2362def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>; 2363def : InstAlias<"neg $dst, $src$shift", 2364 (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>; 2365def : InstAlias<"neg $dst, $src$shift", 2366 (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>; 2367 2368def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>; 2369def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>; 2370def : InstAlias<"negs $dst, $src$shift", 2371 (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>; 2372def : InstAlias<"negs $dst, $src$shift", 2373 (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>; 2374 2375 2376// Unsigned/Signed divide 2377defm UDIV : Div<0, "udiv", udiv>; 2378defm SDIV : Div<1, "sdiv", sdiv>; 2379 2380def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>; 2381def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>; 2382def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>; 2383def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>; 2384 2385// Variable shift 2386defm ASRV : Shift<0b10, "asr", sra>; 2387defm LSLV : Shift<0b00, "lsl", shl>; 2388defm LSRV : Shift<0b01, "lsr", srl>; 2389defm RORV : Shift<0b11, "ror", rotr>; 2390 2391def : ShiftAlias<"asrv", ASRVWr, GPR32>; 2392def : ShiftAlias<"asrv", ASRVXr, GPR64>; 2393def : ShiftAlias<"lslv", LSLVWr, GPR32>; 2394def : ShiftAlias<"lslv", LSLVXr, GPR64>; 2395def : ShiftAlias<"lsrv", LSRVWr, GPR32>; 2396def : ShiftAlias<"lsrv", LSRVXr, GPR64>; 2397def : ShiftAlias<"rorv", RORVWr, GPR32>; 2398def : ShiftAlias<"rorv", RORVXr, GPR64>; 2399 2400// Multiply-add 2401let AddedComplexity = 5 in { 2402defm MADD : MulAccum<0, "madd">; 2403defm MSUB : MulAccum<1, "msub">; 2404 2405def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)), 2406 (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; 2407def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)), 2408 (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; 2409 2410def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))), 2411 (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; 2412def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))), 2413 (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; 2414def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)), 2415 (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; 2416def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)), 2417 (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; 2418} // AddedComplexity = 5 2419 2420let AddedComplexity = 5 in { 2421def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>; 2422def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>; 2423def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>; 2424def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>; 2425 2426def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext_inreg GPR64:$Rm, i32))), 2427 (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; 2428def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext GPR32:$Rm))), 2429 (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; 2430def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))), 2431 (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; 2432def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (and GPR64:$Rm, 0xFFFFFFFF))), 2433 (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; 2434def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (zext GPR32:$Rm))), 2435 (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; 2436def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))), 2437 (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; 2438 2439def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))), 2440 (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; 2441def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))), 2442 (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; 2443 2444def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))), 2445 (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; 2446def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))), 2447 (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; 2448def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))), 2449 (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), 2450 (MOVi32imm (trunc_imm imm:$C)), XZR)>; 2451 2452def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))), 2453 (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; 2454def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))), 2455 (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; 2456def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))), 2457 (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), 2458 (MOVi32imm (trunc_imm imm:$C)), XZR)>; 2459 2460def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)), 2461 (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 2462def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)), 2463 (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 2464def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)), 2465 GPR64:$Ra)), 2466 (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), 2467 (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 2468 2469def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))), 2470 (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 2471def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))), 2472 (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 2473def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32), 2474 (s64imm_32bit:$C)))), 2475 (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), 2476 (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; 2477 2478def : Pat<(i64 (smullwithsignbits GPR64:$Rn, GPR64:$Rm)), 2479 (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; 2480def : Pat<(i64 (smullwithsignbits GPR64:$Rn, (sext GPR32:$Rm))), 2481 (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; 2482 2483def : Pat<(i64 (add (smullwithsignbits GPR64:$Rn, GPR64:$Rm), GPR64:$Ra)), 2484 (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), GPR64:$Ra)>; 2485def : Pat<(i64 (add (smullwithsignbits GPR64:$Rn, (sext GPR32:$Rm)), GPR64:$Ra)), 2486 (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, GPR64:$Ra)>; 2487 2488def : Pat<(i64 (ineg (smullwithsignbits GPR64:$Rn, GPR64:$Rm))), 2489 (SMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; 2490def : Pat<(i64 (ineg (smullwithsignbits GPR64:$Rn, (sext GPR32:$Rm)))), 2491 (SMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; 2492 2493def : Pat<(i64 (sub GPR64:$Ra, (smullwithsignbits GPR64:$Rn, GPR64:$Rm))), 2494 (SMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), GPR64:$Ra)>; 2495def : Pat<(i64 (sub GPR64:$Ra, (smullwithsignbits GPR64:$Rn, (sext GPR32:$Rm)))), 2496 (SMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, GPR64:$Ra)>; 2497 2498def : Pat<(i64 (mul top32Zero:$Rn, top32Zero:$Rm)), 2499 (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; 2500def : Pat<(i64 (mul top32Zero:$Rn, (zext GPR32:$Rm))), 2501 (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; 2502 2503def : Pat<(i64 (add (mul top32Zero:$Rn, top32Zero:$Rm), GPR64:$Ra)), 2504 (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), GPR64:$Ra)>; 2505def : Pat<(i64 (add (mul top32Zero:$Rn, (zext GPR32:$Rm)), GPR64:$Ra)), 2506 (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, GPR64:$Ra)>; 2507 2508def : Pat<(i64 (ineg (mul top32Zero:$Rn, top32Zero:$Rm))), 2509 (UMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; 2510def : Pat<(i64 (ineg (mul top32Zero:$Rn, (zext GPR32:$Rm)))), 2511 (UMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; 2512 2513def : Pat<(i64 (sub GPR64:$Ra, (mul top32Zero:$Rn, top32Zero:$Rm))), 2514 (UMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), GPR64:$Ra)>; 2515def : Pat<(i64 (sub GPR64:$Ra, (mul top32Zero:$Rn, (zext GPR32:$Rm)))), 2516 (UMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, GPR64:$Ra)>; 2517} // AddedComplexity = 5 2518 2519def : MulAccumWAlias<"mul", MADDWrrr>; 2520def : MulAccumXAlias<"mul", MADDXrrr>; 2521def : MulAccumWAlias<"mneg", MSUBWrrr>; 2522def : MulAccumXAlias<"mneg", MSUBXrrr>; 2523def : WideMulAccumAlias<"smull", SMADDLrrr>; 2524def : WideMulAccumAlias<"smnegl", SMSUBLrrr>; 2525def : WideMulAccumAlias<"umull", UMADDLrrr>; 2526def : WideMulAccumAlias<"umnegl", UMSUBLrrr>; 2527 2528// Multiply-high 2529def SMULHrr : MulHi<0b010, "smulh", mulhs>; 2530def UMULHrr : MulHi<0b110, "umulh", mulhu>; 2531 2532// CRC32 2533def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">; 2534def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">; 2535def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">; 2536def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">; 2537 2538def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">; 2539def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">; 2540def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">; 2541def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">; 2542 2543// v8.1 atomic CAS 2544defm CAS : CompareAndSwap<0, 0, "">; 2545defm CASA : CompareAndSwap<1, 0, "a">; 2546defm CASL : CompareAndSwap<0, 1, "l">; 2547defm CASAL : CompareAndSwap<1, 1, "al">; 2548 2549// v8.1 atomic CASP 2550defm CASP : CompareAndSwapPair<0, 0, "">; 2551defm CASPA : CompareAndSwapPair<1, 0, "a">; 2552defm CASPL : CompareAndSwapPair<0, 1, "l">; 2553defm CASPAL : CompareAndSwapPair<1, 1, "al">; 2554 2555// v8.1 atomic SWP 2556defm SWP : Swap<0, 0, "">; 2557defm SWPA : Swap<1, 0, "a">; 2558defm SWPL : Swap<0, 1, "l">; 2559defm SWPAL : Swap<1, 1, "al">; 2560 2561// v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register) 2562defm LDADD : LDOPregister<0b000, "add", 0, 0, "">; 2563defm LDADDA : LDOPregister<0b000, "add", 1, 0, "a">; 2564defm LDADDL : LDOPregister<0b000, "add", 0, 1, "l">; 2565defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">; 2566 2567defm LDCLR : LDOPregister<0b001, "clr", 0, 0, "">; 2568defm LDCLRA : LDOPregister<0b001, "clr", 1, 0, "a">; 2569defm LDCLRL : LDOPregister<0b001, "clr", 0, 1, "l">; 2570defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">; 2571 2572defm LDEOR : LDOPregister<0b010, "eor", 0, 0, "">; 2573defm LDEORA : LDOPregister<0b010, "eor", 1, 0, "a">; 2574defm LDEORL : LDOPregister<0b010, "eor", 0, 1, "l">; 2575defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">; 2576 2577defm LDSET : LDOPregister<0b011, "set", 0, 0, "">; 2578defm LDSETA : LDOPregister<0b011, "set", 1, 0, "a">; 2579defm LDSETL : LDOPregister<0b011, "set", 0, 1, "l">; 2580defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">; 2581 2582defm LDSMAX : LDOPregister<0b100, "smax", 0, 0, "">; 2583defm LDSMAXA : LDOPregister<0b100, "smax", 1, 0, "a">; 2584defm LDSMAXL : LDOPregister<0b100, "smax", 0, 1, "l">; 2585defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">; 2586 2587defm LDSMIN : LDOPregister<0b101, "smin", 0, 0, "">; 2588defm LDSMINA : LDOPregister<0b101, "smin", 1, 0, "a">; 2589defm LDSMINL : LDOPregister<0b101, "smin", 0, 1, "l">; 2590defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">; 2591 2592defm LDUMAX : LDOPregister<0b110, "umax", 0, 0, "">; 2593defm LDUMAXA : LDOPregister<0b110, "umax", 1, 0, "a">; 2594defm LDUMAXL : LDOPregister<0b110, "umax", 0, 1, "l">; 2595defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">; 2596 2597defm LDUMIN : LDOPregister<0b111, "umin", 0, 0, "">; 2598defm LDUMINA : LDOPregister<0b111, "umin", 1, 0, "a">; 2599defm LDUMINL : LDOPregister<0b111, "umin", 0, 1, "l">; 2600defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">; 2601 2602// v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR" 2603defm : STOPregister<"stadd","LDADD">; // STADDx 2604defm : STOPregister<"stclr","LDCLR">; // STCLRx 2605defm : STOPregister<"steor","LDEOR">; // STEORx 2606defm : STOPregister<"stset","LDSET">; // STSETx 2607defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx 2608defm : STOPregister<"stsmin","LDSMIN">;// STSMINx 2609defm : STOPregister<"stumax","LDUMAX">;// STUMAXx 2610defm : STOPregister<"stumin","LDUMIN">;// STUMINx 2611 2612// v8.5 Memory Tagging Extension 2613let Predicates = [HasMTE] in { 2614 2615def IRG : BaseTwoOperandRegReg<0b1, 0b0, 0b000100, GPR64sp, "irg", 2616 int_aarch64_irg, GPR64sp, GPR64>, Sched<[]>; 2617 2618def GMI : BaseTwoOperandRegReg<0b1, 0b0, 0b000101, GPR64, "gmi", 2619 int_aarch64_gmi, GPR64sp>, Sched<[]> { 2620 let isNotDuplicable = 1; 2621} 2622def ADDG : AddSubG<0, "addg", null_frag>; 2623def SUBG : AddSubG<1, "subg", null_frag>; 2624 2625def : InstAlias<"irg $dst, $src", (IRG GPR64sp:$dst, GPR64sp:$src, XZR), 1>; 2626 2627def SUBP : SUBP<0, "subp", int_aarch64_subp>, Sched<[]>; 2628def SUBPS : SUBP<1, "subps", null_frag>, Sched<[]>{ 2629 let Defs = [NZCV]; 2630} 2631 2632def : InstAlias<"cmpp $lhs, $rhs", (SUBPS XZR, GPR64sp:$lhs, GPR64sp:$rhs), 0>; 2633 2634def LDG : MemTagLoad<"ldg", "\t$Rt, [$Rn, $offset]">; 2635 2636def : Pat<(int_aarch64_addg (am_indexedu6s128 GPR64sp:$Rn, uimm6s16:$imm6), imm0_15:$imm4), 2637 (ADDG GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4)>; 2638def : Pat<(int_aarch64_ldg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)), 2639 (LDG GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>; 2640 2641def : InstAlias<"ldg $Rt, [$Rn]", (LDG GPR64:$Rt, GPR64sp:$Rn, 0), 1>; 2642 2643def LDGM : MemTagVector<1, "ldgm", "\t$Rt, [$Rn]", 2644 (outs GPR64:$Rt), (ins GPR64sp:$Rn)>; 2645def STGM : MemTagVector<0, "stgm", "\t$Rt, [$Rn]", 2646 (outs), (ins GPR64:$Rt, GPR64sp:$Rn)>; 2647def STZGM : MemTagVector<0, "stzgm", "\t$Rt, [$Rn]", 2648 (outs), (ins GPR64:$Rt, GPR64sp:$Rn)> { 2649 let Inst{23} = 0; 2650} 2651 2652defm STG : MemTagStore<0b00, "stg">; 2653defm STZG : MemTagStore<0b01, "stzg">; 2654defm ST2G : MemTagStore<0b10, "st2g">; 2655defm STZ2G : MemTagStore<0b11, "stz2g">; 2656 2657def : Pat<(AArch64stg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), 2658 (STGi $Rn, $Rm, $imm)>; 2659def : Pat<(AArch64stzg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), 2660 (STZGi $Rn, $Rm, $imm)>; 2661def : Pat<(AArch64st2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), 2662 (ST2Gi $Rn, $Rm, $imm)>; 2663def : Pat<(AArch64stz2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), 2664 (STZ2Gi $Rn, $Rm, $imm)>; 2665 2666defm STGP : StorePairOffset <0b01, 0, GPR64z, simm7s16, "stgp">; 2667def STGPpre : StorePairPreIdx <0b01, 0, GPR64z, simm7s16, "stgp">; 2668def STGPpost : StorePairPostIdx<0b01, 0, GPR64z, simm7s16, "stgp">; 2669 2670def : Pat<(int_aarch64_stg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)), 2671 (STGi GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>; 2672 2673def : Pat<(int_aarch64_stgp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$imm), GPR64:$Rt, GPR64:$Rt2), 2674 (STGPi $Rt, $Rt2, $Rn, $imm)>; 2675 2676def IRGstack 2677 : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rsp, GPR64:$Rm), []>, 2678 Sched<[]>; 2679def TAGPstack 2680 : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rn, uimm6s16:$imm6, GPR64sp:$Rm, imm0_15:$imm4), []>, 2681 Sched<[]>; 2682 2683// Explicit SP in the first operand prevents ShrinkWrap optimization 2684// from leaving this instruction out of the stack frame. When IRGstack 2685// is transformed into IRG, this operand is replaced with the actual 2686// register / expression for the tagged base pointer of the current function. 2687def : Pat<(int_aarch64_irg_sp i64:$Rm), (IRGstack SP, i64:$Rm)>; 2688 2689// Large STG to be expanded into a loop. $sz is the size, $Rn is start address. 2690// $Rn_wback is one past the end of the range. $Rm is the loop counter. 2691let isCodeGenOnly=1, mayStore=1, Defs=[NZCV] in { 2692def STGloop_wback 2693 : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn), 2694 [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >, 2695 Sched<[WriteAdr, WriteST]>; 2696 2697def STZGloop_wback 2698 : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn), 2699 [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >, 2700 Sched<[WriteAdr, WriteST]>; 2701 2702// A variant of the above where $Rn2 is an independent register not tied to the input register $Rn. 2703// Their purpose is to use a FrameIndex operand as $Rn (which of course can not be written back). 2704def STGloop 2705 : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn), 2706 [], "@earlyclobber $Rn2,@earlyclobber $Rm" >, 2707 Sched<[WriteAdr, WriteST]>; 2708 2709def STZGloop 2710 : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn), 2711 [], "@earlyclobber $Rn2,@earlyclobber $Rm" >, 2712 Sched<[WriteAdr, WriteST]>; 2713} 2714 2715} // Predicates = [HasMTE] 2716 2717//===----------------------------------------------------------------------===// 2718// Logical instructions. 2719//===----------------------------------------------------------------------===// 2720 2721// (immediate) 2722defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">; 2723defm AND : LogicalImm<0b00, "and", and, "bic">; 2724defm EOR : LogicalImm<0b10, "eor", xor, "eon">; 2725defm ORR : LogicalImm<0b01, "orr", or, "orn">; 2726 2727// FIXME: these aliases *are* canonical sometimes (when movz can't be 2728// used). Actually, it seems to be working right now, but putting logical_immXX 2729// here is a bit dodgy on the AsmParser side too. 2730def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR, 2731 logical_imm32:$imm), 0>; 2732def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR, 2733 logical_imm64:$imm), 0>; 2734 2735 2736// (register) 2737defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>; 2738defm BICS : LogicalRegS<0b11, 1, "bics", 2739 BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>; 2740defm AND : LogicalReg<0b00, 0, "and", and>; 2741defm BIC : LogicalReg<0b00, 1, "bic", 2742 BinOpFrag<(and node:$LHS, (not node:$RHS))>, 3>; 2743defm EON : LogicalReg<0b10, 1, "eon", 2744 BinOpFrag<(not (xor node:$LHS, node:$RHS))>>; 2745defm EOR : LogicalReg<0b10, 0, "eor", xor>; 2746defm ORN : LogicalReg<0b01, 1, "orn", 2747 BinOpFrag<(or node:$LHS, (not node:$RHS))>>; 2748defm ORR : LogicalReg<0b01, 0, "orr", or>; 2749 2750def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>; 2751def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>; 2752 2753def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>; 2754def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>; 2755 2756def : InstAlias<"mvn $Wd, $Wm$sh", 2757 (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>; 2758def : InstAlias<"mvn $Xd, $Xm$sh", 2759 (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>; 2760 2761def : InstAlias<"tst $src1, $src2", 2762 (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>; 2763def : InstAlias<"tst $src1, $src2", 2764 (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>; 2765 2766def : InstAlias<"tst $src1, $src2", 2767 (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>; 2768def : InstAlias<"tst $src1, $src2", 2769 (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>; 2770 2771def : InstAlias<"tst $src1, $src2$sh", 2772 (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>; 2773def : InstAlias<"tst $src1, $src2$sh", 2774 (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>; 2775 2776 2777def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>; 2778def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>; 2779 2780// Emit (and 0xFFFFFFFF) as a ORRWrr move which may be eliminated. 2781let AddedComplexity = 6 in 2782def : Pat<(i64 (and GPR64:$Rn, 0xffffffff)), 2783 (SUBREG_TO_REG (i64 0), (ORRWrr WZR, (EXTRACT_SUBREG GPR64:$Rn, sub_32)), sub_32)>; 2784 2785 2786//===----------------------------------------------------------------------===// 2787// One operand data processing instructions. 2788//===----------------------------------------------------------------------===// 2789 2790defm CLS : OneOperandData<0b000101, "cls">; 2791defm CLZ : OneOperandData<0b000100, "clz", ctlz>; 2792defm RBIT : OneOperandData<0b000000, "rbit", bitreverse>; 2793 2794def REV16Wr : OneWRegData<0b000001, "rev16", 2795 UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>; 2796def REV16Xr : OneXRegData<0b000001, "rev16", null_frag>; 2797 2798def : Pat<(cttz GPR32:$Rn), 2799 (CLZWr (RBITWr GPR32:$Rn))>; 2800def : Pat<(cttz GPR64:$Rn), 2801 (CLZXr (RBITXr GPR64:$Rn))>; 2802def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)), 2803 (i32 1))), 2804 (CLSWr GPR32:$Rn)>; 2805def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)), 2806 (i64 1))), 2807 (CLSXr GPR64:$Rn)>; 2808def : Pat<(int_aarch64_cls GPR32:$Rn), (CLSWr GPR32:$Rn)>; 2809def : Pat<(int_aarch64_cls64 GPR64:$Rm), (EXTRACT_SUBREG (CLSXr GPR64:$Rm), sub_32)>; 2810 2811// Unlike the other one operand instructions, the instructions with the "rev" 2812// mnemonic do *not* just different in the size bit, but actually use different 2813// opcode bits for the different sizes. 2814def REVWr : OneWRegData<0b000010, "rev", bswap>; 2815def REVXr : OneXRegData<0b000011, "rev", bswap>; 2816def REV32Xr : OneXRegData<0b000010, "rev32", 2817 UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>; 2818 2819def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>; 2820 2821// The bswap commutes with the rotr so we want a pattern for both possible 2822// orders. 2823def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>; 2824def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>; 2825 2826// Match (srl (bswap x), C) -> revC if the upper bswap bits are known zero. 2827def : Pat<(srl (bswap top16Zero:$Rn), (i64 16)), (REV16Wr GPR32:$Rn)>; 2828def : Pat<(srl (bswap top32Zero:$Rn), (i64 32)), (REV32Xr GPR64:$Rn)>; 2829 2830def : Pat<(or (and (srl GPR64:$Rn, (i64 8)), (i64 0x00ff00ff00ff00ff)), 2831 (and (shl GPR64:$Rn, (i64 8)), (i64 0xff00ff00ff00ff00))), 2832 (REV16Xr GPR64:$Rn)>; 2833 2834//===----------------------------------------------------------------------===// 2835// Bitfield immediate extraction instruction. 2836//===----------------------------------------------------------------------===// 2837let hasSideEffects = 0 in 2838defm EXTR : ExtractImm<"extr">; 2839def : InstAlias<"ror $dst, $src, $shift", 2840 (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>; 2841def : InstAlias<"ror $dst, $src, $shift", 2842 (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>; 2843 2844def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)), 2845 (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>; 2846def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)), 2847 (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>; 2848 2849//===----------------------------------------------------------------------===// 2850// Other bitfield immediate instructions. 2851//===----------------------------------------------------------------------===// 2852let hasSideEffects = 0 in { 2853defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">; 2854defm SBFM : BitfieldImm<0b00, "sbfm">; 2855defm UBFM : BitfieldImm<0b10, "ubfm">; 2856} 2857 2858def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{ 2859 uint64_t enc = (32 - N->getZExtValue()) & 0x1f; 2860 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2861}]>; 2862 2863def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{ 2864 uint64_t enc = 31 - N->getZExtValue(); 2865 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2866}]>; 2867 2868// min(7, 31 - shift_amt) 2869def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{ 2870 uint64_t enc = 31 - N->getZExtValue(); 2871 enc = enc > 7 ? 7 : enc; 2872 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2873}]>; 2874 2875// min(15, 31 - shift_amt) 2876def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{ 2877 uint64_t enc = 31 - N->getZExtValue(); 2878 enc = enc > 15 ? 15 : enc; 2879 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2880}]>; 2881 2882def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{ 2883 uint64_t enc = (64 - N->getZExtValue()) & 0x3f; 2884 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2885}]>; 2886 2887def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{ 2888 uint64_t enc = 63 - N->getZExtValue(); 2889 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2890}]>; 2891 2892// min(7, 63 - shift_amt) 2893def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{ 2894 uint64_t enc = 63 - N->getZExtValue(); 2895 enc = enc > 7 ? 7 : enc; 2896 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2897}]>; 2898 2899// min(15, 63 - shift_amt) 2900def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{ 2901 uint64_t enc = 63 - N->getZExtValue(); 2902 enc = enc > 15 ? 15 : enc; 2903 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2904}]>; 2905 2906// min(31, 63 - shift_amt) 2907def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{ 2908 uint64_t enc = 63 - N->getZExtValue(); 2909 enc = enc > 31 ? 31 : enc; 2910 return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); 2911}]>; 2912 2913def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)), 2914 (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), 2915 (i64 (i32shift_b imm0_31:$imm)))>; 2916def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)), 2917 (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), 2918 (i64 (i64shift_b imm0_63:$imm)))>; 2919 2920let AddedComplexity = 10 in { 2921def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)), 2922 (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>; 2923def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)), 2924 (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>; 2925} 2926 2927def : InstAlias<"asr $dst, $src, $shift", 2928 (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>; 2929def : InstAlias<"asr $dst, $src, $shift", 2930 (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>; 2931def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>; 2932def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>; 2933def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>; 2934def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>; 2935def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; 2936 2937def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)), 2938 (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>; 2939def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)), 2940 (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>; 2941 2942def : InstAlias<"lsr $dst, $src, $shift", 2943 (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>; 2944def : InstAlias<"lsr $dst, $src, $shift", 2945 (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>; 2946def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>; 2947def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>; 2948def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>; 2949def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>; 2950def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; 2951 2952//===----------------------------------------------------------------------===// 2953// Conditional comparison instructions. 2954//===----------------------------------------------------------------------===// 2955defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>; 2956defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>; 2957 2958//===----------------------------------------------------------------------===// 2959// Conditional select instructions. 2960//===----------------------------------------------------------------------===// 2961defm CSEL : CondSelect<0, 0b00, "csel">; 2962 2963def inc : PatFrag<(ops node:$in), (add_and_or_is_add node:$in, 1)>; 2964defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>; 2965defm CSINV : CondSelectOp<1, 0b00, "csinv", not>; 2966defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>; 2967 2968def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), 2969 (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; 2970def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), 2971 (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; 2972def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), 2973 (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; 2974def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), 2975 (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; 2976def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), 2977 (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; 2978def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), 2979 (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; 2980 2981def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV), 2982 (CSINCWr WZR, WZR, (i32 imm:$cc))>; 2983def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV), 2984 (CSINCXr XZR, XZR, (i32 imm:$cc))>; 2985def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV), 2986 (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>; 2987def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV), 2988 (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>; 2989def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV), 2990 (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>; 2991def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV), 2992 (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>; 2993def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV), 2994 (CSINVWr WZR, WZR, (i32 imm:$cc))>; 2995def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV), 2996 (CSINVXr XZR, XZR, (i32 imm:$cc))>; 2997def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV), 2998 (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>; 2999def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV), 3000 (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>; 3001def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV), 3002 (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>; 3003def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV), 3004 (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>; 3005 3006def : Pat<(add_and_or_is_add GPR32:$val, (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV)), 3007 (CSINCWr GPR32:$val, GPR32:$val, (i32 imm:$cc))>; 3008def : Pat<(add_and_or_is_add GPR64:$val, (zext (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV))), 3009 (CSINCXr GPR64:$val, GPR64:$val, (i32 imm:$cc))>; 3010 3011def : Pat<(or (topbitsallzero32:$val), (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV)), 3012 (CSINCWr GPR32:$val, WZR, imm:$cc)>; 3013def : Pat<(or (topbitsallzero64:$val), (AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV)), 3014 (CSINCXr GPR64:$val, XZR, imm:$cc)>; 3015def : Pat<(or (topbitsallzero64:$val), (zext (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV))), 3016 (CSINCXr GPR64:$val, XZR, imm:$cc)>; 3017 3018def : Pat<(and (topbitsallzero32:$val), (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV)), 3019 (CSELWr WZR, GPR32:$val, imm:$cc)>; 3020def : Pat<(and (topbitsallzero64:$val), (AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV)), 3021 (CSELXr XZR, GPR64:$val, imm:$cc)>; 3022def : Pat<(and (topbitsallzero64:$val), (zext (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV))), 3023 (CSELXr XZR, GPR64:$val, imm:$cc)>; 3024 3025// The inverse of the condition code from the alias instruction is what is used 3026// in the aliased instruction. The parser all ready inverts the condition code 3027// for these aliases. 3028def : InstAlias<"cset $dst, $cc", 3029 (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>; 3030def : InstAlias<"cset $dst, $cc", 3031 (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>; 3032 3033def : InstAlias<"csetm $dst, $cc", 3034 (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>; 3035def : InstAlias<"csetm $dst, $cc", 3036 (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>; 3037 3038def : InstAlias<"cinc $dst, $src, $cc", 3039 (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; 3040def : InstAlias<"cinc $dst, $src, $cc", 3041 (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; 3042 3043def : InstAlias<"cinv $dst, $src, $cc", 3044 (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; 3045def : InstAlias<"cinv $dst, $src, $cc", 3046 (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; 3047 3048def : InstAlias<"cneg $dst, $src, $cc", 3049 (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; 3050def : InstAlias<"cneg $dst, $src, $cc", 3051 (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; 3052 3053//===----------------------------------------------------------------------===// 3054// PC-relative instructions. 3055//===----------------------------------------------------------------------===// 3056let isReMaterializable = 1 in { 3057let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in { 3058def ADR : ADRI<0, "adr", adrlabel, 3059 [(set GPR64:$Xd, (AArch64adr tglobaladdr:$label))]>; 3060} // hasSideEffects = 0 3061 3062def ADRP : ADRI<1, "adrp", adrplabel, 3063 [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>; 3064} // isReMaterializable = 1 3065 3066// page address of a constant pool entry, block address 3067def : Pat<(AArch64adr tconstpool:$cp), (ADR tconstpool:$cp)>; 3068def : Pat<(AArch64adr tblockaddress:$cp), (ADR tblockaddress:$cp)>; 3069def : Pat<(AArch64adr texternalsym:$sym), (ADR texternalsym:$sym)>; 3070def : Pat<(AArch64adr tjumptable:$sym), (ADR tjumptable:$sym)>; 3071def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>; 3072def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>; 3073def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>; 3074 3075//===----------------------------------------------------------------------===// 3076// Unconditional branch (register) instructions. 3077//===----------------------------------------------------------------------===// 3078 3079let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 3080def RET : BranchReg<0b0010, "ret", []>; 3081def DRPS : SpecialReturn<0b0101, "drps">; 3082def ERET : SpecialReturn<0b0100, "eret">; 3083} // isReturn = 1, isTerminator = 1, isBarrier = 1 3084 3085// Default to the LR register. 3086def : InstAlias<"ret", (RET LR)>; 3087 3088let isCall = 1, Defs = [LR], Uses = [SP] in { 3089 def BLR : BranchReg<0b0001, "blr", []>; 3090 def BLRNoIP : Pseudo<(outs), (ins GPR64noip:$Rn), []>, 3091 Sched<[WriteBrReg]>, 3092 PseudoInstExpansion<(BLR GPR64:$Rn)>; 3093 def BLR_RVMARKER : Pseudo<(outs), (ins variable_ops), []>, 3094 Sched<[WriteBrReg]>; 3095 def BLR_BTI : Pseudo<(outs), (ins variable_ops), []>, 3096 Sched<[WriteBrReg]>; 3097 let Uses = [X16, SP] in 3098 def BLR_X16 : Pseudo<(outs), (ins), [(AArch64call_arm64ec_to_x64 X16)]>, 3099 Sched<[WriteBrReg]>, 3100 PseudoInstExpansion<(BLR X16)>; 3101} // isCall 3102 3103def : Pat<(AArch64call GPR64:$Rn), 3104 (BLR GPR64:$Rn)>, 3105 Requires<[NoSLSBLRMitigation]>; 3106def : Pat<(AArch64call GPR64noip:$Rn), 3107 (BLRNoIP GPR64noip:$Rn)>, 3108 Requires<[SLSBLRMitigation]>; 3109 3110def : Pat<(AArch64call_rvmarker (i64 tglobaladdr:$rvfunc), GPR64:$Rn), 3111 (BLR_RVMARKER tglobaladdr:$rvfunc, GPR64:$Rn)>, 3112 Requires<[NoSLSBLRMitigation]>; 3113 3114def : Pat<(AArch64call_bti GPR64:$Rn), 3115 (BLR_BTI GPR64:$Rn)>, 3116 Requires<[NoSLSBLRMitigation]>; 3117def : Pat<(AArch64call_bti GPR64noip:$Rn), 3118 (BLR_BTI GPR64noip:$Rn)>, 3119 Requires<[SLSBLRMitigation]>; 3120 3121let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 3122def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>; 3123} // isBranch, isTerminator, isBarrier, isIndirectBranch 3124 3125// Create a separate pseudo-instruction for codegen to use so that we don't 3126// flag lr as used in every function. It'll be restored before the RET by the 3127// epilogue if it's legitimately used. 3128def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retglue)]>, 3129 Sched<[WriteBrReg]> { 3130 let isTerminator = 1; 3131 let isBarrier = 1; 3132 let isReturn = 1; 3133} 3134 3135// This is a directive-like pseudo-instruction. The purpose is to insert an 3136// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction 3137// (which in the usual case is a BLR). 3138let hasSideEffects = 1 in 3139def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> { 3140 let AsmString = ".tlsdesccall $sym"; 3141} 3142 3143// Pseudo instruction to tell the streamer to emit a 'B' character into the 3144// augmentation string. 3145def EMITBKEY : Pseudo<(outs), (ins), []>, Sched<[]> {} 3146 3147// Pseudo instruction to tell the streamer to emit a 'G' character into the 3148// augmentation string. 3149def EMITMTETAGGED : Pseudo<(outs), (ins), []>, Sched<[]> {} 3150 3151// FIXME: maybe the scratch register used shouldn't be fixed to X1? 3152// FIXME: can "hasSideEffects be dropped? 3153// This gets lowered to an instruction sequence which takes 16 bytes 3154let isCall = 1, Defs = [NZCV, LR, X0, X1], hasSideEffects = 1, Size = 16, 3155 isCodeGenOnly = 1 in 3156def TLSDESC_CALLSEQ 3157 : Pseudo<(outs), (ins i64imm:$sym), 3158 [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>, 3159 Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>; 3160def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym), 3161 (TLSDESC_CALLSEQ texternalsym:$sym)>; 3162 3163//===----------------------------------------------------------------------===// 3164// Conditional branch (immediate) instruction. 3165//===----------------------------------------------------------------------===// 3166def Bcc : BranchCond<0, "b">; 3167 3168// Armv8.8-A variant form which hints to the branch predictor that 3169// this branch is very likely to go the same way nearly all the time 3170// (even though it is not known at compile time _which_ way that is). 3171def BCcc : BranchCond<1, "bc">, Requires<[HasHBC]>; 3172 3173//===----------------------------------------------------------------------===// 3174// Compare-and-branch instructions. 3175//===----------------------------------------------------------------------===// 3176defm CBZ : CmpBranch<0, "cbz", AArch64cbz>; 3177defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>; 3178 3179//===----------------------------------------------------------------------===// 3180// Test-bit-and-branch instructions. 3181//===----------------------------------------------------------------------===// 3182defm TBZ : TestBranch<0, "tbz", AArch64tbz>; 3183defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>; 3184 3185//===----------------------------------------------------------------------===// 3186// Unconditional branch (immediate) instructions. 3187//===----------------------------------------------------------------------===// 3188let isBranch = 1, isTerminator = 1, isBarrier = 1 in { 3189def B : BranchImm<0, "b", [(br bb:$addr)]>; 3190} // isBranch, isTerminator, isBarrier 3191 3192let isCall = 1, Defs = [LR], Uses = [SP] in { 3193def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>; 3194} // isCall 3195def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>; 3196 3197//===----------------------------------------------------------------------===// 3198// Exception generation instructions. 3199//===----------------------------------------------------------------------===// 3200let isTrap = 1 in { 3201def BRK : ExceptionGeneration<0b001, 0b00, "brk", 3202 [(int_aarch64_break timm32_0_65535:$imm)]>; 3203} 3204def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">; 3205def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">; 3206def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">, Requires<[HasEL3]>; 3207def HLT : ExceptionGeneration<0b010, 0b00, "hlt", 3208 [(int_aarch64_hlt timm32_0_65535:$imm)]>; 3209def HVC : ExceptionGeneration<0b000, 0b10, "hvc">; 3210def SMC : ExceptionGeneration<0b000, 0b11, "smc">, Requires<[HasEL3]>; 3211def SVC : ExceptionGeneration<0b000, 0b01, "svc">; 3212 3213// DCPSn defaults to an immediate operand of zero if unspecified. 3214def : InstAlias<"dcps1", (DCPS1 0)>; 3215def : InstAlias<"dcps2", (DCPS2 0)>; 3216def : InstAlias<"dcps3", (DCPS3 0)>, Requires<[HasEL3]>; 3217 3218def UDF : UDFType<0, "udf">; 3219 3220//===----------------------------------------------------------------------===// 3221// Load instructions. 3222//===----------------------------------------------------------------------===// 3223 3224// Pair (indexed, offset) 3225defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">; 3226defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">; 3227let Predicates = [HasFPARMv8] in { 3228defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">; 3229defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">; 3230defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">; 3231} 3232 3233defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">; 3234 3235// Pair (pre-indexed) 3236def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">; 3237def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">; 3238let Predicates = [HasFPARMv8] in { 3239def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">; 3240def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">; 3241def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">; 3242} 3243 3244def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">; 3245 3246// Pair (post-indexed) 3247def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">; 3248def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">; 3249let Predicates = [HasFPARMv8] in { 3250def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">; 3251def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">; 3252def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">; 3253} 3254 3255def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">; 3256 3257 3258// Pair (no allocate) 3259defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">; 3260defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">; 3261let Predicates = [HasFPARMv8] in { 3262defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">; 3263defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">; 3264defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">; 3265} 3266 3267def : Pat<(AArch64ldp (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), 3268 (LDPXi GPR64sp:$Rn, simm7s8:$offset)>; 3269 3270def : Pat<(AArch64ldnp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)), 3271 (LDNPQi GPR64sp:$Rn, simm7s16:$offset)>; 3272//--- 3273// (register offset) 3274//--- 3275 3276// Integer 3277defm LDRBB : Load8RO<0b00, 0, 0b01, GPR32, "ldrb", i32, zextloadi8>; 3278defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>; 3279defm LDRW : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>; 3280defm LDRX : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>; 3281 3282// Floating-point 3283let Predicates = [HasFPARMv8] in { 3284defm LDRB : Load8RO<0b00, 1, 0b01, FPR8Op, "ldr", i8, load>; 3285defm LDRH : Load16RO<0b01, 1, 0b01, FPR16Op, "ldr", f16, load>; 3286defm LDRS : Load32RO<0b10, 1, 0b01, FPR32Op, "ldr", f32, load>; 3287defm LDRD : Load64RO<0b11, 1, 0b01, FPR64Op, "ldr", f64, load>; 3288defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>; 3289} 3290 3291// Load sign-extended half-word 3292defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>; 3293defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>; 3294 3295// Load sign-extended byte 3296defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>; 3297defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>; 3298 3299// Load sign-extended word 3300defm LDRSW : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>; 3301 3302// Pre-fetch. 3303defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">; 3304 3305// For regular load, we do not have any alignment requirement. 3306// Thus, it is safe to directly map the vector loads with interesting 3307// addressing modes. 3308// FIXME: We could do the same for bitconvert to floating point vectors. 3309multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop, 3310 ValueType ScalTy, ValueType VecTy, 3311 Instruction LOADW, Instruction LOADX, 3312 SubRegIndex sub> { 3313 def : Pat<(VecTy (scalar_to_vector (ScalTy 3314 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))), 3315 (INSERT_SUBREG (VecTy (IMPLICIT_DEF)), 3316 (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset), 3317 sub)>; 3318 3319 def : Pat<(VecTy (scalar_to_vector (ScalTy 3320 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))), 3321 (INSERT_SUBREG (VecTy (IMPLICIT_DEF)), 3322 (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset), 3323 sub)>; 3324} 3325 3326let AddedComplexity = 10 in { 3327defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v8i8, LDRBroW, LDRBroX, bsub>; 3328defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v16i8, LDRBroW, LDRBroX, bsub>; 3329 3330defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>; 3331defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>; 3332 3333defm : ScalToVecROLoadPat<ro16, load, i32, v4f16, LDRHroW, LDRHroX, hsub>; 3334defm : ScalToVecROLoadPat<ro16, load, i32, v8f16, LDRHroW, LDRHroX, hsub>; 3335 3336defm : ScalToVecROLoadPat<ro32, load, i32, v2i32, LDRSroW, LDRSroX, ssub>; 3337defm : ScalToVecROLoadPat<ro32, load, i32, v4i32, LDRSroW, LDRSroX, ssub>; 3338 3339defm : ScalToVecROLoadPat<ro32, load, f32, v2f32, LDRSroW, LDRSroX, ssub>; 3340defm : ScalToVecROLoadPat<ro32, load, f32, v4f32, LDRSroW, LDRSroX, ssub>; 3341 3342defm : ScalToVecROLoadPat<ro64, load, i64, v2i64, LDRDroW, LDRDroX, dsub>; 3343 3344defm : ScalToVecROLoadPat<ro64, load, f64, v2f64, LDRDroW, LDRDroX, dsub>; 3345 3346 3347def : Pat <(v1i64 (scalar_to_vector (i64 3348 (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, 3349 ro_Wextend64:$extend))))), 3350 (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; 3351 3352def : Pat <(v1i64 (scalar_to_vector (i64 3353 (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, 3354 ro_Xextend64:$extend))))), 3355 (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; 3356} 3357 3358// Match all load 64 bits width whose type is compatible with FPR64 3359multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy, 3360 Instruction LOADW, Instruction LOADX> { 3361 3362 def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), 3363 (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 3364 3365 def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), 3366 (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 3367} 3368 3369let AddedComplexity = 10 in { 3370let Predicates = [IsLE] in { 3371 // We must do vector loads with LD1 in big-endian. 3372 defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>; 3373 defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>; 3374 defm : VecROLoadPat<ro64, v8i8, LDRDroW, LDRDroX>; 3375 defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>; 3376 defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>; 3377 defm : VecROLoadPat<ro64, v4bf16, LDRDroW, LDRDroX>; 3378} 3379 3380defm : VecROLoadPat<ro64, v1i64, LDRDroW, LDRDroX>; 3381defm : VecROLoadPat<ro64, v1f64, LDRDroW, LDRDroX>; 3382 3383// Match all load 128 bits width whose type is compatible with FPR128 3384let Predicates = [IsLE] in { 3385 // We must do vector loads with LD1 in big-endian. 3386 defm : VecROLoadPat<ro128, v2i64, LDRQroW, LDRQroX>; 3387 defm : VecROLoadPat<ro128, v2f64, LDRQroW, LDRQroX>; 3388 defm : VecROLoadPat<ro128, v4i32, LDRQroW, LDRQroX>; 3389 defm : VecROLoadPat<ro128, v4f32, LDRQroW, LDRQroX>; 3390 defm : VecROLoadPat<ro128, v8i16, LDRQroW, LDRQroX>; 3391 defm : VecROLoadPat<ro128, v8f16, LDRQroW, LDRQroX>; 3392 defm : VecROLoadPat<ro128, v8bf16, LDRQroW, LDRQroX>; 3393 defm : VecROLoadPat<ro128, v16i8, LDRQroW, LDRQroX>; 3394} 3395} // AddedComplexity = 10 3396 3397// zextload -> i64 3398multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop, 3399 Instruction INSTW, Instruction INSTX> { 3400 def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), 3401 (SUBREG_TO_REG (i64 0), 3402 (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend), 3403 sub_32)>; 3404 3405 def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), 3406 (SUBREG_TO_REG (i64 0), 3407 (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend), 3408 sub_32)>; 3409} 3410 3411let AddedComplexity = 10 in { 3412 defm : ExtLoadTo64ROPat<ro8, zextloadi8, LDRBBroW, LDRBBroX>; 3413 defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>; 3414 defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW, LDRWroX>; 3415 3416 // zextloadi1 -> zextloadi8 3417 defm : ExtLoadTo64ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>; 3418 3419 // extload -> zextload 3420 defm : ExtLoadTo64ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>; 3421 defm : ExtLoadTo64ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>; 3422 defm : ExtLoadTo64ROPat<ro32, extloadi32, LDRWroW, LDRWroX>; 3423 3424 // extloadi1 -> zextloadi8 3425 defm : ExtLoadTo64ROPat<ro8, extloadi1, LDRBBroW, LDRBBroX>; 3426} 3427 3428 3429// zextload -> i64 3430multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop, 3431 Instruction INSTW, Instruction INSTX> { 3432 def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), 3433 (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 3434 3435 def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), 3436 (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 3437 3438} 3439 3440let AddedComplexity = 10 in { 3441 // extload -> zextload 3442 defm : ExtLoadTo32ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>; 3443 defm : ExtLoadTo32ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>; 3444 defm : ExtLoadTo32ROPat<ro32, extloadi32, LDRWroW, LDRWroX>; 3445 3446 // zextloadi1 -> zextloadi8 3447 defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>; 3448} 3449 3450//--- 3451// (unsigned immediate) 3452//--- 3453defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr", 3454 [(set GPR64z:$Rt, 3455 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>; 3456defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr", 3457 [(set GPR32z:$Rt, 3458 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; 3459let Predicates = [HasFPARMv8] in { 3460defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr", 3461 [(set FPR8Op:$Rt, 3462 (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>; 3463defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr", 3464 [(set (f16 FPR16Op:$Rt), 3465 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>; 3466defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr", 3467 [(set (f32 FPR32Op:$Rt), 3468 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; 3469defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr", 3470 [(set (f64 FPR64Op:$Rt), 3471 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>; 3472defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr", 3473 [(set (f128 FPR128Op:$Rt), 3474 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>; 3475} 3476 3477// bf16 load pattern 3478def : Pat <(bf16 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), 3479 (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; 3480 3481// For regular load, we do not have any alignment requirement. 3482// Thus, it is safe to directly map the vector loads with interesting 3483// addressing modes. 3484// FIXME: We could do the same for bitconvert to floating point vectors. 3485def : Pat <(v8i8 (scalar_to_vector (i32 3486 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), 3487 (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), 3488 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>; 3489def : Pat <(v16i8 (scalar_to_vector (i32 3490 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), 3491 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 3492 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>; 3493def : Pat <(v4i16 (scalar_to_vector (i32 3494 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), 3495 (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), 3496 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>; 3497def : Pat <(v8i16 (scalar_to_vector (i32 3498 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), 3499 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), 3500 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>; 3501def : Pat <(v2i32 (scalar_to_vector (i32 3502 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), 3503 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), 3504 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>; 3505def : Pat <(v4i32 (scalar_to_vector (i32 3506 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), 3507 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), 3508 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>; 3509def : Pat <(v1i64 (scalar_to_vector (i64 3510 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), 3511 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3512def : Pat <(v2i64 (scalar_to_vector (i64 3513 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), 3514 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), 3515 (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>; 3516 3517// Match all load 64 bits width whose type is compatible with FPR64 3518let Predicates = [IsLE] in { 3519 // We must use LD1 to perform vector loads in big-endian. 3520 def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 3521 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3522 def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 3523 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3524 def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 3525 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3526 def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 3527 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3528 def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 3529 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3530 def : Pat<(v4bf16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 3531 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3532} 3533def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 3534 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3535def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), 3536 (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; 3537 3538// Match all load 128 bits width whose type is compatible with FPR128 3539let Predicates = [IsLE] in { 3540 // We must use LD1 to perform vector loads in big-endian. 3541 def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3542 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3543 def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3544 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3545 def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3546 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3547 def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3548 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3549 def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3550 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3551 def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3552 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3553 def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3554 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3555 def : Pat<(v8bf16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3556 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3557} 3558def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), 3559 (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; 3560 3561defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh", 3562 [(set GPR32:$Rt, 3563 (zextloadi16 (am_indexed16 GPR64sp:$Rn, 3564 uimm12s2:$offset)))]>; 3565defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb", 3566 [(set GPR32:$Rt, 3567 (zextloadi8 (am_indexed8 GPR64sp:$Rn, 3568 uimm12s1:$offset)))]>; 3569// zextload -> i64 3570def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 3571 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; 3572def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), 3573 (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>; 3574 3575// zextloadi1 -> zextloadi8 3576def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 3577 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; 3578def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 3579 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; 3580 3581// extload -> zextload 3582def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), 3583 (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>; 3584def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 3585 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; 3586def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 3587 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; 3588def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))), 3589 (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>; 3590def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), 3591 (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>; 3592def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 3593 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; 3594def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), 3595 (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; 3596 3597// load sign-extended half-word 3598defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh", 3599 [(set GPR32:$Rt, 3600 (sextloadi16 (am_indexed16 GPR64sp:$Rn, 3601 uimm12s2:$offset)))]>; 3602defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh", 3603 [(set GPR64:$Rt, 3604 (sextloadi16 (am_indexed16 GPR64sp:$Rn, 3605 uimm12s2:$offset)))]>; 3606 3607// load sign-extended byte 3608defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb", 3609 [(set GPR32:$Rt, 3610 (sextloadi8 (am_indexed8 GPR64sp:$Rn, 3611 uimm12s1:$offset)))]>; 3612defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb", 3613 [(set GPR64:$Rt, 3614 (sextloadi8 (am_indexed8 GPR64sp:$Rn, 3615 uimm12s1:$offset)))]>; 3616 3617// load sign-extended word 3618defm LDRSW : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw", 3619 [(set GPR64:$Rt, 3620 (sextloadi32 (am_indexed32 GPR64sp:$Rn, 3621 uimm12s4:$offset)))]>; 3622 3623// load zero-extended word 3624def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))), 3625 (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>; 3626 3627// Pre-fetch. 3628def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm", 3629 [(AArch64Prefetch timm:$Rt, 3630 (am_indexed64 GPR64sp:$Rn, 3631 uimm12s8:$offset))]>; 3632 3633def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>; 3634 3635//--- 3636// (literal) 3637 3638def alignedglobal : PatLeaf<(iPTR iPTR:$label), [{ 3639 if (auto *G = dyn_cast<GlobalAddressSDNode>(N)) { 3640 const DataLayout &DL = MF->getDataLayout(); 3641 Align Align = G->getGlobal()->getPointerAlignment(DL); 3642 return Align >= 4 && G->getOffset() % 4 == 0; 3643 } 3644 if (auto *C = dyn_cast<ConstantPoolSDNode>(N)) 3645 return C->getAlign() >= 4 && C->getOffset() % 4 == 0; 3646 return false; 3647}]>; 3648 3649def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr", 3650 [(set GPR32z:$Rt, (load (AArch64adr alignedglobal:$label)))]>; 3651def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr", 3652 [(set GPR64z:$Rt, (load (AArch64adr alignedglobal:$label)))]>; 3653let Predicates = [HasFPARMv8] in { 3654def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr", 3655 [(set (f32 FPR32Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; 3656def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr", 3657 [(set (f64 FPR64Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; 3658def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr", 3659 [(set (f128 FPR128Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; 3660} 3661 3662// load sign-extended word 3663def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw", 3664 [(set GPR64z:$Rt, (sextloadi32 (AArch64adr alignedglobal:$label)))]>; 3665 3666let AddedComplexity = 20 in { 3667def : Pat<(i64 (zextloadi32 (AArch64adr alignedglobal:$label))), 3668 (SUBREG_TO_REG (i64 0), (LDRWl $label), sub_32)>; 3669} 3670 3671// prefetch 3672def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>; 3673// [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>; 3674 3675//--- 3676// (unscaled immediate) 3677defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur", 3678 [(set GPR64z:$Rt, 3679 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>; 3680defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur", 3681 [(set GPR32z:$Rt, 3682 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; 3683let Predicates = [HasFPARMv8] in { 3684defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur", 3685 [(set FPR8Op:$Rt, 3686 (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; 3687defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur", 3688 [(set (f16 FPR16Op:$Rt), 3689 (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 3690defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur", 3691 [(set (f32 FPR32Op:$Rt), 3692 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; 3693defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur", 3694 [(set (f64 FPR64Op:$Rt), 3695 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>; 3696defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur", 3697 [(set (f128 FPR128Op:$Rt), 3698 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>; 3699} 3700 3701defm LDURHH 3702 : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh", 3703 [(set GPR32:$Rt, 3704 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 3705defm LDURBB 3706 : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb", 3707 [(set GPR32:$Rt, 3708 (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 3709 3710// bf16 load pattern 3711def : Pat <(bf16 (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 3712 (LDURHi GPR64sp:$Rn, simm9:$offset)>; 3713 3714// Match all load 64 bits width whose type is compatible with FPR64 3715let Predicates = [IsLE] in { 3716 def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 3717 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 3718 def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 3719 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 3720 def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 3721 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 3722 def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 3723 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 3724 def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 3725 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 3726} 3727def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 3728 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 3729def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), 3730 (LDURDi GPR64sp:$Rn, simm9:$offset)>; 3731 3732// Match all load 128 bits width whose type is compatible with FPR128 3733let Predicates = [IsLE] in { 3734 def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 3735 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 3736 def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 3737 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 3738 def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 3739 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 3740 def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 3741 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 3742 def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 3743 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 3744 def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 3745 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 3746 def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), 3747 (LDURQi GPR64sp:$Rn, simm9:$offset)>; 3748} 3749 3750// anyext -> zext 3751def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 3752 (LDURHHi GPR64sp:$Rn, simm9:$offset)>; 3753def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3754 (LDURBBi GPR64sp:$Rn, simm9:$offset)>; 3755def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3756 (LDURBBi GPR64sp:$Rn, simm9:$offset)>; 3757def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))), 3758 (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3759def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 3760 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3761def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3762 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3763def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3764 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3765// unscaled zext 3766def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 3767 (LDURHHi GPR64sp:$Rn, simm9:$offset)>; 3768def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3769 (LDURBBi GPR64sp:$Rn, simm9:$offset)>; 3770def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3771 (LDURBBi GPR64sp:$Rn, simm9:$offset)>; 3772def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))), 3773 (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3774def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 3775 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3776def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3777 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3778def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3779 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3780 3781 3782//--- 3783// LDR mnemonics fall back to LDUR for negative or unaligned offsets. 3784 3785// Define new assembler match classes as we want to only match these when 3786// the don't otherwise match the scaled addressing mode for LDR/STR. Don't 3787// associate a DiagnosticType either, as we want the diagnostic for the 3788// canonical form (the scaled operand) to take precedence. 3789class SImm9OffsetOperand<int Width> : AsmOperandClass { 3790 let Name = "SImm9OffsetFB" # Width; 3791 let PredicateMethod = "isSImm9OffsetFB<" # Width # ">"; 3792 let RenderMethod = "addImmOperands"; 3793} 3794 3795def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>; 3796def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>; 3797def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>; 3798def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>; 3799def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>; 3800 3801def simm9_offset_fb8 : Operand<i64> { 3802 let ParserMatchClass = SImm9OffsetFB8Operand; 3803} 3804def simm9_offset_fb16 : Operand<i64> { 3805 let ParserMatchClass = SImm9OffsetFB16Operand; 3806} 3807def simm9_offset_fb32 : Operand<i64> { 3808 let ParserMatchClass = SImm9OffsetFB32Operand; 3809} 3810def simm9_offset_fb64 : Operand<i64> { 3811 let ParserMatchClass = SImm9OffsetFB64Operand; 3812} 3813def simm9_offset_fb128 : Operand<i64> { 3814 let ParserMatchClass = SImm9OffsetFB128Operand; 3815} 3816 3817def : InstAlias<"ldr $Rt, [$Rn, $offset]", 3818 (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; 3819def : InstAlias<"ldr $Rt, [$Rn, $offset]", 3820 (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 3821let Predicates = [HasFPARMv8] in { 3822def : InstAlias<"ldr $Rt, [$Rn, $offset]", 3823 (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 3824def : InstAlias<"ldr $Rt, [$Rn, $offset]", 3825 (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 3826def : InstAlias<"ldr $Rt, [$Rn, $offset]", 3827 (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 3828def : InstAlias<"ldr $Rt, [$Rn, $offset]", 3829 (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; 3830def : InstAlias<"ldr $Rt, [$Rn, $offset]", 3831 (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>; 3832} 3833 3834// zextload -> i64 3835def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), 3836 (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3837def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), 3838 (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; 3839 3840// load sign-extended half-word 3841defm LDURSHW 3842 : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh", 3843 [(set GPR32:$Rt, 3844 (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 3845defm LDURSHX 3846 : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh", 3847 [(set GPR64:$Rt, 3848 (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; 3849 3850// load sign-extended byte 3851defm LDURSBW 3852 : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb", 3853 [(set GPR32:$Rt, 3854 (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; 3855defm LDURSBX 3856 : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb", 3857 [(set GPR64:$Rt, 3858 (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; 3859 3860// load sign-extended word 3861defm LDURSW 3862 : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw", 3863 [(set GPR64:$Rt, 3864 (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; 3865 3866// zero and sign extending aliases from generic LDR* mnemonics to LDUR*. 3867def : InstAlias<"ldrb $Rt, [$Rn, $offset]", 3868 (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 3869def : InstAlias<"ldrh $Rt, [$Rn, $offset]", 3870 (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 3871def : InstAlias<"ldrsb $Rt, [$Rn, $offset]", 3872 (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 3873def : InstAlias<"ldrsb $Rt, [$Rn, $offset]", 3874 (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 3875def : InstAlias<"ldrsh $Rt, [$Rn, $offset]", 3876 (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 3877def : InstAlias<"ldrsh $Rt, [$Rn, $offset]", 3878 (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 3879def : InstAlias<"ldrsw $Rt, [$Rn, $offset]", 3880 (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 3881 3882// A LDR will implicitly zero the rest of the vector, so vector_insert(zeros, 3883// load, 0) can use a single load. 3884multiclass LoadInsertZeroPatterns<SDPatternOperator LoadOp, ValueType VT, ValueType HVT, ValueType SVT, 3885 ValueType ScalarVT, Instruction LoadInst, Instruction UnscaledLoadInst, 3886 ComplexPattern Addr, ComplexPattern UnscaledAddr, Operand AddrImm, 3887 SubRegIndex SubReg> { 3888 // Scaled 3889 def : Pat <(vector_insert (VT immAllZerosV), 3890 (ScalarVT (LoadOp (Addr GPR64sp:$Rn, AddrImm:$offset))), (i64 0)), 3891 (SUBREG_TO_REG (i64 0), (LoadInst GPR64sp:$Rn, AddrImm:$offset), SubReg)>; 3892 // Unscaled 3893 def : Pat <(vector_insert (VT immAllZerosV), 3894 (ScalarVT (LoadOp (UnscaledAddr GPR64sp:$Rn, simm9:$offset))), (i64 0)), 3895 (SUBREG_TO_REG (i64 0), (UnscaledLoadInst GPR64sp:$Rn, simm9:$offset), SubReg)>; 3896 3897 // Half-vector patterns 3898 def : Pat <(vector_insert (HVT immAllZerosV), 3899 (ScalarVT (LoadOp (Addr GPR64sp:$Rn, AddrImm:$offset))), (i64 0)), 3900 (SUBREG_TO_REG (i64 0), (LoadInst GPR64sp:$Rn, AddrImm:$offset), SubReg)>; 3901 // Unscaled 3902 def : Pat <(vector_insert (HVT immAllZerosV), 3903 (ScalarVT (LoadOp (UnscaledAddr GPR64sp:$Rn, simm9:$offset))), (i64 0)), 3904 (SUBREG_TO_REG (i64 0), (UnscaledLoadInst GPR64sp:$Rn, simm9:$offset), SubReg)>; 3905 3906 // SVE patterns 3907 def : Pat <(vector_insert (SVT immAllZerosV), 3908 (ScalarVT (LoadOp (Addr GPR64sp:$Rn, AddrImm:$offset))), (i64 0)), 3909 (SUBREG_TO_REG (i64 0), (LoadInst GPR64sp:$Rn, AddrImm:$offset), SubReg)>; 3910 // Unscaled 3911 def : Pat <(vector_insert (SVT immAllZerosV), 3912 (ScalarVT (LoadOp (UnscaledAddr GPR64sp:$Rn, simm9:$offset))), (i64 0)), 3913 (SUBREG_TO_REG (i64 0), (UnscaledLoadInst GPR64sp:$Rn, simm9:$offset), SubReg)>; 3914} 3915 3916defm : LoadInsertZeroPatterns<extloadi8, v16i8, v8i8, nxv16i8, i32, LDRBui, LDURBi, 3917 am_indexed8, am_unscaled8, uimm12s1, bsub>; 3918defm : LoadInsertZeroPatterns<extloadi16, v8i16, v4i16, nxv8i16, i32, LDRHui, LDURHi, 3919 am_indexed16, am_unscaled16, uimm12s2, hsub>; 3920defm : LoadInsertZeroPatterns<load, v4i32, v2i32, nxv4i32, i32, LDRSui, LDURSi, 3921 am_indexed32, am_unscaled32, uimm12s4, ssub>; 3922defm : LoadInsertZeroPatterns<load, v2i64, v1i64, nxv2i64, i64, LDRDui, LDURDi, 3923 am_indexed64, am_unscaled64, uimm12s8, dsub>; 3924defm : LoadInsertZeroPatterns<load, v8f16, v4f16, nxv8f16, f16, LDRHui, LDURHi, 3925 am_indexed16, am_unscaled16, uimm12s2, hsub>; 3926defm : LoadInsertZeroPatterns<load, v8bf16, v4bf16, nxv8bf16, bf16, LDRHui, LDURHi, 3927 am_indexed16, am_unscaled16, uimm12s2, hsub>; 3928defm : LoadInsertZeroPatterns<load, v4f32, v2f32, nxv4f32, f32, LDRSui, LDURSi, 3929 am_indexed32, am_unscaled32, uimm12s4, ssub>; 3930defm : LoadInsertZeroPatterns<load, v2f64, v1f64, nxv2f64, f64, LDRDui, LDURDi, 3931 am_indexed64, am_unscaled64, uimm12s8, dsub>; 3932 3933// Pre-fetch. 3934defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum", 3935 [(AArch64Prefetch timm:$Rt, 3936 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; 3937 3938//--- 3939// (unscaled immediate, unprivileged) 3940defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">; 3941defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">; 3942 3943defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">; 3944defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">; 3945 3946// load sign-extended half-word 3947defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">; 3948defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">; 3949 3950// load sign-extended byte 3951defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">; 3952defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">; 3953 3954// load sign-extended word 3955defm LDTRSW : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">; 3956 3957//--- 3958// (immediate pre-indexed) 3959def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">; 3960def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">; 3961let Predicates = [HasFPARMv8] in { 3962def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op, "ldr">; 3963def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">; 3964def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">; 3965def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">; 3966def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">; 3967} 3968 3969// load sign-extended half-word 3970def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">; 3971def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">; 3972 3973// load sign-extended byte 3974def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">; 3975def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">; 3976 3977// load zero-extended byte 3978def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">; 3979def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">; 3980 3981// load sign-extended word 3982def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">; 3983 3984//--- 3985// (immediate post-indexed) 3986def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">; 3987def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">; 3988let Predicates = [HasFPARMv8] in { 3989def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op, "ldr">; 3990def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">; 3991def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">; 3992def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">; 3993def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">; 3994} 3995 3996// load sign-extended half-word 3997def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">; 3998def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">; 3999 4000// load sign-extended byte 4001def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">; 4002def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">; 4003 4004// load zero-extended byte 4005def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">; 4006def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">; 4007 4008// load sign-extended word 4009def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">; 4010 4011//===----------------------------------------------------------------------===// 4012// Store instructions. 4013//===----------------------------------------------------------------------===// 4014 4015// Pair (indexed, offset) 4016// FIXME: Use dedicated range-checked addressing mode operand here. 4017defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">; 4018defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">; 4019let Predicates = [HasFPARMv8] in { 4020defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">; 4021defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">; 4022defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">; 4023} 4024 4025// Pair (pre-indexed) 4026def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">; 4027def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">; 4028let Predicates = [HasFPARMv8] in { 4029def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">; 4030def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">; 4031def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">; 4032} 4033 4034// Pair (post-indexed) 4035def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">; 4036def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">; 4037let Predicates = [HasFPARMv8] in { 4038def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">; 4039def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">; 4040def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">; 4041} 4042 4043// Pair (no allocate) 4044defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">; 4045defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">; 4046let Predicates = [HasFPARMv8] in { 4047defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">; 4048defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">; 4049defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">; 4050} 4051 4052def : Pat<(AArch64stp GPR64z:$Rt, GPR64z:$Rt2, (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), 4053 (STPXi GPR64z:$Rt, GPR64z:$Rt2, GPR64sp:$Rn, simm7s8:$offset)>; 4054 4055def : Pat<(AArch64stnp FPR128:$Rt, FPR128:$Rt2, (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)), 4056 (STNPQi FPR128:$Rt, FPR128:$Rt2, GPR64sp:$Rn, simm7s16:$offset)>; 4057 4058 4059//--- 4060// (Register offset) 4061 4062// Integer 4063defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>; 4064defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>; 4065defm STRW : Store32RO<0b10, 0, 0b00, GPR32, "str", i32, store>; 4066defm STRX : Store64RO<0b11, 0, 0b00, GPR64, "str", i64, store>; 4067 4068 4069// Floating-point 4070let Predicates = [HasFPARMv8] in { 4071defm STRB : Store8RO< 0b00, 1, 0b00, FPR8Op, "str", i8, store>; 4072defm STRH : Store16RO<0b01, 1, 0b00, FPR16Op, "str", f16, store>; 4073defm STRS : Store32RO<0b10, 1, 0b00, FPR32Op, "str", f32, store>; 4074defm STRD : Store64RO<0b11, 1, 0b00, FPR64Op, "str", f64, store>; 4075defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str">; 4076} 4077 4078let Predicates = [UseSTRQro], AddedComplexity = 10 in { 4079 def : Pat<(store (f128 FPR128:$Rt), 4080 (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm, 4081 ro_Wextend128:$extend)), 4082 (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>; 4083 def : Pat<(store (f128 FPR128:$Rt), 4084 (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm, 4085 ro_Xextend128:$extend)), 4086 (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>; 4087} 4088 4089multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop, 4090 Instruction STRW, Instruction STRX> { 4091 4092 def : Pat<(storeop GPR64:$Rt, 4093 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), 4094 (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32), 4095 GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 4096 4097 def : Pat<(storeop GPR64:$Rt, 4098 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), 4099 (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32), 4100 GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 4101} 4102 4103let AddedComplexity = 10 in { 4104 // truncstore i64 4105 defm : TruncStoreFrom64ROPat<ro8, truncstorei8, STRBBroW, STRBBroX>; 4106 defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>; 4107 defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW, STRWroX>; 4108} 4109 4110multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR, 4111 Instruction STRW, Instruction STRX> { 4112 def : Pat<(store (VecTy FPR:$Rt), 4113 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), 4114 (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 4115 4116 def : Pat<(store (VecTy FPR:$Rt), 4117 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), 4118 (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 4119} 4120 4121let AddedComplexity = 10 in { 4122// Match all store 64 bits width whose type is compatible with FPR64 4123let Predicates = [IsLE] in { 4124 // We must use ST1 to store vectors in big-endian. 4125 defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>; 4126 defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>; 4127 defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>; 4128 defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>; 4129 defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>; 4130 defm : VecROStorePat<ro64, v4bf16, FPR64, STRDroW, STRDroX>; 4131} 4132 4133defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>; 4134defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>; 4135 4136// Match all store 128 bits width whose type is compatible with FPR128 4137let Predicates = [IsLE, UseSTRQro] in { 4138 // We must use ST1 to store vectors in big-endian. 4139 defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>; 4140 defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>; 4141 defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>; 4142 defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>; 4143 defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>; 4144 defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>; 4145 defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>; 4146 defm : VecROStorePat<ro128, v8bf16, FPR128, STRQroW, STRQroX>; 4147} 4148} // AddedComplexity = 10 4149 4150// Match stores from lane 0 to the appropriate subreg's store. 4151multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop, 4152 ValueType VecTy, ValueType STy, 4153 ValueType SubRegTy, 4154 SubRegIndex SubRegIdx, 4155 Instruction STRW, Instruction STRX> { 4156 4157 def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), (i64 0))), 4158 (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), 4159 (STRW (SubRegTy (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx)), 4160 GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; 4161 4162 def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), (i64 0))), 4163 (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), 4164 (STRX (SubRegTy (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx)), 4165 GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; 4166} 4167 4168let AddedComplexity = 19 in { 4169 defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, f16, hsub, STRHroW, STRHroX>; 4170 defm : VecROStoreLane0Pat<ro16, store, v8f16, f16, f16, hsub, STRHroW, STRHroX>; 4171 defm : VecROStoreLane0Pat<ro32, store, v4i32, i32, i32, ssub, STRSroW, STRSroX>; 4172 defm : VecROStoreLane0Pat<ro32, store, v4f32, f32, i32, ssub, STRSroW, STRSroX>; 4173 defm : VecROStoreLane0Pat<ro64, store, v2i64, i64, i64, dsub, STRDroW, STRDroX>; 4174 defm : VecROStoreLane0Pat<ro64, store, v2f64, f64, i64, dsub, STRDroW, STRDroX>; 4175} 4176 4177//--- 4178// (unsigned immediate) 4179defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str", 4180 [(store GPR64z:$Rt, 4181 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; 4182defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str", 4183 [(store GPR32z:$Rt, 4184 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>; 4185let Predicates = [HasFPARMv8] in { 4186defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str", 4187 [(store FPR8Op:$Rt, 4188 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>; 4189defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str", 4190 [(store (f16 FPR16Op:$Rt), 4191 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>; 4192defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str", 4193 [(store (f32 FPR32Op:$Rt), 4194 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>; 4195defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str", 4196 [(store (f64 FPR64Op:$Rt), 4197 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; 4198defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>; 4199} 4200 4201defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh", 4202 [(truncstorei16 GPR32z:$Rt, 4203 (am_indexed16 GPR64sp:$Rn, 4204 uimm12s2:$offset))]>; 4205defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1, "strb", 4206 [(truncstorei8 GPR32z:$Rt, 4207 (am_indexed8 GPR64sp:$Rn, 4208 uimm12s1:$offset))]>; 4209 4210// bf16 store pattern 4211def : Pat<(store (bf16 FPR16Op:$Rt), 4212 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)), 4213 (STRHui FPR16:$Rt, GPR64sp:$Rn, uimm12s2:$offset)>; 4214 4215let AddedComplexity = 10 in { 4216 4217// Match all store 64 bits width whose type is compatible with FPR64 4218def : Pat<(store (v1i64 FPR64:$Rt), 4219 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 4220 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 4221def : Pat<(store (v1f64 FPR64:$Rt), 4222 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 4223 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 4224 4225let Predicates = [IsLE] in { 4226 // We must use ST1 to store vectors in big-endian. 4227 def : Pat<(store (v2f32 FPR64:$Rt), 4228 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 4229 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 4230 def : Pat<(store (v8i8 FPR64:$Rt), 4231 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 4232 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 4233 def : Pat<(store (v4i16 FPR64:$Rt), 4234 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 4235 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 4236 def : Pat<(store (v2i32 FPR64:$Rt), 4237 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 4238 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 4239 def : Pat<(store (v4f16 FPR64:$Rt), 4240 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 4241 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 4242 def : Pat<(store (v4bf16 FPR64:$Rt), 4243 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), 4244 (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; 4245} 4246 4247// Match all store 128 bits width whose type is compatible with FPR128 4248def : Pat<(store (f128 FPR128:$Rt), 4249 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4250 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4251 4252let Predicates = [IsLE] in { 4253 // We must use ST1 to store vectors in big-endian. 4254 def : Pat<(store (v4f32 FPR128:$Rt), 4255 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4256 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4257 def : Pat<(store (v2f64 FPR128:$Rt), 4258 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4259 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4260 def : Pat<(store (v16i8 FPR128:$Rt), 4261 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4262 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4263 def : Pat<(store (v8i16 FPR128:$Rt), 4264 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4265 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4266 def : Pat<(store (v4i32 FPR128:$Rt), 4267 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4268 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4269 def : Pat<(store (v2i64 FPR128:$Rt), 4270 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4271 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4272 def : Pat<(store (v8f16 FPR128:$Rt), 4273 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4274 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4275 def : Pat<(store (v8bf16 FPR128:$Rt), 4276 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), 4277 (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; 4278} 4279 4280// truncstore i64 4281def : Pat<(truncstorei32 GPR64:$Rt, 4282 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)), 4283 (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>; 4284def : Pat<(truncstorei16 GPR64:$Rt, 4285 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)), 4286 (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>; 4287def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)), 4288 (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>; 4289 4290} // AddedComplexity = 10 4291 4292// Match stores from lane 0 to the appropriate subreg's store. 4293multiclass VecStoreLane0Pat<ComplexPattern UIAddrMode, SDPatternOperator storeop, 4294 ValueType VTy, ValueType STy, 4295 ValueType SubRegTy, 4296 SubRegIndex SubRegIdx, Operand IndexType, 4297 Instruction STR> { 4298 def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), (i64 0))), 4299 (UIAddrMode GPR64sp:$Rn, IndexType:$offset)), 4300 (STR (SubRegTy (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx)), 4301 GPR64sp:$Rn, IndexType:$offset)>; 4302} 4303 4304let AddedComplexity = 19 in { 4305 defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, f16, hsub, uimm12s2, STRHui>; 4306 defm : VecStoreLane0Pat<am_indexed16, store, v8f16, f16, f16, hsub, uimm12s2, STRHui>; 4307 defm : VecStoreLane0Pat<am_indexed32, store, v4i32, i32, i32, ssub, uimm12s4, STRSui>; 4308 defm : VecStoreLane0Pat<am_indexed32, store, v4f32, f32, i32, ssub, uimm12s4, STRSui>; 4309 defm : VecStoreLane0Pat<am_indexed64, store, v2i64, i64, i64, dsub, uimm12s8, STRDui>; 4310 defm : VecStoreLane0Pat<am_indexed64, store, v2f64, f64, i64, dsub, uimm12s8, STRDui>; 4311} 4312 4313//--- 4314// (unscaled immediate) 4315defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur", 4316 [(store GPR64z:$Rt, 4317 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; 4318defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur", 4319 [(store GPR32z:$Rt, 4320 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>; 4321let Predicates = [HasFPARMv8] in { 4322defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur", 4323 [(store FPR8Op:$Rt, 4324 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>; 4325defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur", 4326 [(store (f16 FPR16Op:$Rt), 4327 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>; 4328defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur", 4329 [(store (f32 FPR32Op:$Rt), 4330 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>; 4331defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur", 4332 [(store (f64 FPR64Op:$Rt), 4333 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; 4334defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur", 4335 [(store (f128 FPR128Op:$Rt), 4336 (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>; 4337} 4338defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh", 4339 [(truncstorei16 GPR32z:$Rt, 4340 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>; 4341defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb", 4342 [(truncstorei8 GPR32z:$Rt, 4343 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>; 4344 4345// bf16 store pattern 4346def : Pat<(store (bf16 FPR16Op:$Rt), 4347 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)), 4348 (STURHi FPR16:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4349 4350// Armv8.4 Weaker Release Consistency enhancements 4351// LDAPR & STLR with Immediate Offset instructions 4352let Predicates = [HasRCPC_IMMO] in { 4353defm STLURB : BaseStoreUnscaleV84<"stlurb", 0b00, 0b00, GPR32>; 4354defm STLURH : BaseStoreUnscaleV84<"stlurh", 0b01, 0b00, GPR32>; 4355defm STLURW : BaseStoreUnscaleV84<"stlur", 0b10, 0b00, GPR32>; 4356defm STLURX : BaseStoreUnscaleV84<"stlur", 0b11, 0b00, GPR64>; 4357defm LDAPURB : BaseLoadUnscaleV84<"ldapurb", 0b00, 0b01, GPR32>; 4358defm LDAPURSBW : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>; 4359defm LDAPURSBX : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>; 4360defm LDAPURH : BaseLoadUnscaleV84<"ldapurh", 0b01, 0b01, GPR32>; 4361defm LDAPURSHW : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>; 4362defm LDAPURSHX : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>; 4363defm LDAPUR : BaseLoadUnscaleV84<"ldapur", 0b10, 0b01, GPR32>; 4364defm LDAPURSW : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>; 4365defm LDAPURX : BaseLoadUnscaleV84<"ldapur", 0b11, 0b01, GPR64>; 4366} 4367 4368// Match all store 64 bits width whose type is compatible with FPR64 4369def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 4370 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4371def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 4372 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4373 4374let AddedComplexity = 10 in { 4375 4376let Predicates = [IsLE] in { 4377 // We must use ST1 to store vectors in big-endian. 4378 def : Pat<(store (v2f32 FPR64:$Rt), 4379 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 4380 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4381 def : Pat<(store (v8i8 FPR64:$Rt), 4382 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 4383 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4384 def : Pat<(store (v4i16 FPR64:$Rt), 4385 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 4386 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4387 def : Pat<(store (v2i32 FPR64:$Rt), 4388 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 4389 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4390 def : Pat<(store (v4f16 FPR64:$Rt), 4391 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 4392 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4393 def : Pat<(store (v4bf16 FPR64:$Rt), 4394 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), 4395 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4396} 4397 4398// Match all store 128 bits width whose type is compatible with FPR128 4399def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4400 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4401 4402let Predicates = [IsLE] in { 4403 // We must use ST1 to store vectors in big-endian. 4404 def : Pat<(store (v4f32 FPR128:$Rt), 4405 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4406 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4407 def : Pat<(store (v2f64 FPR128:$Rt), 4408 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4409 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4410 def : Pat<(store (v16i8 FPR128:$Rt), 4411 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4412 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4413 def : Pat<(store (v8i16 FPR128:$Rt), 4414 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4415 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4416 def : Pat<(store (v4i32 FPR128:$Rt), 4417 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4418 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4419 def : Pat<(store (v2i64 FPR128:$Rt), 4420 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4421 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4422 def : Pat<(store (v2f64 FPR128:$Rt), 4423 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4424 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4425 def : Pat<(store (v8f16 FPR128:$Rt), 4426 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4427 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4428 def : Pat<(store (v8bf16 FPR128:$Rt), 4429 (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), 4430 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; 4431} 4432 4433} // AddedComplexity = 10 4434 4435// unscaled i64 truncating stores 4436def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)), 4437 (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; 4438def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)), 4439 (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; 4440def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)), 4441 (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; 4442 4443// Match stores from lane 0 to the appropriate subreg's store. 4444multiclass VecStoreULane0Pat<SDPatternOperator StoreOp, 4445 ValueType VTy, ValueType STy, 4446 ValueType SubRegTy, 4447 SubRegIndex SubRegIdx, Instruction STR> { 4448 defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegTy, SubRegIdx, simm9, STR>; 4449} 4450 4451let AddedComplexity = 19 in { 4452 defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, f16, hsub, STURHi>; 4453 defm : VecStoreULane0Pat<store, v8f16, f16, f16, hsub, STURHi>; 4454 defm : VecStoreULane0Pat<store, v4i32, i32, i32, ssub, STURSi>; 4455 defm : VecStoreULane0Pat<store, v4f32, f32, i32, ssub, STURSi>; 4456 defm : VecStoreULane0Pat<store, v2i64, i64, i64, dsub, STURDi>; 4457 defm : VecStoreULane0Pat<store, v2f64, f64, i64, dsub, STURDi>; 4458} 4459 4460//--- 4461// STR mnemonics fall back to STUR for negative or unaligned offsets. 4462def : InstAlias<"str $Rt, [$Rn, $offset]", 4463 (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; 4464def : InstAlias<"str $Rt, [$Rn, $offset]", 4465 (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 4466let Predicates = [HasFPARMv8] in { 4467def : InstAlias<"str $Rt, [$Rn, $offset]", 4468 (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 4469def : InstAlias<"str $Rt, [$Rn, $offset]", 4470 (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 4471def : InstAlias<"str $Rt, [$Rn, $offset]", 4472 (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; 4473def : InstAlias<"str $Rt, [$Rn, $offset]", 4474 (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; 4475def : InstAlias<"str $Rt, [$Rn, $offset]", 4476 (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>; 4477} 4478 4479def : InstAlias<"strb $Rt, [$Rn, $offset]", 4480 (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; 4481def : InstAlias<"strh $Rt, [$Rn, $offset]", 4482 (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; 4483 4484//--- 4485// (unscaled immediate, unprivileged) 4486defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">; 4487defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">; 4488 4489defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">; 4490defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">; 4491 4492//--- 4493// (immediate pre-indexed) 4494def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str", pre_store, i32>; 4495def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str", pre_store, i64>; 4496let Predicates = [HasFPARMv8] in { 4497def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op, "str", pre_store, i8>; 4498def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str", pre_store, f16>; 4499def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str", pre_store, f32>; 4500def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str", pre_store, f64>; 4501def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>; 4502} 4503 4504def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8, i32>; 4505def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>; 4506 4507// truncstore i64 4508def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 4509 (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 4510 simm9:$off)>; 4511def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 4512 (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 4513 simm9:$off)>; 4514def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 4515 (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 4516 simm9:$off)>; 4517 4518def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4519 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4520def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4521 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4522def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4523 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4524def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4525 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4526def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4527 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4528def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4529 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4530def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4531 (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4532 4533def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4534 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4535def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4536 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4537def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4538 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4539def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4540 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4541def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4542 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4543def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4544 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4545def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4546 (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4547 4548//--- 4549// (immediate post-indexed) 4550def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z, "str", post_store, i32>; 4551def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z, "str", post_store, i64>; 4552let Predicates = [HasFPARMv8] in { 4553def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op, "str", post_store, i8>; 4554def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op, "str", post_store, f16>; 4555def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op, "str", post_store, f32>; 4556def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op, "str", post_store, f64>; 4557def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>; 4558} 4559 4560def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>; 4561def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>; 4562 4563// truncstore i64 4564def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 4565 (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 4566 simm9:$off)>; 4567def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 4568 (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 4569 simm9:$off)>; 4570def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off), 4571 (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, 4572 simm9:$off)>; 4573 4574def : Pat<(post_store (bf16 FPR16:$Rt), GPR64sp:$addr, simm9:$off), 4575 (STRHpost FPR16:$Rt, GPR64sp:$addr, simm9:$off)>; 4576 4577def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4578 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4579def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4580 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4581def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4582 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4583def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4584 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4585def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4586 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4587def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4588 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4589def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4590 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4591def : Pat<(post_store (v4bf16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), 4592 (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; 4593 4594def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4595 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4596def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4597 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4598def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4599 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4600def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4601 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4602def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4603 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4604def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4605 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4606def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4607 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4608def : Pat<(post_store (v8bf16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), 4609 (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; 4610 4611//===----------------------------------------------------------------------===// 4612// Load/store exclusive instructions. 4613//===----------------------------------------------------------------------===// 4614 4615def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">; 4616def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">; 4617def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">; 4618def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">; 4619 4620def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">; 4621def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">; 4622def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">; 4623def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">; 4624 4625def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">; 4626def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">; 4627def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">; 4628def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">; 4629 4630def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">; 4631def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">; 4632def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">; 4633def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">; 4634 4635/* 4636Aliases for when offset=0. Note that in contrast to LoadAcquire which has a $Rn 4637of type GPR64sp0, we deliberately choose to make $Rn of type GPR64sp and add an 4638alias for the case of immediate #0. This is because new STLR versions (from 4639LRCPC3 extension) do have a non-zero immediate value, so GPR64sp0 is not 4640appropriate anymore (it parses and discards the optional zero). This is not the 4641case for LoadAcquire because the new LRCPC3 LDAR instructions are post-indexed, 4642and the immediate values are not inside the [] brackets and thus not accepted 4643by GPR64sp0 parser. 4644*/ 4645def STLRW0 : InstAlias<"stlr\t$Rt, [$Rn, #0]" , (STLRW GPR32: $Rt, GPR64sp:$Rn)>; 4646def STLRX0 : InstAlias<"stlr\t$Rt, [$Rn, #0]" , (STLRX GPR64: $Rt, GPR64sp:$Rn)>; 4647def STLRB0 : InstAlias<"stlrb\t$Rt, [$Rn, #0]", (STLRB GPR32: $Rt, GPR64sp:$Rn)>; 4648def STLRH0 : InstAlias<"stlrh\t$Rt, [$Rn, #0]", (STLRH GPR32: $Rt, GPR64sp:$Rn)>; 4649 4650def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">; 4651def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">; 4652def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">; 4653def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">; 4654 4655def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">; 4656def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">; 4657def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">; 4658def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">; 4659 4660def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">; 4661def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">; 4662 4663def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">; 4664def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">; 4665 4666def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">; 4667def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">; 4668 4669def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">; 4670def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">; 4671 4672let Predicates = [HasLOR] in { 4673 // v8.1a "Limited Order Region" extension load-acquire instructions 4674 def LDLARW : LoadAcquire <0b10, 1, 1, 0, 0, GPR32, "ldlar">; 4675 def LDLARX : LoadAcquire <0b11, 1, 1, 0, 0, GPR64, "ldlar">; 4676 def LDLARB : LoadAcquire <0b00, 1, 1, 0, 0, GPR32, "ldlarb">; 4677 def LDLARH : LoadAcquire <0b01, 1, 1, 0, 0, GPR32, "ldlarh">; 4678 4679 // v8.1a "Limited Order Region" extension store-release instructions 4680 def STLLRW : StoreRelease <0b10, 1, 0, 0, 0, GPR32, "stllr">; 4681 def STLLRX : StoreRelease <0b11, 1, 0, 0, 0, GPR64, "stllr">; 4682 def STLLRB : StoreRelease <0b00, 1, 0, 0, 0, GPR32, "stllrb">; 4683 def STLLRH : StoreRelease <0b01, 1, 0, 0, 0, GPR32, "stllrh">; 4684 4685 // Aliases for when offset=0 4686 def STLLRW0 : InstAlias<"stllr\t$Rt, [$Rn, #0]", (STLLRW GPR32: $Rt, GPR64sp:$Rn)>; 4687 def STLLRX0 : InstAlias<"stllr\t$Rt, [$Rn, #0]", (STLLRX GPR64: $Rt, GPR64sp:$Rn)>; 4688 def STLLRB0 : InstAlias<"stllrb\t$Rt, [$Rn, #0]", (STLLRB GPR32: $Rt, GPR64sp:$Rn)>; 4689 def STLLRH0 : InstAlias<"stllrh\t$Rt, [$Rn, #0]", (STLLRH GPR32: $Rt, GPR64sp:$Rn)>; 4690} 4691 4692//===----------------------------------------------------------------------===// 4693// Scaled floating point to integer conversion instructions. 4694//===----------------------------------------------------------------------===// 4695 4696defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>; 4697defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>; 4698defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>; 4699defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>; 4700defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>; 4701defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>; 4702defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>; 4703defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>; 4704defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>; 4705defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>; 4706defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>; 4707defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>; 4708 4709// AArch64's FCVT instructions saturate when out of range. 4710multiclass FPToIntegerSatPats<SDNode to_int_sat, string INST> { 4711 let Predicates = [HasFullFP16] in { 4712 def : Pat<(i32 (to_int_sat f16:$Rn, i32)), 4713 (!cast<Instruction>(INST # UWHr) f16:$Rn)>; 4714 def : Pat<(i64 (to_int_sat f16:$Rn, i64)), 4715 (!cast<Instruction>(INST # UXHr) f16:$Rn)>; 4716 } 4717 def : Pat<(i32 (to_int_sat f32:$Rn, i32)), 4718 (!cast<Instruction>(INST # UWSr) f32:$Rn)>; 4719 def : Pat<(i64 (to_int_sat f32:$Rn, i64)), 4720 (!cast<Instruction>(INST # UXSr) f32:$Rn)>; 4721 def : Pat<(i32 (to_int_sat f64:$Rn, i32)), 4722 (!cast<Instruction>(INST # UWDr) f64:$Rn)>; 4723 def : Pat<(i64 (to_int_sat f64:$Rn, i64)), 4724 (!cast<Instruction>(INST # UXDr) f64:$Rn)>; 4725 4726 let Predicates = [HasFullFP16] in { 4727 def : Pat<(i32 (to_int_sat (fmul f16:$Rn, fixedpoint_f16_i32:$scale), i32)), 4728 (!cast<Instruction>(INST # SWHri) $Rn, $scale)>; 4729 def : Pat<(i64 (to_int_sat (fmul f16:$Rn, fixedpoint_f16_i64:$scale), i64)), 4730 (!cast<Instruction>(INST # SXHri) $Rn, $scale)>; 4731 } 4732 def : Pat<(i32 (to_int_sat (fmul f32:$Rn, fixedpoint_f32_i32:$scale), i32)), 4733 (!cast<Instruction>(INST # SWSri) $Rn, $scale)>; 4734 def : Pat<(i64 (to_int_sat (fmul f32:$Rn, fixedpoint_f32_i64:$scale), i64)), 4735 (!cast<Instruction>(INST # SXSri) $Rn, $scale)>; 4736 def : Pat<(i32 (to_int_sat (fmul f64:$Rn, fixedpoint_f64_i32:$scale), i32)), 4737 (!cast<Instruction>(INST # SWDri) $Rn, $scale)>; 4738 def : Pat<(i64 (to_int_sat (fmul f64:$Rn, fixedpoint_f64_i64:$scale), i64)), 4739 (!cast<Instruction>(INST # SXDri) $Rn, $scale)>; 4740} 4741 4742defm : FPToIntegerSatPats<fp_to_sint_sat, "FCVTZS">; 4743defm : FPToIntegerSatPats<fp_to_uint_sat, "FCVTZU">; 4744 4745multiclass FPToIntegerIntPats<Intrinsic round, string INST> { 4746 let Predicates = [HasFullFP16] in { 4747 def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>; 4748 def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>; 4749 } 4750 def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>; 4751 def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>; 4752 def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>; 4753 def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>; 4754 4755 let Predicates = [HasFullFP16] in { 4756 def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))), 4757 (!cast<Instruction>(INST # SWHri) $Rn, $scale)>; 4758 def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))), 4759 (!cast<Instruction>(INST # SXHri) $Rn, $scale)>; 4760 } 4761 def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))), 4762 (!cast<Instruction>(INST # SWSri) $Rn, $scale)>; 4763 def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))), 4764 (!cast<Instruction>(INST # SXSri) $Rn, $scale)>; 4765 def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))), 4766 (!cast<Instruction>(INST # SWDri) $Rn, $scale)>; 4767 def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))), 4768 (!cast<Instruction>(INST # SXDri) $Rn, $scale)>; 4769} 4770 4771defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">; 4772defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">; 4773 4774multiclass FPToIntegerPats<SDNode to_int, SDNode to_int_sat, SDNode round, string INST> { 4775 def : Pat<(i32 (to_int (round f32:$Rn))), 4776 (!cast<Instruction>(INST # UWSr) f32:$Rn)>; 4777 def : Pat<(i64 (to_int (round f32:$Rn))), 4778 (!cast<Instruction>(INST # UXSr) f32:$Rn)>; 4779 def : Pat<(i32 (to_int (round f64:$Rn))), 4780 (!cast<Instruction>(INST # UWDr) f64:$Rn)>; 4781 def : Pat<(i64 (to_int (round f64:$Rn))), 4782 (!cast<Instruction>(INST # UXDr) f64:$Rn)>; 4783 4784 // These instructions saturate like fp_to_[su]int_sat. 4785 let Predicates = [HasFullFP16] in { 4786 def : Pat<(i32 (to_int_sat (round f16:$Rn), i32)), 4787 (!cast<Instruction>(INST # UWHr) f16:$Rn)>; 4788 def : Pat<(i64 (to_int_sat (round f16:$Rn), i64)), 4789 (!cast<Instruction>(INST # UXHr) f16:$Rn)>; 4790 } 4791 def : Pat<(i32 (to_int_sat (round f32:$Rn), i32)), 4792 (!cast<Instruction>(INST # UWSr) f32:$Rn)>; 4793 def : Pat<(i64 (to_int_sat (round f32:$Rn), i64)), 4794 (!cast<Instruction>(INST # UXSr) f32:$Rn)>; 4795 def : Pat<(i32 (to_int_sat (round f64:$Rn), i32)), 4796 (!cast<Instruction>(INST # UWDr) f64:$Rn)>; 4797 def : Pat<(i64 (to_int_sat (round f64:$Rn), i64)), 4798 (!cast<Instruction>(INST # UXDr) f64:$Rn)>; 4799} 4800 4801defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, fceil, "FCVTPS">; 4802defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, fceil, "FCVTPU">; 4803defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, ffloor, "FCVTMS">; 4804defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, ffloor, "FCVTMU">; 4805defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, ftrunc, "FCVTZS">; 4806defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, ftrunc, "FCVTZU">; 4807defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, fround, "FCVTAS">; 4808defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, fround, "FCVTAU">; 4809 4810 4811 4812let Predicates = [HasFullFP16] in { 4813 def : Pat<(i32 (any_lround f16:$Rn)), 4814 (FCVTASUWHr f16:$Rn)>; 4815 def : Pat<(i64 (any_lround f16:$Rn)), 4816 (FCVTASUXHr f16:$Rn)>; 4817 def : Pat<(i64 (any_llround f16:$Rn)), 4818 (FCVTASUXHr f16:$Rn)>; 4819} 4820def : Pat<(i32 (any_lround f32:$Rn)), 4821 (FCVTASUWSr f32:$Rn)>; 4822def : Pat<(i32 (any_lround f64:$Rn)), 4823 (FCVTASUWDr f64:$Rn)>; 4824def : Pat<(i64 (any_lround f32:$Rn)), 4825 (FCVTASUXSr f32:$Rn)>; 4826def : Pat<(i64 (any_lround f64:$Rn)), 4827 (FCVTASUXDr f64:$Rn)>; 4828def : Pat<(i64 (any_llround f32:$Rn)), 4829 (FCVTASUXSr f32:$Rn)>; 4830def : Pat<(i64 (any_llround f64:$Rn)), 4831 (FCVTASUXDr f64:$Rn)>; 4832 4833//===----------------------------------------------------------------------===// 4834// Scaled integer to floating point conversion instructions. 4835//===----------------------------------------------------------------------===// 4836 4837defm SCVTF : IntegerToFP<0, "scvtf", any_sint_to_fp>; 4838defm UCVTF : IntegerToFP<1, "ucvtf", any_uint_to_fp>; 4839 4840def : Pat<(f16 (fdiv (f16 (any_sint_to_fp (i32 GPR32:$Rn))), fixedpoint_f16_i32:$scale)), 4841 (SCVTFSWHri GPR32:$Rn, fixedpoint_f16_i32:$scale)>; 4842def : Pat<(f32 (fdiv (f32 (any_sint_to_fp (i32 GPR32:$Rn))), fixedpoint_f32_i32:$scale)), 4843 (SCVTFSWSri GPR32:$Rn, fixedpoint_f32_i32:$scale)>; 4844def : Pat<(f64 (fdiv (f64 (any_sint_to_fp (i32 GPR32:$Rn))), fixedpoint_f64_i32:$scale)), 4845 (SCVTFSWDri GPR32:$Rn, fixedpoint_f64_i32:$scale)>; 4846 4847def : Pat<(f16 (fdiv (f16 (any_sint_to_fp (i64 GPR64:$Rn))), fixedpoint_f16_i64:$scale)), 4848 (SCVTFSXHri GPR64:$Rn, fixedpoint_f16_i64:$scale)>; 4849def : Pat<(f32 (fdiv (f32 (any_sint_to_fp (i64 GPR64:$Rn))), fixedpoint_f32_i64:$scale)), 4850 (SCVTFSXSri GPR64:$Rn, fixedpoint_f32_i64:$scale)>; 4851def : Pat<(f64 (fdiv (f64 (any_sint_to_fp (i64 GPR64:$Rn))), fixedpoint_f64_i64:$scale)), 4852 (SCVTFSXDri GPR64:$Rn, fixedpoint_f64_i64:$scale)>; 4853 4854def : Pat<(f16 (fdiv (f16 (any_uint_to_fp (i64 GPR64:$Rn))), fixedpoint_f16_i64:$scale)), 4855 (UCVTFSXHri GPR64:$Rn, fixedpoint_f16_i64:$scale)>; 4856def : Pat<(f32 (fdiv (f32 (any_uint_to_fp (i64 GPR64:$Rn))), fixedpoint_f32_i64:$scale)), 4857 (UCVTFSXSri GPR64:$Rn, fixedpoint_f32_i64:$scale)>; 4858def : Pat<(f64 (fdiv (f64 (any_uint_to_fp (i64 GPR64:$Rn))), fixedpoint_f64_i64:$scale)), 4859 (UCVTFSXDri GPR64:$Rn, fixedpoint_f64_i64:$scale)>; 4860 4861def : Pat<(f16 (fdiv (f16 (any_uint_to_fp (i32 GPR32:$Rn))), fixedpoint_f16_i32:$scale)), 4862 (UCVTFSWHri GPR32:$Rn, fixedpoint_f16_i32:$scale)>; 4863def : Pat<(f32 (fdiv (f32 (any_uint_to_fp (i32 GPR32:$Rn))), fixedpoint_f32_i32:$scale)), 4864 (UCVTFSWSri GPR32:$Rn, fixedpoint_f32_i32:$scale)>; 4865def : Pat<(f64 (fdiv (f64 (any_uint_to_fp (i32 GPR32:$Rn))), fixedpoint_f64_i32:$scale)), 4866 (UCVTFSWDri GPR32:$Rn, fixedpoint_f64_i32:$scale)>; 4867 4868//===----------------------------------------------------------------------===// 4869// Unscaled integer to floating point conversion instruction. 4870//===----------------------------------------------------------------------===// 4871 4872defm FMOV : UnscaledConversion<"fmov">; 4873 4874// Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable 4875let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1, 4876 Predicates = [HasFPARMv8] in { 4877def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>, 4878 Sched<[WriteF]>; 4879def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>, 4880 Sched<[WriteF]>; 4881def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>, 4882 Sched<[WriteF]>; 4883} 4884 4885// Similarly add aliases 4886def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>, 4887 Requires<[HasFullFP16]>; 4888let Predicates = [HasFPARMv8] in { 4889def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>; 4890def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>; 4891} 4892 4893def : Pat<(bf16 fpimm0), 4894 (FMOVH0)>; 4895 4896// Pattern for FP16 and BF16 immediates 4897let Predicates = [HasFullFP16] in { 4898 def : Pat<(f16 fpimm:$in), 4899 (FMOVWHr (MOVi32imm (bitcast_fpimm_to_i32 f16:$in)))>; 4900 4901 def : Pat<(bf16 fpimm:$in), 4902 (FMOVWHr (MOVi32imm (bitcast_fpimm_to_i32 bf16:$in)))>; 4903} 4904 4905//===----------------------------------------------------------------------===// 4906// Floating point conversion instruction. 4907//===----------------------------------------------------------------------===// 4908 4909defm FCVT : FPConversion<"fcvt">; 4910// Helper to get bf16 into fp32. 4911def cvt_bf16_to_fp32 : 4912 OutPatFrag<(ops node:$Rn), 4913 (f32 (COPY_TO_REGCLASS 4914 (i32 (UBFMWri 4915 (i32 (COPY_TO_REGCLASS (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 4916 node:$Rn, hsub), GPR32)), 4917 (i64 (i32shift_a (i64 16))), 4918 (i64 (i32shift_b (i64 16))))), 4919 FPR32))>; 4920// Pattern for bf16 -> fp32. 4921def : Pat<(f32 (any_fpextend (bf16 FPR16:$Rn))), 4922 (cvt_bf16_to_fp32 FPR16:$Rn)>; 4923// Pattern for bf16 -> fp64. 4924def : Pat<(f64 (any_fpextend (bf16 FPR16:$Rn))), 4925 (FCVTDSr (f32 (cvt_bf16_to_fp32 FPR16:$Rn)))>; 4926 4927//===----------------------------------------------------------------------===// 4928// Floating point single operand instructions. 4929//===----------------------------------------------------------------------===// 4930 4931defm FABS : SingleOperandFPDataNoException<0b0001, "fabs", fabs>; 4932defm FMOV : SingleOperandFPDataNoException<0b0000, "fmov">; 4933defm FNEG : SingleOperandFPDataNoException<0b0010, "fneg", fneg>; 4934defm FRINTA : SingleOperandFPData<0b1100, "frinta", any_fround>; 4935defm FRINTI : SingleOperandFPData<0b1111, "frinti", any_fnearbyint>; 4936defm FRINTM : SingleOperandFPData<0b1010, "frintm", any_ffloor>; 4937defm FRINTN : SingleOperandFPData<0b1000, "frintn", any_froundeven>; 4938defm FRINTP : SingleOperandFPData<0b1001, "frintp", any_fceil>; 4939 4940defm FRINTX : SingleOperandFPData<0b1110, "frintx", any_frint>; 4941defm FRINTZ : SingleOperandFPData<0b1011, "frintz", any_ftrunc>; 4942 4943let SchedRW = [WriteFDiv] in { 4944defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", any_fsqrt>; 4945} 4946 4947let Predicates = [HasFRInt3264] in { 4948 defm FRINT32Z : FRIntNNT<0b00, "frint32z", int_aarch64_frint32z>; 4949 defm FRINT64Z : FRIntNNT<0b10, "frint64z", int_aarch64_frint64z>; 4950 defm FRINT32X : FRIntNNT<0b01, "frint32x", int_aarch64_frint32x>; 4951 defm FRINT64X : FRIntNNT<0b11, "frint64x", int_aarch64_frint64x>; 4952} // HasFRInt3264 4953 4954// Pattern to convert 1x64 vector intrinsics to equivalent scalar instructions 4955def : Pat<(v1f64 (int_aarch64_neon_frint32z (v1f64 FPR64:$Rn))), 4956 (FRINT32ZDr FPR64:$Rn)>; 4957def : Pat<(v1f64 (int_aarch64_neon_frint64z (v1f64 FPR64:$Rn))), 4958 (FRINT64ZDr FPR64:$Rn)>; 4959def : Pat<(v1f64 (int_aarch64_neon_frint32x (v1f64 FPR64:$Rn))), 4960 (FRINT32XDr FPR64:$Rn)>; 4961def : Pat<(v1f64 (int_aarch64_neon_frint64x (v1f64 FPR64:$Rn))), 4962 (FRINT64XDr FPR64:$Rn)>; 4963 4964// Emitting strict_lrint as two instructions is valid as any exceptions that 4965// occur will happen in exactly one of the instructions (e.g. if the input is 4966// not an integer the inexact exception will happen in the FRINTX but not then 4967// in the FCVTZS as the output of FRINTX is an integer). 4968let Predicates = [HasFullFP16] in { 4969 def : Pat<(i32 (any_lrint f16:$Rn)), 4970 (FCVTZSUWHr (FRINTXHr f16:$Rn))>; 4971 def : Pat<(i64 (any_lrint f16:$Rn)), 4972 (FCVTZSUXHr (FRINTXHr f16:$Rn))>; 4973 def : Pat<(i64 (any_llrint f16:$Rn)), 4974 (FCVTZSUXHr (FRINTXHr f16:$Rn))>; 4975} 4976def : Pat<(i32 (any_lrint f32:$Rn)), 4977 (FCVTZSUWSr (FRINTXSr f32:$Rn))>; 4978def : Pat<(i32 (any_lrint f64:$Rn)), 4979 (FCVTZSUWDr (FRINTXDr f64:$Rn))>; 4980def : Pat<(i64 (any_lrint f32:$Rn)), 4981 (FCVTZSUXSr (FRINTXSr f32:$Rn))>; 4982def : Pat<(i64 (any_lrint f64:$Rn)), 4983 (FCVTZSUXDr (FRINTXDr f64:$Rn))>; 4984def : Pat<(i64 (any_llrint f32:$Rn)), 4985 (FCVTZSUXSr (FRINTXSr f32:$Rn))>; 4986def : Pat<(i64 (any_llrint f64:$Rn)), 4987 (FCVTZSUXDr (FRINTXDr f64:$Rn))>; 4988 4989//===----------------------------------------------------------------------===// 4990// Floating point two operand instructions. 4991//===----------------------------------------------------------------------===// 4992 4993defm FADD : TwoOperandFPData<0b0010, "fadd", any_fadd>; 4994let SchedRW = [WriteFDiv] in { 4995defm FDIV : TwoOperandFPData<0b0001, "fdiv", any_fdiv>; 4996} 4997defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", any_fmaxnum>; 4998defm FMAX : TwoOperandFPData<0b0100, "fmax", any_fmaximum>; 4999defm FMINNM : TwoOperandFPData<0b0111, "fminnm", any_fminnum>; 5000defm FMIN : TwoOperandFPData<0b0101, "fmin", any_fminimum>; 5001let SchedRW = [WriteFMul] in { 5002defm FMUL : TwoOperandFPData<0b0000, "fmul", any_fmul>; 5003defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", any_fmul>; 5004} 5005defm FSUB : TwoOperandFPData<0b0011, "fsub", any_fsub>; 5006 5007multiclass FMULScalarFromIndexedLane0Patterns<string inst, 5008 string inst_f16_suffix, 5009 string inst_f32_suffix, 5010 string inst_f64_suffix, 5011 SDPatternOperator OpNode, 5012 list<Predicate> preds = []> { 5013 let Predicates = !listconcat(preds, [HasFullFP16]) in { 5014 def : Pat<(f16 (OpNode (f16 FPR16:$Rn), 5015 (f16 (vector_extract (v8f16 V128:$Rm), (i64 0))))), 5016 (!cast<Instruction>(inst # inst_f16_suffix) 5017 FPR16:$Rn, (f16 (EXTRACT_SUBREG V128:$Rm, hsub)))>; 5018 } 5019 let Predicates = preds in { 5020 def : Pat<(f32 (OpNode (f32 FPR32:$Rn), 5021 (f32 (vector_extract (v4f32 V128:$Rm), (i64 0))))), 5022 (!cast<Instruction>(inst # inst_f32_suffix) 5023 FPR32:$Rn, (EXTRACT_SUBREG V128:$Rm, ssub))>; 5024 def : Pat<(f64 (OpNode (f64 FPR64:$Rn), 5025 (f64 (vector_extract (v2f64 V128:$Rm), (i64 0))))), 5026 (!cast<Instruction>(inst # inst_f64_suffix) 5027 FPR64:$Rn, (EXTRACT_SUBREG V128:$Rm, dsub))>; 5028 } 5029} 5030 5031defm : FMULScalarFromIndexedLane0Patterns<"FMUL", "Hrr", "Srr", "Drr", 5032 any_fmul>; 5033 5034// Match reassociated forms of FNMUL. 5035def : Pat<(fmul (fneg FPR16:$a), (f16 FPR16:$b)), 5036 (FNMULHrr FPR16:$a, FPR16:$b)>, 5037 Requires<[HasFullFP16]>; 5038def : Pat<(fmul (fneg FPR32:$a), (f32 FPR32:$b)), 5039 (FNMULSrr FPR32:$a, FPR32:$b)>; 5040def : Pat<(fmul (fneg FPR64:$a), (f64 FPR64:$b)), 5041 (FNMULDrr FPR64:$a, FPR64:$b)>; 5042 5043def : Pat<(v1f64 (fmaximum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 5044 (FMAXDrr FPR64:$Rn, FPR64:$Rm)>; 5045def : Pat<(v1f64 (fminimum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 5046 (FMINDrr FPR64:$Rn, FPR64:$Rm)>; 5047def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 5048 (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>; 5049def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 5050 (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>; 5051 5052//===----------------------------------------------------------------------===// 5053// Floating point three operand instructions. 5054//===----------------------------------------------------------------------===// 5055 5056defm FMADD : ThreeOperandFPData<0, 0, "fmadd", any_fma>; 5057defm FMSUB : ThreeOperandFPData<0, 1, "fmsub", 5058 TriOpFrag<(any_fma node:$LHS, (fneg node:$MHS), node:$RHS)> >; 5059defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd", 5060 TriOpFrag<(fneg (any_fma node:$LHS, node:$MHS, node:$RHS))> >; 5061defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub", 5062 TriOpFrag<(any_fma node:$LHS, node:$MHS, (fneg node:$RHS))> >; 5063 5064// The following def pats catch the case where the LHS of an FMA is negated. 5065// The TriOpFrag above catches the case where the middle operand is negated. 5066 5067// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike 5068// the NEON variant. 5069 5070// Here we handle first -(a + b*c) for FNMADD: 5071 5072let Predicates = [HasNEON, HasFullFP16] in 5073def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, FPR16:$Ra)), 5074 (FMSUBHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>; 5075 5076def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)), 5077 (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; 5078 5079def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)), 5080 (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; 5081 5082// Now it's time for "(-a) + (-b)*c" 5083 5084let Predicates = [HasNEON, HasFullFP16] in 5085def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, (fneg FPR16:$Ra))), 5086 (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>; 5087 5088def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))), 5089 (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; 5090 5091def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))), 5092 (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; 5093 5094//===----------------------------------------------------------------------===// 5095// Floating point comparison instructions. 5096//===----------------------------------------------------------------------===// 5097 5098defm FCMPE : FPComparison<1, "fcmpe", AArch64strict_fcmpe>; 5099defm FCMP : FPComparison<0, "fcmp", AArch64any_fcmp>; 5100 5101//===----------------------------------------------------------------------===// 5102// Floating point conditional comparison instructions. 5103//===----------------------------------------------------------------------===// 5104 5105defm FCCMPE : FPCondComparison<1, "fccmpe">; 5106defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>; 5107 5108//===----------------------------------------------------------------------===// 5109// Floating point conditional select instruction. 5110//===----------------------------------------------------------------------===// 5111 5112defm FCSEL : FPCondSelect<"fcsel">; 5113 5114let Predicates = [HasFullFP16] in 5115def : Pat<(bf16 (AArch64csel (bf16 FPR16:$Rn), (bf16 FPR16:$Rm), (i32 imm:$cond), NZCV)), 5116 (FCSELHrrr FPR16:$Rn, FPR16:$Rm, imm:$cond)>; 5117 5118// CSEL instructions providing f128 types need to be handled by a 5119// pseudo-instruction since the eventual code will need to introduce basic 5120// blocks and control flow. 5121let Predicates = [HasFPARMv8] in 5122def F128CSEL : Pseudo<(outs FPR128:$Rd), 5123 (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond), 5124 [(set (f128 FPR128:$Rd), 5125 (AArch64csel FPR128:$Rn, FPR128:$Rm, 5126 (i32 imm:$cond), NZCV))]> { 5127 let Uses = [NZCV]; 5128 let usesCustomInserter = 1; 5129 let hasNoSchedulingInfo = 1; 5130} 5131 5132//===----------------------------------------------------------------------===// 5133// Instructions used for emitting unwind opcodes on ARM64 Windows. 5134//===----------------------------------------------------------------------===// 5135let isPseudo = 1 in { 5136 def SEH_StackAlloc : Pseudo<(outs), (ins i32imm:$size), []>, Sched<[]>; 5137 def SEH_SaveFPLR : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; 5138 def SEH_SaveFPLR_X : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; 5139 def SEH_SaveReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; 5140 def SEH_SaveReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; 5141 def SEH_SaveRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; 5142 def SEH_SaveRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; 5143 def SEH_SaveFReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; 5144 def SEH_SaveFReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; 5145 def SEH_SaveFRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; 5146 def SEH_SaveFRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; 5147 def SEH_SetFP : Pseudo<(outs), (ins), []>, Sched<[]>; 5148 def SEH_AddFP : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; 5149 def SEH_Nop : Pseudo<(outs), (ins), []>, Sched<[]>; 5150 def SEH_PrologEnd : Pseudo<(outs), (ins), []>, Sched<[]>; 5151 def SEH_EpilogStart : Pseudo<(outs), (ins), []>, Sched<[]>; 5152 def SEH_EpilogEnd : Pseudo<(outs), (ins), []>, Sched<[]>; 5153 def SEH_PACSignLR : Pseudo<(outs), (ins), []>, Sched<[]>; 5154 def SEH_SaveAnyRegQP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; 5155 def SEH_SaveAnyRegQPX : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; 5156} 5157 5158// Pseudo instructions for Windows EH 5159//===----------------------------------------------------------------------===// 5160let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, 5161 isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1, isPseudo = 1 in { 5162 def CLEANUPRET : Pseudo<(outs), (ins), [(cleanupret)]>, Sched<[]>; 5163 let usesCustomInserter = 1 in 5164 def CATCHRET : Pseudo<(outs), (ins am_brcond:$dst, am_brcond:$src), [(catchret bb:$dst, bb:$src)]>, 5165 Sched<[]>; 5166} 5167 5168// Pseudo instructions for homogeneous prolog/epilog 5169let isPseudo = 1 in { 5170 // Save CSRs in order, {FPOffset} 5171 def HOM_Prolog : Pseudo<(outs), (ins variable_ops), []>, Sched<[]>; 5172 // Restore CSRs in order 5173 def HOM_Epilog : Pseudo<(outs), (ins variable_ops), []>, Sched<[]>; 5174} 5175 5176//===----------------------------------------------------------------------===// 5177// Floating point immediate move. 5178//===----------------------------------------------------------------------===// 5179 5180let isReMaterializable = 1, isAsCheapAsAMove = 1 in { 5181defm FMOV : FPMoveImmediate<"fmov">; 5182} 5183 5184let Predicates = [HasFullFP16] in { 5185 def : Pat<(bf16 fpimmbf16:$in), 5186 (FMOVHi (fpimm16XForm bf16:$in))>; 5187} 5188 5189//===----------------------------------------------------------------------===// 5190// Advanced SIMD two vector instructions. 5191//===----------------------------------------------------------------------===// 5192 5193defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl", 5194 AArch64uabd>; 5195// Match UABDL in log2-shuffle patterns. 5196def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)), 5197 (zext (v8i8 V64:$opB))))), 5198 (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>; 5199def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 (v16i8 V128:$opA))), 5200 (zext (extract_high_v16i8 (v16i8 V128:$opB)))))), 5201 (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>; 5202def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)), 5203 (zext (v4i16 V64:$opB))))), 5204 (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>; 5205def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 (v8i16 V128:$opA))), 5206 (zext (extract_high_v8i16 (v8i16 V128:$opB)))))), 5207 (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>; 5208def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)), 5209 (zext (v2i32 V64:$opB))))), 5210 (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>; 5211def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 (v4i32 V128:$opA))), 5212 (zext (extract_high_v4i32 (v4i32 V128:$opB)))))), 5213 (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>; 5214 5215defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>; 5216defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>; 5217defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>; 5218defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>; 5219defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>; 5220defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>; 5221defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>; 5222defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>; 5223defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>; 5224defm FABS : SIMDTwoVectorFPNoException<0, 1, 0b01111, "fabs", fabs>; 5225 5226def : Pat<(v8i8 (AArch64vashr (v8i8 V64:$Rn), (i32 7))), 5227 (CMLTv8i8rz V64:$Rn)>; 5228def : Pat<(v4i16 (AArch64vashr (v4i16 V64:$Rn), (i32 15))), 5229 (CMLTv4i16rz V64:$Rn)>; 5230def : Pat<(v2i32 (AArch64vashr (v2i32 V64:$Rn), (i32 31))), 5231 (CMLTv2i32rz V64:$Rn)>; 5232def : Pat<(v16i8 (AArch64vashr (v16i8 V128:$Rn), (i32 7))), 5233 (CMLTv16i8rz V128:$Rn)>; 5234def : Pat<(v8i16 (AArch64vashr (v8i16 V128:$Rn), (i32 15))), 5235 (CMLTv8i16rz V128:$Rn)>; 5236def : Pat<(v4i32 (AArch64vashr (v4i32 V128:$Rn), (i32 31))), 5237 (CMLTv4i32rz V128:$Rn)>; 5238def : Pat<(v2i64 (AArch64vashr (v2i64 V128:$Rn), (i32 63))), 5239 (CMLTv2i64rz V128:$Rn)>; 5240 5241defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>; 5242defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>; 5243defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>; 5244defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>; 5245defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>; 5246defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>; 5247defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>; 5248defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">; 5249def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))), 5250 (FCVTLv4i16 V64:$Rn)>; 5251def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn), 5252 (i64 4)))), 5253 (FCVTLv8i16 V128:$Rn)>; 5254def : Pat<(v2f64 (any_fpextend (v2f32 V64:$Rn))), 5255 (FCVTLv2i32 V64:$Rn)>; 5256def : Pat<(v2f64 (any_fpextend (v2f32 (extract_high_v4f32 (v4f32 V128:$Rn))))), 5257 (FCVTLv4i32 V128:$Rn)>; 5258def : Pat<(v4f32 (any_fpextend (v4f16 V64:$Rn))), 5259 (FCVTLv4i16 V64:$Rn)>; 5260def : Pat<(v4f32 (any_fpextend (v4f16 (extract_high_v8f16 (v8f16 V128:$Rn))))), 5261 (FCVTLv8i16 V128:$Rn)>; 5262 5263defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>; 5264defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>; 5265defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>; 5266defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>; 5267defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">; 5268def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))), 5269 (FCVTNv4i16 V128:$Rn)>; 5270def : Pat<(concat_vectors V64:$Rd, 5271 (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))), 5272 (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; 5273def : Pat<(v2f32 (any_fpround (v2f64 V128:$Rn))), 5274 (FCVTNv2i32 V128:$Rn)>; 5275def : Pat<(v4f16 (any_fpround (v4f32 V128:$Rn))), 5276 (FCVTNv4i16 V128:$Rn)>; 5277def : Pat<(concat_vectors V64:$Rd, (v2f32 (any_fpround (v2f64 V128:$Rn)))), 5278 (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; 5279def : Pat<(concat_vectors V64:$Rd, (v4f16 (any_fpround (v4f32 V128:$Rn)))), 5280 (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; 5281defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>; 5282defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>; 5283defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn", 5284 AArch64fcvtxnv>; 5285defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", any_fp_to_sint>; 5286defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", any_fp_to_uint>; 5287 5288// AArch64's FCVT instructions saturate when out of range. 5289multiclass SIMDTwoVectorFPToIntSatPats<SDNode to_int_sat, string INST> { 5290 let Predicates = [HasFullFP16] in { 5291 def : Pat<(v4i16 (to_int_sat v4f16:$Rn, i16)), 5292 (!cast<Instruction>(INST # v4f16) v4f16:$Rn)>; 5293 def : Pat<(v8i16 (to_int_sat v8f16:$Rn, i16)), 5294 (!cast<Instruction>(INST # v8f16) v8f16:$Rn)>; 5295 } 5296 def : Pat<(v2i32 (to_int_sat v2f32:$Rn, i32)), 5297 (!cast<Instruction>(INST # v2f32) v2f32:$Rn)>; 5298 def : Pat<(v4i32 (to_int_sat v4f32:$Rn, i32)), 5299 (!cast<Instruction>(INST # v4f32) v4f32:$Rn)>; 5300 def : Pat<(v2i64 (to_int_sat v2f64:$Rn, i64)), 5301 (!cast<Instruction>(INST # v2f64) v2f64:$Rn)>; 5302} 5303defm : SIMDTwoVectorFPToIntSatPats<fp_to_sint_sat, "FCVTZS">; 5304defm : SIMDTwoVectorFPToIntSatPats<fp_to_uint_sat, "FCVTZU">; 5305 5306def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>; 5307def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>; 5308def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>; 5309def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>; 5310def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>; 5311 5312def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>; 5313def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>; 5314def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>; 5315def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>; 5316def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>; 5317 5318defm FNEG : SIMDTwoVectorFPNoException<1, 1, 0b01111, "fneg", fneg>; 5319defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>; 5320defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", any_fround>; 5321defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", any_fnearbyint>; 5322defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", any_ffloor>; 5323defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", any_froundeven>; 5324defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", any_fceil>; 5325defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", any_frint>; 5326defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", any_ftrunc>; 5327 5328let Predicates = [HasFRInt3264] in { 5329 defm FRINT32Z : FRIntNNTVector<0, 0, "frint32z", int_aarch64_neon_frint32z>; 5330 defm FRINT64Z : FRIntNNTVector<0, 1, "frint64z", int_aarch64_neon_frint64z>; 5331 defm FRINT32X : FRIntNNTVector<1, 0, "frint32x", int_aarch64_neon_frint32x>; 5332 defm FRINT64X : FRIntNNTVector<1, 1, "frint64x", int_aarch64_neon_frint64x>; 5333} // HasFRInt3264 5334 5335defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>; 5336defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", any_fsqrt>; 5337defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg", 5338 UnOpFrag<(sub immAllZerosV, node:$LHS)> >; 5339defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>; 5340// Aliases for MVN -> NOT. 5341let Predicates = [HasNEON] in { 5342def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}", 5343 (NOTv8i8 V64:$Vd, V64:$Vn)>; 5344def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}", 5345 (NOTv16i8 V128:$Vd, V128:$Vn)>; 5346} 5347 5348def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 5349def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 5350def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 5351def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 5352def : Pat<(vnot (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>; 5353def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>; 5354 5355defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", bitreverse>; 5356defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>; 5357defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>; 5358defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>; 5359defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp", 5360 BinOpFrag<(add node:$LHS, (AArch64saddlp node:$RHS))> >; 5361defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", AArch64saddlp>; 5362defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", any_sint_to_fp>; 5363defm SHLL : SIMDVectorLShiftLongBySizeBHS; 5364defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>; 5365defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>; 5366defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>; 5367defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>; 5368defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>; 5369defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp", 5370 BinOpFrag<(add node:$LHS, (AArch64uaddlp node:$RHS))> >; 5371defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp", AArch64uaddlp>; 5372defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", any_uint_to_fp>; 5373defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>; 5374defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>; 5375defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>; 5376defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>; 5377defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>; 5378 5379def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>; 5380def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>; 5381def : Pat<(v4bf16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>; 5382def : Pat<(v4bf16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>; 5383def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>; 5384def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>; 5385def : Pat<(v8bf16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>; 5386def : Pat<(v8bf16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>; 5387def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>; 5388def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>; 5389 5390// Patterns for vector long shift (by element width). These need to match all 5391// three of zext, sext and anyext so it's easier to pull the patterns out of the 5392// definition. 5393multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> { 5394 def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)), 5395 (SHLLv8i8 V64:$Rn)>; 5396 def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 (v16i8 V128:$Rn)))), (i32 8)), 5397 (SHLLv16i8 V128:$Rn)>; 5398 def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)), 5399 (SHLLv4i16 V64:$Rn)>; 5400 def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 (v8i16 V128:$Rn)))), (i32 16)), 5401 (SHLLv8i16 V128:$Rn)>; 5402 def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)), 5403 (SHLLv2i32 V64:$Rn)>; 5404 def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 (v4i32 V128:$Rn)))), (i32 32)), 5405 (SHLLv4i32 V128:$Rn)>; 5406} 5407 5408defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>; 5409defm : SIMDVectorLShiftLongBySizeBHSPats<zext>; 5410defm : SIMDVectorLShiftLongBySizeBHSPats<sext>; 5411 5412// Constant vector values, used in the S/UQXTN patterns below. 5413def VImmFF: PatLeaf<(AArch64NvCast (v2i64 (AArch64movi_edit (i32 85))))>; 5414def VImmFFFF: PatLeaf<(AArch64NvCast (v2i64 (AArch64movi_edit (i32 51))))>; 5415def VImm7F: PatLeaf<(AArch64movi_shift (i32 127), (i32 0))>; 5416def VImm80: PatLeaf<(AArch64mvni_shift (i32 127), (i32 0))>; 5417def VImm7FFF: PatLeaf<(AArch64movi_msl (i32 127), (i32 264))>; 5418def VImm8000: PatLeaf<(AArch64mvni_msl (i32 127), (i32 264))>; 5419 5420// trunc(umin(X, 255)) -> UQXTRN v8i8 5421def : Pat<(v8i8 (trunc (umin (v8i16 V128:$Vn), (v8i16 VImmFF)))), 5422 (UQXTNv8i8 V128:$Vn)>; 5423// trunc(umin(X, 65535)) -> UQXTRN v4i16 5424def : Pat<(v4i16 (trunc (umin (v4i32 V128:$Vn), (v4i32 VImmFFFF)))), 5425 (UQXTNv4i16 V128:$Vn)>; 5426// trunc(smin(smax(X, -128), 128)) -> SQXTRN 5427// with reversed min/max 5428def : Pat<(v8i8 (trunc (smin (smax (v8i16 V128:$Vn), (v8i16 VImm80)), 5429 (v8i16 VImm7F)))), 5430 (SQXTNv8i8 V128:$Vn)>; 5431def : Pat<(v8i8 (trunc (smax (smin (v8i16 V128:$Vn), (v8i16 VImm7F)), 5432 (v8i16 VImm80)))), 5433 (SQXTNv8i8 V128:$Vn)>; 5434// trunc(smin(smax(X, -32768), 32767)) -> SQXTRN 5435// with reversed min/max 5436def : Pat<(v4i16 (trunc (smin (smax (v4i32 V128:$Vn), (v4i32 VImm8000)), 5437 (v4i32 VImm7FFF)))), 5438 (SQXTNv4i16 V128:$Vn)>; 5439def : Pat<(v4i16 (trunc (smax (smin (v4i32 V128:$Vn), (v4i32 VImm7FFF)), 5440 (v4i32 VImm8000)))), 5441 (SQXTNv4i16 V128:$Vn)>; 5442 5443// concat_vectors(Vd, trunc(umin(X, 255))) -> UQXTRN(Vd, Vn) 5444def : Pat<(v16i8 (concat_vectors 5445 (v8i8 V64:$Vd), 5446 (v8i8 (trunc (umin (v8i16 V128:$Vn), (v8i16 VImmFF)))))), 5447 (UQXTNv16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; 5448// concat_vectors(Vd, trunc(umin(X, 65535))) -> UQXTRN(Vd, Vn) 5449def : Pat<(v8i16 (concat_vectors 5450 (v4i16 V64:$Vd), 5451 (v4i16 (trunc (umin (v4i32 V128:$Vn), (v4i32 VImmFFFF)))))), 5452 (UQXTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; 5453 5454// concat_vectors(Vd, trunc(smin(smax Vm, -128), 127) ~> SQXTN2(Vd, Vn) 5455// with reversed min/max 5456def : Pat<(v16i8 (concat_vectors 5457 (v8i8 V64:$Vd), 5458 (v8i8 (trunc (smin (smax (v8i16 V128:$Vn), (v8i16 VImm80)), 5459 (v8i16 VImm7F)))))), 5460 (SQXTNv16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; 5461def : Pat<(v16i8 (concat_vectors 5462 (v8i8 V64:$Vd), 5463 (v8i8 (trunc (smax (smin (v8i16 V128:$Vn), (v8i16 VImm7F)), 5464 (v8i16 VImm80)))))), 5465 (SQXTNv16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; 5466 5467// concat_vectors(Vd, trunc(smin(smax Vm, -32768), 32767) ~> SQXTN2(Vd, Vn) 5468// with reversed min/max 5469def : Pat<(v8i16 (concat_vectors 5470 (v4i16 V64:$Vd), 5471 (v4i16 (trunc (smin (smax (v4i32 V128:$Vn), (v4i32 VImm8000)), 5472 (v4i32 VImm7FFF)))))), 5473 (SQXTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; 5474def : Pat<(v8i16 (concat_vectors 5475 (v4i16 V64:$Vd), 5476 (v4i16 (trunc (smax (smin (v4i32 V128:$Vn), (v4i32 VImm7FFF)), 5477 (v4i32 VImm8000)))))), 5478 (SQXTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; 5479 5480// Select BSWAP vector instructions into REV instructions 5481def : Pat<(v4i16 (bswap (v4i16 V64:$Rn))), 5482 (v4i16 (REV16v8i8 (v4i16 V64:$Rn)))>; 5483def : Pat<(v8i16 (bswap (v8i16 V128:$Rn))), 5484 (v8i16 (REV16v16i8 (v8i16 V128:$Rn)))>; 5485def : Pat<(v2i32 (bswap (v2i32 V64:$Rn))), 5486 (v2i32 (REV32v8i8 (v2i32 V64:$Rn)))>; 5487def : Pat<(v4i32 (bswap (v4i32 V128:$Rn))), 5488 (v4i32 (REV32v16i8 (v4i32 V128:$Rn)))>; 5489def : Pat<(v2i64 (bswap (v2i64 V128:$Rn))), 5490 (v2i64 (REV64v16i8 (v2i64 V128:$Rn)))>; 5491 5492//===----------------------------------------------------------------------===// 5493// Advanced SIMD three vector instructions. 5494//===----------------------------------------------------------------------===// 5495 5496defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>; 5497defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", AArch64addp>; 5498defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>; 5499defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>; 5500defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>; 5501defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>; 5502defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>; 5503defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>; 5504foreach VT = [ v8i8, v16i8, v4i16, v8i16, v2i32, v4i32, v2i64 ] in { 5505def : Pat<(vnot (AArch64cmeqz VT:$Rn)), (!cast<Instruction>("CMTST"#VT) VT:$Rn, VT:$Rn)>; 5506} 5507defm FABD : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>; 5508let Predicates = [HasNEON] in { 5509foreach VT = [ v2f32, v4f32, v2f64 ] in 5510def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>; 5511} 5512let Predicates = [HasNEON, HasFullFP16] in { 5513foreach VT = [ v4f16, v8f16 ] in 5514def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>; 5515} 5516defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",AArch64facge>; 5517defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",AArch64facgt>; 5518defm FADDP : SIMDThreeSameVectorFP<1,0,0b010,"faddp", AArch64faddp>; 5519defm FADD : SIMDThreeSameVectorFP<0,0,0b010,"fadd", any_fadd>; 5520defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>; 5521defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>; 5522defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>; 5523defm FDIV : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", any_fdiv>; 5524defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>; 5525defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", any_fmaxnum>; 5526defm FMAXP : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>; 5527defm FMAX : SIMDThreeSameVectorFP<0,0,0b110,"fmax", any_fmaximum>; 5528defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>; 5529defm FMINNM : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", any_fminnum>; 5530defm FMINP : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>; 5531defm FMIN : SIMDThreeSameVectorFP<0,1,0b110,"fmin", any_fminimum>; 5532 5533// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the 5534// instruction expects the addend first, while the fma intrinsic puts it last. 5535defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla", 5536 TriOpFrag<(any_fma node:$RHS, node:$MHS, node:$LHS)> >; 5537defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls", 5538 TriOpFrag<(any_fma node:$MHS, (fneg node:$RHS), node:$LHS)> >; 5539 5540defm FMULX : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>; 5541defm FMUL : SIMDThreeSameVectorFP<1,0,0b011,"fmul", any_fmul>; 5542defm FRECPS : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>; 5543defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>; 5544defm FSUB : SIMDThreeSameVectorFP<0,1,0b010,"fsub", any_fsub>; 5545 5546// MLA and MLS are generated in MachineCombine 5547defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", null_frag>; 5548defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", null_frag>; 5549 5550defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>; 5551defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>; 5552defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba", 5553 TriOpFrag<(add node:$LHS, (AArch64sabd node:$MHS, node:$RHS))> >; 5554defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", AArch64sabd>; 5555defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", avgfloors>; 5556defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>; 5557defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>; 5558defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>; 5559defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>; 5560defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>; 5561defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>; 5562defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>; 5563defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>; 5564defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>; 5565defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>; 5566defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>; 5567defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd", avgceils>; 5568defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>; 5569defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>; 5570defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>; 5571defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba", 5572 TriOpFrag<(add node:$LHS, (AArch64uabd node:$MHS, node:$RHS))> >; 5573defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", AArch64uabd>; 5574defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", avgflooru>; 5575defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>; 5576defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>; 5577defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>; 5578defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>; 5579defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>; 5580defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>; 5581defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>; 5582defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>; 5583defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>; 5584defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", avgceilu>; 5585defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>; 5586defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>; 5587defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah", 5588 int_aarch64_neon_sqrdmlah>; 5589defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh", 5590 int_aarch64_neon_sqrdmlsh>; 5591 5592// Extra saturate patterns, other than the intrinsics matches above 5593defm : SIMDThreeSameVectorExtraPatterns<"SQADD", saddsat>; 5594defm : SIMDThreeSameVectorExtraPatterns<"UQADD", uaddsat>; 5595defm : SIMDThreeSameVectorExtraPatterns<"SQSUB", ssubsat>; 5596defm : SIMDThreeSameVectorExtraPatterns<"UQSUB", usubsat>; 5597 5598defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>; 5599defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic", 5600 BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >; 5601defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>; 5602defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn", 5603 BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >; 5604defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>; 5605 5606// Pseudo bitwise select pattern BSP. 5607// It is expanded into BSL/BIT/BIF after register allocation. 5608defm BSP : SIMDLogicalThreeVectorPseudo<TriOpFrag<(or (and node:$LHS, node:$MHS), 5609 (and (vnot node:$LHS), node:$RHS))>>; 5610defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl">; 5611defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit">; 5612defm BIF : SIMDLogicalThreeVectorTied<1, 0b11, "bif">; 5613 5614def : Pat<(AArch64bsp (v8i8 V64:$Rd), V64:$Rn, V64:$Rm), 5615 (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; 5616def : Pat<(AArch64bsp (v4i16 V64:$Rd), V64:$Rn, V64:$Rm), 5617 (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; 5618def : Pat<(AArch64bsp (v2i32 V64:$Rd), V64:$Rn, V64:$Rm), 5619 (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; 5620def : Pat<(AArch64bsp (v1i64 V64:$Rd), V64:$Rn, V64:$Rm), 5621 (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; 5622 5623def : Pat<(AArch64bsp (v16i8 V128:$Rd), V128:$Rn, V128:$Rm), 5624 (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; 5625def : Pat<(AArch64bsp (v8i16 V128:$Rd), V128:$Rn, V128:$Rm), 5626 (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; 5627def : Pat<(AArch64bsp (v4i32 V128:$Rd), V128:$Rn, V128:$Rm), 5628 (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; 5629def : Pat<(AArch64bsp (v2i64 V128:$Rd), V128:$Rn, V128:$Rm), 5630 (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; 5631 5632// The following SetCC patterns are used for GlobalISel only 5633multiclass SelectSetCC<PatFrags InFrag, string INST> { 5634 def : Pat<(v8i8 (InFrag (v8i8 V64:$Rn), (v8i8 V64:$Rm))), 5635 (v8i8 (!cast<Instruction>(INST # v8i8) (v8i8 V64:$Rn), (v8i8 V64:$Rm)))>; 5636 def : Pat<(v16i8 (InFrag (v16i8 V128:$Rn), (v16i8 V128:$Rm))), 5637 (v16i8 (!cast<Instruction>(INST # v16i8) (v16i8 V128:$Rn), (v16i8 V128:$Rm)))>; 5638 def : Pat<(v4i16 (InFrag (v4i16 V64:$Rn), (v4i16 V64:$Rm))), 5639 (v4i16 (!cast<Instruction>(INST # v4i16) (v4i16 V64:$Rn), (v4i16 V64:$Rm)))>; 5640 def : Pat<(v8i16 (InFrag (v8i16 V128:$Rn), (v8i16 V128:$Rm))), 5641 (v8i16 (!cast<Instruction>(INST # v8i16) (v8i16 V128:$Rn), (v8i16 V128:$Rm)))>; 5642 def : Pat<(v2i32 (InFrag (v2i32 V64:$Rn), (v2i32 V64:$Rm))), 5643 (v2i32 (!cast<Instruction>(INST # v2i32) (v2i32 V64:$Rn), (v2i32 V64:$Rm)))>; 5644 def : Pat<(v4i32 (InFrag (v4i32 V128:$Rn), (v4i32 V128:$Rm))), 5645 (v4i32 (!cast<Instruction>(INST # v4i32) (v4i32 V128:$Rn), (v4i32 V128:$Rm)))>; 5646 def : Pat<(v2i64 (InFrag (v2i64 V128:$Rn), (v2i64 V128:$Rm))), 5647 (v2i64 (!cast<Instruction>(INST # v2i64) (v2i64 V128:$Rn), (v2i64 V128:$Rm)))>; 5648} 5649 5650defm : SelectSetCC<seteq, "CMEQ">; 5651defm : SelectSetCC<setgt, "CMGT">; 5652defm : SelectSetCC<setge, "CMGE">; 5653defm : SelectSetCC<setugt, "CMHI">; 5654defm : SelectSetCC<setuge, "CMHS">; 5655 5656multiclass SelectSetCCSwapOperands<PatFrags InFrag, string INST> { 5657 def : Pat<(v8i8 (InFrag (v8i8 V64:$Rn), (v8i8 V64:$Rm))), 5658 (v8i8 (!cast<Instruction>(INST # v8i8) (v8i8 V64:$Rm), (v8i8 V64:$Rn)))>; 5659 def : Pat<(v16i8 (InFrag (v16i8 V128:$Rn), (v16i8 V128:$Rm))), 5660 (v16i8 (!cast<Instruction>(INST # v16i8) (v16i8 V128:$Rm), (v16i8 V128:$Rn)))>; 5661 def : Pat<(v4i16 (InFrag (v4i16 V64:$Rn), (v4i16 V64:$Rm))), 5662 (v4i16 (!cast<Instruction>(INST # v4i16) (v4i16 V64:$Rm), (v4i16 V64:$Rn)))>; 5663 def : Pat<(v8i16 (InFrag (v8i16 V128:$Rn), (v8i16 V128:$Rm))), 5664 (v8i16 (!cast<Instruction>(INST # v8i16) (v8i16 V128:$Rm), (v8i16 V128:$Rn)))>; 5665 def : Pat<(v2i32 (InFrag (v2i32 V64:$Rn), (v2i32 V64:$Rm))), 5666 (v2i32 (!cast<Instruction>(INST # v2i32) (v2i32 V64:$Rm), (v2i32 V64:$Rn)))>; 5667 def : Pat<(v4i32 (InFrag (v4i32 V128:$Rn), (v4i32 V128:$Rm))), 5668 (v4i32 (!cast<Instruction>(INST # v4i32) (v4i32 V128:$Rm), (v4i32 V128:$Rn)))>; 5669 def : Pat<(v2i64 (InFrag (v2i64 V128:$Rn), (v2i64 V128:$Rm))), 5670 (v2i64 (!cast<Instruction>(INST # v2i64) (v2i64 V128:$Rm), (v2i64 V128:$Rn)))>; 5671} 5672 5673defm : SelectSetCCSwapOperands<setlt, "CMGT">; 5674defm : SelectSetCCSwapOperands<setle, "CMGE">; 5675defm : SelectSetCCSwapOperands<setult, "CMHI">; 5676defm : SelectSetCCSwapOperands<setule, "CMHS">; 5677 5678multiclass SelectSetCCZeroRHS<PatFrags InFrag, string INST> { 5679 def : Pat<(v8i8 (InFrag (v8i8 V64:$Rn), immAllZerosV)), 5680 (v8i8 (!cast<Instruction>(INST # v8i8rz) (v8i8 V64:$Rn)))>; 5681 def : Pat<(v16i8 (InFrag (v16i8 V128:$Rn), immAllZerosV)), 5682 (v16i8 (!cast<Instruction>(INST # v16i8rz) (v16i8 V128:$Rn)))>; 5683 def : Pat<(v4i16 (InFrag (v4i16 V64:$Rn), immAllZerosV)), 5684 (v4i16 (!cast<Instruction>(INST # v4i16rz) (v4i16 V64:$Rn)))>; 5685 def : Pat<(v8i16 (InFrag (v8i16 V128:$Rn), immAllZerosV)), 5686 (v8i16 (!cast<Instruction>(INST # v8i16rz) (v8i16 V128:$Rn)))>; 5687 def : Pat<(v2i32 (InFrag (v2i32 V64:$Rn), immAllZerosV)), 5688 (v2i32 (!cast<Instruction>(INST # v2i32rz) (v2i32 V64:$Rn)))>; 5689 def : Pat<(v4i32 (InFrag (v4i32 V128:$Rn), immAllZerosV)), 5690 (v4i32 (!cast<Instruction>(INST # v4i32rz) (v4i32 V128:$Rn)))>; 5691 def : Pat<(v2i64 (InFrag (v2i64 V128:$Rn), immAllZerosV)), 5692 (v2i64 (!cast<Instruction>(INST # v2i64rz) (v2i64 V128:$Rn)))>; 5693} 5694 5695defm : SelectSetCCZeroRHS<seteq, "CMEQ">; 5696defm : SelectSetCCZeroRHS<setgt, "CMGT">; 5697defm : SelectSetCCZeroRHS<setge, "CMGE">; 5698defm : SelectSetCCZeroRHS<setlt, "CMLT">; 5699defm : SelectSetCCZeroRHS<setle, "CMLE">; 5700 5701multiclass SelectSetCCZeroLHS<PatFrags InFrag, string INST> { 5702 def : Pat<(v8i8 (InFrag immAllZerosV, (v8i8 V64:$Rn))), 5703 (v8i8 (!cast<Instruction>(INST # v8i8rz) (v8i8 V64:$Rn)))>; 5704 def : Pat<(v16i8 (InFrag immAllZerosV, (v16i8 V128:$Rn))), 5705 (v16i8 (!cast<Instruction>(INST # v16i8rz) (v16i8 V128:$Rn)))>; 5706 def : Pat<(v4i16 (InFrag immAllZerosV, (v4i16 V64:$Rn))), 5707 (v4i16 (!cast<Instruction>(INST # v4i16rz) (v4i16 V64:$Rn)))>; 5708 def : Pat<(v8i16 (InFrag immAllZerosV, (v8i16 V128:$Rn))), 5709 (v8i16 (!cast<Instruction>(INST # v8i16rz) (v8i16 V128:$Rn)))>; 5710 def : Pat<(v2i32 (InFrag immAllZerosV, (v2i32 V64:$Rn))), 5711 (v2i32 (!cast<Instruction>(INST # v2i32rz) (v2i32 V64:$Rn)))>; 5712 def : Pat<(v4i32 (InFrag immAllZerosV, (v4i32 V128:$Rn))), 5713 (v4i32 (!cast<Instruction>(INST # v4i32rz) (v4i32 V128:$Rn)))>; 5714 def : Pat<(v2i64 (InFrag immAllZerosV, (v2i64 V128:$Rn))), 5715 (v2i64 (!cast<Instruction>(INST # v2i64rz) (v2i64 V128:$Rn)))>; 5716} 5717 5718defm : SelectSetCCZeroLHS<seteq, "CMEQ">; 5719defm : SelectSetCCZeroLHS<setgt, "CMLT">; 5720defm : SelectSetCCZeroLHS<setge, "CMLE">; 5721defm : SelectSetCCZeroLHS<setlt, "CMGT">; 5722defm : SelectSetCCZeroLHS<setle, "CMGE">; 5723 5724let Predicates = [HasNEON] in { 5725def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}", 5726 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>; 5727def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}", 5728 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; 5729def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}", 5730 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; 5731def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}", 5732 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; 5733 5734def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}", 5735 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>; 5736def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}", 5737 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; 5738def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}", 5739 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; 5740def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}", 5741 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; 5742 5743def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" # 5744 "|cmls.8b\t$dst, $src1, $src2}", 5745 (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; 5746def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" # 5747 "|cmls.16b\t$dst, $src1, $src2}", 5748 (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; 5749def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" # 5750 "|cmls.4h\t$dst, $src1, $src2}", 5751 (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; 5752def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" # 5753 "|cmls.8h\t$dst, $src1, $src2}", 5754 (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; 5755def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" # 5756 "|cmls.2s\t$dst, $src1, $src2}", 5757 (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; 5758def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" # 5759 "|cmls.4s\t$dst, $src1, $src2}", 5760 (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; 5761def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" # 5762 "|cmls.2d\t$dst, $src1, $src2}", 5763 (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; 5764 5765def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" # 5766 "|cmlo.8b\t$dst, $src1, $src2}", 5767 (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; 5768def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" # 5769 "|cmlo.16b\t$dst, $src1, $src2}", 5770 (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; 5771def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" # 5772 "|cmlo.4h\t$dst, $src1, $src2}", 5773 (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; 5774def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" # 5775 "|cmlo.8h\t$dst, $src1, $src2}", 5776 (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; 5777def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" # 5778 "|cmlo.2s\t$dst, $src1, $src2}", 5779 (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; 5780def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" # 5781 "|cmlo.4s\t$dst, $src1, $src2}", 5782 (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; 5783def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" # 5784 "|cmlo.2d\t$dst, $src1, $src2}", 5785 (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; 5786 5787def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" # 5788 "|cmle.8b\t$dst, $src1, $src2}", 5789 (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; 5790def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" # 5791 "|cmle.16b\t$dst, $src1, $src2}", 5792 (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; 5793def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" # 5794 "|cmle.4h\t$dst, $src1, $src2}", 5795 (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; 5796def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" # 5797 "|cmle.8h\t$dst, $src1, $src2}", 5798 (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; 5799def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" # 5800 "|cmle.2s\t$dst, $src1, $src2}", 5801 (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; 5802def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" # 5803 "|cmle.4s\t$dst, $src1, $src2}", 5804 (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; 5805def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" # 5806 "|cmle.2d\t$dst, $src1, $src2}", 5807 (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; 5808 5809def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" # 5810 "|cmlt.8b\t$dst, $src1, $src2}", 5811 (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; 5812def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" # 5813 "|cmlt.16b\t$dst, $src1, $src2}", 5814 (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; 5815def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" # 5816 "|cmlt.4h\t$dst, $src1, $src2}", 5817 (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; 5818def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" # 5819 "|cmlt.8h\t$dst, $src1, $src2}", 5820 (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; 5821def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" # 5822 "|cmlt.2s\t$dst, $src1, $src2}", 5823 (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; 5824def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" # 5825 "|cmlt.4s\t$dst, $src1, $src2}", 5826 (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; 5827def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" # 5828 "|cmlt.2d\t$dst, $src1, $src2}", 5829 (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; 5830 5831let Predicates = [HasNEON, HasFullFP16] in { 5832def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" # 5833 "|fcmle.4h\t$dst, $src1, $src2}", 5834 (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; 5835def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" # 5836 "|fcmle.8h\t$dst, $src1, $src2}", 5837 (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; 5838} 5839def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" # 5840 "|fcmle.2s\t$dst, $src1, $src2}", 5841 (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; 5842def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" # 5843 "|fcmle.4s\t$dst, $src1, $src2}", 5844 (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; 5845def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" # 5846 "|fcmle.2d\t$dst, $src1, $src2}", 5847 (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; 5848 5849let Predicates = [HasNEON, HasFullFP16] in { 5850def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" # 5851 "|fcmlt.4h\t$dst, $src1, $src2}", 5852 (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; 5853def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" # 5854 "|fcmlt.8h\t$dst, $src1, $src2}", 5855 (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; 5856} 5857def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" # 5858 "|fcmlt.2s\t$dst, $src1, $src2}", 5859 (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; 5860def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" # 5861 "|fcmlt.4s\t$dst, $src1, $src2}", 5862 (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; 5863def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" # 5864 "|fcmlt.2d\t$dst, $src1, $src2}", 5865 (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; 5866 5867let Predicates = [HasNEON, HasFullFP16] in { 5868def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" # 5869 "|facle.4h\t$dst, $src1, $src2}", 5870 (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; 5871def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" # 5872 "|facle.8h\t$dst, $src1, $src2}", 5873 (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; 5874} 5875def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" # 5876 "|facle.2s\t$dst, $src1, $src2}", 5877 (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; 5878def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" # 5879 "|facle.4s\t$dst, $src1, $src2}", 5880 (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; 5881def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" # 5882 "|facle.2d\t$dst, $src1, $src2}", 5883 (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; 5884 5885let Predicates = [HasNEON, HasFullFP16] in { 5886def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" # 5887 "|faclt.4h\t$dst, $src1, $src2}", 5888 (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; 5889def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" # 5890 "|faclt.8h\t$dst, $src1, $src2}", 5891 (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; 5892} 5893def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" # 5894 "|faclt.2s\t$dst, $src1, $src2}", 5895 (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; 5896def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" # 5897 "|faclt.4s\t$dst, $src1, $src2}", 5898 (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; 5899def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" # 5900 "|faclt.2d\t$dst, $src1, $src2}", 5901 (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; 5902} 5903 5904//===----------------------------------------------------------------------===// 5905// Advanced SIMD three scalar instructions. 5906//===----------------------------------------------------------------------===// 5907 5908defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>; 5909defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>; 5910defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>; 5911defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>; 5912defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>; 5913defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>; 5914defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>; 5915defm FABD : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>; 5916def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), 5917 (FABD64 FPR64:$Rn, FPR64:$Rm)>; 5918let Predicates = [HasNEON, HasFullFP16] in { 5919def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>; 5920} 5921let Predicates = [HasNEON] in { 5922def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>; 5923def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>; 5924} 5925defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge", 5926 int_aarch64_neon_facge>; 5927defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt", 5928 int_aarch64_neon_facgt>; 5929defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>; 5930defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>; 5931defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>; 5932defm FMULX : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx, HasNEONandIsStreamingSafe>; 5933defm FRECPS : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps, HasNEONandIsStreamingSafe>; 5934defm FRSQRTS : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts, HasNEONandIsStreamingSafe>; 5935defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>; 5936defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>; 5937defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>; 5938defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>; 5939defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>; 5940defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>; 5941defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_aarch64_neon_srshl>; 5942defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_aarch64_neon_sshl>; 5943defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>; 5944defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>; 5945defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>; 5946defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>; 5947defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>; 5948defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_aarch64_neon_urshl>; 5949defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_aarch64_neon_ushl>; 5950let Predicates = [HasRDM] in { 5951 defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">; 5952 defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">; 5953 def : Pat<(i32 (int_aarch64_neon_sqrdmlah (i32 FPR32:$Rd), (i32 FPR32:$Rn), 5954 (i32 FPR32:$Rm))), 5955 (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>; 5956 def : Pat<(i32 (int_aarch64_neon_sqrdmlsh (i32 FPR32:$Rd), (i32 FPR32:$Rn), 5957 (i32 FPR32:$Rm))), 5958 (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>; 5959} 5960 5961defm : FMULScalarFromIndexedLane0Patterns<"FMULX", "16", "32", "64", 5962 int_aarch64_neon_fmulx, 5963 [HasNEONandIsStreamingSafe]>; 5964 5965let Predicates = [HasNEON] in { 5966def : InstAlias<"cmls $dst, $src1, $src2", 5967 (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 5968def : InstAlias<"cmle $dst, $src1, $src2", 5969 (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 5970def : InstAlias<"cmlo $dst, $src1, $src2", 5971 (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 5972def : InstAlias<"cmlt $dst, $src1, $src2", 5973 (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 5974} 5975let Predicates = [HasFPARMv8] in { 5976def : InstAlias<"fcmle $dst, $src1, $src2", 5977 (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; 5978def : InstAlias<"fcmle $dst, $src1, $src2", 5979 (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 5980def : InstAlias<"fcmlt $dst, $src1, $src2", 5981 (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; 5982def : InstAlias<"fcmlt $dst, $src1, $src2", 5983 (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 5984def : InstAlias<"facle $dst, $src1, $src2", 5985 (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; 5986def : InstAlias<"facle $dst, $src1, $src2", 5987 (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 5988def : InstAlias<"faclt $dst, $src1, $src2", 5989 (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; 5990def : InstAlias<"faclt $dst, $src1, $src2", 5991 (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; 5992} 5993 5994//===----------------------------------------------------------------------===// 5995// Advanced SIMD three scalar instructions (mixed operands). 5996//===----------------------------------------------------------------------===// 5997defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull", 5998 int_aarch64_neon_sqdmulls_scalar>; 5999defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">; 6000defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">; 6001 6002def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd), 6003 (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), 6004 (i32 FPR32:$Rm))))), 6005 (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>; 6006def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd), 6007 (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), 6008 (i32 FPR32:$Rm))))), 6009 (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>; 6010 6011//===----------------------------------------------------------------------===// 6012// Advanced SIMD two scalar instructions. 6013//===----------------------------------------------------------------------===// 6014 6015defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", abs, [HasNoCSSC]>; 6016defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>; 6017defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>; 6018defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>; 6019defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>; 6020defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>; 6021defm FCMEQ : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>; 6022defm FCMGE : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>; 6023defm FCMGT : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>; 6024defm FCMLE : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>; 6025defm FCMLT : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>; 6026defm FCVTAS : SIMDFPTwoScalar< 0, 0, 0b11100, "fcvtas">; 6027defm FCVTAU : SIMDFPTwoScalar< 1, 0, 0b11100, "fcvtau">; 6028defm FCVTMS : SIMDFPTwoScalar< 0, 0, 0b11011, "fcvtms">; 6029defm FCVTMU : SIMDFPTwoScalar< 1, 0, 0b11011, "fcvtmu">; 6030defm FCVTNS : SIMDFPTwoScalar< 0, 0, 0b11010, "fcvtns">; 6031defm FCVTNU : SIMDFPTwoScalar< 1, 0, 0b11010, "fcvtnu">; 6032defm FCVTPS : SIMDFPTwoScalar< 0, 1, 0b11010, "fcvtps">; 6033defm FCVTPU : SIMDFPTwoScalar< 1, 1, 0b11010, "fcvtpu">; 6034def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">; 6035defm FCVTZS : SIMDFPTwoScalar< 0, 1, 0b11011, "fcvtzs">; 6036defm FCVTZU : SIMDFPTwoScalar< 1, 1, 0b11011, "fcvtzu">; 6037defm FRECPE : SIMDFPTwoScalar< 0, 1, 0b11101, "frecpe">; 6038defm FRECPX : SIMDFPTwoScalar< 0, 1, 0b11111, "frecpx">; 6039defm FRSQRTE : SIMDFPTwoScalar< 1, 1, 0b11101, "frsqrte">; 6040defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg", 6041 UnOpFrag<(sub immAllZerosV, node:$LHS)> >; 6042defm SCVTF : SIMDFPTwoScalarCVT< 0, 0, 0b11101, "scvtf", AArch64sitof>; 6043defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>; 6044defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>; 6045defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>; 6046defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>; 6047defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd", 6048 int_aarch64_neon_suqadd>; 6049defm UCVTF : SIMDFPTwoScalarCVT< 1, 0, 0b11101, "ucvtf", AArch64uitof>; 6050defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>; 6051defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd", 6052 int_aarch64_neon_usqadd>; 6053 6054def : Pat<(v1i64 (AArch64vashr (v1i64 V64:$Rn), (i32 63))), 6055 (CMLTv1i64rz V64:$Rn)>; 6056 6057// Round FP64 to BF16. 6058let Predicates = [HasNEONandIsStreamingSafe, HasBF16] in 6059def : Pat<(bf16 (any_fpround (f64 FPR64:$Rn))), 6060 (BFCVT (FCVTXNv1i64 $Rn))>; 6061 6062def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))), 6063 (FCVTASv1i64 FPR64:$Rn)>; 6064def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))), 6065 (FCVTAUv1i64 FPR64:$Rn)>; 6066def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))), 6067 (FCVTMSv1i64 FPR64:$Rn)>; 6068def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))), 6069 (FCVTMUv1i64 FPR64:$Rn)>; 6070def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))), 6071 (FCVTNSv1i64 FPR64:$Rn)>; 6072def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))), 6073 (FCVTNUv1i64 FPR64:$Rn)>; 6074def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))), 6075 (FCVTPSv1i64 FPR64:$Rn)>; 6076def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))), 6077 (FCVTPUv1i64 FPR64:$Rn)>; 6078def : Pat<(v1i64 (int_aarch64_neon_fcvtzs (v1f64 FPR64:$Rn))), 6079 (FCVTZSv1i64 FPR64:$Rn)>; 6080def : Pat<(v1i64 (int_aarch64_neon_fcvtzu (v1f64 FPR64:$Rn))), 6081 (FCVTZUv1i64 FPR64:$Rn)>; 6082 6083def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))), 6084 (FRECPEv1f16 FPR16:$Rn)>; 6085def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))), 6086 (FRECPEv1i32 FPR32:$Rn)>; 6087def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))), 6088 (FRECPEv1i64 FPR64:$Rn)>; 6089def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))), 6090 (FRECPEv1i64 FPR64:$Rn)>; 6091 6092def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))), 6093 (FRECPEv1i32 FPR32:$Rn)>; 6094def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))), 6095 (FRECPEv2f32 V64:$Rn)>; 6096def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))), 6097 (FRECPEv4f32 FPR128:$Rn)>; 6098def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))), 6099 (FRECPEv1i64 FPR64:$Rn)>; 6100def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))), 6101 (FRECPEv1i64 FPR64:$Rn)>; 6102def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))), 6103 (FRECPEv2f64 FPR128:$Rn)>; 6104 6105def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))), 6106 (FRECPS32 FPR32:$Rn, FPR32:$Rm)>; 6107def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))), 6108 (FRECPSv2f32 V64:$Rn, V64:$Rm)>; 6109def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))), 6110 (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>; 6111def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))), 6112 (FRECPS64 FPR64:$Rn, FPR64:$Rm)>; 6113def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))), 6114 (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>; 6115 6116def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))), 6117 (FRECPXv1f16 FPR16:$Rn)>; 6118def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))), 6119 (FRECPXv1i32 FPR32:$Rn)>; 6120def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))), 6121 (FRECPXv1i64 FPR64:$Rn)>; 6122 6123def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))), 6124 (FRSQRTEv1f16 FPR16:$Rn)>; 6125def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))), 6126 (FRSQRTEv1i32 FPR32:$Rn)>; 6127def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))), 6128 (FRSQRTEv1i64 FPR64:$Rn)>; 6129def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))), 6130 (FRSQRTEv1i64 FPR64:$Rn)>; 6131 6132def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))), 6133 (FRSQRTEv1i32 FPR32:$Rn)>; 6134def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))), 6135 (FRSQRTEv2f32 V64:$Rn)>; 6136def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))), 6137 (FRSQRTEv4f32 FPR128:$Rn)>; 6138def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))), 6139 (FRSQRTEv1i64 FPR64:$Rn)>; 6140def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))), 6141 (FRSQRTEv1i64 FPR64:$Rn)>; 6142def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))), 6143 (FRSQRTEv2f64 FPR128:$Rn)>; 6144 6145def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))), 6146 (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>; 6147def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))), 6148 (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>; 6149def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))), 6150 (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>; 6151def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))), 6152 (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>; 6153def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))), 6154 (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>; 6155 6156// Some float -> int -> float conversion patterns for which we want to keep the 6157// int values in FP registers using the corresponding NEON instructions to 6158// avoid more costly int <-> fp register transfers. 6159let Predicates = [HasNEONandIsStreamingSafe] in { 6160def : Pat<(f64 (any_sint_to_fp (i64 (any_fp_to_sint f64:$Rn)))), 6161 (SCVTFv1i64 (i64 (FCVTZSv1i64 f64:$Rn)))>; 6162def : Pat<(f32 (any_sint_to_fp (i32 (any_fp_to_sint f32:$Rn)))), 6163 (SCVTFv1i32 (i32 (FCVTZSv1i32 f32:$Rn)))>; 6164def : Pat<(f64 (any_uint_to_fp (i64 (any_fp_to_uint f64:$Rn)))), 6165 (UCVTFv1i64 (i64 (FCVTZUv1i64 f64:$Rn)))>; 6166def : Pat<(f32 (any_uint_to_fp (i32 (any_fp_to_uint f32:$Rn)))), 6167 (UCVTFv1i32 (i32 (FCVTZUv1i32 f32:$Rn)))>; 6168 6169let Predicates = [HasNEONandIsStreamingSafe, HasFullFP16] in { 6170def : Pat<(f16 (any_sint_to_fp (i32 (any_fp_to_sint f16:$Rn)))), 6171 (SCVTFv1i16 (f16 (FCVTZSv1f16 f16:$Rn)))>; 6172def : Pat<(f16 (any_uint_to_fp (i32 (any_fp_to_uint f16:$Rn)))), 6173 (UCVTFv1i16 (f16 (FCVTZUv1f16 f16:$Rn)))>; 6174} 6175 6176// int -> float conversion of value in lane 0 of simd vector should use 6177// correct cvtf variant to avoid costly fpr <-> gpr register transfers. 6178def : Pat<(f32 (sint_to_fp (i32 (vector_extract (v4i32 FPR128:$Rn), (i64 0))))), 6179 (SCVTFv1i32 (i32 (EXTRACT_SUBREG (v4i32 FPR128:$Rn), ssub)))>; 6180 6181def : Pat<(f32 (uint_to_fp (i32 (vector_extract (v4i32 FPR128:$Rn), (i64 0))))), 6182 (UCVTFv1i32 (i32 (EXTRACT_SUBREG (v4i32 FPR128:$Rn), ssub)))>; 6183 6184def : Pat<(f64 (sint_to_fp (i64 (vector_extract (v2i64 FPR128:$Rn), (i64 0))))), 6185 (SCVTFv1i64 (i64 (EXTRACT_SUBREG (v2i64 FPR128:$Rn), dsub)))>; 6186 6187def : Pat<(f64 (uint_to_fp (i64 (vector_extract (v2i64 FPR128:$Rn), (i64 0))))), 6188 (UCVTFv1i64 (i64 (EXTRACT_SUBREG (v2i64 FPR128:$Rn), dsub)))>; 6189 6190// fp16: integer extraction from vector must be at least 32-bits to be legal. 6191// Actual extraction result is then an in-reg sign-extension of lower 16-bits. 6192let Predicates = [HasNEONandIsStreamingSafe, HasFullFP16] in { 6193def : Pat<(f16 (sint_to_fp (i32 (sext_inreg (i32 (vector_extract 6194 (v8i16 FPR128:$Rn), (i64 0))), i16)))), 6195 (SCVTFv1i16 (f16 (EXTRACT_SUBREG (v8i16 FPR128:$Rn), hsub)))>; 6196 6197// unsigned 32-bit extracted element is truncated to 16-bits using AND 6198def : Pat<(f16 (uint_to_fp (i32 (and (i32 (vector_extract 6199 (v8i16 FPR128:$Rn), (i64 0))), (i32 65535))))), 6200 (UCVTFv1i16 (f16 (EXTRACT_SUBREG (v8i16 FPR128:$Rn), hsub)))>; 6201} 6202 6203// If an integer is about to be converted to a floating point value, 6204// just load it on the floating point unit. 6205// Here are the patterns for 8 and 16-bits to float. 6206// 8-bits -> float. 6207multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy, 6208 SDPatternOperator loadop, Instruction UCVTF, 6209 ROAddrMode ro, Instruction LDRW, Instruction LDRX, 6210 SubRegIndex sub> { 6211 def : Pat<(DstTy (uint_to_fp (SrcTy 6212 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, 6213 ro.Wext:$extend))))), 6214 (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)), 6215 (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend), 6216 sub))>; 6217 6218 def : Pat<(DstTy (uint_to_fp (SrcTy 6219 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, 6220 ro.Wext:$extend))))), 6221 (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)), 6222 (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend), 6223 sub))>; 6224} 6225 6226defm : UIntToFPROLoadPat<f32, i32, zextloadi8, 6227 UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>; 6228def : Pat <(f32 (uint_to_fp (i32 6229 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), 6230 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 6231 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>; 6232def : Pat <(f32 (uint_to_fp (i32 6233 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))), 6234 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 6235 (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>; 6236// 16-bits -> float. 6237defm : UIntToFPROLoadPat<f32, i32, zextloadi16, 6238 UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>; 6239def : Pat <(f32 (uint_to_fp (i32 6240 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), 6241 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 6242 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>; 6243def : Pat <(f32 (uint_to_fp (i32 6244 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))), 6245 (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 6246 (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>; 6247// 32-bits are handled in target specific dag combine: 6248// performIntToFpCombine. 6249// 64-bits integer to 32-bits floating point, not possible with 6250// UCVTF on floating point registers (both source and destination 6251// must have the same size). 6252 6253// Here are the patterns for 8, 16, 32, and 64-bits to double. 6254// 8-bits -> double. 6255defm : UIntToFPROLoadPat<f64, i32, zextloadi8, 6256 UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>; 6257def : Pat <(f64 (uint_to_fp (i32 6258 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), 6259 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 6260 (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>; 6261def : Pat <(f64 (uint_to_fp (i32 6262 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))), 6263 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 6264 (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>; 6265// 16-bits -> double. 6266defm : UIntToFPROLoadPat<f64, i32, zextloadi16, 6267 UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>; 6268def : Pat <(f64 (uint_to_fp (i32 6269 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), 6270 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 6271 (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>; 6272def : Pat <(f64 (uint_to_fp (i32 6273 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))), 6274 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 6275 (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>; 6276// 32-bits -> double. 6277defm : UIntToFPROLoadPat<f64, i32, load, 6278 UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>; 6279def : Pat <(f64 (uint_to_fp (i32 6280 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), 6281 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 6282 (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>; 6283def : Pat <(f64 (uint_to_fp (i32 6284 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))), 6285 (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 6286 (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>; 6287// 64-bits -> double are handled in target specific dag combine: 6288// performIntToFpCombine. 6289} // let Predicates = [HasNEONandIsStreamingSafe] 6290 6291//===----------------------------------------------------------------------===// 6292// Advanced SIMD three different-sized vector instructions. 6293//===----------------------------------------------------------------------===// 6294 6295defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>; 6296defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>; 6297defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>; 6298defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>; 6299defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull", AArch64pmull>; 6300defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal", 6301 AArch64sabd>; 6302defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl", 6303 AArch64sabd>; 6304defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl", 6305 BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>; 6306defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw", 6307 BinOpFrag<(add node:$LHS, (sext node:$RHS))>>; 6308defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal", 6309 TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>>; 6310defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl", 6311 TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>>; 6312defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", AArch64smull>; 6313defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal", 6314 int_aarch64_neon_sqadd>; 6315defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl", 6316 int_aarch64_neon_sqsub>; 6317defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull", 6318 int_aarch64_neon_sqdmull>; 6319defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl", 6320 BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>; 6321defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw", 6322 BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>; 6323defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal", 6324 AArch64uabd>; 6325defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl", 6326 BinOpFrag<(add (zanyext node:$LHS), (zanyext node:$RHS))>>; 6327defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw", 6328 BinOpFrag<(add node:$LHS, (zanyext node:$RHS))>>; 6329defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal", 6330 TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>>; 6331defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl", 6332 TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>>; 6333defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", AArch64umull>; 6334defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl", 6335 BinOpFrag<(sub (zanyext node:$LHS), (zanyext node:$RHS))>>; 6336defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw", 6337 BinOpFrag<(sub node:$LHS, (zanyext node:$RHS))>>; 6338 6339// Additional patterns for [SU]ML[AS]L 6340multiclass Neon_mul_acc_widen_patterns<SDPatternOperator opnode, SDPatternOperator vecopnode, 6341 Instruction INST8B, Instruction INST4H, Instruction INST2S> { 6342 def : Pat<(v4i16 (opnode 6343 V64:$Ra, 6344 (v4i16 (extract_subvector 6345 (vecopnode (v8i8 V64:$Rn),(v8i8 V64:$Rm)), 6346 (i64 0))))), 6347 (EXTRACT_SUBREG (v8i16 (INST8B 6348 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Ra, dsub), 6349 V64:$Rn, V64:$Rm)), dsub)>; 6350 def : Pat<(v2i32 (opnode 6351 V64:$Ra, 6352 (v2i32 (extract_subvector 6353 (vecopnode (v4i16 V64:$Rn),(v4i16 V64:$Rm)), 6354 (i64 0))))), 6355 (EXTRACT_SUBREG (v4i32 (INST4H 6356 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Ra, dsub), 6357 V64:$Rn, V64:$Rm)), dsub)>; 6358 def : Pat<(v1i64 (opnode 6359 V64:$Ra, 6360 (v1i64 (extract_subvector 6361 (vecopnode (v2i32 V64:$Rn),(v2i32 V64:$Rm)), 6362 (i64 0))))), 6363 (EXTRACT_SUBREG (v2i64 (INST2S 6364 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), V64:$Ra, dsub), 6365 V64:$Rn, V64:$Rm)), dsub)>; 6366} 6367 6368defm : Neon_mul_acc_widen_patterns<add, AArch64umull, 6369 UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>; 6370defm : Neon_mul_acc_widen_patterns<add, AArch64smull, 6371 SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>; 6372defm : Neon_mul_acc_widen_patterns<sub, AArch64umull, 6373 UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>; 6374defm : Neon_mul_acc_widen_patterns<sub, AArch64smull, 6375 SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>; 6376 6377 6378multiclass Neon_addl_extract_patterns<SDPatternOperator opnode, SDPatternOperator ext, string Inst> { 6379 def : Pat<(v4i16 (opnode (extract_subvector (ext (v8i8 V64:$Rn)), (i64 0)), 6380 (extract_subvector (ext (v8i8 V64:$Rm)), (i64 0)))), 6381 (EXTRACT_SUBREG (v8i16 (!cast<Instruction>(Inst#"Lv8i8_v8i16") V64:$Rn, V64:$Rm)), dsub)>; 6382 def : Pat<(v2i32 (opnode (extract_subvector (ext (v4i16 V64:$Rn)), (i64 0)), 6383 (extract_subvector (ext (v4i16 V64:$Rm)), (i64 0)))), 6384 (EXTRACT_SUBREG (v4i32 (!cast<Instruction>(Inst#"Lv4i16_v4i32") V64:$Rn, V64:$Rm)), dsub)>; 6385 def : Pat<(v1i64 (opnode (extract_subvector (ext (v2i32 V64:$Rn)), (i64 0)), 6386 (extract_subvector (ext (v2i32 V64:$Rm)), (i64 0)))), 6387 (EXTRACT_SUBREG (v2i64 (!cast<Instruction>(Inst#"Lv2i32_v2i64") V64:$Rn, V64:$Rm)), dsub)>; 6388 6389 def : Pat<(v4i16 (opnode (v4i16 V64:$Rn), 6390 (extract_subvector (ext (v8i8 V64:$Rm)), (i64 0)))), 6391 (EXTRACT_SUBREG (v8i16 (!cast<Instruction>(Inst#"Wv8i8_v8i16") (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Rn, dsub), V64:$Rm)), dsub)>; 6392 def : Pat<(v2i32 (opnode (v2i32 V64:$Rn), 6393 (extract_subvector (ext (v4i16 V64:$Rm)), (i64 0)))), 6394 (EXTRACT_SUBREG (v4i32 (!cast<Instruction>(Inst#"Wv4i16_v4i32") (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Rn, dsub), V64:$Rm)), dsub)>; 6395 def : Pat<(v1i64 (opnode (v1i64 V64:$Rn), 6396 (extract_subvector (ext (v2i32 V64:$Rm)), (i64 0)))), 6397 (EXTRACT_SUBREG (v2i64 (!cast<Instruction>(Inst#"Wv2i32_v2i64") (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), V64:$Rn, dsub), V64:$Rm)), dsub)>; 6398} 6399 6400defm : Neon_addl_extract_patterns<add, zanyext, "UADD">; 6401defm : Neon_addl_extract_patterns<add, sext, "SADD">; 6402defm : Neon_addl_extract_patterns<sub, zanyext, "USUB">; 6403defm : Neon_addl_extract_patterns<sub, sext, "SSUB">; 6404 6405// CodeGen patterns for addhn and subhn instructions, which can actually be 6406// written in LLVM IR without too much difficulty. 6407 6408// Prioritize ADDHN and SUBHN over UZP2. 6409let AddedComplexity = 10 in { 6410 6411// ADDHN 6412def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))), 6413 (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>; 6414def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm), 6415 (i32 16))))), 6416 (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>; 6417def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm), 6418 (i32 32))))), 6419 (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>; 6420def : Pat<(concat_vectors (v8i8 V64:$Rd), 6421 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), 6422 (i32 8))))), 6423 (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 6424 V128:$Rn, V128:$Rm)>; 6425def : Pat<(concat_vectors (v4i16 V64:$Rd), 6426 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm), 6427 (i32 16))))), 6428 (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 6429 V128:$Rn, V128:$Rm)>; 6430def : Pat<(concat_vectors (v2i32 V64:$Rd), 6431 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm), 6432 (i32 32))))), 6433 (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 6434 V128:$Rn, V128:$Rm)>; 6435 6436// SUBHN 6437def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))), 6438 (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>; 6439def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 6440 (i32 16))))), 6441 (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>; 6442def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 6443 (i32 32))))), 6444 (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>; 6445def : Pat<(concat_vectors (v8i8 V64:$Rd), 6446 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 6447 (i32 8))))), 6448 (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 6449 V128:$Rn, V128:$Rm)>; 6450def : Pat<(concat_vectors (v4i16 V64:$Rd), 6451 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 6452 (i32 16))))), 6453 (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 6454 V128:$Rn, V128:$Rm)>; 6455def : Pat<(concat_vectors (v2i32 V64:$Rd), 6456 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm), 6457 (i32 32))))), 6458 (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), 6459 V128:$Rn, V128:$Rm)>; 6460 6461} // AddedComplexity = 10 6462 6463//---------------------------------------------------------------------------- 6464// AdvSIMD bitwise extract from vector instruction. 6465//---------------------------------------------------------------------------- 6466 6467defm EXT : SIMDBitwiseExtract<"ext">; 6468 6469def AdjustExtImm : SDNodeXForm<imm, [{ 6470 return CurDAG->getTargetConstant(8 + N->getZExtValue(), SDLoc(N), MVT::i32); 6471}]>; 6472multiclass ExtPat<ValueType VT64, ValueType VT128, int N> { 6473 def : Pat<(VT64 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))), 6474 (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>; 6475 def : Pat<(VT128 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), 6476 (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; 6477 // We use EXT to handle extract_subvector to copy the upper 64-bits of a 6478 // 128-bit vector. 6479 def : Pat<(VT64 (extract_subvector V128:$Rn, (i64 N))), 6480 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; 6481 // A 64-bit EXT of two halves of the same 128-bit register can be done as a 6482 // single 128-bit EXT. 6483 def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 0)), 6484 (extract_subvector V128:$Rn, (i64 N)), 6485 (i32 imm:$imm))), 6486 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, imm:$imm), dsub)>; 6487 // A 64-bit EXT of the high half of a 128-bit register can be done using a 6488 // 128-bit EXT of the whole register with an adjustment to the immediate. The 6489 // top half of the other operand will be unset, but that doesn't matter as it 6490 // will not be used. 6491 def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 N)), 6492 V64:$Rm, 6493 (i32 imm:$imm))), 6494 (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, 6495 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), 6496 (AdjustExtImm imm:$imm)), dsub)>; 6497} 6498 6499defm : ExtPat<v8i8, v16i8, 8>; 6500defm : ExtPat<v4i16, v8i16, 4>; 6501defm : ExtPat<v4f16, v8f16, 4>; 6502defm : ExtPat<v4bf16, v8bf16, 4>; 6503defm : ExtPat<v2i32, v4i32, 2>; 6504defm : ExtPat<v2f32, v4f32, 2>; 6505defm : ExtPat<v1i64, v2i64, 1>; 6506defm : ExtPat<v1f64, v2f64, 1>; 6507 6508//---------------------------------------------------------------------------- 6509// AdvSIMD zip vector 6510//---------------------------------------------------------------------------- 6511 6512defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>; 6513defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>; 6514defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>; 6515defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>; 6516defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>; 6517defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>; 6518 6519def trunc_optional_assert_ext : PatFrags<(ops node:$op0), 6520 [(trunc node:$op0), 6521 (assertzext (trunc node:$op0)), 6522 (assertsext (trunc node:$op0))]>; 6523 6524// concat_vectors(trunc(x), trunc(y)) -> uzp1(x, y) 6525// concat_vectors(assertzext(trunc(x)), assertzext(trunc(y))) -> uzp1(x, y) 6526// concat_vectors(assertsext(trunc(x)), assertsext(trunc(y))) -> uzp1(x, y) 6527class concat_trunc_to_uzp1_pat<ValueType SrcTy, ValueType TruncTy, ValueType ConcatTy> 6528 : Pat<(ConcatTy (concat_vectors (TruncTy (trunc_optional_assert_ext (SrcTy V128:$Vn))), 6529 (TruncTy (trunc_optional_assert_ext (SrcTy V128:$Vm))))), 6530 (!cast<Instruction>("UZP1"#ConcatTy) V128:$Vn, V128:$Vm)>; 6531def : concat_trunc_to_uzp1_pat<v8i16, v8i8, v16i8>; 6532def : concat_trunc_to_uzp1_pat<v4i32, v4i16, v8i16>; 6533def : concat_trunc_to_uzp1_pat<v2i64, v2i32, v4i32>; 6534 6535// trunc(concat_vectors(trunc(x), trunc(y))) -> xtn(uzp1(x, y)) 6536// trunc(concat_vectors(assertzext(trunc(x)), assertzext(trunc(y)))) -> xtn(uzp1(x, y)) 6537// trunc(concat_vectors(assertsext(trunc(x)), assertsext(trunc(y)))) -> xtn(uzp1(x, y)) 6538class trunc_concat_trunc_to_xtn_uzp1_pat<ValueType SrcTy, ValueType TruncTy, ValueType ConcatTy, 6539 ValueType Ty> 6540 : Pat<(Ty (trunc_optional_assert_ext 6541 (ConcatTy (concat_vectors 6542 (TruncTy (trunc_optional_assert_ext (SrcTy V128:$Vn))), 6543 (TruncTy (trunc_optional_assert_ext (SrcTy V128:$Vm))))))), 6544 (!cast<Instruction>("XTN"#Ty) (!cast<Instruction>("UZP1"#ConcatTy) V128:$Vn, V128:$Vm))>; 6545def : trunc_concat_trunc_to_xtn_uzp1_pat<v4i32, v4i16, v8i16, v8i8>; 6546def : trunc_concat_trunc_to_xtn_uzp1_pat<v2i64, v2i32, v4i32, v4i16>; 6547 6548def : Pat<(v8i8 (trunc (concat_vectors (v4i16 V64:$Vn), (v4i16 V64:$Vm)))), 6549 (UZP1v8i8 V64:$Vn, V64:$Vm)>; 6550def : Pat<(v4i16 (trunc (concat_vectors (v2i32 V64:$Vn), (v2i32 V64:$Vm)))), 6551 (UZP1v4i16 V64:$Vn, V64:$Vm)>; 6552 6553def : Pat<(v16i8 (concat_vectors 6554 (v8i8 (trunc (AArch64vlshr (v8i16 V128:$Vn), (i32 8)))), 6555 (v8i8 (trunc (AArch64vlshr (v8i16 V128:$Vm), (i32 8)))))), 6556 (UZP2v16i8 V128:$Vn, V128:$Vm)>; 6557def : Pat<(v8i16 (concat_vectors 6558 (v4i16 (trunc (AArch64vlshr (v4i32 V128:$Vn), (i32 16)))), 6559 (v4i16 (trunc (AArch64vlshr (v4i32 V128:$Vm), (i32 16)))))), 6560 (UZP2v8i16 V128:$Vn, V128:$Vm)>; 6561def : Pat<(v4i32 (concat_vectors 6562 (v2i32 (trunc (AArch64vlshr (v2i64 V128:$Vn), (i32 32)))), 6563 (v2i32 (trunc (AArch64vlshr (v2i64 V128:$Vm), (i32 32)))))), 6564 (UZP2v4i32 V128:$Vn, V128:$Vm)>; 6565 6566//---------------------------------------------------------------------------- 6567// AdvSIMD TBL/TBX instructions 6568//---------------------------------------------------------------------------- 6569 6570defm TBL : SIMDTableLookup< 0, "tbl">; 6571defm TBX : SIMDTableLookupTied<1, "tbx">; 6572 6573def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))), 6574 (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>; 6575def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))), 6576 (TBLv16i8One V128:$Ri, V128:$Rn)>; 6577 6578def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd), 6579 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))), 6580 (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>; 6581def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd), 6582 (v16i8 V128:$Ri), (v16i8 V128:$Rn))), 6583 (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>; 6584 6585//---------------------------------------------------------------------------- 6586// AdvSIMD LUT instructions 6587//---------------------------------------------------------------------------- 6588let Predicates = [HasLUT] in { 6589 defm LUT2 : BaseSIMDTableLookupIndexed2<"luti2">; 6590 defm LUT4 : BaseSIMDTableLookupIndexed4<"luti4">; 6591} 6592 6593//---------------------------------------------------------------------------- 6594// AdvSIMD scalar DUP instruction 6595//---------------------------------------------------------------------------- 6596 6597defm DUP : SIMDScalarDUP<"mov">; 6598 6599//---------------------------------------------------------------------------- 6600// AdvSIMD scalar pairwise instructions 6601//---------------------------------------------------------------------------- 6602 6603defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">; 6604defm FADDP : SIMDFPPairwiseScalar<0, 0b01101, "faddp">; 6605defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">; 6606defm FMAXP : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">; 6607defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">; 6608defm FMINP : SIMDFPPairwiseScalar<1, 0b01111, "fminp">; 6609 6610// Only the lower half of the result of the inner FADDP is used in the patterns 6611// below, so the second operand does not matter. Re-use the first input 6612// operand, so no additional dependencies need to be introduced. 6613let Predicates = [HasFullFP16] in { 6614def : Pat<(f16 (vecreduce_fadd (v8f16 V128:$Rn))), 6615 (FADDPv2i16p 6616 (EXTRACT_SUBREG 6617 (FADDPv8f16 (FADDPv8f16 V128:$Rn, V128:$Rn), V128:$Rn), 6618 dsub))>; 6619def : Pat<(f16 (vecreduce_fadd (v4f16 V64:$Rn))), 6620 (FADDPv2i16p (FADDPv4f16 V64:$Rn, V64:$Rn))>; 6621} 6622def : Pat<(f32 (vecreduce_fadd (v4f32 V128:$Rn))), 6623 (FADDPv2i32p 6624 (EXTRACT_SUBREG 6625 (FADDPv4f32 V128:$Rn, V128:$Rn), 6626 dsub))>; 6627def : Pat<(f32 (vecreduce_fadd (v2f32 V64:$Rn))), 6628 (FADDPv2i32p V64:$Rn)>; 6629def : Pat<(f64 (vecreduce_fadd (v2f64 V128:$Rn))), 6630 (FADDPv2i64p V128:$Rn)>; 6631 6632def : Pat<(v2i64 (AArch64saddv V128:$Rn)), 6633 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>; 6634def : Pat<(v2i64 (AArch64uaddv V128:$Rn)), 6635 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>; 6636def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))), 6637 (FADDPv2i32p V64:$Rn)>; 6638def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))), 6639 (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>; 6640def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))), 6641 (FADDPv2i64p V128:$Rn)>; 6642def : Pat<(f32 (AArch64fmaxnmv (v2f32 V64:$Rn))), 6643 (FMAXNMPv2i32p V64:$Rn)>; 6644def : Pat<(f64 (AArch64fmaxnmv (v2f64 V128:$Rn))), 6645 (FMAXNMPv2i64p V128:$Rn)>; 6646def : Pat<(f32 (AArch64fmaxv (v2f32 V64:$Rn))), 6647 (FMAXPv2i32p V64:$Rn)>; 6648def : Pat<(f64 (AArch64fmaxv (v2f64 V128:$Rn))), 6649 (FMAXPv2i64p V128:$Rn)>; 6650def : Pat<(f32 (AArch64fminnmv (v2f32 V64:$Rn))), 6651 (FMINNMPv2i32p V64:$Rn)>; 6652def : Pat<(f64 (AArch64fminnmv (v2f64 V128:$Rn))), 6653 (FMINNMPv2i64p V128:$Rn)>; 6654def : Pat<(f32 (AArch64fminv (v2f32 V64:$Rn))), 6655 (FMINPv2i32p V64:$Rn)>; 6656def : Pat<(f64 (AArch64fminv (v2f64 V128:$Rn))), 6657 (FMINPv2i64p V128:$Rn)>; 6658 6659//---------------------------------------------------------------------------- 6660// AdvSIMD INS/DUP instructions 6661//---------------------------------------------------------------------------- 6662 6663def DUPv8i8gpr : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>; 6664def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>; 6665def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>; 6666def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>; 6667def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>; 6668def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>; 6669def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>; 6670 6671def DUPv2i64lane : SIMDDup64FromElement; 6672def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>; 6673def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>; 6674def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>; 6675def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>; 6676def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>; 6677def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>; 6678 6679// DUP from a 64-bit register to a 64-bit register is just a copy 6680def : Pat<(v1i64 (AArch64dup (i64 GPR64:$Rn))), 6681 (COPY_TO_REGCLASS GPR64:$Rn, FPR64)>; 6682def : Pat<(v1f64 (AArch64dup (f64 FPR64:$Rn))), 6683 (COPY_TO_REGCLASS FPR64:$Rn, FPR64)>; 6684 6685def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))), 6686 (v2f32 (DUPv2i32lane 6687 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub), 6688 (i64 0)))>; 6689def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))), 6690 (v4f32 (DUPv4i32lane 6691 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub), 6692 (i64 0)))>; 6693def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))), 6694 (v2f64 (DUPv2i64lane 6695 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub), 6696 (i64 0)))>; 6697def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))), 6698 (v4f16 (DUPv4i16lane 6699 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), 6700 (i64 0)))>; 6701def : Pat<(v4bf16 (AArch64dup (bf16 FPR16:$Rn))), 6702 (v4bf16 (DUPv4i16lane 6703 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), 6704 (i64 0)))>; 6705def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))), 6706 (v8f16 (DUPv8i16lane 6707 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), 6708 (i64 0)))>; 6709def : Pat<(v8bf16 (AArch64dup (bf16 FPR16:$Rn))), 6710 (v8bf16 (DUPv8i16lane 6711 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), 6712 (i64 0)))>; 6713 6714def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)), 6715 (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>; 6716def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)), 6717 (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>; 6718 6719def : Pat<(v4bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)), 6720 (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>; 6721def : Pat<(v8bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)), 6722 (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>; 6723 6724def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)), 6725 (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>; 6726def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)), 6727 (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>; 6728def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)), 6729 (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>; 6730 6731// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane 6732// instruction even if the types don't match: we just have to remap the lane 6733// carefully. N.b. this trick only applies to truncations. 6734def VecIndex_x2 : SDNodeXForm<imm, [{ 6735 return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64); 6736}]>; 6737def VecIndex_x4 : SDNodeXForm<imm, [{ 6738 return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64); 6739}]>; 6740def VecIndex_x8 : SDNodeXForm<imm, [{ 6741 return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64); 6742}]>; 6743 6744multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT, 6745 ValueType Src128VT, ValueType ScalVT, 6746 Instruction DUP, SDNodeXForm IdxXFORM> { 6747 def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn), 6748 imm:$idx)))), 6749 (DUP V128:$Rn, (IdxXFORM imm:$idx))>; 6750 6751 def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn), 6752 imm:$idx)))), 6753 (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>; 6754} 6755 6756defm : DUPWithTruncPats<v8i8, v4i16, v8i16, i32, DUPv8i8lane, VecIndex_x2>; 6757defm : DUPWithTruncPats<v8i8, v2i32, v4i32, i32, DUPv8i8lane, VecIndex_x4>; 6758defm : DUPWithTruncPats<v4i16, v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>; 6759 6760defm : DUPWithTruncPats<v16i8, v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>; 6761defm : DUPWithTruncPats<v16i8, v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>; 6762defm : DUPWithTruncPats<v8i16, v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>; 6763 6764multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP, 6765 SDNodeXForm IdxXFORM> { 6766 def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn), 6767 imm:$idx))))), 6768 (DUP V128:$Rn, (IdxXFORM imm:$idx))>; 6769 6770 def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn), 6771 imm:$idx))))), 6772 (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>; 6773} 6774 6775defm : DUPWithTrunci64Pats<v8i8, DUPv8i8lane, VecIndex_x8>; 6776defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane, VecIndex_x4>; 6777defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane, VecIndex_x2>; 6778 6779defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>; 6780defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>; 6781defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>; 6782 6783// SMOV and UMOV definitions, with some extra patterns for convenience 6784defm SMOV : SMov; 6785defm UMOV : UMov; 6786 6787def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8), 6788 (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>; 6789def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8), 6790 (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>; 6791def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), 6792 (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>; 6793def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), 6794 (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>; 6795def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), 6796 (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>; 6797def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))), 6798 (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>; 6799 6800def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn), 6801 VectorIndexB:$idx)))), i8), 6802 (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>; 6803def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn), 6804 VectorIndexH:$idx)))), i16), 6805 (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>; 6806 6807// Extracting i8 or i16 elements will have the zero-extend transformed to 6808// an 'and' mask by type legalization since neither i8 nor i16 are legal types 6809// for AArch64. Match these patterns here since UMOV already zeroes out the high 6810// bits of the destination register. 6811def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), 6812 (i32 0xff)), 6813 (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>; 6814def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx), 6815 (i32 0xffff)), 6816 (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>; 6817 6818def : Pat<(i64 (and (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn), 6819 VectorIndexB:$idx)))), (i64 0xff))), 6820 (SUBREG_TO_REG (i64 0), (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx)), sub_32)>; 6821def : Pat<(i64 (and (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn), 6822 VectorIndexH:$idx)))), (i64 0xffff))), 6823 (SUBREG_TO_REG (i64 0), (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx)), sub_32)>; 6824 6825defm INS : SIMDIns; 6826 6827def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)), 6828 (SUBREG_TO_REG (i32 0), 6829 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; 6830def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)), 6831 (SUBREG_TO_REG (i32 0), 6832 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; 6833 6834// The top bits will be zero from the FMOVWSr 6835def : Pat<(v8i8 (bitconvert (i64 (zext GPR32:$Rn)))), 6836 (SUBREG_TO_REG (i32 0), (f32 (FMOVWSr GPR32:$Rn)), ssub)>; 6837 6838def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)), 6839 (SUBREG_TO_REG (i32 0), 6840 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; 6841def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)), 6842 (SUBREG_TO_REG (i32 0), 6843 (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; 6844 6845def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))), 6846 (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 6847def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))), 6848 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 6849 6850def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))), 6851 (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 6852def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))), 6853 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 6854 6855def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))), 6856 (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), 6857 (i32 FPR32:$Rn), ssub))>; 6858def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))), 6859 (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), 6860 (i32 FPR32:$Rn), ssub))>; 6861 6862def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))), 6863 (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), 6864 (i64 FPR64:$Rn), dsub))>; 6865 6866def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))), 6867 (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 6868def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))), 6869 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 6870 6871def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))), 6872 (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 6873def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))), 6874 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; 6875 6876def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))), 6877 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>; 6878def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))), 6879 (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>; 6880 6881def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))), 6882 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>; 6883 6884def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn), 6885 (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))), 6886 (EXTRACT_SUBREG 6887 (INSvi16lane 6888 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)), 6889 VectorIndexS:$imm, 6890 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), 6891 (i64 0)), 6892 dsub)>; 6893 6894def : Pat<(vector_insert (v8f16 V128:$Rn), (f16 fpimm0), (i64 VectorIndexH:$imm)), 6895 (INSvi16gpr V128:$Rn, VectorIndexH:$imm, WZR)>; 6896def : Pat<(vector_insert (v4f16 V64:$Rn), (f16 fpimm0), (i64 VectorIndexH:$imm)), 6897 (EXTRACT_SUBREG (INSvi16gpr (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)), VectorIndexH:$imm, WZR), dsub)>; 6898def : Pat<(vector_insert (v4f32 V128:$Rn), (f32 fpimm0), (i64 VectorIndexS:$imm)), 6899 (INSvi32gpr V128:$Rn, VectorIndexS:$imm, WZR)>; 6900def : Pat<(vector_insert (v2f32 V64:$Rn), (f32 fpimm0), (i64 VectorIndexS:$imm)), 6901 (EXTRACT_SUBREG (INSvi32gpr (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)), VectorIndexS:$imm, WZR), dsub)>; 6902def : Pat<(vector_insert v2f64:$Rn, (f64 fpimm0), (i64 VectorIndexD:$imm)), 6903 (INSvi64gpr V128:$Rn, VectorIndexS:$imm, XZR)>; 6904 6905def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn), 6906 (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))), 6907 (INSvi16lane 6908 V128:$Rn, VectorIndexH:$imm, 6909 (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), 6910 (i64 0))>; 6911 6912def : Pat<(v4bf16 (vector_insert (v4bf16 V64:$Rn), 6913 (bf16 FPR16:$Rm), (i64 VectorIndexS:$imm))), 6914 (EXTRACT_SUBREG 6915 (INSvi16lane 6916 (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), V64:$Rn, dsub)), 6917 VectorIndexS:$imm, 6918 (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), 6919 (i64 0)), 6920 dsub)>; 6921 6922def : Pat<(v8bf16 (vector_insert (v8bf16 V128:$Rn), 6923 (bf16 FPR16:$Rm), (i64 VectorIndexH:$imm))), 6924 (INSvi16lane 6925 V128:$Rn, VectorIndexH:$imm, 6926 (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), 6927 (i64 0))>; 6928 6929def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn), 6930 (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))), 6931 (EXTRACT_SUBREG 6932 (INSvi32lane 6933 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)), 6934 VectorIndexS:$imm, 6935 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)), 6936 (i64 0)), 6937 dsub)>; 6938def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn), 6939 (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))), 6940 (INSvi32lane 6941 V128:$Rn, VectorIndexS:$imm, 6942 (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)), 6943 (i64 0))>; 6944def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn), 6945 (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))), 6946 (INSvi64lane 6947 V128:$Rn, VectorIndexD:$imm, 6948 (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)), 6949 (i64 0))>; 6950 6951def : Pat<(v2i32 (vector_insert (v2i32 V64:$Rn), (i32 GPR32:$Rm), (i64 VectorIndexS:$imm))), 6952 (EXTRACT_SUBREG 6953 (INSvi32gpr (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Rn, dsub)), 6954 VectorIndexS:$imm, GPR32:$Rm), 6955 dsub)>; 6956def : Pat<(v4i16 (vector_insert (v4i16 V64:$Rn), (i32 GPR32:$Rm), (i64 VectorIndexH:$imm))), 6957 (EXTRACT_SUBREG 6958 (INSvi16gpr (v8i16 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Rn, dsub)), 6959 VectorIndexH:$imm, GPR32:$Rm), 6960 dsub)>; 6961def : Pat<(v8i8 (vector_insert (v8i8 V64:$Rn), (i32 GPR32:$Rm), (i64 VectorIndexB:$imm))), 6962 (EXTRACT_SUBREG 6963 (INSvi8gpr (v16i8 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), V64:$Rn, dsub)), 6964 VectorIndexB:$imm, GPR32:$Rm), 6965 dsub)>; 6966 6967def : Pat<(v8i8 (vector_insert (v8i8 V64:$Rn), (i8 FPR8:$Rm), (i64 VectorIndexB:$imm))), 6968 (EXTRACT_SUBREG 6969 (INSvi8lane (v16i8 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), V64:$Rn, dsub)), 6970 VectorIndexB:$imm, (v16i8 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR8:$Rm, bsub)), (i64 0)), 6971 dsub)>; 6972def : Pat<(v16i8 (vector_insert (v16i8 V128:$Rn), (i8 FPR8:$Rm), (i64 VectorIndexB:$imm))), 6973 (INSvi8lane V128:$Rn, VectorIndexB:$imm, 6974 (v16i8 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR8:$Rm, bsub)), (i64 0))>; 6975 6976// Copy an element at a constant index in one vector into a constant indexed 6977// element of another. 6978// FIXME refactor to a shared class/dev parameterized on vector type, vector 6979// index type and INS extension 6980def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane 6981 (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs), 6982 VectorIndexB:$idx2)), 6983 (v16i8 (INSvi8lane 6984 V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2) 6985 )>; 6986def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane 6987 (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs), 6988 VectorIndexH:$idx2)), 6989 (v8i16 (INSvi16lane 6990 V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2) 6991 )>; 6992def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane 6993 (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs), 6994 VectorIndexS:$idx2)), 6995 (v4i32 (INSvi32lane 6996 V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2) 6997 )>; 6998def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane 6999 (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs), 7000 VectorIndexD:$idx2)), 7001 (v2i64 (INSvi64lane 7002 V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2) 7003 )>; 7004 7005multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64, 7006 ValueType VTScal, Instruction INS> { 7007 def : Pat<(VT128 (vector_insert V128:$src, 7008 (VTScal (vector_extract (VT128 V128:$Rn), (i64 imm:$Immn))), 7009 (i64 imm:$Immd))), 7010 (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>; 7011 7012 def : Pat<(VT128 (vector_insert V128:$src, 7013 (VTScal (vector_extract (VT64 V64:$Rn), (i64 imm:$Immn))), 7014 (i64 imm:$Immd))), 7015 (INS V128:$src, imm:$Immd, 7016 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>; 7017 7018 def : Pat<(VT64 (vector_insert V64:$src, 7019 (VTScal (vector_extract (VT128 V128:$Rn), (i64 imm:$Immn))), 7020 (i64 imm:$Immd))), 7021 (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), 7022 imm:$Immd, V128:$Rn, imm:$Immn), 7023 dsub)>; 7024 7025 def : Pat<(VT64 (vector_insert V64:$src, 7026 (VTScal (vector_extract (VT64 V64:$Rn), (i64 imm:$Immn))), 7027 (i64 imm:$Immd))), 7028 (EXTRACT_SUBREG 7029 (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd, 7030 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn), 7031 dsub)>; 7032} 7033 7034defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>; 7035defm : Neon_INS_elt_pattern<v8bf16, v4bf16, bf16, INSvi16lane>; 7036defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>; 7037defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>; 7038 7039defm : Neon_INS_elt_pattern<v16i8, v8i8, i32, INSvi8lane>; 7040defm : Neon_INS_elt_pattern<v8i16, v4i16, i32, INSvi16lane>; 7041defm : Neon_INS_elt_pattern<v4i32, v2i32, i32, INSvi32lane>; 7042defm : Neon_INS_elt_pattern<v2i64, v1i64, i64, INSvi64lane>; 7043 7044// Insert from bitcast 7045// vector_insert(bitcast(f32 src), n, lane) -> INSvi32lane(src, lane, INSERT_SUBREG(-, n), 0) 7046def : Pat<(v4i32 (vector_insert v4i32:$src, (i32 (bitconvert (f32 FPR32:$Sn))), (i64 imm:$Immd))), 7047 (INSvi32lane V128:$src, imm:$Immd, (INSERT_SUBREG (IMPLICIT_DEF), FPR32:$Sn, ssub), 0)>; 7048def : Pat<(v2i32 (vector_insert v2i32:$src, (i32 (bitconvert (f32 FPR32:$Sn))), (i64 imm:$Immd))), 7049 (EXTRACT_SUBREG 7050 (INSvi32lane (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$src, dsub)), 7051 imm:$Immd, (INSERT_SUBREG (IMPLICIT_DEF), FPR32:$Sn, ssub), 0), 7052 dsub)>; 7053def : Pat<(v2i64 (vector_insert v2i64:$src, (i64 (bitconvert (f64 FPR64:$Sn))), (i64 imm:$Immd))), 7054 (INSvi64lane V128:$src, imm:$Immd, (INSERT_SUBREG (IMPLICIT_DEF), FPR64:$Sn, dsub), 0)>; 7055 7056// bitcast of an extract 7057// f32 bitcast(vector_extract(v4i32 src, lane)) -> EXTRACT_SUBREG(INSvi32lane(-, 0, src, lane)) 7058def : Pat<(f32 (bitconvert (i32 (vector_extract v4i32:$src, imm:$Immd)))), 7059 (EXTRACT_SUBREG (INSvi32lane (IMPLICIT_DEF), 0, V128:$src, imm:$Immd), ssub)>; 7060def : Pat<(f32 (bitconvert (i32 (vector_extract v4i32:$src, (i64 0))))), 7061 (EXTRACT_SUBREG V128:$src, ssub)>; 7062def : Pat<(f64 (bitconvert (i64 (vector_extract v2i64:$src, imm:$Immd)))), 7063 (EXTRACT_SUBREG (INSvi64lane (IMPLICIT_DEF), 0, V128:$src, imm:$Immd), dsub)>; 7064def : Pat<(f64 (bitconvert (i64 (vector_extract v2i64:$src, (i64 0))))), 7065 (EXTRACT_SUBREG V128:$src, dsub)>; 7066 7067// Floating point vector extractions are codegen'd as either a sequence of 7068// subregister extractions, or a MOV (aka DUP here) if 7069// the lane number is anything other than zero. 7070def : Pat<(f64 (vector_extract (v2f64 V128:$Rn), (i64 0))), 7071 (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>; 7072def : Pat<(f32 (vector_extract (v4f32 V128:$Rn), (i64 0))), 7073 (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>; 7074def : Pat<(f16 (vector_extract (v8f16 V128:$Rn), (i64 0))), 7075 (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>; 7076def : Pat<(bf16 (vector_extract (v8bf16 V128:$Rn), (i64 0))), 7077 (bf16 (EXTRACT_SUBREG V128:$Rn, hsub))>; 7078 7079 7080def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx), 7081 (f64 (DUPi64 V128:$Rn, VectorIndexD:$idx))>; 7082def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx), 7083 (f32 (DUPi32 V128:$Rn, VectorIndexS:$idx))>; 7084def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx), 7085 (f16 (DUPi16 V128:$Rn, VectorIndexH:$idx))>; 7086def : Pat<(vector_extract (v8bf16 V128:$Rn), VectorIndexH:$idx), 7087 (bf16 (DUPi16 V128:$Rn, VectorIndexH:$idx))>; 7088 7089// All concat_vectors operations are canonicalised to act on i64 vectors for 7090// AArch64. In the general case we need an instruction, which had just as well be 7091// INS. 7092multiclass ConcatPat<ValueType DstTy, ValueType SrcTy> { 7093 def : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)), 7094 (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1, 7095 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>; 7096 7097 // If the high lanes are zero we can instead emit a d->d register mov, which 7098 // will implicitly clear the upper bits. 7099 def : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), immAllZerosV)), 7100 (SUBREG_TO_REG (i64 0), (FMOVDr V64:$Rn), dsub)>; 7101 7102 // If the high lanes are undef we can just ignore them: 7103 def : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)), 7104 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>; 7105} 7106 7107defm : ConcatPat<v2i64, v1i64>; 7108defm : ConcatPat<v2f64, v1f64>; 7109defm : ConcatPat<v4i32, v2i32>; 7110defm : ConcatPat<v4f32, v2f32>; 7111defm : ConcatPat<v8i16, v4i16>; 7112defm : ConcatPat<v8f16, v4f16>; 7113defm : ConcatPat<v8bf16, v4bf16>; 7114defm : ConcatPat<v16i8, v8i8>; 7115 7116//---------------------------------------------------------------------------- 7117// AdvSIMD across lanes instructions 7118//---------------------------------------------------------------------------- 7119 7120defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">; 7121defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">; 7122defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">; 7123defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">; 7124defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">; 7125defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">; 7126defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">; 7127defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", AArch64fmaxnmv>; 7128defm FMAXV : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", AArch64fmaxv>; 7129defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", AArch64fminnmv>; 7130defm FMINV : SIMDFPAcrossLanes<0b01111, 1, "fminv", AArch64fminv>; 7131 7132multiclass SIMDAcrossLaneLongPairIntrinsic<string Opc, SDPatternOperator addlp> { 7133 // Patterns for addv(addlp(x)) ==> addlv 7134 def : Pat<(i32 (vector_extract (v8i16 (insert_subvector undef, 7135 (v4i16 (AArch64uaddv (v4i16 (addlp (v8i8 V64:$op))))), 7136 (i64 0))), (i64 0))), 7137 (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), 7138 (!cast<Instruction>(Opc#"v8i8v") V64:$op), hsub), ssub)>; 7139 def : Pat<(i32 (vector_extract (v8i16 (AArch64uaddv (v8i16 (addlp (v16i8 V128:$op))))), (i64 0))), 7140 (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), 7141 (!cast<Instruction>(Opc#"v16i8v") V128:$op), hsub), ssub)>; 7142 def : Pat<(v4i32 (AArch64uaddv (v4i32 (addlp (v8i16 V128:$op))))), 7143 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (!cast<Instruction>(Opc#"v8i16v") V128:$op), ssub)>; 7144 7145 // Patterns for addp(addlp(x))) ==> addlv 7146 def : Pat<(v2i32 (AArch64uaddv (v2i32 (addlp (v4i16 V64:$op))))), 7147 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (!cast<Instruction>(Opc#"v4i16v") V64:$op), ssub)>; 7148 def : Pat<(v2i64 (AArch64uaddv (v2i64 (addlp (v4i32 V128:$op))))), 7149 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (!cast<Instruction>(Opc#"v4i32v") V128:$op), dsub)>; 7150} 7151 7152defm : SIMDAcrossLaneLongPairIntrinsic<"UADDLV", AArch64uaddlp>; 7153defm : SIMDAcrossLaneLongPairIntrinsic<"SADDLV", AArch64saddlp>; 7154 7155// Pattern is used for GlobalISel 7156multiclass SIMDAcrossLaneLongPairIntrinsicGISel<string Opc, SDPatternOperator addlp> { 7157 // Patterns for addv(addlp(x)) ==> addlv 7158 def : Pat<(i16 (vecreduce_add (v4i16 (addlp (v8i8 V64:$Rn))))), 7159 (!cast<Instruction>(Opc#"v8i8v") V64:$Rn)>; 7160 def : Pat<(i16 (vecreduce_add (v8i16 (addlp (v16i8 V128:$Rn))))), 7161 (!cast<Instruction>(Opc#"v16i8v") V128:$Rn)>; 7162 def : Pat<(i32 (vecreduce_add (v4i32 (addlp (v8i16 V128:$Rn))))), 7163 (!cast<Instruction>(Opc#"v8i16v") V128:$Rn)>; 7164 7165 // Patterns for addp(addlp(x))) ==> addlv 7166 def : Pat<(i32 (vecreduce_add (v2i32 (addlp (v4i16 V64:$Rn))))), 7167 (!cast<Instruction>(Opc#"v4i16v") V64:$Rn)>; 7168 def : Pat<(i64 (vecreduce_add (v2i64 (addlp (v4i32 V128:$Rn))))), 7169 (!cast<Instruction>(Opc#"v4i32v") V128:$Rn)>; 7170} 7171 7172defm : SIMDAcrossLaneLongPairIntrinsicGISel<"UADDLV", AArch64uaddlp>; 7173defm : SIMDAcrossLaneLongPairIntrinsicGISel<"SADDLV", AArch64saddlp>; 7174 7175// Patterns for uaddlv(uaddlp(x)) ==> uaddlv 7176def : Pat<(i64 (int_aarch64_neon_uaddlv (v4i32 (AArch64uaddlp (v8i16 V128:$op))))), 7177 (i64 (EXTRACT_SUBREG 7178 (v4i32 (SUBREG_TO_REG (i64 0), (UADDLVv8i16v V128:$op), ssub)), 7179 dsub))>; 7180 7181def : Pat<(i32 (int_aarch64_neon_uaddlv (v8i16 (AArch64uaddlp (v16i8 V128:$op))))), 7182 (i32 (EXTRACT_SUBREG 7183 (v8i16 (SUBREG_TO_REG (i64 0), (UADDLVv16i8v V128:$op), hsub)), 7184 ssub))>; 7185 7186def : Pat<(v2i64 (AArch64uaddlv (v4i32 (AArch64uaddlp (v8i16 V128:$op))))), 7187 (v2i64 (SUBREG_TO_REG (i64 0), (UADDLVv8i16v V128:$op), ssub))>; 7188 7189def : Pat<(v4i32 (AArch64uaddlv (v8i16 (AArch64uaddlp (v16i8 V128:$op))))), 7190 (v4i32 (SUBREG_TO_REG (i64 0), (UADDLVv16i8v V128:$op), hsub))>; 7191 7192def : Pat<(v4i32 (AArch64uaddlv (v4i16 (AArch64uaddlp (v8i8 V64:$op))))), 7193 (v4i32 (SUBREG_TO_REG (i64 0), (UADDLVv8i8v V64:$op), hsub))>; 7194 7195multiclass SIMDAcrossLaneLongReductionIntrinsic<string Opc, SDPatternOperator addlv> { 7196 def : Pat<(v4i32 (addlv (v8i8 V64:$Rn))), 7197 (v4i32 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v8i8v") V64:$Rn), hsub))>; 7198 7199 def : Pat<(v4i32 (addlv (v4i16 V64:$Rn))), 7200 (v4i32 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v4i16v") V64:$Rn), ssub))>; 7201 7202 def : Pat<(v4i32 (addlv (v16i8 V128:$Rn))), 7203 (v4i32 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v16i8v") V128:$Rn), hsub))>; 7204 7205 def : Pat<(v4i32 (addlv (v8i16 V128:$Rn))), 7206 (v4i32 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v8i16v") V128:$Rn), ssub))>; 7207 7208 def : Pat<(v2i64 (addlv (v4i32 V128:$Rn))), 7209 (v2i64 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v4i32v") V128:$Rn), dsub))>; 7210} 7211 7212defm : SIMDAcrossLaneLongReductionIntrinsic<"UADDLV", AArch64uaddlv>; 7213defm : SIMDAcrossLaneLongReductionIntrinsic<"SADDLV", AArch64saddlv>; 7214 7215// Patterns for across-vector intrinsics, that have a node equivalent, that 7216// returns a vector (with only the low lane defined) instead of a scalar. 7217// In effect, opNode is the same as (scalar_to_vector (IntNode)). 7218multiclass SIMDAcrossLanesIntrinsic<string baseOpc, 7219 SDPatternOperator opNode> { 7220// If a lane instruction caught the vector_extract around opNode, we can 7221// directly match the latter to the instruction. 7222def : Pat<(v8i8 (opNode V64:$Rn)), 7223 (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), 7224 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>; 7225def : Pat<(v16i8 (opNode V128:$Rn)), 7226 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7227 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>; 7228def : Pat<(v4i16 (opNode V64:$Rn)), 7229 (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), 7230 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>; 7231def : Pat<(v8i16 (opNode V128:$Rn)), 7232 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), 7233 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>; 7234def : Pat<(v4i32 (opNode V128:$Rn)), 7235 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), 7236 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>; 7237 7238 7239// If none did, fallback to the explicit patterns, consuming the vector_extract. 7240def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)), 7241 (i64 0)), (i64 0))), 7242 (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), 7243 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), 7244 bsub), ssub)>; 7245def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))), 7246 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7247 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), 7248 bsub), ssub)>; 7249def : Pat<(i32 (vector_extract (insert_subvector undef, 7250 (v4i16 (opNode V64:$Rn)), (i64 0)), (i64 0))), 7251 (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), 7252 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), 7253 hsub), ssub)>; 7254def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))), 7255 (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), 7256 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), 7257 hsub), ssub)>; 7258def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))), 7259 (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), 7260 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), 7261 ssub), ssub)>; 7262 7263} 7264 7265multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc, 7266 SDPatternOperator opNode> 7267 : SIMDAcrossLanesIntrinsic<baseOpc, opNode> { 7268// If there is a sign extension after this intrinsic, consume it as smov already 7269// performed it 7270def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef, 7271 (opNode (v8i8 V64:$Rn)), (i64 0)), (i64 0))), i8)), 7272 (i32 (SMOVvi8to32 7273 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7274 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), 7275 (i64 0)))>; 7276def : Pat<(i32 (sext_inreg (i32 (vector_extract 7277 (opNode (v16i8 V128:$Rn)), (i64 0))), i8)), 7278 (i32 (SMOVvi8to32 7279 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7280 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), 7281 (i64 0)))>; 7282def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef, 7283 (opNode (v4i16 V64:$Rn)), (i64 0)), (i64 0))), i16)), 7284 (i32 (SMOVvi16to32 7285 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7286 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), 7287 (i64 0)))>; 7288def : Pat<(i32 (sext_inreg (i32 (vector_extract 7289 (opNode (v8i16 V128:$Rn)), (i64 0))), i16)), 7290 (i32 (SMOVvi16to32 7291 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7292 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), 7293 (i64 0)))>; 7294} 7295 7296multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc, 7297 SDPatternOperator opNode> 7298 : SIMDAcrossLanesIntrinsic<baseOpc, opNode> { 7299// If there is a masking operation keeping only what has been actually 7300// generated, consume it. 7301def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef, 7302 (opNode (v8i8 V64:$Rn)), (i64 0)), (i64 0))), maski8_or_more)), 7303 (i32 (EXTRACT_SUBREG 7304 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7305 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), 7306 ssub))>; 7307def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))), 7308 maski8_or_more)), 7309 (i32 (EXTRACT_SUBREG 7310 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7311 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), 7312 ssub))>; 7313def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef, 7314 (opNode (v4i16 V64:$Rn)), (i64 0)), (i64 0))), maski16_or_more)), 7315 (i32 (EXTRACT_SUBREG 7316 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7317 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), 7318 ssub))>; 7319def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))), 7320 maski16_or_more)), 7321 (i32 (EXTRACT_SUBREG 7322 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7323 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), 7324 ssub))>; 7325} 7326 7327// For vecreduce_add, used by GlobalISel not SDAG 7328def : Pat<(i8 (vecreduce_add (v8i8 V64:$Rn))), 7329 (i8 (ADDVv8i8v V64:$Rn))>; 7330def : Pat<(i8 (vecreduce_add (v16i8 V128:$Rn))), 7331 (i8 (ADDVv16i8v V128:$Rn))>; 7332def : Pat<(i16 (vecreduce_add (v4i16 V64:$Rn))), 7333 (i16 (ADDVv4i16v V64:$Rn))>; 7334def : Pat<(i16 (vecreduce_add (v8i16 V128:$Rn))), 7335 (i16 (ADDVv8i16v V128:$Rn))>; 7336def : Pat<(i32 (vecreduce_add (v2i32 V64:$Rn))), 7337 (i32 (EXTRACT_SUBREG (ADDPv2i32 V64:$Rn, V64:$Rn), ssub))>; 7338def : Pat<(i32 (vecreduce_add (v4i32 V128:$Rn))), 7339 (i32 (ADDVv4i32v V128:$Rn))>; 7340def : Pat<(i64 (vecreduce_add (v2i64 V128:$Rn))), 7341 (i64 (ADDPv2i64p V128:$Rn))>; 7342 7343defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", AArch64saddv>; 7344// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm 7345def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))), 7346 (ADDPv2i32 V64:$Rn, V64:$Rn)>; 7347 7348defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>; 7349// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm 7350def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))), 7351 (ADDPv2i32 V64:$Rn, V64:$Rn)>; 7352 7353defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>; 7354def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))), 7355 (SMAXPv2i32 V64:$Rn, V64:$Rn)>; 7356 7357defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>; 7358def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))), 7359 (SMINPv2i32 V64:$Rn, V64:$Rn)>; 7360 7361defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>; 7362def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))), 7363 (UMAXPv2i32 V64:$Rn, V64:$Rn)>; 7364 7365defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>; 7366def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))), 7367 (UMINPv2i32 V64:$Rn, V64:$Rn)>; 7368 7369// For vecreduce_{opc} used by GlobalISel, not SDAG at the moment 7370// because GlobalISel allows us to specify the return register to be a FPR 7371multiclass SIMDAcrossLanesVecReductionIntrinsic<string baseOpc, 7372 SDPatternOperator opNode> { 7373def : Pat<(i8 (opNode (v8i8 FPR64:$Rn))), 7374 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) FPR64:$Rn)>; 7375 7376def : Pat<(i8 (opNode (v16i8 FPR128:$Rn))), 7377 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) FPR128:$Rn)>; 7378 7379def : Pat<(i16 (opNode (v4i16 FPR64:$Rn))), 7380 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) FPR64:$Rn)>; 7381 7382def : Pat<(i16 (opNode (v8i16 FPR128:$Rn))), 7383 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) FPR128:$Rn)>; 7384 7385def : Pat<(i32 (opNode (v4i32 V128:$Rn))), 7386 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn)>; 7387} 7388 7389// For v2i32 source type, the pairwise instruction can be used instead 7390defm : SIMDAcrossLanesVecReductionIntrinsic<"UMINV", vecreduce_umin>; 7391def : Pat<(i32 (vecreduce_umin (v2i32 V64:$Rn))), 7392 (i32 (EXTRACT_SUBREG (UMINPv2i32 V64:$Rn, V64:$Rn), ssub))>; 7393 7394defm : SIMDAcrossLanesVecReductionIntrinsic<"UMAXV", vecreduce_umax>; 7395def : Pat<(i32 (vecreduce_umax (v2i32 V64:$Rn))), 7396 (i32 (EXTRACT_SUBREG (UMAXPv2i32 V64:$Rn, V64:$Rn), ssub))>; 7397 7398defm : SIMDAcrossLanesVecReductionIntrinsic<"SMINV", vecreduce_smin>; 7399def : Pat<(i32 (vecreduce_smin (v2i32 V64:$Rn))), 7400 (i32 (EXTRACT_SUBREG (SMINPv2i32 V64:$Rn, V64:$Rn), ssub))>; 7401 7402defm : SIMDAcrossLanesVecReductionIntrinsic<"SMAXV", vecreduce_smax>; 7403def : Pat<(i32 (vecreduce_smax (v2i32 V64:$Rn))), 7404 (i32 (EXTRACT_SUBREG (SMAXPv2i32 V64:$Rn, V64:$Rn), ssub))>; 7405 7406multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> { 7407 def : Pat<(i32 (intOp (v8i8 V64:$Rn))), 7408 (i32 (SMOVvi16to32 7409 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7410 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub), 7411 (i64 0)))>; 7412def : Pat<(i32 (intOp (v16i8 V128:$Rn))), 7413 (i32 (SMOVvi16to32 7414 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7415 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub), 7416 (i64 0)))>; 7417 7418def : Pat<(i32 (intOp (v4i16 V64:$Rn))), 7419 (i32 (EXTRACT_SUBREG 7420 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7421 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub), 7422 ssub))>; 7423def : Pat<(i32 (intOp (v8i16 V128:$Rn))), 7424 (i32 (EXTRACT_SUBREG 7425 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7426 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub), 7427 ssub))>; 7428 7429def : Pat<(i64 (intOp (v4i32 V128:$Rn))), 7430 (i64 (EXTRACT_SUBREG 7431 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7432 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub), 7433 dsub))>; 7434} 7435 7436multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc, 7437 Intrinsic intOp> { 7438 def : Pat<(i32 (intOp (v8i8 V64:$Rn))), 7439 (i32 (EXTRACT_SUBREG 7440 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7441 (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub), 7442 ssub))>; 7443def : Pat<(i32 (intOp (v16i8 V128:$Rn))), 7444 (i32 (EXTRACT_SUBREG 7445 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7446 (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub), 7447 ssub))>; 7448 7449def : Pat<(i32 (intOp (v4i16 V64:$Rn))), 7450 (i32 (EXTRACT_SUBREG 7451 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7452 (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub), 7453 ssub))>; 7454def : Pat<(i32 (intOp (v8i16 V128:$Rn))), 7455 (i32 (EXTRACT_SUBREG 7456 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7457 (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub), 7458 ssub))>; 7459 7460def : Pat<(i64 (intOp (v4i32 V128:$Rn))), 7461 (i64 (EXTRACT_SUBREG 7462 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7463 (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub), 7464 dsub))>; 7465} 7466 7467defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>; 7468defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>; 7469 7470// The vaddlv_s32 intrinsic gets mapped to SADDLP. 7471def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))), 7472 (i64 (EXTRACT_SUBREG 7473 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7474 (SADDLPv2i32_v1i64 V64:$Rn), dsub), 7475 dsub))>; 7476// The vaddlv_u32 intrinsic gets mapped to UADDLP. 7477def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))), 7478 (i64 (EXTRACT_SUBREG 7479 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), 7480 (UADDLPv2i32_v1i64 V64:$Rn), dsub), 7481 dsub))>; 7482 7483//------------------------------------------------------------------------------ 7484// AdvSIMD modified immediate instructions 7485//------------------------------------------------------------------------------ 7486 7487// AdvSIMD BIC 7488defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>; 7489// AdvSIMD ORR 7490defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>; 7491 7492let Predicates = [HasNEON] in { 7493def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>; 7494def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>; 7495def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>; 7496def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>; 7497 7498def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>; 7499def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>; 7500def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>; 7501def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>; 7502 7503def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>; 7504def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>; 7505def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>; 7506def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>; 7507 7508def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>; 7509def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>; 7510def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>; 7511def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>; 7512} 7513 7514// AdvSIMD FMOV 7515def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8, 7516 "fmov", ".2d", 7517 [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; 7518def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64, fpimm8, 7519 "fmov", ".2s", 7520 [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>; 7521def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8, 7522 "fmov", ".4s", 7523 [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; 7524let Predicates = [HasNEON, HasFullFP16] in { 7525def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64, fpimm8, 7526 "fmov", ".4h", 7527 [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>; 7528def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8, 7529 "fmov", ".8h", 7530 [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; 7531} // Predicates = [HasNEON, HasFullFP16] 7532 7533// AdvSIMD MOVI 7534 7535// EDIT byte mask: scalar 7536let isReMaterializable = 1, isAsCheapAsAMove = 1 in 7537def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi", 7538 [(set FPR64:$Rd, simdimmtype10:$imm8)]>; 7539// The movi_edit node has the immediate value already encoded, so we use 7540// a plain imm0_255 here. 7541def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)), 7542 (MOVID imm0_255:$shift)>; 7543 7544// EDIT byte mask: 2d 7545 7546// The movi_edit node has the immediate value already encoded, so we use 7547// a plain imm0_255 in the pattern 7548let isReMaterializable = 1, isAsCheapAsAMove = 1 in 7549def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128, 7550 simdimmtype10, 7551 "movi", ".2d", 7552 [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>; 7553 7554def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>; 7555def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>; 7556def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>; 7557def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>; 7558def : Pat<(v2f64 immAllZerosV), (MOVIv2d_ns (i32 0))>; 7559def : Pat<(v4f32 immAllZerosV), (MOVIv2d_ns (i32 0))>; 7560def : Pat<(v8f16 immAllZerosV), (MOVIv2d_ns (i32 0))>; 7561def : Pat<(v8bf16 immAllZerosV), (MOVIv2d_ns (i32 0))>; 7562 7563def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>; 7564def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>; 7565def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>; 7566def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>; 7567 7568// Set 64-bit vectors to all 0/1 by extracting from a 128-bit register as the 7569// extract is free and this gives better MachineCSE results. 7570def : Pat<(v1i64 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; 7571def : Pat<(v2i32 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; 7572def : Pat<(v4i16 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; 7573def : Pat<(v8i8 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; 7574def : Pat<(v1f64 immAllZerosV), (MOVID (i32 0))>; 7575def : Pat<(v2f32 immAllZerosV), (MOVID (i32 0))>; 7576def : Pat<(v4f16 immAllZerosV), (MOVID (i32 0))>; 7577def : Pat<(v4bf16 immAllZerosV), (MOVID (i32 0))>; 7578 7579def : Pat<(v1i64 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; 7580def : Pat<(v2i32 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; 7581def : Pat<(v4i16 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; 7582def : Pat<(v8i8 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; 7583 7584// EDIT per word & halfword: 2s, 4h, 4s, & 8h 7585let isReMaterializable = 1, isAsCheapAsAMove = 1 in 7586defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">; 7587 7588let Predicates = [HasNEON] in { 7589 // Using the MOVI to materialize fp constants. 7590 def : Pat<(f32 fpimm32SIMDModImmType4:$in), 7591 (EXTRACT_SUBREG (MOVIv2i32 (fpimm32SIMDModImmType4XForm f32:$in), 7592 (i32 24)), 7593 ssub)>; 7594} 7595 7596let Predicates = [HasNEON] in { 7597def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 7598def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 7599def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 7600def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 7601 7602def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 7603def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 7604def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 7605def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 7606} 7607 7608def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), 7609 (MOVIv2i32 imm0_255:$imm8, imm:$shift)>; 7610def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), 7611 (MOVIv4i32 imm0_255:$imm8, imm:$shift)>; 7612def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), 7613 (MOVIv4i16 imm0_255:$imm8, imm:$shift)>; 7614def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), 7615 (MOVIv8i16 imm0_255:$imm8, imm:$shift)>; 7616 7617let isReMaterializable = 1, isAsCheapAsAMove = 1 in { 7618// EDIT per word: 2s & 4s with MSL shifter 7619def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s", 7620 [(set (v2i32 V64:$Rd), 7621 (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>; 7622def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s", 7623 [(set (v4i32 V128:$Rd), 7624 (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>; 7625 7626// Per byte: 8b & 16b 7627def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64, imm0_255, 7628 "movi", ".8b", 7629 [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>; 7630 7631def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255, 7632 "movi", ".16b", 7633 [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>; 7634} 7635 7636// AdvSIMD MVNI 7637 7638// EDIT per word & halfword: 2s, 4h, 4s, & 8h 7639let isReMaterializable = 1, isAsCheapAsAMove = 1 in 7640defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">; 7641 7642let Predicates = [HasNEON] in { 7643def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 7644def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 7645def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 7646def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 7647 7648def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; 7649def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; 7650def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; 7651def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; 7652} 7653 7654def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), 7655 (MVNIv2i32 imm0_255:$imm8, imm:$shift)>; 7656def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), 7657 (MVNIv4i32 imm0_255:$imm8, imm:$shift)>; 7658def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), 7659 (MVNIv4i16 imm0_255:$imm8, imm:$shift)>; 7660def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), 7661 (MVNIv8i16 imm0_255:$imm8, imm:$shift)>; 7662 7663// EDIT per word: 2s & 4s with MSL shifter 7664let isReMaterializable = 1, isAsCheapAsAMove = 1 in { 7665def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s", 7666 [(set (v2i32 V64:$Rd), 7667 (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>; 7668def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s", 7669 [(set (v4i32 V128:$Rd), 7670 (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>; 7671} 7672 7673//---------------------------------------------------------------------------- 7674// AdvSIMD indexed element 7675//---------------------------------------------------------------------------- 7676 7677let hasSideEffects = 0 in { 7678 defm FMLA : SIMDFPIndexedTied<0, 0b0001, "fmla">; 7679 defm FMLS : SIMDFPIndexedTied<0, 0b0101, "fmls">; 7680} 7681 7682// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the 7683// instruction expects the addend first, while the intrinsic expects it last. 7684 7685// On the other hand, there are quite a few valid combinatorial options due to 7686// the commutativity of multiplication and the fact that (-x) * y = x * (-y). 7687defm : SIMDFPIndexedTiedPatterns<"FMLA", 7688 TriOpFrag<(any_fma node:$RHS, node:$MHS, node:$LHS)>>; 7689defm : SIMDFPIndexedTiedPatterns<"FMLA", 7690 TriOpFrag<(any_fma node:$MHS, node:$RHS, node:$LHS)>>; 7691 7692defm : SIMDFPIndexedTiedPatterns<"FMLS", 7693 TriOpFrag<(any_fma node:$MHS, (fneg node:$RHS), node:$LHS)> >; 7694defm : SIMDFPIndexedTiedPatterns<"FMLS", 7695 TriOpFrag<(any_fma node:$RHS, (fneg node:$MHS), node:$LHS)> >; 7696defm : SIMDFPIndexedTiedPatterns<"FMLS", 7697 TriOpFrag<(any_fma (fneg node:$RHS), node:$MHS, node:$LHS)> >; 7698defm : SIMDFPIndexedTiedPatterns<"FMLS", 7699 TriOpFrag<(any_fma (fneg node:$MHS), node:$RHS, node:$LHS)> >; 7700 7701multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> { 7702 // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit 7703 // and DUP scalar. 7704 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), 7705 (AArch64duplane32 (v4f32 (fneg V128:$Rm)), 7706 VectorIndexS:$idx))), 7707 (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>; 7708 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), 7709 (v2f32 (AArch64duplane32 7710 (v4f32 (insert_subvector undef, 7711 (v2f32 (fneg V64:$Rm)), 7712 (i64 0))), 7713 VectorIndexS:$idx)))), 7714 (FMLSv2i32_indexed V64:$Rd, V64:$Rn, 7715 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), 7716 VectorIndexS:$idx)>; 7717 def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), 7718 (AArch64dup (f32 (fneg FPR32Op:$Rm))))), 7719 (FMLSv2i32_indexed V64:$Rd, V64:$Rn, 7720 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; 7721 7722 // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit 7723 // and DUP scalar. 7724 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), 7725 (AArch64duplane32 (v4f32 (fneg V128:$Rm)), 7726 VectorIndexS:$idx))), 7727 (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm, 7728 VectorIndexS:$idx)>; 7729 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), 7730 (v4f32 (AArch64duplane32 7731 (v4f32 (insert_subvector undef, 7732 (v2f32 (fneg V64:$Rm)), 7733 (i64 0))), 7734 VectorIndexS:$idx)))), 7735 (FMLSv4i32_indexed V128:$Rd, V128:$Rn, 7736 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), 7737 VectorIndexS:$idx)>; 7738 def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), 7739 (AArch64dup (f32 (fneg FPR32Op:$Rm))))), 7740 (FMLSv4i32_indexed V128:$Rd, V128:$Rn, 7741 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; 7742 7743 // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar 7744 // (DUPLANE from 64-bit would be trivial). 7745 def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), 7746 (AArch64duplane64 (v2f64 (fneg V128:$Rm)), 7747 VectorIndexD:$idx))), 7748 (FMLSv2i64_indexed 7749 V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; 7750 def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), 7751 (AArch64dup (f64 (fneg FPR64Op:$Rm))))), 7752 (FMLSv2i64_indexed V128:$Rd, V128:$Rn, 7753 (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>; 7754 7755 // 2 variants for 32-bit scalar version: extract from .2s or from .4s 7756 def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), 7757 (vector_extract (v4f32 (fneg V128:$Rm)), 7758 VectorIndexS:$idx))), 7759 (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn, 7760 V128:$Rm, VectorIndexS:$idx)>; 7761 def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), 7762 (vector_extract (v4f32 (insert_subvector undef, 7763 (v2f32 (fneg V64:$Rm)), 7764 (i64 0))), 7765 VectorIndexS:$idx))), 7766 (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn, 7767 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; 7768 7769 // 1 variant for 64-bit scalar version: extract from .1d or from .2d 7770 def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn), 7771 (vector_extract (v2f64 (fneg V128:$Rm)), 7772 VectorIndexS:$idx))), 7773 (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn, 7774 V128:$Rm, VectorIndexS:$idx)>; 7775} 7776 7777defm : FMLSIndexedAfterNegPatterns< 7778 TriOpFrag<(any_fma node:$RHS, node:$MHS, node:$LHS)> >; 7779defm : FMLSIndexedAfterNegPatterns< 7780 TriOpFrag<(any_fma node:$MHS, node:$RHS, node:$LHS)> >; 7781 7782defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>; 7783defm FMUL : SIMDFPIndexed<0, 0b1001, "fmul", any_fmul>; 7784 7785def : Pat<(v2f32 (any_fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))), 7786 (FMULv2i32_indexed V64:$Rn, 7787 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub), 7788 (i64 0))>; 7789def : Pat<(v4f32 (any_fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))), 7790 (FMULv4i32_indexed V128:$Rn, 7791 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub), 7792 (i64 0))>; 7793def : Pat<(v2f64 (any_fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))), 7794 (FMULv2i64_indexed V128:$Rn, 7795 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub), 7796 (i64 0))>; 7797 7798defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>; 7799defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>; 7800 7801defm SQDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqdmulh_lane, 7802 int_aarch64_neon_sqdmulh_laneq>; 7803defm SQRDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqrdmulh_lane, 7804 int_aarch64_neon_sqrdmulh_laneq>; 7805 7806// Generated by MachineCombine 7807defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla", null_frag>; 7808defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls", null_frag>; 7809 7810defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>; 7811defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal", 7812 TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>>; 7813defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl", 7814 TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>>; 7815defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull", AArch64smull>; 7816defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal", 7817 int_aarch64_neon_sqadd>; 7818defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl", 7819 int_aarch64_neon_sqsub>; 7820defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah", 7821 int_aarch64_neon_sqrdmlah>; 7822defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh", 7823 int_aarch64_neon_sqrdmlsh>; 7824defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>; 7825defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal", 7826 TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>>; 7827defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl", 7828 TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>>; 7829defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull", AArch64umull>; 7830 7831// A scalar sqdmull with the second operand being a vector lane can be 7832// handled directly with the indexed instruction encoding. 7833def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), 7834 (vector_extract (v4i32 V128:$Vm), 7835 VectorIndexS:$idx)), 7836 (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>; 7837 7838//---------------------------------------------------------------------------- 7839// AdvSIMD scalar shift instructions 7840//---------------------------------------------------------------------------- 7841defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">; 7842defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">; 7843defm SCVTF : SIMDFPScalarRShift<0, 0b11100, "scvtf">; 7844defm UCVTF : SIMDFPScalarRShift<1, 0b11100, "ucvtf">; 7845// Codegen patterns for the above. We don't put these directly on the 7846// instructions because TableGen's type inference can't handle the truth. 7847// Having the same base pattern for fp <--> int totally freaks it out. 7848def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm), 7849 (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>; 7850def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm), 7851 (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>; 7852def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)), 7853 (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>; 7854def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)), 7855 (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>; 7856def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn), 7857 vecshiftR64:$imm)), 7858 (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>; 7859def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn), 7860 vecshiftR64:$imm)), 7861 (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>; 7862def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm), 7863 (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>; 7864def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)), 7865 (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>; 7866def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn), 7867 vecshiftR64:$imm)), 7868 (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>; 7869def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)), 7870 (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>; 7871def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn), 7872 vecshiftR64:$imm)), 7873 (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>; 7874def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm), 7875 (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>; 7876 7877// Patterns for FP16 Intrinsics - requires reg copy to/from as i16s not supported. 7878 7879def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)), 7880 (SCVTFh (f16 (EXTRACT_SUBREG FPR32:$Rn, hsub)), vecshiftR16:$imm)>; 7881def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)), 7882 (SCVTFh (f16 (EXTRACT_SUBREG FPR32:$Rn, hsub)), vecshiftR16:$imm)>; 7883def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR16:$imm)), 7884 (SCVTFh (f16 (EXTRACT_SUBREG FPR64:$Rn, hsub)), vecshiftR16:$imm)>; 7885def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp 7886 (and FPR32:$Rn, (i32 65535)), 7887 vecshiftR16:$imm)), 7888 (UCVTFh (f16 (EXTRACT_SUBREG FPR32:$Rn, hsub)), vecshiftR16:$imm)>; 7889def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)), 7890 (UCVTFh (f16 (EXTRACT_SUBREG FPR32:$Rn, hsub)), vecshiftR16:$imm)>; 7891def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)), 7892 (UCVTFh (f16 (EXTRACT_SUBREG FPR64:$Rn, hsub)), vecshiftR16:$imm)>; 7893def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)), 7894 (i32 (INSERT_SUBREG 7895 (i32 (IMPLICIT_DEF)), 7896 (FCVTZSh FPR16:$Rn, vecshiftR32:$imm), 7897 hsub))>; 7898def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)), 7899 (i64 (INSERT_SUBREG 7900 (i64 (IMPLICIT_DEF)), 7901 (FCVTZSh FPR16:$Rn, vecshiftR64:$imm), 7902 hsub))>; 7903def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)), 7904 (i32 (INSERT_SUBREG 7905 (i32 (IMPLICIT_DEF)), 7906 (FCVTZUh FPR16:$Rn, vecshiftR32:$imm), 7907 hsub))>; 7908def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)), 7909 (i64 (INSERT_SUBREG 7910 (i64 (IMPLICIT_DEF)), 7911 (FCVTZUh FPR16:$Rn, vecshiftR64:$imm), 7912 hsub))>; 7913def : Pat<(i32 (int_aarch64_neon_facge (f16 FPR16:$Rn), (f16 FPR16:$Rm))), 7914 (i32 (INSERT_SUBREG 7915 (i32 (IMPLICIT_DEF)), 7916 (FACGE16 FPR16:$Rn, FPR16:$Rm), 7917 hsub))>; 7918def : Pat<(i32 (int_aarch64_neon_facgt (f16 FPR16:$Rn), (f16 FPR16:$Rm))), 7919 (i32 (INSERT_SUBREG 7920 (i32 (IMPLICIT_DEF)), 7921 (FACGT16 FPR16:$Rn, FPR16:$Rm), 7922 hsub))>; 7923 7924defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", AArch64vshl>; 7925defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">; 7926defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn", 7927 int_aarch64_neon_sqrshrn>; 7928defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun", 7929 int_aarch64_neon_sqrshrun>; 7930defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>; 7931defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>; 7932defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn", 7933 int_aarch64_neon_sqshrn>; 7934defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun", 7935 int_aarch64_neon_sqshrun>; 7936defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">; 7937defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", AArch64srshri>; 7938defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra", 7939 TriOpFrag<(add node:$LHS, 7940 (AArch64srshri node:$MHS, node:$RHS))>>; 7941defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", AArch64vashr>; 7942defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra", 7943 TriOpFrag<(add_and_or_is_add node:$LHS, 7944 (AArch64vashr node:$MHS, node:$RHS))>>; 7945defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn", 7946 int_aarch64_neon_uqrshrn>; 7947defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>; 7948defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn", 7949 int_aarch64_neon_uqshrn>; 7950defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", AArch64urshri>; 7951defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra", 7952 TriOpFrag<(add node:$LHS, 7953 (AArch64urshri node:$MHS, node:$RHS))>>; 7954defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", AArch64vlshr>; 7955defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra", 7956 TriOpFrag<(add_and_or_is_add node:$LHS, 7957 (AArch64vlshr node:$MHS, node:$RHS))>>; 7958 7959//---------------------------------------------------------------------------- 7960// AdvSIMD vector shift instructions 7961//---------------------------------------------------------------------------- 7962defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>; 7963defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>; 7964defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf", 7965 int_aarch64_neon_vcvtfxs2fp>; 7966defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn", AArch64rshrn>; 7967defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>; 7968 7969let Predicates = [HasNEON] in { 7970def : Pat<(v2f32 (sint_to_fp (v2i32 (AArch64vashr_exact v2i32:$Vn, i32:$shift)))), 7971 (SCVTFv2i32_shift $Vn, vecshiftR32:$shift)>; 7972 7973def : Pat<(v4f32 (sint_to_fp (v4i32 (AArch64vashr_exact v4i32:$Vn, i32:$shift)))), 7974 (SCVTFv4i32_shift $Vn, vecshiftR32:$shift)>; 7975 7976def : Pat<(v2f64 (sint_to_fp (v2i64 (AArch64vashr_exact v2i64:$Vn, i32:$shift)))), 7977 (SCVTFv2i64_shift $Vn, vecshiftR64:$shift)>; 7978} 7979 7980let Predicates = [HasNEON, HasFullFP16] in { 7981def : Pat<(v4f16 (sint_to_fp (v4i16 (AArch64vashr_exact v4i16:$Vn, i32:$shift)))), 7982 (SCVTFv4i16_shift $Vn, vecshiftR16:$shift)>; 7983 7984def : Pat<(v8f16 (sint_to_fp (v8i16 (AArch64vashr_exact v8i16:$Vn, i32:$shift)))), 7985 (SCVTFv8i16_shift $Vn, vecshiftR16:$shift)>; 7986} 7987 7988// X << 1 ==> X + X 7989class SHLToADDPat<ValueType ty, RegisterClass regtype> 7990 : Pat<(ty (AArch64vshl (ty regtype:$Rn), (i32 1))), 7991 (!cast<Instruction>("ADD"#ty) regtype:$Rn, regtype:$Rn)>; 7992 7993def : SHLToADDPat<v16i8, FPR128>; 7994def : SHLToADDPat<v8i16, FPR128>; 7995def : SHLToADDPat<v4i32, FPR128>; 7996def : SHLToADDPat<v2i64, FPR128>; 7997def : SHLToADDPat<v8i8, FPR64>; 7998def : SHLToADDPat<v4i16, FPR64>; 7999def : SHLToADDPat<v2i32, FPR64>; 8000 8001defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn", 8002 BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>; 8003defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", AArch64vsli>; 8004def : Pat<(v1i64 (AArch64vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), 8005 (i32 vecshiftL64:$imm))), 8006 (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>; 8007defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn", 8008 int_aarch64_neon_sqrshrn>; 8009defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun", 8010 int_aarch64_neon_sqrshrun>; 8011defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>; 8012defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>; 8013defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn", 8014 int_aarch64_neon_sqshrn>; 8015defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun", 8016 int_aarch64_neon_sqshrun>; 8017defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", AArch64vsri>; 8018def : Pat<(v1i64 (AArch64vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), 8019 (i32 vecshiftR64:$imm))), 8020 (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>; 8021defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>; 8022defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra", 8023 TriOpFrag<(add node:$LHS, 8024 (AArch64srshri node:$MHS, node:$RHS))> >; 8025defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll", 8026 BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>; 8027 8028defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>; 8029defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra", 8030 TriOpFrag<(add_and_or_is_add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>; 8031defm UCVTF : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf", 8032 int_aarch64_neon_vcvtfxu2fp>; 8033defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn", 8034 int_aarch64_neon_uqrshrn>; 8035defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>; 8036defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn", 8037 int_aarch64_neon_uqshrn>; 8038defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>; 8039defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra", 8040 TriOpFrag<(add node:$LHS, 8041 (AArch64urshri node:$MHS, node:$RHS))> >; 8042defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll", 8043 BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>; 8044defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>; 8045defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra", 8046 TriOpFrag<(add_and_or_is_add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >; 8047 8048def VImm0080: PatLeaf<(AArch64movi_shift (i32 128), (i32 0))>; 8049def VImm00008000: PatLeaf<(AArch64movi_shift (i32 128), (i32 8))>; 8050def VImm0000000080000000: PatLeaf<(AArch64NvCast (v2f64 (fneg (AArch64NvCast (v4i32 (AArch64movi_shift (i32 128), (i32 24)))))))>; 8051 8052// RADDHN patterns for when RSHRN shifts by half the size of the vector element 8053def : Pat<(v8i8 (trunc (AArch64vlshr (add (v8i16 V128:$Vn), VImm0080), (i32 8)))), 8054 (RADDHNv8i16_v8i8 V128:$Vn, (v8i16 (MOVIv2d_ns (i32 0))))>; 8055def : Pat<(v4i16 (trunc (AArch64vlshr (add (v4i32 V128:$Vn), VImm00008000), (i32 16)))), 8056 (RADDHNv4i32_v4i16 V128:$Vn, (v4i32 (MOVIv2d_ns (i32 0))))>; 8057let AddedComplexity = 5 in 8058def : Pat<(v2i32 (trunc (AArch64vlshr (add (v2i64 V128:$Vn), VImm0000000080000000), (i32 32)))), 8059 (RADDHNv2i64_v2i32 V128:$Vn, (v2i64 (MOVIv2d_ns (i32 0))))>; 8060def : Pat<(v8i8 (int_aarch64_neon_rshrn (v8i16 V128:$Vn), (i32 8))), 8061 (RADDHNv8i16_v8i8 V128:$Vn, (v8i16 (MOVIv2d_ns (i32 0))))>; 8062def : Pat<(v4i16 (int_aarch64_neon_rshrn (v4i32 V128:$Vn), (i32 16))), 8063 (RADDHNv4i32_v4i16 V128:$Vn, (v4i32 (MOVIv2d_ns (i32 0))))>; 8064def : Pat<(v2i32 (int_aarch64_neon_rshrn (v2i64 V128:$Vn), (i32 32))), 8065 (RADDHNv2i64_v2i32 V128:$Vn, (v2i64 (MOVIv2d_ns (i32 0))))>; 8066 8067// RADDHN2 patterns for when RSHRN shifts by half the size of the vector element 8068def : Pat<(v16i8 (concat_vectors 8069 (v8i8 V64:$Vd), 8070 (v8i8 (trunc (AArch64vlshr (add (v8i16 V128:$Vn), VImm0080), (i32 8)))))), 8071 (RADDHNv8i16_v16i8 8072 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, 8073 (v8i16 (MOVIv2d_ns (i32 0))))>; 8074def : Pat<(v8i16 (concat_vectors 8075 (v4i16 V64:$Vd), 8076 (v4i16 (trunc (AArch64vlshr (add (v4i32 V128:$Vn), VImm00008000), (i32 16)))))), 8077 (RADDHNv4i32_v8i16 8078 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, 8079 (v4i32 (MOVIv2d_ns (i32 0))))>; 8080let AddedComplexity = 5 in 8081def : Pat<(v4i32 (concat_vectors 8082 (v2i32 V64:$Vd), 8083 (v2i32 (trunc (AArch64vlshr (add (v2i64 V128:$Vn), VImm0000000080000000), (i32 32)))))), 8084 (RADDHNv2i64_v4i32 8085 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, 8086 (v2i64 (MOVIv2d_ns (i32 0))))>; 8087def : Pat<(v16i8 (concat_vectors 8088 (v8i8 V64:$Vd), 8089 (v8i8 (int_aarch64_neon_rshrn (v8i16 V128:$Vn), (i32 8))))), 8090 (RADDHNv8i16_v16i8 8091 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, 8092 (v8i16 (MOVIv2d_ns (i32 0))))>; 8093def : Pat<(v8i16 (concat_vectors 8094 (v4i16 V64:$Vd), 8095 (v4i16 (int_aarch64_neon_rshrn (v4i32 V128:$Vn), (i32 16))))), 8096 (RADDHNv4i32_v8i16 8097 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, 8098 (v4i32 (MOVIv2d_ns (i32 0))))>; 8099def : Pat<(v4i32 (concat_vectors 8100 (v2i32 V64:$Vd), 8101 (v2i32 (int_aarch64_neon_rshrn (v2i64 V128:$Vn), (i32 32))))), 8102 (RADDHNv2i64_v4i32 8103 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, 8104 (v2i64 (MOVIv2d_ns (i32 0))))>; 8105 8106// SHRN patterns for when a logical right shift was used instead of arithmetic 8107// (the immediate guarantees no sign bits actually end up in the result so it 8108// doesn't matter). 8109def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))), 8110 (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>; 8111def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))), 8112 (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>; 8113def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))), 8114 (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>; 8115 8116def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd), 8117 (trunc (AArch64vlshr (v8i16 V128:$Rn), 8118 vecshiftR16Narrow:$imm)))), 8119 (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 8120 V128:$Rn, vecshiftR16Narrow:$imm)>; 8121def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd), 8122 (trunc (AArch64vlshr (v4i32 V128:$Rn), 8123 vecshiftR32Narrow:$imm)))), 8124 (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 8125 V128:$Rn, vecshiftR32Narrow:$imm)>; 8126def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd), 8127 (trunc (AArch64vlshr (v2i64 V128:$Rn), 8128 vecshiftR64Narrow:$imm)))), 8129 (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 8130 V128:$Rn, vecshiftR32Narrow:$imm)>; 8131 8132// Vector sign and zero extensions are implemented with SSHLL and USSHLL. 8133// Anyexts are implemented as zexts. 8134def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>; 8135def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>; 8136def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>; 8137def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>; 8138def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>; 8139def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>; 8140def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>; 8141def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>; 8142def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>; 8143// Vector bf16 -> fp32 is implemented morally as a zext + shift. 8144def : Pat<(v4f32 (any_fpextend (v4bf16 V64:$Rn))), (SHLLv4i16 V64:$Rn)>; 8145// Also match an extend from the upper half of a 128 bit source register. 8146def : Pat<(v8i16 (anyext (v8i8 (extract_high_v16i8 (v16i8 V128:$Rn)) ))), 8147 (USHLLv16i8_shift V128:$Rn, (i32 0))>; 8148def : Pat<(v8i16 (zext (v8i8 (extract_high_v16i8 (v16i8 V128:$Rn)) ))), 8149 (USHLLv16i8_shift V128:$Rn, (i32 0))>; 8150def : Pat<(v8i16 (sext (v8i8 (extract_high_v16i8 (v16i8 V128:$Rn)) ))), 8151 (SSHLLv16i8_shift V128:$Rn, (i32 0))>; 8152def : Pat<(v4i32 (anyext (v4i16 (extract_high_v8i16 (v8i16 V128:$Rn)) ))), 8153 (USHLLv8i16_shift V128:$Rn, (i32 0))>; 8154def : Pat<(v4i32 (zext (v4i16 (extract_high_v8i16 (v8i16 V128:$Rn)) ))), 8155 (USHLLv8i16_shift V128:$Rn, (i32 0))>; 8156def : Pat<(v4i32 (sext (v4i16 (extract_high_v8i16 (v8i16 V128:$Rn)) ))), 8157 (SSHLLv8i16_shift V128:$Rn, (i32 0))>; 8158def : Pat<(v2i64 (anyext (v2i32 (extract_high_v4i32 (v4i32 V128:$Rn)) ))), 8159 (USHLLv4i32_shift V128:$Rn, (i32 0))>; 8160def : Pat<(v2i64 (zext (v2i32 (extract_high_v4i32 (v4i32 V128:$Rn)) ))), 8161 (USHLLv4i32_shift V128:$Rn, (i32 0))>; 8162def : Pat<(v2i64 (sext (v2i32 (extract_high_v4i32 (v4i32 V128:$Rn)) ))), 8163 (SSHLLv4i32_shift V128:$Rn, (i32 0))>; 8164 8165let Predicates = [HasNEON] in { 8166// Vector shift sxtl aliases 8167def : InstAlias<"sxtl.8h $dst, $src1", 8168 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>; 8169def : InstAlias<"sxtl $dst.8h, $src1.8b", 8170 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>; 8171def : InstAlias<"sxtl.4s $dst, $src1", 8172 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>; 8173def : InstAlias<"sxtl $dst.4s, $src1.4h", 8174 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>; 8175def : InstAlias<"sxtl.2d $dst, $src1", 8176 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>; 8177def : InstAlias<"sxtl $dst.2d, $src1.2s", 8178 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>; 8179 8180// Vector shift sxtl2 aliases 8181def : InstAlias<"sxtl2.8h $dst, $src1", 8182 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>; 8183def : InstAlias<"sxtl2 $dst.8h, $src1.16b", 8184 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>; 8185def : InstAlias<"sxtl2.4s $dst, $src1", 8186 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>; 8187def : InstAlias<"sxtl2 $dst.4s, $src1.8h", 8188 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>; 8189def : InstAlias<"sxtl2.2d $dst, $src1", 8190 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>; 8191def : InstAlias<"sxtl2 $dst.2d, $src1.4s", 8192 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>; 8193 8194// Vector shift uxtl aliases 8195def : InstAlias<"uxtl.8h $dst, $src1", 8196 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>; 8197def : InstAlias<"uxtl $dst.8h, $src1.8b", 8198 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>; 8199def : InstAlias<"uxtl.4s $dst, $src1", 8200 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>; 8201def : InstAlias<"uxtl $dst.4s, $src1.4h", 8202 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>; 8203def : InstAlias<"uxtl.2d $dst, $src1", 8204 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>; 8205def : InstAlias<"uxtl $dst.2d, $src1.2s", 8206 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>; 8207 8208// Vector shift uxtl2 aliases 8209def : InstAlias<"uxtl2.8h $dst, $src1", 8210 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>; 8211def : InstAlias<"uxtl2 $dst.8h, $src1.16b", 8212 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>; 8213def : InstAlias<"uxtl2.4s $dst, $src1", 8214 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>; 8215def : InstAlias<"uxtl2 $dst.4s, $src1.8h", 8216 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>; 8217def : InstAlias<"uxtl2.2d $dst, $src1", 8218 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>; 8219def : InstAlias<"uxtl2 $dst.2d, $src1.4s", 8220 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>; 8221} 8222 8223def abs_f16 : 8224 OutPatFrag<(ops node:$Rn), 8225 (EXTRACT_SUBREG (f32 (COPY_TO_REGCLASS 8226 (i32 (ANDWri 8227 (i32 (COPY_TO_REGCLASS (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 8228 node:$Rn, hsub), GPR32)), 8229 (i32 (logical_imm32_XFORM(i32 0x7fff))))), 8230 FPR32)), hsub)>; 8231 8232def : Pat<(f16 (fabs (f16 FPR16:$Rn))), (f16 (abs_f16 (f16 FPR16:$Rn)))>; 8233def : Pat<(bf16 (fabs (bf16 FPR16:$Rn))), (bf16 (abs_f16 (bf16 FPR16:$Rn)))>; 8234 8235def neg_f16 : 8236 OutPatFrag<(ops node:$Rn), 8237 (EXTRACT_SUBREG (f32 (COPY_TO_REGCLASS 8238 (i32 (EORWri 8239 (i32 (COPY_TO_REGCLASS (INSERT_SUBREG (f32 (IMPLICIT_DEF)), 8240 node:$Rn, hsub), GPR32)), 8241 (i32 (logical_imm32_XFORM(i32 0x8000))))), 8242 FPR32)), hsub)>; 8243 8244def : Pat<(f16 (fneg (f16 FPR16:$Rn))), (f16 (neg_f16 (f16 FPR16:$Rn)))>; 8245def : Pat<(bf16 (fneg (bf16 FPR16:$Rn))), (bf16 (neg_f16 (bf16 FPR16:$Rn)))>; 8246 8247let Predicates = [HasNEON] in { 8248def : Pat<(v4f16 (fabs (v4f16 V64:$Rn))), (v4f16 (BICv4i16 (v4f16 V64:$Rn), (i32 128), (i32 8)))>; 8249def : Pat<(v4bf16 (fabs (v4bf16 V64:$Rn))), (v4bf16 (BICv4i16 (v4bf16 V64:$Rn), (i32 128), (i32 8)))>; 8250def : Pat<(v8f16 (fabs (v8f16 V128:$Rn))), (v8f16 (BICv8i16 (v8f16 V128:$Rn), (i32 128), (i32 8)))>; 8251def : Pat<(v8bf16 (fabs (v8bf16 V128:$Rn))), (v8bf16 (BICv8i16 (v8bf16 V128:$Rn), (i32 128), (i32 8)))>; 8252 8253def : Pat<(v4f16 (fneg (v4f16 V64:$Rn))), (v4f16 (EORv8i8 (v4f16 V64:$Rn), (MOVIv4i16 (i32 128), (i32 8))))>; 8254def : Pat<(v4bf16 (fneg (v4bf16 V64:$Rn))), (v4bf16 (EORv8i8 (v4bf16 V64:$Rn), (v4i16 (MOVIv4i16 (i32 0x80), (i32 8)))))>; 8255def : Pat<(v8f16 (fneg (v8f16 V128:$Rn))), (v8f16 (EORv16i8 (v8f16 V128:$Rn), (MOVIv8i16 (i32 128), (i32 8))))>; 8256def : Pat<(v8bf16 (fneg (v8bf16 V128:$Rn))), (v8bf16 (EORv16i8 (v8bf16 V128:$Rn), (v8i16 (MOVIv8i16 (i32 0x80), (i32 8)))))>; 8257} 8258 8259// If an integer is about to be converted to a floating point value, 8260// just load it on the floating point unit. 8261// These patterns are more complex because floating point loads do not 8262// support sign extension. 8263// The sign extension has to be explicitly added and is only supported for 8264// one step: byte-to-half, half-to-word, word-to-doubleword. 8265// SCVTF GPR -> FPR is 9 cycles. 8266// SCVTF FPR -> FPR is 4 cyclces. 8267// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles. 8268// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR 8269// and still being faster. 8270// However, this is not good for code size. 8271// 8-bits -> float. 2 sizes step-up. 8272class SExtLoadi8CVTf32Pat<dag addrmode, dag INST> 8273 : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))), 8274 (SCVTFv1i32 (f32 (EXTRACT_SUBREG 8275 (SSHLLv4i16_shift 8276 (f64 8277 (EXTRACT_SUBREG 8278 (SSHLLv8i8_shift 8279 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 8280 INST, 8281 bsub), 8282 0), 8283 dsub)), 8284 0), 8285 ssub)))>, 8286 Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32, HasNEON]>; 8287 8288def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext), 8289 (LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>; 8290def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext), 8291 (LDRBroX GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>; 8292def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), 8293 (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>; 8294def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset), 8295 (LDURBi GPR64sp:$Rn, simm9:$offset)>; 8296 8297// 16-bits -> float. 1 size step-up. 8298class SExtLoadi16CVTf32Pat<dag addrmode, dag INST> 8299 : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))), 8300 (SCVTFv1i32 (f32 (EXTRACT_SUBREG 8301 (SSHLLv4i16_shift 8302 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 8303 INST, 8304 hsub), 8305 0), 8306 ssub)))>, 8307 Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32, HasNEON]>; 8308 8309def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext), 8310 (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>; 8311def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext), 8312 (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>; 8313def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), 8314 (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; 8315def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset), 8316 (LDURHi GPR64sp:$Rn, simm9:$offset)>; 8317 8318// 32-bits to 32-bits are handled in target specific dag combine: 8319// performIntToFpCombine. 8320// 64-bits integer to 32-bits floating point, not possible with 8321// SCVTF on floating point registers (both source and destination 8322// must have the same size). 8323 8324// Here are the patterns for 8, 16, 32, and 64-bits to double. 8325// 8-bits -> double. 3 size step-up: give up. 8326// 16-bits -> double. 2 size step. 8327class SExtLoadi16CVTf64Pat<dag addrmode, dag INST> 8328 : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))), 8329 (SCVTFv1i64 (f64 (EXTRACT_SUBREG 8330 (SSHLLv2i32_shift 8331 (f64 8332 (EXTRACT_SUBREG 8333 (SSHLLv4i16_shift 8334 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 8335 INST, 8336 hsub), 8337 0), 8338 dsub)), 8339 0), 8340 dsub)))>, 8341 Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32, HasNEON]>; 8342 8343def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext), 8344 (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>; 8345def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext), 8346 (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>; 8347def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), 8348 (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; 8349def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset), 8350 (LDURHi GPR64sp:$Rn, simm9:$offset)>; 8351// 32-bits -> double. 1 size step-up. 8352class SExtLoadi32CVTf64Pat<dag addrmode, dag INST> 8353 : Pat <(f64 (sint_to_fp (i32 (load addrmode)))), 8354 (SCVTFv1i64 (f64 (EXTRACT_SUBREG 8355 (SSHLLv2i32_shift 8356 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 8357 INST, 8358 ssub), 8359 0), 8360 dsub)))>, 8361 Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32, HasNEON]>; 8362 8363def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext), 8364 (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>; 8365def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext), 8366 (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>; 8367def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), 8368 (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>; 8369def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset), 8370 (LDURSi GPR64sp:$Rn, simm9:$offset)>; 8371 8372// 64-bits -> double are handled in target specific dag combine: 8373// performIntToFpCombine. 8374 8375 8376//---------------------------------------------------------------------------- 8377// AdvSIMD Load-Store Structure 8378//---------------------------------------------------------------------------- 8379defm LD1 : SIMDLd1Multiple<"ld1">; 8380defm LD2 : SIMDLd2Multiple<"ld2">; 8381defm LD3 : SIMDLd3Multiple<"ld3">; 8382defm LD4 : SIMDLd4Multiple<"ld4">; 8383 8384defm ST1 : SIMDSt1Multiple<"st1">; 8385defm ST2 : SIMDSt2Multiple<"st2">; 8386defm ST3 : SIMDSt3Multiple<"st3">; 8387defm ST4 : SIMDSt4Multiple<"st4">; 8388 8389class Ld1Pat<ValueType ty, Instruction INST> 8390 : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>; 8391 8392def : Ld1Pat<v16i8, LD1Onev16b>; 8393def : Ld1Pat<v8i16, LD1Onev8h>; 8394def : Ld1Pat<v4i32, LD1Onev4s>; 8395def : Ld1Pat<v2i64, LD1Onev2d>; 8396def : Ld1Pat<v8i8, LD1Onev8b>; 8397def : Ld1Pat<v4i16, LD1Onev4h>; 8398def : Ld1Pat<v2i32, LD1Onev2s>; 8399def : Ld1Pat<v1i64, LD1Onev1d>; 8400 8401class St1Pat<ValueType ty, Instruction INST> 8402 : Pat<(store ty:$Vt, GPR64sp:$Rn), 8403 (INST ty:$Vt, GPR64sp:$Rn)>; 8404 8405def : St1Pat<v16i8, ST1Onev16b>; 8406def : St1Pat<v8i16, ST1Onev8h>; 8407def : St1Pat<v4i32, ST1Onev4s>; 8408def : St1Pat<v2i64, ST1Onev2d>; 8409def : St1Pat<v8i8, ST1Onev8b>; 8410def : St1Pat<v4i16, ST1Onev4h>; 8411def : St1Pat<v2i32, ST1Onev2s>; 8412def : St1Pat<v1i64, ST1Onev1d>; 8413 8414//--- 8415// Single-element 8416//--- 8417 8418defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>; 8419defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>; 8420defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>; 8421defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>; 8422let mayLoad = 1, hasSideEffects = 0 in { 8423defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>; 8424defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>; 8425defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>; 8426defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>; 8427defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>; 8428defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>; 8429defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>; 8430defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>; 8431defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>; 8432defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>; 8433defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>; 8434defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>; 8435defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>; 8436defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>; 8437defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>; 8438defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>; 8439} 8440 8441def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))), 8442 (LD1Rv8b GPR64sp:$Rn)>; 8443def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))), 8444 (LD1Rv16b GPR64sp:$Rn)>; 8445def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))), 8446 (LD1Rv4h GPR64sp:$Rn)>; 8447def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))), 8448 (LD1Rv8h GPR64sp:$Rn)>; 8449def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))), 8450 (LD1Rv2s GPR64sp:$Rn)>; 8451def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))), 8452 (LD1Rv4s GPR64sp:$Rn)>; 8453def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))), 8454 (LD1Rv2d GPR64sp:$Rn)>; 8455def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))), 8456 (LD1Rv1d GPR64sp:$Rn)>; 8457 8458def : Pat<(v8i8 (AArch64duplane8 (v16i8 (insert_subvector undef, (v8i8 (load GPR64sp:$Rn)), (i64 0))), (i64 0))), 8459 (LD1Rv8b GPR64sp:$Rn)>; 8460def : Pat<(v16i8 (AArch64duplane8 (v16i8 (load GPR64sp:$Rn)), (i64 0))), 8461 (LD1Rv16b GPR64sp:$Rn)>; 8462def : Pat<(v4i16 (AArch64duplane16 (v8i16 (insert_subvector undef, (v4i16 (load GPR64sp:$Rn)), (i64 0))), (i64 0))), 8463 (LD1Rv4h GPR64sp:$Rn)>; 8464def : Pat<(v8i16 (AArch64duplane16 (v8i16 (load GPR64sp:$Rn)), (i64 0))), 8465 (LD1Rv8h GPR64sp:$Rn)>; 8466def : Pat<(v2i32 (AArch64duplane32 (v4i32 (insert_subvector undef, (v2i32 (load GPR64sp:$Rn)), (i64 0))), (i64 0))), 8467 (LD1Rv2s GPR64sp:$Rn)>; 8468def : Pat<(v4i32 (AArch64duplane32 (v4i32 (load GPR64sp:$Rn)), (i64 0))), 8469 (LD1Rv4s GPR64sp:$Rn)>; 8470def : Pat<(v2i64 (AArch64duplane64 (v2i64 (load GPR64sp:$Rn)), (i64 0))), 8471 (LD1Rv2d GPR64sp:$Rn)>; 8472 8473// Grab the floating point version too 8474def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))), 8475 (LD1Rv2s GPR64sp:$Rn)>; 8476def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))), 8477 (LD1Rv4s GPR64sp:$Rn)>; 8478def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))), 8479 (LD1Rv2d GPR64sp:$Rn)>; 8480def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))), 8481 (LD1Rv1d GPR64sp:$Rn)>; 8482def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))), 8483 (LD1Rv4h GPR64sp:$Rn)>; 8484def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))), 8485 (LD1Rv8h GPR64sp:$Rn)>; 8486def : Pat<(v4bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))), 8487 (LD1Rv4h GPR64sp:$Rn)>; 8488def : Pat<(v8bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))), 8489 (LD1Rv8h GPR64sp:$Rn)>; 8490 8491class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex, 8492 ValueType VTy, ValueType STy, Instruction LD1> 8493 : Pat<(vector_insert (VTy VecListOne128:$Rd), 8494 (STy (scalar_load GPR64sp:$Rn)), (i64 VecIndex:$idx)), 8495 (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>; 8496 8497def : Ld1Lane128Pat<extloadi8, VectorIndexB, v16i8, i32, LD1i8>; 8498def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>; 8499def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>; 8500def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>; 8501def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>; 8502def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>; 8503def : Ld1Lane128Pat<load, VectorIndexH, v8f16, f16, LD1i16>; 8504def : Ld1Lane128Pat<load, VectorIndexH, v8bf16, bf16, LD1i16>; 8505 8506// Generate LD1 for extload if memory type does not match the 8507// destination type, for example: 8508// 8509// (v4i32 (insert_vector_elt (load anyext from i8) idx)) 8510// 8511// In this case, the index must be adjusted to match LD1 type. 8512// 8513class Ld1Lane128IdxOpPat<SDPatternOperator scalar_load, Operand 8514 VecIndex, ValueType VTy, ValueType STy, 8515 Instruction LD1, SDNodeXForm IdxOp> 8516 : Pat<(vector_insert (VTy VecListOne128:$Rd), 8517 (STy (scalar_load GPR64sp:$Rn)), (i64 VecIndex:$idx)), 8518 (LD1 VecListOne128:$Rd, (IdxOp VecIndex:$idx), GPR64sp:$Rn)>; 8519 8520class Ld1Lane64IdxOpPat<SDPatternOperator scalar_load, Operand VecIndex, 8521 ValueType VTy, ValueType STy, Instruction LD1, 8522 SDNodeXForm IdxOp> 8523 : Pat<(vector_insert (VTy VecListOne64:$Rd), 8524 (STy (scalar_load GPR64sp:$Rn)), (i64 VecIndex:$idx)), 8525 (EXTRACT_SUBREG 8526 (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub), 8527 (IdxOp VecIndex:$idx), GPR64sp:$Rn), 8528 dsub)>; 8529 8530def VectorIndexStoH : SDNodeXForm<imm, [{ 8531 return CurDAG->getTargetConstant(N->getZExtValue() * 2, SDLoc(N), MVT::i64); 8532}]>; 8533def VectorIndexStoB : SDNodeXForm<imm, [{ 8534 return CurDAG->getTargetConstant(N->getZExtValue() * 4, SDLoc(N), MVT::i64); 8535}]>; 8536def VectorIndexHtoB : SDNodeXForm<imm, [{ 8537 return CurDAG->getTargetConstant(N->getZExtValue() * 2, SDLoc(N), MVT::i64); 8538}]>; 8539 8540def : Ld1Lane128IdxOpPat<extloadi16, VectorIndexS, v4i32, i32, LD1i16, VectorIndexStoH>; 8541def : Ld1Lane128IdxOpPat<extloadi8, VectorIndexS, v4i32, i32, LD1i8, VectorIndexStoB>; 8542def : Ld1Lane128IdxOpPat<extloadi8, VectorIndexH, v8i16, i32, LD1i8, VectorIndexHtoB>; 8543 8544def : Ld1Lane64IdxOpPat<extloadi16, VectorIndexS, v2i32, i32, LD1i16, VectorIndexStoH>; 8545def : Ld1Lane64IdxOpPat<extloadi8, VectorIndexS, v2i32, i32, LD1i8, VectorIndexStoB>; 8546def : Ld1Lane64IdxOpPat<extloadi8, VectorIndexH, v4i16, i32, LD1i8, VectorIndexHtoB>; 8547 8548// Same as above, but the first element is populated using 8549// scalar_to_vector + insert_subvector instead of insert_vector_elt. 8550let Predicates = [HasNEON] in { 8551 class Ld1Lane128FirstElm<ValueType ResultTy, ValueType VecTy, 8552 SDPatternOperator ExtLoad, Instruction LD1> 8553 : Pat<(ResultTy (scalar_to_vector (i32 (ExtLoad GPR64sp:$Rn)))), 8554 (ResultTy (EXTRACT_SUBREG 8555 (LD1 (VecTy (IMPLICIT_DEF)), 0, GPR64sp:$Rn), dsub))>; 8556 8557 def : Ld1Lane128FirstElm<v2i32, v8i16, extloadi16, LD1i16>; 8558 def : Ld1Lane128FirstElm<v2i32, v16i8, extloadi8, LD1i8>; 8559 def : Ld1Lane128FirstElm<v4i16, v16i8, extloadi8, LD1i8>; 8560} 8561class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex, 8562 ValueType VTy, ValueType STy, Instruction LD1> 8563 : Pat<(vector_insert (VTy VecListOne64:$Rd), 8564 (STy (scalar_load GPR64sp:$Rn)), (i64 VecIndex:$idx)), 8565 (EXTRACT_SUBREG 8566 (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub), 8567 VecIndex:$idx, GPR64sp:$Rn), 8568 dsub)>; 8569 8570def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>; 8571def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>; 8572def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>; 8573def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>; 8574def : Ld1Lane64Pat<load, VectorIndexH, v4f16, f16, LD1i16>; 8575def : Ld1Lane64Pat<load, VectorIndexH, v4bf16, bf16, LD1i16>; 8576 8577 8578defm LD1 : SIMDLdSt1SingleAliases<"ld1">; 8579defm LD2 : SIMDLdSt2SingleAliases<"ld2">; 8580defm LD3 : SIMDLdSt3SingleAliases<"ld3">; 8581defm LD4 : SIMDLdSt4SingleAliases<"ld4">; 8582 8583// Stores 8584defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>; 8585defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>; 8586defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>; 8587defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>; 8588 8589let AddedComplexity = 19 in 8590class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex, 8591 ValueType VTy, ValueType STy, Instruction ST1> 8592 : Pat<(scalar_store 8593 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), 8594 GPR64sp:$Rn), 8595 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>; 8596 8597def : St1Lane128Pat<truncstorei8, VectorIndexB, v16i8, i32, ST1i8>; 8598def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>; 8599def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>; 8600def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>; 8601def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>; 8602def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>; 8603def : St1Lane128Pat<store, VectorIndexH, v8f16, f16, ST1i16>; 8604def : St1Lane128Pat<store, VectorIndexH, v8bf16, bf16, ST1i16>; 8605 8606let AddedComplexity = 19 in 8607class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex, 8608 ValueType VTy, ValueType STy, Instruction ST1> 8609 : Pat<(scalar_store 8610 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), 8611 GPR64sp:$Rn), 8612 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), 8613 VecIndex:$idx, GPR64sp:$Rn)>; 8614 8615def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>; 8616def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>; 8617def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>; 8618def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>; 8619def : St1Lane64Pat<store, VectorIndexH, v4f16, f16, ST1i16>; 8620def : St1Lane64Pat<store, VectorIndexH, v4bf16, bf16, ST1i16>; 8621 8622multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex, 8623 ValueType VTy, ValueType STy, Instruction ST1, 8624 int offset> { 8625 def : Pat<(scalar_store 8626 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), 8627 GPR64sp:$Rn, offset), 8628 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), 8629 VecIndex:$idx, GPR64sp:$Rn, XZR)>; 8630 8631 def : Pat<(scalar_store 8632 (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), 8633 GPR64sp:$Rn, GPR64:$Rm), 8634 (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), 8635 VecIndex:$idx, GPR64sp:$Rn, $Rm)>; 8636} 8637 8638defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>; 8639defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST, 8640 2>; 8641defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>; 8642defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>; 8643defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>; 8644defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>; 8645defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>; 8646defm : St1LanePost64Pat<post_store, VectorIndexH, v4bf16, bf16, ST1i16_POST, 2>; 8647 8648multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex, 8649 ValueType VTy, ValueType STy, Instruction ST1, 8650 int offset> { 8651 def : Pat<(scalar_store 8652 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), 8653 GPR64sp:$Rn, offset), 8654 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>; 8655 8656 def : Pat<(scalar_store 8657 (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), 8658 GPR64sp:$Rn, GPR64:$Rm), 8659 (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>; 8660} 8661 8662defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST, 8663 1>; 8664defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST, 8665 2>; 8666defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>; 8667defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>; 8668defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>; 8669defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>; 8670defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>; 8671defm : St1LanePost128Pat<post_store, VectorIndexH, v8bf16, bf16, ST1i16_POST, 2>; 8672 8673let mayStore = 1, hasSideEffects = 0 in { 8674defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>; 8675defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>; 8676defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>; 8677defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>; 8678defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>; 8679defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>; 8680defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>; 8681defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>; 8682defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>; 8683defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>; 8684defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>; 8685defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>; 8686} 8687 8688defm ST1 : SIMDLdSt1SingleAliases<"st1">; 8689defm ST2 : SIMDLdSt2SingleAliases<"st2">; 8690defm ST3 : SIMDLdSt3SingleAliases<"st3">; 8691defm ST4 : SIMDLdSt4SingleAliases<"st4">; 8692 8693//---------------------------------------------------------------------------- 8694// Crypto extensions 8695//---------------------------------------------------------------------------- 8696 8697let Predicates = [HasAES] in { 8698let isCommutable = 1 in { 8699def AESErr : AESTiedInst<0b0100, "aese", int_aarch64_crypto_aese>; 8700def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>; 8701} 8702def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>; 8703def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>; 8704} 8705 8706// Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required 8707// for AES fusion on some CPUs. 8708let hasSideEffects = 0, mayStore = 0, mayLoad = 0, Predicates = [HasAES] in { 8709def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">, 8710 Sched<[WriteVq]>; 8711def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">, 8712 Sched<[WriteVq]>; 8713} 8714 8715// Only use constrained versions of AES(I)MC instructions if they are paired with 8716// AESE/AESD. 8717def : Pat<(v16i8 (int_aarch64_crypto_aesmc 8718 (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1), 8719 (v16i8 V128:$src2))))), 8720 (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1), 8721 (v16i8 V128:$src2)))))>, 8722 Requires<[HasFuseAES]>; 8723 8724def : Pat<(v16i8 (int_aarch64_crypto_aesimc 8725 (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1), 8726 (v16i8 V128:$src2))))), 8727 (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1), 8728 (v16i8 V128:$src2)))))>, 8729 Requires<[HasFuseAES]>; 8730 8731let Predicates = [HasSHA2] in { 8732def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>; 8733def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>; 8734def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>; 8735def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>; 8736def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>; 8737def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>; 8738def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>; 8739 8740def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_aarch64_crypto_sha1h>; 8741def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_aarch64_crypto_sha1su1>; 8742def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>; 8743} 8744 8745//---------------------------------------------------------------------------- 8746// Compiler-pseudos 8747//---------------------------------------------------------------------------- 8748// FIXME: Like for X86, these should go in their own separate .td file. 8749 8750// For an anyext, we don't care what the high bits are, so we can perform an 8751// INSERT_SUBREF into an IMPLICIT_DEF. 8752def : Pat<(i64 (anyext GPR32:$src)), 8753 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>; 8754 8755// When we need to explicitly zero-extend, we use a 32-bit MOV instruction and 8756// then assert the extension has happened. 8757def : Pat<(i64 (zext GPR32:$src)), 8758 (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>; 8759 8760// To sign extend, we use a signed bitfield move instruction (SBFM) on the 8761// containing super-reg. 8762def : Pat<(i64 (sext GPR32:$src)), 8763 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>; 8764def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>; 8765def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>; 8766def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>; 8767def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>; 8768def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>; 8769def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>; 8770def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>; 8771 8772def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)), 8773 (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), 8774 (i64 (i32shift_sext_i8 imm0_31:$imm)))>; 8775def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)), 8776 (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), 8777 (i64 (i64shift_sext_i8 imm0_63:$imm)))>; 8778 8779def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)), 8780 (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), 8781 (i64 (i32shift_sext_i16 imm0_31:$imm)))>; 8782def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)), 8783 (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), 8784 (i64 (i64shift_sext_i16 imm0_63:$imm)))>; 8785 8786def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)), 8787 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), 8788 (i64 (i64shift_a imm0_63:$imm)), 8789 (i64 (i64shift_sext_i32 imm0_63:$imm)))>; 8790 8791def : Pat<(shl (i64 (zext GPR32:$Rn)), (i64 imm0_63:$imm)), 8792 (UBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), 8793 (i64 (i64shift_a imm0_63:$imm)), 8794 (i64 (i64shift_sext_i32 imm0_63:$imm)))>; 8795 8796// sra patterns have an AddedComplexity of 10, so make sure we have a higher 8797// AddedComplexity for the following patterns since we want to match sext + sra 8798// patterns before we attempt to match a single sra node. 8799let AddedComplexity = 20 in { 8800// We support all sext + sra combinations which preserve at least one bit of the 8801// original value which is to be sign extended. E.g. we support shifts up to 8802// bitwidth-1 bits. 8803def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)), 8804 (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>; 8805def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)), 8806 (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>; 8807 8808def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)), 8809 (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>; 8810def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)), 8811 (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>; 8812 8813def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)), 8814 (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), 8815 (i64 imm0_31:$imm), 31)>; 8816} // AddedComplexity = 20 8817 8818// To truncate, we can simply extract from a subregister. 8819def : Pat<(i32 (trunc GPR64sp:$src)), 8820 (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>; 8821 8822// __builtin_trap() uses the BRK instruction on AArch64. 8823def : Pat<(trap), (BRK 1)>; 8824def : Pat<(debugtrap), (BRK 0xF000)>; 8825 8826def ubsan_trap_xform : SDNodeXForm<timm, [{ 8827 return CurDAG->getTargetConstant(N->getZExtValue() | ('U' << 8), SDLoc(N), MVT::i32); 8828}]>; 8829 8830def gi_ubsan_trap_xform : GICustomOperandRenderer<"renderUbsanTrap">, 8831 GISDNodeXFormEquiv<ubsan_trap_xform>; 8832 8833def ubsan_trap_imm : TImmLeaf<i32, [{ 8834 return isUInt<8>(Imm); 8835}], ubsan_trap_xform>; 8836 8837def : Pat<(ubsantrap ubsan_trap_imm:$kind), (BRK ubsan_trap_imm:$kind)>; 8838 8839// Multiply high patterns which multiply the lower subvector using smull/umull 8840// and the upper subvector with smull2/umull2. Then shuffle the high the high 8841// part of both results together. 8842def : Pat<(v16i8 (mulhs V128:$Rn, V128:$Rm)), 8843 (UZP2v16i8 8844 (SMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub), 8845 (EXTRACT_SUBREG V128:$Rm, dsub)), 8846 (SMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>; 8847def : Pat<(v8i16 (mulhs V128:$Rn, V128:$Rm)), 8848 (UZP2v8i16 8849 (SMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub), 8850 (EXTRACT_SUBREG V128:$Rm, dsub)), 8851 (SMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>; 8852def : Pat<(v4i32 (mulhs V128:$Rn, V128:$Rm)), 8853 (UZP2v4i32 8854 (SMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub), 8855 (EXTRACT_SUBREG V128:$Rm, dsub)), 8856 (SMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>; 8857 8858def : Pat<(v16i8 (mulhu V128:$Rn, V128:$Rm)), 8859 (UZP2v16i8 8860 (UMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub), 8861 (EXTRACT_SUBREG V128:$Rm, dsub)), 8862 (UMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>; 8863def : Pat<(v8i16 (mulhu V128:$Rn, V128:$Rm)), 8864 (UZP2v8i16 8865 (UMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub), 8866 (EXTRACT_SUBREG V128:$Rm, dsub)), 8867 (UMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>; 8868def : Pat<(v4i32 (mulhu V128:$Rn, V128:$Rm)), 8869 (UZP2v4i32 8870 (UMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub), 8871 (EXTRACT_SUBREG V128:$Rm, dsub)), 8872 (UMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>; 8873 8874// Conversions within AdvSIMD types in the same register size are free. 8875// But because we need a consistent lane ordering, in big endian many 8876// conversions require one or more REV instructions. 8877// 8878// Consider a simple memory load followed by a bitconvert then a store. 8879// v0 = load v2i32 8880// v1 = BITCAST v2i32 v0 to v4i16 8881// store v4i16 v2 8882// 8883// In big endian mode every memory access has an implicit byte swap. LDR and 8884// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that 8885// is, they treat the vector as a sequence of elements to be byte-swapped. 8886// The two pairs of instructions are fundamentally incompatible. We've decided 8887// to use LD1/ST1 only to simplify compiler implementation. 8888// 8889// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes 8890// the original code sequence: 8891// v0 = load v2i32 8892// v1 = REV v2i32 (implicit) 8893// v2 = BITCAST v2i32 v1 to v4i16 8894// v3 = REV v4i16 v2 (implicit) 8895// store v4i16 v3 8896// 8897// But this is now broken - the value stored is different to the value loaded 8898// due to lane reordering. To fix this, on every BITCAST we must perform two 8899// other REVs: 8900// v0 = load v2i32 8901// v1 = REV v2i32 (implicit) 8902// v2 = REV v2i32 8903// v3 = BITCAST v2i32 v2 to v4i16 8904// v4 = REV v4i16 8905// v5 = REV v4i16 v4 (implicit) 8906// store v4i16 v5 8907// 8908// This means an extra two instructions, but actually in most cases the two REV 8909// instructions can be combined into one. For example: 8910// (REV64_2s (REV64_4h X)) === (REV32_4h X) 8911// 8912// There is also no 128-bit REV instruction. This must be synthesized with an 8913// EXT instruction. 8914// 8915// Most bitconverts require some sort of conversion. The only exceptions are: 8916// a) Identity conversions - vNfX <-> vNiX 8917// b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX 8918// 8919 8920// Natural vector casts (64 bit) 8921foreach VT = [ v8i8, v4i16, v4f16, v4bf16, v2i32, v2f32, v1i64, v1f64, f64 ] in 8922 foreach VT2 = [ v8i8, v4i16, v4f16, v4bf16, v2i32, v2f32, v1i64, v1f64, f64 ] in 8923 def : Pat<(VT (AArch64NvCast (VT2 FPR64:$src))), 8924 (VT FPR64:$src)>; 8925 8926// Natural vector casts (128 bit) 8927foreach VT = [ v16i8, v8i16, v8f16, v8bf16, v4i32, v4f32, v2i64, v2f64 ] in 8928 foreach VT2 = [ v16i8, v8i16, v8f16, v8bf16, v4i32, v4f32, v2i64, v2f64 ] in 8929 def : Pat<(VT (AArch64NvCast (VT2 FPR128:$src))), 8930 (VT FPR128:$src)>; 8931 8932let Predicates = [IsLE] in { 8933def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8934def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8935def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8936def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8937def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8938def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8939 8940def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))), 8941 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 8942def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))), 8943 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 8944def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))), 8945 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 8946def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))), 8947 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 8948def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))), 8949 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 8950def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))), 8951 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 8952def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))), 8953 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 8954} 8955let Predicates = [IsBE] in { 8956def : Pat<(v8i8 (bitconvert GPR64:$Xn)), 8957 (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 8958def : Pat<(v4i16 (bitconvert GPR64:$Xn)), 8959 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 8960def : Pat<(v2i32 (bitconvert GPR64:$Xn)), 8961 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 8962def : Pat<(v4f16 (bitconvert GPR64:$Xn)), 8963 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 8964def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), 8965 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 8966def : Pat<(v2f32 (bitconvert GPR64:$Xn)), 8967 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; 8968 8969def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))), 8970 (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 8971def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))), 8972 (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 8973def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))), 8974 (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 8975def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))), 8976 (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 8977def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))), 8978 (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 8979def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))), 8980 (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; 8981} 8982def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8983def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8984def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))), 8985 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 8986def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)), 8987 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8988def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)), 8989 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8990def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>; 8991 8992def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))), 8993 (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>; 8994def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))), 8995 (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>; 8996def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))), 8997 (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; 8998def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))), 8999 (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>; 9000def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))), 9001 (COPY_TO_REGCLASS V64:$Vn, GPR64)>; 9002 9003def : Pat<(f16 (bitconvert (bf16 FPR16:$src))), (f16 FPR16:$src)>; 9004def : Pat<(bf16 (bitconvert (f16 FPR16:$src))), (bf16 FPR16:$src)>; 9005 9006let Predicates = [IsLE] in { 9007def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>; 9008def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>; 9009def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>; 9010def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>; 9011def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), (v1i64 FPR64:$src)>; 9012def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>; 9013} 9014let Predicates = [IsBE] in { 9015def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), 9016 (v1i64 (REV64v2i32 FPR64:$src))>; 9017def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), 9018 (v1i64 (REV64v4i16 FPR64:$src))>; 9019def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), 9020 (v1i64 (REV64v8i8 FPR64:$src))>; 9021def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), 9022 (v1i64 (REV64v4i16 FPR64:$src))>; 9023def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), 9024 (v1i64 (REV64v4i16 FPR64:$src))>; 9025def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), 9026 (v1i64 (REV64v2i32 FPR64:$src))>; 9027} 9028def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>; 9029def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>; 9030 9031let Predicates = [IsLE] in { 9032def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>; 9033def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>; 9034def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>; 9035def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>; 9036def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>; 9037def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>; 9038def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), (v2i32 FPR64:$src)>; 9039} 9040let Predicates = [IsBE] in { 9041def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), 9042 (v2i32 (REV64v2i32 FPR64:$src))>; 9043def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), 9044 (v2i32 (REV32v4i16 FPR64:$src))>; 9045def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), 9046 (v2i32 (REV32v8i8 FPR64:$src))>; 9047def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), 9048 (v2i32 (REV64v2i32 FPR64:$src))>; 9049def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), 9050 (v2i32 (REV64v2i32 FPR64:$src))>; 9051def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), 9052 (v2i32 (REV32v4i16 FPR64:$src))>; 9053def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), 9054 (v2i32 (REV32v4i16 FPR64:$src))>; 9055} 9056def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>; 9057 9058let Predicates = [IsLE] in { 9059def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>; 9060def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>; 9061def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>; 9062def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>; 9063def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>; 9064def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>; 9065} 9066let Predicates = [IsBE] in { 9067def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), 9068 (v4i16 (REV64v4i16 FPR64:$src))>; 9069def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), 9070 (v4i16 (REV32v4i16 FPR64:$src))>; 9071def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), 9072 (v4i16 (REV16v8i8 FPR64:$src))>; 9073def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), 9074 (v4i16 (REV64v4i16 FPR64:$src))>; 9075def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), 9076 (v4i16 (REV32v4i16 FPR64:$src))>; 9077def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), 9078 (v4i16 (REV64v4i16 FPR64:$src))>; 9079} 9080def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>; 9081def : Pat<(v4i16 (bitconvert (v4bf16 FPR64:$src))), (v4i16 FPR64:$src)>; 9082 9083let Predicates = [IsLE] in { 9084def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>; 9085def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>; 9086def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>; 9087def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 FPR64:$src)>; 9088def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>; 9089def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>; 9090 9091def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), (v4bf16 FPR64:$src)>; 9092def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>; 9093def : Pat<(v4bf16 (bitconvert (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>; 9094def : Pat<(v4bf16 (bitconvert (f64 FPR64:$src))), (v4bf16 FPR64:$src)>; 9095def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), (v4bf16 FPR64:$src)>; 9096def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), (v4bf16 FPR64:$src)>; 9097} 9098let Predicates = [IsBE] in { 9099def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), 9100 (v4f16 (REV64v4i16 FPR64:$src))>; 9101def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), 9102 (v4f16 (REV32v4i16 FPR64:$src))>; 9103def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), 9104 (v4f16 (REV16v8i8 FPR64:$src))>; 9105def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), 9106 (v4f16 (REV64v4i16 FPR64:$src))>; 9107def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), 9108 (v4f16 (REV32v4i16 FPR64:$src))>; 9109def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), 9110 (v4f16 (REV64v4i16 FPR64:$src))>; 9111 9112def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), 9113 (v4bf16 (REV64v4i16 FPR64:$src))>; 9114def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), 9115 (v4bf16 (REV32v4i16 FPR64:$src))>; 9116def : Pat<(v4bf16 (bitconvert (v8i8 FPR64:$src))), 9117 (v4bf16 (REV16v8i8 FPR64:$src))>; 9118def : Pat<(v4bf16 (bitconvert (f64 FPR64:$src))), 9119 (v4bf16 (REV64v4i16 FPR64:$src))>; 9120def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), 9121 (v4bf16 (REV32v4i16 FPR64:$src))>; 9122def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), 9123 (v4bf16 (REV64v4i16 FPR64:$src))>; 9124} 9125def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>; 9126def : Pat<(v4bf16 (bitconvert (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>; 9127 9128let Predicates = [IsLE] in { 9129def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>; 9130def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>; 9131def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>; 9132def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>; 9133def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>; 9134def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>; 9135def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 FPR64:$src)>; 9136def : Pat<(v8i8 (bitconvert (v4bf16 FPR64:$src))), (v8i8 FPR64:$src)>; 9137} 9138let Predicates = [IsBE] in { 9139def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), 9140 (v8i8 (REV64v8i8 FPR64:$src))>; 9141def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), 9142 (v8i8 (REV32v8i8 FPR64:$src))>; 9143def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), 9144 (v8i8 (REV16v8i8 FPR64:$src))>; 9145def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), 9146 (v8i8 (REV64v8i8 FPR64:$src))>; 9147def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), 9148 (v8i8 (REV32v8i8 FPR64:$src))>; 9149def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), 9150 (v8i8 (REV64v8i8 FPR64:$src))>; 9151def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), 9152 (v8i8 (REV16v8i8 FPR64:$src))>; 9153def : Pat<(v8i8 (bitconvert (v4bf16 FPR64:$src))), 9154 (v8i8 (REV16v8i8 FPR64:$src))>; 9155} 9156 9157let Predicates = [IsLE] in { 9158def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>; 9159def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>; 9160def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>; 9161def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>; 9162def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 FPR64:$src)>; 9163def : Pat<(f64 (bitconvert (v4bf16 FPR64:$src))), (f64 FPR64:$src)>; 9164} 9165let Predicates = [IsBE] in { 9166def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), 9167 (f64 (REV64v2i32 FPR64:$src))>; 9168def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), 9169 (f64 (REV64v4i16 FPR64:$src))>; 9170def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), 9171 (f64 (REV64v2i32 FPR64:$src))>; 9172def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), 9173 (f64 (REV64v8i8 FPR64:$src))>; 9174def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), 9175 (f64 (REV64v4i16 FPR64:$src))>; 9176def : Pat<(f64 (bitconvert (v4bf16 FPR64:$src))), 9177 (f64 (REV64v4i16 FPR64:$src))>; 9178} 9179def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>; 9180def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>; 9181 9182let Predicates = [IsLE] in { 9183def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>; 9184def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>; 9185def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>; 9186def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>; 9187def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>; 9188def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), (v1f64 FPR64:$src)>; 9189} 9190let Predicates = [IsBE] in { 9191def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), 9192 (v1f64 (REV64v2i32 FPR64:$src))>; 9193def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), 9194 (v1f64 (REV64v4i16 FPR64:$src))>; 9195def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), 9196 (v1f64 (REV64v8i8 FPR64:$src))>; 9197def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), 9198 (v1f64 (REV64v2i32 FPR64:$src))>; 9199def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), 9200 (v1f64 (REV64v4i16 FPR64:$src))>; 9201def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), 9202 (v1f64 (REV64v4i16 FPR64:$src))>; 9203} 9204def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>; 9205def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>; 9206 9207let Predicates = [IsLE] in { 9208def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>; 9209def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>; 9210def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>; 9211def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>; 9212def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>; 9213def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>; 9214def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), (v2f32 FPR64:$src)>; 9215} 9216let Predicates = [IsBE] in { 9217def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), 9218 (v2f32 (REV64v2i32 FPR64:$src))>; 9219def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), 9220 (v2f32 (REV32v4i16 FPR64:$src))>; 9221def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), 9222 (v2f32 (REV32v8i8 FPR64:$src))>; 9223def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), 9224 (v2f32 (REV64v2i32 FPR64:$src))>; 9225def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), 9226 (v2f32 (REV64v2i32 FPR64:$src))>; 9227def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), 9228 (v2f32 (REV32v4i16 FPR64:$src))>; 9229def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), 9230 (v2f32 (REV32v4i16 FPR64:$src))>; 9231} 9232def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>; 9233 9234let Predicates = [IsLE] in { 9235def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>; 9236def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>; 9237def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>; 9238def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>; 9239def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>; 9240def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>; 9241def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), (f128 FPR128:$src)>; 9242def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>; 9243} 9244let Predicates = [IsBE] in { 9245def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), 9246 (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; 9247def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), 9248 (f128 (EXTv16i8 (REV64v4i32 FPR128:$src), 9249 (REV64v4i32 FPR128:$src), (i32 8)))>; 9250def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), 9251 (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), 9252 (REV64v8i16 FPR128:$src), (i32 8)))>; 9253def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), 9254 (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), 9255 (REV64v8i16 FPR128:$src), (i32 8)))>; 9256def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), 9257 (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), 9258 (REV64v8i16 FPR128:$src), (i32 8)))>; 9259def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), 9260 (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; 9261def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), 9262 (f128 (EXTv16i8 (REV64v4i32 FPR128:$src), 9263 (REV64v4i32 FPR128:$src), (i32 8)))>; 9264def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), 9265 (f128 (EXTv16i8 (REV64v16i8 FPR128:$src), 9266 (REV64v16i8 FPR128:$src), (i32 8)))>; 9267} 9268 9269let Predicates = [IsLE] in { 9270def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>; 9271def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>; 9272def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>; 9273def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>; 9274def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), (v2f64 FPR128:$src)>; 9275def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>; 9276def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>; 9277} 9278let Predicates = [IsBE] in { 9279def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), 9280 (v2f64 (EXTv16i8 FPR128:$src, 9281 FPR128:$src, (i32 8)))>; 9282def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), 9283 (v2f64 (REV64v4i32 FPR128:$src))>; 9284def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), 9285 (v2f64 (REV64v8i16 FPR128:$src))>; 9286def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), 9287 (v2f64 (REV64v8i16 FPR128:$src))>; 9288def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), 9289 (v2f64 (REV64v8i16 FPR128:$src))>; 9290def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), 9291 (v2f64 (REV64v16i8 FPR128:$src))>; 9292def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), 9293 (v2f64 (REV64v4i32 FPR128:$src))>; 9294} 9295def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>; 9296 9297let Predicates = [IsLE] in { 9298def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>; 9299def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>; 9300def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>; 9301def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), (v4f32 FPR128:$src)>; 9302def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>; 9303def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>; 9304def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>; 9305} 9306let Predicates = [IsBE] in { 9307def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), 9308 (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src), 9309 (REV64v4i32 FPR128:$src), (i32 8)))>; 9310def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), 9311 (v4f32 (REV32v8i16 FPR128:$src))>; 9312def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), 9313 (v4f32 (REV32v8i16 FPR128:$src))>; 9314def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), 9315 (v4f32 (REV32v8i16 FPR128:$src))>; 9316def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), 9317 (v4f32 (REV32v16i8 FPR128:$src))>; 9318def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), 9319 (v4f32 (REV64v4i32 FPR128:$src))>; 9320def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), 9321 (v4f32 (REV64v4i32 FPR128:$src))>; 9322} 9323def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>; 9324 9325let Predicates = [IsLE] in { 9326def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>; 9327def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>; 9328def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>; 9329def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>; 9330def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>; 9331def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>; 9332def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), (v2i64 FPR128:$src)>; 9333} 9334let Predicates = [IsBE] in { 9335def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), 9336 (v2i64 (EXTv16i8 FPR128:$src, 9337 FPR128:$src, (i32 8)))>; 9338def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), 9339 (v2i64 (REV64v4i32 FPR128:$src))>; 9340def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), 9341 (v2i64 (REV64v8i16 FPR128:$src))>; 9342def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), 9343 (v2i64 (REV64v16i8 FPR128:$src))>; 9344def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), 9345 (v2i64 (REV64v4i32 FPR128:$src))>; 9346def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), 9347 (v2i64 (REV64v8i16 FPR128:$src))>; 9348def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), 9349 (v2i64 (REV64v8i16 FPR128:$src))>; 9350} 9351def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>; 9352 9353let Predicates = [IsLE] in { 9354def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>; 9355def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>; 9356def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>; 9357def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>; 9358def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>; 9359def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>; 9360def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), (v4i32 FPR128:$src)>; 9361} 9362let Predicates = [IsBE] in { 9363def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), 9364 (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src), 9365 (REV64v4i32 FPR128:$src), 9366 (i32 8)))>; 9367def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), 9368 (v4i32 (REV64v4i32 FPR128:$src))>; 9369def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), 9370 (v4i32 (REV32v8i16 FPR128:$src))>; 9371def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), 9372 (v4i32 (REV32v16i8 FPR128:$src))>; 9373def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), 9374 (v4i32 (REV64v4i32 FPR128:$src))>; 9375def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), 9376 (v4i32 (REV32v8i16 FPR128:$src))>; 9377def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), 9378 (v4i32 (REV32v8i16 FPR128:$src))>; 9379} 9380def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>; 9381 9382let Predicates = [IsLE] in { 9383def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>; 9384def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>; 9385def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>; 9386def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>; 9387def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>; 9388def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>; 9389} 9390let Predicates = [IsBE] in { 9391def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), 9392 (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src), 9393 (REV64v8i16 FPR128:$src), 9394 (i32 8)))>; 9395def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), 9396 (v8i16 (REV64v8i16 FPR128:$src))>; 9397def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), 9398 (v8i16 (REV32v8i16 FPR128:$src))>; 9399def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), 9400 (v8i16 (REV16v16i8 FPR128:$src))>; 9401def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), 9402 (v8i16 (REV64v8i16 FPR128:$src))>; 9403def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), 9404 (v8i16 (REV32v8i16 FPR128:$src))>; 9405} 9406def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>; 9407def : Pat<(v8i16 (bitconvert (v8bf16 FPR128:$src))), (v8i16 FPR128:$src)>; 9408 9409let Predicates = [IsLE] in { 9410def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 FPR128:$src)>; 9411def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>; 9412def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>; 9413def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>; 9414def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>; 9415def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>; 9416 9417def : Pat<(v8bf16 (bitconvert (f128 FPR128:$src))), (v8bf16 FPR128:$src)>; 9418def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>; 9419def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>; 9420def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>; 9421def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>; 9422def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>; 9423} 9424let Predicates = [IsBE] in { 9425def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), 9426 (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src), 9427 (REV64v8i16 FPR128:$src), 9428 (i32 8)))>; 9429def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), 9430 (v8f16 (REV64v8i16 FPR128:$src))>; 9431def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), 9432 (v8f16 (REV32v8i16 FPR128:$src))>; 9433def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), 9434 (v8f16 (REV16v16i8 FPR128:$src))>; 9435def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), 9436 (v8f16 (REV64v8i16 FPR128:$src))>; 9437def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), 9438 (v8f16 (REV32v8i16 FPR128:$src))>; 9439 9440def : Pat<(v8bf16 (bitconvert (f128 FPR128:$src))), 9441 (v8bf16 (EXTv16i8 (REV64v8i16 FPR128:$src), 9442 (REV64v8i16 FPR128:$src), 9443 (i32 8)))>; 9444def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), 9445 (v8bf16 (REV64v8i16 FPR128:$src))>; 9446def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), 9447 (v8bf16 (REV32v8i16 FPR128:$src))>; 9448def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), 9449 (v8bf16 (REV16v16i8 FPR128:$src))>; 9450def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), 9451 (v8bf16 (REV64v8i16 FPR128:$src))>; 9452def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), 9453 (v8bf16 (REV32v8i16 FPR128:$src))>; 9454} 9455def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>; 9456def : Pat<(v8bf16 (bitconvert (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>; 9457 9458let Predicates = [IsLE] in { 9459def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>; 9460def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>; 9461def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>; 9462def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>; 9463def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>; 9464def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>; 9465def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>; 9466def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), (v16i8 FPR128:$src)>; 9467} 9468let Predicates = [IsBE] in { 9469def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), 9470 (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src), 9471 (REV64v16i8 FPR128:$src), 9472 (i32 8)))>; 9473def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), 9474 (v16i8 (REV64v16i8 FPR128:$src))>; 9475def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), 9476 (v16i8 (REV32v16i8 FPR128:$src))>; 9477def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), 9478 (v16i8 (REV16v16i8 FPR128:$src))>; 9479def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), 9480 (v16i8 (REV64v16i8 FPR128:$src))>; 9481def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), 9482 (v16i8 (REV32v16i8 FPR128:$src))>; 9483def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), 9484 (v16i8 (REV16v16i8 FPR128:$src))>; 9485def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), 9486 (v16i8 (REV16v16i8 FPR128:$src))>; 9487} 9488 9489def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))), 9490 (EXTRACT_SUBREG V128:$Rn, dsub)>; 9491def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))), 9492 (EXTRACT_SUBREG V128:$Rn, dsub)>; 9493def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))), 9494 (EXTRACT_SUBREG V128:$Rn, dsub)>; 9495def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))), 9496 (EXTRACT_SUBREG V128:$Rn, dsub)>; 9497def : Pat<(v4bf16 (extract_subvector V128:$Rn, (i64 0))), 9498 (EXTRACT_SUBREG V128:$Rn, dsub)>; 9499def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))), 9500 (EXTRACT_SUBREG V128:$Rn, dsub)>; 9501def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))), 9502 (EXTRACT_SUBREG V128:$Rn, dsub)>; 9503def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))), 9504 (EXTRACT_SUBREG V128:$Rn, dsub)>; 9505 9506def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))), 9507 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; 9508def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))), 9509 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; 9510def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))), 9511 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; 9512def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))), 9513 (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; 9514 9515// A 64-bit subvector insert to the first 128-bit vector position 9516// is a subregister copy that needs no instruction. 9517multiclass InsertSubvectorUndef<ValueType Ty> { 9518 def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)), 9519 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 9520 def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)), 9521 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 9522 def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)), 9523 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 9524 def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)), 9525 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 9526 def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)), 9527 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 9528 def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)), 9529 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 9530 def : Pat<(insert_subvector undef, (v4bf16 FPR64:$src), (Ty 0)), 9531 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 9532 def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)), 9533 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>; 9534} 9535 9536defm : InsertSubvectorUndef<i32>; 9537defm : InsertSubvectorUndef<i64>; 9538 9539// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64 9540// or v2f32. 9541def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)), 9542 (vector_extract (v2i64 FPR128:$Rn), (i64 1)))), 9543 (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>; 9544def : Pat<(f64 (any_fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)), 9545 (vector_extract (v2f64 FPR128:$Rn), (i64 1)))), 9546 (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>; 9547 // vector_extract on 64-bit vectors gets promoted to a 128 bit vector, 9548 // so we match on v4f32 here, not v2f32. This will also catch adding 9549 // the low two lanes of a true v4f32 vector. 9550def : Pat<(any_fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)), 9551 (vector_extract (v4f32 FPR128:$Rn), (i64 1))), 9552 (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>; 9553def : Pat<(any_fadd (vector_extract (v8f16 FPR128:$Rn), (i64 0)), 9554 (vector_extract (v8f16 FPR128:$Rn), (i64 1))), 9555 (f16 (FADDPv2i16p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>; 9556 9557// Prefer using the bottom lanes of addp Rn, Rn compared to 9558// addp extractlow(Rn), extracthigh(Rn) 9559def : Pat<(AArch64addp (v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 0))), 9560 (v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 2)))), 9561 (v2i32 (EXTRACT_SUBREG (ADDPv4i32 $Rn, $Rn), dsub))>; 9562def : Pat<(AArch64addp (v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 0))), 9563 (v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 4)))), 9564 (v4i16 (EXTRACT_SUBREG (ADDPv8i16 $Rn, $Rn), dsub))>; 9565def : Pat<(AArch64addp (v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 0))), 9566 (v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 8)))), 9567 (v8i8 (EXTRACT_SUBREG (ADDPv16i8 $Rn, $Rn), dsub))>; 9568 9569def : Pat<(AArch64faddp (v2f32 (extract_subvector (v4f32 FPR128:$Rn), (i64 0))), 9570 (v2f32 (extract_subvector (v4f32 FPR128:$Rn), (i64 2)))), 9571 (v2f32 (EXTRACT_SUBREG (FADDPv4f32 $Rn, $Rn), dsub))>; 9572def : Pat<(AArch64faddp (v4f16 (extract_subvector (v8f16 FPR128:$Rn), (i64 0))), 9573 (v4f16 (extract_subvector (v8f16 FPR128:$Rn), (i64 4)))), 9574 (v4f16 (EXTRACT_SUBREG (FADDPv8f16 $Rn, $Rn), dsub))>; 9575 9576// add(uzp1(X, Y), uzp2(X, Y)) -> addp(X, Y) 9577def : Pat<(v2i64 (add (AArch64zip1 (v2i64 FPR128:$Rn), (v2i64 FPR128:$Rm)), 9578 (AArch64zip2 (v2i64 FPR128:$Rn), (v2i64 FPR128:$Rm)))), 9579 (v2i64 (ADDPv2i64 $Rn, $Rm))>; 9580def : Pat<(v4i32 (add (AArch64uzp1 (v4i32 FPR128:$Rn), (v4i32 FPR128:$Rm)), 9581 (AArch64uzp2 (v4i32 FPR128:$Rn), (v4i32 FPR128:$Rm)))), 9582 (v4i32 (ADDPv4i32 $Rn, $Rm))>; 9583def : Pat<(v8i16 (add (AArch64uzp1 (v8i16 FPR128:$Rn), (v8i16 FPR128:$Rm)), 9584 (AArch64uzp2 (v8i16 FPR128:$Rn), (v8i16 FPR128:$Rm)))), 9585 (v8i16 (ADDPv8i16 $Rn, $Rm))>; 9586def : Pat<(v16i8 (add (AArch64uzp1 (v16i8 FPR128:$Rn), (v16i8 FPR128:$Rm)), 9587 (AArch64uzp2 (v16i8 FPR128:$Rn), (v16i8 FPR128:$Rm)))), 9588 (v16i8 (ADDPv16i8 $Rn, $Rm))>; 9589 9590def : Pat<(v2f64 (fadd (AArch64zip1 (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm)), 9591 (AArch64zip2 (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm)))), 9592 (v2f64 (FADDPv2f64 $Rn, $Rm))>; 9593def : Pat<(v4f32 (fadd (AArch64uzp1 (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm)), 9594 (AArch64uzp2 (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm)))), 9595 (v4f32 (FADDPv4f32 $Rn, $Rm))>; 9596let Predicates = [HasFullFP16] in 9597def : Pat<(v8f16 (fadd (AArch64uzp1 (v8f16 FPR128:$Rn), (v8f16 FPR128:$Rm)), 9598 (AArch64uzp2 (v8f16 FPR128:$Rn), (v8f16 FPR128:$Rm)))), 9599 (v8f16 (FADDPv8f16 $Rn, $Rm))>; 9600 9601// Scalar 64-bit shifts in FPR64 registers. 9602def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), 9603 (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; 9604def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), 9605 (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>; 9606def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), 9607 (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; 9608def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), 9609 (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; 9610 9611// Patterns for nontemporal/no-allocate stores. 9612// We have to resort to tricks to turn a single-input store into a store pair, 9613// because there is no single-input nontemporal store, only STNP. 9614let Predicates = [IsLE] in { 9615let AddedComplexity = 15 in { 9616class NTStore128Pat<ValueType VT> : 9617 Pat<(nontemporalstore (VT FPR128:$Rt), 9618 (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), 9619 (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub), 9620 (DUPi64 FPR128:$Rt, (i64 1)), 9621 GPR64sp:$Rn, simm7s8:$offset)>; 9622 9623def : NTStore128Pat<v2i64>; 9624def : NTStore128Pat<v4i32>; 9625def : NTStore128Pat<v8i16>; 9626def : NTStore128Pat<v16i8>; 9627 9628class NTStore64Pat<ValueType VT> : 9629 Pat<(nontemporalstore (VT FPR64:$Rt), 9630 (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)), 9631 (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub), 9632 (DUPi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)), 9633 GPR64sp:$Rn, simm7s4:$offset)>; 9634 9635// FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64? 9636def : NTStore64Pat<v1f64>; 9637def : NTStore64Pat<v1i64>; 9638def : NTStore64Pat<v2i32>; 9639def : NTStore64Pat<v4i16>; 9640def : NTStore64Pat<v8i8>; 9641 9642def : Pat<(nontemporalstore GPR64:$Rt, 9643 (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)), 9644 (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), 9645 (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32), 9646 GPR64sp:$Rn, simm7s4:$offset)>; 9647} // AddedComplexity=10 9648} // Predicates = [IsLE] 9649 9650// Tail call return handling. These are all compiler pseudo-instructions, 9651// so no encoding information or anything like that. 9652let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in { 9653 def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>, 9654 Sched<[WriteBrReg]>; 9655 def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>, 9656 Sched<[WriteBrReg]>; 9657 // Indirect tail-call with any register allowed, used by MachineOutliner when 9658 // this is proven safe. 9659 // FIXME: If we have to add any more hacks like this, we should instead relax 9660 // some verifier checks for outlined functions. 9661 def TCRETURNriALL : Pseudo<(outs), (ins GPR64:$dst, i32imm:$FPDiff), []>, 9662 Sched<[WriteBrReg]>; 9663 9664 // Indirect tail-calls with reduced register classes, needed for BTI and 9665 // PAuthLR. 9666 def TCRETURNrix16x17 : Pseudo<(outs), (ins tcGPRx16x17:$dst, i32imm:$FPDiff), []>, 9667 Sched<[WriteBrReg]>; 9668 def TCRETURNrix17 : Pseudo<(outs), (ins tcGPRx17:$dst, i32imm:$FPDiff), []>, 9669 Sched<[WriteBrReg]>; 9670 def TCRETURNrinotx16 : Pseudo<(outs), (ins tcGPRnotx16:$dst, i32imm:$FPDiff), []>, 9671 Sched<[WriteBrReg]>; 9672} 9673 9674def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)), 9675 (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>, 9676 Requires<[TailCallAny]>; 9677def : Pat<(AArch64tcret tcGPRx16x17:$dst, (i32 timm:$FPDiff)), 9678 (TCRETURNrix16x17 tcGPRx16x17:$dst, imm:$FPDiff)>, 9679 Requires<[TailCallX16X17]>; 9680def : Pat<(AArch64tcret tcGPRx17:$dst, (i32 timm:$FPDiff)), 9681 (TCRETURNrix17 tcGPRx17:$dst, imm:$FPDiff)>, 9682 Requires<[TailCallX17]>; 9683def : Pat<(AArch64tcret tcGPRnotx16:$dst, (i32 timm:$FPDiff)), 9684 (TCRETURNrinotx16 tcGPRnotx16:$dst, imm:$FPDiff)>, 9685 Requires<[TailCallNotX16]>; 9686 9687def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)), 9688 (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>; 9689def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)), 9690 (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>; 9691 9692def MOVMCSym : Pseudo<(outs GPR64:$dst), (ins i64imm:$sym), []>, Sched<[]>; 9693def : Pat<(i64 (AArch64LocalRecover mcsym:$sym)), (MOVMCSym mcsym:$sym)>; 9694 9695// Extracting lane zero is a special case where we can just use a plain 9696// EXTRACT_SUBREG instruction, which will become FMOV. This is easier for the 9697// rest of the compiler, especially the register allocator and copy propagation, 9698// to reason about, so is preferred when it's possible to use it. 9699let AddedComplexity = 10 in { 9700 def : Pat<(i64 (extractelt (v2i64 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, dsub)>; 9701 def : Pat<(i32 (extractelt (v4i32 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, ssub)>; 9702 def : Pat<(i32 (extractelt (v2i32 V64:$V), (i64 0))), (EXTRACT_SUBREG V64:$V, ssub)>; 9703} 9704 9705// dot_v4i8 9706class mul_v4i8<SDPatternOperator ldop> : 9707 PatFrag<(ops node:$Rn, node:$Rm, node:$offset), 9708 (mul (ldop (add node:$Rn, node:$offset)), 9709 (ldop (add node:$Rm, node:$offset)))>; 9710class mulz_v4i8<SDPatternOperator ldop> : 9711 PatFrag<(ops node:$Rn, node:$Rm), 9712 (mul (ldop node:$Rn), (ldop node:$Rm))>; 9713 9714def load_v4i8 : 9715 OutPatFrag<(ops node:$R), 9716 (INSERT_SUBREG 9717 (v2i32 (IMPLICIT_DEF)), 9718 (i32 (COPY_TO_REGCLASS (LDRWui node:$R, (i64 0)), FPR32)), 9719 ssub)>; 9720 9721class dot_v4i8<Instruction DOT, SDPatternOperator ldop> : 9722 Pat<(i32 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 3)), 9723 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 2)), 9724 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 1)), 9725 (mulz_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm))))), 9726 (EXTRACT_SUBREG (i64 (DOT (DUPv2i32gpr WZR), 9727 (load_v4i8 GPR64sp:$Rn), 9728 (load_v4i8 GPR64sp:$Rm))), 9729 sub_32)>, Requires<[HasDotProd]>; 9730 9731// dot_v8i8 9732class ee_v8i8<SDPatternOperator extend> : 9733 PatFrag<(ops node:$V, node:$K), 9734 (v4i16 (extract_subvector (v8i16 (extend node:$V)), node:$K))>; 9735 9736class mul_v8i8<SDPatternOperator mulop, SDPatternOperator extend> : 9737 PatFrag<(ops node:$M, node:$N, node:$K), 9738 (mulop (v4i16 (ee_v8i8<extend> node:$M, node:$K)), 9739 (v4i16 (ee_v8i8<extend> node:$N, node:$K)))>; 9740 9741class idot_v8i8<SDPatternOperator mulop, SDPatternOperator extend> : 9742 PatFrag<(ops node:$M, node:$N), 9743 (i32 (extractelt 9744 (v4i32 (AArch64uaddv 9745 (add (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 0)), 9746 (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 4))))), 9747 (i64 0)))>; 9748 9749// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm 9750def VADDV_32 : OutPatFrag<(ops node:$R), (ADDPv2i32 node:$R, node:$R)>; 9751 9752class odot_v8i8<Instruction DOT> : 9753 OutPatFrag<(ops node:$Vm, node:$Vn), 9754 (EXTRACT_SUBREG 9755 (VADDV_32 9756 (i64 (DOT (DUPv2i32gpr WZR), 9757 (v8i8 node:$Vm), 9758 (v8i8 node:$Vn)))), 9759 sub_32)>; 9760 9761class dot_v8i8<Instruction DOT, SDPatternOperator mulop, 9762 SDPatternOperator extend> : 9763 Pat<(idot_v8i8<mulop, extend> V64:$Vm, V64:$Vn), 9764 (odot_v8i8<DOT> V64:$Vm, V64:$Vn)>, 9765 Requires<[HasDotProd]>; 9766 9767// dot_v16i8 9768class ee_v16i8<SDPatternOperator extend> : 9769 PatFrag<(ops node:$V, node:$K1, node:$K2), 9770 (v4i16 (extract_subvector 9771 (v8i16 (extend 9772 (v8i8 (extract_subvector node:$V, node:$K1)))), node:$K2))>; 9773 9774class mul_v16i8<SDPatternOperator mulop, SDPatternOperator extend> : 9775 PatFrag<(ops node:$M, node:$N, node:$K1, node:$K2), 9776 (v4i32 9777 (mulop (v4i16 (ee_v16i8<extend> node:$M, node:$K1, node:$K2)), 9778 (v4i16 (ee_v16i8<extend> node:$N, node:$K1, node:$K2))))>; 9779 9780class idot_v16i8<SDPatternOperator m, SDPatternOperator x> : 9781 PatFrag<(ops node:$M, node:$N), 9782 (i32 (extractelt 9783 (v4i32 (AArch64uaddv 9784 (add 9785 (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 0)), 9786 (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 0))), 9787 (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 4)), 9788 (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 4)))))), 9789 (i64 0)))>; 9790 9791class odot_v16i8<Instruction DOT> : 9792 OutPatFrag<(ops node:$Vm, node:$Vn), 9793 (i32 (ADDVv4i32v 9794 (DOT (DUPv4i32gpr WZR), node:$Vm, node:$Vn)))>; 9795 9796class dot_v16i8<Instruction DOT, SDPatternOperator mulop, 9797 SDPatternOperator extend> : 9798 Pat<(idot_v16i8<mulop, extend> V128:$Vm, V128:$Vn), 9799 (odot_v16i8<DOT> V128:$Vm, V128:$Vn)>, 9800 Requires<[HasDotProd]>; 9801 9802let AddedComplexity = 10 in { 9803 def : dot_v4i8<SDOTv8i8, sextloadi8>; 9804 def : dot_v4i8<UDOTv8i8, zextloadi8>; 9805 def : dot_v8i8<SDOTv8i8, AArch64smull, sext>; 9806 def : dot_v8i8<UDOTv8i8, AArch64umull, zext>; 9807 def : dot_v16i8<SDOTv16i8, AArch64smull, sext>; 9808 def : dot_v16i8<UDOTv16i8, AArch64umull, zext>; 9809 9810 // FIXME: add patterns to generate vector by element dot product. 9811 // FIXME: add SVE dot-product patterns. 9812} 9813 9814// Custom DAG nodes and isel rules to make a 64-byte block out of eight GPRs, 9815// so that it can be used as input to inline asm, and vice versa. 9816def LS64_BUILD : SDNode<"AArch64ISD::LS64_BUILD", SDTypeProfile<1, 8, []>>; 9817def LS64_EXTRACT : SDNode<"AArch64ISD::LS64_EXTRACT", SDTypeProfile<1, 2, []>>; 9818def : Pat<(i64x8 (LS64_BUILD GPR64:$x0, GPR64:$x1, GPR64:$x2, GPR64:$x3, 9819 GPR64:$x4, GPR64:$x5, GPR64:$x6, GPR64:$x7)), 9820 (REG_SEQUENCE GPR64x8Class, 9821 $x0, x8sub_0, $x1, x8sub_1, $x2, x8sub_2, $x3, x8sub_3, 9822 $x4, x8sub_4, $x5, x8sub_5, $x6, x8sub_6, $x7, x8sub_7)>; 9823foreach i = 0-7 in { 9824 def : Pat<(i64 (LS64_EXTRACT (i64x8 GPR64x8:$val), (i32 i))), 9825 (EXTRACT_SUBREG $val, !cast<SubRegIndex>("x8sub_"#i))>; 9826} 9827 9828let Predicates = [HasLS64] in { 9829 def LD64B: LoadStore64B<0b101, "ld64b", (ins GPR64sp:$Rn), 9830 (outs GPR64x8:$Rt)>; 9831 def ST64B: LoadStore64B<0b001, "st64b", (ins GPR64x8:$Rt, GPR64sp:$Rn), 9832 (outs)>; 9833 def ST64BV: Store64BV<0b011, "st64bv">; 9834 def ST64BV0: Store64BV<0b010, "st64bv0">; 9835 9836 class ST64BPattern<Intrinsic intrinsic, Instruction instruction> 9837 : Pat<(intrinsic GPR64sp:$addr, GPR64:$x0, GPR64:$x1, GPR64:$x2, GPR64:$x3, GPR64:$x4, GPR64:$x5, GPR64:$x6, GPR64:$x7), 9838 (instruction (REG_SEQUENCE GPR64x8Class, $x0, x8sub_0, $x1, x8sub_1, $x2, x8sub_2, $x3, x8sub_3, $x4, x8sub_4, $x5, x8sub_5, $x6, x8sub_6, $x7, x8sub_7), $addr)>; 9839 9840 def : ST64BPattern<int_aarch64_st64b, ST64B>; 9841 def : ST64BPattern<int_aarch64_st64bv, ST64BV>; 9842 def : ST64BPattern<int_aarch64_st64bv0, ST64BV0>; 9843} 9844 9845let Predicates = [HasMOPS] in { 9846 let Defs = [NZCV] in { 9847 defm CPYFP : MOPSMemoryCopyInsns<0b00, "cpyfp">; 9848 9849 defm CPYP : MOPSMemoryMoveInsns<0b00, "cpyp">; 9850 9851 defm SETP : MOPSMemorySetInsns<0b00, "setp">; 9852 } 9853 let Uses = [NZCV] in { 9854 defm CPYFM : MOPSMemoryCopyInsns<0b01, "cpyfm">; 9855 defm CPYFE : MOPSMemoryCopyInsns<0b10, "cpyfe">; 9856 9857 defm CPYM : MOPSMemoryMoveInsns<0b01, "cpym">; 9858 defm CPYE : MOPSMemoryMoveInsns<0b10, "cpye">; 9859 9860 defm SETM : MOPSMemorySetInsns<0b01, "setm">; 9861 defm SETE : MOPSMemorySetInsns<0b10, "sete">; 9862 } 9863} 9864let Predicates = [HasMOPS, HasMTE] in { 9865 let Defs = [NZCV] in { 9866 defm SETGP : MOPSMemorySetTaggingInsns<0b00, "setgp">; 9867 } 9868 let Uses = [NZCV] in { 9869 defm SETGM : MOPSMemorySetTaggingInsns<0b01, "setgm">; 9870 // Can't use SETGE because it's a reserved name in TargetSelectionDAG.td 9871 defm MOPSSETGE : MOPSMemorySetTaggingInsns<0b10, "setge">; 9872 } 9873} 9874 9875// MOPS Node operands: 0: Dst, 1: Src or Value, 2: Size, 3: Chain 9876// MOPS Node results: 0: Dst writeback, 1: Size writeback, 2: Chain 9877def SDT_AArch64mops : SDTypeProfile<2, 3, [ SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2> ]>; 9878def AArch64mops_memset : SDNode<"AArch64ISD::MOPS_MEMSET", SDT_AArch64mops>; 9879def AArch64mops_memset_tagging : SDNode<"AArch64ISD::MOPS_MEMSET_TAGGING", SDT_AArch64mops>; 9880def AArch64mops_memcopy : SDNode<"AArch64ISD::MOPS_MEMCOPY", SDT_AArch64mops>; 9881def AArch64mops_memmove : SDNode<"AArch64ISD::MOPS_MEMMOVE", SDT_AArch64mops>; 9882 9883// MOPS operations always contain three 4-byte instructions 9884let Predicates = [HasMOPS], Defs = [NZCV], Size = 12, mayStore = 1 in { 9885 let mayLoad = 1 in { 9886 def MOPSMemoryCopyPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64common:$Rs_wb, GPR64:$Rn_wb), 9887 (ins GPR64common:$Rd, GPR64common:$Rs, GPR64:$Rn), 9888 [], "$Rd = $Rd_wb,$Rs = $Rs_wb,$Rn = $Rn_wb">, Sched<[]>; 9889 def MOPSMemoryMovePseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64common:$Rs_wb, GPR64:$Rn_wb), 9890 (ins GPR64common:$Rd, GPR64common:$Rs, GPR64:$Rn), 9891 [], "$Rd = $Rd_wb,$Rs = $Rs_wb,$Rn = $Rn_wb">, Sched<[]>; 9892 } 9893 let mayLoad = 0 in { 9894 def MOPSMemorySetPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64:$Rn_wb), 9895 (ins GPR64common:$Rd, GPR64:$Rn, GPR64:$Rm), 9896 [], "$Rd = $Rd_wb,$Rn = $Rn_wb,@earlyclobber $Rn_wb">, Sched<[]>; 9897 } 9898} 9899let Predicates = [HasMOPS, HasMTE], Defs = [NZCV], Size = 12, mayLoad = 0, mayStore = 1 in { 9900 def MOPSMemorySetTaggingPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64:$Rn_wb), 9901 (ins GPR64common:$Rd, GPR64:$Rn, GPR64:$Rm), 9902 [], "$Rd = $Rd_wb,$Rn = $Rn_wb">, Sched<[]>; 9903} 9904 9905//----------------------------------------------------------------------------- 9906// v8.3 Pointer Authentication late patterns 9907 9908def : Pat<(int_ptrauth_blend GPR64:$Rd, imm64_0_65535:$imm), 9909 (PAUTH_BLEND GPR64:$Rd, (trunc_imm imm64_0_65535:$imm))>; 9910def : Pat<(int_ptrauth_blend GPR64:$Rd, GPR64:$Rn), 9911 (BFMXri GPR64:$Rd, GPR64:$Rn, 16, 15)>; 9912 9913//----------------------------------------------------------------------------- 9914 9915// This gets lowered into an instruction sequence of 20 bytes 9916let Defs = [X16, X17], mayStore = 1, isCodeGenOnly = 1, Size = 20 in 9917def StoreSwiftAsyncContext 9918 : Pseudo<(outs), (ins GPR64:$ctx, GPR64sp:$base, simm9:$offset), 9919 []>, Sched<[]>; 9920 9921def AArch64AssertZExtBool : SDNode<"AArch64ISD::ASSERT_ZEXT_BOOL", SDT_assert>; 9922def : Pat<(AArch64AssertZExtBool GPR32:$op), 9923 (i32 GPR32:$op)>; 9924 9925//===----------------------------===// 9926// 2022 Architecture Extensions: 9927//===----------------------------===// 9928 9929def : InstAlias<"clrbhb", (HINT 22), 0>; 9930let Predicates = [HasCLRBHB] in { 9931 def : InstAlias<"clrbhb", (HINT 22), 1>; 9932} 9933 9934//===----------------------------------------------------------------------===// 9935// Translation Hardening Extension (FEAT_THE) 9936//===----------------------------------------------------------------------===// 9937defm RCW : ReadCheckWriteCompareAndSwap; 9938 9939defm RCWCLR : ReadCheckWriteOperation<0b001, "clr">; 9940defm RCWSET : ReadCheckWriteOperation<0b011, "set">; 9941defm RCWSWP : ReadCheckWriteOperation<0b010, "swp">; 9942 9943//===----------------------------------------------------------------------===// 9944// General Data-Processing Instructions (FEAT_V94_DP) 9945//===----------------------------------------------------------------------===// 9946defm ABS : OneOperandData<0b001000, "abs", abs>, Requires<[HasCSSC]>; 9947defm CNT : OneOperandData<0b000111, "cnt", ctpop>, Requires<[HasCSSC]>; 9948defm CTZ : OneOperandData<0b000110, "ctz", cttz>, Requires<[HasCSSC]>; 9949 9950defm SMAX : ComparisonOp<0, 0, "smax", smax>, Requires<[HasCSSC]>; 9951defm SMIN : ComparisonOp<0, 1, "smin", smin>, Requires<[HasCSSC]>; 9952defm UMAX : ComparisonOp<1, 0, "umax", umax>, Requires<[HasCSSC]>; 9953defm UMIN : ComparisonOp<1, 1, "umin", umin>, Requires<[HasCSSC]>; 9954 9955def RPRFM: 9956 I<(outs), (ins rprfop:$Rt, GPR64:$Rm, GPR64sp:$Rn), 9957 "rprfm", "\t$Rt, $Rm, [$Rn]", "", []>, 9958 Sched<[]> { 9959 bits<6> Rt; 9960 bits<5> Rn; 9961 bits<5> Rm; 9962 let Inst{2-0} = Rt{2-0}; 9963 let Inst{4-3} = 0b11; 9964 let Inst{9-5} = Rn; 9965 let Inst{11-10} = 0b10; 9966 let Inst{13-12} = Rt{4-3}; 9967 let Inst{14} = 0b1; 9968 let Inst{15} = Rt{5}; 9969 let Inst{20-16} = Rm; 9970 let Inst{31-21} = 0b11111000101; 9971 let mayLoad = 0; 9972 let mayStore = 0; 9973 let hasSideEffects = 1; 9974 // RPRFM overlaps with PRFM (reg), when the decoder method of PRFM returns 9975 // Fail, the decoder should attempt to decode RPRFM. This requires setting 9976 // the decoder namespace to "Fallback". 9977 let DecoderNamespace = "Fallback"; 9978} 9979 9980//===----------------------------------------------------------------------===// 9981// 128-bit Atomics (FEAT_LSE128) 9982//===----------------------------------------------------------------------===// 9983let Predicates = [HasLSE128] in { 9984 def SWPP : LSE128Base<0b000, 0b00, 0b1, "swpp">; 9985 def SWPPA : LSE128Base<0b000, 0b10, 0b1, "swppa">; 9986 def SWPPAL : LSE128Base<0b000, 0b11, 0b1, "swppal">; 9987 def SWPPL : LSE128Base<0b000, 0b01, 0b1, "swppl">; 9988 def LDCLRP : LSE128Base<0b001, 0b00, 0b0, "ldclrp">; 9989 def LDCLRPA : LSE128Base<0b001, 0b10, 0b0, "ldclrpa">; 9990 def LDCLRPAL : LSE128Base<0b001, 0b11, 0b0, "ldclrpal">; 9991 def LDCLRPL : LSE128Base<0b001, 0b01, 0b0, "ldclrpl">; 9992 def LDSETP : LSE128Base<0b011, 0b00, 0b0, "ldsetp">; 9993 def LDSETPA : LSE128Base<0b011, 0b10, 0b0, "ldsetpa">; 9994 def LDSETPAL : LSE128Base<0b011, 0b11, 0b0, "ldsetpal">; 9995 def LDSETPL : LSE128Base<0b011, 0b01, 0b0, "ldsetpl">; 9996} 9997 9998//===----------------------------------------------------------------------===// 9999// RCPC Instructions (FEAT_LRCPC3) 10000//===----------------------------------------------------------------------===// 10001 10002let Predicates = [HasRCPC3] in { 10003 // size opc opc2 10004 def STILPWpre: BaseLRCPC3IntegerLoadStorePair<0b10, 0b00, 0b0000, (outs GPR64sp:$wback), (ins GPR32:$Rt, GPR32:$Rt2, GPR64sp:$Rn), "stilp", "\t$Rt, $Rt2, [$Rn, #-8]!", "$Rn = $wback">; 10005 def STILPXpre: BaseLRCPC3IntegerLoadStorePair<0b11, 0b00, 0b0000, (outs GPR64sp:$wback), (ins GPR64:$Rt, GPR64:$Rt2, GPR64sp:$Rn), "stilp", "\t$Rt, $Rt2, [$Rn, #-16]!", "$Rn = $wback">; 10006 def STILPW: BaseLRCPC3IntegerLoadStorePair<0b10, 0b00, 0b0001, (outs), (ins GPR32:$Rt, GPR32:$Rt2, GPR64sp:$Rn), "stilp", "\t$Rt, $Rt2, [$Rn]", "">; 10007 def STILPX: BaseLRCPC3IntegerLoadStorePair<0b11, 0b00, 0b0001, (outs), (ins GPR64:$Rt, GPR64:$Rt2, GPR64sp:$Rn), "stilp", "\t$Rt, $Rt2, [$Rn]", "">; 10008 def LDIAPPWpost: BaseLRCPC3IntegerLoadStorePair<0b10, 0b01, 0b0000, (outs GPR64sp:$wback, GPR32:$Rt, GPR32:$Rt2), (ins GPR64sp:$Rn), "ldiapp", "\t$Rt, $Rt2, [$Rn], #8", "$Rn = $wback">; 10009 def LDIAPPXpost: BaseLRCPC3IntegerLoadStorePair<0b11, 0b01, 0b0000, (outs GPR64sp:$wback, GPR64:$Rt, GPR64:$Rt2), (ins GPR64sp:$Rn), "ldiapp", "\t$Rt, $Rt2, [$Rn], #16", "$Rn = $wback">; 10010 def LDIAPPW: BaseLRCPC3IntegerLoadStorePair<0b10, 0b01, 0b0001, (outs GPR32:$Rt, GPR32:$Rt2), (ins GPR64sp0:$Rn), "ldiapp", "\t$Rt, $Rt2, [$Rn]", "">; 10011 def LDIAPPX: BaseLRCPC3IntegerLoadStorePair<0b11, 0b01, 0b0001, (outs GPR64:$Rt, GPR64:$Rt2), (ins GPR64sp0:$Rn), "ldiapp", "\t$Rt, $Rt2, [$Rn]", "">; 10012 10013 def : Pat<(AArch64ldiapp GPR64sp:$Rn), (LDIAPPX GPR64sp:$Rn)>; 10014 def : Pat<(AArch64stilp GPR64:$Rt, GPR64:$Rt2, GPR64sp:$Rn), (STILPX GPR64:$Rt, GPR64:$Rt2, GPR64sp:$Rn)>; 10015 10016 // Aliases for when offset=0 10017 def : InstAlias<"stilp\t$Rt, $Rt2, [$Rn, #0]", (STILPW GPR32: $Rt, GPR32: $Rt2, GPR64sp:$Rn)>; 10018 def : InstAlias<"stilp\t$Rt, $Rt2, [$Rn, #0]", (STILPX GPR64: $Rt, GPR64: $Rt2, GPR64sp:$Rn)>; 10019 10020 // size opc 10021 def STLRWpre: BaseLRCPC3IntegerLoadStore<0b10, 0b10, (outs GPR64sp:$wback), (ins GPR32:$Rt, GPR64sp:$Rn), "stlr", "\t$Rt, [$Rn, #-4]!", "$Rn = $wback">; 10022 def STLRXpre: BaseLRCPC3IntegerLoadStore<0b11, 0b10, (outs GPR64sp:$wback), (ins GPR64:$Rt, GPR64sp:$Rn), "stlr", "\t$Rt, [$Rn, #-8]!", "$Rn = $wback">; 10023 def LDAPRWpost: BaseLRCPC3IntegerLoadStore<0b10, 0b11, (outs GPR64sp:$wback, GPR32:$Rt), (ins GPR64sp:$Rn), "ldapr", "\t$Rt, [$Rn], #4", "$Rn = $wback">; 10024 def LDAPRXpost: BaseLRCPC3IntegerLoadStore<0b11, 0b11, (outs GPR64sp:$wback, GPR64:$Rt), (ins GPR64sp:$Rn), "ldapr", "\t$Rt, [$Rn], #8", "$Rn = $wback">; 10025} 10026 10027let Predicates = [HasRCPC3, HasNEON] in { 10028 // size opc regtype 10029 defm STLURb: LRCPC3NEONLoadStoreUnscaledOffset<0b00, 0b00, FPR8 , (outs), (ins FPR8 :$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; 10030 defm STLURh: LRCPC3NEONLoadStoreUnscaledOffset<0b01, 0b00, FPR16 , (outs), (ins FPR16 :$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; 10031 defm STLURs: LRCPC3NEONLoadStoreUnscaledOffset<0b10, 0b00, FPR32 , (outs), (ins FPR32 :$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; 10032 defm STLURd: LRCPC3NEONLoadStoreUnscaledOffset<0b11, 0b00, FPR64 , (outs), (ins FPR64 :$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; 10033 defm STLURq: LRCPC3NEONLoadStoreUnscaledOffset<0b00, 0b10, FPR128, (outs), (ins FPR128:$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; 10034 defm LDAPURb: LRCPC3NEONLoadStoreUnscaledOffset<0b00, 0b01, FPR8 , (outs FPR8 :$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; 10035 defm LDAPURh: LRCPC3NEONLoadStoreUnscaledOffset<0b01, 0b01, FPR16 , (outs FPR16 :$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; 10036 defm LDAPURs: LRCPC3NEONLoadStoreUnscaledOffset<0b10, 0b01, FPR32 , (outs FPR32 :$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; 10037 defm LDAPURd: LRCPC3NEONLoadStoreUnscaledOffset<0b11, 0b01, FPR64 , (outs FPR64 :$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; 10038 defm LDAPURq: LRCPC3NEONLoadStoreUnscaledOffset<0b00, 0b11, FPR128, (outs FPR128:$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; 10039 10040 // L 10041 def STL1: LRCPC3NEONLdStSingle<0b0, (outs), (ins VecListOned:$Vt, VectorIndexD:$Q, GPR64sp:$Rn) , "stl1", "">; 10042 def LDAP1: LRCPC3NEONLdStSingle<0b1, (outs VecListOned:$dst), (ins VecListOned:$Vt, VectorIndexD:$Q, GPR64sp0:$Rn), "ldap1", "$Vt = $dst">; 10043 10044 // Aliases for when offset=0 10045 def : InstAlias<"stl1\t$Vt$Q, [$Rn, #0]", (STL1 VecListOned:$Vt, VectorIndexD:$Q, GPR64sp:$Rn)>; 10046} 10047 10048//===----------------------------------------------------------------------===// 10049// 128-bit System Instructions (FEAT_SYSINSTR128) 10050//===----------------------------------------------------------------------===// 10051let Predicates = [HasD128] in { 10052 def SYSPxt : SystemPXtI<0, "sysp">; 10053 10054 def SYSPxt_XZR 10055 : BaseSystemI<0, (outs), 10056 (ins imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2, SyspXzrPairOperand:$xzr_pair), 10057 "sysp", "\t$op1, $Cn, $Cm, $op2, $xzr_pair">, 10058 Sched<[WriteSys]> 10059 { 10060 // Had to use a custom decoder because tablegen interprets this as having 4 fields (why?) 10061 // and therefore autogenerates a decoder that builds an MC representation that has 4 fields 10062 // (decodeToMCInst), but when printing we expect the MC representation to have 5 fields (one 10063 // extra for the XZR) because AArch64InstPrinter::printInstruction in AArch64GenAsmWriter.inc 10064 // is based off of the asm template (maybe) and therefore wants to print 5 operands. 10065 // I could add a bits<5> xzr_pair. But without a way to constrain it to 0b11111 here it would 10066 // overlap with the main SYSP instruction. 10067 let DecoderMethod = "DecodeSyspXzrInstruction"; 10068 bits<3> op1; 10069 bits<4> Cn; 10070 bits<4> Cm; 10071 bits<3> op2; 10072 let Inst{22} = 0b1; // override BaseSystemI 10073 let Inst{20-19} = 0b01; 10074 let Inst{18-16} = op1; 10075 let Inst{15-12} = Cn; 10076 let Inst{11-8} = Cm; 10077 let Inst{7-5} = op2; 10078 let Inst{4-0} = 0b11111; 10079 } 10080 10081 def : InstAlias<"sysp $op1, $Cn, $Cm, $op2", 10082 (SYSPxt_XZR imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2, XZR)>; 10083} 10084 10085//--- 10086// 128-bit System Registers (FEAT_SYSREG128) 10087//--- 10088 10089// Instruction encoding: 10090// 10091// 31 22|21|20|19|18 16|15 12|11 8|7 5|4 0 10092// MRRS 1101010101| 1| 1|o0| op1| Cn| Cm|op2| Rt 10093// MSRR 1101010101| 0| 1|o0| op1| Cn| Cm|op2| Rt 10094 10095// Instruction syntax: 10096// 10097// MRRS <Xt>, <Xt+1>, <sysreg|S<op0>_<op1>_<Cn>_<Cm>_<op2>> 10098// MSRR <sysreg|S<op0>_<op1>_<Cn>_<Cm>_<op2>>, <Xt>, <Xt+1> 10099// 10100// ...where t is even (X0, X2, etc). 10101 10102let Predicates = [HasD128] in { 10103 def MRRS : RtSystemI128<1, 10104 (outs MrrsMssrPairClassOperand:$Rt), (ins mrs_sysreg_op:$systemreg), 10105 "mrrs", "\t$Rt, $systemreg"> 10106 { 10107 bits<16> systemreg; 10108 let Inst{20-5} = systemreg; 10109 } 10110 10111 def MSRR : RtSystemI128<0, 10112 (outs), (ins msr_sysreg_op:$systemreg, MrrsMssrPairClassOperand:$Rt), 10113 "msrr", "\t$systemreg, $Rt"> 10114 { 10115 bits<16> systemreg; 10116 let Inst{20-5} = systemreg; 10117 } 10118} 10119 10120//===----------------------------===// 10121// 2023 Architecture Extensions: 10122//===----------------------------===// 10123 10124let Predicates = [HasFP8] in { 10125 defm F1CVTL : SIMDMixedTwoVectorFP8<0b00, "f1cvtl">; 10126 defm F2CVTL : SIMDMixedTwoVectorFP8<0b01, "f2cvtl">; 10127 defm BF1CVTL : SIMDMixedTwoVectorFP8<0b10, "bf1cvtl">; 10128 defm BF2CVTL : SIMDMixedTwoVectorFP8<0b11, "bf2cvtl">; 10129 defm FCVTN_F16_F8 : SIMDThreeSameSizeVectorCvt<"fcvtn">; 10130 defm FCVTN_F32_F8 : SIMDThreeVectorCvt<"fcvtn">; 10131 defm FSCALE : SIMDThreeSameVectorFP<0b1, 0b1, 0b111, "fscale", null_frag>; 10132} // End let Predicates = [HasFP8] 10133 10134let Predicates = [HasFAMINMAX] in { 10135 defm FAMAX : SIMDThreeSameVectorFP<0b0, 0b1, 0b011, "famax", null_frag>; 10136 defm FAMIN : SIMDThreeSameVectorFP<0b1, 0b1, 0b011, "famin", null_frag>; 10137} // End let Predicates = [HasFAMAXMIN] 10138 10139let Predicates = [HasFP8FMA] in { 10140 defm FMLALBlane : SIMDThreeSameVectorMLAIndex<0b0, "fmlalb">; 10141 defm FMLALTlane : SIMDThreeSameVectorMLAIndex<0b1, "fmlalt">; 10142 defm FMLALLBBlane : SIMDThreeSameVectorMLALIndex<0b0, 0b00, "fmlallbb">; 10143 defm FMLALLBTlane : SIMDThreeSameVectorMLALIndex<0b0, 0b01, "fmlallbt">; 10144 defm FMLALLTBlane : SIMDThreeSameVectorMLALIndex<0b1, 0b00, "fmlalltb">; 10145 defm FMLALLTTlane : SIMDThreeSameVectorMLALIndex<0b1, 0b01, "fmlalltt">; 10146 10147 defm FMLALB : SIMDThreeSameVectorMLA<0b0, "fmlalb">; 10148 defm FMLALT : SIMDThreeSameVectorMLA<0b1, "fmlalt">; 10149 defm FMLALLBB : SIMDThreeSameVectorMLAL<0b0, 0b00, "fmlallbb">; 10150 defm FMLALLBT : SIMDThreeSameVectorMLAL<0b0, 0b01, "fmlallbt">; 10151 defm FMLALLTB : SIMDThreeSameVectorMLAL<0b1, 0b00, "fmlalltb">; 10152 defm FMLALLTT : SIMDThreeSameVectorMLAL<0b1, 0b01, "fmlalltt">; 10153} // End let Predicates = [HasFP8FMA] 10154 10155let Predicates = [HasFP8DOT2] in { 10156 defm FDOTlane : SIMDThreeSameVectorFP8DOT2Index<"fdot">; 10157 defm FDOT : SIMDThreeSameVectorDOT2<"fdot">; 10158} // End let Predicates = [HasFP8DOT2] 10159 10160let Predicates = [HasFP8DOT4] in { 10161 defm FDOTlane : SIMDThreeSameVectorFP8DOT4Index<"fdot">; 10162 defm FDOT : SIMDThreeSameVectorDOT4<"fdot">; 10163} // End let Predicates = [HasFP8DOT4] 10164 10165//===----------------------------------------------------------------------===// 10166// Checked Pointer Arithmetic (FEAT_CPA) 10167//===----------------------------------------------------------------------===// 10168let Predicates = [HasCPA] in { 10169 // Scalar add/subtract 10170 defm ADDPT : AddSubCPA<0, "addpt">; 10171 defm SUBPT : AddSubCPA<1, "subpt">; 10172 10173 // Scalar multiply-add/subtract 10174 def MADDPT : MulAccumCPA<0, "maddpt">; 10175 def MSUBPT : MulAccumCPA<1, "msubpt">; 10176} 10177 10178def round_v4fp32_to_v4bf16 : 10179 OutPatFrag<(ops node:$Rn), 10180 // NaN? Round : Quiet(NaN) 10181 (BSPv16i8 (FCMEQv4f32 $Rn, $Rn), 10182 (ADDv4i32 10183 (ADDv4i32 $Rn, 10184 // Extract the LSB of the fp32 *truncated* to bf16. 10185 (ANDv16i8 (USHRv4i32_shift V128:$Rn, (i32 16)), 10186 (MOVIv4i32 (i32 1), (i32 0)))), 10187 // Bias which will help us break ties correctly. 10188 (MOVIv4s_msl (i32 127), (i32 264))), 10189 // Set the quiet bit in the NaN. 10190 (ORRv4i32 $Rn, (i32 64), (i32 16)))>; 10191 10192multiclass PromoteUnaryv8f16Tov4f32<SDPatternOperator InOp, Instruction OutInst> { 10193 let Predicates = [HasNoFullFP16] in 10194 def : Pat<(InOp (v8f16 V128:$Rn)), 10195 (v8f16 (FCVTNv8i16 10196 (INSERT_SUBREG (IMPLICIT_DEF), 10197 (v4f16 (FCVTNv4i16 10198 (v4f32 (OutInst 10199 (v4f32 (FCVTLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))))))), 10200 dsub), 10201 (v4f32 (OutInst (v4f32 (FCVTLv8i16 V128:$Rn))))))>; 10202 10203 let Predicates = [HasBF16] in 10204 def : Pat<(InOp (v8bf16 V128:$Rn)), 10205 (v8bf16 (BFCVTN2 10206 (v8bf16 (BFCVTN 10207 (v4f32 (OutInst 10208 (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))))))), 10209 (v4f32 (OutInst (v4f32 (SHLLv8i16 V128:$Rn))))))>; 10210 10211 let Predicates = [HasNoBF16] in 10212 def : Pat<(InOp (v8bf16 V128:$Rn)), 10213 (UZP2v8i16 10214 (round_v4fp32_to_v4bf16 (v4f32 (OutInst 10215 (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub))))))), 10216 (round_v4fp32_to_v4bf16 (v4f32 (OutInst 10217 (v4f32 (SHLLv8i16 V128:$Rn))))))>; 10218} 10219defm : PromoteUnaryv8f16Tov4f32<any_fceil, FRINTPv4f32>; 10220defm : PromoteUnaryv8f16Tov4f32<any_ffloor, FRINTMv4f32>; 10221defm : PromoteUnaryv8f16Tov4f32<any_fnearbyint, FRINTIv4f32>; 10222defm : PromoteUnaryv8f16Tov4f32<any_fround, FRINTAv4f32>; 10223defm : PromoteUnaryv8f16Tov4f32<any_froundeven, FRINTNv4f32>; 10224defm : PromoteUnaryv8f16Tov4f32<any_frint, FRINTXv4f32>; 10225defm : PromoteUnaryv8f16Tov4f32<any_ftrunc, FRINTZv4f32>; 10226 10227multiclass PromoteBinaryv8f16Tov4f32<SDPatternOperator InOp, Instruction OutInst> { 10228 let Predicates = [HasNoFullFP16] in 10229 def : Pat<(InOp (v8f16 V128:$Rn), (v8f16 V128:$Rm)), 10230 (v8f16 (FCVTNv8i16 10231 (INSERT_SUBREG (IMPLICIT_DEF), 10232 (v4f16 (FCVTNv4i16 10233 (v4f32 (OutInst 10234 (v4f32 (FCVTLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))), 10235 (v4f32 (FCVTLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rm, dsub)))))))), 10236 dsub), 10237 (v4f32 (OutInst (v4f32 (FCVTLv8i16 V128:$Rn)), 10238 (v4f32 (FCVTLv8i16 V128:$Rm))))))>; 10239 10240 let Predicates = [HasBF16] in 10241 def : Pat<(InOp (v8bf16 V128:$Rn), (v8bf16 V128:$Rm)), 10242 (v8bf16 (BFCVTN2 10243 (v8bf16 (BFCVTN 10244 (v4f32 (OutInst 10245 (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))), 10246 (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rm, dsub)))))))), 10247 (v4f32 (OutInst (v4f32 (SHLLv8i16 V128:$Rn)), 10248 (v4f32 (SHLLv8i16 V128:$Rm))))))>; 10249 10250 let Predicates = [HasNoBF16] in 10251 def : Pat<(InOp (v8bf16 V128:$Rn), (v8bf16 V128:$Rm)), 10252 (UZP2v8i16 10253 (round_v4fp32_to_v4bf16 (v4f32 (OutInst 10254 (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))), 10255 (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rm, dsub))))))), 10256 (round_v4fp32_to_v4bf16 (v4f32 (OutInst 10257 (v4f32 (SHLLv8i16 V128:$Rn)), 10258 (v4f32 (SHLLv8i16 V128:$Rm))))))>; 10259} 10260defm : PromoteBinaryv8f16Tov4f32<any_fadd, FADDv4f32>; 10261defm : PromoteBinaryv8f16Tov4f32<any_fdiv, FDIVv4f32>; 10262defm : PromoteBinaryv8f16Tov4f32<any_fmul, FMULv4f32>; 10263defm : PromoteBinaryv8f16Tov4f32<any_fsub, FSUBv4f32>; 10264 10265include "AArch64InstrAtomics.td" 10266include "AArch64SVEInstrInfo.td" 10267include "AArch64SMEInstrInfo.td" 10268include "AArch64InstrGISel.td" 10269