xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AArch64InstrInfo.h"
14 #include "AArch64MachineFunctionInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "MCTargetDesc/AArch64AddressingModes.h"
17 #include "Utils/AArch64BaseInfo.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCombinerPattern.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/GlobalValue.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCInstBuilder.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/LEB128.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <utility>
54 
55 using namespace llvm;
56 
57 #define GET_INSTRINFO_CTOR_DTOR
58 #include "AArch64GenInstrInfo.inc"
59 
60 static cl::opt<unsigned> TBZDisplacementBits(
61     "aarch64-tbz-offset-bits", cl::Hidden, cl::init(14),
62     cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
63 
64 static cl::opt<unsigned> CBZDisplacementBits(
65     "aarch64-cbz-offset-bits", cl::Hidden, cl::init(19),
66     cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
67 
68 static cl::opt<unsigned>
69     BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19),
70                         cl::desc("Restrict range of Bcc instructions (DEBUG)"));
71 
72 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
73     : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP,
74                           AArch64::CATCHRET),
75       RI(STI.getTargetTriple()), Subtarget(STI) {}
76 
77 /// GetInstSize - Return the number of bytes of code the specified
78 /// instruction may be.  This returns the maximum number of bytes.
79 unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
80   const MachineBasicBlock &MBB = *MI.getParent();
81   const MachineFunction *MF = MBB.getParent();
82   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
83 
84   {
85     auto Op = MI.getOpcode();
86     if (Op == AArch64::INLINEASM || Op == AArch64::INLINEASM_BR)
87       return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
88   }
89 
90   // Meta-instructions emit no code.
91   if (MI.isMetaInstruction())
92     return 0;
93 
94   // FIXME: We currently only handle pseudoinstructions that don't get expanded
95   //        before the assembly printer.
96   unsigned NumBytes = 0;
97   const MCInstrDesc &Desc = MI.getDesc();
98 
99   // Size should be preferably set in
100   // llvm/lib/Target/AArch64/AArch64InstrInfo.td (default case).
101   // Specific cases handle instructions of variable sizes
102   switch (Desc.getOpcode()) {
103   default:
104     if (Desc.getSize())
105       return Desc.getSize();
106 
107     // Anything not explicitly designated otherwise (i.e. pseudo-instructions
108     // with fixed constant size but not specified in .td file) is a normal
109     // 4-byte insn.
110     NumBytes = 4;
111     break;
112   case TargetOpcode::STACKMAP:
113     // The upper bound for a stackmap intrinsic is the full length of its shadow
114     NumBytes = StackMapOpers(&MI).getNumPatchBytes();
115     assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
116     break;
117   case TargetOpcode::PATCHPOINT:
118     // The size of the patchpoint intrinsic is the number of bytes requested
119     NumBytes = PatchPointOpers(&MI).getNumPatchBytes();
120     assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
121     break;
122   case TargetOpcode::STATEPOINT:
123     NumBytes = StatepointOpers(&MI).getNumPatchBytes();
124     assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
125     // No patch bytes means a normal call inst is emitted
126     if (NumBytes == 0)
127       NumBytes = 4;
128     break;
129   case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
130   case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
131     // An XRay sled can be 4 bytes of alignment plus a 32-byte block.
132     NumBytes = 36;
133     break;
134 
135   case AArch64::SPACE:
136     NumBytes = MI.getOperand(1).getImm();
137     break;
138   case TargetOpcode::BUNDLE:
139     NumBytes = getInstBundleLength(MI);
140     break;
141   }
142 
143   return NumBytes;
144 }
145 
146 unsigned AArch64InstrInfo::getInstBundleLength(const MachineInstr &MI) const {
147   unsigned Size = 0;
148   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
149   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
150   while (++I != E && I->isInsideBundle()) {
151     assert(!I->isBundle() && "No nested bundle!");
152     Size += getInstSizeInBytes(*I);
153   }
154   return Size;
155 }
156 
157 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
158                             SmallVectorImpl<MachineOperand> &Cond) {
159   // Block ends with fall-through condbranch.
160   switch (LastInst->getOpcode()) {
161   default:
162     llvm_unreachable("Unknown branch instruction?");
163   case AArch64::Bcc:
164     Target = LastInst->getOperand(1).getMBB();
165     Cond.push_back(LastInst->getOperand(0));
166     break;
167   case AArch64::CBZW:
168   case AArch64::CBZX:
169   case AArch64::CBNZW:
170   case AArch64::CBNZX:
171     Target = LastInst->getOperand(1).getMBB();
172     Cond.push_back(MachineOperand::CreateImm(-1));
173     Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
174     Cond.push_back(LastInst->getOperand(0));
175     break;
176   case AArch64::TBZW:
177   case AArch64::TBZX:
178   case AArch64::TBNZW:
179   case AArch64::TBNZX:
180     Target = LastInst->getOperand(2).getMBB();
181     Cond.push_back(MachineOperand::CreateImm(-1));
182     Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
183     Cond.push_back(LastInst->getOperand(0));
184     Cond.push_back(LastInst->getOperand(1));
185   }
186 }
187 
188 static unsigned getBranchDisplacementBits(unsigned Opc) {
189   switch (Opc) {
190   default:
191     llvm_unreachable("unexpected opcode!");
192   case AArch64::B:
193     return 64;
194   case AArch64::TBNZW:
195   case AArch64::TBZW:
196   case AArch64::TBNZX:
197   case AArch64::TBZX:
198     return TBZDisplacementBits;
199   case AArch64::CBNZW:
200   case AArch64::CBZW:
201   case AArch64::CBNZX:
202   case AArch64::CBZX:
203     return CBZDisplacementBits;
204   case AArch64::Bcc:
205     return BCCDisplacementBits;
206   }
207 }
208 
209 bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp,
210                                              int64_t BrOffset) const {
211   unsigned Bits = getBranchDisplacementBits(BranchOp);
212   assert(Bits >= 3 && "max branch displacement must be enough to jump"
213                       "over conditional branch expansion");
214   return isIntN(Bits, BrOffset / 4);
215 }
216 
217 MachineBasicBlock *
218 AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
219   switch (MI.getOpcode()) {
220   default:
221     llvm_unreachable("unexpected opcode!");
222   case AArch64::B:
223     return MI.getOperand(0).getMBB();
224   case AArch64::TBZW:
225   case AArch64::TBNZW:
226   case AArch64::TBZX:
227   case AArch64::TBNZX:
228     return MI.getOperand(2).getMBB();
229   case AArch64::CBZW:
230   case AArch64::CBNZW:
231   case AArch64::CBZX:
232   case AArch64::CBNZX:
233   case AArch64::Bcc:
234     return MI.getOperand(1).getMBB();
235   }
236 }
237 
238 // Branch analysis.
239 bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
240                                      MachineBasicBlock *&TBB,
241                                      MachineBasicBlock *&FBB,
242                                      SmallVectorImpl<MachineOperand> &Cond,
243                                      bool AllowModify) const {
244   // If the block has no terminators, it just falls into the block after it.
245   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
246   if (I == MBB.end())
247     return false;
248 
249   // Skip over SpeculationBarrierEndBB terminators
250   if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB ||
251       I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) {
252     --I;
253   }
254 
255   if (!isUnpredicatedTerminator(*I))
256     return false;
257 
258   // Get the last instruction in the block.
259   MachineInstr *LastInst = &*I;
260 
261   // If there is only one terminator instruction, process it.
262   unsigned LastOpc = LastInst->getOpcode();
263   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
264     if (isUncondBranchOpcode(LastOpc)) {
265       TBB = LastInst->getOperand(0).getMBB();
266       return false;
267     }
268     if (isCondBranchOpcode(LastOpc)) {
269       // Block ends with fall-through condbranch.
270       parseCondBranch(LastInst, TBB, Cond);
271       return false;
272     }
273     return true; // Can't handle indirect branch.
274   }
275 
276   // Get the instruction before it if it is a terminator.
277   MachineInstr *SecondLastInst = &*I;
278   unsigned SecondLastOpc = SecondLastInst->getOpcode();
279 
280   // If AllowModify is true and the block ends with two or more unconditional
281   // branches, delete all but the first unconditional branch.
282   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
283     while (isUncondBranchOpcode(SecondLastOpc)) {
284       LastInst->eraseFromParent();
285       LastInst = SecondLastInst;
286       LastOpc = LastInst->getOpcode();
287       if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
288         // Return now the only terminator is an unconditional branch.
289         TBB = LastInst->getOperand(0).getMBB();
290         return false;
291       } else {
292         SecondLastInst = &*I;
293         SecondLastOpc = SecondLastInst->getOpcode();
294       }
295     }
296   }
297 
298   // If we're allowed to modify and the block ends in a unconditional branch
299   // which could simply fallthrough, remove the branch.  (Note: This case only
300   // matters when we can't understand the whole sequence, otherwise it's also
301   // handled by BranchFolding.cpp.)
302   if (AllowModify && isUncondBranchOpcode(LastOpc) &&
303       MBB.isLayoutSuccessor(getBranchDestBlock(*LastInst))) {
304     LastInst->eraseFromParent();
305     LastInst = SecondLastInst;
306     LastOpc = LastInst->getOpcode();
307     if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
308       assert(!isUncondBranchOpcode(LastOpc) &&
309              "unreachable unconditional branches removed above");
310 
311       if (isCondBranchOpcode(LastOpc)) {
312         // Block ends with fall-through condbranch.
313         parseCondBranch(LastInst, TBB, Cond);
314         return false;
315       }
316       return true; // Can't handle indirect branch.
317     } else {
318       SecondLastInst = &*I;
319       SecondLastOpc = SecondLastInst->getOpcode();
320     }
321   }
322 
323   // If there are three terminators, we don't know what sort of block this is.
324   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
325     return true;
326 
327   // If the block ends with a B and a Bcc, handle it.
328   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
329     parseCondBranch(SecondLastInst, TBB, Cond);
330     FBB = LastInst->getOperand(0).getMBB();
331     return false;
332   }
333 
334   // If the block ends with two unconditional branches, handle it.  The second
335   // one is not executed, so remove it.
336   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
337     TBB = SecondLastInst->getOperand(0).getMBB();
338     I = LastInst;
339     if (AllowModify)
340       I->eraseFromParent();
341     return false;
342   }
343 
344   // ...likewise if it ends with an indirect branch followed by an unconditional
345   // branch.
346   if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
347     I = LastInst;
348     if (AllowModify)
349       I->eraseFromParent();
350     return true;
351   }
352 
353   // Otherwise, can't handle this.
354   return true;
355 }
356 
357 bool AArch64InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
358                                               MachineBranchPredicate &MBP,
359                                               bool AllowModify) const {
360   // For the moment, handle only a block which ends with a cb(n)zx followed by
361   // a fallthrough.  Why this?  Because it is a common form.
362   // TODO: Should we handle b.cc?
363 
364   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
365   if (I == MBB.end())
366     return true;
367 
368   // Skip over SpeculationBarrierEndBB terminators
369   if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB ||
370       I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) {
371     --I;
372   }
373 
374   if (!isUnpredicatedTerminator(*I))
375     return true;
376 
377   // Get the last instruction in the block.
378   MachineInstr *LastInst = &*I;
379   unsigned LastOpc = LastInst->getOpcode();
380   if (!isCondBranchOpcode(LastOpc))
381     return true;
382 
383   switch (LastOpc) {
384   default:
385     return true;
386   case AArch64::CBZW:
387   case AArch64::CBZX:
388   case AArch64::CBNZW:
389   case AArch64::CBNZX:
390     break;
391   };
392 
393   MBP.TrueDest = LastInst->getOperand(1).getMBB();
394   assert(MBP.TrueDest && "expected!");
395   MBP.FalseDest = MBB.getNextNode();
396 
397   MBP.ConditionDef = nullptr;
398   MBP.SingleUseCondition = false;
399 
400   MBP.LHS = LastInst->getOperand(0);
401   MBP.RHS = MachineOperand::CreateImm(0);
402   MBP.Predicate = LastOpc == AArch64::CBNZX ? MachineBranchPredicate::PRED_NE
403                                             : MachineBranchPredicate::PRED_EQ;
404   return false;
405 }
406 
407 bool AArch64InstrInfo::reverseBranchCondition(
408     SmallVectorImpl<MachineOperand> &Cond) const {
409   if (Cond[0].getImm() != -1) {
410     // Regular Bcc
411     AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
412     Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
413   } else {
414     // Folded compare-and-branch
415     switch (Cond[1].getImm()) {
416     default:
417       llvm_unreachable("Unknown conditional branch!");
418     case AArch64::CBZW:
419       Cond[1].setImm(AArch64::CBNZW);
420       break;
421     case AArch64::CBNZW:
422       Cond[1].setImm(AArch64::CBZW);
423       break;
424     case AArch64::CBZX:
425       Cond[1].setImm(AArch64::CBNZX);
426       break;
427     case AArch64::CBNZX:
428       Cond[1].setImm(AArch64::CBZX);
429       break;
430     case AArch64::TBZW:
431       Cond[1].setImm(AArch64::TBNZW);
432       break;
433     case AArch64::TBNZW:
434       Cond[1].setImm(AArch64::TBZW);
435       break;
436     case AArch64::TBZX:
437       Cond[1].setImm(AArch64::TBNZX);
438       break;
439     case AArch64::TBNZX:
440       Cond[1].setImm(AArch64::TBZX);
441       break;
442     }
443   }
444 
445   return false;
446 }
447 
448 unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock &MBB,
449                                         int *BytesRemoved) const {
450   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
451   if (I == MBB.end())
452     return 0;
453 
454   if (!isUncondBranchOpcode(I->getOpcode()) &&
455       !isCondBranchOpcode(I->getOpcode()))
456     return 0;
457 
458   // Remove the branch.
459   I->eraseFromParent();
460 
461   I = MBB.end();
462 
463   if (I == MBB.begin()) {
464     if (BytesRemoved)
465       *BytesRemoved = 4;
466     return 1;
467   }
468   --I;
469   if (!isCondBranchOpcode(I->getOpcode())) {
470     if (BytesRemoved)
471       *BytesRemoved = 4;
472     return 1;
473   }
474 
475   // Remove the branch.
476   I->eraseFromParent();
477   if (BytesRemoved)
478     *BytesRemoved = 8;
479 
480   return 2;
481 }
482 
483 void AArch64InstrInfo::instantiateCondBranch(
484     MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB,
485     ArrayRef<MachineOperand> Cond) const {
486   if (Cond[0].getImm() != -1) {
487     // Regular Bcc
488     BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
489   } else {
490     // Folded compare-and-branch
491     // Note that we use addOperand instead of addReg to keep the flags.
492     const MachineInstrBuilder MIB =
493         BuildMI(&MBB, DL, get(Cond[1].getImm())).add(Cond[2]);
494     if (Cond.size() > 3)
495       MIB.addImm(Cond[3].getImm());
496     MIB.addMBB(TBB);
497   }
498 }
499 
500 unsigned AArch64InstrInfo::insertBranch(
501     MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
502     ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
503   // Shouldn't be a fall through.
504   assert(TBB && "insertBranch must not be told to insert a fallthrough");
505 
506   if (!FBB) {
507     if (Cond.empty()) // Unconditional branch?
508       BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
509     else
510       instantiateCondBranch(MBB, DL, TBB, Cond);
511 
512     if (BytesAdded)
513       *BytesAdded = 4;
514 
515     return 1;
516   }
517 
518   // Two-way conditional branch.
519   instantiateCondBranch(MBB, DL, TBB, Cond);
520   BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
521 
522   if (BytesAdded)
523     *BytesAdded = 8;
524 
525   return 2;
526 }
527 
528 // Find the original register that VReg is copied from.
529 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
530   while (Register::isVirtualRegister(VReg)) {
531     const MachineInstr *DefMI = MRI.getVRegDef(VReg);
532     if (!DefMI->isFullCopy())
533       return VReg;
534     VReg = DefMI->getOperand(1).getReg();
535   }
536   return VReg;
537 }
538 
539 // Determine if VReg is defined by an instruction that can be folded into a
540 // csel instruction. If so, return the folded opcode, and the replacement
541 // register.
542 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
543                                 unsigned *NewVReg = nullptr) {
544   VReg = removeCopies(MRI, VReg);
545   if (!Register::isVirtualRegister(VReg))
546     return 0;
547 
548   bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
549   const MachineInstr *DefMI = MRI.getVRegDef(VReg);
550   unsigned Opc = 0;
551   unsigned SrcOpNum = 0;
552   switch (DefMI->getOpcode()) {
553   case AArch64::ADDSXri:
554   case AArch64::ADDSWri:
555     // if NZCV is used, do not fold.
556     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
557       return 0;
558     // fall-through to ADDXri and ADDWri.
559     [[fallthrough]];
560   case AArch64::ADDXri:
561   case AArch64::ADDWri:
562     // add x, 1 -> csinc.
563     if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
564         DefMI->getOperand(3).getImm() != 0)
565       return 0;
566     SrcOpNum = 1;
567     Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
568     break;
569 
570   case AArch64::ORNXrr:
571   case AArch64::ORNWrr: {
572     // not x -> csinv, represented as orn dst, xzr, src.
573     unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
574     if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
575       return 0;
576     SrcOpNum = 2;
577     Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
578     break;
579   }
580 
581   case AArch64::SUBSXrr:
582   case AArch64::SUBSWrr:
583     // if NZCV is used, do not fold.
584     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
585       return 0;
586     // fall-through to SUBXrr and SUBWrr.
587     [[fallthrough]];
588   case AArch64::SUBXrr:
589   case AArch64::SUBWrr: {
590     // neg x -> csneg, represented as sub dst, xzr, src.
591     unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
592     if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
593       return 0;
594     SrcOpNum = 2;
595     Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
596     break;
597   }
598   default:
599     return 0;
600   }
601   assert(Opc && SrcOpNum && "Missing parameters");
602 
603   if (NewVReg)
604     *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
605   return Opc;
606 }
607 
608 bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
609                                        ArrayRef<MachineOperand> Cond,
610                                        Register DstReg, Register TrueReg,
611                                        Register FalseReg, int &CondCycles,
612                                        int &TrueCycles,
613                                        int &FalseCycles) const {
614   // Check register classes.
615   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
616   const TargetRegisterClass *RC =
617       RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
618   if (!RC)
619     return false;
620 
621   // Also need to check the dest regclass, in case we're trying to optimize
622   // something like:
623   // %1(gpr) = PHI %2(fpr), bb1, %(fpr), bb2
624   if (!RI.getCommonSubClass(RC, MRI.getRegClass(DstReg)))
625     return false;
626 
627   // Expanding cbz/tbz requires an extra cycle of latency on the condition.
628   unsigned ExtraCondLat = Cond.size() != 1;
629 
630   // GPRs are handled by csel.
631   // FIXME: Fold in x+1, -x, and ~x when applicable.
632   if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
633       AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
634     // Single-cycle csel, csinc, csinv, and csneg.
635     CondCycles = 1 + ExtraCondLat;
636     TrueCycles = FalseCycles = 1;
637     if (canFoldIntoCSel(MRI, TrueReg))
638       TrueCycles = 0;
639     else if (canFoldIntoCSel(MRI, FalseReg))
640       FalseCycles = 0;
641     return true;
642   }
643 
644   // Scalar floating point is handled by fcsel.
645   // FIXME: Form fabs, fmin, and fmax when applicable.
646   if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
647       AArch64::FPR32RegClass.hasSubClassEq(RC)) {
648     CondCycles = 5 + ExtraCondLat;
649     TrueCycles = FalseCycles = 2;
650     return true;
651   }
652 
653   // Can't do vectors.
654   return false;
655 }
656 
657 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
658                                     MachineBasicBlock::iterator I,
659                                     const DebugLoc &DL, Register DstReg,
660                                     ArrayRef<MachineOperand> Cond,
661                                     Register TrueReg, Register FalseReg) const {
662   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
663 
664   // Parse the condition code, see parseCondBranch() above.
665   AArch64CC::CondCode CC;
666   switch (Cond.size()) {
667   default:
668     llvm_unreachable("Unknown condition opcode in Cond");
669   case 1: // b.cc
670     CC = AArch64CC::CondCode(Cond[0].getImm());
671     break;
672   case 3: { // cbz/cbnz
673     // We must insert a compare against 0.
674     bool Is64Bit;
675     switch (Cond[1].getImm()) {
676     default:
677       llvm_unreachable("Unknown branch opcode in Cond");
678     case AArch64::CBZW:
679       Is64Bit = false;
680       CC = AArch64CC::EQ;
681       break;
682     case AArch64::CBZX:
683       Is64Bit = true;
684       CC = AArch64CC::EQ;
685       break;
686     case AArch64::CBNZW:
687       Is64Bit = false;
688       CC = AArch64CC::NE;
689       break;
690     case AArch64::CBNZX:
691       Is64Bit = true;
692       CC = AArch64CC::NE;
693       break;
694     }
695     Register SrcReg = Cond[2].getReg();
696     if (Is64Bit) {
697       // cmp reg, #0 is actually subs xzr, reg, #0.
698       MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
699       BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
700           .addReg(SrcReg)
701           .addImm(0)
702           .addImm(0);
703     } else {
704       MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
705       BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
706           .addReg(SrcReg)
707           .addImm(0)
708           .addImm(0);
709     }
710     break;
711   }
712   case 4: { // tbz/tbnz
713     // We must insert a tst instruction.
714     switch (Cond[1].getImm()) {
715     default:
716       llvm_unreachable("Unknown branch opcode in Cond");
717     case AArch64::TBZW:
718     case AArch64::TBZX:
719       CC = AArch64CC::EQ;
720       break;
721     case AArch64::TBNZW:
722     case AArch64::TBNZX:
723       CC = AArch64CC::NE;
724       break;
725     }
726     // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
727     if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
728       BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
729           .addReg(Cond[2].getReg())
730           .addImm(
731               AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
732     else
733       BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
734           .addReg(Cond[2].getReg())
735           .addImm(
736               AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
737     break;
738   }
739   }
740 
741   unsigned Opc = 0;
742   const TargetRegisterClass *RC = nullptr;
743   bool TryFold = false;
744   if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
745     RC = &AArch64::GPR64RegClass;
746     Opc = AArch64::CSELXr;
747     TryFold = true;
748   } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
749     RC = &AArch64::GPR32RegClass;
750     Opc = AArch64::CSELWr;
751     TryFold = true;
752   } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
753     RC = &AArch64::FPR64RegClass;
754     Opc = AArch64::FCSELDrrr;
755   } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
756     RC = &AArch64::FPR32RegClass;
757     Opc = AArch64::FCSELSrrr;
758   }
759   assert(RC && "Unsupported regclass");
760 
761   // Try folding simple instructions into the csel.
762   if (TryFold) {
763     unsigned NewVReg = 0;
764     unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
765     if (FoldedOpc) {
766       // The folded opcodes csinc, csinc and csneg apply the operation to
767       // FalseReg, so we need to invert the condition.
768       CC = AArch64CC::getInvertedCondCode(CC);
769       TrueReg = FalseReg;
770     } else
771       FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
772 
773     // Fold the operation. Leave any dead instructions for DCE to clean up.
774     if (FoldedOpc) {
775       FalseReg = NewVReg;
776       Opc = FoldedOpc;
777       // The extends the live range of NewVReg.
778       MRI.clearKillFlags(NewVReg);
779     }
780   }
781 
782   // Pull all virtual register into the appropriate class.
783   MRI.constrainRegClass(TrueReg, RC);
784   MRI.constrainRegClass(FalseReg, RC);
785 
786   // Insert the csel.
787   BuildMI(MBB, I, DL, get(Opc), DstReg)
788       .addReg(TrueReg)
789       .addReg(FalseReg)
790       .addImm(CC);
791 }
792 
793 /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an  ORRxx.
794 static bool canBeExpandedToORR(const MachineInstr &MI, unsigned BitSize) {
795   uint64_t Imm = MI.getOperand(1).getImm();
796   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
797   uint64_t Encoding;
798   return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding);
799 }
800 
801 // FIXME: this implementation should be micro-architecture dependent, so a
802 // micro-architecture target hook should be introduced here in future.
803 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
804   if (!Subtarget.hasCustomCheapAsMoveHandling())
805     return MI.isAsCheapAsAMove();
806 
807   const unsigned Opcode = MI.getOpcode();
808 
809   // Firstly, check cases gated by features.
810 
811   if (Subtarget.hasZeroCycleZeroingFP()) {
812     if (Opcode == AArch64::FMOVH0 ||
813         Opcode == AArch64::FMOVS0 ||
814         Opcode == AArch64::FMOVD0)
815       return true;
816   }
817 
818   if (Subtarget.hasZeroCycleZeroingGP()) {
819     if (Opcode == TargetOpcode::COPY &&
820         (MI.getOperand(1).getReg() == AArch64::WZR ||
821          MI.getOperand(1).getReg() == AArch64::XZR))
822       return true;
823   }
824 
825   // Secondly, check cases specific to sub-targets.
826 
827   if (Subtarget.hasExynosCheapAsMoveHandling()) {
828     if (isExynosCheapAsMove(MI))
829       return true;
830 
831     return MI.isAsCheapAsAMove();
832   }
833 
834   // Finally, check generic cases.
835 
836   switch (Opcode) {
837   default:
838     return false;
839 
840   // add/sub on register without shift
841   case AArch64::ADDWri:
842   case AArch64::ADDXri:
843   case AArch64::SUBWri:
844   case AArch64::SUBXri:
845     return (MI.getOperand(3).getImm() == 0);
846 
847   // logical ops on immediate
848   case AArch64::ANDWri:
849   case AArch64::ANDXri:
850   case AArch64::EORWri:
851   case AArch64::EORXri:
852   case AArch64::ORRWri:
853   case AArch64::ORRXri:
854     return true;
855 
856   // logical ops on register without shift
857   case AArch64::ANDWrr:
858   case AArch64::ANDXrr:
859   case AArch64::BICWrr:
860   case AArch64::BICXrr:
861   case AArch64::EONWrr:
862   case AArch64::EONXrr:
863   case AArch64::EORWrr:
864   case AArch64::EORXrr:
865   case AArch64::ORNWrr:
866   case AArch64::ORNXrr:
867   case AArch64::ORRWrr:
868   case AArch64::ORRXrr:
869     return true;
870 
871   // If MOVi32imm or MOVi64imm can be expanded into ORRWri or
872   // ORRXri, it is as cheap as MOV
873   case AArch64::MOVi32imm:
874     return canBeExpandedToORR(MI, 32);
875   case AArch64::MOVi64imm:
876     return canBeExpandedToORR(MI, 64);
877   }
878 
879   llvm_unreachable("Unknown opcode to check as cheap as a move!");
880 }
881 
882 bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr &MI) {
883   switch (MI.getOpcode()) {
884   default:
885     return false;
886 
887   case AArch64::ADDWrs:
888   case AArch64::ADDXrs:
889   case AArch64::ADDSWrs:
890   case AArch64::ADDSXrs: {
891     unsigned Imm = MI.getOperand(3).getImm();
892     unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
893     if (ShiftVal == 0)
894       return true;
895     return AArch64_AM::getShiftType(Imm) == AArch64_AM::LSL && ShiftVal <= 5;
896   }
897 
898   case AArch64::ADDWrx:
899   case AArch64::ADDXrx:
900   case AArch64::ADDXrx64:
901   case AArch64::ADDSWrx:
902   case AArch64::ADDSXrx:
903   case AArch64::ADDSXrx64: {
904     unsigned Imm = MI.getOperand(3).getImm();
905     switch (AArch64_AM::getArithExtendType(Imm)) {
906     default:
907       return false;
908     case AArch64_AM::UXTB:
909     case AArch64_AM::UXTH:
910     case AArch64_AM::UXTW:
911     case AArch64_AM::UXTX:
912       return AArch64_AM::getArithShiftValue(Imm) <= 4;
913     }
914   }
915 
916   case AArch64::SUBWrs:
917   case AArch64::SUBSWrs: {
918     unsigned Imm = MI.getOperand(3).getImm();
919     unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
920     return ShiftVal == 0 ||
921            (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 31);
922   }
923 
924   case AArch64::SUBXrs:
925   case AArch64::SUBSXrs: {
926     unsigned Imm = MI.getOperand(3).getImm();
927     unsigned ShiftVal = AArch64_AM::getShiftValue(Imm);
928     return ShiftVal == 0 ||
929            (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 63);
930   }
931 
932   case AArch64::SUBWrx:
933   case AArch64::SUBXrx:
934   case AArch64::SUBXrx64:
935   case AArch64::SUBSWrx:
936   case AArch64::SUBSXrx:
937   case AArch64::SUBSXrx64: {
938     unsigned Imm = MI.getOperand(3).getImm();
939     switch (AArch64_AM::getArithExtendType(Imm)) {
940     default:
941       return false;
942     case AArch64_AM::UXTB:
943     case AArch64_AM::UXTH:
944     case AArch64_AM::UXTW:
945     case AArch64_AM::UXTX:
946       return AArch64_AM::getArithShiftValue(Imm) == 0;
947     }
948   }
949 
950   case AArch64::LDRBBroW:
951   case AArch64::LDRBBroX:
952   case AArch64::LDRBroW:
953   case AArch64::LDRBroX:
954   case AArch64::LDRDroW:
955   case AArch64::LDRDroX:
956   case AArch64::LDRHHroW:
957   case AArch64::LDRHHroX:
958   case AArch64::LDRHroW:
959   case AArch64::LDRHroX:
960   case AArch64::LDRQroW:
961   case AArch64::LDRQroX:
962   case AArch64::LDRSBWroW:
963   case AArch64::LDRSBWroX:
964   case AArch64::LDRSBXroW:
965   case AArch64::LDRSBXroX:
966   case AArch64::LDRSHWroW:
967   case AArch64::LDRSHWroX:
968   case AArch64::LDRSHXroW:
969   case AArch64::LDRSHXroX:
970   case AArch64::LDRSWroW:
971   case AArch64::LDRSWroX:
972   case AArch64::LDRSroW:
973   case AArch64::LDRSroX:
974   case AArch64::LDRWroW:
975   case AArch64::LDRWroX:
976   case AArch64::LDRXroW:
977   case AArch64::LDRXroX:
978   case AArch64::PRFMroW:
979   case AArch64::PRFMroX:
980   case AArch64::STRBBroW:
981   case AArch64::STRBBroX:
982   case AArch64::STRBroW:
983   case AArch64::STRBroX:
984   case AArch64::STRDroW:
985   case AArch64::STRDroX:
986   case AArch64::STRHHroW:
987   case AArch64::STRHHroX:
988   case AArch64::STRHroW:
989   case AArch64::STRHroX:
990   case AArch64::STRQroW:
991   case AArch64::STRQroX:
992   case AArch64::STRSroW:
993   case AArch64::STRSroX:
994   case AArch64::STRWroW:
995   case AArch64::STRWroX:
996   case AArch64::STRXroW:
997   case AArch64::STRXroX: {
998     unsigned IsSigned = MI.getOperand(3).getImm();
999     return !IsSigned;
1000   }
1001   }
1002 }
1003 
1004 bool AArch64InstrInfo::isSEHInstruction(const MachineInstr &MI) {
1005   unsigned Opc = MI.getOpcode();
1006   switch (Opc) {
1007     default:
1008       return false;
1009     case AArch64::SEH_StackAlloc:
1010     case AArch64::SEH_SaveFPLR:
1011     case AArch64::SEH_SaveFPLR_X:
1012     case AArch64::SEH_SaveReg:
1013     case AArch64::SEH_SaveReg_X:
1014     case AArch64::SEH_SaveRegP:
1015     case AArch64::SEH_SaveRegP_X:
1016     case AArch64::SEH_SaveFReg:
1017     case AArch64::SEH_SaveFReg_X:
1018     case AArch64::SEH_SaveFRegP:
1019     case AArch64::SEH_SaveFRegP_X:
1020     case AArch64::SEH_SetFP:
1021     case AArch64::SEH_AddFP:
1022     case AArch64::SEH_Nop:
1023     case AArch64::SEH_PrologEnd:
1024     case AArch64::SEH_EpilogStart:
1025     case AArch64::SEH_EpilogEnd:
1026     case AArch64::SEH_PACSignLR:
1027       return true;
1028   }
1029 }
1030 
1031 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1032                                              Register &SrcReg, Register &DstReg,
1033                                              unsigned &SubIdx) const {
1034   switch (MI.getOpcode()) {
1035   default:
1036     return false;
1037   case AArch64::SBFMXri: // aka sxtw
1038   case AArch64::UBFMXri: // aka uxtw
1039     // Check for the 32 -> 64 bit extension case, these instructions can do
1040     // much more.
1041     if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
1042       return false;
1043     // This is a signed or unsigned 32 -> 64 bit extension.
1044     SrcReg = MI.getOperand(1).getReg();
1045     DstReg = MI.getOperand(0).getReg();
1046     SubIdx = AArch64::sub_32;
1047     return true;
1048   }
1049 }
1050 
1051 bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint(
1052     const MachineInstr &MIa, const MachineInstr &MIb) const {
1053   const TargetRegisterInfo *TRI = &getRegisterInfo();
1054   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
1055   int64_t OffsetA = 0, OffsetB = 0;
1056   unsigned WidthA = 0, WidthB = 0;
1057   bool OffsetAIsScalable = false, OffsetBIsScalable = false;
1058 
1059   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
1060   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
1061 
1062   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1063       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1064     return false;
1065 
1066   // Retrieve the base, offset from the base and width. Width
1067   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8).  If
1068   // base are identical, and the offset of a lower memory access +
1069   // the width doesn't overlap the offset of a higher memory access,
1070   // then the memory accesses are different.
1071   // If OffsetAIsScalable and OffsetBIsScalable are both true, they
1072   // are assumed to have the same scale (vscale).
1073   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, OffsetAIsScalable,
1074                                    WidthA, TRI) &&
1075       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, OffsetBIsScalable,
1076                                    WidthB, TRI)) {
1077     if (BaseOpA->isIdenticalTo(*BaseOpB) &&
1078         OffsetAIsScalable == OffsetBIsScalable) {
1079       int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1080       int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1081       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1082       if (LowOffset + LowWidth <= HighOffset)
1083         return true;
1084     }
1085   }
1086   return false;
1087 }
1088 
1089 bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1090                                             const MachineBasicBlock *MBB,
1091                                             const MachineFunction &MF) const {
1092   if (TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF))
1093     return true;
1094   switch (MI.getOpcode()) {
1095   case AArch64::HINT:
1096     // CSDB hints are scheduling barriers.
1097     if (MI.getOperand(0).getImm() == 0x14)
1098       return true;
1099     break;
1100   case AArch64::DSB:
1101   case AArch64::ISB:
1102     // DSB and ISB also are scheduling barriers.
1103     return true;
1104   case AArch64::MSRpstatesvcrImm1:
1105     // SMSTART and SMSTOP are also scheduling barriers.
1106     return true;
1107   default:;
1108   }
1109   if (isSEHInstruction(MI))
1110     return true;
1111   auto Next = std::next(MI.getIterator());
1112   return Next != MBB->end() && Next->isCFIInstruction();
1113 }
1114 
1115 /// analyzeCompare - For a comparison instruction, return the source registers
1116 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
1117 /// Return true if the comparison instruction can be analyzed.
1118 bool AArch64InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1119                                       Register &SrcReg2, int64_t &CmpMask,
1120                                       int64_t &CmpValue) const {
1121   // The first operand can be a frame index where we'd normally expect a
1122   // register.
1123   assert(MI.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands");
1124   if (!MI.getOperand(1).isReg())
1125     return false;
1126 
1127   switch (MI.getOpcode()) {
1128   default:
1129     break;
1130   case AArch64::PTEST_PP:
1131   case AArch64::PTEST_PP_ANY:
1132     SrcReg = MI.getOperand(0).getReg();
1133     SrcReg2 = MI.getOperand(1).getReg();
1134     // Not sure about the mask and value for now...
1135     CmpMask = ~0;
1136     CmpValue = 0;
1137     return true;
1138   case AArch64::SUBSWrr:
1139   case AArch64::SUBSWrs:
1140   case AArch64::SUBSWrx:
1141   case AArch64::SUBSXrr:
1142   case AArch64::SUBSXrs:
1143   case AArch64::SUBSXrx:
1144   case AArch64::ADDSWrr:
1145   case AArch64::ADDSWrs:
1146   case AArch64::ADDSWrx:
1147   case AArch64::ADDSXrr:
1148   case AArch64::ADDSXrs:
1149   case AArch64::ADDSXrx:
1150     // Replace SUBSWrr with SUBWrr if NZCV is not used.
1151     SrcReg = MI.getOperand(1).getReg();
1152     SrcReg2 = MI.getOperand(2).getReg();
1153     CmpMask = ~0;
1154     CmpValue = 0;
1155     return true;
1156   case AArch64::SUBSWri:
1157   case AArch64::ADDSWri:
1158   case AArch64::SUBSXri:
1159   case AArch64::ADDSXri:
1160     SrcReg = MI.getOperand(1).getReg();
1161     SrcReg2 = 0;
1162     CmpMask = ~0;
1163     CmpValue = MI.getOperand(2).getImm();
1164     return true;
1165   case AArch64::ANDSWri:
1166   case AArch64::ANDSXri:
1167     // ANDS does not use the same encoding scheme as the others xxxS
1168     // instructions.
1169     SrcReg = MI.getOperand(1).getReg();
1170     SrcReg2 = 0;
1171     CmpMask = ~0;
1172     CmpValue = AArch64_AM::decodeLogicalImmediate(
1173                    MI.getOperand(2).getImm(),
1174                    MI.getOpcode() == AArch64::ANDSWri ? 32 : 64);
1175     return true;
1176   }
1177 
1178   return false;
1179 }
1180 
1181 static bool UpdateOperandRegClass(MachineInstr &Instr) {
1182   MachineBasicBlock *MBB = Instr.getParent();
1183   assert(MBB && "Can't get MachineBasicBlock here");
1184   MachineFunction *MF = MBB->getParent();
1185   assert(MF && "Can't get MachineFunction here");
1186   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1187   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1188   MachineRegisterInfo *MRI = &MF->getRegInfo();
1189 
1190   for (unsigned OpIdx = 0, EndIdx = Instr.getNumOperands(); OpIdx < EndIdx;
1191        ++OpIdx) {
1192     MachineOperand &MO = Instr.getOperand(OpIdx);
1193     const TargetRegisterClass *OpRegCstraints =
1194         Instr.getRegClassConstraint(OpIdx, TII, TRI);
1195 
1196     // If there's no constraint, there's nothing to do.
1197     if (!OpRegCstraints)
1198       continue;
1199     // If the operand is a frame index, there's nothing to do here.
1200     // A frame index operand will resolve correctly during PEI.
1201     if (MO.isFI())
1202       continue;
1203 
1204     assert(MO.isReg() &&
1205            "Operand has register constraints without being a register!");
1206 
1207     Register Reg = MO.getReg();
1208     if (Reg.isPhysical()) {
1209       if (!OpRegCstraints->contains(Reg))
1210         return false;
1211     } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
1212                !MRI->constrainRegClass(Reg, OpRegCstraints))
1213       return false;
1214   }
1215 
1216   return true;
1217 }
1218 
1219 /// Return the opcode that does not set flags when possible - otherwise
1220 /// return the original opcode. The caller is responsible to do the actual
1221 /// substitution and legality checking.
1222 static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) {
1223   // Don't convert all compare instructions, because for some the zero register
1224   // encoding becomes the sp register.
1225   bool MIDefinesZeroReg = false;
1226   if (MI.definesRegister(AArch64::WZR) || MI.definesRegister(AArch64::XZR))
1227     MIDefinesZeroReg = true;
1228 
1229   switch (MI.getOpcode()) {
1230   default:
1231     return MI.getOpcode();
1232   case AArch64::ADDSWrr:
1233     return AArch64::ADDWrr;
1234   case AArch64::ADDSWri:
1235     return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
1236   case AArch64::ADDSWrs:
1237     return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
1238   case AArch64::ADDSWrx:
1239     return AArch64::ADDWrx;
1240   case AArch64::ADDSXrr:
1241     return AArch64::ADDXrr;
1242   case AArch64::ADDSXri:
1243     return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
1244   case AArch64::ADDSXrs:
1245     return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
1246   case AArch64::ADDSXrx:
1247     return AArch64::ADDXrx;
1248   case AArch64::SUBSWrr:
1249     return AArch64::SUBWrr;
1250   case AArch64::SUBSWri:
1251     return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
1252   case AArch64::SUBSWrs:
1253     return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
1254   case AArch64::SUBSWrx:
1255     return AArch64::SUBWrx;
1256   case AArch64::SUBSXrr:
1257     return AArch64::SUBXrr;
1258   case AArch64::SUBSXri:
1259     return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
1260   case AArch64::SUBSXrs:
1261     return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
1262   case AArch64::SUBSXrx:
1263     return AArch64::SUBXrx;
1264   }
1265 }
1266 
1267 enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 };
1268 
1269 /// True when condition flags are accessed (either by writing or reading)
1270 /// on the instruction trace starting at From and ending at To.
1271 ///
1272 /// Note: If From and To are from different blocks it's assumed CC are accessed
1273 ///       on the path.
1274 static bool areCFlagsAccessedBetweenInstrs(
1275     MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
1276     const TargetRegisterInfo *TRI, const AccessKind AccessToCheck = AK_All) {
1277   // Early exit if To is at the beginning of the BB.
1278   if (To == To->getParent()->begin())
1279     return true;
1280 
1281   // Check whether the instructions are in the same basic block
1282   // If not, assume the condition flags might get modified somewhere.
1283   if (To->getParent() != From->getParent())
1284     return true;
1285 
1286   // From must be above To.
1287   assert(std::any_of(
1288       ++To.getReverse(), To->getParent()->rend(),
1289       [From](MachineInstr &MI) { return MI.getIterator() == From; }));
1290 
1291   // We iterate backward starting at \p To until we hit \p From.
1292   for (const MachineInstr &Instr :
1293        instructionsWithoutDebug(++To.getReverse(), From.getReverse())) {
1294     if (((AccessToCheck & AK_Write) &&
1295          Instr.modifiesRegister(AArch64::NZCV, TRI)) ||
1296         ((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI)))
1297       return true;
1298   }
1299   return false;
1300 }
1301 
1302 /// optimizePTestInstr - Attempt to remove a ptest of a predicate-generating
1303 /// operation which could set the flags in an identical manner
1304 bool AArch64InstrInfo::optimizePTestInstr(
1305     MachineInstr *PTest, unsigned MaskReg, unsigned PredReg,
1306     const MachineRegisterInfo *MRI) const {
1307   auto *Mask = MRI->getUniqueVRegDef(MaskReg);
1308   auto *Pred = MRI->getUniqueVRegDef(PredReg);
1309   auto NewOp = Pred->getOpcode();
1310   bool OpChanged = false;
1311 
1312   unsigned MaskOpcode = Mask->getOpcode();
1313   unsigned PredOpcode = Pred->getOpcode();
1314   bool PredIsPTestLike = isPTestLikeOpcode(PredOpcode);
1315   bool PredIsWhileLike = isWhileOpcode(PredOpcode);
1316 
1317   if (isPTrueOpcode(MaskOpcode) && (PredIsPTestLike || PredIsWhileLike) &&
1318       getElementSizeForOpcode(MaskOpcode) ==
1319           getElementSizeForOpcode(PredOpcode) &&
1320       Mask->getOperand(1).getImm() == 31) {
1321     // For PTEST(PTRUE_ALL, WHILE), if the element size matches, the PTEST is
1322     // redundant since WHILE performs an implicit PTEST with an all active
1323     // mask. Must be an all active predicate of matching element size.
1324 
1325     // For PTEST(PTRUE_ALL, PTEST_LIKE), the PTEST is redundant if the
1326     // PTEST_LIKE instruction uses the same all active mask and the element
1327     // size matches. If the PTEST has a condition of any then it is always
1328     // redundant.
1329     if (PredIsPTestLike) {
1330       auto PTestLikeMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1331       if (Mask != PTestLikeMask && PTest->getOpcode() != AArch64::PTEST_PP_ANY)
1332         return false;
1333     }
1334 
1335     // Fallthough to simply remove the PTEST.
1336   } else if ((Mask == Pred) && (PredIsPTestLike || PredIsWhileLike) &&
1337              PTest->getOpcode() == AArch64::PTEST_PP_ANY) {
1338     // For PTEST(PG, PG), PTEST is redundant when PG is the result of an
1339     // instruction that sets the flags as PTEST would. This is only valid when
1340     // the condition is any.
1341 
1342     // Fallthough to simply remove the PTEST.
1343   } else if (PredIsPTestLike) {
1344     // For PTEST(PG, PTEST_LIKE(PG, ...)), the PTEST is redundant since the
1345     // flags are set based on the same mask 'PG', but PTEST_LIKE must operate
1346     // on 8-bit predicates like the PTEST.  Otherwise, for instructions like
1347     // compare that also support 16/32/64-bit predicates, the implicit PTEST
1348     // performed by the compare could consider fewer lanes for these element
1349     // sizes.
1350     //
1351     // For example, consider
1352     //
1353     //   ptrue p0.b                    ; P0=1111-1111-1111-1111
1354     //   index z0.s, #0, #1            ; Z0=<0,1,2,3>
1355     //   index z1.s, #1, #1            ; Z1=<1,2,3,4>
1356     //   cmphi p1.s, p0/z, z1.s, z0.s  ; P1=0001-0001-0001-0001
1357     //                                 ;       ^ last active
1358     //   ptest p0, p1.b                ; P1=0001-0001-0001-0001
1359     //                                 ;     ^ last active
1360     //
1361     // where the compare generates a canonical all active 32-bit predicate
1362     // (equivalent to 'ptrue p1.s, all'). The implicit PTEST sets the last
1363     // active flag, whereas the PTEST instruction with the same mask doesn't.
1364     // For PTEST_ANY this doesn't apply as the flags in this case would be
1365     // identical regardless of element size.
1366     auto PTestLikeMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1367     uint64_t PredElementSize = getElementSizeForOpcode(PredOpcode);
1368     if ((Mask != PTestLikeMask) ||
1369         (PredElementSize != AArch64::ElementSizeB &&
1370          PTest->getOpcode() != AArch64::PTEST_PP_ANY))
1371       return false;
1372 
1373     // Fallthough to simply remove the PTEST.
1374   } else {
1375     // If OP in PTEST(PG, OP(PG, ...)) has a flag-setting variant change the
1376     // opcode so the PTEST becomes redundant.
1377     switch (PredOpcode) {
1378     case AArch64::AND_PPzPP:
1379     case AArch64::BIC_PPzPP:
1380     case AArch64::EOR_PPzPP:
1381     case AArch64::NAND_PPzPP:
1382     case AArch64::NOR_PPzPP:
1383     case AArch64::ORN_PPzPP:
1384     case AArch64::ORR_PPzPP:
1385     case AArch64::BRKA_PPzP:
1386     case AArch64::BRKPA_PPzPP:
1387     case AArch64::BRKB_PPzP:
1388     case AArch64::BRKPB_PPzPP:
1389     case AArch64::RDFFR_PPz: {
1390       // Check to see if our mask is the same. If not the resulting flag bits
1391       // may be different and we can't remove the ptest.
1392       auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg());
1393       if (Mask != PredMask)
1394         return false;
1395       break;
1396     }
1397     case AArch64::BRKN_PPzP: {
1398       // BRKN uses an all active implicit mask to set flags unlike the other
1399       // flag-setting instructions.
1400       // PTEST(PTRUE_B(31), BRKN(PG, A, B)) -> BRKNS(PG, A, B).
1401       if ((MaskOpcode != AArch64::PTRUE_B) ||
1402           (Mask->getOperand(1).getImm() != 31))
1403         return false;
1404       break;
1405     }
1406     case AArch64::PTRUE_B:
1407       // PTEST(OP=PTRUE_B(A), OP) -> PTRUES_B(A)
1408       break;
1409     default:
1410       // Bail out if we don't recognize the input
1411       return false;
1412     }
1413 
1414     NewOp = convertToFlagSettingOpc(PredOpcode);
1415     OpChanged = true;
1416   }
1417 
1418   const TargetRegisterInfo *TRI = &getRegisterInfo();
1419 
1420   // If another instruction between Pred and PTest accesses flags, don't remove
1421   // the ptest or update the earlier instruction to modify them.
1422   if (areCFlagsAccessedBetweenInstrs(Pred, PTest, TRI))
1423     return false;
1424 
1425   // If we pass all the checks, it's safe to remove the PTEST and use the flags
1426   // as they are prior to PTEST. Sometimes this requires the tested PTEST
1427   // operand to be replaced with an equivalent instruction that also sets the
1428   // flags.
1429   Pred->setDesc(get(NewOp));
1430   PTest->eraseFromParent();
1431   if (OpChanged) {
1432     bool succeeded = UpdateOperandRegClass(*Pred);
1433     (void)succeeded;
1434     assert(succeeded && "Operands have incompatible register classes!");
1435     Pred->addRegisterDefined(AArch64::NZCV, TRI);
1436   }
1437 
1438   // Ensure that the flags def is live.
1439   if (Pred->registerDefIsDead(AArch64::NZCV, TRI)) {
1440     unsigned i = 0, e = Pred->getNumOperands();
1441     for (; i != e; ++i) {
1442       MachineOperand &MO = Pred->getOperand(i);
1443       if (MO.isReg() && MO.isDef() && MO.getReg() == AArch64::NZCV) {
1444         MO.setIsDead(false);
1445         break;
1446       }
1447     }
1448   }
1449   return true;
1450 }
1451 
1452 /// Try to optimize a compare instruction. A compare instruction is an
1453 /// instruction which produces AArch64::NZCV. It can be truly compare
1454 /// instruction
1455 /// when there are no uses of its destination register.
1456 ///
1457 /// The following steps are tried in order:
1458 /// 1. Convert CmpInstr into an unconditional version.
1459 /// 2. Remove CmpInstr if above there is an instruction producing a needed
1460 ///    condition code or an instruction which can be converted into such an
1461 ///    instruction.
1462 ///    Only comparison with zero is supported.
1463 bool AArch64InstrInfo::optimizeCompareInstr(
1464     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
1465     int64_t CmpValue, const MachineRegisterInfo *MRI) const {
1466   assert(CmpInstr.getParent());
1467   assert(MRI);
1468 
1469   // Replace SUBSWrr with SUBWrr if NZCV is not used.
1470   int DeadNZCVIdx = CmpInstr.findRegisterDefOperandIdx(AArch64::NZCV, true);
1471   if (DeadNZCVIdx != -1) {
1472     if (CmpInstr.definesRegister(AArch64::WZR) ||
1473         CmpInstr.definesRegister(AArch64::XZR)) {
1474       CmpInstr.eraseFromParent();
1475       return true;
1476     }
1477     unsigned Opc = CmpInstr.getOpcode();
1478     unsigned NewOpc = convertToNonFlagSettingOpc(CmpInstr);
1479     if (NewOpc == Opc)
1480       return false;
1481     const MCInstrDesc &MCID = get(NewOpc);
1482     CmpInstr.setDesc(MCID);
1483     CmpInstr.removeOperand(DeadNZCVIdx);
1484     bool succeeded = UpdateOperandRegClass(CmpInstr);
1485     (void)succeeded;
1486     assert(succeeded && "Some operands reg class are incompatible!");
1487     return true;
1488   }
1489 
1490   if (CmpInstr.getOpcode() == AArch64::PTEST_PP ||
1491       CmpInstr.getOpcode() == AArch64::PTEST_PP_ANY)
1492     return optimizePTestInstr(&CmpInstr, SrcReg, SrcReg2, MRI);
1493 
1494   if (SrcReg2 != 0)
1495     return false;
1496 
1497   // CmpInstr is a Compare instruction if destination register is not used.
1498   if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
1499     return false;
1500 
1501   if (CmpValue == 0 && substituteCmpToZero(CmpInstr, SrcReg, *MRI))
1502     return true;
1503   return (CmpValue == 0 || CmpValue == 1) &&
1504          removeCmpToZeroOrOne(CmpInstr, SrcReg, CmpValue, *MRI);
1505 }
1506 
1507 /// Get opcode of S version of Instr.
1508 /// If Instr is S version its opcode is returned.
1509 /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version
1510 /// or we are not interested in it.
1511 static unsigned sForm(MachineInstr &Instr) {
1512   switch (Instr.getOpcode()) {
1513   default:
1514     return AArch64::INSTRUCTION_LIST_END;
1515 
1516   case AArch64::ADDSWrr:
1517   case AArch64::ADDSWri:
1518   case AArch64::ADDSXrr:
1519   case AArch64::ADDSXri:
1520   case AArch64::SUBSWrr:
1521   case AArch64::SUBSWri:
1522   case AArch64::SUBSXrr:
1523   case AArch64::SUBSXri:
1524     return Instr.getOpcode();
1525 
1526   case AArch64::ADDWrr:
1527     return AArch64::ADDSWrr;
1528   case AArch64::ADDWri:
1529     return AArch64::ADDSWri;
1530   case AArch64::ADDXrr:
1531     return AArch64::ADDSXrr;
1532   case AArch64::ADDXri:
1533     return AArch64::ADDSXri;
1534   case AArch64::ADCWr:
1535     return AArch64::ADCSWr;
1536   case AArch64::ADCXr:
1537     return AArch64::ADCSXr;
1538   case AArch64::SUBWrr:
1539     return AArch64::SUBSWrr;
1540   case AArch64::SUBWri:
1541     return AArch64::SUBSWri;
1542   case AArch64::SUBXrr:
1543     return AArch64::SUBSXrr;
1544   case AArch64::SUBXri:
1545     return AArch64::SUBSXri;
1546   case AArch64::SBCWr:
1547     return AArch64::SBCSWr;
1548   case AArch64::SBCXr:
1549     return AArch64::SBCSXr;
1550   case AArch64::ANDWri:
1551     return AArch64::ANDSWri;
1552   case AArch64::ANDXri:
1553     return AArch64::ANDSXri;
1554   }
1555 }
1556 
1557 /// Check if AArch64::NZCV should be alive in successors of MBB.
1558 static bool areCFlagsAliveInSuccessors(const MachineBasicBlock *MBB) {
1559   for (auto *BB : MBB->successors())
1560     if (BB->isLiveIn(AArch64::NZCV))
1561       return true;
1562   return false;
1563 }
1564 
1565 /// \returns The condition code operand index for \p Instr if it is a branch
1566 /// or select and -1 otherwise.
1567 static int
1568 findCondCodeUseOperandIdxForBranchOrSelect(const MachineInstr &Instr) {
1569   switch (Instr.getOpcode()) {
1570   default:
1571     return -1;
1572 
1573   case AArch64::Bcc: {
1574     int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1575     assert(Idx >= 2);
1576     return Idx - 2;
1577   }
1578 
1579   case AArch64::CSINVWr:
1580   case AArch64::CSINVXr:
1581   case AArch64::CSINCWr:
1582   case AArch64::CSINCXr:
1583   case AArch64::CSELWr:
1584   case AArch64::CSELXr:
1585   case AArch64::CSNEGWr:
1586   case AArch64::CSNEGXr:
1587   case AArch64::FCSELSrrr:
1588   case AArch64::FCSELDrrr: {
1589     int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV);
1590     assert(Idx >= 1);
1591     return Idx - 1;
1592   }
1593   }
1594 }
1595 
1596 /// Find a condition code used by the instruction.
1597 /// Returns AArch64CC::Invalid if either the instruction does not use condition
1598 /// codes or we don't optimize CmpInstr in the presence of such instructions.
1599 static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) {
1600   int CCIdx = findCondCodeUseOperandIdxForBranchOrSelect(Instr);
1601   return CCIdx >= 0 ? static_cast<AArch64CC::CondCode>(
1602                           Instr.getOperand(CCIdx).getImm())
1603                     : AArch64CC::Invalid;
1604 }
1605 
1606 static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) {
1607   assert(CC != AArch64CC::Invalid);
1608   UsedNZCV UsedFlags;
1609   switch (CC) {
1610   default:
1611     break;
1612 
1613   case AArch64CC::EQ: // Z set
1614   case AArch64CC::NE: // Z clear
1615     UsedFlags.Z = true;
1616     break;
1617 
1618   case AArch64CC::HI: // Z clear and C set
1619   case AArch64CC::LS: // Z set   or  C clear
1620     UsedFlags.Z = true;
1621     [[fallthrough]];
1622   case AArch64CC::HS: // C set
1623   case AArch64CC::LO: // C clear
1624     UsedFlags.C = true;
1625     break;
1626 
1627   case AArch64CC::MI: // N set
1628   case AArch64CC::PL: // N clear
1629     UsedFlags.N = true;
1630     break;
1631 
1632   case AArch64CC::VS: // V set
1633   case AArch64CC::VC: // V clear
1634     UsedFlags.V = true;
1635     break;
1636 
1637   case AArch64CC::GT: // Z clear, N and V the same
1638   case AArch64CC::LE: // Z set,   N and V differ
1639     UsedFlags.Z = true;
1640     [[fallthrough]];
1641   case AArch64CC::GE: // N and V the same
1642   case AArch64CC::LT: // N and V differ
1643     UsedFlags.N = true;
1644     UsedFlags.V = true;
1645     break;
1646   }
1647   return UsedFlags;
1648 }
1649 
1650 /// \returns Conditions flags used after \p CmpInstr in its MachineBB if NZCV
1651 /// flags are not alive in successors of the same \p CmpInstr and \p MI parent.
1652 /// \returns std::nullopt otherwise.
1653 ///
1654 /// Collect instructions using that flags in \p CCUseInstrs if provided.
1655 std::optional<UsedNZCV>
1656 llvm::examineCFlagsUse(MachineInstr &MI, MachineInstr &CmpInstr,
1657                        const TargetRegisterInfo &TRI,
1658                        SmallVectorImpl<MachineInstr *> *CCUseInstrs) {
1659   MachineBasicBlock *CmpParent = CmpInstr.getParent();
1660   if (MI.getParent() != CmpParent)
1661     return std::nullopt;
1662 
1663   if (areCFlagsAliveInSuccessors(CmpParent))
1664     return std::nullopt;
1665 
1666   UsedNZCV NZCVUsedAfterCmp;
1667   for (MachineInstr &Instr : instructionsWithoutDebug(
1668            std::next(CmpInstr.getIterator()), CmpParent->instr_end())) {
1669     if (Instr.readsRegister(AArch64::NZCV, &TRI)) {
1670       AArch64CC::CondCode CC = findCondCodeUsedByInstr(Instr);
1671       if (CC == AArch64CC::Invalid) // Unsupported conditional instruction
1672         return std::nullopt;
1673       NZCVUsedAfterCmp |= getUsedNZCV(CC);
1674       if (CCUseInstrs)
1675         CCUseInstrs->push_back(&Instr);
1676     }
1677     if (Instr.modifiesRegister(AArch64::NZCV, &TRI))
1678       break;
1679   }
1680   return NZCVUsedAfterCmp;
1681 }
1682 
1683 static bool isADDSRegImm(unsigned Opcode) {
1684   return Opcode == AArch64::ADDSWri || Opcode == AArch64::ADDSXri;
1685 }
1686 
1687 static bool isSUBSRegImm(unsigned Opcode) {
1688   return Opcode == AArch64::SUBSWri || Opcode == AArch64::SUBSXri;
1689 }
1690 
1691 /// Check if CmpInstr can be substituted by MI.
1692 ///
1693 /// CmpInstr can be substituted:
1694 /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1695 /// - and, MI and CmpInstr are from the same MachineBB
1696 /// - and, condition flags are not alive in successors of the CmpInstr parent
1697 /// - and, if MI opcode is the S form there must be no defs of flags between
1698 ///        MI and CmpInstr
1699 ///        or if MI opcode is not the S form there must be neither defs of flags
1700 ///        nor uses of flags between MI and CmpInstr.
1701 /// - and, if C/V flags are not used after CmpInstr
1702 ///        or if N flag is used but MI produces poison value if signed overflow
1703 ///        occurs.
1704 static bool canInstrSubstituteCmpInstr(MachineInstr &MI, MachineInstr &CmpInstr,
1705                                        const TargetRegisterInfo &TRI) {
1706   // NOTE this assertion guarantees that MI.getOpcode() is add or subtraction
1707   // that may or may not set flags.
1708   assert(sForm(MI) != AArch64::INSTRUCTION_LIST_END);
1709 
1710   const unsigned CmpOpcode = CmpInstr.getOpcode();
1711   if (!isADDSRegImm(CmpOpcode) && !isSUBSRegImm(CmpOpcode))
1712     return false;
1713 
1714   assert((CmpInstr.getOperand(2).isImm() &&
1715           CmpInstr.getOperand(2).getImm() == 0) &&
1716          "Caller guarantees that CmpInstr compares with constant 0");
1717 
1718   std::optional<UsedNZCV> NZVCUsed = examineCFlagsUse(MI, CmpInstr, TRI);
1719   if (!NZVCUsed || NZVCUsed->C)
1720     return false;
1721 
1722   // CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0', and MI is either
1723   // '%vreg = add ...' or '%vreg = sub ...'.
1724   // Condition flag V is used to indicate signed overflow.
1725   // 1) MI and CmpInstr set N and V to the same value.
1726   // 2) If MI is add/sub with no-signed-wrap, it produces a poison value when
1727   //    signed overflow occurs, so CmpInstr could still be simplified away.
1728   if (NZVCUsed->V && !MI.getFlag(MachineInstr::NoSWrap))
1729     return false;
1730 
1731   AccessKind AccessToCheck = AK_Write;
1732   if (sForm(MI) != MI.getOpcode())
1733     AccessToCheck = AK_All;
1734   return !areCFlagsAccessedBetweenInstrs(&MI, &CmpInstr, &TRI, AccessToCheck);
1735 }
1736 
1737 /// Substitute an instruction comparing to zero with another instruction
1738 /// which produces needed condition flags.
1739 ///
1740 /// Return true on success.
1741 bool AArch64InstrInfo::substituteCmpToZero(
1742     MachineInstr &CmpInstr, unsigned SrcReg,
1743     const MachineRegisterInfo &MRI) const {
1744   // Get the unique definition of SrcReg.
1745   MachineInstr *MI = MRI.getUniqueVRegDef(SrcReg);
1746   if (!MI)
1747     return false;
1748 
1749   const TargetRegisterInfo &TRI = getRegisterInfo();
1750 
1751   unsigned NewOpc = sForm(*MI);
1752   if (NewOpc == AArch64::INSTRUCTION_LIST_END)
1753     return false;
1754 
1755   if (!canInstrSubstituteCmpInstr(*MI, CmpInstr, TRI))
1756     return false;
1757 
1758   // Update the instruction to set NZCV.
1759   MI->setDesc(get(NewOpc));
1760   CmpInstr.eraseFromParent();
1761   bool succeeded = UpdateOperandRegClass(*MI);
1762   (void)succeeded;
1763   assert(succeeded && "Some operands reg class are incompatible!");
1764   MI->addRegisterDefined(AArch64::NZCV, &TRI);
1765   return true;
1766 }
1767 
1768 /// \returns True if \p CmpInstr can be removed.
1769 ///
1770 /// \p IsInvertCC is true if, after removing \p CmpInstr, condition
1771 /// codes used in \p CCUseInstrs must be inverted.
1772 static bool canCmpInstrBeRemoved(MachineInstr &MI, MachineInstr &CmpInstr,
1773                                  int CmpValue, const TargetRegisterInfo &TRI,
1774                                  SmallVectorImpl<MachineInstr *> &CCUseInstrs,
1775                                  bool &IsInvertCC) {
1776   assert((CmpValue == 0 || CmpValue == 1) &&
1777          "Only comparisons to 0 or 1 considered for removal!");
1778 
1779   // MI is 'CSINCWr %vreg, wzr, wzr, <cc>' or 'CSINCXr %vreg, xzr, xzr, <cc>'
1780   unsigned MIOpc = MI.getOpcode();
1781   if (MIOpc == AArch64::CSINCWr) {
1782     if (MI.getOperand(1).getReg() != AArch64::WZR ||
1783         MI.getOperand(2).getReg() != AArch64::WZR)
1784       return false;
1785   } else if (MIOpc == AArch64::CSINCXr) {
1786     if (MI.getOperand(1).getReg() != AArch64::XZR ||
1787         MI.getOperand(2).getReg() != AArch64::XZR)
1788       return false;
1789   } else {
1790     return false;
1791   }
1792   AArch64CC::CondCode MICC = findCondCodeUsedByInstr(MI);
1793   if (MICC == AArch64CC::Invalid)
1794     return false;
1795 
1796   // NZCV needs to be defined
1797   if (MI.findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
1798     return false;
1799 
1800   // CmpInstr is 'ADDS %vreg, 0' or 'SUBS %vreg, 0' or 'SUBS %vreg, 1'
1801   const unsigned CmpOpcode = CmpInstr.getOpcode();
1802   bool IsSubsRegImm = isSUBSRegImm(CmpOpcode);
1803   if (CmpValue && !IsSubsRegImm)
1804     return false;
1805   if (!CmpValue && !IsSubsRegImm && !isADDSRegImm(CmpOpcode))
1806     return false;
1807 
1808   // MI conditions allowed: eq, ne, mi, pl
1809   UsedNZCV MIUsedNZCV = getUsedNZCV(MICC);
1810   if (MIUsedNZCV.C || MIUsedNZCV.V)
1811     return false;
1812 
1813   std::optional<UsedNZCV> NZCVUsedAfterCmp =
1814       examineCFlagsUse(MI, CmpInstr, TRI, &CCUseInstrs);
1815   // Condition flags are not used in CmpInstr basic block successors and only
1816   // Z or N flags allowed to be used after CmpInstr within its basic block
1817   if (!NZCVUsedAfterCmp || NZCVUsedAfterCmp->C || NZCVUsedAfterCmp->V)
1818     return false;
1819   // Z or N flag used after CmpInstr must correspond to the flag used in MI
1820   if ((MIUsedNZCV.Z && NZCVUsedAfterCmp->N) ||
1821       (MIUsedNZCV.N && NZCVUsedAfterCmp->Z))
1822     return false;
1823   // If CmpInstr is comparison to zero MI conditions are limited to eq, ne
1824   if (MIUsedNZCV.N && !CmpValue)
1825     return false;
1826 
1827   // There must be no defs of flags between MI and CmpInstr
1828   if (areCFlagsAccessedBetweenInstrs(&MI, &CmpInstr, &TRI, AK_Write))
1829     return false;
1830 
1831   // Condition code is inverted in the following cases:
1832   // 1. MI condition is ne; CmpInstr is 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1833   // 2. MI condition is eq, pl; CmpInstr is 'SUBS %vreg, 1'
1834   IsInvertCC = (CmpValue && (MICC == AArch64CC::EQ || MICC == AArch64CC::PL)) ||
1835                (!CmpValue && MICC == AArch64CC::NE);
1836   return true;
1837 }
1838 
1839 /// Remove comparison in csinc-cmp sequence
1840 ///
1841 /// Examples:
1842 /// 1. \code
1843 ///   csinc w9, wzr, wzr, ne
1844 ///   cmp   w9, #0
1845 ///   b.eq
1846 ///    \endcode
1847 /// to
1848 ///    \code
1849 ///   csinc w9, wzr, wzr, ne
1850 ///   b.ne
1851 ///    \endcode
1852 ///
1853 /// 2. \code
1854 ///   csinc x2, xzr, xzr, mi
1855 ///   cmp   x2, #1
1856 ///   b.pl
1857 ///    \endcode
1858 /// to
1859 ///    \code
1860 ///   csinc x2, xzr, xzr, mi
1861 ///   b.pl
1862 ///    \endcode
1863 ///
1864 /// \param  CmpInstr comparison instruction
1865 /// \return True when comparison removed
1866 bool AArch64InstrInfo::removeCmpToZeroOrOne(
1867     MachineInstr &CmpInstr, unsigned SrcReg, int CmpValue,
1868     const MachineRegisterInfo &MRI) const {
1869   MachineInstr *MI = MRI.getUniqueVRegDef(SrcReg);
1870   if (!MI)
1871     return false;
1872   const TargetRegisterInfo &TRI = getRegisterInfo();
1873   SmallVector<MachineInstr *, 4> CCUseInstrs;
1874   bool IsInvertCC = false;
1875   if (!canCmpInstrBeRemoved(*MI, CmpInstr, CmpValue, TRI, CCUseInstrs,
1876                             IsInvertCC))
1877     return false;
1878   // Make transformation
1879   CmpInstr.eraseFromParent();
1880   if (IsInvertCC) {
1881     // Invert condition codes in CmpInstr CC users
1882     for (MachineInstr *CCUseInstr : CCUseInstrs) {
1883       int Idx = findCondCodeUseOperandIdxForBranchOrSelect(*CCUseInstr);
1884       assert(Idx >= 0 && "Unexpected instruction using CC.");
1885       MachineOperand &CCOperand = CCUseInstr->getOperand(Idx);
1886       AArch64CC::CondCode CCUse = AArch64CC::getInvertedCondCode(
1887           static_cast<AArch64CC::CondCode>(CCOperand.getImm()));
1888       CCOperand.setImm(CCUse);
1889     }
1890   }
1891   return true;
1892 }
1893 
1894 bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1895   if (MI.getOpcode() != TargetOpcode::LOAD_STACK_GUARD &&
1896       MI.getOpcode() != AArch64::CATCHRET)
1897     return false;
1898 
1899   MachineBasicBlock &MBB = *MI.getParent();
1900   auto &Subtarget = MBB.getParent()->getSubtarget<AArch64Subtarget>();
1901   auto TRI = Subtarget.getRegisterInfo();
1902   DebugLoc DL = MI.getDebugLoc();
1903 
1904   if (MI.getOpcode() == AArch64::CATCHRET) {
1905     // Skip to the first instruction before the epilog.
1906     const TargetInstrInfo *TII =
1907       MBB.getParent()->getSubtarget().getInstrInfo();
1908     MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
1909     auto MBBI = MachineBasicBlock::iterator(MI);
1910     MachineBasicBlock::iterator FirstEpilogSEH = std::prev(MBBI);
1911     while (FirstEpilogSEH->getFlag(MachineInstr::FrameDestroy) &&
1912            FirstEpilogSEH != MBB.begin())
1913       FirstEpilogSEH = std::prev(FirstEpilogSEH);
1914     if (FirstEpilogSEH != MBB.begin())
1915       FirstEpilogSEH = std::next(FirstEpilogSEH);
1916     BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADRP))
1917         .addReg(AArch64::X0, RegState::Define)
1918         .addMBB(TargetMBB);
1919     BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADDXri))
1920         .addReg(AArch64::X0, RegState::Define)
1921         .addReg(AArch64::X0)
1922         .addMBB(TargetMBB)
1923         .addImm(0);
1924     return true;
1925   }
1926 
1927   Register Reg = MI.getOperand(0).getReg();
1928   Module &M = *MBB.getParent()->getFunction().getParent();
1929   if (M.getStackProtectorGuard() == "sysreg") {
1930     const AArch64SysReg::SysReg *SrcReg =
1931         AArch64SysReg::lookupSysRegByName(M.getStackProtectorGuardReg());
1932     if (!SrcReg)
1933       report_fatal_error("Unknown SysReg for Stack Protector Guard Register");
1934 
1935     // mrs xN, sysreg
1936     BuildMI(MBB, MI, DL, get(AArch64::MRS))
1937         .addDef(Reg, RegState::Renamable)
1938         .addImm(SrcReg->Encoding);
1939     int Offset = M.getStackProtectorGuardOffset();
1940     if (Offset >= 0 && Offset <= 32760 && Offset % 8 == 0) {
1941       // ldr xN, [xN, #offset]
1942       BuildMI(MBB, MI, DL, get(AArch64::LDRXui))
1943           .addDef(Reg)
1944           .addUse(Reg, RegState::Kill)
1945           .addImm(Offset / 8);
1946     } else if (Offset >= -256 && Offset <= 255) {
1947       // ldur xN, [xN, #offset]
1948       BuildMI(MBB, MI, DL, get(AArch64::LDURXi))
1949           .addDef(Reg)
1950           .addUse(Reg, RegState::Kill)
1951           .addImm(Offset);
1952     } else if (Offset >= -4095 && Offset <= 4095) {
1953       if (Offset > 0) {
1954         // add xN, xN, #offset
1955         BuildMI(MBB, MI, DL, get(AArch64::ADDXri))
1956             .addDef(Reg)
1957             .addUse(Reg, RegState::Kill)
1958             .addImm(Offset)
1959             .addImm(0);
1960       } else {
1961         // sub xN, xN, #offset
1962         BuildMI(MBB, MI, DL, get(AArch64::SUBXri))
1963             .addDef(Reg)
1964             .addUse(Reg, RegState::Kill)
1965             .addImm(-Offset)
1966             .addImm(0);
1967       }
1968       // ldr xN, [xN]
1969       BuildMI(MBB, MI, DL, get(AArch64::LDRXui))
1970           .addDef(Reg)
1971           .addUse(Reg, RegState::Kill)
1972           .addImm(0);
1973     } else {
1974       // Cases that are larger than +/- 4095 and not a multiple of 8, or larger
1975       // than 23760.
1976       // It might be nice to use AArch64::MOVi32imm here, which would get
1977       // expanded in PreSched2 after PostRA, but our lone scratch Reg already
1978       // contains the MRS result. findScratchNonCalleeSaveRegister() in
1979       // AArch64FrameLowering might help us find such a scratch register
1980       // though. If we failed to find a scratch register, we could emit a
1981       // stream of add instructions to build up the immediate. Or, we could try
1982       // to insert a AArch64::MOVi32imm before register allocation so that we
1983       // didn't need to scavenge for a scratch register.
1984       report_fatal_error("Unable to encode Stack Protector Guard Offset");
1985     }
1986     MBB.erase(MI);
1987     return true;
1988   }
1989 
1990   const GlobalValue *GV =
1991       cast<GlobalValue>((*MI.memoperands_begin())->getValue());
1992   const TargetMachine &TM = MBB.getParent()->getTarget();
1993   unsigned OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
1994   const unsigned char MO_NC = AArch64II::MO_NC;
1995 
1996   if ((OpFlags & AArch64II::MO_GOT) != 0) {
1997     BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
1998         .addGlobalAddress(GV, 0, OpFlags);
1999     if (Subtarget.isTargetILP32()) {
2000       unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
2001       BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
2002           .addDef(Reg32, RegState::Dead)
2003           .addUse(Reg, RegState::Kill)
2004           .addImm(0)
2005           .addMemOperand(*MI.memoperands_begin())
2006           .addDef(Reg, RegState::Implicit);
2007     } else {
2008       BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
2009           .addReg(Reg, RegState::Kill)
2010           .addImm(0)
2011           .addMemOperand(*MI.memoperands_begin());
2012     }
2013   } else if (TM.getCodeModel() == CodeModel::Large) {
2014     assert(!Subtarget.isTargetILP32() && "how can large exist in ILP32?");
2015     BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
2016         .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC)
2017         .addImm(0);
2018     BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
2019         .addReg(Reg, RegState::Kill)
2020         .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC)
2021         .addImm(16);
2022     BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
2023         .addReg(Reg, RegState::Kill)
2024         .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC)
2025         .addImm(32);
2026     BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
2027         .addReg(Reg, RegState::Kill)
2028         .addGlobalAddress(GV, 0, AArch64II::MO_G3)
2029         .addImm(48);
2030     BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
2031         .addReg(Reg, RegState::Kill)
2032         .addImm(0)
2033         .addMemOperand(*MI.memoperands_begin());
2034   } else if (TM.getCodeModel() == CodeModel::Tiny) {
2035     BuildMI(MBB, MI, DL, get(AArch64::ADR), Reg)
2036         .addGlobalAddress(GV, 0, OpFlags);
2037   } else {
2038     BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
2039         .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
2040     unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
2041     if (Subtarget.isTargetILP32()) {
2042       unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32);
2043       BuildMI(MBB, MI, DL, get(AArch64::LDRWui))
2044           .addDef(Reg32, RegState::Dead)
2045           .addUse(Reg, RegState::Kill)
2046           .addGlobalAddress(GV, 0, LoFlags)
2047           .addMemOperand(*MI.memoperands_begin())
2048           .addDef(Reg, RegState::Implicit);
2049     } else {
2050       BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
2051           .addReg(Reg, RegState::Kill)
2052           .addGlobalAddress(GV, 0, LoFlags)
2053           .addMemOperand(*MI.memoperands_begin());
2054     }
2055   }
2056 
2057   MBB.erase(MI);
2058 
2059   return true;
2060 }
2061 
2062 // Return true if this instruction simply sets its single destination register
2063 // to zero. This is equivalent to a register rename of the zero-register.
2064 bool AArch64InstrInfo::isGPRZero(const MachineInstr &MI) {
2065   switch (MI.getOpcode()) {
2066   default:
2067     break;
2068   case AArch64::MOVZWi:
2069   case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
2070     if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) {
2071       assert(MI.getDesc().getNumOperands() == 3 &&
2072              MI.getOperand(2).getImm() == 0 && "invalid MOVZi operands");
2073       return true;
2074     }
2075     break;
2076   case AArch64::ANDWri: // and Rd, Rzr, #imm
2077     return MI.getOperand(1).getReg() == AArch64::WZR;
2078   case AArch64::ANDXri:
2079     return MI.getOperand(1).getReg() == AArch64::XZR;
2080   case TargetOpcode::COPY:
2081     return MI.getOperand(1).getReg() == AArch64::WZR;
2082   }
2083   return false;
2084 }
2085 
2086 // Return true if this instruction simply renames a general register without
2087 // modifying bits.
2088 bool AArch64InstrInfo::isGPRCopy(const MachineInstr &MI) {
2089   switch (MI.getOpcode()) {
2090   default:
2091     break;
2092   case TargetOpcode::COPY: {
2093     // GPR32 copies will by lowered to ORRXrs
2094     Register DstReg = MI.getOperand(0).getReg();
2095     return (AArch64::GPR32RegClass.contains(DstReg) ||
2096             AArch64::GPR64RegClass.contains(DstReg));
2097   }
2098   case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
2099     if (MI.getOperand(1).getReg() == AArch64::XZR) {
2100       assert(MI.getDesc().getNumOperands() == 4 &&
2101              MI.getOperand(3).getImm() == 0 && "invalid ORRrs operands");
2102       return true;
2103     }
2104     break;
2105   case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
2106     if (MI.getOperand(2).getImm() == 0) {
2107       assert(MI.getDesc().getNumOperands() == 4 &&
2108              MI.getOperand(3).getImm() == 0 && "invalid ADDXri operands");
2109       return true;
2110     }
2111     break;
2112   }
2113   return false;
2114 }
2115 
2116 // Return true if this instruction simply renames a general register without
2117 // modifying bits.
2118 bool AArch64InstrInfo::isFPRCopy(const MachineInstr &MI) {
2119   switch (MI.getOpcode()) {
2120   default:
2121     break;
2122   case TargetOpcode::COPY: {
2123     Register DstReg = MI.getOperand(0).getReg();
2124     return AArch64::FPR128RegClass.contains(DstReg);
2125   }
2126   case AArch64::ORRv16i8:
2127     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
2128       assert(MI.getDesc().getNumOperands() == 3 && MI.getOperand(0).isReg() &&
2129              "invalid ORRv16i8 operands");
2130       return true;
2131     }
2132     break;
2133   }
2134   return false;
2135 }
2136 
2137 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
2138                                                int &FrameIndex) const {
2139   switch (MI.getOpcode()) {
2140   default:
2141     break;
2142   case AArch64::LDRWui:
2143   case AArch64::LDRXui:
2144   case AArch64::LDRBui:
2145   case AArch64::LDRHui:
2146   case AArch64::LDRSui:
2147   case AArch64::LDRDui:
2148   case AArch64::LDRQui:
2149     if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
2150         MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
2151       FrameIndex = MI.getOperand(1).getIndex();
2152       return MI.getOperand(0).getReg();
2153     }
2154     break;
2155   }
2156 
2157   return 0;
2158 }
2159 
2160 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
2161                                               int &FrameIndex) const {
2162   switch (MI.getOpcode()) {
2163   default:
2164     break;
2165   case AArch64::STRWui:
2166   case AArch64::STRXui:
2167   case AArch64::STRBui:
2168   case AArch64::STRHui:
2169   case AArch64::STRSui:
2170   case AArch64::STRDui:
2171   case AArch64::STRQui:
2172   case AArch64::LDR_PXI:
2173   case AArch64::STR_PXI:
2174     if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() &&
2175         MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) {
2176       FrameIndex = MI.getOperand(1).getIndex();
2177       return MI.getOperand(0).getReg();
2178     }
2179     break;
2180   }
2181   return 0;
2182 }
2183 
2184 /// Check all MachineMemOperands for a hint to suppress pairing.
2185 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr &MI) {
2186   return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
2187     return MMO->getFlags() & MOSuppressPair;
2188   });
2189 }
2190 
2191 /// Set a flag on the first MachineMemOperand to suppress pairing.
2192 void AArch64InstrInfo::suppressLdStPair(MachineInstr &MI) {
2193   if (MI.memoperands_empty())
2194     return;
2195   (*MI.memoperands_begin())->setFlags(MOSuppressPair);
2196 }
2197 
2198 /// Check all MachineMemOperands for a hint that the load/store is strided.
2199 bool AArch64InstrInfo::isStridedAccess(const MachineInstr &MI) {
2200   return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) {
2201     return MMO->getFlags() & MOStridedAccess;
2202   });
2203 }
2204 
2205 bool AArch64InstrInfo::hasUnscaledLdStOffset(unsigned Opc) {
2206   switch (Opc) {
2207   default:
2208     return false;
2209   case AArch64::STURSi:
2210   case AArch64::STRSpre:
2211   case AArch64::STURDi:
2212   case AArch64::STRDpre:
2213   case AArch64::STURQi:
2214   case AArch64::STRQpre:
2215   case AArch64::STURBBi:
2216   case AArch64::STURHHi:
2217   case AArch64::STURWi:
2218   case AArch64::STRWpre:
2219   case AArch64::STURXi:
2220   case AArch64::STRXpre:
2221   case AArch64::LDURSi:
2222   case AArch64::LDRSpre:
2223   case AArch64::LDURDi:
2224   case AArch64::LDRDpre:
2225   case AArch64::LDURQi:
2226   case AArch64::LDRQpre:
2227   case AArch64::LDURWi:
2228   case AArch64::LDRWpre:
2229   case AArch64::LDURXi:
2230   case AArch64::LDRXpre:
2231   case AArch64::LDURSWi:
2232   case AArch64::LDURHHi:
2233   case AArch64::LDURBBi:
2234   case AArch64::LDURSBWi:
2235   case AArch64::LDURSHWi:
2236     return true;
2237   }
2238 }
2239 
2240 std::optional<unsigned> AArch64InstrInfo::getUnscaledLdSt(unsigned Opc) {
2241   switch (Opc) {
2242   default: return {};
2243   case AArch64::PRFMui: return AArch64::PRFUMi;
2244   case AArch64::LDRXui: return AArch64::LDURXi;
2245   case AArch64::LDRWui: return AArch64::LDURWi;
2246   case AArch64::LDRBui: return AArch64::LDURBi;
2247   case AArch64::LDRHui: return AArch64::LDURHi;
2248   case AArch64::LDRSui: return AArch64::LDURSi;
2249   case AArch64::LDRDui: return AArch64::LDURDi;
2250   case AArch64::LDRQui: return AArch64::LDURQi;
2251   case AArch64::LDRBBui: return AArch64::LDURBBi;
2252   case AArch64::LDRHHui: return AArch64::LDURHHi;
2253   case AArch64::LDRSBXui: return AArch64::LDURSBXi;
2254   case AArch64::LDRSBWui: return AArch64::LDURSBWi;
2255   case AArch64::LDRSHXui: return AArch64::LDURSHXi;
2256   case AArch64::LDRSHWui: return AArch64::LDURSHWi;
2257   case AArch64::LDRSWui: return AArch64::LDURSWi;
2258   case AArch64::STRXui: return AArch64::STURXi;
2259   case AArch64::STRWui: return AArch64::STURWi;
2260   case AArch64::STRBui: return AArch64::STURBi;
2261   case AArch64::STRHui: return AArch64::STURHi;
2262   case AArch64::STRSui: return AArch64::STURSi;
2263   case AArch64::STRDui: return AArch64::STURDi;
2264   case AArch64::STRQui: return AArch64::STURQi;
2265   case AArch64::STRBBui: return AArch64::STURBBi;
2266   case AArch64::STRHHui: return AArch64::STURHHi;
2267   }
2268 }
2269 
2270 unsigned AArch64InstrInfo::getLoadStoreImmIdx(unsigned Opc) {
2271   switch (Opc) {
2272   default:
2273     return 2;
2274   case AArch64::LDPXi:
2275   case AArch64::LDPDi:
2276   case AArch64::STPXi:
2277   case AArch64::STPDi:
2278   case AArch64::LDNPXi:
2279   case AArch64::LDNPDi:
2280   case AArch64::STNPXi:
2281   case AArch64::STNPDi:
2282   case AArch64::LDPQi:
2283   case AArch64::STPQi:
2284   case AArch64::LDNPQi:
2285   case AArch64::STNPQi:
2286   case AArch64::LDPWi:
2287   case AArch64::LDPSi:
2288   case AArch64::STPWi:
2289   case AArch64::STPSi:
2290   case AArch64::LDNPWi:
2291   case AArch64::LDNPSi:
2292   case AArch64::STNPWi:
2293   case AArch64::STNPSi:
2294   case AArch64::LDG:
2295   case AArch64::STGPi:
2296 
2297   case AArch64::LD1B_IMM:
2298   case AArch64::LD1B_H_IMM:
2299   case AArch64::LD1B_S_IMM:
2300   case AArch64::LD1B_D_IMM:
2301   case AArch64::LD1SB_H_IMM:
2302   case AArch64::LD1SB_S_IMM:
2303   case AArch64::LD1SB_D_IMM:
2304   case AArch64::LD1H_IMM:
2305   case AArch64::LD1H_S_IMM:
2306   case AArch64::LD1H_D_IMM:
2307   case AArch64::LD1SH_S_IMM:
2308   case AArch64::LD1SH_D_IMM:
2309   case AArch64::LD1W_IMM:
2310   case AArch64::LD1W_D_IMM:
2311   case AArch64::LD1SW_D_IMM:
2312   case AArch64::LD1D_IMM:
2313 
2314   case AArch64::LD2B_IMM:
2315   case AArch64::LD2H_IMM:
2316   case AArch64::LD2W_IMM:
2317   case AArch64::LD2D_IMM:
2318   case AArch64::LD3B_IMM:
2319   case AArch64::LD3H_IMM:
2320   case AArch64::LD3W_IMM:
2321   case AArch64::LD3D_IMM:
2322   case AArch64::LD4B_IMM:
2323   case AArch64::LD4H_IMM:
2324   case AArch64::LD4W_IMM:
2325   case AArch64::LD4D_IMM:
2326 
2327   case AArch64::ST1B_IMM:
2328   case AArch64::ST1B_H_IMM:
2329   case AArch64::ST1B_S_IMM:
2330   case AArch64::ST1B_D_IMM:
2331   case AArch64::ST1H_IMM:
2332   case AArch64::ST1H_S_IMM:
2333   case AArch64::ST1H_D_IMM:
2334   case AArch64::ST1W_IMM:
2335   case AArch64::ST1W_D_IMM:
2336   case AArch64::ST1D_IMM:
2337 
2338   case AArch64::ST2B_IMM:
2339   case AArch64::ST2H_IMM:
2340   case AArch64::ST2W_IMM:
2341   case AArch64::ST2D_IMM:
2342   case AArch64::ST3B_IMM:
2343   case AArch64::ST3H_IMM:
2344   case AArch64::ST3W_IMM:
2345   case AArch64::ST3D_IMM:
2346   case AArch64::ST4B_IMM:
2347   case AArch64::ST4H_IMM:
2348   case AArch64::ST4W_IMM:
2349   case AArch64::ST4D_IMM:
2350 
2351   case AArch64::LD1RB_IMM:
2352   case AArch64::LD1RB_H_IMM:
2353   case AArch64::LD1RB_S_IMM:
2354   case AArch64::LD1RB_D_IMM:
2355   case AArch64::LD1RSB_H_IMM:
2356   case AArch64::LD1RSB_S_IMM:
2357   case AArch64::LD1RSB_D_IMM:
2358   case AArch64::LD1RH_IMM:
2359   case AArch64::LD1RH_S_IMM:
2360   case AArch64::LD1RH_D_IMM:
2361   case AArch64::LD1RSH_S_IMM:
2362   case AArch64::LD1RSH_D_IMM:
2363   case AArch64::LD1RW_IMM:
2364   case AArch64::LD1RW_D_IMM:
2365   case AArch64::LD1RSW_IMM:
2366   case AArch64::LD1RD_IMM:
2367 
2368   case AArch64::LDNT1B_ZRI:
2369   case AArch64::LDNT1H_ZRI:
2370   case AArch64::LDNT1W_ZRI:
2371   case AArch64::LDNT1D_ZRI:
2372   case AArch64::STNT1B_ZRI:
2373   case AArch64::STNT1H_ZRI:
2374   case AArch64::STNT1W_ZRI:
2375   case AArch64::STNT1D_ZRI:
2376 
2377   case AArch64::LDNF1B_IMM:
2378   case AArch64::LDNF1B_H_IMM:
2379   case AArch64::LDNF1B_S_IMM:
2380   case AArch64::LDNF1B_D_IMM:
2381   case AArch64::LDNF1SB_H_IMM:
2382   case AArch64::LDNF1SB_S_IMM:
2383   case AArch64::LDNF1SB_D_IMM:
2384   case AArch64::LDNF1H_IMM:
2385   case AArch64::LDNF1H_S_IMM:
2386   case AArch64::LDNF1H_D_IMM:
2387   case AArch64::LDNF1SH_S_IMM:
2388   case AArch64::LDNF1SH_D_IMM:
2389   case AArch64::LDNF1W_IMM:
2390   case AArch64::LDNF1W_D_IMM:
2391   case AArch64::LDNF1SW_D_IMM:
2392   case AArch64::LDNF1D_IMM:
2393     return 3;
2394   case AArch64::ADDG:
2395   case AArch64::STGi:
2396   case AArch64::LDR_PXI:
2397   case AArch64::STR_PXI:
2398     return 2;
2399   }
2400 }
2401 
2402 bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr &MI) {
2403   switch (MI.getOpcode()) {
2404   default:
2405     return false;
2406   // Scaled instructions.
2407   case AArch64::STRSui:
2408   case AArch64::STRDui:
2409   case AArch64::STRQui:
2410   case AArch64::STRXui:
2411   case AArch64::STRWui:
2412   case AArch64::LDRSui:
2413   case AArch64::LDRDui:
2414   case AArch64::LDRQui:
2415   case AArch64::LDRXui:
2416   case AArch64::LDRWui:
2417   case AArch64::LDRSWui:
2418   // Unscaled instructions.
2419   case AArch64::STURSi:
2420   case AArch64::STRSpre:
2421   case AArch64::STURDi:
2422   case AArch64::STRDpre:
2423   case AArch64::STURQi:
2424   case AArch64::STRQpre:
2425   case AArch64::STURWi:
2426   case AArch64::STRWpre:
2427   case AArch64::STURXi:
2428   case AArch64::STRXpre:
2429   case AArch64::LDURSi:
2430   case AArch64::LDRSpre:
2431   case AArch64::LDURDi:
2432   case AArch64::LDRDpre:
2433   case AArch64::LDURQi:
2434   case AArch64::LDRQpre:
2435   case AArch64::LDURWi:
2436   case AArch64::LDRWpre:
2437   case AArch64::LDURXi:
2438   case AArch64::LDRXpre:
2439   case AArch64::LDURSWi:
2440     return true;
2441   }
2442 }
2443 
2444 unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc) {
2445   switch (Opc) {
2446   default:
2447     llvm_unreachable("Opcode has no flag setting equivalent!");
2448   // 32-bit cases:
2449   case AArch64::ADDWri:
2450     return AArch64::ADDSWri;
2451   case AArch64::ADDWrr:
2452     return AArch64::ADDSWrr;
2453   case AArch64::ADDWrs:
2454     return AArch64::ADDSWrs;
2455   case AArch64::ADDWrx:
2456     return AArch64::ADDSWrx;
2457   case AArch64::ANDWri:
2458     return AArch64::ANDSWri;
2459   case AArch64::ANDWrr:
2460     return AArch64::ANDSWrr;
2461   case AArch64::ANDWrs:
2462     return AArch64::ANDSWrs;
2463   case AArch64::BICWrr:
2464     return AArch64::BICSWrr;
2465   case AArch64::BICWrs:
2466     return AArch64::BICSWrs;
2467   case AArch64::SUBWri:
2468     return AArch64::SUBSWri;
2469   case AArch64::SUBWrr:
2470     return AArch64::SUBSWrr;
2471   case AArch64::SUBWrs:
2472     return AArch64::SUBSWrs;
2473   case AArch64::SUBWrx:
2474     return AArch64::SUBSWrx;
2475   // 64-bit cases:
2476   case AArch64::ADDXri:
2477     return AArch64::ADDSXri;
2478   case AArch64::ADDXrr:
2479     return AArch64::ADDSXrr;
2480   case AArch64::ADDXrs:
2481     return AArch64::ADDSXrs;
2482   case AArch64::ADDXrx:
2483     return AArch64::ADDSXrx;
2484   case AArch64::ANDXri:
2485     return AArch64::ANDSXri;
2486   case AArch64::ANDXrr:
2487     return AArch64::ANDSXrr;
2488   case AArch64::ANDXrs:
2489     return AArch64::ANDSXrs;
2490   case AArch64::BICXrr:
2491     return AArch64::BICSXrr;
2492   case AArch64::BICXrs:
2493     return AArch64::BICSXrs;
2494   case AArch64::SUBXri:
2495     return AArch64::SUBSXri;
2496   case AArch64::SUBXrr:
2497     return AArch64::SUBSXrr;
2498   case AArch64::SUBXrs:
2499     return AArch64::SUBSXrs;
2500   case AArch64::SUBXrx:
2501     return AArch64::SUBSXrx;
2502   // SVE instructions:
2503   case AArch64::AND_PPzPP:
2504     return AArch64::ANDS_PPzPP;
2505   case AArch64::BIC_PPzPP:
2506     return AArch64::BICS_PPzPP;
2507   case AArch64::EOR_PPzPP:
2508     return AArch64::EORS_PPzPP;
2509   case AArch64::NAND_PPzPP:
2510     return AArch64::NANDS_PPzPP;
2511   case AArch64::NOR_PPzPP:
2512     return AArch64::NORS_PPzPP;
2513   case AArch64::ORN_PPzPP:
2514     return AArch64::ORNS_PPzPP;
2515   case AArch64::ORR_PPzPP:
2516     return AArch64::ORRS_PPzPP;
2517   case AArch64::BRKA_PPzP:
2518     return AArch64::BRKAS_PPzP;
2519   case AArch64::BRKPA_PPzPP:
2520     return AArch64::BRKPAS_PPzPP;
2521   case AArch64::BRKB_PPzP:
2522     return AArch64::BRKBS_PPzP;
2523   case AArch64::BRKPB_PPzPP:
2524     return AArch64::BRKPBS_PPzPP;
2525   case AArch64::BRKN_PPzP:
2526     return AArch64::BRKNS_PPzP;
2527   case AArch64::RDFFR_PPz:
2528     return AArch64::RDFFRS_PPz;
2529   case AArch64::PTRUE_B:
2530     return AArch64::PTRUES_B;
2531   }
2532 }
2533 
2534 // Is this a candidate for ld/st merging or pairing?  For example, we don't
2535 // touch volatiles or load/stores that have a hint to avoid pair formation.
2536 bool AArch64InstrInfo::isCandidateToMergeOrPair(const MachineInstr &MI) const {
2537 
2538   bool IsPreLdSt = isPreLdSt(MI);
2539 
2540   // If this is a volatile load/store, don't mess with it.
2541   if (MI.hasOrderedMemoryRef())
2542     return false;
2543 
2544   // Make sure this is a reg/fi+imm (as opposed to an address reloc).
2545   // For Pre-inc LD/ST, the operand is shifted by one.
2546   assert((MI.getOperand(IsPreLdSt ? 2 : 1).isReg() ||
2547           MI.getOperand(IsPreLdSt ? 2 : 1).isFI()) &&
2548          "Expected a reg or frame index operand.");
2549 
2550   // For Pre-indexed addressing quadword instructions, the third operand is the
2551   // immediate value.
2552   bool IsImmPreLdSt = IsPreLdSt && MI.getOperand(3).isImm();
2553 
2554   if (!MI.getOperand(2).isImm() && !IsImmPreLdSt)
2555     return false;
2556 
2557   // Can't merge/pair if the instruction modifies the base register.
2558   // e.g., ldr x0, [x0]
2559   // This case will never occur with an FI base.
2560   // However, if the instruction is an LDR/STR<S,D,Q,W,X>pre, it can be merged.
2561   // For example:
2562   //   ldr q0, [x11, #32]!
2563   //   ldr q1, [x11, #16]
2564   //   to
2565   //   ldp q0, q1, [x11, #32]!
2566   if (MI.getOperand(1).isReg() && !IsPreLdSt) {
2567     Register BaseReg = MI.getOperand(1).getReg();
2568     const TargetRegisterInfo *TRI = &getRegisterInfo();
2569     if (MI.modifiesRegister(BaseReg, TRI))
2570       return false;
2571   }
2572 
2573   // Check if this load/store has a hint to avoid pair formation.
2574   // MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
2575   if (isLdStPairSuppressed(MI))
2576     return false;
2577 
2578   // Do not pair any callee-save store/reload instructions in the
2579   // prologue/epilogue if the CFI information encoded the operations as separate
2580   // instructions, as that will cause the size of the actual prologue to mismatch
2581   // with the prologue size recorded in the Windows CFI.
2582   const MCAsmInfo *MAI = MI.getMF()->getTarget().getMCAsmInfo();
2583   bool NeedsWinCFI = MAI->usesWindowsCFI() &&
2584                      MI.getMF()->getFunction().needsUnwindTableEntry();
2585   if (NeedsWinCFI && (MI.getFlag(MachineInstr::FrameSetup) ||
2586                       MI.getFlag(MachineInstr::FrameDestroy)))
2587     return false;
2588 
2589   // On some CPUs quad load/store pairs are slower than two single load/stores.
2590   if (Subtarget.isPaired128Slow()) {
2591     switch (MI.getOpcode()) {
2592     default:
2593       break;
2594     case AArch64::LDURQi:
2595     case AArch64::STURQi:
2596     case AArch64::LDRQui:
2597     case AArch64::STRQui:
2598       return false;
2599     }
2600   }
2601 
2602   return true;
2603 }
2604 
2605 bool AArch64InstrInfo::getMemOperandsWithOffsetWidth(
2606     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2607     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2608     const TargetRegisterInfo *TRI) const {
2609   if (!LdSt.mayLoadOrStore())
2610     return false;
2611 
2612   const MachineOperand *BaseOp;
2613   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, OffsetIsScalable,
2614                                     Width, TRI))
2615     return false;
2616   BaseOps.push_back(BaseOp);
2617   return true;
2618 }
2619 
2620 std::optional<ExtAddrMode>
2621 AArch64InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
2622                                           const TargetRegisterInfo *TRI) const {
2623   const MachineOperand *Base; // Filled with the base operand of MI.
2624   int64_t Offset;             // Filled with the offset of MI.
2625   bool OffsetIsScalable;
2626   if (!getMemOperandWithOffset(MemI, Base, Offset, OffsetIsScalable, TRI))
2627     return std::nullopt;
2628 
2629   if (!Base->isReg())
2630     return std::nullopt;
2631   ExtAddrMode AM;
2632   AM.BaseReg = Base->getReg();
2633   AM.Displacement = Offset;
2634   AM.ScaledReg = 0;
2635   AM.Scale = 0;
2636   return AM;
2637 }
2638 
2639 bool AArch64InstrInfo::getMemOperandWithOffsetWidth(
2640     const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
2641     bool &OffsetIsScalable, unsigned &Width,
2642     const TargetRegisterInfo *TRI) const {
2643   assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2644   // Handle only loads/stores with base register followed by immediate offset.
2645   if (LdSt.getNumExplicitOperands() == 3) {
2646     // Non-paired instruction (e.g., ldr x1, [x0, #8]).
2647     if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
2648         !LdSt.getOperand(2).isImm())
2649       return false;
2650   } else if (LdSt.getNumExplicitOperands() == 4) {
2651     // Paired instruction (e.g., ldp x1, x2, [x0, #8]).
2652     if (!LdSt.getOperand(1).isReg() ||
2653         (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()) ||
2654         !LdSt.getOperand(3).isImm())
2655       return false;
2656   } else
2657     return false;
2658 
2659   // Get the scaling factor for the instruction and set the width for the
2660   // instruction.
2661   TypeSize Scale(0U, false);
2662   int64_t Dummy1, Dummy2;
2663 
2664   // If this returns false, then it's an instruction we don't want to handle.
2665   if (!getMemOpInfo(LdSt.getOpcode(), Scale, Width, Dummy1, Dummy2))
2666     return false;
2667 
2668   // Compute the offset. Offset is calculated as the immediate operand
2669   // multiplied by the scaling factor. Unscaled instructions have scaling factor
2670   // set to 1.
2671   if (LdSt.getNumExplicitOperands() == 3) {
2672     BaseOp = &LdSt.getOperand(1);
2673     Offset = LdSt.getOperand(2).getImm() * Scale.getKnownMinValue();
2674   } else {
2675     assert(LdSt.getNumExplicitOperands() == 4 && "invalid number of operands");
2676     BaseOp = &LdSt.getOperand(2);
2677     Offset = LdSt.getOperand(3).getImm() * Scale.getKnownMinValue();
2678   }
2679   OffsetIsScalable = Scale.isScalable();
2680 
2681   if (!BaseOp->isReg() && !BaseOp->isFI())
2682     return false;
2683 
2684   return true;
2685 }
2686 
2687 MachineOperand &
2688 AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const {
2689   assert(LdSt.mayLoadOrStore() && "Expected a memory operation.");
2690   MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1);
2691   assert(OfsOp.isImm() && "Offset operand wasn't immediate.");
2692   return OfsOp;
2693 }
2694 
2695 bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, TypeSize &Scale,
2696                                     unsigned &Width, int64_t &MinOffset,
2697                                     int64_t &MaxOffset) {
2698   const unsigned SVEMaxBytesPerVector = AArch64::SVEMaxBitsPerVector / 8;
2699   switch (Opcode) {
2700   // Not a memory operation or something we want to handle.
2701   default:
2702     Scale = TypeSize::Fixed(0);
2703     Width = 0;
2704     MinOffset = MaxOffset = 0;
2705     return false;
2706   case AArch64::STRWpost:
2707   case AArch64::LDRWpost:
2708     Width = 32;
2709     Scale = TypeSize::Fixed(4);
2710     MinOffset = -256;
2711     MaxOffset = 255;
2712     break;
2713   case AArch64::LDURQi:
2714   case AArch64::STURQi:
2715     Width = 16;
2716     Scale = TypeSize::Fixed(1);
2717     MinOffset = -256;
2718     MaxOffset = 255;
2719     break;
2720   case AArch64::PRFUMi:
2721   case AArch64::LDURXi:
2722   case AArch64::LDURDi:
2723   case AArch64::STURXi:
2724   case AArch64::STURDi:
2725     Width = 8;
2726     Scale = TypeSize::Fixed(1);
2727     MinOffset = -256;
2728     MaxOffset = 255;
2729     break;
2730   case AArch64::LDURWi:
2731   case AArch64::LDURSi:
2732   case AArch64::LDURSWi:
2733   case AArch64::STURWi:
2734   case AArch64::STURSi:
2735     Width = 4;
2736     Scale = TypeSize::Fixed(1);
2737     MinOffset = -256;
2738     MaxOffset = 255;
2739     break;
2740   case AArch64::LDURHi:
2741   case AArch64::LDURHHi:
2742   case AArch64::LDURSHXi:
2743   case AArch64::LDURSHWi:
2744   case AArch64::STURHi:
2745   case AArch64::STURHHi:
2746     Width = 2;
2747     Scale = TypeSize::Fixed(1);
2748     MinOffset = -256;
2749     MaxOffset = 255;
2750     break;
2751   case AArch64::LDURBi:
2752   case AArch64::LDURBBi:
2753   case AArch64::LDURSBXi:
2754   case AArch64::LDURSBWi:
2755   case AArch64::STURBi:
2756   case AArch64::STURBBi:
2757     Width = 1;
2758     Scale = TypeSize::Fixed(1);
2759     MinOffset = -256;
2760     MaxOffset = 255;
2761     break;
2762   case AArch64::LDPQi:
2763   case AArch64::LDNPQi:
2764   case AArch64::STPQi:
2765   case AArch64::STNPQi:
2766     Scale = TypeSize::Fixed(16);
2767     Width = 32;
2768     MinOffset = -64;
2769     MaxOffset = 63;
2770     break;
2771   case AArch64::LDRQui:
2772   case AArch64::STRQui:
2773     Scale = TypeSize::Fixed(16);
2774     Width = 16;
2775     MinOffset = 0;
2776     MaxOffset = 4095;
2777     break;
2778   case AArch64::LDPXi:
2779   case AArch64::LDPDi:
2780   case AArch64::LDNPXi:
2781   case AArch64::LDNPDi:
2782   case AArch64::STPXi:
2783   case AArch64::STPDi:
2784   case AArch64::STNPXi:
2785   case AArch64::STNPDi:
2786     Scale = TypeSize::Fixed(8);
2787     Width = 16;
2788     MinOffset = -64;
2789     MaxOffset = 63;
2790     break;
2791   case AArch64::PRFMui:
2792   case AArch64::LDRXui:
2793   case AArch64::LDRDui:
2794   case AArch64::STRXui:
2795   case AArch64::STRDui:
2796     Scale = TypeSize::Fixed(8);
2797     Width = 8;
2798     MinOffset = 0;
2799     MaxOffset = 4095;
2800     break;
2801   case AArch64::StoreSwiftAsyncContext:
2802     // Store is an STRXui, but there might be an ADDXri in the expansion too.
2803     Scale = TypeSize::Fixed(1);
2804     Width = 8;
2805     MinOffset = 0;
2806     MaxOffset = 4095;
2807     break;
2808   case AArch64::LDPWi:
2809   case AArch64::LDPSi:
2810   case AArch64::LDNPWi:
2811   case AArch64::LDNPSi:
2812   case AArch64::STPWi:
2813   case AArch64::STPSi:
2814   case AArch64::STNPWi:
2815   case AArch64::STNPSi:
2816     Scale = TypeSize::Fixed(4);
2817     Width = 8;
2818     MinOffset = -64;
2819     MaxOffset = 63;
2820     break;
2821   case AArch64::LDRWui:
2822   case AArch64::LDRSui:
2823   case AArch64::LDRSWui:
2824   case AArch64::STRWui:
2825   case AArch64::STRSui:
2826     Scale = TypeSize::Fixed(4);
2827     Width = 4;
2828     MinOffset = 0;
2829     MaxOffset = 4095;
2830     break;
2831   case AArch64::LDRHui:
2832   case AArch64::LDRHHui:
2833   case AArch64::LDRSHWui:
2834   case AArch64::LDRSHXui:
2835   case AArch64::STRHui:
2836   case AArch64::STRHHui:
2837     Scale = TypeSize::Fixed(2);
2838     Width = 2;
2839     MinOffset = 0;
2840     MaxOffset = 4095;
2841     break;
2842   case AArch64::LDRBui:
2843   case AArch64::LDRBBui:
2844   case AArch64::LDRSBWui:
2845   case AArch64::LDRSBXui:
2846   case AArch64::STRBui:
2847   case AArch64::STRBBui:
2848     Scale = TypeSize::Fixed(1);
2849     Width = 1;
2850     MinOffset = 0;
2851     MaxOffset = 4095;
2852     break;
2853   case AArch64::STPXpre:
2854   case AArch64::LDPXpost:
2855   case AArch64::STPDpre:
2856   case AArch64::LDPDpost:
2857     Scale = TypeSize::Fixed(8);
2858     Width = 8;
2859     MinOffset = -512;
2860     MaxOffset = 504;
2861     break;
2862   case AArch64::STPQpre:
2863   case AArch64::LDPQpost:
2864     Scale = TypeSize::Fixed(16);
2865     Width = 16;
2866     MinOffset = -1024;
2867     MaxOffset = 1008;
2868     break;
2869   case AArch64::STRXpre:
2870   case AArch64::STRDpre:
2871   case AArch64::LDRXpost:
2872   case AArch64::LDRDpost:
2873     Scale = TypeSize::Fixed(1);
2874     Width = 8;
2875     MinOffset = -256;
2876     MaxOffset = 255;
2877     break;
2878   case AArch64::STRQpre:
2879   case AArch64::LDRQpost:
2880     Scale = TypeSize::Fixed(1);
2881     Width = 16;
2882     MinOffset = -256;
2883     MaxOffset = 255;
2884     break;
2885   case AArch64::ADDG:
2886     Scale = TypeSize::Fixed(16);
2887     Width = 0;
2888     MinOffset = 0;
2889     MaxOffset = 63;
2890     break;
2891   case AArch64::TAGPstack:
2892     Scale = TypeSize::Fixed(16);
2893     Width = 0;
2894     // TAGP with a negative offset turns into SUBP, which has a maximum offset
2895     // of 63 (not 64!).
2896     MinOffset = -63;
2897     MaxOffset = 63;
2898     break;
2899   case AArch64::LDG:
2900   case AArch64::STGi:
2901   case AArch64::STZGi:
2902     Scale = TypeSize::Fixed(16);
2903     Width = 16;
2904     MinOffset = -256;
2905     MaxOffset = 255;
2906     break;
2907   case AArch64::STR_ZZZZXI:
2908   case AArch64::LDR_ZZZZXI:
2909     Scale = TypeSize::Scalable(16);
2910     Width = SVEMaxBytesPerVector * 4;
2911     MinOffset = -256;
2912     MaxOffset = 252;
2913     break;
2914   case AArch64::STR_ZZZXI:
2915   case AArch64::LDR_ZZZXI:
2916     Scale = TypeSize::Scalable(16);
2917     Width = SVEMaxBytesPerVector * 3;
2918     MinOffset = -256;
2919     MaxOffset = 253;
2920     break;
2921   case AArch64::STR_ZZXI:
2922   case AArch64::LDR_ZZXI:
2923     Scale = TypeSize::Scalable(16);
2924     Width = SVEMaxBytesPerVector * 2;
2925     MinOffset = -256;
2926     MaxOffset = 254;
2927     break;
2928   case AArch64::LDR_PXI:
2929   case AArch64::STR_PXI:
2930     Scale = TypeSize::Scalable(2);
2931     Width = SVEMaxBytesPerVector / 8;
2932     MinOffset = -256;
2933     MaxOffset = 255;
2934     break;
2935   case AArch64::LDR_ZXI:
2936   case AArch64::STR_ZXI:
2937     Scale = TypeSize::Scalable(16);
2938     Width = SVEMaxBytesPerVector;
2939     MinOffset = -256;
2940     MaxOffset = 255;
2941     break;
2942   case AArch64::LD1B_IMM:
2943   case AArch64::LD1H_IMM:
2944   case AArch64::LD1W_IMM:
2945   case AArch64::LD1D_IMM:
2946   case AArch64::LDNT1B_ZRI:
2947   case AArch64::LDNT1H_ZRI:
2948   case AArch64::LDNT1W_ZRI:
2949   case AArch64::LDNT1D_ZRI:
2950   case AArch64::ST1B_IMM:
2951   case AArch64::ST1H_IMM:
2952   case AArch64::ST1W_IMM:
2953   case AArch64::ST1D_IMM:
2954   case AArch64::STNT1B_ZRI:
2955   case AArch64::STNT1H_ZRI:
2956   case AArch64::STNT1W_ZRI:
2957   case AArch64::STNT1D_ZRI:
2958   case AArch64::LDNF1B_IMM:
2959   case AArch64::LDNF1H_IMM:
2960   case AArch64::LDNF1W_IMM:
2961   case AArch64::LDNF1D_IMM:
2962     // A full vectors worth of data
2963     // Width = mbytes * elements
2964     Scale = TypeSize::Scalable(16);
2965     Width = SVEMaxBytesPerVector;
2966     MinOffset = -8;
2967     MaxOffset = 7;
2968     break;
2969   case AArch64::LD2B_IMM:
2970   case AArch64::LD2H_IMM:
2971   case AArch64::LD2W_IMM:
2972   case AArch64::LD2D_IMM:
2973   case AArch64::ST2B_IMM:
2974   case AArch64::ST2H_IMM:
2975   case AArch64::ST2W_IMM:
2976   case AArch64::ST2D_IMM:
2977     Scale = TypeSize::Scalable(32);
2978     Width = SVEMaxBytesPerVector * 2;
2979     MinOffset = -8;
2980     MaxOffset = 7;
2981     break;
2982   case AArch64::LD3B_IMM:
2983   case AArch64::LD3H_IMM:
2984   case AArch64::LD3W_IMM:
2985   case AArch64::LD3D_IMM:
2986   case AArch64::ST3B_IMM:
2987   case AArch64::ST3H_IMM:
2988   case AArch64::ST3W_IMM:
2989   case AArch64::ST3D_IMM:
2990     Scale = TypeSize::Scalable(48);
2991     Width = SVEMaxBytesPerVector * 3;
2992     MinOffset = -8;
2993     MaxOffset = 7;
2994     break;
2995   case AArch64::LD4B_IMM:
2996   case AArch64::LD4H_IMM:
2997   case AArch64::LD4W_IMM:
2998   case AArch64::LD4D_IMM:
2999   case AArch64::ST4B_IMM:
3000   case AArch64::ST4H_IMM:
3001   case AArch64::ST4W_IMM:
3002   case AArch64::ST4D_IMM:
3003     Scale = TypeSize::Scalable(64);
3004     Width = SVEMaxBytesPerVector * 4;
3005     MinOffset = -8;
3006     MaxOffset = 7;
3007     break;
3008   case AArch64::LD1B_H_IMM:
3009   case AArch64::LD1SB_H_IMM:
3010   case AArch64::LD1H_S_IMM:
3011   case AArch64::LD1SH_S_IMM:
3012   case AArch64::LD1W_D_IMM:
3013   case AArch64::LD1SW_D_IMM:
3014   case AArch64::ST1B_H_IMM:
3015   case AArch64::ST1H_S_IMM:
3016   case AArch64::ST1W_D_IMM:
3017   case AArch64::LDNF1B_H_IMM:
3018   case AArch64::LDNF1SB_H_IMM:
3019   case AArch64::LDNF1H_S_IMM:
3020   case AArch64::LDNF1SH_S_IMM:
3021   case AArch64::LDNF1W_D_IMM:
3022   case AArch64::LDNF1SW_D_IMM:
3023     // A half vector worth of data
3024     // Width = mbytes * elements
3025     Scale = TypeSize::Scalable(8);
3026     Width = SVEMaxBytesPerVector / 2;
3027     MinOffset = -8;
3028     MaxOffset = 7;
3029     break;
3030   case AArch64::LD1B_S_IMM:
3031   case AArch64::LD1SB_S_IMM:
3032   case AArch64::LD1H_D_IMM:
3033   case AArch64::LD1SH_D_IMM:
3034   case AArch64::ST1B_S_IMM:
3035   case AArch64::ST1H_D_IMM:
3036   case AArch64::LDNF1B_S_IMM:
3037   case AArch64::LDNF1SB_S_IMM:
3038   case AArch64::LDNF1H_D_IMM:
3039   case AArch64::LDNF1SH_D_IMM:
3040     // A quarter vector worth of data
3041     // Width = mbytes * elements
3042     Scale = TypeSize::Scalable(4);
3043     Width = SVEMaxBytesPerVector / 4;
3044     MinOffset = -8;
3045     MaxOffset = 7;
3046     break;
3047   case AArch64::LD1B_D_IMM:
3048   case AArch64::LD1SB_D_IMM:
3049   case AArch64::ST1B_D_IMM:
3050   case AArch64::LDNF1B_D_IMM:
3051   case AArch64::LDNF1SB_D_IMM:
3052     // A eighth vector worth of data
3053     // Width = mbytes * elements
3054     Scale = TypeSize::Scalable(2);
3055     Width = SVEMaxBytesPerVector / 8;
3056     MinOffset = -8;
3057     MaxOffset = 7;
3058     break;
3059   case AArch64::ST2Gi:
3060   case AArch64::STZ2Gi:
3061     Scale = TypeSize::Fixed(16);
3062     Width = 32;
3063     MinOffset = -256;
3064     MaxOffset = 255;
3065     break;
3066   case AArch64::STGPi:
3067     Scale = TypeSize::Fixed(16);
3068     Width = 16;
3069     MinOffset = -64;
3070     MaxOffset = 63;
3071     break;
3072   case AArch64::LD1RB_IMM:
3073   case AArch64::LD1RB_H_IMM:
3074   case AArch64::LD1RB_S_IMM:
3075   case AArch64::LD1RB_D_IMM:
3076   case AArch64::LD1RSB_H_IMM:
3077   case AArch64::LD1RSB_S_IMM:
3078   case AArch64::LD1RSB_D_IMM:
3079     Scale = TypeSize::Fixed(1);
3080     Width = 1;
3081     MinOffset = 0;
3082     MaxOffset = 63;
3083     break;
3084   case AArch64::LD1RH_IMM:
3085   case AArch64::LD1RH_S_IMM:
3086   case AArch64::LD1RH_D_IMM:
3087   case AArch64::LD1RSH_S_IMM:
3088   case AArch64::LD1RSH_D_IMM:
3089     Scale = TypeSize::Fixed(2);
3090     Width = 2;
3091     MinOffset = 0;
3092     MaxOffset = 63;
3093     break;
3094   case AArch64::LD1RW_IMM:
3095   case AArch64::LD1RW_D_IMM:
3096   case AArch64::LD1RSW_IMM:
3097     Scale = TypeSize::Fixed(4);
3098     Width = 4;
3099     MinOffset = 0;
3100     MaxOffset = 63;
3101     break;
3102   case AArch64::LD1RD_IMM:
3103     Scale = TypeSize::Fixed(8);
3104     Width = 8;
3105     MinOffset = 0;
3106     MaxOffset = 63;
3107     break;
3108   }
3109 
3110   return true;
3111 }
3112 
3113 // Scaling factor for unscaled load or store.
3114 int AArch64InstrInfo::getMemScale(unsigned Opc) {
3115   switch (Opc) {
3116   default:
3117     llvm_unreachable("Opcode has unknown scale!");
3118   case AArch64::LDRBBui:
3119   case AArch64::LDURBBi:
3120   case AArch64::LDRSBWui:
3121   case AArch64::LDURSBWi:
3122   case AArch64::STRBBui:
3123   case AArch64::STURBBi:
3124     return 1;
3125   case AArch64::LDRHHui:
3126   case AArch64::LDURHHi:
3127   case AArch64::LDRSHWui:
3128   case AArch64::LDURSHWi:
3129   case AArch64::STRHHui:
3130   case AArch64::STURHHi:
3131     return 2;
3132   case AArch64::LDRSui:
3133   case AArch64::LDURSi:
3134   case AArch64::LDRSpre:
3135   case AArch64::LDRSWui:
3136   case AArch64::LDURSWi:
3137   case AArch64::LDRWpre:
3138   case AArch64::LDRWui:
3139   case AArch64::LDURWi:
3140   case AArch64::STRSui:
3141   case AArch64::STURSi:
3142   case AArch64::STRSpre:
3143   case AArch64::STRWui:
3144   case AArch64::STURWi:
3145   case AArch64::STRWpre:
3146   case AArch64::LDPSi:
3147   case AArch64::LDPSWi:
3148   case AArch64::LDPWi:
3149   case AArch64::STPSi:
3150   case AArch64::STPWi:
3151     return 4;
3152   case AArch64::LDRDui:
3153   case AArch64::LDURDi:
3154   case AArch64::LDRDpre:
3155   case AArch64::LDRXui:
3156   case AArch64::LDURXi:
3157   case AArch64::LDRXpre:
3158   case AArch64::STRDui:
3159   case AArch64::STURDi:
3160   case AArch64::STRDpre:
3161   case AArch64::STRXui:
3162   case AArch64::STURXi:
3163   case AArch64::STRXpre:
3164   case AArch64::LDPDi:
3165   case AArch64::LDPXi:
3166   case AArch64::STPDi:
3167   case AArch64::STPXi:
3168     return 8;
3169   case AArch64::LDRQui:
3170   case AArch64::LDURQi:
3171   case AArch64::STRQui:
3172   case AArch64::STURQi:
3173   case AArch64::STRQpre:
3174   case AArch64::LDPQi:
3175   case AArch64::LDRQpre:
3176   case AArch64::STPQi:
3177   case AArch64::STGi:
3178   case AArch64::STZGi:
3179   case AArch64::ST2Gi:
3180   case AArch64::STZ2Gi:
3181   case AArch64::STGPi:
3182     return 16;
3183   }
3184 }
3185 
3186 bool AArch64InstrInfo::isPreLd(const MachineInstr &MI) {
3187   switch (MI.getOpcode()) {
3188   default:
3189     return false;
3190   case AArch64::LDRWpre:
3191   case AArch64::LDRXpre:
3192   case AArch64::LDRSpre:
3193   case AArch64::LDRDpre:
3194   case AArch64::LDRQpre:
3195     return true;
3196   }
3197 }
3198 
3199 bool AArch64InstrInfo::isPreSt(const MachineInstr &MI) {
3200   switch (MI.getOpcode()) {
3201   default:
3202     return false;
3203   case AArch64::STRWpre:
3204   case AArch64::STRXpre:
3205   case AArch64::STRSpre:
3206   case AArch64::STRDpre:
3207   case AArch64::STRQpre:
3208     return true;
3209   }
3210 }
3211 
3212 bool AArch64InstrInfo::isPreLdSt(const MachineInstr &MI) {
3213   return isPreLd(MI) || isPreSt(MI);
3214 }
3215 
3216 bool AArch64InstrInfo::isPairedLdSt(const MachineInstr &MI) {
3217   switch (MI.getOpcode()) {
3218   default:
3219     return false;
3220   case AArch64::LDPSi:
3221   case AArch64::LDPSWi:
3222   case AArch64::LDPDi:
3223   case AArch64::LDPQi:
3224   case AArch64::LDPWi:
3225   case AArch64::LDPXi:
3226   case AArch64::STPSi:
3227   case AArch64::STPDi:
3228   case AArch64::STPQi:
3229   case AArch64::STPWi:
3230   case AArch64::STPXi:
3231   case AArch64::STGPi:
3232     return true;
3233   }
3234 }
3235 
3236 const MachineOperand &AArch64InstrInfo::getLdStBaseOp(const MachineInstr &MI) {
3237   unsigned Idx =
3238       AArch64InstrInfo::isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 2
3239                                                                             : 1;
3240   return MI.getOperand(Idx);
3241 }
3242 
3243 const MachineOperand &
3244 AArch64InstrInfo::getLdStOffsetOp(const MachineInstr &MI) {
3245   unsigned Idx =
3246       AArch64InstrInfo::isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 3
3247                                                                             : 2;
3248   return MI.getOperand(Idx);
3249 }
3250 
3251 static const TargetRegisterClass *getRegClass(const MachineInstr &MI,
3252                                               Register Reg) {
3253   if (MI.getParent() == nullptr)
3254     return nullptr;
3255   const MachineFunction *MF = MI.getParent()->getParent();
3256   return MF ? MF->getRegInfo().getRegClassOrNull(Reg) : nullptr;
3257 }
3258 
3259 bool AArch64InstrInfo::isHForm(const MachineInstr &MI) {
3260   auto IsHFPR = [&](const MachineOperand &Op) {
3261     if (!Op.isReg())
3262       return false;
3263     auto Reg = Op.getReg();
3264     if (Reg.isPhysical())
3265       return AArch64::FPR16RegClass.contains(Reg);
3266     const TargetRegisterClass *TRC = ::getRegClass(MI, Reg);
3267     return TRC == &AArch64::FPR16RegClass ||
3268            TRC == &AArch64::FPR16_loRegClass;
3269   };
3270   return llvm::any_of(MI.operands(), IsHFPR);
3271 }
3272 
3273 bool AArch64InstrInfo::isQForm(const MachineInstr &MI) {
3274   auto IsQFPR = [&](const MachineOperand &Op) {
3275     if (!Op.isReg())
3276       return false;
3277     auto Reg = Op.getReg();
3278     if (Reg.isPhysical())
3279       return AArch64::FPR128RegClass.contains(Reg);
3280     const TargetRegisterClass *TRC = ::getRegClass(MI, Reg);
3281     return TRC == &AArch64::FPR128RegClass ||
3282            TRC == &AArch64::FPR128_loRegClass;
3283   };
3284   return llvm::any_of(MI.operands(), IsQFPR);
3285 }
3286 
3287 bool AArch64InstrInfo::isFpOrNEON(const MachineInstr &MI) {
3288   auto IsFPR = [&](const MachineOperand &Op) {
3289     if (!Op.isReg())
3290       return false;
3291     auto Reg = Op.getReg();
3292     if (Reg.isPhysical())
3293       return AArch64::FPR128RegClass.contains(Reg) ||
3294              AArch64::FPR64RegClass.contains(Reg) ||
3295              AArch64::FPR32RegClass.contains(Reg) ||
3296              AArch64::FPR16RegClass.contains(Reg) ||
3297              AArch64::FPR8RegClass.contains(Reg);
3298 
3299     const TargetRegisterClass *TRC = ::getRegClass(MI, Reg);
3300     return TRC == &AArch64::FPR128RegClass ||
3301            TRC == &AArch64::FPR128_loRegClass ||
3302            TRC == &AArch64::FPR64RegClass ||
3303            TRC == &AArch64::FPR64_loRegClass ||
3304            TRC == &AArch64::FPR32RegClass || TRC == &AArch64::FPR16RegClass ||
3305            TRC == &AArch64::FPR8RegClass;
3306   };
3307   return llvm::any_of(MI.operands(), IsFPR);
3308 }
3309 
3310 // Scale the unscaled offsets.  Returns false if the unscaled offset can't be
3311 // scaled.
3312 static bool scaleOffset(unsigned Opc, int64_t &Offset) {
3313   int Scale = AArch64InstrInfo::getMemScale(Opc);
3314 
3315   // If the byte-offset isn't a multiple of the stride, we can't scale this
3316   // offset.
3317   if (Offset % Scale != 0)
3318     return false;
3319 
3320   // Convert the byte-offset used by unscaled into an "element" offset used
3321   // by the scaled pair load/store instructions.
3322   Offset /= Scale;
3323   return true;
3324 }
3325 
3326 static bool canPairLdStOpc(unsigned FirstOpc, unsigned SecondOpc) {
3327   if (FirstOpc == SecondOpc)
3328     return true;
3329   // We can also pair sign-ext and zero-ext instructions.
3330   switch (FirstOpc) {
3331   default:
3332     return false;
3333   case AArch64::LDRWui:
3334   case AArch64::LDURWi:
3335     return SecondOpc == AArch64::LDRSWui || SecondOpc == AArch64::LDURSWi;
3336   case AArch64::LDRSWui:
3337   case AArch64::LDURSWi:
3338     return SecondOpc == AArch64::LDRWui || SecondOpc == AArch64::LDURWi;
3339   }
3340   // These instructions can't be paired based on their opcodes.
3341   return false;
3342 }
3343 
3344 static bool shouldClusterFI(const MachineFrameInfo &MFI, int FI1,
3345                             int64_t Offset1, unsigned Opcode1, int FI2,
3346                             int64_t Offset2, unsigned Opcode2) {
3347   // Accesses through fixed stack object frame indices may access a different
3348   // fixed stack slot. Check that the object offsets + offsets match.
3349   if (MFI.isFixedObjectIndex(FI1) && MFI.isFixedObjectIndex(FI2)) {
3350     int64_t ObjectOffset1 = MFI.getObjectOffset(FI1);
3351     int64_t ObjectOffset2 = MFI.getObjectOffset(FI2);
3352     assert(ObjectOffset1 <= ObjectOffset2 && "Object offsets are not ordered.");
3353     // Convert to scaled object offsets.
3354     int Scale1 = AArch64InstrInfo::getMemScale(Opcode1);
3355     if (ObjectOffset1 % Scale1 != 0)
3356       return false;
3357     ObjectOffset1 /= Scale1;
3358     int Scale2 = AArch64InstrInfo::getMemScale(Opcode2);
3359     if (ObjectOffset2 % Scale2 != 0)
3360       return false;
3361     ObjectOffset2 /= Scale2;
3362     ObjectOffset1 += Offset1;
3363     ObjectOffset2 += Offset2;
3364     return ObjectOffset1 + 1 == ObjectOffset2;
3365   }
3366 
3367   return FI1 == FI2;
3368 }
3369 
3370 /// Detect opportunities for ldp/stp formation.
3371 ///
3372 /// Only called for LdSt for which getMemOperandWithOffset returns true.
3373 bool AArch64InstrInfo::shouldClusterMemOps(
3374     ArrayRef<const MachineOperand *> BaseOps1,
3375     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
3376     unsigned NumBytes) const {
3377   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
3378   const MachineOperand &BaseOp1 = *BaseOps1.front();
3379   const MachineOperand &BaseOp2 = *BaseOps2.front();
3380   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
3381   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
3382   if (BaseOp1.getType() != BaseOp2.getType())
3383     return false;
3384 
3385   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
3386          "Only base registers and frame indices are supported.");
3387 
3388   // Check for both base regs and base FI.
3389   if (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg())
3390     return false;
3391 
3392   // Only cluster up to a single pair.
3393   if (NumLoads > 2)
3394     return false;
3395 
3396   if (!isPairableLdStInst(FirstLdSt) || !isPairableLdStInst(SecondLdSt))
3397     return false;
3398 
3399   // Can we pair these instructions based on their opcodes?
3400   unsigned FirstOpc = FirstLdSt.getOpcode();
3401   unsigned SecondOpc = SecondLdSt.getOpcode();
3402   if (!canPairLdStOpc(FirstOpc, SecondOpc))
3403     return false;
3404 
3405   // Can't merge volatiles or load/stores that have a hint to avoid pair
3406   // formation, for example.
3407   if (!isCandidateToMergeOrPair(FirstLdSt) ||
3408       !isCandidateToMergeOrPair(SecondLdSt))
3409     return false;
3410 
3411   // isCandidateToMergeOrPair guarantees that operand 2 is an immediate.
3412   int64_t Offset1 = FirstLdSt.getOperand(2).getImm();
3413   if (hasUnscaledLdStOffset(FirstOpc) && !scaleOffset(FirstOpc, Offset1))
3414     return false;
3415 
3416   int64_t Offset2 = SecondLdSt.getOperand(2).getImm();
3417   if (hasUnscaledLdStOffset(SecondOpc) && !scaleOffset(SecondOpc, Offset2))
3418     return false;
3419 
3420   // Pairwise instructions have a 7-bit signed offset field.
3421   if (Offset1 > 63 || Offset1 < -64)
3422     return false;
3423 
3424   // The caller should already have ordered First/SecondLdSt by offset.
3425   // Note: except for non-equal frame index bases
3426   if (BaseOp1.isFI()) {
3427     assert((!BaseOp1.isIdenticalTo(BaseOp2) || Offset1 <= Offset2) &&
3428            "Caller should have ordered offsets.");
3429 
3430     const MachineFrameInfo &MFI =
3431         FirstLdSt.getParent()->getParent()->getFrameInfo();
3432     return shouldClusterFI(MFI, BaseOp1.getIndex(), Offset1, FirstOpc,
3433                            BaseOp2.getIndex(), Offset2, SecondOpc);
3434   }
3435 
3436   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
3437 
3438   return Offset1 + 1 == Offset2;
3439 }
3440 
3441 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
3442                                             unsigned Reg, unsigned SubIdx,
3443                                             unsigned State,
3444                                             const TargetRegisterInfo *TRI) {
3445   if (!SubIdx)
3446     return MIB.addReg(Reg, State);
3447 
3448   if (Register::isPhysicalRegister(Reg))
3449     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
3450   return MIB.addReg(Reg, State, SubIdx);
3451 }
3452 
3453 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
3454                                         unsigned NumRegs) {
3455   // We really want the positive remainder mod 32 here, that happens to be
3456   // easily obtainable with a mask.
3457   return ((DestReg - SrcReg) & 0x1f) < NumRegs;
3458 }
3459 
3460 void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB,
3461                                         MachineBasicBlock::iterator I,
3462                                         const DebugLoc &DL, MCRegister DestReg,
3463                                         MCRegister SrcReg, bool KillSrc,
3464                                         unsigned Opcode,
3465                                         ArrayRef<unsigned> Indices) const {
3466   assert(Subtarget.hasNEON() && "Unexpected register copy without NEON");
3467   const TargetRegisterInfo *TRI = &getRegisterInfo();
3468   uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
3469   uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
3470   unsigned NumRegs = Indices.size();
3471 
3472   int SubReg = 0, End = NumRegs, Incr = 1;
3473   if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
3474     SubReg = NumRegs - 1;
3475     End = -1;
3476     Incr = -1;
3477   }
3478 
3479   for (; SubReg != End; SubReg += Incr) {
3480     const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
3481     AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
3482     AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
3483     AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
3484   }
3485 }
3486 
3487 void AArch64InstrInfo::copyGPRRegTuple(MachineBasicBlock &MBB,
3488                                        MachineBasicBlock::iterator I,
3489                                        DebugLoc DL, unsigned DestReg,
3490                                        unsigned SrcReg, bool KillSrc,
3491                                        unsigned Opcode, unsigned ZeroReg,
3492                                        llvm::ArrayRef<unsigned> Indices) const {
3493   const TargetRegisterInfo *TRI = &getRegisterInfo();
3494   unsigned NumRegs = Indices.size();
3495 
3496 #ifndef NDEBUG
3497   uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
3498   uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
3499   assert(DestEncoding % NumRegs == 0 && SrcEncoding % NumRegs == 0 &&
3500          "GPR reg sequences should not be able to overlap");
3501 #endif
3502 
3503   for (unsigned SubReg = 0; SubReg != NumRegs; ++SubReg) {
3504     const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
3505     AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
3506     MIB.addReg(ZeroReg);
3507     AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
3508     MIB.addImm(0);
3509   }
3510 }
3511 
3512 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3513                                    MachineBasicBlock::iterator I,
3514                                    const DebugLoc &DL, MCRegister DestReg,
3515                                    MCRegister SrcReg, bool KillSrc) const {
3516   if (AArch64::GPR32spRegClass.contains(DestReg) &&
3517       (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
3518     const TargetRegisterInfo *TRI = &getRegisterInfo();
3519 
3520     if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
3521       // If either operand is WSP, expand to ADD #0.
3522       if (Subtarget.hasZeroCycleRegMove()) {
3523         // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
3524         MCRegister DestRegX = TRI->getMatchingSuperReg(
3525             DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3526         MCRegister SrcRegX = TRI->getMatchingSuperReg(
3527             SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3528         // This instruction is reading and writing X registers.  This may upset
3529         // the register scavenger and machine verifier, so we need to indicate
3530         // that we are reading an undefined value from SrcRegX, but a proper
3531         // value from SrcReg.
3532         BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
3533             .addReg(SrcRegX, RegState::Undef)
3534             .addImm(0)
3535             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
3536             .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
3537       } else {
3538         BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
3539             .addReg(SrcReg, getKillRegState(KillSrc))
3540             .addImm(0)
3541             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3542       }
3543     } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroingGP()) {
3544       BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg)
3545           .addImm(0)
3546           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3547     } else {
3548       if (Subtarget.hasZeroCycleRegMove()) {
3549         // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
3550         MCRegister DestRegX = TRI->getMatchingSuperReg(
3551             DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3552         MCRegister SrcRegX = TRI->getMatchingSuperReg(
3553             SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass);
3554         // This instruction is reading and writing X registers.  This may upset
3555         // the register scavenger and machine verifier, so we need to indicate
3556         // that we are reading an undefined value from SrcRegX, but a proper
3557         // value from SrcReg.
3558         BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
3559             .addReg(AArch64::XZR)
3560             .addReg(SrcRegX, RegState::Undef)
3561             .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
3562       } else {
3563         // Otherwise, expand to ORR WZR.
3564         BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
3565             .addReg(AArch64::WZR)
3566             .addReg(SrcReg, getKillRegState(KillSrc));
3567       }
3568     }
3569     return;
3570   }
3571 
3572   // Copy a Predicate register by ORRing with itself.
3573   if (AArch64::PPRRegClass.contains(DestReg) &&
3574       AArch64::PPRRegClass.contains(SrcReg)) {
3575     assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3576     BuildMI(MBB, I, DL, get(AArch64::ORR_PPzPP), DestReg)
3577       .addReg(SrcReg) // Pg
3578       .addReg(SrcReg)
3579       .addReg(SrcReg, getKillRegState(KillSrc));
3580     return;
3581   }
3582 
3583   // Copy a Z register by ORRing with itself.
3584   if (AArch64::ZPRRegClass.contains(DestReg) &&
3585       AArch64::ZPRRegClass.contains(SrcReg)) {
3586     assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3587     BuildMI(MBB, I, DL, get(AArch64::ORR_ZZZ), DestReg)
3588       .addReg(SrcReg)
3589       .addReg(SrcReg, getKillRegState(KillSrc));
3590     return;
3591   }
3592 
3593   // Copy a Z register pair by copying the individual sub-registers.
3594   if (AArch64::ZPR2RegClass.contains(DestReg) &&
3595       AArch64::ZPR2RegClass.contains(SrcReg)) {
3596     assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3597     static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1};
3598     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3599                      Indices);
3600     return;
3601   }
3602 
3603   // Copy a Z register triple by copying the individual sub-registers.
3604   if (AArch64::ZPR3RegClass.contains(DestReg) &&
3605       AArch64::ZPR3RegClass.contains(SrcReg)) {
3606     assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3607     static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1,
3608                                        AArch64::zsub2};
3609     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3610                      Indices);
3611     return;
3612   }
3613 
3614   // Copy a Z register quad by copying the individual sub-registers.
3615   if (AArch64::ZPR4RegClass.contains(DestReg) &&
3616       AArch64::ZPR4RegClass.contains(SrcReg)) {
3617     assert(Subtarget.hasSVEorSME() && "Unexpected SVE register.");
3618     static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1,
3619                                        AArch64::zsub2, AArch64::zsub3};
3620     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ,
3621                      Indices);
3622     return;
3623   }
3624 
3625   if (AArch64::GPR64spRegClass.contains(DestReg) &&
3626       (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
3627     if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
3628       // If either operand is SP, expand to ADD #0.
3629       BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
3630           .addReg(SrcReg, getKillRegState(KillSrc))
3631           .addImm(0)
3632           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3633     } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroingGP()) {
3634       BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg)
3635           .addImm(0)
3636           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
3637     } else {
3638       // Otherwise, expand to ORR XZR.
3639       BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
3640           .addReg(AArch64::XZR)
3641           .addReg(SrcReg, getKillRegState(KillSrc));
3642     }
3643     return;
3644   }
3645 
3646   // Copy a DDDD register quad by copying the individual sub-registers.
3647   if (AArch64::DDDDRegClass.contains(DestReg) &&
3648       AArch64::DDDDRegClass.contains(SrcReg)) {
3649     static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
3650                                        AArch64::dsub2, AArch64::dsub3};
3651     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3652                      Indices);
3653     return;
3654   }
3655 
3656   // Copy a DDD register triple by copying the individual sub-registers.
3657   if (AArch64::DDDRegClass.contains(DestReg) &&
3658       AArch64::DDDRegClass.contains(SrcReg)) {
3659     static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1,
3660                                        AArch64::dsub2};
3661     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3662                      Indices);
3663     return;
3664   }
3665 
3666   // Copy a DD register pair by copying the individual sub-registers.
3667   if (AArch64::DDRegClass.contains(DestReg) &&
3668       AArch64::DDRegClass.contains(SrcReg)) {
3669     static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1};
3670     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
3671                      Indices);
3672     return;
3673   }
3674 
3675   // Copy a QQQQ register quad by copying the individual sub-registers.
3676   if (AArch64::QQQQRegClass.contains(DestReg) &&
3677       AArch64::QQQQRegClass.contains(SrcReg)) {
3678     static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
3679                                        AArch64::qsub2, AArch64::qsub3};
3680     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3681                      Indices);
3682     return;
3683   }
3684 
3685   // Copy a QQQ register triple by copying the individual sub-registers.
3686   if (AArch64::QQQRegClass.contains(DestReg) &&
3687       AArch64::QQQRegClass.contains(SrcReg)) {
3688     static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1,
3689                                        AArch64::qsub2};
3690     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3691                      Indices);
3692     return;
3693   }
3694 
3695   // Copy a QQ register pair by copying the individual sub-registers.
3696   if (AArch64::QQRegClass.contains(DestReg) &&
3697       AArch64::QQRegClass.contains(SrcReg)) {
3698     static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1};
3699     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
3700                      Indices);
3701     return;
3702   }
3703 
3704   if (AArch64::XSeqPairsClassRegClass.contains(DestReg) &&
3705       AArch64::XSeqPairsClassRegClass.contains(SrcReg)) {
3706     static const unsigned Indices[] = {AArch64::sube64, AArch64::subo64};
3707     copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRXrs,
3708                     AArch64::XZR, Indices);
3709     return;
3710   }
3711 
3712   if (AArch64::WSeqPairsClassRegClass.contains(DestReg) &&
3713       AArch64::WSeqPairsClassRegClass.contains(SrcReg)) {
3714     static const unsigned Indices[] = {AArch64::sube32, AArch64::subo32};
3715     copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRWrs,
3716                     AArch64::WZR, Indices);
3717     return;
3718   }
3719 
3720   if (AArch64::FPR128RegClass.contains(DestReg) &&
3721       AArch64::FPR128RegClass.contains(SrcReg)) {
3722     if (Subtarget.hasSVEorSME() && !Subtarget.isNeonAvailable())
3723       BuildMI(MBB, I, DL, get(AArch64::ORR_ZZZ))
3724           .addReg(AArch64::Z0 + (DestReg - AArch64::Q0), RegState::Define)
3725           .addReg(AArch64::Z0 + (SrcReg - AArch64::Q0))
3726           .addReg(AArch64::Z0 + (SrcReg - AArch64::Q0));
3727     else if (Subtarget.hasNEON())
3728       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
3729           .addReg(SrcReg)
3730           .addReg(SrcReg, getKillRegState(KillSrc));
3731     else {
3732       BuildMI(MBB, I, DL, get(AArch64::STRQpre))
3733           .addReg(AArch64::SP, RegState::Define)
3734           .addReg(SrcReg, getKillRegState(KillSrc))
3735           .addReg(AArch64::SP)
3736           .addImm(-16);
3737       BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
3738           .addReg(AArch64::SP, RegState::Define)
3739           .addReg(DestReg, RegState::Define)
3740           .addReg(AArch64::SP)
3741           .addImm(16);
3742     }
3743     return;
3744   }
3745 
3746   if (AArch64::FPR64RegClass.contains(DestReg) &&
3747       AArch64::FPR64RegClass.contains(SrcReg)) {
3748     BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
3749         .addReg(SrcReg, getKillRegState(KillSrc));
3750     return;
3751   }
3752 
3753   if (AArch64::FPR32RegClass.contains(DestReg) &&
3754       AArch64::FPR32RegClass.contains(SrcReg)) {
3755     BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3756         .addReg(SrcReg, getKillRegState(KillSrc));
3757     return;
3758   }
3759 
3760   if (AArch64::FPR16RegClass.contains(DestReg) &&
3761       AArch64::FPR16RegClass.contains(SrcReg)) {
3762     DestReg =
3763         RI.getMatchingSuperReg(DestReg, AArch64::hsub, &AArch64::FPR32RegClass);
3764     SrcReg =
3765         RI.getMatchingSuperReg(SrcReg, AArch64::hsub, &AArch64::FPR32RegClass);
3766     BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3767         .addReg(SrcReg, getKillRegState(KillSrc));
3768     return;
3769   }
3770 
3771   if (AArch64::FPR8RegClass.contains(DestReg) &&
3772       AArch64::FPR8RegClass.contains(SrcReg)) {
3773     DestReg =
3774         RI.getMatchingSuperReg(DestReg, AArch64::bsub, &AArch64::FPR32RegClass);
3775     SrcReg =
3776         RI.getMatchingSuperReg(SrcReg, AArch64::bsub, &AArch64::FPR32RegClass);
3777     BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
3778         .addReg(SrcReg, getKillRegState(KillSrc));
3779     return;
3780   }
3781 
3782   // Copies between GPR64 and FPR64.
3783   if (AArch64::FPR64RegClass.contains(DestReg) &&
3784       AArch64::GPR64RegClass.contains(SrcReg)) {
3785     BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
3786         .addReg(SrcReg, getKillRegState(KillSrc));
3787     return;
3788   }
3789   if (AArch64::GPR64RegClass.contains(DestReg) &&
3790       AArch64::FPR64RegClass.contains(SrcReg)) {
3791     BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
3792         .addReg(SrcReg, getKillRegState(KillSrc));
3793     return;
3794   }
3795   // Copies between GPR32 and FPR32.
3796   if (AArch64::FPR32RegClass.contains(DestReg) &&
3797       AArch64::GPR32RegClass.contains(SrcReg)) {
3798     BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
3799         .addReg(SrcReg, getKillRegState(KillSrc));
3800     return;
3801   }
3802   if (AArch64::GPR32RegClass.contains(DestReg) &&
3803       AArch64::FPR32RegClass.contains(SrcReg)) {
3804     BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
3805         .addReg(SrcReg, getKillRegState(KillSrc));
3806     return;
3807   }
3808 
3809   if (DestReg == AArch64::NZCV) {
3810     assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
3811     BuildMI(MBB, I, DL, get(AArch64::MSR))
3812         .addImm(AArch64SysReg::NZCV)
3813         .addReg(SrcReg, getKillRegState(KillSrc))
3814         .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
3815     return;
3816   }
3817 
3818   if (SrcReg == AArch64::NZCV) {
3819     assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
3820     BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg)
3821         .addImm(AArch64SysReg::NZCV)
3822         .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
3823     return;
3824   }
3825 
3826 #ifndef NDEBUG
3827   const TargetRegisterInfo &TRI = getRegisterInfo();
3828   errs() << TRI.getRegAsmName(DestReg) << " = COPY "
3829          << TRI.getRegAsmName(SrcReg) << "\n";
3830 #endif
3831   llvm_unreachable("unimplemented reg-to-reg copy");
3832 }
3833 
3834 static void storeRegPairToStackSlot(const TargetRegisterInfo &TRI,
3835                                     MachineBasicBlock &MBB,
3836                                     MachineBasicBlock::iterator InsertBefore,
3837                                     const MCInstrDesc &MCID,
3838                                     Register SrcReg, bool IsKill,
3839                                     unsigned SubIdx0, unsigned SubIdx1, int FI,
3840                                     MachineMemOperand *MMO) {
3841   Register SrcReg0 = SrcReg;
3842   Register SrcReg1 = SrcReg;
3843   if (SrcReg.isPhysical()) {
3844     SrcReg0 = TRI.getSubReg(SrcReg, SubIdx0);
3845     SubIdx0 = 0;
3846     SrcReg1 = TRI.getSubReg(SrcReg, SubIdx1);
3847     SubIdx1 = 0;
3848   }
3849   BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
3850       .addReg(SrcReg0, getKillRegState(IsKill), SubIdx0)
3851       .addReg(SrcReg1, getKillRegState(IsKill), SubIdx1)
3852       .addFrameIndex(FI)
3853       .addImm(0)
3854       .addMemOperand(MMO);
3855 }
3856 
3857 void AArch64InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3858                                            MachineBasicBlock::iterator MBBI,
3859                                            Register SrcReg, bool isKill, int FI,
3860                                            const TargetRegisterClass *RC,
3861                                            const TargetRegisterInfo *TRI,
3862                                            Register VReg) const {
3863   MachineFunction &MF = *MBB.getParent();
3864   MachineFrameInfo &MFI = MF.getFrameInfo();
3865 
3866   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
3867   MachineMemOperand *MMO =
3868       MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
3869                               MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
3870   unsigned Opc = 0;
3871   bool Offset = true;
3872   unsigned StackID = TargetStackID::Default;
3873   switch (TRI->getSpillSize(*RC)) {
3874   case 1:
3875     if (AArch64::FPR8RegClass.hasSubClassEq(RC))
3876       Opc = AArch64::STRBui;
3877     break;
3878   case 2:
3879     if (AArch64::FPR16RegClass.hasSubClassEq(RC))
3880       Opc = AArch64::STRHui;
3881     else if (AArch64::PPRRegClass.hasSubClassEq(RC)) {
3882       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3883       Opc = AArch64::STR_PXI;
3884       StackID = TargetStackID::ScalableVector;
3885     }
3886     break;
3887   case 4:
3888     if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
3889       Opc = AArch64::STRWui;
3890       if (SrcReg.isVirtual())
3891         MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
3892       else
3893         assert(SrcReg != AArch64::WSP);
3894     } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
3895       Opc = AArch64::STRSui;
3896     break;
3897   case 8:
3898     if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
3899       Opc = AArch64::STRXui;
3900       if (SrcReg.isVirtual())
3901         MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
3902       else
3903         assert(SrcReg != AArch64::SP);
3904     } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
3905       Opc = AArch64::STRDui;
3906     } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
3907       storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
3908                               get(AArch64::STPWi), SrcReg, isKill,
3909                               AArch64::sube32, AArch64::subo32, FI, MMO);
3910       return;
3911     }
3912     break;
3913   case 16:
3914     if (AArch64::FPR128RegClass.hasSubClassEq(RC))
3915       Opc = AArch64::STRQui;
3916     else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
3917       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3918       Opc = AArch64::ST1Twov1d;
3919       Offset = false;
3920     } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
3921       storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI,
3922                               get(AArch64::STPXi), SrcReg, isKill,
3923                               AArch64::sube64, AArch64::subo64, FI, MMO);
3924       return;
3925     } else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) {
3926       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3927       Opc = AArch64::STR_ZXI;
3928       StackID = TargetStackID::ScalableVector;
3929     }
3930     break;
3931   case 24:
3932     if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
3933       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3934       Opc = AArch64::ST1Threev1d;
3935       Offset = false;
3936     }
3937     break;
3938   case 32:
3939     if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
3940       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3941       Opc = AArch64::ST1Fourv1d;
3942       Offset = false;
3943     } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
3944       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3945       Opc = AArch64::ST1Twov2d;
3946       Offset = false;
3947     } else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) {
3948       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3949       Opc = AArch64::STR_ZZXI;
3950       StackID = TargetStackID::ScalableVector;
3951     }
3952     break;
3953   case 48:
3954     if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
3955       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3956       Opc = AArch64::ST1Threev2d;
3957       Offset = false;
3958     } else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) {
3959       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3960       Opc = AArch64::STR_ZZZXI;
3961       StackID = TargetStackID::ScalableVector;
3962     }
3963     break;
3964   case 64:
3965     if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
3966       assert(Subtarget.hasNEON() && "Unexpected register store without NEON");
3967       Opc = AArch64::ST1Fourv2d;
3968       Offset = false;
3969     } else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) {
3970       assert(Subtarget.hasSVE() && "Unexpected register store without SVE");
3971       Opc = AArch64::STR_ZZZZXI;
3972       StackID = TargetStackID::ScalableVector;
3973     }
3974     break;
3975   }
3976   assert(Opc && "Unknown register class");
3977   MFI.setStackID(FI, StackID);
3978 
3979   const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
3980                                      .addReg(SrcReg, getKillRegState(isKill))
3981                                      .addFrameIndex(FI);
3982 
3983   if (Offset)
3984     MI.addImm(0);
3985   MI.addMemOperand(MMO);
3986 }
3987 
3988 static void loadRegPairFromStackSlot(const TargetRegisterInfo &TRI,
3989                                      MachineBasicBlock &MBB,
3990                                      MachineBasicBlock::iterator InsertBefore,
3991                                      const MCInstrDesc &MCID,
3992                                      Register DestReg, unsigned SubIdx0,
3993                                      unsigned SubIdx1, int FI,
3994                                      MachineMemOperand *MMO) {
3995   Register DestReg0 = DestReg;
3996   Register DestReg1 = DestReg;
3997   bool IsUndef = true;
3998   if (DestReg.isPhysical()) {
3999     DestReg0 = TRI.getSubReg(DestReg, SubIdx0);
4000     SubIdx0 = 0;
4001     DestReg1 = TRI.getSubReg(DestReg, SubIdx1);
4002     SubIdx1 = 0;
4003     IsUndef = false;
4004   }
4005   BuildMI(MBB, InsertBefore, DebugLoc(), MCID)
4006       .addReg(DestReg0, RegState::Define | getUndefRegState(IsUndef), SubIdx0)
4007       .addReg(DestReg1, RegState::Define | getUndefRegState(IsUndef), SubIdx1)
4008       .addFrameIndex(FI)
4009       .addImm(0)
4010       .addMemOperand(MMO);
4011 }
4012 
4013 void AArch64InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
4014                                             MachineBasicBlock::iterator MBBI,
4015                                             Register DestReg, int FI,
4016                                             const TargetRegisterClass *RC,
4017                                             const TargetRegisterInfo *TRI,
4018                                             Register VReg) const {
4019   MachineFunction &MF = *MBB.getParent();
4020   MachineFrameInfo &MFI = MF.getFrameInfo();
4021   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
4022   MachineMemOperand *MMO =
4023       MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
4024                               MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
4025 
4026   unsigned Opc = 0;
4027   bool Offset = true;
4028   unsigned StackID = TargetStackID::Default;
4029   switch (TRI->getSpillSize(*RC)) {
4030   case 1:
4031     if (AArch64::FPR8RegClass.hasSubClassEq(RC))
4032       Opc = AArch64::LDRBui;
4033     break;
4034   case 2:
4035     if (AArch64::FPR16RegClass.hasSubClassEq(RC))
4036       Opc = AArch64::LDRHui;
4037     else if (AArch64::PPRRegClass.hasSubClassEq(RC)) {
4038       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4039       Opc = AArch64::LDR_PXI;
4040       StackID = TargetStackID::ScalableVector;
4041     }
4042     break;
4043   case 4:
4044     if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
4045       Opc = AArch64::LDRWui;
4046       if (DestReg.isVirtual())
4047         MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
4048       else
4049         assert(DestReg != AArch64::WSP);
4050     } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
4051       Opc = AArch64::LDRSui;
4052     break;
4053   case 8:
4054     if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
4055       Opc = AArch64::LDRXui;
4056       if (DestReg.isVirtual())
4057         MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
4058       else
4059         assert(DestReg != AArch64::SP);
4060     } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) {
4061       Opc = AArch64::LDRDui;
4062     } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) {
4063       loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
4064                                get(AArch64::LDPWi), DestReg, AArch64::sube32,
4065                                AArch64::subo32, FI, MMO);
4066       return;
4067     }
4068     break;
4069   case 16:
4070     if (AArch64::FPR128RegClass.hasSubClassEq(RC))
4071       Opc = AArch64::LDRQui;
4072     else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
4073       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4074       Opc = AArch64::LD1Twov1d;
4075       Offset = false;
4076     } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) {
4077       loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI,
4078                                get(AArch64::LDPXi), DestReg, AArch64::sube64,
4079                                AArch64::subo64, FI, MMO);
4080       return;
4081     } else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) {
4082       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4083       Opc = AArch64::LDR_ZXI;
4084       StackID = TargetStackID::ScalableVector;
4085     }
4086     break;
4087   case 24:
4088     if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
4089       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4090       Opc = AArch64::LD1Threev1d;
4091       Offset = false;
4092     }
4093     break;
4094   case 32:
4095     if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
4096       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4097       Opc = AArch64::LD1Fourv1d;
4098       Offset = false;
4099     } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
4100       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4101       Opc = AArch64::LD1Twov2d;
4102       Offset = false;
4103     } else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) {
4104       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4105       Opc = AArch64::LDR_ZZXI;
4106       StackID = TargetStackID::ScalableVector;
4107     }
4108     break;
4109   case 48:
4110     if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
4111       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4112       Opc = AArch64::LD1Threev2d;
4113       Offset = false;
4114     } else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) {
4115       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4116       Opc = AArch64::LDR_ZZZXI;
4117       StackID = TargetStackID::ScalableVector;
4118     }
4119     break;
4120   case 64:
4121     if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
4122       assert(Subtarget.hasNEON() && "Unexpected register load without NEON");
4123       Opc = AArch64::LD1Fourv2d;
4124       Offset = false;
4125     } else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) {
4126       assert(Subtarget.hasSVE() && "Unexpected register load without SVE");
4127       Opc = AArch64::LDR_ZZZZXI;
4128       StackID = TargetStackID::ScalableVector;
4129     }
4130     break;
4131   }
4132 
4133   assert(Opc && "Unknown register class");
4134   MFI.setStackID(FI, StackID);
4135 
4136   const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc))
4137                                      .addReg(DestReg, getDefRegState(true))
4138                                      .addFrameIndex(FI);
4139   if (Offset)
4140     MI.addImm(0);
4141   MI.addMemOperand(MMO);
4142 }
4143 
4144 bool llvm::isNZCVTouchedInInstructionRange(const MachineInstr &DefMI,
4145                                            const MachineInstr &UseMI,
4146                                            const TargetRegisterInfo *TRI) {
4147   return any_of(instructionsWithoutDebug(std::next(DefMI.getIterator()),
4148                                          UseMI.getIterator()),
4149                 [TRI](const MachineInstr &I) {
4150                   return I.modifiesRegister(AArch64::NZCV, TRI) ||
4151                          I.readsRegister(AArch64::NZCV, TRI);
4152                 });
4153 }
4154 
4155 void AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
4156     const StackOffset &Offset, int64_t &ByteSized, int64_t &VGSized) {
4157   // The smallest scalable element supported by scaled SVE addressing
4158   // modes are predicates, which are 2 scalable bytes in size. So the scalable
4159   // byte offset must always be a multiple of 2.
4160   assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
4161 
4162   // VGSized offsets are divided by '2', because the VG register is the
4163   // the number of 64bit granules as opposed to 128bit vector chunks,
4164   // which is how the 'n' in e.g. MVT::nxv1i8 is modelled.
4165   // So, for a stack offset of 16 MVT::nxv1i8's, the size is n x 16 bytes.
4166   // VG = n * 2 and the dwarf offset must be VG * 8 bytes.
4167   ByteSized = Offset.getFixed();
4168   VGSized = Offset.getScalable() / 2;
4169 }
4170 
4171 /// Returns the offset in parts to which this frame offset can be
4172 /// decomposed for the purpose of describing a frame offset.
4173 /// For non-scalable offsets this is simply its byte size.
4174 void AArch64InstrInfo::decomposeStackOffsetForFrameOffsets(
4175     const StackOffset &Offset, int64_t &NumBytes, int64_t &NumPredicateVectors,
4176     int64_t &NumDataVectors) {
4177   // The smallest scalable element supported by scaled SVE addressing
4178   // modes are predicates, which are 2 scalable bytes in size. So the scalable
4179   // byte offset must always be a multiple of 2.
4180   assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
4181 
4182   NumBytes = Offset.getFixed();
4183   NumDataVectors = 0;
4184   NumPredicateVectors = Offset.getScalable() / 2;
4185   // This method is used to get the offsets to adjust the frame offset.
4186   // If the function requires ADDPL to be used and needs more than two ADDPL
4187   // instructions, part of the offset is folded into NumDataVectors so that it
4188   // uses ADDVL for part of it, reducing the number of ADDPL instructions.
4189   if (NumPredicateVectors % 8 == 0 || NumPredicateVectors < -64 ||
4190       NumPredicateVectors > 62) {
4191     NumDataVectors = NumPredicateVectors / 8;
4192     NumPredicateVectors -= NumDataVectors * 8;
4193   }
4194 }
4195 
4196 // Convenience function to create a DWARF expression for
4197 //   Expr + NumBytes + NumVGScaledBytes * AArch64::VG
4198 static void appendVGScaledOffsetExpr(SmallVectorImpl<char> &Expr, int NumBytes,
4199                                      int NumVGScaledBytes, unsigned VG,
4200                                      llvm::raw_string_ostream &Comment) {
4201   uint8_t buffer[16];
4202 
4203   if (NumBytes) {
4204     Expr.push_back(dwarf::DW_OP_consts);
4205     Expr.append(buffer, buffer + encodeSLEB128(NumBytes, buffer));
4206     Expr.push_back((uint8_t)dwarf::DW_OP_plus);
4207     Comment << (NumBytes < 0 ? " - " : " + ") << std::abs(NumBytes);
4208   }
4209 
4210   if (NumVGScaledBytes) {
4211     Expr.push_back((uint8_t)dwarf::DW_OP_consts);
4212     Expr.append(buffer, buffer + encodeSLEB128(NumVGScaledBytes, buffer));
4213 
4214     Expr.push_back((uint8_t)dwarf::DW_OP_bregx);
4215     Expr.append(buffer, buffer + encodeULEB128(VG, buffer));
4216     Expr.push_back(0);
4217 
4218     Expr.push_back((uint8_t)dwarf::DW_OP_mul);
4219     Expr.push_back((uint8_t)dwarf::DW_OP_plus);
4220 
4221     Comment << (NumVGScaledBytes < 0 ? " - " : " + ")
4222             << std::abs(NumVGScaledBytes) << " * VG";
4223   }
4224 }
4225 
4226 // Creates an MCCFIInstruction:
4227 //    { DW_CFA_def_cfa_expression, ULEB128 (sizeof expr), expr }
4228 static MCCFIInstruction createDefCFAExpression(const TargetRegisterInfo &TRI,
4229                                                unsigned Reg,
4230                                                const StackOffset &Offset) {
4231   int64_t NumBytes, NumVGScaledBytes;
4232   AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(Offset, NumBytes,
4233                                                         NumVGScaledBytes);
4234   std::string CommentBuffer;
4235   llvm::raw_string_ostream Comment(CommentBuffer);
4236 
4237   if (Reg == AArch64::SP)
4238     Comment << "sp";
4239   else if (Reg == AArch64::FP)
4240     Comment << "fp";
4241   else
4242     Comment << printReg(Reg, &TRI);
4243 
4244   // Build up the expression (Reg + NumBytes + NumVGScaledBytes * AArch64::VG)
4245   SmallString<64> Expr;
4246   unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
4247   Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
4248   Expr.push_back(0);
4249   appendVGScaledOffsetExpr(Expr, NumBytes, NumVGScaledBytes,
4250                            TRI.getDwarfRegNum(AArch64::VG, true), Comment);
4251 
4252   // Wrap this into DW_CFA_def_cfa.
4253   SmallString<64> DefCfaExpr;
4254   DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
4255   uint8_t buffer[16];
4256   DefCfaExpr.append(buffer, buffer + encodeULEB128(Expr.size(), buffer));
4257   DefCfaExpr.append(Expr.str());
4258   return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(),
4259                                         Comment.str());
4260 }
4261 
4262 MCCFIInstruction llvm::createDefCFA(const TargetRegisterInfo &TRI,
4263                                     unsigned FrameReg, unsigned Reg,
4264                                     const StackOffset &Offset,
4265                                     bool LastAdjustmentWasScalable) {
4266   if (Offset.getScalable())
4267     return createDefCFAExpression(TRI, Reg, Offset);
4268 
4269   if (FrameReg == Reg && !LastAdjustmentWasScalable)
4270     return MCCFIInstruction::cfiDefCfaOffset(nullptr, int(Offset.getFixed()));
4271 
4272   unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
4273   return MCCFIInstruction::cfiDefCfa(nullptr, DwarfReg, (int)Offset.getFixed());
4274 }
4275 
4276 MCCFIInstruction llvm::createCFAOffset(const TargetRegisterInfo &TRI,
4277                                        unsigned Reg,
4278                                        const StackOffset &OffsetFromDefCFA) {
4279   int64_t NumBytes, NumVGScaledBytes;
4280   AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
4281       OffsetFromDefCFA, NumBytes, NumVGScaledBytes);
4282 
4283   unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
4284 
4285   // Non-scalable offsets can use DW_CFA_offset directly.
4286   if (!NumVGScaledBytes)
4287     return MCCFIInstruction::createOffset(nullptr, DwarfReg, NumBytes);
4288 
4289   std::string CommentBuffer;
4290   llvm::raw_string_ostream Comment(CommentBuffer);
4291   Comment << printReg(Reg, &TRI) << "  @ cfa";
4292 
4293   // Build up expression (NumBytes + NumVGScaledBytes * AArch64::VG)
4294   SmallString<64> OffsetExpr;
4295   appendVGScaledOffsetExpr(OffsetExpr, NumBytes, NumVGScaledBytes,
4296                            TRI.getDwarfRegNum(AArch64::VG, true), Comment);
4297 
4298   // Wrap this into DW_CFA_expression
4299   SmallString<64> CfaExpr;
4300   CfaExpr.push_back(dwarf::DW_CFA_expression);
4301   uint8_t buffer[16];
4302   CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer));
4303   CfaExpr.append(buffer, buffer + encodeULEB128(OffsetExpr.size(), buffer));
4304   CfaExpr.append(OffsetExpr.str());
4305 
4306   return MCCFIInstruction::createEscape(nullptr, CfaExpr.str(), SMLoc(),
4307                                         Comment.str());
4308 }
4309 
4310 // Helper function to emit a frame offset adjustment from a given
4311 // pointer (SrcReg), stored into DestReg. This function is explicit
4312 // in that it requires the opcode.
4313 static void emitFrameOffsetAdj(MachineBasicBlock &MBB,
4314                                MachineBasicBlock::iterator MBBI,
4315                                const DebugLoc &DL, unsigned DestReg,
4316                                unsigned SrcReg, int64_t Offset, unsigned Opc,
4317                                const TargetInstrInfo *TII,
4318                                MachineInstr::MIFlag Flag, bool NeedsWinCFI,
4319                                bool *HasWinCFI, bool EmitCFAOffset,
4320                                StackOffset CFAOffset, unsigned FrameReg) {
4321   int Sign = 1;
4322   unsigned MaxEncoding, ShiftSize;
4323   switch (Opc) {
4324   case AArch64::ADDXri:
4325   case AArch64::ADDSXri:
4326   case AArch64::SUBXri:
4327   case AArch64::SUBSXri:
4328     MaxEncoding = 0xfff;
4329     ShiftSize = 12;
4330     break;
4331   case AArch64::ADDVL_XXI:
4332   case AArch64::ADDPL_XXI:
4333   case AArch64::ADDSVL_XXI:
4334   case AArch64::ADDSPL_XXI:
4335     MaxEncoding = 31;
4336     ShiftSize = 0;
4337     if (Offset < 0) {
4338       MaxEncoding = 32;
4339       Sign = -1;
4340       Offset = -Offset;
4341     }
4342     break;
4343   default:
4344     llvm_unreachable("Unsupported opcode");
4345   }
4346 
4347   // `Offset` can be in bytes or in "scalable bytes".
4348   int VScale = 1;
4349   if (Opc == AArch64::ADDVL_XXI || Opc == AArch64::ADDSVL_XXI)
4350     VScale = 16;
4351   else if (Opc == AArch64::ADDPL_XXI || Opc == AArch64::ADDSPL_XXI)
4352     VScale = 2;
4353 
4354   // FIXME: If the offset won't fit in 24-bits, compute the offset into a
4355   // scratch register.  If DestReg is a virtual register, use it as the
4356   // scratch register; otherwise, create a new virtual register (to be
4357   // replaced by the scavenger at the end of PEI).  That case can be optimized
4358   // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
4359   // register can be loaded with offset%8 and the add/sub can use an extending
4360   // instruction with LSL#3.
4361   // Currently the function handles any offsets but generates a poor sequence
4362   // of code.
4363   //  assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
4364 
4365   const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
4366   Register TmpReg = DestReg;
4367   if (TmpReg == AArch64::XZR)
4368     TmpReg = MBB.getParent()->getRegInfo().createVirtualRegister(
4369         &AArch64::GPR64RegClass);
4370   do {
4371     uint64_t ThisVal = std::min<uint64_t>(Offset, MaxEncodableValue);
4372     unsigned LocalShiftSize = 0;
4373     if (ThisVal > MaxEncoding) {
4374       ThisVal = ThisVal >> ShiftSize;
4375       LocalShiftSize = ShiftSize;
4376     }
4377     assert((ThisVal >> ShiftSize) <= MaxEncoding &&
4378            "Encoding cannot handle value that big");
4379 
4380     Offset -= ThisVal << LocalShiftSize;
4381     if (Offset == 0)
4382       TmpReg = DestReg;
4383     auto MBI = BuildMI(MBB, MBBI, DL, TII->get(Opc), TmpReg)
4384                    .addReg(SrcReg)
4385                    .addImm(Sign * (int)ThisVal);
4386     if (ShiftSize)
4387       MBI = MBI.addImm(
4388           AArch64_AM::getShifterImm(AArch64_AM::LSL, LocalShiftSize));
4389     MBI = MBI.setMIFlag(Flag);
4390 
4391     auto Change =
4392         VScale == 1
4393             ? StackOffset::getFixed(ThisVal << LocalShiftSize)
4394             : StackOffset::getScalable(VScale * (ThisVal << LocalShiftSize));
4395     if (Sign == -1 || Opc == AArch64::SUBXri || Opc == AArch64::SUBSXri)
4396       CFAOffset += Change;
4397     else
4398       CFAOffset -= Change;
4399     if (EmitCFAOffset && DestReg == TmpReg) {
4400       MachineFunction &MF = *MBB.getParent();
4401       const TargetSubtargetInfo &STI = MF.getSubtarget();
4402       const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
4403 
4404       unsigned CFIIndex = MF.addFrameInst(
4405           createDefCFA(TRI, FrameReg, DestReg, CFAOffset, VScale != 1));
4406       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
4407           .addCFIIndex(CFIIndex)
4408           .setMIFlags(Flag);
4409     }
4410 
4411     if (NeedsWinCFI) {
4412       assert(Sign == 1 && "SEH directives should always have a positive sign");
4413       int Imm = (int)(ThisVal << LocalShiftSize);
4414       if ((DestReg == AArch64::FP && SrcReg == AArch64::SP) ||
4415           (SrcReg == AArch64::FP && DestReg == AArch64::SP)) {
4416         if (HasWinCFI)
4417           *HasWinCFI = true;
4418         if (Imm == 0)
4419           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_SetFP)).setMIFlag(Flag);
4420         else
4421           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_AddFP))
4422               .addImm(Imm)
4423               .setMIFlag(Flag);
4424         assert(Offset == 0 && "Expected remaining offset to be zero to "
4425                               "emit a single SEH directive");
4426       } else if (DestReg == AArch64::SP) {
4427         if (HasWinCFI)
4428           *HasWinCFI = true;
4429         assert(SrcReg == AArch64::SP && "Unexpected SrcReg for SEH_StackAlloc");
4430         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
4431             .addImm(Imm)
4432             .setMIFlag(Flag);
4433       }
4434     }
4435 
4436     SrcReg = TmpReg;
4437   } while (Offset);
4438 }
4439 
4440 void llvm::emitFrameOffset(MachineBasicBlock &MBB,
4441                            MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
4442                            unsigned DestReg, unsigned SrcReg,
4443                            StackOffset Offset, const TargetInstrInfo *TII,
4444                            MachineInstr::MIFlag Flag, bool SetNZCV,
4445                            bool NeedsWinCFI, bool *HasWinCFI,
4446                            bool EmitCFAOffset, StackOffset CFAOffset,
4447                            unsigned FrameReg) {
4448   // If a function is marked as arm_locally_streaming, then the runtime value of
4449   // vscale in the prologue/epilogue is different the runtime value of vscale
4450   // in the function's body. To avoid having to consider multiple vscales,
4451   // we can use `addsvl` to allocate any scalable stack-slots, which under
4452   // most circumstances will be only locals, not callee-save slots.
4453   const Function &F = MBB.getParent()->getFunction();
4454   bool UseSVL = F.hasFnAttribute("aarch64_pstate_sm_body");
4455 
4456   int64_t Bytes, NumPredicateVectors, NumDataVectors;
4457   AArch64InstrInfo::decomposeStackOffsetForFrameOffsets(
4458       Offset, Bytes, NumPredicateVectors, NumDataVectors);
4459 
4460   // First emit non-scalable frame offsets, or a simple 'mov'.
4461   if (Bytes || (!Offset && SrcReg != DestReg)) {
4462     assert((DestReg != AArch64::SP || Bytes % 8 == 0) &&
4463            "SP increment/decrement not 8-byte aligned");
4464     unsigned Opc = SetNZCV ? AArch64::ADDSXri : AArch64::ADDXri;
4465     if (Bytes < 0) {
4466       Bytes = -Bytes;
4467       Opc = SetNZCV ? AArch64::SUBSXri : AArch64::SUBXri;
4468     }
4469     emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, Bytes, Opc, TII, Flag,
4470                        NeedsWinCFI, HasWinCFI, EmitCFAOffset, CFAOffset,
4471                        FrameReg);
4472     CFAOffset += (Opc == AArch64::ADDXri || Opc == AArch64::ADDSXri)
4473                      ? StackOffset::getFixed(-Bytes)
4474                      : StackOffset::getFixed(Bytes);
4475     SrcReg = DestReg;
4476     FrameReg = DestReg;
4477   }
4478 
4479   assert(!(SetNZCV && (NumPredicateVectors || NumDataVectors)) &&
4480          "SetNZCV not supported with SVE vectors");
4481   assert(!(NeedsWinCFI && (NumPredicateVectors || NumDataVectors)) &&
4482          "WinCFI not supported with SVE vectors");
4483 
4484   if (NumDataVectors) {
4485     emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumDataVectors,
4486                        UseSVL ? AArch64::ADDSVL_XXI : AArch64::ADDVL_XXI,
4487                        TII, Flag, NeedsWinCFI, nullptr, EmitCFAOffset,
4488                        CFAOffset, FrameReg);
4489     CFAOffset += StackOffset::getScalable(-NumDataVectors * 16);
4490     SrcReg = DestReg;
4491   }
4492 
4493   if (NumPredicateVectors) {
4494     assert(DestReg != AArch64::SP && "Unaligned access to SP");
4495     emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumPredicateVectors,
4496                        UseSVL ? AArch64::ADDSPL_XXI : AArch64::ADDPL_XXI,
4497                        TII, Flag, NeedsWinCFI, nullptr, EmitCFAOffset,
4498                        CFAOffset, FrameReg);
4499   }
4500 }
4501 
4502 MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
4503     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
4504     MachineBasicBlock::iterator InsertPt, int FrameIndex,
4505     LiveIntervals *LIS, VirtRegMap *VRM) const {
4506   // This is a bit of a hack. Consider this instruction:
4507   //
4508   //   %0 = COPY %sp; GPR64all:%0
4509   //
4510   // We explicitly chose GPR64all for the virtual register so such a copy might
4511   // be eliminated by RegisterCoalescer. However, that may not be possible, and
4512   // %0 may even spill. We can't spill %sp, and since it is in the GPR64all
4513   // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
4514   //
4515   // To prevent that, we are going to constrain the %0 register class here.
4516   //
4517   // <rdar://problem/11522048>
4518   //
4519   if (MI.isFullCopy()) {
4520     Register DstReg = MI.getOperand(0).getReg();
4521     Register SrcReg = MI.getOperand(1).getReg();
4522     if (SrcReg == AArch64::SP && DstReg.isVirtual()) {
4523       MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
4524       return nullptr;
4525     }
4526     if (DstReg == AArch64::SP && SrcReg.isVirtual()) {
4527       MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
4528       return nullptr;
4529     }
4530     // Nothing can folded with copy from/to NZCV.
4531     if (SrcReg == AArch64::NZCV || DstReg == AArch64::NZCV)
4532       return nullptr;
4533   }
4534 
4535   // Handle the case where a copy is being spilled or filled but the source
4536   // and destination register class don't match.  For example:
4537   //
4538   //   %0 = COPY %xzr; GPR64common:%0
4539   //
4540   // In this case we can still safely fold away the COPY and generate the
4541   // following spill code:
4542   //
4543   //   STRXui %xzr, %stack.0
4544   //
4545   // This also eliminates spilled cross register class COPYs (e.g. between x and
4546   // d regs) of the same size.  For example:
4547   //
4548   //   %0 = COPY %1; GPR64:%0, FPR64:%1
4549   //
4550   // will be filled as
4551   //
4552   //   LDRDui %0, fi<#0>
4553   //
4554   // instead of
4555   //
4556   //   LDRXui %Temp, fi<#0>
4557   //   %0 = FMOV %Temp
4558   //
4559   if (MI.isCopy() && Ops.size() == 1 &&
4560       // Make sure we're only folding the explicit COPY defs/uses.
4561       (Ops[0] == 0 || Ops[0] == 1)) {
4562     bool IsSpill = Ops[0] == 0;
4563     bool IsFill = !IsSpill;
4564     const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4565     const MachineRegisterInfo &MRI = MF.getRegInfo();
4566     MachineBasicBlock &MBB = *MI.getParent();
4567     const MachineOperand &DstMO = MI.getOperand(0);
4568     const MachineOperand &SrcMO = MI.getOperand(1);
4569     Register DstReg = DstMO.getReg();
4570     Register SrcReg = SrcMO.getReg();
4571     // This is slightly expensive to compute for physical regs since
4572     // getMinimalPhysRegClass is slow.
4573     auto getRegClass = [&](unsigned Reg) {
4574       return Register::isVirtualRegister(Reg) ? MRI.getRegClass(Reg)
4575                                               : TRI.getMinimalPhysRegClass(Reg);
4576     };
4577 
4578     if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) {
4579       assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) ==
4580                  TRI.getRegSizeInBits(*getRegClass(SrcReg)) &&
4581              "Mismatched register size in non subreg COPY");
4582       if (IsSpill)
4583         storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex,
4584                             getRegClass(SrcReg), &TRI, Register());
4585       else
4586         loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex,
4587                              getRegClass(DstReg), &TRI, Register());
4588       return &*--InsertPt;
4589     }
4590 
4591     // Handle cases like spilling def of:
4592     //
4593     //   %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0
4594     //
4595     // where the physical register source can be widened and stored to the full
4596     // virtual reg destination stack slot, in this case producing:
4597     //
4598     //   STRXui %xzr, %stack.0
4599     //
4600     if (IsSpill && DstMO.isUndef() && SrcReg.isPhysical()) {
4601       assert(SrcMO.getSubReg() == 0 &&
4602              "Unexpected subreg on physical register");
4603       const TargetRegisterClass *SpillRC;
4604       unsigned SpillSubreg;
4605       switch (DstMO.getSubReg()) {
4606       default:
4607         SpillRC = nullptr;
4608         break;
4609       case AArch64::sub_32:
4610       case AArch64::ssub:
4611         if (AArch64::GPR32RegClass.contains(SrcReg)) {
4612           SpillRC = &AArch64::GPR64RegClass;
4613           SpillSubreg = AArch64::sub_32;
4614         } else if (AArch64::FPR32RegClass.contains(SrcReg)) {
4615           SpillRC = &AArch64::FPR64RegClass;
4616           SpillSubreg = AArch64::ssub;
4617         } else
4618           SpillRC = nullptr;
4619         break;
4620       case AArch64::dsub:
4621         if (AArch64::FPR64RegClass.contains(SrcReg)) {
4622           SpillRC = &AArch64::FPR128RegClass;
4623           SpillSubreg = AArch64::dsub;
4624         } else
4625           SpillRC = nullptr;
4626         break;
4627       }
4628 
4629       if (SpillRC)
4630         if (unsigned WidenedSrcReg =
4631                 TRI.getMatchingSuperReg(SrcReg, SpillSubreg, SpillRC)) {
4632           storeRegToStackSlot(MBB, InsertPt, WidenedSrcReg, SrcMO.isKill(),
4633                               FrameIndex, SpillRC, &TRI, Register());
4634           return &*--InsertPt;
4635         }
4636     }
4637 
4638     // Handle cases like filling use of:
4639     //
4640     //   %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1
4641     //
4642     // where we can load the full virtual reg source stack slot, into the subreg
4643     // destination, in this case producing:
4644     //
4645     //   LDRWui %0:sub_32<def,read-undef>, %stack.0
4646     //
4647     if (IsFill && SrcMO.getSubReg() == 0 && DstMO.isUndef()) {
4648       const TargetRegisterClass *FillRC;
4649       switch (DstMO.getSubReg()) {
4650       default:
4651         FillRC = nullptr;
4652         break;
4653       case AArch64::sub_32:
4654         FillRC = &AArch64::GPR32RegClass;
4655         break;
4656       case AArch64::ssub:
4657         FillRC = &AArch64::FPR32RegClass;
4658         break;
4659       case AArch64::dsub:
4660         FillRC = &AArch64::FPR64RegClass;
4661         break;
4662       }
4663 
4664       if (FillRC) {
4665         assert(TRI.getRegSizeInBits(*getRegClass(SrcReg)) ==
4666                    TRI.getRegSizeInBits(*FillRC) &&
4667                "Mismatched regclass size on folded subreg COPY");
4668         loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, FillRC, &TRI,
4669                              Register());
4670         MachineInstr &LoadMI = *--InsertPt;
4671         MachineOperand &LoadDst = LoadMI.getOperand(0);
4672         assert(LoadDst.getSubReg() == 0 && "unexpected subreg on fill load");
4673         LoadDst.setSubReg(DstMO.getSubReg());
4674         LoadDst.setIsUndef();
4675         return &LoadMI;
4676       }
4677     }
4678   }
4679 
4680   // Cannot fold.
4681   return nullptr;
4682 }
4683 
4684 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI,
4685                                     StackOffset &SOffset,
4686                                     bool *OutUseUnscaledOp,
4687                                     unsigned *OutUnscaledOp,
4688                                     int64_t *EmittableOffset) {
4689   // Set output values in case of early exit.
4690   if (EmittableOffset)
4691     *EmittableOffset = 0;
4692   if (OutUseUnscaledOp)
4693     *OutUseUnscaledOp = false;
4694   if (OutUnscaledOp)
4695     *OutUnscaledOp = 0;
4696 
4697   // Exit early for structured vector spills/fills as they can't take an
4698   // immediate offset.
4699   switch (MI.getOpcode()) {
4700   default:
4701     break;
4702   case AArch64::LD1Twov2d:
4703   case AArch64::LD1Threev2d:
4704   case AArch64::LD1Fourv2d:
4705   case AArch64::LD1Twov1d:
4706   case AArch64::LD1Threev1d:
4707   case AArch64::LD1Fourv1d:
4708   case AArch64::ST1Twov2d:
4709   case AArch64::ST1Threev2d:
4710   case AArch64::ST1Fourv2d:
4711   case AArch64::ST1Twov1d:
4712   case AArch64::ST1Threev1d:
4713   case AArch64::ST1Fourv1d:
4714   case AArch64::ST1i8:
4715   case AArch64::ST1i16:
4716   case AArch64::ST1i32:
4717   case AArch64::ST1i64:
4718   case AArch64::IRG:
4719   case AArch64::IRGstack:
4720   case AArch64::STGloop:
4721   case AArch64::STZGloop:
4722     return AArch64FrameOffsetCannotUpdate;
4723   }
4724 
4725   // Get the min/max offset and the scale.
4726   TypeSize ScaleValue(0U, false);
4727   unsigned Width;
4728   int64_t MinOff, MaxOff;
4729   if (!AArch64InstrInfo::getMemOpInfo(MI.getOpcode(), ScaleValue, Width, MinOff,
4730                                       MaxOff))
4731     llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
4732 
4733   // Construct the complete offset.
4734   bool IsMulVL = ScaleValue.isScalable();
4735   unsigned Scale = ScaleValue.getKnownMinValue();
4736   int64_t Offset = IsMulVL ? SOffset.getScalable() : SOffset.getFixed();
4737 
4738   const MachineOperand &ImmOpnd =
4739       MI.getOperand(AArch64InstrInfo::getLoadStoreImmIdx(MI.getOpcode()));
4740   Offset += ImmOpnd.getImm() * Scale;
4741 
4742   // If the offset doesn't match the scale, we rewrite the instruction to
4743   // use the unscaled instruction instead. Likewise, if we have a negative
4744   // offset and there is an unscaled op to use.
4745   std::optional<unsigned> UnscaledOp =
4746       AArch64InstrInfo::getUnscaledLdSt(MI.getOpcode());
4747   bool useUnscaledOp = UnscaledOp && (Offset % Scale || Offset < 0);
4748   if (useUnscaledOp &&
4749       !AArch64InstrInfo::getMemOpInfo(*UnscaledOp, ScaleValue, Width, MinOff,
4750                                       MaxOff))
4751     llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
4752 
4753   Scale = ScaleValue.getKnownMinValue();
4754   assert(IsMulVL == ScaleValue.isScalable() &&
4755          "Unscaled opcode has different value for scalable");
4756 
4757   int64_t Remainder = Offset % Scale;
4758   assert(!(Remainder && useUnscaledOp) &&
4759          "Cannot have remainder when using unscaled op");
4760 
4761   assert(MinOff < MaxOff && "Unexpected Min/Max offsets");
4762   int64_t NewOffset = Offset / Scale;
4763   if (MinOff <= NewOffset && NewOffset <= MaxOff)
4764     Offset = Remainder;
4765   else {
4766     NewOffset = NewOffset < 0 ? MinOff : MaxOff;
4767     Offset = Offset - NewOffset * Scale;
4768   }
4769 
4770   if (EmittableOffset)
4771     *EmittableOffset = NewOffset;
4772   if (OutUseUnscaledOp)
4773     *OutUseUnscaledOp = useUnscaledOp;
4774   if (OutUnscaledOp && UnscaledOp)
4775     *OutUnscaledOp = *UnscaledOp;
4776 
4777   if (IsMulVL)
4778     SOffset = StackOffset::get(SOffset.getFixed(), Offset);
4779   else
4780     SOffset = StackOffset::get(Offset, SOffset.getScalable());
4781   return AArch64FrameOffsetCanUpdate |
4782          (SOffset ? 0 : AArch64FrameOffsetIsLegal);
4783 }
4784 
4785 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
4786                                     unsigned FrameReg, StackOffset &Offset,
4787                                     const AArch64InstrInfo *TII) {
4788   unsigned Opcode = MI.getOpcode();
4789   unsigned ImmIdx = FrameRegIdx + 1;
4790 
4791   if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
4792     Offset += StackOffset::getFixed(MI.getOperand(ImmIdx).getImm());
4793     emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
4794                     MI.getOperand(0).getReg(), FrameReg, Offset, TII,
4795                     MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
4796     MI.eraseFromParent();
4797     Offset = StackOffset();
4798     return true;
4799   }
4800 
4801   int64_t NewOffset;
4802   unsigned UnscaledOp;
4803   bool UseUnscaledOp;
4804   int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
4805                                          &UnscaledOp, &NewOffset);
4806   if (Status & AArch64FrameOffsetCanUpdate) {
4807     if (Status & AArch64FrameOffsetIsLegal)
4808       // Replace the FrameIndex with FrameReg.
4809       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
4810     if (UseUnscaledOp)
4811       MI.setDesc(TII->get(UnscaledOp));
4812 
4813     MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
4814     return !Offset;
4815   }
4816 
4817   return false;
4818 }
4819 
4820 MCInst AArch64InstrInfo::getNop() const {
4821   return MCInstBuilder(AArch64::HINT).addImm(0);
4822 }
4823 
4824 // AArch64 supports MachineCombiner.
4825 bool AArch64InstrInfo::useMachineCombiner() const { return true; }
4826 
4827 // True when Opc sets flag
4828 static bool isCombineInstrSettingFlag(unsigned Opc) {
4829   switch (Opc) {
4830   case AArch64::ADDSWrr:
4831   case AArch64::ADDSWri:
4832   case AArch64::ADDSXrr:
4833   case AArch64::ADDSXri:
4834   case AArch64::SUBSWrr:
4835   case AArch64::SUBSXrr:
4836   // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4837   case AArch64::SUBSWri:
4838   case AArch64::SUBSXri:
4839     return true;
4840   default:
4841     break;
4842   }
4843   return false;
4844 }
4845 
4846 // 32b Opcodes that can be combined with a MUL
4847 static bool isCombineInstrCandidate32(unsigned Opc) {
4848   switch (Opc) {
4849   case AArch64::ADDWrr:
4850   case AArch64::ADDWri:
4851   case AArch64::SUBWrr:
4852   case AArch64::ADDSWrr:
4853   case AArch64::ADDSWri:
4854   case AArch64::SUBSWrr:
4855   // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4856   case AArch64::SUBWri:
4857   case AArch64::SUBSWri:
4858     return true;
4859   default:
4860     break;
4861   }
4862   return false;
4863 }
4864 
4865 // 64b Opcodes that can be combined with a MUL
4866 static bool isCombineInstrCandidate64(unsigned Opc) {
4867   switch (Opc) {
4868   case AArch64::ADDXrr:
4869   case AArch64::ADDXri:
4870   case AArch64::SUBXrr:
4871   case AArch64::ADDSXrr:
4872   case AArch64::ADDSXri:
4873   case AArch64::SUBSXrr:
4874   // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
4875   case AArch64::SUBXri:
4876   case AArch64::SUBSXri:
4877   case AArch64::ADDv8i8:
4878   case AArch64::ADDv16i8:
4879   case AArch64::ADDv4i16:
4880   case AArch64::ADDv8i16:
4881   case AArch64::ADDv2i32:
4882   case AArch64::ADDv4i32:
4883   case AArch64::SUBv8i8:
4884   case AArch64::SUBv16i8:
4885   case AArch64::SUBv4i16:
4886   case AArch64::SUBv8i16:
4887   case AArch64::SUBv2i32:
4888   case AArch64::SUBv4i32:
4889     return true;
4890   default:
4891     break;
4892   }
4893   return false;
4894 }
4895 
4896 // FP Opcodes that can be combined with a FMUL.
4897 static bool isCombineInstrCandidateFP(const MachineInstr &Inst) {
4898   switch (Inst.getOpcode()) {
4899   default:
4900     break;
4901   case AArch64::FADDHrr:
4902   case AArch64::FADDSrr:
4903   case AArch64::FADDDrr:
4904   case AArch64::FADDv4f16:
4905   case AArch64::FADDv8f16:
4906   case AArch64::FADDv2f32:
4907   case AArch64::FADDv2f64:
4908   case AArch64::FADDv4f32:
4909   case AArch64::FSUBHrr:
4910   case AArch64::FSUBSrr:
4911   case AArch64::FSUBDrr:
4912   case AArch64::FSUBv4f16:
4913   case AArch64::FSUBv8f16:
4914   case AArch64::FSUBv2f32:
4915   case AArch64::FSUBv2f64:
4916   case AArch64::FSUBv4f32:
4917     TargetOptions Options = Inst.getParent()->getParent()->getTarget().Options;
4918     // We can fuse FADD/FSUB with FMUL, if fusion is either allowed globally by
4919     // the target options or if FADD/FSUB has the contract fast-math flag.
4920     return Options.UnsafeFPMath ||
4921            Options.AllowFPOpFusion == FPOpFusion::Fast ||
4922            Inst.getFlag(MachineInstr::FmContract);
4923     return true;
4924   }
4925   return false;
4926 }
4927 
4928 // Opcodes that can be combined with a MUL
4929 static bool isCombineInstrCandidate(unsigned Opc) {
4930   return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
4931 }
4932 
4933 //
4934 // Utility routine that checks if \param MO is defined by an
4935 // \param CombineOpc instruction in the basic block \param MBB
4936 static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO,
4937                        unsigned CombineOpc, unsigned ZeroReg = 0,
4938                        bool CheckZeroReg = false) {
4939   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
4940   MachineInstr *MI = nullptr;
4941 
4942   if (MO.isReg() && MO.getReg().isVirtual())
4943     MI = MRI.getUniqueVRegDef(MO.getReg());
4944   // And it needs to be in the trace (otherwise, it won't have a depth).
4945   if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != CombineOpc)
4946     return false;
4947   // Must only used by the user we combine with.
4948   if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
4949     return false;
4950 
4951   if (CheckZeroReg) {
4952     assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
4953            MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
4954            MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
4955     // The third input reg must be zero.
4956     if (MI->getOperand(3).getReg() != ZeroReg)
4957       return false;
4958   }
4959 
4960   if (isCombineInstrSettingFlag(CombineOpc) &&
4961       MI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
4962     return false;
4963 
4964   return true;
4965 }
4966 
4967 //
4968 // Is \param MO defined by an integer multiply and can be combined?
4969 static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
4970                               unsigned MulOpc, unsigned ZeroReg) {
4971   return canCombine(MBB, MO, MulOpc, ZeroReg, true);
4972 }
4973 
4974 //
4975 // Is \param MO defined by a floating-point multiply and can be combined?
4976 static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO,
4977                                unsigned MulOpc) {
4978   return canCombine(MBB, MO, MulOpc);
4979 }
4980 
4981 // TODO: There are many more machine instruction opcodes to match:
4982 //       1. Other data types (integer, vectors)
4983 //       2. Other math / logic operations (xor, or)
4984 //       3. Other forms of the same operation (intrinsics and other variants)
4985 bool AArch64InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
4986                                                    bool Invert) const {
4987   if (Invert)
4988     return false;
4989   switch (Inst.getOpcode()) {
4990   // == Floating-point types ==
4991   // -- Floating-point instructions --
4992   case AArch64::FADDHrr:
4993   case AArch64::FADDSrr:
4994   case AArch64::FADDDrr:
4995   case AArch64::FMULHrr:
4996   case AArch64::FMULSrr:
4997   case AArch64::FMULDrr:
4998   case AArch64::FMULX16:
4999   case AArch64::FMULX32:
5000   case AArch64::FMULX64:
5001   // -- Advanced SIMD instructions --
5002   case AArch64::FADDv4f16:
5003   case AArch64::FADDv8f16:
5004   case AArch64::FADDv2f32:
5005   case AArch64::FADDv4f32:
5006   case AArch64::FADDv2f64:
5007   case AArch64::FMULv4f16:
5008   case AArch64::FMULv8f16:
5009   case AArch64::FMULv2f32:
5010   case AArch64::FMULv4f32:
5011   case AArch64::FMULv2f64:
5012   case AArch64::FMULXv4f16:
5013   case AArch64::FMULXv8f16:
5014   case AArch64::FMULXv2f32:
5015   case AArch64::FMULXv4f32:
5016   case AArch64::FMULXv2f64:
5017   // -- SVE instructions --
5018   // Opcodes FMULX_ZZZ_? don't exist because there is no unpredicated FMULX
5019   // in the SVE instruction set (though there are predicated ones).
5020   case AArch64::FADD_ZZZ_H:
5021   case AArch64::FADD_ZZZ_S:
5022   case AArch64::FADD_ZZZ_D:
5023   case AArch64::FMUL_ZZZ_H:
5024   case AArch64::FMUL_ZZZ_S:
5025   case AArch64::FMUL_ZZZ_D:
5026     return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath ||
5027            (Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
5028             Inst.getFlag(MachineInstr::MIFlag::FmNsz));
5029 
5030   // == Integer types ==
5031   // -- Base instructions --
5032   // Opcodes MULWrr and MULXrr don't exist because
5033   // `MUL <Wd>, <Wn>, <Wm>` and `MUL <Xd>, <Xn>, <Xm>` are aliases of
5034   // `MADD <Wd>, <Wn>, <Wm>, WZR` and `MADD <Xd>, <Xn>, <Xm>, XZR` respectively.
5035   // The machine-combiner does not support three-source-operands machine
5036   // instruction. So we cannot reassociate MULs.
5037   case AArch64::ADDWrr:
5038   case AArch64::ADDXrr:
5039   case AArch64::ANDWrr:
5040   case AArch64::ANDXrr:
5041   case AArch64::ORRWrr:
5042   case AArch64::ORRXrr:
5043   case AArch64::EORWrr:
5044   case AArch64::EORXrr:
5045   case AArch64::EONWrr:
5046   case AArch64::EONXrr:
5047   // -- Advanced SIMD instructions --
5048   // Opcodes MULv1i64 and MULv2i64 don't exist because there is no 64-bit MUL
5049   // in the Advanced SIMD instruction set.
5050   case AArch64::ADDv8i8:
5051   case AArch64::ADDv16i8:
5052   case AArch64::ADDv4i16:
5053   case AArch64::ADDv8i16:
5054   case AArch64::ADDv2i32:
5055   case AArch64::ADDv4i32:
5056   case AArch64::ADDv1i64:
5057   case AArch64::ADDv2i64:
5058   case AArch64::MULv8i8:
5059   case AArch64::MULv16i8:
5060   case AArch64::MULv4i16:
5061   case AArch64::MULv8i16:
5062   case AArch64::MULv2i32:
5063   case AArch64::MULv4i32:
5064   case AArch64::ANDv8i8:
5065   case AArch64::ANDv16i8:
5066   case AArch64::ORRv8i8:
5067   case AArch64::ORRv16i8:
5068   case AArch64::EORv8i8:
5069   case AArch64::EORv16i8:
5070   // -- SVE instructions --
5071   case AArch64::ADD_ZZZ_B:
5072   case AArch64::ADD_ZZZ_H:
5073   case AArch64::ADD_ZZZ_S:
5074   case AArch64::ADD_ZZZ_D:
5075   case AArch64::MUL_ZZZ_B:
5076   case AArch64::MUL_ZZZ_H:
5077   case AArch64::MUL_ZZZ_S:
5078   case AArch64::MUL_ZZZ_D:
5079   case AArch64::AND_ZZZ:
5080   case AArch64::ORR_ZZZ:
5081   case AArch64::EOR_ZZZ:
5082     return true;
5083 
5084   default:
5085     return false;
5086   }
5087 }
5088 
5089 /// Find instructions that can be turned into madd.
5090 static bool getMaddPatterns(MachineInstr &Root,
5091                             SmallVectorImpl<MachineCombinerPattern> &Patterns) {
5092   unsigned Opc = Root.getOpcode();
5093   MachineBasicBlock &MBB = *Root.getParent();
5094   bool Found = false;
5095 
5096   if (!isCombineInstrCandidate(Opc))
5097     return false;
5098   if (isCombineInstrSettingFlag(Opc)) {
5099     int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
5100     // When NZCV is live bail out.
5101     if (Cmp_NZCV == -1)
5102       return false;
5103     unsigned NewOpc = convertToNonFlagSettingOpc(Root);
5104     // When opcode can't change bail out.
5105     // CHECKME: do we miss any cases for opcode conversion?
5106     if (NewOpc == Opc)
5107       return false;
5108     Opc = NewOpc;
5109   }
5110 
5111   auto setFound = [&](int Opcode, int Operand, unsigned ZeroReg,
5112                       MachineCombinerPattern Pattern) {
5113     if (canCombineWithMUL(MBB, Root.getOperand(Operand), Opcode, ZeroReg)) {
5114       Patterns.push_back(Pattern);
5115       Found = true;
5116     }
5117   };
5118 
5119   auto setVFound = [&](int Opcode, int Operand, MachineCombinerPattern Pattern) {
5120     if (canCombine(MBB, Root.getOperand(Operand), Opcode)) {
5121       Patterns.push_back(Pattern);
5122       Found = true;
5123     }
5124   };
5125 
5126   typedef MachineCombinerPattern MCP;
5127 
5128   switch (Opc) {
5129   default:
5130     break;
5131   case AArch64::ADDWrr:
5132     assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
5133            "ADDWrr does not have register operands");
5134     setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDW_OP1);
5135     setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULADDW_OP2);
5136     break;
5137   case AArch64::ADDXrr:
5138     setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDX_OP1);
5139     setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULADDX_OP2);
5140     break;
5141   case AArch64::SUBWrr:
5142     setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBW_OP1);
5143     setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULSUBW_OP2);
5144     break;
5145   case AArch64::SUBXrr:
5146     setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBX_OP1);
5147     setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULSUBX_OP2);
5148     break;
5149   case AArch64::ADDWri:
5150     setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDWI_OP1);
5151     break;
5152   case AArch64::ADDXri:
5153     setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDXI_OP1);
5154     break;
5155   case AArch64::SUBWri:
5156     setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBWI_OP1);
5157     break;
5158   case AArch64::SUBXri:
5159     setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBXI_OP1);
5160     break;
5161   case AArch64::ADDv8i8:
5162     setVFound(AArch64::MULv8i8, 1, MCP::MULADDv8i8_OP1);
5163     setVFound(AArch64::MULv8i8, 2, MCP::MULADDv8i8_OP2);
5164     break;
5165   case AArch64::ADDv16i8:
5166     setVFound(AArch64::MULv16i8, 1, MCP::MULADDv16i8_OP1);
5167     setVFound(AArch64::MULv16i8, 2, MCP::MULADDv16i8_OP2);
5168     break;
5169   case AArch64::ADDv4i16:
5170     setVFound(AArch64::MULv4i16, 1, MCP::MULADDv4i16_OP1);
5171     setVFound(AArch64::MULv4i16, 2, MCP::MULADDv4i16_OP2);
5172     setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULADDv4i16_indexed_OP1);
5173     setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULADDv4i16_indexed_OP2);
5174     break;
5175   case AArch64::ADDv8i16:
5176     setVFound(AArch64::MULv8i16, 1, MCP::MULADDv8i16_OP1);
5177     setVFound(AArch64::MULv8i16, 2, MCP::MULADDv8i16_OP2);
5178     setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULADDv8i16_indexed_OP1);
5179     setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULADDv8i16_indexed_OP2);
5180     break;
5181   case AArch64::ADDv2i32:
5182     setVFound(AArch64::MULv2i32, 1, MCP::MULADDv2i32_OP1);
5183     setVFound(AArch64::MULv2i32, 2, MCP::MULADDv2i32_OP2);
5184     setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULADDv2i32_indexed_OP1);
5185     setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULADDv2i32_indexed_OP2);
5186     break;
5187   case AArch64::ADDv4i32:
5188     setVFound(AArch64::MULv4i32, 1, MCP::MULADDv4i32_OP1);
5189     setVFound(AArch64::MULv4i32, 2, MCP::MULADDv4i32_OP2);
5190     setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULADDv4i32_indexed_OP1);
5191     setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULADDv4i32_indexed_OP2);
5192     break;
5193   case AArch64::SUBv8i8:
5194     setVFound(AArch64::MULv8i8, 1, MCP::MULSUBv8i8_OP1);
5195     setVFound(AArch64::MULv8i8, 2, MCP::MULSUBv8i8_OP2);
5196     break;
5197   case AArch64::SUBv16i8:
5198     setVFound(AArch64::MULv16i8, 1, MCP::MULSUBv16i8_OP1);
5199     setVFound(AArch64::MULv16i8, 2, MCP::MULSUBv16i8_OP2);
5200     break;
5201   case AArch64::SUBv4i16:
5202     setVFound(AArch64::MULv4i16, 1, MCP::MULSUBv4i16_OP1);
5203     setVFound(AArch64::MULv4i16, 2, MCP::MULSUBv4i16_OP2);
5204     setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULSUBv4i16_indexed_OP1);
5205     setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULSUBv4i16_indexed_OP2);
5206     break;
5207   case AArch64::SUBv8i16:
5208     setVFound(AArch64::MULv8i16, 1, MCP::MULSUBv8i16_OP1);
5209     setVFound(AArch64::MULv8i16, 2, MCP::MULSUBv8i16_OP2);
5210     setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULSUBv8i16_indexed_OP1);
5211     setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULSUBv8i16_indexed_OP2);
5212     break;
5213   case AArch64::SUBv2i32:
5214     setVFound(AArch64::MULv2i32, 1, MCP::MULSUBv2i32_OP1);
5215     setVFound(AArch64::MULv2i32, 2, MCP::MULSUBv2i32_OP2);
5216     setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULSUBv2i32_indexed_OP1);
5217     setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULSUBv2i32_indexed_OP2);
5218     break;
5219   case AArch64::SUBv4i32:
5220     setVFound(AArch64::MULv4i32, 1, MCP::MULSUBv4i32_OP1);
5221     setVFound(AArch64::MULv4i32, 2, MCP::MULSUBv4i32_OP2);
5222     setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULSUBv4i32_indexed_OP1);
5223     setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULSUBv4i32_indexed_OP2);
5224     break;
5225   }
5226   return Found;
5227 }
5228 /// Floating-Point Support
5229 
5230 /// Find instructions that can be turned into madd.
5231 static bool getFMAPatterns(MachineInstr &Root,
5232                            SmallVectorImpl<MachineCombinerPattern> &Patterns) {
5233 
5234   if (!isCombineInstrCandidateFP(Root))
5235     return false;
5236 
5237   MachineBasicBlock &MBB = *Root.getParent();
5238   bool Found = false;
5239 
5240   auto Match = [&](int Opcode, int Operand,
5241                    MachineCombinerPattern Pattern) -> bool {
5242     if (canCombineWithFMUL(MBB, Root.getOperand(Operand), Opcode)) {
5243       Patterns.push_back(Pattern);
5244       return true;
5245     }
5246     return false;
5247   };
5248 
5249   typedef MachineCombinerPattern MCP;
5250 
5251   switch (Root.getOpcode()) {
5252   default:
5253     assert(false && "Unsupported FP instruction in combiner\n");
5254     break;
5255   case AArch64::FADDHrr:
5256     assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
5257            "FADDHrr does not have register operands");
5258 
5259     Found  = Match(AArch64::FMULHrr, 1, MCP::FMULADDH_OP1);
5260     Found |= Match(AArch64::FMULHrr, 2, MCP::FMULADDH_OP2);
5261     break;
5262   case AArch64::FADDSrr:
5263     assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
5264            "FADDSrr does not have register operands");
5265 
5266     Found |= Match(AArch64::FMULSrr, 1, MCP::FMULADDS_OP1) ||
5267              Match(AArch64::FMULv1i32_indexed, 1, MCP::FMLAv1i32_indexed_OP1);
5268 
5269     Found |= Match(AArch64::FMULSrr, 2, MCP::FMULADDS_OP2) ||
5270              Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLAv1i32_indexed_OP2);
5271     break;
5272   case AArch64::FADDDrr:
5273     Found |= Match(AArch64::FMULDrr, 1, MCP::FMULADDD_OP1) ||
5274              Match(AArch64::FMULv1i64_indexed, 1, MCP::FMLAv1i64_indexed_OP1);
5275 
5276     Found |= Match(AArch64::FMULDrr, 2, MCP::FMULADDD_OP2) ||
5277              Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLAv1i64_indexed_OP2);
5278     break;
5279   case AArch64::FADDv4f16:
5280     Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLAv4i16_indexed_OP1) ||
5281              Match(AArch64::FMULv4f16, 1, MCP::FMLAv4f16_OP1);
5282 
5283     Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLAv4i16_indexed_OP2) ||
5284              Match(AArch64::FMULv4f16, 2, MCP::FMLAv4f16_OP2);
5285     break;
5286   case AArch64::FADDv8f16:
5287     Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLAv8i16_indexed_OP1) ||
5288              Match(AArch64::FMULv8f16, 1, MCP::FMLAv8f16_OP1);
5289 
5290     Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLAv8i16_indexed_OP2) ||
5291              Match(AArch64::FMULv8f16, 2, MCP::FMLAv8f16_OP2);
5292     break;
5293   case AArch64::FADDv2f32:
5294     Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLAv2i32_indexed_OP1) ||
5295              Match(AArch64::FMULv2f32, 1, MCP::FMLAv2f32_OP1);
5296 
5297     Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLAv2i32_indexed_OP2) ||
5298              Match(AArch64::FMULv2f32, 2, MCP::FMLAv2f32_OP2);
5299     break;
5300   case AArch64::FADDv2f64:
5301     Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLAv2i64_indexed_OP1) ||
5302              Match(AArch64::FMULv2f64, 1, MCP::FMLAv2f64_OP1);
5303 
5304     Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLAv2i64_indexed_OP2) ||
5305              Match(AArch64::FMULv2f64, 2, MCP::FMLAv2f64_OP2);
5306     break;
5307   case AArch64::FADDv4f32:
5308     Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLAv4i32_indexed_OP1) ||
5309              Match(AArch64::FMULv4f32, 1, MCP::FMLAv4f32_OP1);
5310 
5311     Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLAv4i32_indexed_OP2) ||
5312              Match(AArch64::FMULv4f32, 2, MCP::FMLAv4f32_OP2);
5313     break;
5314   case AArch64::FSUBHrr:
5315     Found  = Match(AArch64::FMULHrr, 1, MCP::FMULSUBH_OP1);
5316     Found |= Match(AArch64::FMULHrr, 2, MCP::FMULSUBH_OP2);
5317     Found |= Match(AArch64::FNMULHrr, 1, MCP::FNMULSUBH_OP1);
5318     break;
5319   case AArch64::FSUBSrr:
5320     Found = Match(AArch64::FMULSrr, 1, MCP::FMULSUBS_OP1);
5321 
5322     Found |= Match(AArch64::FMULSrr, 2, MCP::FMULSUBS_OP2) ||
5323              Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLSv1i32_indexed_OP2);
5324 
5325     Found |= Match(AArch64::FNMULSrr, 1, MCP::FNMULSUBS_OP1);
5326     break;
5327   case AArch64::FSUBDrr:
5328     Found = Match(AArch64::FMULDrr, 1, MCP::FMULSUBD_OP1);
5329 
5330     Found |= Match(AArch64::FMULDrr, 2, MCP::FMULSUBD_OP2) ||
5331              Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLSv1i64_indexed_OP2);
5332 
5333     Found |= Match(AArch64::FNMULDrr, 1, MCP::FNMULSUBD_OP1);
5334     break;
5335   case AArch64::FSUBv4f16:
5336     Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLSv4i16_indexed_OP2) ||
5337              Match(AArch64::FMULv4f16, 2, MCP::FMLSv4f16_OP2);
5338 
5339     Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLSv4i16_indexed_OP1) ||
5340              Match(AArch64::FMULv4f16, 1, MCP::FMLSv4f16_OP1);
5341     break;
5342   case AArch64::FSUBv8f16:
5343     Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLSv8i16_indexed_OP2) ||
5344              Match(AArch64::FMULv8f16, 2, MCP::FMLSv8f16_OP2);
5345 
5346     Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLSv8i16_indexed_OP1) ||
5347              Match(AArch64::FMULv8f16, 1, MCP::FMLSv8f16_OP1);
5348     break;
5349   case AArch64::FSUBv2f32:
5350     Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLSv2i32_indexed_OP2) ||
5351              Match(AArch64::FMULv2f32, 2, MCP::FMLSv2f32_OP2);
5352 
5353     Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLSv2i32_indexed_OP1) ||
5354              Match(AArch64::FMULv2f32, 1, MCP::FMLSv2f32_OP1);
5355     break;
5356   case AArch64::FSUBv2f64:
5357     Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLSv2i64_indexed_OP2) ||
5358              Match(AArch64::FMULv2f64, 2, MCP::FMLSv2f64_OP2);
5359 
5360     Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLSv2i64_indexed_OP1) ||
5361              Match(AArch64::FMULv2f64, 1, MCP::FMLSv2f64_OP1);
5362     break;
5363   case AArch64::FSUBv4f32:
5364     Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLSv4i32_indexed_OP2) ||
5365              Match(AArch64::FMULv4f32, 2, MCP::FMLSv4f32_OP2);
5366 
5367     Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLSv4i32_indexed_OP1) ||
5368              Match(AArch64::FMULv4f32, 1, MCP::FMLSv4f32_OP1);
5369     break;
5370   }
5371   return Found;
5372 }
5373 
5374 static bool getFMULPatterns(MachineInstr &Root,
5375                             SmallVectorImpl<MachineCombinerPattern> &Patterns) {
5376   MachineBasicBlock &MBB = *Root.getParent();
5377   bool Found = false;
5378 
5379   auto Match = [&](unsigned Opcode, int Operand,
5380                    MachineCombinerPattern Pattern) -> bool {
5381     MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
5382     MachineOperand &MO = Root.getOperand(Operand);
5383     MachineInstr *MI = nullptr;
5384     if (MO.isReg() && MO.getReg().isVirtual())
5385       MI = MRI.getUniqueVRegDef(MO.getReg());
5386     // Ignore No-op COPYs in FMUL(COPY(DUP(..)))
5387     if (MI && MI->getOpcode() == TargetOpcode::COPY &&
5388         MI->getOperand(1).getReg().isVirtual())
5389       MI = MRI.getUniqueVRegDef(MI->getOperand(1).getReg());
5390     if (MI && MI->getOpcode() == Opcode) {
5391       Patterns.push_back(Pattern);
5392       return true;
5393     }
5394     return false;
5395   };
5396 
5397   typedef MachineCombinerPattern MCP;
5398 
5399   switch (Root.getOpcode()) {
5400   default:
5401     return false;
5402   case AArch64::FMULv2f32:
5403     Found = Match(AArch64::DUPv2i32lane, 1, MCP::FMULv2i32_indexed_OP1);
5404     Found |= Match(AArch64::DUPv2i32lane, 2, MCP::FMULv2i32_indexed_OP2);
5405     break;
5406   case AArch64::FMULv2f64:
5407     Found = Match(AArch64::DUPv2i64lane, 1, MCP::FMULv2i64_indexed_OP1);
5408     Found |= Match(AArch64::DUPv2i64lane, 2, MCP::FMULv2i64_indexed_OP2);
5409     break;
5410   case AArch64::FMULv4f16:
5411     Found = Match(AArch64::DUPv4i16lane, 1, MCP::FMULv4i16_indexed_OP1);
5412     Found |= Match(AArch64::DUPv4i16lane, 2, MCP::FMULv4i16_indexed_OP2);
5413     break;
5414   case AArch64::FMULv4f32:
5415     Found = Match(AArch64::DUPv4i32lane, 1, MCP::FMULv4i32_indexed_OP1);
5416     Found |= Match(AArch64::DUPv4i32lane, 2, MCP::FMULv4i32_indexed_OP2);
5417     break;
5418   case AArch64::FMULv8f16:
5419     Found = Match(AArch64::DUPv8i16lane, 1, MCP::FMULv8i16_indexed_OP1);
5420     Found |= Match(AArch64::DUPv8i16lane, 2, MCP::FMULv8i16_indexed_OP2);
5421     break;
5422   }
5423 
5424   return Found;
5425 }
5426 
5427 static bool getFNEGPatterns(MachineInstr &Root,
5428                             SmallVectorImpl<MachineCombinerPattern> &Patterns) {
5429   unsigned Opc = Root.getOpcode();
5430   MachineBasicBlock &MBB = *Root.getParent();
5431   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
5432 
5433   auto Match = [&](unsigned Opcode, MachineCombinerPattern Pattern) -> bool {
5434     MachineOperand &MO = Root.getOperand(1);
5435     MachineInstr *MI = MRI.getUniqueVRegDef(MO.getReg());
5436     if (MI != nullptr && (MI->getOpcode() == Opcode) &&
5437         MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()) &&
5438         Root.getFlag(MachineInstr::MIFlag::FmContract) &&
5439         Root.getFlag(MachineInstr::MIFlag::FmNsz) &&
5440         MI->getFlag(MachineInstr::MIFlag::FmContract) &&
5441         MI->getFlag(MachineInstr::MIFlag::FmNsz)) {
5442       Patterns.push_back(Pattern);
5443       return true;
5444     }
5445     return false;
5446   };
5447 
5448   switch (Opc) {
5449   default:
5450     break;
5451   case AArch64::FNEGDr:
5452     return Match(AArch64::FMADDDrrr, MachineCombinerPattern::FNMADD);
5453   case AArch64::FNEGSr:
5454     return Match(AArch64::FMADDSrrr, MachineCombinerPattern::FNMADD);
5455   }
5456 
5457   return false;
5458 }
5459 
5460 /// Return true when a code sequence can improve throughput. It
5461 /// should be called only for instructions in loops.
5462 /// \param Pattern - combiner pattern
5463 bool AArch64InstrInfo::isThroughputPattern(
5464     MachineCombinerPattern Pattern) const {
5465   switch (Pattern) {
5466   default:
5467     break;
5468   case MachineCombinerPattern::FMULADDH_OP1:
5469   case MachineCombinerPattern::FMULADDH_OP2:
5470   case MachineCombinerPattern::FMULSUBH_OP1:
5471   case MachineCombinerPattern::FMULSUBH_OP2:
5472   case MachineCombinerPattern::FMULADDS_OP1:
5473   case MachineCombinerPattern::FMULADDS_OP2:
5474   case MachineCombinerPattern::FMULSUBS_OP1:
5475   case MachineCombinerPattern::FMULSUBS_OP2:
5476   case MachineCombinerPattern::FMULADDD_OP1:
5477   case MachineCombinerPattern::FMULADDD_OP2:
5478   case MachineCombinerPattern::FMULSUBD_OP1:
5479   case MachineCombinerPattern::FMULSUBD_OP2:
5480   case MachineCombinerPattern::FNMULSUBH_OP1:
5481   case MachineCombinerPattern::FNMULSUBS_OP1:
5482   case MachineCombinerPattern::FNMULSUBD_OP1:
5483   case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
5484   case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
5485   case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
5486   case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
5487   case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
5488   case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
5489   case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
5490   case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
5491   case MachineCombinerPattern::FMLAv4f16_OP2:
5492   case MachineCombinerPattern::FMLAv4f16_OP1:
5493   case MachineCombinerPattern::FMLAv8f16_OP1:
5494   case MachineCombinerPattern::FMLAv8f16_OP2:
5495   case MachineCombinerPattern::FMLAv2f32_OP2:
5496   case MachineCombinerPattern::FMLAv2f32_OP1:
5497   case MachineCombinerPattern::FMLAv2f64_OP1:
5498   case MachineCombinerPattern::FMLAv2f64_OP2:
5499   case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
5500   case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
5501   case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
5502   case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
5503   case MachineCombinerPattern::FMLAv4f32_OP1:
5504   case MachineCombinerPattern::FMLAv4f32_OP2:
5505   case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
5506   case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
5507   case MachineCombinerPattern::FMLSv4i16_indexed_OP1:
5508   case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
5509   case MachineCombinerPattern::FMLSv8i16_indexed_OP1:
5510   case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
5511   case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
5512   case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
5513   case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
5514   case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
5515   case MachineCombinerPattern::FMLSv4f16_OP1:
5516   case MachineCombinerPattern::FMLSv4f16_OP2:
5517   case MachineCombinerPattern::FMLSv8f16_OP1:
5518   case MachineCombinerPattern::FMLSv8f16_OP2:
5519   case MachineCombinerPattern::FMLSv2f32_OP2:
5520   case MachineCombinerPattern::FMLSv2f64_OP2:
5521   case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
5522   case MachineCombinerPattern::FMLSv4f32_OP2:
5523   case MachineCombinerPattern::FMULv2i32_indexed_OP1:
5524   case MachineCombinerPattern::FMULv2i32_indexed_OP2:
5525   case MachineCombinerPattern::FMULv2i64_indexed_OP1:
5526   case MachineCombinerPattern::FMULv2i64_indexed_OP2:
5527   case MachineCombinerPattern::FMULv4i16_indexed_OP1:
5528   case MachineCombinerPattern::FMULv4i16_indexed_OP2:
5529   case MachineCombinerPattern::FMULv4i32_indexed_OP1:
5530   case MachineCombinerPattern::FMULv4i32_indexed_OP2:
5531   case MachineCombinerPattern::FMULv8i16_indexed_OP1:
5532   case MachineCombinerPattern::FMULv8i16_indexed_OP2:
5533   case MachineCombinerPattern::MULADDv8i8_OP1:
5534   case MachineCombinerPattern::MULADDv8i8_OP2:
5535   case MachineCombinerPattern::MULADDv16i8_OP1:
5536   case MachineCombinerPattern::MULADDv16i8_OP2:
5537   case MachineCombinerPattern::MULADDv4i16_OP1:
5538   case MachineCombinerPattern::MULADDv4i16_OP2:
5539   case MachineCombinerPattern::MULADDv8i16_OP1:
5540   case MachineCombinerPattern::MULADDv8i16_OP2:
5541   case MachineCombinerPattern::MULADDv2i32_OP1:
5542   case MachineCombinerPattern::MULADDv2i32_OP2:
5543   case MachineCombinerPattern::MULADDv4i32_OP1:
5544   case MachineCombinerPattern::MULADDv4i32_OP2:
5545   case MachineCombinerPattern::MULSUBv8i8_OP1:
5546   case MachineCombinerPattern::MULSUBv8i8_OP2:
5547   case MachineCombinerPattern::MULSUBv16i8_OP1:
5548   case MachineCombinerPattern::MULSUBv16i8_OP2:
5549   case MachineCombinerPattern::MULSUBv4i16_OP1:
5550   case MachineCombinerPattern::MULSUBv4i16_OP2:
5551   case MachineCombinerPattern::MULSUBv8i16_OP1:
5552   case MachineCombinerPattern::MULSUBv8i16_OP2:
5553   case MachineCombinerPattern::MULSUBv2i32_OP1:
5554   case MachineCombinerPattern::MULSUBv2i32_OP2:
5555   case MachineCombinerPattern::MULSUBv4i32_OP1:
5556   case MachineCombinerPattern::MULSUBv4i32_OP2:
5557   case MachineCombinerPattern::MULADDv4i16_indexed_OP1:
5558   case MachineCombinerPattern::MULADDv4i16_indexed_OP2:
5559   case MachineCombinerPattern::MULADDv8i16_indexed_OP1:
5560   case MachineCombinerPattern::MULADDv8i16_indexed_OP2:
5561   case MachineCombinerPattern::MULADDv2i32_indexed_OP1:
5562   case MachineCombinerPattern::MULADDv2i32_indexed_OP2:
5563   case MachineCombinerPattern::MULADDv4i32_indexed_OP1:
5564   case MachineCombinerPattern::MULADDv4i32_indexed_OP2:
5565   case MachineCombinerPattern::MULSUBv4i16_indexed_OP1:
5566   case MachineCombinerPattern::MULSUBv4i16_indexed_OP2:
5567   case MachineCombinerPattern::MULSUBv8i16_indexed_OP1:
5568   case MachineCombinerPattern::MULSUBv8i16_indexed_OP2:
5569   case MachineCombinerPattern::MULSUBv2i32_indexed_OP1:
5570   case MachineCombinerPattern::MULSUBv2i32_indexed_OP2:
5571   case MachineCombinerPattern::MULSUBv4i32_indexed_OP1:
5572   case MachineCombinerPattern::MULSUBv4i32_indexed_OP2:
5573     return true;
5574   } // end switch (Pattern)
5575   return false;
5576 }
5577 
5578 /// Find other MI combine patterns.
5579 static bool getMiscPatterns(MachineInstr &Root,
5580                             SmallVectorImpl<MachineCombinerPattern> &Patterns)
5581 {
5582   // A - (B + C)  ==>   (A - B) - C  or  (A - C) - B
5583   unsigned Opc = Root.getOpcode();
5584   MachineBasicBlock &MBB = *Root.getParent();
5585 
5586   switch (Opc) {
5587   case AArch64::SUBWrr:
5588   case AArch64::SUBSWrr:
5589   case AArch64::SUBXrr:
5590   case AArch64::SUBSXrr:
5591     // Found candidate root.
5592     break;
5593   default:
5594     return false;
5595   }
5596 
5597   if (isCombineInstrSettingFlag(Opc) &&
5598       Root.findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
5599     return false;
5600 
5601   if (canCombine(MBB, Root.getOperand(2), AArch64::ADDWrr) ||
5602       canCombine(MBB, Root.getOperand(2), AArch64::ADDSWrr) ||
5603       canCombine(MBB, Root.getOperand(2), AArch64::ADDXrr) ||
5604       canCombine(MBB, Root.getOperand(2), AArch64::ADDSXrr)) {
5605     Patterns.push_back(MachineCombinerPattern::SUBADD_OP1);
5606     Patterns.push_back(MachineCombinerPattern::SUBADD_OP2);
5607     return true;
5608   }
5609 
5610   return false;
5611 }
5612 
5613 /// Return true when there is potentially a faster code sequence for an
5614 /// instruction chain ending in \p Root. All potential patterns are listed in
5615 /// the \p Pattern vector. Pattern should be sorted in priority order since the
5616 /// pattern evaluator stops checking as soon as it finds a faster sequence.
5617 
5618 bool AArch64InstrInfo::getMachineCombinerPatterns(
5619     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
5620     bool DoRegPressureReduce) const {
5621   // Integer patterns
5622   if (getMaddPatterns(Root, Patterns))
5623     return true;
5624   // Floating point patterns
5625   if (getFMULPatterns(Root, Patterns))
5626     return true;
5627   if (getFMAPatterns(Root, Patterns))
5628     return true;
5629   if (getFNEGPatterns(Root, Patterns))
5630     return true;
5631 
5632   // Other patterns
5633   if (getMiscPatterns(Root, Patterns))
5634     return true;
5635 
5636   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
5637                                                      DoRegPressureReduce);
5638 }
5639 
5640 enum class FMAInstKind { Default, Indexed, Accumulator };
5641 /// genFusedMultiply - Generate fused multiply instructions.
5642 /// This function supports both integer and floating point instructions.
5643 /// A typical example:
5644 ///  F|MUL I=A,B,0
5645 ///  F|ADD R,I,C
5646 ///  ==> F|MADD R,A,B,C
5647 /// \param MF Containing MachineFunction
5648 /// \param MRI Register information
5649 /// \param TII Target information
5650 /// \param Root is the F|ADD instruction
5651 /// \param [out] InsInstrs is a vector of machine instructions and will
5652 /// contain the generated madd instruction
5653 /// \param IdxMulOpd is index of operand in Root that is the result of
5654 /// the F|MUL. In the example above IdxMulOpd is 1.
5655 /// \param MaddOpc the opcode fo the f|madd instruction
5656 /// \param RC Register class of operands
5657 /// \param kind of fma instruction (addressing mode) to be generated
5658 /// \param ReplacedAddend is the result register from the instruction
5659 /// replacing the non-combined operand, if any.
5660 static MachineInstr *
5661 genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI,
5662                  const TargetInstrInfo *TII, MachineInstr &Root,
5663                  SmallVectorImpl<MachineInstr *> &InsInstrs, unsigned IdxMulOpd,
5664                  unsigned MaddOpc, const TargetRegisterClass *RC,
5665                  FMAInstKind kind = FMAInstKind::Default,
5666                  const Register *ReplacedAddend = nullptr) {
5667   assert(IdxMulOpd == 1 || IdxMulOpd == 2);
5668 
5669   unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
5670   MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
5671   Register ResultReg = Root.getOperand(0).getReg();
5672   Register SrcReg0 = MUL->getOperand(1).getReg();
5673   bool Src0IsKill = MUL->getOperand(1).isKill();
5674   Register SrcReg1 = MUL->getOperand(2).getReg();
5675   bool Src1IsKill = MUL->getOperand(2).isKill();
5676 
5677   Register SrcReg2;
5678   bool Src2IsKill;
5679   if (ReplacedAddend) {
5680     // If we just generated a new addend, we must be it's only use.
5681     SrcReg2 = *ReplacedAddend;
5682     Src2IsKill = true;
5683   } else {
5684     SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
5685     Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
5686   }
5687 
5688   if (ResultReg.isVirtual())
5689     MRI.constrainRegClass(ResultReg, RC);
5690   if (SrcReg0.isVirtual())
5691     MRI.constrainRegClass(SrcReg0, RC);
5692   if (SrcReg1.isVirtual())
5693     MRI.constrainRegClass(SrcReg1, RC);
5694   if (SrcReg2.isVirtual())
5695     MRI.constrainRegClass(SrcReg2, RC);
5696 
5697   MachineInstrBuilder MIB;
5698   if (kind == FMAInstKind::Default)
5699     MIB = BuildMI(MF, MIMetadata(Root), TII->get(MaddOpc), ResultReg)
5700               .addReg(SrcReg0, getKillRegState(Src0IsKill))
5701               .addReg(SrcReg1, getKillRegState(Src1IsKill))
5702               .addReg(SrcReg2, getKillRegState(Src2IsKill));
5703   else if (kind == FMAInstKind::Indexed)
5704     MIB = BuildMI(MF, MIMetadata(Root), TII->get(MaddOpc), ResultReg)
5705               .addReg(SrcReg2, getKillRegState(Src2IsKill))
5706               .addReg(SrcReg0, getKillRegState(Src0IsKill))
5707               .addReg(SrcReg1, getKillRegState(Src1IsKill))
5708               .addImm(MUL->getOperand(3).getImm());
5709   else if (kind == FMAInstKind::Accumulator)
5710     MIB = BuildMI(MF, MIMetadata(Root), TII->get(MaddOpc), ResultReg)
5711               .addReg(SrcReg2, getKillRegState(Src2IsKill))
5712               .addReg(SrcReg0, getKillRegState(Src0IsKill))
5713               .addReg(SrcReg1, getKillRegState(Src1IsKill));
5714   else
5715     assert(false && "Invalid FMA instruction kind \n");
5716   // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL)
5717   InsInstrs.push_back(MIB);
5718   return MUL;
5719 }
5720 
5721 static MachineInstr *
5722 genFNegatedMAD(MachineFunction &MF, MachineRegisterInfo &MRI,
5723                const TargetInstrInfo *TII, MachineInstr &Root,
5724                SmallVectorImpl<MachineInstr *> &InsInstrs) {
5725   MachineInstr *MAD = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
5726 
5727   unsigned Opc = 0;
5728   const TargetRegisterClass *RC = MRI.getRegClass(MAD->getOperand(0).getReg());
5729   if (AArch64::FPR32RegClass.hasSubClassEq(RC))
5730     Opc = AArch64::FNMADDSrrr;
5731   else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
5732     Opc = AArch64::FNMADDDrrr;
5733   else
5734     return nullptr;
5735 
5736   Register ResultReg = Root.getOperand(0).getReg();
5737   Register SrcReg0 = MAD->getOperand(1).getReg();
5738   Register SrcReg1 = MAD->getOperand(2).getReg();
5739   Register SrcReg2 = MAD->getOperand(3).getReg();
5740   bool Src0IsKill = MAD->getOperand(1).isKill();
5741   bool Src1IsKill = MAD->getOperand(2).isKill();
5742   bool Src2IsKill = MAD->getOperand(3).isKill();
5743   if (ResultReg.isVirtual())
5744     MRI.constrainRegClass(ResultReg, RC);
5745   if (SrcReg0.isVirtual())
5746     MRI.constrainRegClass(SrcReg0, RC);
5747   if (SrcReg1.isVirtual())
5748     MRI.constrainRegClass(SrcReg1, RC);
5749   if (SrcReg2.isVirtual())
5750     MRI.constrainRegClass(SrcReg2, RC);
5751 
5752   MachineInstrBuilder MIB =
5753       BuildMI(MF, MIMetadata(Root), TII->get(Opc), ResultReg)
5754           .addReg(SrcReg0, getKillRegState(Src0IsKill))
5755           .addReg(SrcReg1, getKillRegState(Src1IsKill))
5756           .addReg(SrcReg2, getKillRegState(Src2IsKill));
5757   InsInstrs.push_back(MIB);
5758 
5759   return MAD;
5760 }
5761 
5762 /// Fold (FMUL x (DUP y lane)) into (FMUL_indexed x y lane)
5763 static MachineInstr *
5764 genIndexedMultiply(MachineInstr &Root,
5765                    SmallVectorImpl<MachineInstr *> &InsInstrs,
5766                    unsigned IdxDupOp, unsigned MulOpc,
5767                    const TargetRegisterClass *RC, MachineRegisterInfo &MRI) {
5768   assert(((IdxDupOp == 1) || (IdxDupOp == 2)) &&
5769          "Invalid index of FMUL operand");
5770 
5771   MachineFunction &MF = *Root.getMF();
5772   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5773 
5774   MachineInstr *Dup =
5775       MF.getRegInfo().getUniqueVRegDef(Root.getOperand(IdxDupOp).getReg());
5776 
5777   if (Dup->getOpcode() == TargetOpcode::COPY)
5778     Dup = MRI.getUniqueVRegDef(Dup->getOperand(1).getReg());
5779 
5780   Register DupSrcReg = Dup->getOperand(1).getReg();
5781   MRI.clearKillFlags(DupSrcReg);
5782   MRI.constrainRegClass(DupSrcReg, RC);
5783 
5784   unsigned DupSrcLane = Dup->getOperand(2).getImm();
5785 
5786   unsigned IdxMulOp = IdxDupOp == 1 ? 2 : 1;
5787   MachineOperand &MulOp = Root.getOperand(IdxMulOp);
5788 
5789   Register ResultReg = Root.getOperand(0).getReg();
5790 
5791   MachineInstrBuilder MIB;
5792   MIB = BuildMI(MF, MIMetadata(Root), TII->get(MulOpc), ResultReg)
5793             .add(MulOp)
5794             .addReg(DupSrcReg)
5795             .addImm(DupSrcLane);
5796 
5797   InsInstrs.push_back(MIB);
5798   return &Root;
5799 }
5800 
5801 /// genFusedMultiplyAcc - Helper to generate fused multiply accumulate
5802 /// instructions.
5803 ///
5804 /// \see genFusedMultiply
5805 static MachineInstr *genFusedMultiplyAcc(
5806     MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5807     MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5808     unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) {
5809   return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5810                           FMAInstKind::Accumulator);
5811 }
5812 
5813 /// genNeg - Helper to generate an intermediate negation of the second operand
5814 /// of Root
5815 static Register genNeg(MachineFunction &MF, MachineRegisterInfo &MRI,
5816                        const TargetInstrInfo *TII, MachineInstr &Root,
5817                        SmallVectorImpl<MachineInstr *> &InsInstrs,
5818                        DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
5819                        unsigned MnegOpc, const TargetRegisterClass *RC) {
5820   Register NewVR = MRI.createVirtualRegister(RC);
5821   MachineInstrBuilder MIB =
5822       BuildMI(MF, MIMetadata(Root), TII->get(MnegOpc), NewVR)
5823           .add(Root.getOperand(2));
5824   InsInstrs.push_back(MIB);
5825 
5826   assert(InstrIdxForVirtReg.empty());
5827   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5828 
5829   return NewVR;
5830 }
5831 
5832 /// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate
5833 /// instructions with an additional negation of the accumulator
5834 static MachineInstr *genFusedMultiplyAccNeg(
5835     MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5836     MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5837     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd,
5838     unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) {
5839   assert(IdxMulOpd == 1);
5840 
5841   Register NewVR =
5842       genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC);
5843   return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5844                           FMAInstKind::Accumulator, &NewVR);
5845 }
5846 
5847 /// genFusedMultiplyIdx - Helper to generate fused multiply accumulate
5848 /// instructions.
5849 ///
5850 /// \see genFusedMultiply
5851 static MachineInstr *genFusedMultiplyIdx(
5852     MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5853     MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5854     unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) {
5855   return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5856                           FMAInstKind::Indexed);
5857 }
5858 
5859 /// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate
5860 /// instructions with an additional negation of the accumulator
5861 static MachineInstr *genFusedMultiplyIdxNeg(
5862     MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII,
5863     MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs,
5864     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd,
5865     unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) {
5866   assert(IdxMulOpd == 1);
5867 
5868   Register NewVR =
5869       genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC);
5870 
5871   return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC,
5872                           FMAInstKind::Indexed, &NewVR);
5873 }
5874 
5875 /// genMaddR - Generate madd instruction and combine mul and add using
5876 /// an extra virtual register
5877 /// Example - an ADD intermediate needs to be stored in a register:
5878 ///   MUL I=A,B,0
5879 ///   ADD R,I,Imm
5880 ///   ==> ORR  V, ZR, Imm
5881 ///   ==> MADD R,A,B,V
5882 /// \param MF Containing MachineFunction
5883 /// \param MRI Register information
5884 /// \param TII Target information
5885 /// \param Root is the ADD instruction
5886 /// \param [out] InsInstrs is a vector of machine instructions and will
5887 /// contain the generated madd instruction
5888 /// \param IdxMulOpd is index of operand in Root that is the result of
5889 /// the MUL. In the example above IdxMulOpd is 1.
5890 /// \param MaddOpc the opcode fo the madd instruction
5891 /// \param VR is a virtual register that holds the value of an ADD operand
5892 /// (V in the example above).
5893 /// \param RC Register class of operands
5894 static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
5895                               const TargetInstrInfo *TII, MachineInstr &Root,
5896                               SmallVectorImpl<MachineInstr *> &InsInstrs,
5897                               unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR,
5898                               const TargetRegisterClass *RC) {
5899   assert(IdxMulOpd == 1 || IdxMulOpd == 2);
5900 
5901   MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
5902   Register ResultReg = Root.getOperand(0).getReg();
5903   Register SrcReg0 = MUL->getOperand(1).getReg();
5904   bool Src0IsKill = MUL->getOperand(1).isKill();
5905   Register SrcReg1 = MUL->getOperand(2).getReg();
5906   bool Src1IsKill = MUL->getOperand(2).isKill();
5907 
5908   if (ResultReg.isVirtual())
5909     MRI.constrainRegClass(ResultReg, RC);
5910   if (SrcReg0.isVirtual())
5911     MRI.constrainRegClass(SrcReg0, RC);
5912   if (SrcReg1.isVirtual())
5913     MRI.constrainRegClass(SrcReg1, RC);
5914   if (Register::isVirtualRegister(VR))
5915     MRI.constrainRegClass(VR, RC);
5916 
5917   MachineInstrBuilder MIB =
5918       BuildMI(MF, MIMetadata(Root), TII->get(MaddOpc), ResultReg)
5919           .addReg(SrcReg0, getKillRegState(Src0IsKill))
5920           .addReg(SrcReg1, getKillRegState(Src1IsKill))
5921           .addReg(VR);
5922   // Insert the MADD
5923   InsInstrs.push_back(MIB);
5924   return MUL;
5925 }
5926 
5927 /// Do the following transformation
5928 /// A - (B + C)  ==>   (A - B) - C
5929 /// A - (B + C)  ==>   (A - C) - B
5930 static void
5931 genSubAdd2SubSub(MachineFunction &MF, MachineRegisterInfo &MRI,
5932                  const TargetInstrInfo *TII, MachineInstr &Root,
5933                  SmallVectorImpl<MachineInstr *> &InsInstrs,
5934                  SmallVectorImpl<MachineInstr *> &DelInstrs,
5935                  unsigned IdxOpd1,
5936                  DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
5937   assert(IdxOpd1 == 1 || IdxOpd1 == 2);
5938   unsigned IdxOtherOpd = IdxOpd1 == 1 ? 2 : 1;
5939   MachineInstr *AddMI = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
5940 
5941   Register ResultReg = Root.getOperand(0).getReg();
5942   Register RegA = Root.getOperand(1).getReg();
5943   bool RegAIsKill = Root.getOperand(1).isKill();
5944   Register RegB = AddMI->getOperand(IdxOpd1).getReg();
5945   bool RegBIsKill = AddMI->getOperand(IdxOpd1).isKill();
5946   Register RegC = AddMI->getOperand(IdxOtherOpd).getReg();
5947   bool RegCIsKill = AddMI->getOperand(IdxOtherOpd).isKill();
5948   Register NewVR = MRI.createVirtualRegister(MRI.getRegClass(RegA));
5949 
5950   unsigned Opcode = Root.getOpcode();
5951   if (Opcode == AArch64::SUBSWrr)
5952     Opcode = AArch64::SUBWrr;
5953   else if (Opcode == AArch64::SUBSXrr)
5954     Opcode = AArch64::SUBXrr;
5955   else
5956     assert((Opcode == AArch64::SUBWrr || Opcode == AArch64::SUBXrr) &&
5957            "Unexpected instruction opcode.");
5958 
5959   MachineInstrBuilder MIB1 =
5960       BuildMI(MF, MIMetadata(Root), TII->get(Opcode), NewVR)
5961           .addReg(RegA, getKillRegState(RegAIsKill))
5962           .addReg(RegB, getKillRegState(RegBIsKill));
5963   MachineInstrBuilder MIB2 =
5964       BuildMI(MF, MIMetadata(Root), TII->get(Opcode), ResultReg)
5965           .addReg(NewVR, getKillRegState(true))
5966           .addReg(RegC, getKillRegState(RegCIsKill));
5967 
5968   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
5969   InsInstrs.push_back(MIB1);
5970   InsInstrs.push_back(MIB2);
5971   DelInstrs.push_back(AddMI);
5972 }
5973 
5974 /// When getMachineCombinerPatterns() finds potential patterns,
5975 /// this function generates the instructions that could replace the
5976 /// original code sequence
5977 void AArch64InstrInfo::genAlternativeCodeSequence(
5978     MachineInstr &Root, MachineCombinerPattern Pattern,
5979     SmallVectorImpl<MachineInstr *> &InsInstrs,
5980     SmallVectorImpl<MachineInstr *> &DelInstrs,
5981     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
5982   MachineBasicBlock &MBB = *Root.getParent();
5983   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
5984   MachineFunction &MF = *MBB.getParent();
5985   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
5986 
5987   MachineInstr *MUL = nullptr;
5988   const TargetRegisterClass *RC;
5989   unsigned Opc;
5990   switch (Pattern) {
5991   default:
5992     // Reassociate instructions.
5993     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
5994                                                 DelInstrs, InstrIdxForVirtReg);
5995     return;
5996   case MachineCombinerPattern::SUBADD_OP1:
5997     // A - (B + C)
5998     // ==> (A - B) - C
5999     genSubAdd2SubSub(MF, MRI, TII, Root, InsInstrs, DelInstrs, 1,
6000                      InstrIdxForVirtReg);
6001     break;
6002   case MachineCombinerPattern::SUBADD_OP2:
6003     // A - (B + C)
6004     // ==> (A - C) - B
6005     genSubAdd2SubSub(MF, MRI, TII, Root, InsInstrs, DelInstrs, 2,
6006                      InstrIdxForVirtReg);
6007     break;
6008   case MachineCombinerPattern::MULADDW_OP1:
6009   case MachineCombinerPattern::MULADDX_OP1:
6010     // MUL I=A,B,0
6011     // ADD R,I,C
6012     // ==> MADD R,A,B,C
6013     // --- Create(MADD);
6014     if (Pattern == MachineCombinerPattern::MULADDW_OP1) {
6015       Opc = AArch64::MADDWrrr;
6016       RC = &AArch64::GPR32RegClass;
6017     } else {
6018       Opc = AArch64::MADDXrrr;
6019       RC = &AArch64::GPR64RegClass;
6020     }
6021     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6022     break;
6023   case MachineCombinerPattern::MULADDW_OP2:
6024   case MachineCombinerPattern::MULADDX_OP2:
6025     // MUL I=A,B,0
6026     // ADD R,C,I
6027     // ==> MADD R,A,B,C
6028     // --- Create(MADD);
6029     if (Pattern == MachineCombinerPattern::MULADDW_OP2) {
6030       Opc = AArch64::MADDWrrr;
6031       RC = &AArch64::GPR32RegClass;
6032     } else {
6033       Opc = AArch64::MADDXrrr;
6034       RC = &AArch64::GPR64RegClass;
6035     }
6036     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6037     break;
6038   case MachineCombinerPattern::MULADDWI_OP1:
6039   case MachineCombinerPattern::MULADDXI_OP1: {
6040     // MUL I=A,B,0
6041     // ADD R,I,Imm
6042     // ==> MOV V, Imm
6043     // ==> MADD R,A,B,V
6044     // --- Create(MADD);
6045     const TargetRegisterClass *OrrRC;
6046     unsigned BitSize, OrrOpc, ZeroReg;
6047     if (Pattern == MachineCombinerPattern::MULADDWI_OP1) {
6048       OrrOpc = AArch64::ORRWri;
6049       OrrRC = &AArch64::GPR32spRegClass;
6050       BitSize = 32;
6051       ZeroReg = AArch64::WZR;
6052       Opc = AArch64::MADDWrrr;
6053       RC = &AArch64::GPR32RegClass;
6054     } else {
6055       OrrOpc = AArch64::ORRXri;
6056       OrrRC = &AArch64::GPR64spRegClass;
6057       BitSize = 64;
6058       ZeroReg = AArch64::XZR;
6059       Opc = AArch64::MADDXrrr;
6060       RC = &AArch64::GPR64RegClass;
6061     }
6062     Register NewVR = MRI.createVirtualRegister(OrrRC);
6063     uint64_t Imm = Root.getOperand(2).getImm();
6064 
6065     if (Root.getOperand(3).isImm()) {
6066       unsigned Val = Root.getOperand(3).getImm();
6067       Imm = Imm << Val;
6068     }
6069     uint64_t UImm = SignExtend64(Imm, BitSize);
6070     // The immediate can be composed via a single instruction.
6071     SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
6072     AArch64_IMM::expandMOVImm(UImm, BitSize, Insn);
6073     if (Insn.size() != 1)
6074       return;
6075     auto MovI = Insn.begin();
6076     MachineInstrBuilder MIB1;
6077     // MOV is an alias for one of three instructions: movz, movn, and orr.
6078     if (MovI->Opcode == OrrOpc)
6079       MIB1 = BuildMI(MF, MIMetadata(Root), TII->get(OrrOpc), NewVR)
6080                  .addReg(ZeroReg)
6081                  .addImm(MovI->Op2);
6082     else {
6083       if (BitSize == 32)
6084         assert((MovI->Opcode == AArch64::MOVNWi ||
6085                 MovI->Opcode == AArch64::MOVZWi) &&
6086                "Expected opcode");
6087       else
6088         assert((MovI->Opcode == AArch64::MOVNXi ||
6089                 MovI->Opcode == AArch64::MOVZXi) &&
6090                "Expected opcode");
6091       MIB1 = BuildMI(MF, MIMetadata(Root), TII->get(MovI->Opcode), NewVR)
6092                  .addImm(MovI->Op1)
6093                  .addImm(MovI->Op2);
6094     }
6095     InsInstrs.push_back(MIB1);
6096     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6097     MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
6098     break;
6099   }
6100   case MachineCombinerPattern::MULSUBW_OP1:
6101   case MachineCombinerPattern::MULSUBX_OP1: {
6102     // MUL I=A,B,0
6103     // SUB R,I, C
6104     // ==> SUB  V, 0, C
6105     // ==> MADD R,A,B,V // = -C + A*B
6106     // --- Create(MADD);
6107     const TargetRegisterClass *SubRC;
6108     unsigned SubOpc, ZeroReg;
6109     if (Pattern == MachineCombinerPattern::MULSUBW_OP1) {
6110       SubOpc = AArch64::SUBWrr;
6111       SubRC = &AArch64::GPR32spRegClass;
6112       ZeroReg = AArch64::WZR;
6113       Opc = AArch64::MADDWrrr;
6114       RC = &AArch64::GPR32RegClass;
6115     } else {
6116       SubOpc = AArch64::SUBXrr;
6117       SubRC = &AArch64::GPR64spRegClass;
6118       ZeroReg = AArch64::XZR;
6119       Opc = AArch64::MADDXrrr;
6120       RC = &AArch64::GPR64RegClass;
6121     }
6122     Register NewVR = MRI.createVirtualRegister(SubRC);
6123     // SUB NewVR, 0, C
6124     MachineInstrBuilder MIB1 =
6125         BuildMI(MF, MIMetadata(Root), TII->get(SubOpc), NewVR)
6126             .addReg(ZeroReg)
6127             .add(Root.getOperand(2));
6128     InsInstrs.push_back(MIB1);
6129     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6130     MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
6131     break;
6132   }
6133   case MachineCombinerPattern::MULSUBW_OP2:
6134   case MachineCombinerPattern::MULSUBX_OP2:
6135     // MUL I=A,B,0
6136     // SUB R,C,I
6137     // ==> MSUB R,A,B,C (computes C - A*B)
6138     // --- Create(MSUB);
6139     if (Pattern == MachineCombinerPattern::MULSUBW_OP2) {
6140       Opc = AArch64::MSUBWrrr;
6141       RC = &AArch64::GPR32RegClass;
6142     } else {
6143       Opc = AArch64::MSUBXrrr;
6144       RC = &AArch64::GPR64RegClass;
6145     }
6146     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6147     break;
6148   case MachineCombinerPattern::MULSUBWI_OP1:
6149   case MachineCombinerPattern::MULSUBXI_OP1: {
6150     // MUL I=A,B,0
6151     // SUB R,I, Imm
6152     // ==> MOV  V, -Imm
6153     // ==> MADD R,A,B,V // = -Imm + A*B
6154     // --- Create(MADD);
6155     const TargetRegisterClass *OrrRC;
6156     unsigned BitSize, OrrOpc, ZeroReg;
6157     if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) {
6158       OrrOpc = AArch64::ORRWri;
6159       OrrRC = &AArch64::GPR32spRegClass;
6160       BitSize = 32;
6161       ZeroReg = AArch64::WZR;
6162       Opc = AArch64::MADDWrrr;
6163       RC = &AArch64::GPR32RegClass;
6164     } else {
6165       OrrOpc = AArch64::ORRXri;
6166       OrrRC = &AArch64::GPR64spRegClass;
6167       BitSize = 64;
6168       ZeroReg = AArch64::XZR;
6169       Opc = AArch64::MADDXrrr;
6170       RC = &AArch64::GPR64RegClass;
6171     }
6172     Register NewVR = MRI.createVirtualRegister(OrrRC);
6173     uint64_t Imm = Root.getOperand(2).getImm();
6174     if (Root.getOperand(3).isImm()) {
6175       unsigned Val = Root.getOperand(3).getImm();
6176       Imm = Imm << Val;
6177     }
6178     uint64_t UImm = SignExtend64(-Imm, BitSize);
6179     // The immediate can be composed via a single instruction.
6180     SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
6181     AArch64_IMM::expandMOVImm(UImm, BitSize, Insn);
6182     if (Insn.size() != 1)
6183       return;
6184     auto MovI = Insn.begin();
6185     MachineInstrBuilder MIB1;
6186     // MOV is an alias for one of three instructions: movz, movn, and orr.
6187     if (MovI->Opcode == OrrOpc)
6188       MIB1 = BuildMI(MF, MIMetadata(Root), TII->get(OrrOpc), NewVR)
6189                  .addReg(ZeroReg)
6190                  .addImm(MovI->Op2);
6191     else {
6192       if (BitSize == 32)
6193         assert((MovI->Opcode == AArch64::MOVNWi ||
6194                 MovI->Opcode == AArch64::MOVZWi) &&
6195                "Expected opcode");
6196       else
6197         assert((MovI->Opcode == AArch64::MOVNXi ||
6198                 MovI->Opcode == AArch64::MOVZXi) &&
6199                "Expected opcode");
6200       MIB1 = BuildMI(MF, MIMetadata(Root), TII->get(MovI->Opcode), NewVR)
6201                  .addImm(MovI->Op1)
6202                  .addImm(MovI->Op2);
6203     }
6204     InsInstrs.push_back(MIB1);
6205     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6206     MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
6207     break;
6208   }
6209 
6210   case MachineCombinerPattern::MULADDv8i8_OP1:
6211     Opc = AArch64::MLAv8i8;
6212     RC = &AArch64::FPR64RegClass;
6213     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6214     break;
6215   case MachineCombinerPattern::MULADDv8i8_OP2:
6216     Opc = AArch64::MLAv8i8;
6217     RC = &AArch64::FPR64RegClass;
6218     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6219     break;
6220   case MachineCombinerPattern::MULADDv16i8_OP1:
6221     Opc = AArch64::MLAv16i8;
6222     RC = &AArch64::FPR128RegClass;
6223     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6224     break;
6225   case MachineCombinerPattern::MULADDv16i8_OP2:
6226     Opc = AArch64::MLAv16i8;
6227     RC = &AArch64::FPR128RegClass;
6228     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6229     break;
6230   case MachineCombinerPattern::MULADDv4i16_OP1:
6231     Opc = AArch64::MLAv4i16;
6232     RC = &AArch64::FPR64RegClass;
6233     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6234     break;
6235   case MachineCombinerPattern::MULADDv4i16_OP2:
6236     Opc = AArch64::MLAv4i16;
6237     RC = &AArch64::FPR64RegClass;
6238     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6239     break;
6240   case MachineCombinerPattern::MULADDv8i16_OP1:
6241     Opc = AArch64::MLAv8i16;
6242     RC = &AArch64::FPR128RegClass;
6243     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6244     break;
6245   case MachineCombinerPattern::MULADDv8i16_OP2:
6246     Opc = AArch64::MLAv8i16;
6247     RC = &AArch64::FPR128RegClass;
6248     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6249     break;
6250   case MachineCombinerPattern::MULADDv2i32_OP1:
6251     Opc = AArch64::MLAv2i32;
6252     RC = &AArch64::FPR64RegClass;
6253     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6254     break;
6255   case MachineCombinerPattern::MULADDv2i32_OP2:
6256     Opc = AArch64::MLAv2i32;
6257     RC = &AArch64::FPR64RegClass;
6258     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6259     break;
6260   case MachineCombinerPattern::MULADDv4i32_OP1:
6261     Opc = AArch64::MLAv4i32;
6262     RC = &AArch64::FPR128RegClass;
6263     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6264     break;
6265   case MachineCombinerPattern::MULADDv4i32_OP2:
6266     Opc = AArch64::MLAv4i32;
6267     RC = &AArch64::FPR128RegClass;
6268     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6269     break;
6270 
6271   case MachineCombinerPattern::MULSUBv8i8_OP1:
6272     Opc = AArch64::MLAv8i8;
6273     RC = &AArch64::FPR64RegClass;
6274     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6275                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i8,
6276                                  RC);
6277     break;
6278   case MachineCombinerPattern::MULSUBv8i8_OP2:
6279     Opc = AArch64::MLSv8i8;
6280     RC = &AArch64::FPR64RegClass;
6281     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6282     break;
6283   case MachineCombinerPattern::MULSUBv16i8_OP1:
6284     Opc = AArch64::MLAv16i8;
6285     RC = &AArch64::FPR128RegClass;
6286     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6287                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv16i8,
6288                                  RC);
6289     break;
6290   case MachineCombinerPattern::MULSUBv16i8_OP2:
6291     Opc = AArch64::MLSv16i8;
6292     RC = &AArch64::FPR128RegClass;
6293     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6294     break;
6295   case MachineCombinerPattern::MULSUBv4i16_OP1:
6296     Opc = AArch64::MLAv4i16;
6297     RC = &AArch64::FPR64RegClass;
6298     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6299                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16,
6300                                  RC);
6301     break;
6302   case MachineCombinerPattern::MULSUBv4i16_OP2:
6303     Opc = AArch64::MLSv4i16;
6304     RC = &AArch64::FPR64RegClass;
6305     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6306     break;
6307   case MachineCombinerPattern::MULSUBv8i16_OP1:
6308     Opc = AArch64::MLAv8i16;
6309     RC = &AArch64::FPR128RegClass;
6310     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6311                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16,
6312                                  RC);
6313     break;
6314   case MachineCombinerPattern::MULSUBv8i16_OP2:
6315     Opc = AArch64::MLSv8i16;
6316     RC = &AArch64::FPR128RegClass;
6317     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6318     break;
6319   case MachineCombinerPattern::MULSUBv2i32_OP1:
6320     Opc = AArch64::MLAv2i32;
6321     RC = &AArch64::FPR64RegClass;
6322     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6323                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32,
6324                                  RC);
6325     break;
6326   case MachineCombinerPattern::MULSUBv2i32_OP2:
6327     Opc = AArch64::MLSv2i32;
6328     RC = &AArch64::FPR64RegClass;
6329     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6330     break;
6331   case MachineCombinerPattern::MULSUBv4i32_OP1:
6332     Opc = AArch64::MLAv4i32;
6333     RC = &AArch64::FPR128RegClass;
6334     MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs,
6335                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32,
6336                                  RC);
6337     break;
6338   case MachineCombinerPattern::MULSUBv4i32_OP2:
6339     Opc = AArch64::MLSv4i32;
6340     RC = &AArch64::FPR128RegClass;
6341     MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6342     break;
6343 
6344   case MachineCombinerPattern::MULADDv4i16_indexed_OP1:
6345     Opc = AArch64::MLAv4i16_indexed;
6346     RC = &AArch64::FPR64RegClass;
6347     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6348     break;
6349   case MachineCombinerPattern::MULADDv4i16_indexed_OP2:
6350     Opc = AArch64::MLAv4i16_indexed;
6351     RC = &AArch64::FPR64RegClass;
6352     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6353     break;
6354   case MachineCombinerPattern::MULADDv8i16_indexed_OP1:
6355     Opc = AArch64::MLAv8i16_indexed;
6356     RC = &AArch64::FPR128RegClass;
6357     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6358     break;
6359   case MachineCombinerPattern::MULADDv8i16_indexed_OP2:
6360     Opc = AArch64::MLAv8i16_indexed;
6361     RC = &AArch64::FPR128RegClass;
6362     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6363     break;
6364   case MachineCombinerPattern::MULADDv2i32_indexed_OP1:
6365     Opc = AArch64::MLAv2i32_indexed;
6366     RC = &AArch64::FPR64RegClass;
6367     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6368     break;
6369   case MachineCombinerPattern::MULADDv2i32_indexed_OP2:
6370     Opc = AArch64::MLAv2i32_indexed;
6371     RC = &AArch64::FPR64RegClass;
6372     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6373     break;
6374   case MachineCombinerPattern::MULADDv4i32_indexed_OP1:
6375     Opc = AArch64::MLAv4i32_indexed;
6376     RC = &AArch64::FPR128RegClass;
6377     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6378     break;
6379   case MachineCombinerPattern::MULADDv4i32_indexed_OP2:
6380     Opc = AArch64::MLAv4i32_indexed;
6381     RC = &AArch64::FPR128RegClass;
6382     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6383     break;
6384 
6385   case MachineCombinerPattern::MULSUBv4i16_indexed_OP1:
6386     Opc = AArch64::MLAv4i16_indexed;
6387     RC = &AArch64::FPR64RegClass;
6388     MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
6389                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16,
6390                                  RC);
6391     break;
6392   case MachineCombinerPattern::MULSUBv4i16_indexed_OP2:
6393     Opc = AArch64::MLSv4i16_indexed;
6394     RC = &AArch64::FPR64RegClass;
6395     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6396     break;
6397   case MachineCombinerPattern::MULSUBv8i16_indexed_OP1:
6398     Opc = AArch64::MLAv8i16_indexed;
6399     RC = &AArch64::FPR128RegClass;
6400     MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
6401                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16,
6402                                  RC);
6403     break;
6404   case MachineCombinerPattern::MULSUBv8i16_indexed_OP2:
6405     Opc = AArch64::MLSv8i16_indexed;
6406     RC = &AArch64::FPR128RegClass;
6407     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6408     break;
6409   case MachineCombinerPattern::MULSUBv2i32_indexed_OP1:
6410     Opc = AArch64::MLAv2i32_indexed;
6411     RC = &AArch64::FPR64RegClass;
6412     MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
6413                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32,
6414                                  RC);
6415     break;
6416   case MachineCombinerPattern::MULSUBv2i32_indexed_OP2:
6417     Opc = AArch64::MLSv2i32_indexed;
6418     RC = &AArch64::FPR64RegClass;
6419     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6420     break;
6421   case MachineCombinerPattern::MULSUBv4i32_indexed_OP1:
6422     Opc = AArch64::MLAv4i32_indexed;
6423     RC = &AArch64::FPR128RegClass;
6424     MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs,
6425                                  InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32,
6426                                  RC);
6427     break;
6428   case MachineCombinerPattern::MULSUBv4i32_indexed_OP2:
6429     Opc = AArch64::MLSv4i32_indexed;
6430     RC = &AArch64::FPR128RegClass;
6431     MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6432     break;
6433 
6434   // Floating Point Support
6435   case MachineCombinerPattern::FMULADDH_OP1:
6436     Opc = AArch64::FMADDHrrr;
6437     RC = &AArch64::FPR16RegClass;
6438     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6439     break;
6440   case MachineCombinerPattern::FMULADDS_OP1:
6441     Opc = AArch64::FMADDSrrr;
6442     RC = &AArch64::FPR32RegClass;
6443     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6444     break;
6445   case MachineCombinerPattern::FMULADDD_OP1:
6446     Opc = AArch64::FMADDDrrr;
6447     RC = &AArch64::FPR64RegClass;
6448     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6449     break;
6450 
6451   case MachineCombinerPattern::FMULADDH_OP2:
6452     Opc = AArch64::FMADDHrrr;
6453     RC = &AArch64::FPR16RegClass;
6454     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6455     break;
6456   case MachineCombinerPattern::FMULADDS_OP2:
6457     Opc = AArch64::FMADDSrrr;
6458     RC = &AArch64::FPR32RegClass;
6459     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6460     break;
6461   case MachineCombinerPattern::FMULADDD_OP2:
6462     Opc = AArch64::FMADDDrrr;
6463     RC = &AArch64::FPR64RegClass;
6464     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6465     break;
6466 
6467   case MachineCombinerPattern::FMLAv1i32_indexed_OP1:
6468     Opc = AArch64::FMLAv1i32_indexed;
6469     RC = &AArch64::FPR32RegClass;
6470     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6471                            FMAInstKind::Indexed);
6472     break;
6473   case MachineCombinerPattern::FMLAv1i32_indexed_OP2:
6474     Opc = AArch64::FMLAv1i32_indexed;
6475     RC = &AArch64::FPR32RegClass;
6476     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6477                            FMAInstKind::Indexed);
6478     break;
6479 
6480   case MachineCombinerPattern::FMLAv1i64_indexed_OP1:
6481     Opc = AArch64::FMLAv1i64_indexed;
6482     RC = &AArch64::FPR64RegClass;
6483     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6484                            FMAInstKind::Indexed);
6485     break;
6486   case MachineCombinerPattern::FMLAv1i64_indexed_OP2:
6487     Opc = AArch64::FMLAv1i64_indexed;
6488     RC = &AArch64::FPR64RegClass;
6489     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6490                            FMAInstKind::Indexed);
6491     break;
6492 
6493   case MachineCombinerPattern::FMLAv4i16_indexed_OP1:
6494     RC = &AArch64::FPR64RegClass;
6495     Opc = AArch64::FMLAv4i16_indexed;
6496     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6497                            FMAInstKind::Indexed);
6498     break;
6499   case MachineCombinerPattern::FMLAv4f16_OP1:
6500     RC = &AArch64::FPR64RegClass;
6501     Opc = AArch64::FMLAv4f16;
6502     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6503                            FMAInstKind::Accumulator);
6504     break;
6505   case MachineCombinerPattern::FMLAv4i16_indexed_OP2:
6506     RC = &AArch64::FPR64RegClass;
6507     Opc = AArch64::FMLAv4i16_indexed;
6508     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6509                            FMAInstKind::Indexed);
6510     break;
6511   case MachineCombinerPattern::FMLAv4f16_OP2:
6512     RC = &AArch64::FPR64RegClass;
6513     Opc = AArch64::FMLAv4f16;
6514     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6515                            FMAInstKind::Accumulator);
6516     break;
6517 
6518   case MachineCombinerPattern::FMLAv2i32_indexed_OP1:
6519   case MachineCombinerPattern::FMLAv2f32_OP1:
6520     RC = &AArch64::FPR64RegClass;
6521     if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP1) {
6522       Opc = AArch64::FMLAv2i32_indexed;
6523       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6524                              FMAInstKind::Indexed);
6525     } else {
6526       Opc = AArch64::FMLAv2f32;
6527       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6528                              FMAInstKind::Accumulator);
6529     }
6530     break;
6531   case MachineCombinerPattern::FMLAv2i32_indexed_OP2:
6532   case MachineCombinerPattern::FMLAv2f32_OP2:
6533     RC = &AArch64::FPR64RegClass;
6534     if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP2) {
6535       Opc = AArch64::FMLAv2i32_indexed;
6536       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6537                              FMAInstKind::Indexed);
6538     } else {
6539       Opc = AArch64::FMLAv2f32;
6540       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6541                              FMAInstKind::Accumulator);
6542     }
6543     break;
6544 
6545   case MachineCombinerPattern::FMLAv8i16_indexed_OP1:
6546     RC = &AArch64::FPR128RegClass;
6547     Opc = AArch64::FMLAv8i16_indexed;
6548     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6549                            FMAInstKind::Indexed);
6550     break;
6551   case MachineCombinerPattern::FMLAv8f16_OP1:
6552     RC = &AArch64::FPR128RegClass;
6553     Opc = AArch64::FMLAv8f16;
6554     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6555                            FMAInstKind::Accumulator);
6556     break;
6557   case MachineCombinerPattern::FMLAv8i16_indexed_OP2:
6558     RC = &AArch64::FPR128RegClass;
6559     Opc = AArch64::FMLAv8i16_indexed;
6560     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6561                            FMAInstKind::Indexed);
6562     break;
6563   case MachineCombinerPattern::FMLAv8f16_OP2:
6564     RC = &AArch64::FPR128RegClass;
6565     Opc = AArch64::FMLAv8f16;
6566     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6567                            FMAInstKind::Accumulator);
6568     break;
6569 
6570   case MachineCombinerPattern::FMLAv2i64_indexed_OP1:
6571   case MachineCombinerPattern::FMLAv2f64_OP1:
6572     RC = &AArch64::FPR128RegClass;
6573     if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP1) {
6574       Opc = AArch64::FMLAv2i64_indexed;
6575       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6576                              FMAInstKind::Indexed);
6577     } else {
6578       Opc = AArch64::FMLAv2f64;
6579       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6580                              FMAInstKind::Accumulator);
6581     }
6582     break;
6583   case MachineCombinerPattern::FMLAv2i64_indexed_OP2:
6584   case MachineCombinerPattern::FMLAv2f64_OP2:
6585     RC = &AArch64::FPR128RegClass;
6586     if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP2) {
6587       Opc = AArch64::FMLAv2i64_indexed;
6588       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6589                              FMAInstKind::Indexed);
6590     } else {
6591       Opc = AArch64::FMLAv2f64;
6592       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6593                              FMAInstKind::Accumulator);
6594     }
6595     break;
6596 
6597   case MachineCombinerPattern::FMLAv4i32_indexed_OP1:
6598   case MachineCombinerPattern::FMLAv4f32_OP1:
6599     RC = &AArch64::FPR128RegClass;
6600     if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP1) {
6601       Opc = AArch64::FMLAv4i32_indexed;
6602       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6603                              FMAInstKind::Indexed);
6604     } else {
6605       Opc = AArch64::FMLAv4f32;
6606       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6607                              FMAInstKind::Accumulator);
6608     }
6609     break;
6610 
6611   case MachineCombinerPattern::FMLAv4i32_indexed_OP2:
6612   case MachineCombinerPattern::FMLAv4f32_OP2:
6613     RC = &AArch64::FPR128RegClass;
6614     if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP2) {
6615       Opc = AArch64::FMLAv4i32_indexed;
6616       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6617                              FMAInstKind::Indexed);
6618     } else {
6619       Opc = AArch64::FMLAv4f32;
6620       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6621                              FMAInstKind::Accumulator);
6622     }
6623     break;
6624 
6625   case MachineCombinerPattern::FMULSUBH_OP1:
6626     Opc = AArch64::FNMSUBHrrr;
6627     RC = &AArch64::FPR16RegClass;
6628     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6629     break;
6630   case MachineCombinerPattern::FMULSUBS_OP1:
6631     Opc = AArch64::FNMSUBSrrr;
6632     RC = &AArch64::FPR32RegClass;
6633     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6634     break;
6635   case MachineCombinerPattern::FMULSUBD_OP1:
6636     Opc = AArch64::FNMSUBDrrr;
6637     RC = &AArch64::FPR64RegClass;
6638     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6639     break;
6640 
6641   case MachineCombinerPattern::FNMULSUBH_OP1:
6642     Opc = AArch64::FNMADDHrrr;
6643     RC = &AArch64::FPR16RegClass;
6644     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6645     break;
6646   case MachineCombinerPattern::FNMULSUBS_OP1:
6647     Opc = AArch64::FNMADDSrrr;
6648     RC = &AArch64::FPR32RegClass;
6649     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6650     break;
6651   case MachineCombinerPattern::FNMULSUBD_OP1:
6652     Opc = AArch64::FNMADDDrrr;
6653     RC = &AArch64::FPR64RegClass;
6654     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
6655     break;
6656 
6657   case MachineCombinerPattern::FMULSUBH_OP2:
6658     Opc = AArch64::FMSUBHrrr;
6659     RC = &AArch64::FPR16RegClass;
6660     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6661     break;
6662   case MachineCombinerPattern::FMULSUBS_OP2:
6663     Opc = AArch64::FMSUBSrrr;
6664     RC = &AArch64::FPR32RegClass;
6665     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6666     break;
6667   case MachineCombinerPattern::FMULSUBD_OP2:
6668     Opc = AArch64::FMSUBDrrr;
6669     RC = &AArch64::FPR64RegClass;
6670     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
6671     break;
6672 
6673   case MachineCombinerPattern::FMLSv1i32_indexed_OP2:
6674     Opc = AArch64::FMLSv1i32_indexed;
6675     RC = &AArch64::FPR32RegClass;
6676     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6677                            FMAInstKind::Indexed);
6678     break;
6679 
6680   case MachineCombinerPattern::FMLSv1i64_indexed_OP2:
6681     Opc = AArch64::FMLSv1i64_indexed;
6682     RC = &AArch64::FPR64RegClass;
6683     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6684                            FMAInstKind::Indexed);
6685     break;
6686 
6687   case MachineCombinerPattern::FMLSv4f16_OP1:
6688   case MachineCombinerPattern::FMLSv4i16_indexed_OP1: {
6689     RC = &AArch64::FPR64RegClass;
6690     Register NewVR = MRI.createVirtualRegister(RC);
6691     MachineInstrBuilder MIB1 =
6692         BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv4f16), NewVR)
6693             .add(Root.getOperand(2));
6694     InsInstrs.push_back(MIB1);
6695     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6696     if (Pattern == MachineCombinerPattern::FMLSv4f16_OP1) {
6697       Opc = AArch64::FMLAv4f16;
6698       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6699                              FMAInstKind::Accumulator, &NewVR);
6700     } else {
6701       Opc = AArch64::FMLAv4i16_indexed;
6702       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6703                              FMAInstKind::Indexed, &NewVR);
6704     }
6705     break;
6706   }
6707   case MachineCombinerPattern::FMLSv4f16_OP2:
6708     RC = &AArch64::FPR64RegClass;
6709     Opc = AArch64::FMLSv4f16;
6710     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6711                            FMAInstKind::Accumulator);
6712     break;
6713   case MachineCombinerPattern::FMLSv4i16_indexed_OP2:
6714     RC = &AArch64::FPR64RegClass;
6715     Opc = AArch64::FMLSv4i16_indexed;
6716     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6717                            FMAInstKind::Indexed);
6718     break;
6719 
6720   case MachineCombinerPattern::FMLSv2f32_OP2:
6721   case MachineCombinerPattern::FMLSv2i32_indexed_OP2:
6722     RC = &AArch64::FPR64RegClass;
6723     if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP2) {
6724       Opc = AArch64::FMLSv2i32_indexed;
6725       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6726                              FMAInstKind::Indexed);
6727     } else {
6728       Opc = AArch64::FMLSv2f32;
6729       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6730                              FMAInstKind::Accumulator);
6731     }
6732     break;
6733 
6734   case MachineCombinerPattern::FMLSv8f16_OP1:
6735   case MachineCombinerPattern::FMLSv8i16_indexed_OP1: {
6736     RC = &AArch64::FPR128RegClass;
6737     Register NewVR = MRI.createVirtualRegister(RC);
6738     MachineInstrBuilder MIB1 =
6739         BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv8f16), NewVR)
6740             .add(Root.getOperand(2));
6741     InsInstrs.push_back(MIB1);
6742     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6743     if (Pattern == MachineCombinerPattern::FMLSv8f16_OP1) {
6744       Opc = AArch64::FMLAv8f16;
6745       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6746                              FMAInstKind::Accumulator, &NewVR);
6747     } else {
6748       Opc = AArch64::FMLAv8i16_indexed;
6749       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6750                              FMAInstKind::Indexed, &NewVR);
6751     }
6752     break;
6753   }
6754   case MachineCombinerPattern::FMLSv8f16_OP2:
6755     RC = &AArch64::FPR128RegClass;
6756     Opc = AArch64::FMLSv8f16;
6757     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6758                            FMAInstKind::Accumulator);
6759     break;
6760   case MachineCombinerPattern::FMLSv8i16_indexed_OP2:
6761     RC = &AArch64::FPR128RegClass;
6762     Opc = AArch64::FMLSv8i16_indexed;
6763     MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6764                            FMAInstKind::Indexed);
6765     break;
6766 
6767   case MachineCombinerPattern::FMLSv2f64_OP2:
6768   case MachineCombinerPattern::FMLSv2i64_indexed_OP2:
6769     RC = &AArch64::FPR128RegClass;
6770     if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP2) {
6771       Opc = AArch64::FMLSv2i64_indexed;
6772       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6773                              FMAInstKind::Indexed);
6774     } else {
6775       Opc = AArch64::FMLSv2f64;
6776       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6777                              FMAInstKind::Accumulator);
6778     }
6779     break;
6780 
6781   case MachineCombinerPattern::FMLSv4f32_OP2:
6782   case MachineCombinerPattern::FMLSv4i32_indexed_OP2:
6783     RC = &AArch64::FPR128RegClass;
6784     if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP2) {
6785       Opc = AArch64::FMLSv4i32_indexed;
6786       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6787                              FMAInstKind::Indexed);
6788     } else {
6789       Opc = AArch64::FMLSv4f32;
6790       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC,
6791                              FMAInstKind::Accumulator);
6792     }
6793     break;
6794   case MachineCombinerPattern::FMLSv2f32_OP1:
6795   case MachineCombinerPattern::FMLSv2i32_indexed_OP1: {
6796     RC = &AArch64::FPR64RegClass;
6797     Register NewVR = MRI.createVirtualRegister(RC);
6798     MachineInstrBuilder MIB1 =
6799         BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv2f32), NewVR)
6800             .add(Root.getOperand(2));
6801     InsInstrs.push_back(MIB1);
6802     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6803     if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP1) {
6804       Opc = AArch64::FMLAv2i32_indexed;
6805       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6806                              FMAInstKind::Indexed, &NewVR);
6807     } else {
6808       Opc = AArch64::FMLAv2f32;
6809       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6810                              FMAInstKind::Accumulator, &NewVR);
6811     }
6812     break;
6813   }
6814   case MachineCombinerPattern::FMLSv4f32_OP1:
6815   case MachineCombinerPattern::FMLSv4i32_indexed_OP1: {
6816     RC = &AArch64::FPR128RegClass;
6817     Register NewVR = MRI.createVirtualRegister(RC);
6818     MachineInstrBuilder MIB1 =
6819         BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv4f32), NewVR)
6820             .add(Root.getOperand(2));
6821     InsInstrs.push_back(MIB1);
6822     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6823     if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP1) {
6824       Opc = AArch64::FMLAv4i32_indexed;
6825       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6826                              FMAInstKind::Indexed, &NewVR);
6827     } else {
6828       Opc = AArch64::FMLAv4f32;
6829       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6830                              FMAInstKind::Accumulator, &NewVR);
6831     }
6832     break;
6833   }
6834   case MachineCombinerPattern::FMLSv2f64_OP1:
6835   case MachineCombinerPattern::FMLSv2i64_indexed_OP1: {
6836     RC = &AArch64::FPR128RegClass;
6837     Register NewVR = MRI.createVirtualRegister(RC);
6838     MachineInstrBuilder MIB1 =
6839         BuildMI(MF, MIMetadata(Root), TII->get(AArch64::FNEGv2f64), NewVR)
6840             .add(Root.getOperand(2));
6841     InsInstrs.push_back(MIB1);
6842     InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
6843     if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP1) {
6844       Opc = AArch64::FMLAv2i64_indexed;
6845       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6846                              FMAInstKind::Indexed, &NewVR);
6847     } else {
6848       Opc = AArch64::FMLAv2f64;
6849       MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC,
6850                              FMAInstKind::Accumulator, &NewVR);
6851     }
6852     break;
6853   }
6854   case MachineCombinerPattern::FMULv2i32_indexed_OP1:
6855   case MachineCombinerPattern::FMULv2i32_indexed_OP2: {
6856     unsigned IdxDupOp =
6857         (Pattern == MachineCombinerPattern::FMULv2i32_indexed_OP1) ? 1 : 2;
6858     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv2i32_indexed,
6859                        &AArch64::FPR128RegClass, MRI);
6860     break;
6861   }
6862   case MachineCombinerPattern::FMULv2i64_indexed_OP1:
6863   case MachineCombinerPattern::FMULv2i64_indexed_OP2: {
6864     unsigned IdxDupOp =
6865         (Pattern == MachineCombinerPattern::FMULv2i64_indexed_OP1) ? 1 : 2;
6866     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv2i64_indexed,
6867                        &AArch64::FPR128RegClass, MRI);
6868     break;
6869   }
6870   case MachineCombinerPattern::FMULv4i16_indexed_OP1:
6871   case MachineCombinerPattern::FMULv4i16_indexed_OP2: {
6872     unsigned IdxDupOp =
6873         (Pattern == MachineCombinerPattern::FMULv4i16_indexed_OP1) ? 1 : 2;
6874     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv4i16_indexed,
6875                        &AArch64::FPR128_loRegClass, MRI);
6876     break;
6877   }
6878   case MachineCombinerPattern::FMULv4i32_indexed_OP1:
6879   case MachineCombinerPattern::FMULv4i32_indexed_OP2: {
6880     unsigned IdxDupOp =
6881         (Pattern == MachineCombinerPattern::FMULv4i32_indexed_OP1) ? 1 : 2;
6882     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv4i32_indexed,
6883                        &AArch64::FPR128RegClass, MRI);
6884     break;
6885   }
6886   case MachineCombinerPattern::FMULv8i16_indexed_OP1:
6887   case MachineCombinerPattern::FMULv8i16_indexed_OP2: {
6888     unsigned IdxDupOp =
6889         (Pattern == MachineCombinerPattern::FMULv8i16_indexed_OP1) ? 1 : 2;
6890     genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv8i16_indexed,
6891                        &AArch64::FPR128_loRegClass, MRI);
6892     break;
6893   }
6894   case MachineCombinerPattern::FNMADD: {
6895     MUL = genFNegatedMAD(MF, MRI, TII, Root, InsInstrs);
6896     break;
6897   }
6898 
6899   } // end switch (Pattern)
6900   // Record MUL and ADD/SUB for deletion
6901   if (MUL)
6902     DelInstrs.push_back(MUL);
6903   DelInstrs.push_back(&Root);
6904 
6905   // Set the flags on the inserted instructions to be the merged flags of the
6906   // instructions that we have combined.
6907   uint32_t Flags = Root.getFlags();
6908   if (MUL)
6909     Flags = Root.mergeFlagsWith(*MUL);
6910   for (auto *MI : InsInstrs)
6911     MI->setFlags(Flags);
6912 }
6913 
6914 /// Replace csincr-branch sequence by simple conditional branch
6915 ///
6916 /// Examples:
6917 /// 1. \code
6918 ///   csinc  w9, wzr, wzr, <condition code>
6919 ///   tbnz   w9, #0, 0x44
6920 ///    \endcode
6921 /// to
6922 ///    \code
6923 ///   b.<inverted condition code>
6924 ///    \endcode
6925 ///
6926 /// 2. \code
6927 ///   csinc w9, wzr, wzr, <condition code>
6928 ///   tbz   w9, #0, 0x44
6929 ///    \endcode
6930 /// to
6931 ///    \code
6932 ///   b.<condition code>
6933 ///    \endcode
6934 ///
6935 /// Replace compare and branch sequence by TBZ/TBNZ instruction when the
6936 /// compare's constant operand is power of 2.
6937 ///
6938 /// Examples:
6939 ///    \code
6940 ///   and  w8, w8, #0x400
6941 ///   cbnz w8, L1
6942 ///    \endcode
6943 /// to
6944 ///    \code
6945 ///   tbnz w8, #10, L1
6946 ///    \endcode
6947 ///
6948 /// \param  MI Conditional Branch
6949 /// \return True when the simple conditional branch is generated
6950 ///
6951 bool AArch64InstrInfo::optimizeCondBranch(MachineInstr &MI) const {
6952   bool IsNegativeBranch = false;
6953   bool IsTestAndBranch = false;
6954   unsigned TargetBBInMI = 0;
6955   switch (MI.getOpcode()) {
6956   default:
6957     llvm_unreachable("Unknown branch instruction?");
6958   case AArch64::Bcc:
6959     return false;
6960   case AArch64::CBZW:
6961   case AArch64::CBZX:
6962     TargetBBInMI = 1;
6963     break;
6964   case AArch64::CBNZW:
6965   case AArch64::CBNZX:
6966     TargetBBInMI = 1;
6967     IsNegativeBranch = true;
6968     break;
6969   case AArch64::TBZW:
6970   case AArch64::TBZX:
6971     TargetBBInMI = 2;
6972     IsTestAndBranch = true;
6973     break;
6974   case AArch64::TBNZW:
6975   case AArch64::TBNZX:
6976     TargetBBInMI = 2;
6977     IsNegativeBranch = true;
6978     IsTestAndBranch = true;
6979     break;
6980   }
6981   // So we increment a zero register and test for bits other
6982   // than bit 0? Conservatively bail out in case the verifier
6983   // missed this case.
6984   if (IsTestAndBranch && MI.getOperand(1).getImm())
6985     return false;
6986 
6987   // Find Definition.
6988   assert(MI.getParent() && "Incomplete machine instruciton\n");
6989   MachineBasicBlock *MBB = MI.getParent();
6990   MachineFunction *MF = MBB->getParent();
6991   MachineRegisterInfo *MRI = &MF->getRegInfo();
6992   Register VReg = MI.getOperand(0).getReg();
6993   if (!VReg.isVirtual())
6994     return false;
6995 
6996   MachineInstr *DefMI = MRI->getVRegDef(VReg);
6997 
6998   // Look through COPY instructions to find definition.
6999   while (DefMI->isCopy()) {
7000     Register CopyVReg = DefMI->getOperand(1).getReg();
7001     if (!MRI->hasOneNonDBGUse(CopyVReg))
7002       return false;
7003     if (!MRI->hasOneDef(CopyVReg))
7004       return false;
7005     DefMI = MRI->getVRegDef(CopyVReg);
7006   }
7007 
7008   switch (DefMI->getOpcode()) {
7009   default:
7010     return false;
7011   // Fold AND into a TBZ/TBNZ if constant operand is power of 2.
7012   case AArch64::ANDWri:
7013   case AArch64::ANDXri: {
7014     if (IsTestAndBranch)
7015       return false;
7016     if (DefMI->getParent() != MBB)
7017       return false;
7018     if (!MRI->hasOneNonDBGUse(VReg))
7019       return false;
7020 
7021     bool Is32Bit = (DefMI->getOpcode() == AArch64::ANDWri);
7022     uint64_t Mask = AArch64_AM::decodeLogicalImmediate(
7023         DefMI->getOperand(2).getImm(), Is32Bit ? 32 : 64);
7024     if (!isPowerOf2_64(Mask))
7025       return false;
7026 
7027     MachineOperand &MO = DefMI->getOperand(1);
7028     Register NewReg = MO.getReg();
7029     if (!NewReg.isVirtual())
7030       return false;
7031 
7032     assert(!MRI->def_empty(NewReg) && "Register must be defined.");
7033 
7034     MachineBasicBlock &RefToMBB = *MBB;
7035     MachineBasicBlock *TBB = MI.getOperand(1).getMBB();
7036     DebugLoc DL = MI.getDebugLoc();
7037     unsigned Imm = Log2_64(Mask);
7038     unsigned Opc = (Imm < 32)
7039                        ? (IsNegativeBranch ? AArch64::TBNZW : AArch64::TBZW)
7040                        : (IsNegativeBranch ? AArch64::TBNZX : AArch64::TBZX);
7041     MachineInstr *NewMI = BuildMI(RefToMBB, MI, DL, get(Opc))
7042                               .addReg(NewReg)
7043                               .addImm(Imm)
7044                               .addMBB(TBB);
7045     // Register lives on to the CBZ now.
7046     MO.setIsKill(false);
7047 
7048     // For immediate smaller than 32, we need to use the 32-bit
7049     // variant (W) in all cases. Indeed the 64-bit variant does not
7050     // allow to encode them.
7051     // Therefore, if the input register is 64-bit, we need to take the
7052     // 32-bit sub-part.
7053     if (!Is32Bit && Imm < 32)
7054       NewMI->getOperand(0).setSubReg(AArch64::sub_32);
7055     MI.eraseFromParent();
7056     return true;
7057   }
7058   // Look for CSINC
7059   case AArch64::CSINCWr:
7060   case AArch64::CSINCXr: {
7061     if (!(DefMI->getOperand(1).getReg() == AArch64::WZR &&
7062           DefMI->getOperand(2).getReg() == AArch64::WZR) &&
7063         !(DefMI->getOperand(1).getReg() == AArch64::XZR &&
7064           DefMI->getOperand(2).getReg() == AArch64::XZR))
7065       return false;
7066 
7067     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
7068       return false;
7069 
7070     AArch64CC::CondCode CC = (AArch64CC::CondCode)DefMI->getOperand(3).getImm();
7071     // Convert only when the condition code is not modified between
7072     // the CSINC and the branch. The CC may be used by other
7073     // instructions in between.
7074     if (areCFlagsAccessedBetweenInstrs(DefMI, MI, &getRegisterInfo(), AK_Write))
7075       return false;
7076     MachineBasicBlock &RefToMBB = *MBB;
7077     MachineBasicBlock *TBB = MI.getOperand(TargetBBInMI).getMBB();
7078     DebugLoc DL = MI.getDebugLoc();
7079     if (IsNegativeBranch)
7080       CC = AArch64CC::getInvertedCondCode(CC);
7081     BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
7082     MI.eraseFromParent();
7083     return true;
7084   }
7085   }
7086 }
7087 
7088 std::pair<unsigned, unsigned>
7089 AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7090   const unsigned Mask = AArch64II::MO_FRAGMENT;
7091   return std::make_pair(TF & Mask, TF & ~Mask);
7092 }
7093 
7094 ArrayRef<std::pair<unsigned, const char *>>
7095 AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7096   using namespace AArch64II;
7097 
7098   static const std::pair<unsigned, const char *> TargetFlags[] = {
7099       {MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"},
7100       {MO_G3, "aarch64-g3"},     {MO_G2, "aarch64-g2"},
7101       {MO_G1, "aarch64-g1"},     {MO_G0, "aarch64-g0"},
7102       {MO_HI12, "aarch64-hi12"}};
7103   return ArrayRef(TargetFlags);
7104 }
7105 
7106 ArrayRef<std::pair<unsigned, const char *>>
7107 AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
7108   using namespace AArch64II;
7109 
7110   static const std::pair<unsigned, const char *> TargetFlags[] = {
7111       {MO_COFFSTUB, "aarch64-coffstub"},
7112       {MO_GOT, "aarch64-got"},
7113       {MO_NC, "aarch64-nc"},
7114       {MO_S, "aarch64-s"},
7115       {MO_TLS, "aarch64-tls"},
7116       {MO_DLLIMPORT, "aarch64-dllimport"},
7117       {MO_DLLIMPORTAUX, "aarch64-dllimportaux"},
7118       {MO_PREL, "aarch64-prel"},
7119       {MO_TAGGED, "aarch64-tagged"}};
7120   return ArrayRef(TargetFlags);
7121 }
7122 
7123 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
7124 AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
7125   static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
7126       {{MOSuppressPair, "aarch64-suppress-pair"},
7127        {MOStridedAccess, "aarch64-strided-access"}};
7128   return ArrayRef(TargetFlags);
7129 }
7130 
7131 /// Constants defining how certain sequences should be outlined.
7132 /// This encompasses how an outlined function should be called, and what kind of
7133 /// frame should be emitted for that outlined function.
7134 ///
7135 /// \p MachineOutlinerDefault implies that the function should be called with
7136 /// a save and restore of LR to the stack.
7137 ///
7138 /// That is,
7139 ///
7140 /// I1     Save LR                    OUTLINED_FUNCTION:
7141 /// I2 --> BL OUTLINED_FUNCTION       I1
7142 /// I3     Restore LR                 I2
7143 ///                                   I3
7144 ///                                   RET
7145 ///
7146 /// * Call construction overhead: 3 (save + BL + restore)
7147 /// * Frame construction overhead: 1 (ret)
7148 /// * Requires stack fixups? Yes
7149 ///
7150 /// \p MachineOutlinerTailCall implies that the function is being created from
7151 /// a sequence of instructions ending in a return.
7152 ///
7153 /// That is,
7154 ///
7155 /// I1                             OUTLINED_FUNCTION:
7156 /// I2 --> B OUTLINED_FUNCTION     I1
7157 /// RET                            I2
7158 ///                                RET
7159 ///
7160 /// * Call construction overhead: 1 (B)
7161 /// * Frame construction overhead: 0 (Return included in sequence)
7162 /// * Requires stack fixups? No
7163 ///
7164 /// \p MachineOutlinerNoLRSave implies that the function should be called using
7165 /// a BL instruction, but doesn't require LR to be saved and restored. This
7166 /// happens when LR is known to be dead.
7167 ///
7168 /// That is,
7169 ///
7170 /// I1                                OUTLINED_FUNCTION:
7171 /// I2 --> BL OUTLINED_FUNCTION       I1
7172 /// I3                                I2
7173 ///                                   I3
7174 ///                                   RET
7175 ///
7176 /// * Call construction overhead: 1 (BL)
7177 /// * Frame construction overhead: 1 (RET)
7178 /// * Requires stack fixups? No
7179 ///
7180 /// \p MachineOutlinerThunk implies that the function is being created from
7181 /// a sequence of instructions ending in a call. The outlined function is
7182 /// called with a BL instruction, and the outlined function tail-calls the
7183 /// original call destination.
7184 ///
7185 /// That is,
7186 ///
7187 /// I1                                OUTLINED_FUNCTION:
7188 /// I2 --> BL OUTLINED_FUNCTION       I1
7189 /// BL f                              I2
7190 ///                                   B f
7191 /// * Call construction overhead: 1 (BL)
7192 /// * Frame construction overhead: 0
7193 /// * Requires stack fixups? No
7194 ///
7195 /// \p MachineOutlinerRegSave implies that the function should be called with a
7196 /// save and restore of LR to an available register. This allows us to avoid
7197 /// stack fixups. Note that this outlining variant is compatible with the
7198 /// NoLRSave case.
7199 ///
7200 /// That is,
7201 ///
7202 /// I1     Save LR                    OUTLINED_FUNCTION:
7203 /// I2 --> BL OUTLINED_FUNCTION       I1
7204 /// I3     Restore LR                 I2
7205 ///                                   I3
7206 ///                                   RET
7207 ///
7208 /// * Call construction overhead: 3 (save + BL + restore)
7209 /// * Frame construction overhead: 1 (ret)
7210 /// * Requires stack fixups? No
7211 enum MachineOutlinerClass {
7212   MachineOutlinerDefault,  /// Emit a save, restore, call, and return.
7213   MachineOutlinerTailCall, /// Only emit a branch.
7214   MachineOutlinerNoLRSave, /// Emit a call and return.
7215   MachineOutlinerThunk,    /// Emit a call and tail-call.
7216   MachineOutlinerRegSave   /// Same as default, but save to a register.
7217 };
7218 
7219 enum MachineOutlinerMBBFlags {
7220   LRUnavailableSomewhere = 0x2,
7221   HasCalls = 0x4,
7222   UnsafeRegsDead = 0x8
7223 };
7224 
7225 Register
7226 AArch64InstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
7227   MachineFunction *MF = C.getMF();
7228   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
7229   const AArch64RegisterInfo *ARI =
7230       static_cast<const AArch64RegisterInfo *>(&TRI);
7231   // Check if there is an available register across the sequence that we can
7232   // use.
7233   for (unsigned Reg : AArch64::GPR64RegClass) {
7234     if (!ARI->isReservedReg(*MF, Reg) &&
7235         Reg != AArch64::LR &&  // LR is not reserved, but don't use it.
7236         Reg != AArch64::X16 && // X16 is not guaranteed to be preserved.
7237         Reg != AArch64::X17 && // Ditto for X17.
7238         C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
7239         C.isAvailableInsideSeq(Reg, TRI))
7240       return Reg;
7241   }
7242   return Register();
7243 }
7244 
7245 static bool
7246 outliningCandidatesSigningScopeConsensus(const outliner::Candidate &a,
7247                                          const outliner::Candidate &b) {
7248   const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>();
7249   const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>();
7250 
7251   return MFIa->shouldSignReturnAddress(false) == MFIb->shouldSignReturnAddress(false) &&
7252          MFIa->shouldSignReturnAddress(true) == MFIb->shouldSignReturnAddress(true);
7253 }
7254 
7255 static bool
7256 outliningCandidatesSigningKeyConsensus(const outliner::Candidate &a,
7257                                        const outliner::Candidate &b) {
7258   const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>();
7259   const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>();
7260 
7261   return MFIa->shouldSignWithBKey() == MFIb->shouldSignWithBKey();
7262 }
7263 
7264 static bool outliningCandidatesV8_3OpsConsensus(const outliner::Candidate &a,
7265                                                 const outliner::Candidate &b) {
7266   const AArch64Subtarget &SubtargetA =
7267       a.getMF()->getSubtarget<AArch64Subtarget>();
7268   const AArch64Subtarget &SubtargetB =
7269       b.getMF()->getSubtarget<AArch64Subtarget>();
7270   return SubtargetA.hasV8_3aOps() == SubtargetB.hasV8_3aOps();
7271 }
7272 
7273 std::optional<outliner::OutlinedFunction>
7274 AArch64InstrInfo::getOutliningCandidateInfo(
7275     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
7276   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
7277   unsigned SequenceSize =
7278       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
7279                       [this](unsigned Sum, const MachineInstr &MI) {
7280                         return Sum + getInstSizeInBytes(MI);
7281                       });
7282   unsigned NumBytesToCreateFrame = 0;
7283 
7284   // We only allow outlining for functions having exactly matching return
7285   // address signing attributes, i.e., all share the same value for the
7286   // attribute "sign-return-address" and all share the same type of key they
7287   // are signed with.
7288   // Additionally we require all functions to simultaniously either support
7289   // v8.3a features or not. Otherwise an outlined function could get signed
7290   // using dedicated v8.3 instructions and a call from a function that doesn't
7291   // support v8.3 instructions would therefore be invalid.
7292   if (std::adjacent_find(
7293           RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
7294           [](const outliner::Candidate &a, const outliner::Candidate &b) {
7295             // Return true if a and b are non-equal w.r.t. return address
7296             // signing or support of v8.3a features
7297             if (outliningCandidatesSigningScopeConsensus(a, b) &&
7298                 outliningCandidatesSigningKeyConsensus(a, b) &&
7299                 outliningCandidatesV8_3OpsConsensus(a, b)) {
7300               return false;
7301             }
7302             return true;
7303           }) != RepeatedSequenceLocs.end()) {
7304     return std::nullopt;
7305   }
7306 
7307   // Since at this point all candidates agree on their return address signing
7308   // picking just one is fine. If the candidate functions potentially sign their
7309   // return addresses, the outlined function should do the same. Note that in
7310   // the case of "sign-return-address"="non-leaf" this is an assumption: It is
7311   // not certainly true that the outlined function will have to sign its return
7312   // address but this decision is made later, when the decision to outline
7313   // has already been made.
7314   // The same holds for the number of additional instructions we need: On
7315   // v8.3a RET can be replaced by RETAA/RETAB and no AUT instruction is
7316   // necessary. However, at this point we don't know if the outlined function
7317   // will have a RET instruction so we assume the worst.
7318   const TargetRegisterInfo &TRI = getRegisterInfo();
7319   if (FirstCand.getMF()
7320           ->getInfo<AArch64FunctionInfo>()
7321           ->shouldSignReturnAddress(true)) {
7322     // One PAC and one AUT instructions
7323     NumBytesToCreateFrame += 8;
7324 
7325     // We have to check if sp modifying instructions would get outlined.
7326     // If so we only allow outlining if sp is unchanged overall, so matching
7327     // sub and add instructions are okay to outline, all other sp modifications
7328     // are not
7329     auto hasIllegalSPModification = [&TRI](outliner::Candidate &C) {
7330       int SPValue = 0;
7331       MachineBasicBlock::iterator MBBI = C.front();
7332       for (;;) {
7333         if (MBBI->modifiesRegister(AArch64::SP, &TRI)) {
7334           switch (MBBI->getOpcode()) {
7335           case AArch64::ADDXri:
7336           case AArch64::ADDWri:
7337             assert(MBBI->getNumOperands() == 4 && "Wrong number of operands");
7338             assert(MBBI->getOperand(2).isImm() &&
7339                    "Expected operand to be immediate");
7340             assert(MBBI->getOperand(1).isReg() &&
7341                    "Expected operand to be a register");
7342             // Check if the add just increments sp. If so, we search for
7343             // matching sub instructions that decrement sp. If not, the
7344             // modification is illegal
7345             if (MBBI->getOperand(1).getReg() == AArch64::SP)
7346               SPValue += MBBI->getOperand(2).getImm();
7347             else
7348               return true;
7349             break;
7350           case AArch64::SUBXri:
7351           case AArch64::SUBWri:
7352             assert(MBBI->getNumOperands() == 4 && "Wrong number of operands");
7353             assert(MBBI->getOperand(2).isImm() &&
7354                    "Expected operand to be immediate");
7355             assert(MBBI->getOperand(1).isReg() &&
7356                    "Expected operand to be a register");
7357             // Check if the sub just decrements sp. If so, we search for
7358             // matching add instructions that increment sp. If not, the
7359             // modification is illegal
7360             if (MBBI->getOperand(1).getReg() == AArch64::SP)
7361               SPValue -= MBBI->getOperand(2).getImm();
7362             else
7363               return true;
7364             break;
7365           default:
7366             return true;
7367           }
7368         }
7369         if (MBBI == C.back())
7370           break;
7371         ++MBBI;
7372       }
7373       if (SPValue)
7374         return true;
7375       return false;
7376     };
7377     // Remove candidates with illegal stack modifying instructions
7378     llvm::erase_if(RepeatedSequenceLocs, hasIllegalSPModification);
7379 
7380     // If the sequence doesn't have enough candidates left, then we're done.
7381     if (RepeatedSequenceLocs.size() < 2)
7382       return std::nullopt;
7383   }
7384 
7385   // Properties about candidate MBBs that hold for all of them.
7386   unsigned FlagsSetInAll = 0xF;
7387 
7388   // Compute liveness information for each candidate, and set FlagsSetInAll.
7389   for (outliner::Candidate &C : RepeatedSequenceLocs)
7390     FlagsSetInAll &= C.Flags;
7391 
7392   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
7393 
7394   // Helper lambda which sets call information for every candidate.
7395   auto SetCandidateCallInfo =
7396       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
7397         for (outliner::Candidate &C : RepeatedSequenceLocs)
7398           C.setCallInfo(CallID, NumBytesForCall);
7399       };
7400 
7401   unsigned FrameID = MachineOutlinerDefault;
7402   NumBytesToCreateFrame += 4;
7403 
7404   bool HasBTI = any_of(RepeatedSequenceLocs, [](outliner::Candidate &C) {
7405     return C.getMF()->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement();
7406   });
7407 
7408   // We check to see if CFI Instructions are present, and if they are
7409   // we find the number of CFI Instructions in the candidates.
7410   unsigned CFICount = 0;
7411   for (auto &I : make_range(RepeatedSequenceLocs[0].front(),
7412                             std::next(RepeatedSequenceLocs[0].back()))) {
7413     if (I.isCFIInstruction())
7414       CFICount++;
7415   }
7416 
7417   // We compare the number of found CFI Instructions to  the number of CFI
7418   // instructions in the parent function for each candidate.  We must check this
7419   // since if we outline one of the CFI instructions in a function, we have to
7420   // outline them all for correctness. If we do not, the address offsets will be
7421   // incorrect between the two sections of the program.
7422   for (outliner::Candidate &C : RepeatedSequenceLocs) {
7423     std::vector<MCCFIInstruction> CFIInstructions =
7424         C.getMF()->getFrameInstructions();
7425 
7426     if (CFICount > 0 && CFICount != CFIInstructions.size())
7427       return std::nullopt;
7428   }
7429 
7430   // Returns true if an instructions is safe to fix up, false otherwise.
7431   auto IsSafeToFixup = [this, &TRI](MachineInstr &MI) {
7432     if (MI.isCall())
7433       return true;
7434 
7435     if (!MI.modifiesRegister(AArch64::SP, &TRI) &&
7436         !MI.readsRegister(AArch64::SP, &TRI))
7437       return true;
7438 
7439     // Any modification of SP will break our code to save/restore LR.
7440     // FIXME: We could handle some instructions which add a constant
7441     // offset to SP, with a bit more work.
7442     if (MI.modifiesRegister(AArch64::SP, &TRI))
7443       return false;
7444 
7445     // At this point, we have a stack instruction that we might need to
7446     // fix up. We'll handle it if it's a load or store.
7447     if (MI.mayLoadOrStore()) {
7448       const MachineOperand *Base; // Filled with the base operand of MI.
7449       int64_t Offset;             // Filled with the offset of MI.
7450       bool OffsetIsScalable;
7451 
7452       // Does it allow us to offset the base operand and is the base the
7453       // register SP?
7454       if (!getMemOperandWithOffset(MI, Base, Offset, OffsetIsScalable, &TRI) ||
7455           !Base->isReg() || Base->getReg() != AArch64::SP)
7456         return false;
7457 
7458       // Fixe-up code below assumes bytes.
7459       if (OffsetIsScalable)
7460         return false;
7461 
7462       // Find the minimum/maximum offset for this instruction and check
7463       // if fixing it up would be in range.
7464       int64_t MinOffset,
7465           MaxOffset;  // Unscaled offsets for the instruction.
7466       TypeSize Scale(0U, false); // The scale to multiply the offsets by.
7467       unsigned DummyWidth;
7468       getMemOpInfo(MI.getOpcode(), Scale, DummyWidth, MinOffset, MaxOffset);
7469 
7470       Offset += 16; // Update the offset to what it would be if we outlined.
7471       if (Offset < MinOffset * (int64_t)Scale.getFixedValue() ||
7472           Offset > MaxOffset * (int64_t)Scale.getFixedValue())
7473         return false;
7474 
7475       // It's in range, so we can outline it.
7476       return true;
7477     }
7478 
7479     // FIXME: Add handling for instructions like "add x0, sp, #8".
7480 
7481     // We can't fix it up, so don't outline it.
7482     return false;
7483   };
7484 
7485   // True if it's possible to fix up each stack instruction in this sequence.
7486   // Important for frames/call variants that modify the stack.
7487   bool AllStackInstrsSafe = std::all_of(
7488       FirstCand.front(), std::next(FirstCand.back()), IsSafeToFixup);
7489 
7490   // If the last instruction in any candidate is a terminator, then we should
7491   // tail call all of the candidates.
7492   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
7493     FrameID = MachineOutlinerTailCall;
7494     NumBytesToCreateFrame = 0;
7495     SetCandidateCallInfo(MachineOutlinerTailCall, 4);
7496   }
7497 
7498   else if (LastInstrOpcode == AArch64::BL ||
7499            ((LastInstrOpcode == AArch64::BLR ||
7500              LastInstrOpcode == AArch64::BLRNoIP) &&
7501             !HasBTI)) {
7502     // FIXME: Do we need to check if the code after this uses the value of LR?
7503     FrameID = MachineOutlinerThunk;
7504     NumBytesToCreateFrame = 0;
7505     SetCandidateCallInfo(MachineOutlinerThunk, 4);
7506   }
7507 
7508   else {
7509     // We need to decide how to emit calls + frames. We can always emit the same
7510     // frame if we don't need to save to the stack. If we have to save to the
7511     // stack, then we need a different frame.
7512     unsigned NumBytesNoStackCalls = 0;
7513     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
7514 
7515     // Check if we have to save LR.
7516     for (outliner::Candidate &C : RepeatedSequenceLocs) {
7517       bool LRAvailable =
7518           (C.Flags & MachineOutlinerMBBFlags::LRUnavailableSomewhere)
7519               ? C.isAvailableAcrossAndOutOfSeq(AArch64::LR, TRI)
7520               : true;
7521       // If we have a noreturn caller, then we're going to be conservative and
7522       // say that we have to save LR. If we don't have a ret at the end of the
7523       // block, then we can't reason about liveness accurately.
7524       //
7525       // FIXME: We can probably do better than always disabling this in
7526       // noreturn functions by fixing up the liveness info.
7527       bool IsNoReturn =
7528           C.getMF()->getFunction().hasFnAttribute(Attribute::NoReturn);
7529 
7530       // Is LR available? If so, we don't need a save.
7531       if (LRAvailable && !IsNoReturn) {
7532         NumBytesNoStackCalls += 4;
7533         C.setCallInfo(MachineOutlinerNoLRSave, 4);
7534         CandidatesWithoutStackFixups.push_back(C);
7535       }
7536 
7537       // Is an unused register available? If so, we won't modify the stack, so
7538       // we can outline with the same frame type as those that don't save LR.
7539       else if (findRegisterToSaveLRTo(C)) {
7540         NumBytesNoStackCalls += 12;
7541         C.setCallInfo(MachineOutlinerRegSave, 12);
7542         CandidatesWithoutStackFixups.push_back(C);
7543       }
7544 
7545       // Is SP used in the sequence at all? If not, we don't have to modify
7546       // the stack, so we are guaranteed to get the same frame.
7547       else if (C.isAvailableInsideSeq(AArch64::SP, TRI)) {
7548         NumBytesNoStackCalls += 12;
7549         C.setCallInfo(MachineOutlinerDefault, 12);
7550         CandidatesWithoutStackFixups.push_back(C);
7551       }
7552 
7553       // If we outline this, we need to modify the stack. Pretend we don't
7554       // outline this by saving all of its bytes.
7555       else {
7556         NumBytesNoStackCalls += SequenceSize;
7557       }
7558     }
7559 
7560     // If there are no places where we have to save LR, then note that we
7561     // don't have to update the stack. Otherwise, give every candidate the
7562     // default call type, as long as it's safe to do so.
7563     if (!AllStackInstrsSafe ||
7564         NumBytesNoStackCalls <= RepeatedSequenceLocs.size() * 12) {
7565       RepeatedSequenceLocs = CandidatesWithoutStackFixups;
7566       FrameID = MachineOutlinerNoLRSave;
7567     } else {
7568       SetCandidateCallInfo(MachineOutlinerDefault, 12);
7569 
7570       // Bugzilla ID: 46767
7571       // TODO: Check if fixing up the stack more than once is safe so we can
7572       // outline these.
7573       //
7574       // An outline resulting in a caller that requires stack fixups at the
7575       // callsite to a callee that also requires stack fixups can happen when
7576       // there are no available registers at the candidate callsite for a
7577       // candidate that itself also has calls.
7578       //
7579       // In other words if function_containing_sequence in the following pseudo
7580       // assembly requires that we save LR at the point of the call, but there
7581       // are no available registers: in this case we save using SP and as a
7582       // result the SP offsets requires stack fixups by multiples of 16.
7583       //
7584       // function_containing_sequence:
7585       //   ...
7586       //   save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N
7587       //   call OUTLINED_FUNCTION_N
7588       //   restore LR from SP
7589       //   ...
7590       //
7591       // OUTLINED_FUNCTION_N:
7592       //   save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N
7593       //   ...
7594       //   bl foo
7595       //   restore LR from SP
7596       //   ret
7597       //
7598       // Because the code to handle more than one stack fixup does not
7599       // currently have the proper checks for legality, these cases will assert
7600       // in the AArch64 MachineOutliner. This is because the code to do this
7601       // needs more hardening, testing, better checks that generated code is
7602       // legal, etc and because it is only verified to handle a single pass of
7603       // stack fixup.
7604       //
7605       // The assert happens in AArch64InstrInfo::buildOutlinedFrame to catch
7606       // these cases until they are known to be handled. Bugzilla 46767 is
7607       // referenced in comments at the assert site.
7608       //
7609       // To avoid asserting (or generating non-legal code on noassert builds)
7610       // we remove all candidates which would need more than one stack fixup by
7611       // pruning the cases where the candidate has calls while also having no
7612       // available LR and having no available general purpose registers to copy
7613       // LR to (ie one extra stack save/restore).
7614       //
7615       if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
7616         erase_if(RepeatedSequenceLocs, [this, &TRI](outliner::Candidate &C) {
7617           return (std::any_of(
7618                      C.front(), std::next(C.back()),
7619                      [](const MachineInstr &MI) { return MI.isCall(); })) &&
7620                  (!C.isAvailableAcrossAndOutOfSeq(AArch64::LR, TRI) ||
7621                   !findRegisterToSaveLRTo(C));
7622         });
7623       }
7624     }
7625 
7626     // If we dropped all of the candidates, bail out here.
7627     if (RepeatedSequenceLocs.size() < 2) {
7628       RepeatedSequenceLocs.clear();
7629       return std::nullopt;
7630     }
7631   }
7632 
7633   // Does every candidate's MBB contain a call? If so, then we might have a call
7634   // in the range.
7635   if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
7636     // Check if the range contains a call. These require a save + restore of the
7637     // link register.
7638     bool ModStackToSaveLR = false;
7639     if (std::any_of(FirstCand.front(), FirstCand.back(),
7640                     [](const MachineInstr &MI) { return MI.isCall(); }))
7641       ModStackToSaveLR = true;
7642 
7643     // Handle the last instruction separately. If this is a tail call, then the
7644     // last instruction is a call. We don't want to save + restore in this case.
7645     // However, it could be possible that the last instruction is a call without
7646     // it being valid to tail call this sequence. We should consider this as
7647     // well.
7648     else if (FrameID != MachineOutlinerThunk &&
7649              FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
7650       ModStackToSaveLR = true;
7651 
7652     if (ModStackToSaveLR) {
7653       // We can't fix up the stack. Bail out.
7654       if (!AllStackInstrsSafe) {
7655         RepeatedSequenceLocs.clear();
7656         return std::nullopt;
7657       }
7658 
7659       // Save + restore LR.
7660       NumBytesToCreateFrame += 8;
7661     }
7662   }
7663 
7664   // If we have CFI instructions, we can only outline if the outlined section
7665   // can be a tail call
7666   if (FrameID != MachineOutlinerTailCall && CFICount > 0)
7667     return std::nullopt;
7668 
7669   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7670                                     NumBytesToCreateFrame, FrameID);
7671 }
7672 
7673 bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(
7674     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
7675   const Function &F = MF.getFunction();
7676 
7677   // Can F be deduplicated by the linker? If it can, don't outline from it.
7678   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7679     return false;
7680 
7681   // Don't outline from functions with section markings; the program could
7682   // expect that all the code is in the named section.
7683   // FIXME: Allow outlining from multiple functions with the same section
7684   // marking.
7685   if (F.hasSection())
7686     return false;
7687 
7688   // Outlining from functions with redzones is unsafe since the outliner may
7689   // modify the stack. Check if hasRedZone is true or unknown; if yes, don't
7690   // outline from it.
7691   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
7692   if (!AFI || AFI->hasRedZone().value_or(true))
7693     return false;
7694 
7695   // FIXME: Teach the outliner to generate/handle Windows unwind info.
7696   if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
7697     return false;
7698 
7699   // It's safe to outline from MF.
7700   return true;
7701 }
7702 
7703 SmallVector<std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
7704 AArch64InstrInfo::getOutlinableRanges(MachineBasicBlock &MBB,
7705                                       unsigned &Flags) const {
7706   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
7707          "Must track liveness!");
7708   SmallVector<
7709       std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
7710       Ranges;
7711   // According to the AArch64 Procedure Call Standard, the following are
7712   // undefined on entry/exit from a function call:
7713   //
7714   // * Registers x16, x17, (and thus w16, w17)
7715   // * Condition codes (and thus the NZCV register)
7716   //
7717   // If any of these registers are used inside or live across an outlined
7718   // function, then they may be modified later, either by the compiler or
7719   // some other tool (like the linker).
7720   //
7721   // To avoid outlining in these situations, partition each block into ranges
7722   // where these registers are dead. We will only outline from those ranges.
7723   LiveRegUnits LRU(getRegisterInfo());
7724   auto AreAllUnsafeRegsDead = [&LRU]() {
7725     return LRU.available(AArch64::W16) && LRU.available(AArch64::W17) &&
7726            LRU.available(AArch64::NZCV);
7727   };
7728 
7729   // We need to know if LR is live across an outlining boundary later on in
7730   // order to decide how we'll create the outlined call, frame, etc.
7731   //
7732   // It's pretty expensive to check this for *every candidate* within a block.
7733   // That's some potentially n^2 behaviour, since in the worst case, we'd need
7734   // to compute liveness from the end of the block for O(n) candidates within
7735   // the block.
7736   //
7737   // So, to improve the average case, let's keep track of liveness from the end
7738   // of the block to the beginning of *every outlinable range*. If we know that
7739   // LR is available in every range we could outline from, then we know that
7740   // we don't need to check liveness for any candidate within that range.
7741   bool LRAvailableEverywhere = true;
7742   // Compute liveness bottom-up.
7743   LRU.addLiveOuts(MBB);
7744   // Update flags that require info about the entire MBB.
7745   auto UpdateWholeMBBFlags = [&Flags](const MachineInstr &MI) {
7746     if (MI.isCall() && !MI.isTerminator())
7747       Flags |= MachineOutlinerMBBFlags::HasCalls;
7748   };
7749   // Range: [RangeBegin, RangeEnd)
7750   MachineBasicBlock::instr_iterator RangeBegin, RangeEnd;
7751   unsigned RangeLen;
7752   auto CreateNewRangeStartingAt =
7753       [&RangeBegin, &RangeEnd,
7754        &RangeLen](MachineBasicBlock::instr_iterator NewBegin) {
7755         RangeBegin = NewBegin;
7756         RangeEnd = std::next(RangeBegin);
7757         RangeLen = 0;
7758       };
7759   auto SaveRangeIfNonEmpty = [&RangeLen, &Ranges, &RangeBegin, &RangeEnd]() {
7760     // At least one unsafe register is not dead. We do not want to outline at
7761     // this point. If it is long enough to outline from, save the range
7762     // [RangeBegin, RangeEnd).
7763     if (RangeLen > 1)
7764       Ranges.push_back(std::make_pair(RangeBegin, RangeEnd));
7765   };
7766   // Find the first point where all unsafe registers are dead.
7767   // FIND: <safe instr> <-- end of first potential range
7768   // SKIP: <unsafe def>
7769   // SKIP: ... everything between ...
7770   // SKIP: <unsafe use>
7771   auto FirstPossibleEndPt = MBB.instr_rbegin();
7772   for (; FirstPossibleEndPt != MBB.instr_rend(); ++FirstPossibleEndPt) {
7773     LRU.stepBackward(*FirstPossibleEndPt);
7774     // Update flags that impact how we outline across the entire block,
7775     // regardless of safety.
7776     UpdateWholeMBBFlags(*FirstPossibleEndPt);
7777     if (AreAllUnsafeRegsDead())
7778       break;
7779   }
7780   // If we exhausted the entire block, we have no safe ranges to outline.
7781   if (FirstPossibleEndPt == MBB.instr_rend())
7782     return Ranges;
7783   // Current range.
7784   CreateNewRangeStartingAt(FirstPossibleEndPt->getIterator());
7785   // StartPt points to the first place where all unsafe registers
7786   // are dead (if there is any such point). Begin partitioning the MBB into
7787   // ranges.
7788   for (auto &MI : make_range(FirstPossibleEndPt, MBB.instr_rend())) {
7789     LRU.stepBackward(MI);
7790     UpdateWholeMBBFlags(MI);
7791     if (!AreAllUnsafeRegsDead()) {
7792       SaveRangeIfNonEmpty();
7793       CreateNewRangeStartingAt(MI.getIterator());
7794       continue;
7795     }
7796     LRAvailableEverywhere &= LRU.available(AArch64::LR);
7797     RangeBegin = MI.getIterator();
7798     ++RangeLen;
7799   }
7800   // Above loop misses the last (or only) range. If we are still safe, then
7801   // let's save the range.
7802   if (AreAllUnsafeRegsDead())
7803     SaveRangeIfNonEmpty();
7804   if (Ranges.empty())
7805     return Ranges;
7806   // We found the ranges bottom-up. Mapping expects the top-down. Reverse
7807   // the order.
7808   std::reverse(Ranges.begin(), Ranges.end());
7809   // If there is at least one outlinable range where LR is unavailable
7810   // somewhere, remember that.
7811   if (!LRAvailableEverywhere)
7812     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
7813   return Ranges;
7814 }
7815 
7816 outliner::InstrType
7817 AArch64InstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
7818                                    unsigned Flags) const {
7819   MachineInstr &MI = *MIT;
7820   MachineBasicBlock *MBB = MI.getParent();
7821   MachineFunction *MF = MBB->getParent();
7822   AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>();
7823 
7824   // Don't outline anything used for return address signing. The outlined
7825   // function will get signed later if needed
7826   switch (MI.getOpcode()) {
7827   case AArch64::PACIASP:
7828   case AArch64::PACIBSP:
7829   case AArch64::AUTIASP:
7830   case AArch64::AUTIBSP:
7831   case AArch64::RETAA:
7832   case AArch64::RETAB:
7833   case AArch64::EMITBKEY:
7834     return outliner::InstrType::Illegal;
7835   }
7836 
7837   // Don't outline LOHs.
7838   if (FuncInfo->getLOHRelated().count(&MI))
7839     return outliner::InstrType::Illegal;
7840 
7841   // We can only outline these if we will tail call the outlined function, or
7842   // fix up the CFI offsets. Currently, CFI instructions are outlined only if
7843   // in a tail call.
7844   //
7845   // FIXME: If the proper fixups for the offset are implemented, this should be
7846   // possible.
7847   if (MI.isCFIInstruction())
7848     return outliner::InstrType::Legal;
7849 
7850   // Is this a terminator for a basic block?
7851   if (MI.isTerminator())
7852     // TargetInstrInfo::getOutliningType has already filtered out anything
7853     // that would break this, so we can allow it here.
7854     return outliner::InstrType::Legal;
7855 
7856   // Make sure none of the operands are un-outlinable.
7857   for (const MachineOperand &MOP : MI.operands()) {
7858     // A check preventing CFI indices was here before, but only CFI
7859     // instructions should have those.
7860     assert(!MOP.isCFIIndex());
7861 
7862     // If it uses LR or W30 explicitly, then don't touch it.
7863     if (MOP.isReg() && !MOP.isImplicit() &&
7864         (MOP.getReg() == AArch64::LR || MOP.getReg() == AArch64::W30))
7865       return outliner::InstrType::Illegal;
7866   }
7867 
7868   // Special cases for instructions that can always be outlined, but will fail
7869   // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always
7870   // be outlined because they don't require a *specific* value to be in LR.
7871   if (MI.getOpcode() == AArch64::ADRP)
7872     return outliner::InstrType::Legal;
7873 
7874   // If MI is a call we might be able to outline it. We don't want to outline
7875   // any calls that rely on the position of items on the stack. When we outline
7876   // something containing a call, we have to emit a save and restore of LR in
7877   // the outlined function. Currently, this always happens by saving LR to the
7878   // stack. Thus, if we outline, say, half the parameters for a function call
7879   // plus the call, then we'll break the callee's expectations for the layout
7880   // of the stack.
7881   //
7882   // FIXME: Allow calls to functions which construct a stack frame, as long
7883   // as they don't access arguments on the stack.
7884   // FIXME: Figure out some way to analyze functions defined in other modules.
7885   // We should be able to compute the memory usage based on the IR calling
7886   // convention, even if we can't see the definition.
7887   if (MI.isCall()) {
7888     // Get the function associated with the call. Look at each operand and find
7889     // the one that represents the callee and get its name.
7890     const Function *Callee = nullptr;
7891     for (const MachineOperand &MOP : MI.operands()) {
7892       if (MOP.isGlobal()) {
7893         Callee = dyn_cast<Function>(MOP.getGlobal());
7894         break;
7895       }
7896     }
7897 
7898     // Never outline calls to mcount.  There isn't any rule that would require
7899     // this, but the Linux kernel's "ftrace" feature depends on it.
7900     if (Callee && Callee->getName() == "\01_mcount")
7901       return outliner::InstrType::Illegal;
7902 
7903     // If we don't know anything about the callee, assume it depends on the
7904     // stack layout of the caller. In that case, it's only legal to outline
7905     // as a tail-call. Explicitly list the call instructions we know about so we
7906     // don't get unexpected results with call pseudo-instructions.
7907     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
7908     if (MI.getOpcode() == AArch64::BLR ||
7909         MI.getOpcode() == AArch64::BLRNoIP || MI.getOpcode() == AArch64::BL)
7910       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
7911 
7912     if (!Callee)
7913       return UnknownCallOutlineType;
7914 
7915     // We have a function we have information about. Check it if it's something
7916     // can safely outline.
7917     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
7918 
7919     // We don't know what's going on with the callee at all. Don't touch it.
7920     if (!CalleeMF)
7921       return UnknownCallOutlineType;
7922 
7923     // Check if we know anything about the callee saves on the function. If we
7924     // don't, then don't touch it, since that implies that we haven't
7925     // computed anything about its stack frame yet.
7926     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
7927     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
7928         MFI.getNumObjects() > 0)
7929       return UnknownCallOutlineType;
7930 
7931     // At this point, we can say that CalleeMF ought to not pass anything on the
7932     // stack. Therefore, we can outline it.
7933     return outliner::InstrType::Legal;
7934   }
7935 
7936   // Don't touch the link register or W30.
7937   if (MI.readsRegister(AArch64::W30, &getRegisterInfo()) ||
7938       MI.modifiesRegister(AArch64::W30, &getRegisterInfo()))
7939     return outliner::InstrType::Illegal;
7940 
7941   // Don't outline BTI instructions, because that will prevent the outlining
7942   // site from being indirectly callable.
7943   if (MI.getOpcode() == AArch64::HINT) {
7944     int64_t Imm = MI.getOperand(0).getImm();
7945     if (Imm == 32 || Imm == 34 || Imm == 36 || Imm == 38)
7946       return outliner::InstrType::Illegal;
7947   }
7948 
7949   return outliner::InstrType::Legal;
7950 }
7951 
7952 void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
7953   for (MachineInstr &MI : MBB) {
7954     const MachineOperand *Base;
7955     unsigned Width;
7956     int64_t Offset;
7957     bool OffsetIsScalable;
7958 
7959     // Is this a load or store with an immediate offset with SP as the base?
7960     if (!MI.mayLoadOrStore() ||
7961         !getMemOperandWithOffsetWidth(MI, Base, Offset, OffsetIsScalable, Width,
7962                                       &RI) ||
7963         (Base->isReg() && Base->getReg() != AArch64::SP))
7964       continue;
7965 
7966     // It is, so we have to fix it up.
7967     TypeSize Scale(0U, false);
7968     int64_t Dummy1, Dummy2;
7969 
7970     MachineOperand &StackOffsetOperand = getMemOpBaseRegImmOfsOffsetOperand(MI);
7971     assert(StackOffsetOperand.isImm() && "Stack offset wasn't immediate!");
7972     getMemOpInfo(MI.getOpcode(), Scale, Width, Dummy1, Dummy2);
7973     assert(Scale != 0 && "Unexpected opcode!");
7974     assert(!OffsetIsScalable && "Expected offset to be a byte offset");
7975 
7976     // We've pushed the return address to the stack, so add 16 to the offset.
7977     // This is safe, since we already checked if it would overflow when we
7978     // checked if this instruction was legal to outline.
7979     int64_t NewImm = (Offset + 16) / (int64_t)Scale.getFixedValue();
7980     StackOffsetOperand.setImm(NewImm);
7981   }
7982 }
7983 
7984 static void signOutlinedFunction(MachineFunction &MF, MachineBasicBlock &MBB,
7985                                  bool ShouldSignReturnAddr,
7986                                  bool ShouldSignReturnAddrWithBKey) {
7987   if (ShouldSignReturnAddr) {
7988     MachineBasicBlock::iterator MBBPAC = MBB.begin();
7989     MachineBasicBlock::iterator MBBAUT = MBB.getFirstTerminator();
7990     const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
7991     const TargetInstrInfo *TII = Subtarget.getInstrInfo();
7992     DebugLoc DL;
7993 
7994     if (MBBAUT != MBB.end())
7995       DL = MBBAUT->getDebugLoc();
7996 
7997     // At the very beginning of the basic block we insert the following
7998     // depending on the key type
7999     //
8000     // a_key:                   b_key:
8001     //    PACIASP                   EMITBKEY
8002     //    CFI_INSTRUCTION           PACIBSP
8003     //                              CFI_INSTRUCTION
8004     if (ShouldSignReturnAddrWithBKey) {
8005       BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::EMITBKEY))
8006           .setMIFlag(MachineInstr::FrameSetup);
8007     }
8008 
8009     BuildMI(MBB, MBBPAC, DebugLoc(),
8010             TII->get(ShouldSignReturnAddrWithBKey ? AArch64::PACIBSP
8011                                                   : AArch64::PACIASP))
8012         .setMIFlag(MachineInstr::FrameSetup);
8013 
8014     if (MF.getInfo<AArch64FunctionInfo>()->needsDwarfUnwindInfo(MF)) {
8015       unsigned CFIIndex =
8016           MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
8017       BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::CFI_INSTRUCTION))
8018           .addCFIIndex(CFIIndex)
8019           .setMIFlags(MachineInstr::FrameSetup);
8020     }
8021 
8022     // If v8.3a features are available we can replace a RET instruction by
8023     // RETAA or RETAB and omit the AUT instructions. In this case the
8024     // DW_CFA_AARCH64_negate_ra_state can't be emitted.
8025     if (Subtarget.hasPAuth() && MBBAUT != MBB.end() &&
8026         MBBAUT->getOpcode() == AArch64::RET) {
8027       BuildMI(MBB, MBBAUT, DL,
8028               TII->get(ShouldSignReturnAddrWithBKey ? AArch64::RETAB
8029                                                     : AArch64::RETAA))
8030           .copyImplicitOps(*MBBAUT);
8031       MBB.erase(MBBAUT);
8032     } else {
8033       BuildMI(MBB, MBBAUT, DL,
8034               TII->get(ShouldSignReturnAddrWithBKey ? AArch64::AUTIBSP
8035                                                     : AArch64::AUTIASP))
8036           .setMIFlag(MachineInstr::FrameDestroy);
8037       unsigned CFIIndexAuth =
8038           MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
8039       BuildMI(MBB, MBBAUT, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
8040           .addCFIIndex(CFIIndexAuth)
8041           .setMIFlags(MachineInstr::FrameDestroy);
8042     }
8043   }
8044 }
8045 
8046 void AArch64InstrInfo::buildOutlinedFrame(
8047     MachineBasicBlock &MBB, MachineFunction &MF,
8048     const outliner::OutlinedFunction &OF) const {
8049 
8050   AArch64FunctionInfo *FI = MF.getInfo<AArch64FunctionInfo>();
8051 
8052   if (OF.FrameConstructionID == MachineOutlinerTailCall)
8053     FI->setOutliningStyle("Tail Call");
8054   else if (OF.FrameConstructionID == MachineOutlinerThunk) {
8055     // For thunk outlining, rewrite the last instruction from a call to a
8056     // tail-call.
8057     MachineInstr *Call = &*--MBB.instr_end();
8058     unsigned TailOpcode;
8059     if (Call->getOpcode() == AArch64::BL) {
8060       TailOpcode = AArch64::TCRETURNdi;
8061     } else {
8062       assert(Call->getOpcode() == AArch64::BLR ||
8063              Call->getOpcode() == AArch64::BLRNoIP);
8064       TailOpcode = AArch64::TCRETURNriALL;
8065     }
8066     MachineInstr *TC = BuildMI(MF, DebugLoc(), get(TailOpcode))
8067                            .add(Call->getOperand(0))
8068                            .addImm(0);
8069     MBB.insert(MBB.end(), TC);
8070     Call->eraseFromParent();
8071 
8072     FI->setOutliningStyle("Thunk");
8073   }
8074 
8075   bool IsLeafFunction = true;
8076 
8077   // Is there a call in the outlined range?
8078   auto IsNonTailCall = [](const MachineInstr &MI) {
8079     return MI.isCall() && !MI.isReturn();
8080   };
8081 
8082   if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
8083     // Fix up the instructions in the range, since we're going to modify the
8084     // stack.
8085 
8086     // Bugzilla ID: 46767
8087     // TODO: Check if fixing up twice is safe so we can outline these.
8088     assert(OF.FrameConstructionID != MachineOutlinerDefault &&
8089            "Can only fix up stack references once");
8090     fixupPostOutline(MBB);
8091 
8092     IsLeafFunction = false;
8093 
8094     // LR has to be a live in so that we can save it.
8095     if (!MBB.isLiveIn(AArch64::LR))
8096       MBB.addLiveIn(AArch64::LR);
8097 
8098     MachineBasicBlock::iterator It = MBB.begin();
8099     MachineBasicBlock::iterator Et = MBB.end();
8100 
8101     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
8102         OF.FrameConstructionID == MachineOutlinerThunk)
8103       Et = std::prev(MBB.end());
8104 
8105     // Insert a save before the outlined region
8106     MachineInstr *STRXpre = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
8107                                 .addReg(AArch64::SP, RegState::Define)
8108                                 .addReg(AArch64::LR)
8109                                 .addReg(AArch64::SP)
8110                                 .addImm(-16);
8111     It = MBB.insert(It, STRXpre);
8112 
8113     if (MF.getInfo<AArch64FunctionInfo>()->needsDwarfUnwindInfo(MF)) {
8114       const TargetSubtargetInfo &STI = MF.getSubtarget();
8115       const MCRegisterInfo *MRI = STI.getRegisterInfo();
8116       unsigned DwarfReg = MRI->getDwarfRegNum(AArch64::LR, true);
8117 
8118       // Add a CFI saying the stack was moved 16 B down.
8119       int64_t StackPosEntry =
8120           MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 16));
8121       BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
8122           .addCFIIndex(StackPosEntry)
8123           .setMIFlags(MachineInstr::FrameSetup);
8124 
8125       // Add a CFI saying that the LR that we want to find is now 16 B higher
8126       // than before.
8127       int64_t LRPosEntry = MF.addFrameInst(
8128           MCCFIInstruction::createOffset(nullptr, DwarfReg, -16));
8129       BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION))
8130           .addCFIIndex(LRPosEntry)
8131           .setMIFlags(MachineInstr::FrameSetup);
8132     }
8133 
8134     // Insert a restore before the terminator for the function.
8135     MachineInstr *LDRXpost = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
8136                                  .addReg(AArch64::SP, RegState::Define)
8137                                  .addReg(AArch64::LR, RegState::Define)
8138                                  .addReg(AArch64::SP)
8139                                  .addImm(16);
8140     Et = MBB.insert(Et, LDRXpost);
8141   }
8142 
8143   // If a bunch of candidates reach this point they must agree on their return
8144   // address signing. It is therefore enough to just consider the signing
8145   // behaviour of one of them
8146   const auto &MFI = *OF.Candidates.front().getMF()->getInfo<AArch64FunctionInfo>();
8147   bool ShouldSignReturnAddr = MFI.shouldSignReturnAddress(!IsLeafFunction);
8148 
8149   // a_key is the default
8150   bool ShouldSignReturnAddrWithBKey = MFI.shouldSignWithBKey();
8151 
8152   // If this is a tail call outlined function, then there's already a return.
8153   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
8154       OF.FrameConstructionID == MachineOutlinerThunk) {
8155     signOutlinedFunction(MF, MBB, ShouldSignReturnAddr,
8156                          ShouldSignReturnAddrWithBKey);
8157     return;
8158   }
8159 
8160   // It's not a tail call, so we have to insert the return ourselves.
8161 
8162   // LR has to be a live in so that we can return to it.
8163   if (!MBB.isLiveIn(AArch64::LR))
8164     MBB.addLiveIn(AArch64::LR);
8165 
8166   MachineInstr *ret = BuildMI(MF, DebugLoc(), get(AArch64::RET))
8167                           .addReg(AArch64::LR);
8168   MBB.insert(MBB.end(), ret);
8169 
8170   signOutlinedFunction(MF, MBB, ShouldSignReturnAddr,
8171                        ShouldSignReturnAddrWithBKey);
8172 
8173   FI->setOutliningStyle("Function");
8174 
8175   // Did we have to modify the stack by saving the link register?
8176   if (OF.FrameConstructionID != MachineOutlinerDefault)
8177     return;
8178 
8179   // We modified the stack.
8180   // Walk over the basic block and fix up all the stack accesses.
8181   fixupPostOutline(MBB);
8182 }
8183 
8184 MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall(
8185     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
8186     MachineFunction &MF, outliner::Candidate &C) const {
8187 
8188   // Are we tail calling?
8189   if (C.CallConstructionID == MachineOutlinerTailCall) {
8190     // If yes, then we can just branch to the label.
8191     It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::TCRETURNdi))
8192                             .addGlobalAddress(M.getNamedValue(MF.getName()))
8193                             .addImm(0));
8194     return It;
8195   }
8196 
8197   // Are we saving the link register?
8198   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
8199       C.CallConstructionID == MachineOutlinerThunk) {
8200     // No, so just insert the call.
8201     It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
8202                             .addGlobalAddress(M.getNamedValue(MF.getName())));
8203     return It;
8204   }
8205 
8206   // We want to return the spot where we inserted the call.
8207   MachineBasicBlock::iterator CallPt;
8208 
8209   // Instructions for saving and restoring LR around the call instruction we're
8210   // going to insert.
8211   MachineInstr *Save;
8212   MachineInstr *Restore;
8213   // Can we save to a register?
8214   if (C.CallConstructionID == MachineOutlinerRegSave) {
8215     // FIXME: This logic should be sunk into a target-specific interface so that
8216     // we don't have to recompute the register.
8217     Register Reg = findRegisterToSaveLRTo(C);
8218     assert(Reg && "No callee-saved register available?");
8219 
8220     // LR has to be a live in so that we can save it.
8221     if (!MBB.isLiveIn(AArch64::LR))
8222       MBB.addLiveIn(AArch64::LR);
8223 
8224     // Save and restore LR from Reg.
8225     Save = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), Reg)
8226                .addReg(AArch64::XZR)
8227                .addReg(AArch64::LR)
8228                .addImm(0);
8229     Restore = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), AArch64::LR)
8230                 .addReg(AArch64::XZR)
8231                 .addReg(Reg)
8232                 .addImm(0);
8233   } else {
8234     // We have the default case. Save and restore from SP.
8235     Save = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre))
8236                .addReg(AArch64::SP, RegState::Define)
8237                .addReg(AArch64::LR)
8238                .addReg(AArch64::SP)
8239                .addImm(-16);
8240     Restore = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost))
8241                   .addReg(AArch64::SP, RegState::Define)
8242                   .addReg(AArch64::LR, RegState::Define)
8243                   .addReg(AArch64::SP)
8244                   .addImm(16);
8245   }
8246 
8247   It = MBB.insert(It, Save);
8248   It++;
8249 
8250   // Insert the call.
8251   It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL))
8252                           .addGlobalAddress(M.getNamedValue(MF.getName())));
8253   CallPt = It;
8254   It++;
8255 
8256   It = MBB.insert(It, Restore);
8257   return CallPt;
8258 }
8259 
8260 bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault(
8261   MachineFunction &MF) const {
8262   return MF.getFunction().hasMinSize();
8263 }
8264 
8265 std::optional<DestSourcePair>
8266 AArch64InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
8267 
8268   // AArch64::ORRWrs and AArch64::ORRXrs with WZR/XZR reg
8269   // and zero immediate operands used as an alias for mov instruction.
8270   if (MI.getOpcode() == AArch64::ORRWrs &&
8271       MI.getOperand(1).getReg() == AArch64::WZR &&
8272       MI.getOperand(3).getImm() == 0x0) {
8273     return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
8274   }
8275 
8276   if (MI.getOpcode() == AArch64::ORRXrs &&
8277       MI.getOperand(1).getReg() == AArch64::XZR &&
8278       MI.getOperand(3).getImm() == 0x0) {
8279     return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
8280   }
8281 
8282   return std::nullopt;
8283 }
8284 
8285 std::optional<RegImmPair>
8286 AArch64InstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
8287   int Sign = 1;
8288   int64_t Offset = 0;
8289 
8290   // TODO: Handle cases where Reg is a super- or sub-register of the
8291   // destination register.
8292   const MachineOperand &Op0 = MI.getOperand(0);
8293   if (!Op0.isReg() || Reg != Op0.getReg())
8294     return std::nullopt;
8295 
8296   switch (MI.getOpcode()) {
8297   default:
8298     return std::nullopt;
8299   case AArch64::SUBWri:
8300   case AArch64::SUBXri:
8301   case AArch64::SUBSWri:
8302   case AArch64::SUBSXri:
8303     Sign *= -1;
8304     [[fallthrough]];
8305   case AArch64::ADDSWri:
8306   case AArch64::ADDSXri:
8307   case AArch64::ADDWri:
8308   case AArch64::ADDXri: {
8309     // TODO: Third operand can be global address (usually some string).
8310     if (!MI.getOperand(0).isReg() || !MI.getOperand(1).isReg() ||
8311         !MI.getOperand(2).isImm())
8312       return std::nullopt;
8313     int Shift = MI.getOperand(3).getImm();
8314     assert((Shift == 0 || Shift == 12) && "Shift can be either 0 or 12");
8315     Offset = Sign * (MI.getOperand(2).getImm() << Shift);
8316   }
8317   }
8318   return RegImmPair{MI.getOperand(1).getReg(), Offset};
8319 }
8320 
8321 /// If the given ORR instruction is a copy, and \p DescribedReg overlaps with
8322 /// the destination register then, if possible, describe the value in terms of
8323 /// the source register.
8324 static std::optional<ParamLoadedValue>
8325 describeORRLoadedValue(const MachineInstr &MI, Register DescribedReg,
8326                        const TargetInstrInfo *TII,
8327                        const TargetRegisterInfo *TRI) {
8328   auto DestSrc = TII->isCopyInstr(MI);
8329   if (!DestSrc)
8330     return std::nullopt;
8331 
8332   Register DestReg = DestSrc->Destination->getReg();
8333   Register SrcReg = DestSrc->Source->getReg();
8334 
8335   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8336 
8337   // If the described register is the destination, just return the source.
8338   if (DestReg == DescribedReg)
8339     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8340 
8341   // ORRWrs zero-extends to 64-bits, so we need to consider such cases.
8342   if (MI.getOpcode() == AArch64::ORRWrs &&
8343       TRI->isSuperRegister(DestReg, DescribedReg))
8344     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8345 
8346   // We may need to describe the lower part of a ORRXrs move.
8347   if (MI.getOpcode() == AArch64::ORRXrs &&
8348       TRI->isSubRegister(DestReg, DescribedReg)) {
8349     Register SrcSubReg = TRI->getSubReg(SrcReg, AArch64::sub_32);
8350     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
8351   }
8352 
8353   assert(!TRI->isSuperOrSubRegisterEq(DestReg, DescribedReg) &&
8354          "Unhandled ORR[XW]rs copy case");
8355 
8356   return std::nullopt;
8357 }
8358 
8359 std::optional<ParamLoadedValue>
8360 AArch64InstrInfo::describeLoadedValue(const MachineInstr &MI,
8361                                       Register Reg) const {
8362   const MachineFunction *MF = MI.getMF();
8363   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
8364   switch (MI.getOpcode()) {
8365   case AArch64::MOVZWi:
8366   case AArch64::MOVZXi: {
8367     // MOVZWi may be used for producing zero-extended 32-bit immediates in
8368     // 64-bit parameters, so we need to consider super-registers.
8369     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8370       return std::nullopt;
8371 
8372     if (!MI.getOperand(1).isImm())
8373       return std::nullopt;
8374     int64_t Immediate = MI.getOperand(1).getImm();
8375     int Shift = MI.getOperand(2).getImm();
8376     return ParamLoadedValue(MachineOperand::CreateImm(Immediate << Shift),
8377                             nullptr);
8378   }
8379   case AArch64::ORRWrs:
8380   case AArch64::ORRXrs:
8381     return describeORRLoadedValue(MI, Reg, this, TRI);
8382   }
8383 
8384   return TargetInstrInfo::describeLoadedValue(MI, Reg);
8385 }
8386 
8387 bool AArch64InstrInfo::isExtendLikelyToBeFolded(
8388     MachineInstr &ExtMI, MachineRegisterInfo &MRI) const {
8389   assert(ExtMI.getOpcode() == TargetOpcode::G_SEXT ||
8390          ExtMI.getOpcode() == TargetOpcode::G_ZEXT ||
8391          ExtMI.getOpcode() == TargetOpcode::G_ANYEXT);
8392 
8393   // Anyexts are nops.
8394   if (ExtMI.getOpcode() == TargetOpcode::G_ANYEXT)
8395     return true;
8396 
8397   Register DefReg = ExtMI.getOperand(0).getReg();
8398   if (!MRI.hasOneNonDBGUse(DefReg))
8399     return false;
8400 
8401   // It's likely that a sext/zext as a G_PTR_ADD offset will be folded into an
8402   // addressing mode.
8403   auto *UserMI = &*MRI.use_instr_nodbg_begin(DefReg);
8404   return UserMI->getOpcode() == TargetOpcode::G_PTR_ADD;
8405 }
8406 
8407 uint64_t AArch64InstrInfo::getElementSizeForOpcode(unsigned Opc) const {
8408   return get(Opc).TSFlags & AArch64::ElementSizeMask;
8409 }
8410 
8411 bool AArch64InstrInfo::isPTestLikeOpcode(unsigned Opc) const {
8412   return get(Opc).TSFlags & AArch64::InstrFlagIsPTestLike;
8413 }
8414 
8415 bool AArch64InstrInfo::isWhileOpcode(unsigned Opc) const {
8416   return get(Opc).TSFlags & AArch64::InstrFlagIsWhile;
8417 }
8418 
8419 unsigned int
8420 AArch64InstrInfo::getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
8421   return OptLevel >= CodeGenOpt::Aggressive ? 6 : 2;
8422 }
8423 
8424 unsigned llvm::getBLRCallOpcode(const MachineFunction &MF) {
8425   if (MF.getSubtarget<AArch64Subtarget>().hardenSlsBlr())
8426     return AArch64::BLRNoIP;
8427   else
8428     return AArch64::BLR;
8429 }
8430 
8431 #define GET_INSTRINFO_HELPERS
8432 #define GET_INSTRMAP_INFO
8433 #include "AArch64GenInstrInfo.inc"
8434