1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64InstrInfo.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64Subtarget.h" 16 #include "MCTargetDesc/AArch64AddressingModes.h" 17 #include "Utils/AArch64BaseInfo.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/StackMaps.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/CodeGen/TargetSubtargetInfo.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/IR/DebugLoc.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/MC/MCInstBuilder.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CodeGen.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <iterator> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define GET_INSTRINFO_CTOR_DTOR 56 #include "AArch64GenInstrInfo.inc" 57 58 static cl::opt<unsigned> TBZDisplacementBits( 59 "aarch64-tbz-offset-bits", cl::Hidden, cl::init(14), 60 cl::desc("Restrict range of TB[N]Z instructions (DEBUG)")); 61 62 static cl::opt<unsigned> CBZDisplacementBits( 63 "aarch64-cbz-offset-bits", cl::Hidden, cl::init(19), 64 cl::desc("Restrict range of CB[N]Z instructions (DEBUG)")); 65 66 static cl::opt<unsigned> 67 BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden, cl::init(19), 68 cl::desc("Restrict range of Bcc instructions (DEBUG)")); 69 70 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI) 71 : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP, 72 AArch64::CATCHRET), 73 RI(STI.getTargetTriple()), Subtarget(STI) {} 74 75 /// GetInstSize - Return the number of bytes of code the specified 76 /// instruction may be. This returns the maximum number of bytes. 77 unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 78 const MachineBasicBlock &MBB = *MI.getParent(); 79 const MachineFunction *MF = MBB.getParent(); 80 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 81 82 { 83 auto Op = MI.getOpcode(); 84 if (Op == AArch64::INLINEASM || Op == AArch64::INLINEASM_BR) 85 return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 86 } 87 88 // Meta-instructions emit no code. 89 if (MI.isMetaInstruction()) 90 return 0; 91 92 // FIXME: We currently only handle pseudoinstructions that don't get expanded 93 // before the assembly printer. 94 unsigned NumBytes = 0; 95 const MCInstrDesc &Desc = MI.getDesc(); 96 97 // Size should be preferably set in 98 // llvm/lib/Target/AArch64/AArch64InstrInfo.td (default case). 99 // Specific cases handle instructions of variable sizes 100 switch (Desc.getOpcode()) { 101 default: 102 if (Desc.getSize()) 103 return Desc.getSize(); 104 105 // Anything not explicitly designated otherwise (i.e. pseudo-instructions 106 // with fixed constant size but not specified in .td file) is a normal 107 // 4-byte insn. 108 NumBytes = 4; 109 break; 110 case TargetOpcode::STACKMAP: 111 // The upper bound for a stackmap intrinsic is the full length of its shadow 112 NumBytes = StackMapOpers(&MI).getNumPatchBytes(); 113 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 114 break; 115 case TargetOpcode::PATCHPOINT: 116 // The size of the patchpoint intrinsic is the number of bytes requested 117 NumBytes = PatchPointOpers(&MI).getNumPatchBytes(); 118 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 119 break; 120 case TargetOpcode::STATEPOINT: 121 NumBytes = StatepointOpers(&MI).getNumPatchBytes(); 122 assert(NumBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 123 // No patch bytes means a normal call inst is emitted 124 if (NumBytes == 0) 125 NumBytes = 4; 126 break; 127 case AArch64::SPACE: 128 NumBytes = MI.getOperand(1).getImm(); 129 break; 130 case TargetOpcode::BUNDLE: 131 NumBytes = getInstBundleLength(MI); 132 break; 133 } 134 135 return NumBytes; 136 } 137 138 unsigned AArch64InstrInfo::getInstBundleLength(const MachineInstr &MI) const { 139 unsigned Size = 0; 140 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 141 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 142 while (++I != E && I->isInsideBundle()) { 143 assert(!I->isBundle() && "No nested bundle!"); 144 Size += getInstSizeInBytes(*I); 145 } 146 return Size; 147 } 148 149 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, 150 SmallVectorImpl<MachineOperand> &Cond) { 151 // Block ends with fall-through condbranch. 152 switch (LastInst->getOpcode()) { 153 default: 154 llvm_unreachable("Unknown branch instruction?"); 155 case AArch64::Bcc: 156 Target = LastInst->getOperand(1).getMBB(); 157 Cond.push_back(LastInst->getOperand(0)); 158 break; 159 case AArch64::CBZW: 160 case AArch64::CBZX: 161 case AArch64::CBNZW: 162 case AArch64::CBNZX: 163 Target = LastInst->getOperand(1).getMBB(); 164 Cond.push_back(MachineOperand::CreateImm(-1)); 165 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); 166 Cond.push_back(LastInst->getOperand(0)); 167 break; 168 case AArch64::TBZW: 169 case AArch64::TBZX: 170 case AArch64::TBNZW: 171 case AArch64::TBNZX: 172 Target = LastInst->getOperand(2).getMBB(); 173 Cond.push_back(MachineOperand::CreateImm(-1)); 174 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); 175 Cond.push_back(LastInst->getOperand(0)); 176 Cond.push_back(LastInst->getOperand(1)); 177 } 178 } 179 180 static unsigned getBranchDisplacementBits(unsigned Opc) { 181 switch (Opc) { 182 default: 183 llvm_unreachable("unexpected opcode!"); 184 case AArch64::B: 185 return 64; 186 case AArch64::TBNZW: 187 case AArch64::TBZW: 188 case AArch64::TBNZX: 189 case AArch64::TBZX: 190 return TBZDisplacementBits; 191 case AArch64::CBNZW: 192 case AArch64::CBZW: 193 case AArch64::CBNZX: 194 case AArch64::CBZX: 195 return CBZDisplacementBits; 196 case AArch64::Bcc: 197 return BCCDisplacementBits; 198 } 199 } 200 201 bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp, 202 int64_t BrOffset) const { 203 unsigned Bits = getBranchDisplacementBits(BranchOp); 204 assert(Bits >= 3 && "max branch displacement must be enough to jump" 205 "over conditional branch expansion"); 206 return isIntN(Bits, BrOffset / 4); 207 } 208 209 MachineBasicBlock * 210 AArch64InstrInfo::getBranchDestBlock(const MachineInstr &MI) const { 211 switch (MI.getOpcode()) { 212 default: 213 llvm_unreachable("unexpected opcode!"); 214 case AArch64::B: 215 return MI.getOperand(0).getMBB(); 216 case AArch64::TBZW: 217 case AArch64::TBNZW: 218 case AArch64::TBZX: 219 case AArch64::TBNZX: 220 return MI.getOperand(2).getMBB(); 221 case AArch64::CBZW: 222 case AArch64::CBNZW: 223 case AArch64::CBZX: 224 case AArch64::CBNZX: 225 case AArch64::Bcc: 226 return MI.getOperand(1).getMBB(); 227 } 228 } 229 230 // Branch analysis. 231 bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock &MBB, 232 MachineBasicBlock *&TBB, 233 MachineBasicBlock *&FBB, 234 SmallVectorImpl<MachineOperand> &Cond, 235 bool AllowModify) const { 236 // If the block has no terminators, it just falls into the block after it. 237 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 238 if (I == MBB.end()) 239 return false; 240 241 // Skip over SpeculationBarrierEndBB terminators 242 if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB || 243 I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) { 244 --I; 245 } 246 247 if (!isUnpredicatedTerminator(*I)) 248 return false; 249 250 // Get the last instruction in the block. 251 MachineInstr *LastInst = &*I; 252 253 // If there is only one terminator instruction, process it. 254 unsigned LastOpc = LastInst->getOpcode(); 255 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 256 if (isUncondBranchOpcode(LastOpc)) { 257 TBB = LastInst->getOperand(0).getMBB(); 258 return false; 259 } 260 if (isCondBranchOpcode(LastOpc)) { 261 // Block ends with fall-through condbranch. 262 parseCondBranch(LastInst, TBB, Cond); 263 return false; 264 } 265 return true; // Can't handle indirect branch. 266 } 267 268 // Get the instruction before it if it is a terminator. 269 MachineInstr *SecondLastInst = &*I; 270 unsigned SecondLastOpc = SecondLastInst->getOpcode(); 271 272 // If AllowModify is true and the block ends with two or more unconditional 273 // branches, delete all but the first unconditional branch. 274 if (AllowModify && isUncondBranchOpcode(LastOpc)) { 275 while (isUncondBranchOpcode(SecondLastOpc)) { 276 LastInst->eraseFromParent(); 277 LastInst = SecondLastInst; 278 LastOpc = LastInst->getOpcode(); 279 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 280 // Return now the only terminator is an unconditional branch. 281 TBB = LastInst->getOperand(0).getMBB(); 282 return false; 283 } else { 284 SecondLastInst = &*I; 285 SecondLastOpc = SecondLastInst->getOpcode(); 286 } 287 } 288 } 289 290 // If we're allowed to modify and the block ends in a unconditional branch 291 // which could simply fallthrough, remove the branch. (Note: This case only 292 // matters when we can't understand the whole sequence, otherwise it's also 293 // handled by BranchFolding.cpp.) 294 if (AllowModify && isUncondBranchOpcode(LastOpc) && 295 MBB.isLayoutSuccessor(getBranchDestBlock(*LastInst))) { 296 LastInst->eraseFromParent(); 297 LastInst = SecondLastInst; 298 LastOpc = LastInst->getOpcode(); 299 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { 300 assert(!isUncondBranchOpcode(LastOpc) && 301 "unreachable unconditional branches removed above"); 302 303 if (isCondBranchOpcode(LastOpc)) { 304 // Block ends with fall-through condbranch. 305 parseCondBranch(LastInst, TBB, Cond); 306 return false; 307 } 308 return true; // Can't handle indirect branch. 309 } else { 310 SecondLastInst = &*I; 311 SecondLastOpc = SecondLastInst->getOpcode(); 312 } 313 } 314 315 // If there are three terminators, we don't know what sort of block this is. 316 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I)) 317 return true; 318 319 // If the block ends with a B and a Bcc, handle it. 320 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { 321 parseCondBranch(SecondLastInst, TBB, Cond); 322 FBB = LastInst->getOperand(0).getMBB(); 323 return false; 324 } 325 326 // If the block ends with two unconditional branches, handle it. The second 327 // one is not executed, so remove it. 328 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { 329 TBB = SecondLastInst->getOperand(0).getMBB(); 330 I = LastInst; 331 if (AllowModify) 332 I->eraseFromParent(); 333 return false; 334 } 335 336 // ...likewise if it ends with an indirect branch followed by an unconditional 337 // branch. 338 if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { 339 I = LastInst; 340 if (AllowModify) 341 I->eraseFromParent(); 342 return true; 343 } 344 345 // Otherwise, can't handle this. 346 return true; 347 } 348 349 bool AArch64InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, 350 MachineBranchPredicate &MBP, 351 bool AllowModify) const { 352 // For the moment, handle only a block which ends with a cb(n)zx followed by 353 // a fallthrough. Why this? Because it is a common form. 354 // TODO: Should we handle b.cc? 355 356 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 357 if (I == MBB.end()) 358 return true; 359 360 // Skip over SpeculationBarrierEndBB terminators 361 if (I->getOpcode() == AArch64::SpeculationBarrierISBDSBEndBB || 362 I->getOpcode() == AArch64::SpeculationBarrierSBEndBB) { 363 --I; 364 } 365 366 if (!isUnpredicatedTerminator(*I)) 367 return true; 368 369 // Get the last instruction in the block. 370 MachineInstr *LastInst = &*I; 371 unsigned LastOpc = LastInst->getOpcode(); 372 if (!isCondBranchOpcode(LastOpc)) 373 return true; 374 375 switch (LastOpc) { 376 default: 377 return true; 378 case AArch64::CBZW: 379 case AArch64::CBZX: 380 case AArch64::CBNZW: 381 case AArch64::CBNZX: 382 break; 383 }; 384 385 MBP.TrueDest = LastInst->getOperand(1).getMBB(); 386 assert(MBP.TrueDest && "expected!"); 387 MBP.FalseDest = MBB.getNextNode(); 388 389 MBP.ConditionDef = nullptr; 390 MBP.SingleUseCondition = false; 391 392 MBP.LHS = LastInst->getOperand(0); 393 MBP.RHS = MachineOperand::CreateImm(0); 394 MBP.Predicate = LastOpc == AArch64::CBNZX ? MachineBranchPredicate::PRED_NE 395 : MachineBranchPredicate::PRED_EQ; 396 return false; 397 } 398 399 bool AArch64InstrInfo::reverseBranchCondition( 400 SmallVectorImpl<MachineOperand> &Cond) const { 401 if (Cond[0].getImm() != -1) { 402 // Regular Bcc 403 AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm(); 404 Cond[0].setImm(AArch64CC::getInvertedCondCode(CC)); 405 } else { 406 // Folded compare-and-branch 407 switch (Cond[1].getImm()) { 408 default: 409 llvm_unreachable("Unknown conditional branch!"); 410 case AArch64::CBZW: 411 Cond[1].setImm(AArch64::CBNZW); 412 break; 413 case AArch64::CBNZW: 414 Cond[1].setImm(AArch64::CBZW); 415 break; 416 case AArch64::CBZX: 417 Cond[1].setImm(AArch64::CBNZX); 418 break; 419 case AArch64::CBNZX: 420 Cond[1].setImm(AArch64::CBZX); 421 break; 422 case AArch64::TBZW: 423 Cond[1].setImm(AArch64::TBNZW); 424 break; 425 case AArch64::TBNZW: 426 Cond[1].setImm(AArch64::TBZW); 427 break; 428 case AArch64::TBZX: 429 Cond[1].setImm(AArch64::TBNZX); 430 break; 431 case AArch64::TBNZX: 432 Cond[1].setImm(AArch64::TBZX); 433 break; 434 } 435 } 436 437 return false; 438 } 439 440 unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock &MBB, 441 int *BytesRemoved) const { 442 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 443 if (I == MBB.end()) 444 return 0; 445 446 if (!isUncondBranchOpcode(I->getOpcode()) && 447 !isCondBranchOpcode(I->getOpcode())) 448 return 0; 449 450 // Remove the branch. 451 I->eraseFromParent(); 452 453 I = MBB.end(); 454 455 if (I == MBB.begin()) { 456 if (BytesRemoved) 457 *BytesRemoved = 4; 458 return 1; 459 } 460 --I; 461 if (!isCondBranchOpcode(I->getOpcode())) { 462 if (BytesRemoved) 463 *BytesRemoved = 4; 464 return 1; 465 } 466 467 // Remove the branch. 468 I->eraseFromParent(); 469 if (BytesRemoved) 470 *BytesRemoved = 8; 471 472 return 2; 473 } 474 475 void AArch64InstrInfo::instantiateCondBranch( 476 MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB, 477 ArrayRef<MachineOperand> Cond) const { 478 if (Cond[0].getImm() != -1) { 479 // Regular Bcc 480 BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB); 481 } else { 482 // Folded compare-and-branch 483 // Note that we use addOperand instead of addReg to keep the flags. 484 const MachineInstrBuilder MIB = 485 BuildMI(&MBB, DL, get(Cond[1].getImm())).add(Cond[2]); 486 if (Cond.size() > 3) 487 MIB.addImm(Cond[3].getImm()); 488 MIB.addMBB(TBB); 489 } 490 } 491 492 unsigned AArch64InstrInfo::insertBranch( 493 MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 494 ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const { 495 // Shouldn't be a fall through. 496 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 497 498 if (!FBB) { 499 if (Cond.empty()) // Unconditional branch? 500 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB); 501 else 502 instantiateCondBranch(MBB, DL, TBB, Cond); 503 504 if (BytesAdded) 505 *BytesAdded = 4; 506 507 return 1; 508 } 509 510 // Two-way conditional branch. 511 instantiateCondBranch(MBB, DL, TBB, Cond); 512 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB); 513 514 if (BytesAdded) 515 *BytesAdded = 8; 516 517 return 2; 518 } 519 520 // Find the original register that VReg is copied from. 521 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) { 522 while (Register::isVirtualRegister(VReg)) { 523 const MachineInstr *DefMI = MRI.getVRegDef(VReg); 524 if (!DefMI->isFullCopy()) 525 return VReg; 526 VReg = DefMI->getOperand(1).getReg(); 527 } 528 return VReg; 529 } 530 531 // Determine if VReg is defined by an instruction that can be folded into a 532 // csel instruction. If so, return the folded opcode, and the replacement 533 // register. 534 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg, 535 unsigned *NewVReg = nullptr) { 536 VReg = removeCopies(MRI, VReg); 537 if (!Register::isVirtualRegister(VReg)) 538 return 0; 539 540 bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg)); 541 const MachineInstr *DefMI = MRI.getVRegDef(VReg); 542 unsigned Opc = 0; 543 unsigned SrcOpNum = 0; 544 switch (DefMI->getOpcode()) { 545 case AArch64::ADDSXri: 546 case AArch64::ADDSWri: 547 // if NZCV is used, do not fold. 548 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1) 549 return 0; 550 // fall-through to ADDXri and ADDWri. 551 LLVM_FALLTHROUGH; 552 case AArch64::ADDXri: 553 case AArch64::ADDWri: 554 // add x, 1 -> csinc. 555 if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 || 556 DefMI->getOperand(3).getImm() != 0) 557 return 0; 558 SrcOpNum = 1; 559 Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr; 560 break; 561 562 case AArch64::ORNXrr: 563 case AArch64::ORNWrr: { 564 // not x -> csinv, represented as orn dst, xzr, src. 565 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg()); 566 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR) 567 return 0; 568 SrcOpNum = 2; 569 Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr; 570 break; 571 } 572 573 case AArch64::SUBSXrr: 574 case AArch64::SUBSWrr: 575 // if NZCV is used, do not fold. 576 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1) 577 return 0; 578 // fall-through to SUBXrr and SUBWrr. 579 LLVM_FALLTHROUGH; 580 case AArch64::SUBXrr: 581 case AArch64::SUBWrr: { 582 // neg x -> csneg, represented as sub dst, xzr, src. 583 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg()); 584 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR) 585 return 0; 586 SrcOpNum = 2; 587 Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr; 588 break; 589 } 590 default: 591 return 0; 592 } 593 assert(Opc && SrcOpNum && "Missing parameters"); 594 595 if (NewVReg) 596 *NewVReg = DefMI->getOperand(SrcOpNum).getReg(); 597 return Opc; 598 } 599 600 bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 601 ArrayRef<MachineOperand> Cond, 602 Register DstReg, Register TrueReg, 603 Register FalseReg, int &CondCycles, 604 int &TrueCycles, 605 int &FalseCycles) const { 606 // Check register classes. 607 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 608 const TargetRegisterClass *RC = 609 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 610 if (!RC) 611 return false; 612 613 // Also need to check the dest regclass, in case we're trying to optimize 614 // something like: 615 // %1(gpr) = PHI %2(fpr), bb1, %(fpr), bb2 616 if (!RI.getCommonSubClass(RC, MRI.getRegClass(DstReg))) 617 return false; 618 619 // Expanding cbz/tbz requires an extra cycle of latency on the condition. 620 unsigned ExtraCondLat = Cond.size() != 1; 621 622 // GPRs are handled by csel. 623 // FIXME: Fold in x+1, -x, and ~x when applicable. 624 if (AArch64::GPR64allRegClass.hasSubClassEq(RC) || 625 AArch64::GPR32allRegClass.hasSubClassEq(RC)) { 626 // Single-cycle csel, csinc, csinv, and csneg. 627 CondCycles = 1 + ExtraCondLat; 628 TrueCycles = FalseCycles = 1; 629 if (canFoldIntoCSel(MRI, TrueReg)) 630 TrueCycles = 0; 631 else if (canFoldIntoCSel(MRI, FalseReg)) 632 FalseCycles = 0; 633 return true; 634 } 635 636 // Scalar floating point is handled by fcsel. 637 // FIXME: Form fabs, fmin, and fmax when applicable. 638 if (AArch64::FPR64RegClass.hasSubClassEq(RC) || 639 AArch64::FPR32RegClass.hasSubClassEq(RC)) { 640 CondCycles = 5 + ExtraCondLat; 641 TrueCycles = FalseCycles = 2; 642 return true; 643 } 644 645 // Can't do vectors. 646 return false; 647 } 648 649 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB, 650 MachineBasicBlock::iterator I, 651 const DebugLoc &DL, Register DstReg, 652 ArrayRef<MachineOperand> Cond, 653 Register TrueReg, Register FalseReg) const { 654 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 655 656 // Parse the condition code, see parseCondBranch() above. 657 AArch64CC::CondCode CC; 658 switch (Cond.size()) { 659 default: 660 llvm_unreachable("Unknown condition opcode in Cond"); 661 case 1: // b.cc 662 CC = AArch64CC::CondCode(Cond[0].getImm()); 663 break; 664 case 3: { // cbz/cbnz 665 // We must insert a compare against 0. 666 bool Is64Bit; 667 switch (Cond[1].getImm()) { 668 default: 669 llvm_unreachable("Unknown branch opcode in Cond"); 670 case AArch64::CBZW: 671 Is64Bit = false; 672 CC = AArch64CC::EQ; 673 break; 674 case AArch64::CBZX: 675 Is64Bit = true; 676 CC = AArch64CC::EQ; 677 break; 678 case AArch64::CBNZW: 679 Is64Bit = false; 680 CC = AArch64CC::NE; 681 break; 682 case AArch64::CBNZX: 683 Is64Bit = true; 684 CC = AArch64CC::NE; 685 break; 686 } 687 Register SrcReg = Cond[2].getReg(); 688 if (Is64Bit) { 689 // cmp reg, #0 is actually subs xzr, reg, #0. 690 MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass); 691 BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR) 692 .addReg(SrcReg) 693 .addImm(0) 694 .addImm(0); 695 } else { 696 MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass); 697 BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR) 698 .addReg(SrcReg) 699 .addImm(0) 700 .addImm(0); 701 } 702 break; 703 } 704 case 4: { // tbz/tbnz 705 // We must insert a tst instruction. 706 switch (Cond[1].getImm()) { 707 default: 708 llvm_unreachable("Unknown branch opcode in Cond"); 709 case AArch64::TBZW: 710 case AArch64::TBZX: 711 CC = AArch64CC::EQ; 712 break; 713 case AArch64::TBNZW: 714 case AArch64::TBNZX: 715 CC = AArch64CC::NE; 716 break; 717 } 718 // cmp reg, #foo is actually ands xzr, reg, #1<<foo. 719 if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW) 720 BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR) 721 .addReg(Cond[2].getReg()) 722 .addImm( 723 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32)); 724 else 725 BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR) 726 .addReg(Cond[2].getReg()) 727 .addImm( 728 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64)); 729 break; 730 } 731 } 732 733 unsigned Opc = 0; 734 const TargetRegisterClass *RC = nullptr; 735 bool TryFold = false; 736 if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) { 737 RC = &AArch64::GPR64RegClass; 738 Opc = AArch64::CSELXr; 739 TryFold = true; 740 } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) { 741 RC = &AArch64::GPR32RegClass; 742 Opc = AArch64::CSELWr; 743 TryFold = true; 744 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) { 745 RC = &AArch64::FPR64RegClass; 746 Opc = AArch64::FCSELDrrr; 747 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) { 748 RC = &AArch64::FPR32RegClass; 749 Opc = AArch64::FCSELSrrr; 750 } 751 assert(RC && "Unsupported regclass"); 752 753 // Try folding simple instructions into the csel. 754 if (TryFold) { 755 unsigned NewVReg = 0; 756 unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg); 757 if (FoldedOpc) { 758 // The folded opcodes csinc, csinc and csneg apply the operation to 759 // FalseReg, so we need to invert the condition. 760 CC = AArch64CC::getInvertedCondCode(CC); 761 TrueReg = FalseReg; 762 } else 763 FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg); 764 765 // Fold the operation. Leave any dead instructions for DCE to clean up. 766 if (FoldedOpc) { 767 FalseReg = NewVReg; 768 Opc = FoldedOpc; 769 // The extends the live range of NewVReg. 770 MRI.clearKillFlags(NewVReg); 771 } 772 } 773 774 // Pull all virtual register into the appropriate class. 775 MRI.constrainRegClass(TrueReg, RC); 776 MRI.constrainRegClass(FalseReg, RC); 777 778 // Insert the csel. 779 BuildMI(MBB, I, DL, get(Opc), DstReg) 780 .addReg(TrueReg) 781 .addReg(FalseReg) 782 .addImm(CC); 783 } 784 785 /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx. 786 static bool canBeExpandedToORR(const MachineInstr &MI, unsigned BitSize) { 787 uint64_t Imm = MI.getOperand(1).getImm(); 788 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); 789 uint64_t Encoding; 790 return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding); 791 } 792 793 // FIXME: this implementation should be micro-architecture dependent, so a 794 // micro-architecture target hook should be introduced here in future. 795 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const { 796 if (!Subtarget.hasCustomCheapAsMoveHandling()) 797 return MI.isAsCheapAsAMove(); 798 799 const unsigned Opcode = MI.getOpcode(); 800 801 // Firstly, check cases gated by features. 802 803 if (Subtarget.hasZeroCycleZeroingFP()) { 804 if (Opcode == AArch64::FMOVH0 || 805 Opcode == AArch64::FMOVS0 || 806 Opcode == AArch64::FMOVD0) 807 return true; 808 } 809 810 if (Subtarget.hasZeroCycleZeroingGP()) { 811 if (Opcode == TargetOpcode::COPY && 812 (MI.getOperand(1).getReg() == AArch64::WZR || 813 MI.getOperand(1).getReg() == AArch64::XZR)) 814 return true; 815 } 816 817 // Secondly, check cases specific to sub-targets. 818 819 if (Subtarget.hasExynosCheapAsMoveHandling()) { 820 if (isExynosCheapAsMove(MI)) 821 return true; 822 823 return MI.isAsCheapAsAMove(); 824 } 825 826 // Finally, check generic cases. 827 828 switch (Opcode) { 829 default: 830 return false; 831 832 // add/sub on register without shift 833 case AArch64::ADDWri: 834 case AArch64::ADDXri: 835 case AArch64::SUBWri: 836 case AArch64::SUBXri: 837 return (MI.getOperand(3).getImm() == 0); 838 839 // logical ops on immediate 840 case AArch64::ANDWri: 841 case AArch64::ANDXri: 842 case AArch64::EORWri: 843 case AArch64::EORXri: 844 case AArch64::ORRWri: 845 case AArch64::ORRXri: 846 return true; 847 848 // logical ops on register without shift 849 case AArch64::ANDWrr: 850 case AArch64::ANDXrr: 851 case AArch64::BICWrr: 852 case AArch64::BICXrr: 853 case AArch64::EONWrr: 854 case AArch64::EONXrr: 855 case AArch64::EORWrr: 856 case AArch64::EORXrr: 857 case AArch64::ORNWrr: 858 case AArch64::ORNXrr: 859 case AArch64::ORRWrr: 860 case AArch64::ORRXrr: 861 return true; 862 863 // If MOVi32imm or MOVi64imm can be expanded into ORRWri or 864 // ORRXri, it is as cheap as MOV 865 case AArch64::MOVi32imm: 866 return canBeExpandedToORR(MI, 32); 867 case AArch64::MOVi64imm: 868 return canBeExpandedToORR(MI, 64); 869 } 870 871 llvm_unreachable("Unknown opcode to check as cheap as a move!"); 872 } 873 874 bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr &MI) { 875 switch (MI.getOpcode()) { 876 default: 877 return false; 878 879 case AArch64::ADDWrs: 880 case AArch64::ADDXrs: 881 case AArch64::ADDSWrs: 882 case AArch64::ADDSXrs: { 883 unsigned Imm = MI.getOperand(3).getImm(); 884 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm); 885 if (ShiftVal == 0) 886 return true; 887 return AArch64_AM::getShiftType(Imm) == AArch64_AM::LSL && ShiftVal <= 5; 888 } 889 890 case AArch64::ADDWrx: 891 case AArch64::ADDXrx: 892 case AArch64::ADDXrx64: 893 case AArch64::ADDSWrx: 894 case AArch64::ADDSXrx: 895 case AArch64::ADDSXrx64: { 896 unsigned Imm = MI.getOperand(3).getImm(); 897 switch (AArch64_AM::getArithExtendType(Imm)) { 898 default: 899 return false; 900 case AArch64_AM::UXTB: 901 case AArch64_AM::UXTH: 902 case AArch64_AM::UXTW: 903 case AArch64_AM::UXTX: 904 return AArch64_AM::getArithShiftValue(Imm) <= 4; 905 } 906 } 907 908 case AArch64::SUBWrs: 909 case AArch64::SUBSWrs: { 910 unsigned Imm = MI.getOperand(3).getImm(); 911 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm); 912 return ShiftVal == 0 || 913 (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 31); 914 } 915 916 case AArch64::SUBXrs: 917 case AArch64::SUBSXrs: { 918 unsigned Imm = MI.getOperand(3).getImm(); 919 unsigned ShiftVal = AArch64_AM::getShiftValue(Imm); 920 return ShiftVal == 0 || 921 (AArch64_AM::getShiftType(Imm) == AArch64_AM::ASR && ShiftVal == 63); 922 } 923 924 case AArch64::SUBWrx: 925 case AArch64::SUBXrx: 926 case AArch64::SUBXrx64: 927 case AArch64::SUBSWrx: 928 case AArch64::SUBSXrx: 929 case AArch64::SUBSXrx64: { 930 unsigned Imm = MI.getOperand(3).getImm(); 931 switch (AArch64_AM::getArithExtendType(Imm)) { 932 default: 933 return false; 934 case AArch64_AM::UXTB: 935 case AArch64_AM::UXTH: 936 case AArch64_AM::UXTW: 937 case AArch64_AM::UXTX: 938 return AArch64_AM::getArithShiftValue(Imm) == 0; 939 } 940 } 941 942 case AArch64::LDRBBroW: 943 case AArch64::LDRBBroX: 944 case AArch64::LDRBroW: 945 case AArch64::LDRBroX: 946 case AArch64::LDRDroW: 947 case AArch64::LDRDroX: 948 case AArch64::LDRHHroW: 949 case AArch64::LDRHHroX: 950 case AArch64::LDRHroW: 951 case AArch64::LDRHroX: 952 case AArch64::LDRQroW: 953 case AArch64::LDRQroX: 954 case AArch64::LDRSBWroW: 955 case AArch64::LDRSBWroX: 956 case AArch64::LDRSBXroW: 957 case AArch64::LDRSBXroX: 958 case AArch64::LDRSHWroW: 959 case AArch64::LDRSHWroX: 960 case AArch64::LDRSHXroW: 961 case AArch64::LDRSHXroX: 962 case AArch64::LDRSWroW: 963 case AArch64::LDRSWroX: 964 case AArch64::LDRSroW: 965 case AArch64::LDRSroX: 966 case AArch64::LDRWroW: 967 case AArch64::LDRWroX: 968 case AArch64::LDRXroW: 969 case AArch64::LDRXroX: 970 case AArch64::PRFMroW: 971 case AArch64::PRFMroX: 972 case AArch64::STRBBroW: 973 case AArch64::STRBBroX: 974 case AArch64::STRBroW: 975 case AArch64::STRBroX: 976 case AArch64::STRDroW: 977 case AArch64::STRDroX: 978 case AArch64::STRHHroW: 979 case AArch64::STRHHroX: 980 case AArch64::STRHroW: 981 case AArch64::STRHroX: 982 case AArch64::STRQroW: 983 case AArch64::STRQroX: 984 case AArch64::STRSroW: 985 case AArch64::STRSroX: 986 case AArch64::STRWroW: 987 case AArch64::STRWroX: 988 case AArch64::STRXroW: 989 case AArch64::STRXroX: { 990 unsigned IsSigned = MI.getOperand(3).getImm(); 991 return !IsSigned; 992 } 993 } 994 } 995 996 bool AArch64InstrInfo::isSEHInstruction(const MachineInstr &MI) { 997 unsigned Opc = MI.getOpcode(); 998 switch (Opc) { 999 default: 1000 return false; 1001 case AArch64::SEH_StackAlloc: 1002 case AArch64::SEH_SaveFPLR: 1003 case AArch64::SEH_SaveFPLR_X: 1004 case AArch64::SEH_SaveReg: 1005 case AArch64::SEH_SaveReg_X: 1006 case AArch64::SEH_SaveRegP: 1007 case AArch64::SEH_SaveRegP_X: 1008 case AArch64::SEH_SaveFReg: 1009 case AArch64::SEH_SaveFReg_X: 1010 case AArch64::SEH_SaveFRegP: 1011 case AArch64::SEH_SaveFRegP_X: 1012 case AArch64::SEH_SetFP: 1013 case AArch64::SEH_AddFP: 1014 case AArch64::SEH_Nop: 1015 case AArch64::SEH_PrologEnd: 1016 case AArch64::SEH_EpilogStart: 1017 case AArch64::SEH_EpilogEnd: 1018 return true; 1019 } 1020 } 1021 1022 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 1023 Register &SrcReg, Register &DstReg, 1024 unsigned &SubIdx) const { 1025 switch (MI.getOpcode()) { 1026 default: 1027 return false; 1028 case AArch64::SBFMXri: // aka sxtw 1029 case AArch64::UBFMXri: // aka uxtw 1030 // Check for the 32 -> 64 bit extension case, these instructions can do 1031 // much more. 1032 if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31) 1033 return false; 1034 // This is a signed or unsigned 32 -> 64 bit extension. 1035 SrcReg = MI.getOperand(1).getReg(); 1036 DstReg = MI.getOperand(0).getReg(); 1037 SubIdx = AArch64::sub_32; 1038 return true; 1039 } 1040 } 1041 1042 bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint( 1043 const MachineInstr &MIa, const MachineInstr &MIb) const { 1044 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1045 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; 1046 int64_t OffsetA = 0, OffsetB = 0; 1047 unsigned WidthA = 0, WidthB = 0; 1048 bool OffsetAIsScalable = false, OffsetBIsScalable = false; 1049 1050 assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); 1051 assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); 1052 1053 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || 1054 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 1055 return false; 1056 1057 // Retrieve the base, offset from the base and width. Width 1058 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If 1059 // base are identical, and the offset of a lower memory access + 1060 // the width doesn't overlap the offset of a higher memory access, 1061 // then the memory accesses are different. 1062 // If OffsetAIsScalable and OffsetBIsScalable are both true, they 1063 // are assumed to have the same scale (vscale). 1064 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, OffsetAIsScalable, 1065 WidthA, TRI) && 1066 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, OffsetBIsScalable, 1067 WidthB, TRI)) { 1068 if (BaseOpA->isIdenticalTo(*BaseOpB) && 1069 OffsetAIsScalable == OffsetBIsScalable) { 1070 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1071 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1072 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1073 if (LowOffset + LowWidth <= HighOffset) 1074 return true; 1075 } 1076 } 1077 return false; 1078 } 1079 1080 bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1081 const MachineBasicBlock *MBB, 1082 const MachineFunction &MF) const { 1083 if (TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF)) 1084 return true; 1085 switch (MI.getOpcode()) { 1086 case AArch64::HINT: 1087 // CSDB hints are scheduling barriers. 1088 if (MI.getOperand(0).getImm() == 0x14) 1089 return true; 1090 break; 1091 case AArch64::DSB: 1092 case AArch64::ISB: 1093 // DSB and ISB also are scheduling barriers. 1094 return true; 1095 default:; 1096 } 1097 return isSEHInstruction(MI); 1098 } 1099 1100 /// analyzeCompare - For a comparison instruction, return the source registers 1101 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue. 1102 /// Return true if the comparison instruction can be analyzed. 1103 bool AArch64InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 1104 Register &SrcReg2, int64_t &CmpMask, 1105 int64_t &CmpValue) const { 1106 // The first operand can be a frame index where we'd normally expect a 1107 // register. 1108 assert(MI.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands"); 1109 if (!MI.getOperand(1).isReg()) 1110 return false; 1111 1112 switch (MI.getOpcode()) { 1113 default: 1114 break; 1115 case AArch64::PTEST_PP: 1116 SrcReg = MI.getOperand(0).getReg(); 1117 SrcReg2 = MI.getOperand(1).getReg(); 1118 // Not sure about the mask and value for now... 1119 CmpMask = ~0; 1120 CmpValue = 0; 1121 return true; 1122 case AArch64::SUBSWrr: 1123 case AArch64::SUBSWrs: 1124 case AArch64::SUBSWrx: 1125 case AArch64::SUBSXrr: 1126 case AArch64::SUBSXrs: 1127 case AArch64::SUBSXrx: 1128 case AArch64::ADDSWrr: 1129 case AArch64::ADDSWrs: 1130 case AArch64::ADDSWrx: 1131 case AArch64::ADDSXrr: 1132 case AArch64::ADDSXrs: 1133 case AArch64::ADDSXrx: 1134 // Replace SUBSWrr with SUBWrr if NZCV is not used. 1135 SrcReg = MI.getOperand(1).getReg(); 1136 SrcReg2 = MI.getOperand(2).getReg(); 1137 CmpMask = ~0; 1138 CmpValue = 0; 1139 return true; 1140 case AArch64::SUBSWri: 1141 case AArch64::ADDSWri: 1142 case AArch64::SUBSXri: 1143 case AArch64::ADDSXri: 1144 SrcReg = MI.getOperand(1).getReg(); 1145 SrcReg2 = 0; 1146 CmpMask = ~0; 1147 CmpValue = MI.getOperand(2).getImm(); 1148 return true; 1149 case AArch64::ANDSWri: 1150 case AArch64::ANDSXri: 1151 // ANDS does not use the same encoding scheme as the others xxxS 1152 // instructions. 1153 SrcReg = MI.getOperand(1).getReg(); 1154 SrcReg2 = 0; 1155 CmpMask = ~0; 1156 CmpValue = AArch64_AM::decodeLogicalImmediate( 1157 MI.getOperand(2).getImm(), 1158 MI.getOpcode() == AArch64::ANDSWri ? 32 : 64); 1159 return true; 1160 } 1161 1162 return false; 1163 } 1164 1165 static bool UpdateOperandRegClass(MachineInstr &Instr) { 1166 MachineBasicBlock *MBB = Instr.getParent(); 1167 assert(MBB && "Can't get MachineBasicBlock here"); 1168 MachineFunction *MF = MBB->getParent(); 1169 assert(MF && "Can't get MachineFunction here"); 1170 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1171 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1172 MachineRegisterInfo *MRI = &MF->getRegInfo(); 1173 1174 for (unsigned OpIdx = 0, EndIdx = Instr.getNumOperands(); OpIdx < EndIdx; 1175 ++OpIdx) { 1176 MachineOperand &MO = Instr.getOperand(OpIdx); 1177 const TargetRegisterClass *OpRegCstraints = 1178 Instr.getRegClassConstraint(OpIdx, TII, TRI); 1179 1180 // If there's no constraint, there's nothing to do. 1181 if (!OpRegCstraints) 1182 continue; 1183 // If the operand is a frame index, there's nothing to do here. 1184 // A frame index operand will resolve correctly during PEI. 1185 if (MO.isFI()) 1186 continue; 1187 1188 assert(MO.isReg() && 1189 "Operand has register constraints without being a register!"); 1190 1191 Register Reg = MO.getReg(); 1192 if (Register::isPhysicalRegister(Reg)) { 1193 if (!OpRegCstraints->contains(Reg)) 1194 return false; 1195 } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) && 1196 !MRI->constrainRegClass(Reg, OpRegCstraints)) 1197 return false; 1198 } 1199 1200 return true; 1201 } 1202 1203 /// Return the opcode that does not set flags when possible - otherwise 1204 /// return the original opcode. The caller is responsible to do the actual 1205 /// substitution and legality checking. 1206 static unsigned convertToNonFlagSettingOpc(const MachineInstr &MI) { 1207 // Don't convert all compare instructions, because for some the zero register 1208 // encoding becomes the sp register. 1209 bool MIDefinesZeroReg = false; 1210 if (MI.definesRegister(AArch64::WZR) || MI.definesRegister(AArch64::XZR)) 1211 MIDefinesZeroReg = true; 1212 1213 switch (MI.getOpcode()) { 1214 default: 1215 return MI.getOpcode(); 1216 case AArch64::ADDSWrr: 1217 return AArch64::ADDWrr; 1218 case AArch64::ADDSWri: 1219 return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri; 1220 case AArch64::ADDSWrs: 1221 return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs; 1222 case AArch64::ADDSWrx: 1223 return AArch64::ADDWrx; 1224 case AArch64::ADDSXrr: 1225 return AArch64::ADDXrr; 1226 case AArch64::ADDSXri: 1227 return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri; 1228 case AArch64::ADDSXrs: 1229 return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs; 1230 case AArch64::ADDSXrx: 1231 return AArch64::ADDXrx; 1232 case AArch64::SUBSWrr: 1233 return AArch64::SUBWrr; 1234 case AArch64::SUBSWri: 1235 return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri; 1236 case AArch64::SUBSWrs: 1237 return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs; 1238 case AArch64::SUBSWrx: 1239 return AArch64::SUBWrx; 1240 case AArch64::SUBSXrr: 1241 return AArch64::SUBXrr; 1242 case AArch64::SUBSXri: 1243 return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri; 1244 case AArch64::SUBSXrs: 1245 return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs; 1246 case AArch64::SUBSXrx: 1247 return AArch64::SUBXrx; 1248 } 1249 } 1250 1251 enum AccessKind { AK_Write = 0x01, AK_Read = 0x10, AK_All = 0x11 }; 1252 1253 /// True when condition flags are accessed (either by writing or reading) 1254 /// on the instruction trace starting at From and ending at To. 1255 /// 1256 /// Note: If From and To are from different blocks it's assumed CC are accessed 1257 /// on the path. 1258 static bool areCFlagsAccessedBetweenInstrs( 1259 MachineBasicBlock::iterator From, MachineBasicBlock::iterator To, 1260 const TargetRegisterInfo *TRI, const AccessKind AccessToCheck = AK_All) { 1261 // Early exit if To is at the beginning of the BB. 1262 if (To == To->getParent()->begin()) 1263 return true; 1264 1265 // Check whether the instructions are in the same basic block 1266 // If not, assume the condition flags might get modified somewhere. 1267 if (To->getParent() != From->getParent()) 1268 return true; 1269 1270 // From must be above To. 1271 assert(std::any_of( 1272 ++To.getReverse(), To->getParent()->rend(), 1273 [From](MachineInstr &MI) { return MI.getIterator() == From; })); 1274 1275 // We iterate backward starting at \p To until we hit \p From. 1276 for (const MachineInstr &Instr : 1277 instructionsWithoutDebug(++To.getReverse(), From.getReverse())) { 1278 if (((AccessToCheck & AK_Write) && 1279 Instr.modifiesRegister(AArch64::NZCV, TRI)) || 1280 ((AccessToCheck & AK_Read) && Instr.readsRegister(AArch64::NZCV, TRI))) 1281 return true; 1282 } 1283 return false; 1284 } 1285 1286 /// optimizePTestInstr - Attempt to remove a ptest of a predicate-generating 1287 /// operation which could set the flags in an identical manner 1288 bool AArch64InstrInfo::optimizePTestInstr( 1289 MachineInstr *PTest, unsigned MaskReg, unsigned PredReg, 1290 const MachineRegisterInfo *MRI) const { 1291 auto *Mask = MRI->getUniqueVRegDef(MaskReg); 1292 auto *Pred = MRI->getUniqueVRegDef(PredReg); 1293 auto NewOp = Pred->getOpcode(); 1294 bool OpChanged = false; 1295 1296 unsigned MaskOpcode = Mask->getOpcode(); 1297 unsigned PredOpcode = Pred->getOpcode(); 1298 bool PredIsPTestLike = isPTestLikeOpcode(PredOpcode); 1299 bool PredIsWhileLike = isWhileOpcode(PredOpcode); 1300 1301 if (isPTrueOpcode(MaskOpcode) && (PredIsPTestLike || PredIsWhileLike)) { 1302 // For PTEST(PTRUE, OTHER_INST), PTEST is redundant when PTRUE doesn't 1303 // deactivate any lanes OTHER_INST might set. 1304 uint64_t MaskElementSize = getElementSizeForOpcode(MaskOpcode); 1305 uint64_t PredElementSize = getElementSizeForOpcode(PredOpcode); 1306 1307 // Must be an all active predicate of matching element size. 1308 if ((PredElementSize != MaskElementSize) || 1309 (Mask->getOperand(1).getImm() != 31)) 1310 return false; 1311 1312 // Fallthough to simply remove the PTEST. 1313 } else if ((Mask == Pred) && (PredIsPTestLike || PredIsWhileLike)) { 1314 // For PTEST(PG, PG), PTEST is redundant when PG is the result of an 1315 // instruction that sets the flags as PTEST would. 1316 1317 // Fallthough to simply remove the PTEST. 1318 } else if (PredIsPTestLike) { 1319 // For PTEST(PG_1, PTEST_LIKE(PG2, ...)), PTEST is redundant when both 1320 // instructions use the same predicate. 1321 auto PTestLikeMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg()); 1322 if (Mask != PTestLikeMask) 1323 return false; 1324 1325 // Fallthough to simply remove the PTEST. 1326 } else { 1327 switch (Pred->getOpcode()) { 1328 case AArch64::BRKB_PPzP: 1329 case AArch64::BRKPB_PPzPP: { 1330 // Op 0 is chain, 1 is the mask, 2 the previous predicate to 1331 // propagate, 3 the new predicate. 1332 1333 // Check to see if our mask is the same as the brkpb's. If 1334 // not the resulting flag bits may be different and we 1335 // can't remove the ptest. 1336 auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg()); 1337 if (Mask != PredMask) 1338 return false; 1339 1340 // Switch to the new opcode 1341 NewOp = Pred->getOpcode() == AArch64::BRKB_PPzP ? AArch64::BRKBS_PPzP 1342 : AArch64::BRKPBS_PPzPP; 1343 OpChanged = true; 1344 break; 1345 } 1346 case AArch64::BRKN_PPzP: { 1347 auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg()); 1348 if (Mask != PredMask) 1349 return false; 1350 1351 NewOp = AArch64::BRKNS_PPzP; 1352 OpChanged = true; 1353 break; 1354 } 1355 case AArch64::RDFFR_PPz: { 1356 // rdffr p1.b, PredMask=p0/z <--- Definition of Pred 1357 // ptest Mask=p0, Pred=p1.b <--- If equal masks, remove this and use 1358 // `rdffrs p1.b, p0/z` above. 1359 auto *PredMask = MRI->getUniqueVRegDef(Pred->getOperand(1).getReg()); 1360 if (Mask != PredMask) 1361 return false; 1362 1363 NewOp = AArch64::RDFFRS_PPz; 1364 OpChanged = true; 1365 break; 1366 } 1367 default: 1368 // Bail out if we don't recognize the input 1369 return false; 1370 } 1371 } 1372 1373 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1374 1375 // If another instruction between Pred and PTest accesses flags, don't remove 1376 // the ptest or update the earlier instruction to modify them. 1377 if (areCFlagsAccessedBetweenInstrs(Pred, PTest, TRI)) 1378 return false; 1379 1380 // If we pass all the checks, it's safe to remove the PTEST and use the flags 1381 // as they are prior to PTEST. Sometimes this requires the tested PTEST 1382 // operand to be replaced with an equivalent instruction that also sets the 1383 // flags. 1384 Pred->setDesc(get(NewOp)); 1385 PTest->eraseFromParent(); 1386 if (OpChanged) { 1387 bool succeeded = UpdateOperandRegClass(*Pred); 1388 (void)succeeded; 1389 assert(succeeded && "Operands have incompatible register classes!"); 1390 Pred->addRegisterDefined(AArch64::NZCV, TRI); 1391 } 1392 1393 // Ensure that the flags def is live. 1394 if (Pred->registerDefIsDead(AArch64::NZCV, TRI)) { 1395 unsigned i = 0, e = Pred->getNumOperands(); 1396 for (; i != e; ++i) { 1397 MachineOperand &MO = Pred->getOperand(i); 1398 if (MO.isReg() && MO.isDef() && MO.getReg() == AArch64::NZCV) { 1399 MO.setIsDead(false); 1400 break; 1401 } 1402 } 1403 } 1404 return true; 1405 } 1406 1407 /// Try to optimize a compare instruction. A compare instruction is an 1408 /// instruction which produces AArch64::NZCV. It can be truly compare 1409 /// instruction 1410 /// when there are no uses of its destination register. 1411 /// 1412 /// The following steps are tried in order: 1413 /// 1. Convert CmpInstr into an unconditional version. 1414 /// 2. Remove CmpInstr if above there is an instruction producing a needed 1415 /// condition code or an instruction which can be converted into such an 1416 /// instruction. 1417 /// Only comparison with zero is supported. 1418 bool AArch64InstrInfo::optimizeCompareInstr( 1419 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, 1420 int64_t CmpValue, const MachineRegisterInfo *MRI) const { 1421 assert(CmpInstr.getParent()); 1422 assert(MRI); 1423 1424 // Replace SUBSWrr with SUBWrr if NZCV is not used. 1425 int DeadNZCVIdx = CmpInstr.findRegisterDefOperandIdx(AArch64::NZCV, true); 1426 if (DeadNZCVIdx != -1) { 1427 if (CmpInstr.definesRegister(AArch64::WZR) || 1428 CmpInstr.definesRegister(AArch64::XZR)) { 1429 CmpInstr.eraseFromParent(); 1430 return true; 1431 } 1432 unsigned Opc = CmpInstr.getOpcode(); 1433 unsigned NewOpc = convertToNonFlagSettingOpc(CmpInstr); 1434 if (NewOpc == Opc) 1435 return false; 1436 const MCInstrDesc &MCID = get(NewOpc); 1437 CmpInstr.setDesc(MCID); 1438 CmpInstr.RemoveOperand(DeadNZCVIdx); 1439 bool succeeded = UpdateOperandRegClass(CmpInstr); 1440 (void)succeeded; 1441 assert(succeeded && "Some operands reg class are incompatible!"); 1442 return true; 1443 } 1444 1445 if (CmpInstr.getOpcode() == AArch64::PTEST_PP) 1446 return optimizePTestInstr(&CmpInstr, SrcReg, SrcReg2, MRI); 1447 1448 if (SrcReg2 != 0) 1449 return false; 1450 1451 // CmpInstr is a Compare instruction if destination register is not used. 1452 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) 1453 return false; 1454 1455 if (CmpValue == 0 && substituteCmpToZero(CmpInstr, SrcReg, *MRI)) 1456 return true; 1457 return (CmpValue == 0 || CmpValue == 1) && 1458 removeCmpToZeroOrOne(CmpInstr, SrcReg, CmpValue, *MRI); 1459 } 1460 1461 /// Get opcode of S version of Instr. 1462 /// If Instr is S version its opcode is returned. 1463 /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version 1464 /// or we are not interested in it. 1465 static unsigned sForm(MachineInstr &Instr) { 1466 switch (Instr.getOpcode()) { 1467 default: 1468 return AArch64::INSTRUCTION_LIST_END; 1469 1470 case AArch64::ADDSWrr: 1471 case AArch64::ADDSWri: 1472 case AArch64::ADDSXrr: 1473 case AArch64::ADDSXri: 1474 case AArch64::SUBSWrr: 1475 case AArch64::SUBSWri: 1476 case AArch64::SUBSXrr: 1477 case AArch64::SUBSXri: 1478 return Instr.getOpcode(); 1479 1480 case AArch64::ADDWrr: 1481 return AArch64::ADDSWrr; 1482 case AArch64::ADDWri: 1483 return AArch64::ADDSWri; 1484 case AArch64::ADDXrr: 1485 return AArch64::ADDSXrr; 1486 case AArch64::ADDXri: 1487 return AArch64::ADDSXri; 1488 case AArch64::ADCWr: 1489 return AArch64::ADCSWr; 1490 case AArch64::ADCXr: 1491 return AArch64::ADCSXr; 1492 case AArch64::SUBWrr: 1493 return AArch64::SUBSWrr; 1494 case AArch64::SUBWri: 1495 return AArch64::SUBSWri; 1496 case AArch64::SUBXrr: 1497 return AArch64::SUBSXrr; 1498 case AArch64::SUBXri: 1499 return AArch64::SUBSXri; 1500 case AArch64::SBCWr: 1501 return AArch64::SBCSWr; 1502 case AArch64::SBCXr: 1503 return AArch64::SBCSXr; 1504 case AArch64::ANDWri: 1505 return AArch64::ANDSWri; 1506 case AArch64::ANDXri: 1507 return AArch64::ANDSXri; 1508 } 1509 } 1510 1511 /// Check if AArch64::NZCV should be alive in successors of MBB. 1512 static bool areCFlagsAliveInSuccessors(const MachineBasicBlock *MBB) { 1513 for (auto *BB : MBB->successors()) 1514 if (BB->isLiveIn(AArch64::NZCV)) 1515 return true; 1516 return false; 1517 } 1518 1519 /// \returns The condition code operand index for \p Instr if it is a branch 1520 /// or select and -1 otherwise. 1521 static int 1522 findCondCodeUseOperandIdxForBranchOrSelect(const MachineInstr &Instr) { 1523 switch (Instr.getOpcode()) { 1524 default: 1525 return -1; 1526 1527 case AArch64::Bcc: { 1528 int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV); 1529 assert(Idx >= 2); 1530 return Idx - 2; 1531 } 1532 1533 case AArch64::CSINVWr: 1534 case AArch64::CSINVXr: 1535 case AArch64::CSINCWr: 1536 case AArch64::CSINCXr: 1537 case AArch64::CSELWr: 1538 case AArch64::CSELXr: 1539 case AArch64::CSNEGWr: 1540 case AArch64::CSNEGXr: 1541 case AArch64::FCSELSrrr: 1542 case AArch64::FCSELDrrr: { 1543 int Idx = Instr.findRegisterUseOperandIdx(AArch64::NZCV); 1544 assert(Idx >= 1); 1545 return Idx - 1; 1546 } 1547 } 1548 } 1549 1550 namespace { 1551 1552 struct UsedNZCV { 1553 bool N = false; 1554 bool Z = false; 1555 bool C = false; 1556 bool V = false; 1557 1558 UsedNZCV() = default; 1559 1560 UsedNZCV &operator|=(const UsedNZCV &UsedFlags) { 1561 this->N |= UsedFlags.N; 1562 this->Z |= UsedFlags.Z; 1563 this->C |= UsedFlags.C; 1564 this->V |= UsedFlags.V; 1565 return *this; 1566 } 1567 }; 1568 1569 } // end anonymous namespace 1570 1571 /// Find a condition code used by the instruction. 1572 /// Returns AArch64CC::Invalid if either the instruction does not use condition 1573 /// codes or we don't optimize CmpInstr in the presence of such instructions. 1574 static AArch64CC::CondCode findCondCodeUsedByInstr(const MachineInstr &Instr) { 1575 int CCIdx = findCondCodeUseOperandIdxForBranchOrSelect(Instr); 1576 return CCIdx >= 0 ? static_cast<AArch64CC::CondCode>( 1577 Instr.getOperand(CCIdx).getImm()) 1578 : AArch64CC::Invalid; 1579 } 1580 1581 static UsedNZCV getUsedNZCV(AArch64CC::CondCode CC) { 1582 assert(CC != AArch64CC::Invalid); 1583 UsedNZCV UsedFlags; 1584 switch (CC) { 1585 default: 1586 break; 1587 1588 case AArch64CC::EQ: // Z set 1589 case AArch64CC::NE: // Z clear 1590 UsedFlags.Z = true; 1591 break; 1592 1593 case AArch64CC::HI: // Z clear and C set 1594 case AArch64CC::LS: // Z set or C clear 1595 UsedFlags.Z = true; 1596 LLVM_FALLTHROUGH; 1597 case AArch64CC::HS: // C set 1598 case AArch64CC::LO: // C clear 1599 UsedFlags.C = true; 1600 break; 1601 1602 case AArch64CC::MI: // N set 1603 case AArch64CC::PL: // N clear 1604 UsedFlags.N = true; 1605 break; 1606 1607 case AArch64CC::VS: // V set 1608 case AArch64CC::VC: // V clear 1609 UsedFlags.V = true; 1610 break; 1611 1612 case AArch64CC::GT: // Z clear, N and V the same 1613 case AArch64CC::LE: // Z set, N and V differ 1614 UsedFlags.Z = true; 1615 LLVM_FALLTHROUGH; 1616 case AArch64CC::GE: // N and V the same 1617 case AArch64CC::LT: // N and V differ 1618 UsedFlags.N = true; 1619 UsedFlags.V = true; 1620 break; 1621 } 1622 return UsedFlags; 1623 } 1624 1625 /// \returns Conditions flags used after \p CmpInstr in its MachineBB if they 1626 /// are not containing C or V flags and NZCV flags are not alive in successors 1627 /// of the same \p CmpInstr and \p MI parent. \returns None otherwise. 1628 /// 1629 /// Collect instructions using that flags in \p CCUseInstrs if provided. 1630 static Optional<UsedNZCV> 1631 examineCFlagsUse(MachineInstr &MI, MachineInstr &CmpInstr, 1632 const TargetRegisterInfo &TRI, 1633 SmallVectorImpl<MachineInstr *> *CCUseInstrs = nullptr) { 1634 MachineBasicBlock *CmpParent = CmpInstr.getParent(); 1635 if (MI.getParent() != CmpParent) 1636 return None; 1637 1638 if (areCFlagsAliveInSuccessors(CmpParent)) 1639 return None; 1640 1641 UsedNZCV NZCVUsedAfterCmp; 1642 for (MachineInstr &Instr : instructionsWithoutDebug( 1643 std::next(CmpInstr.getIterator()), CmpParent->instr_end())) { 1644 if (Instr.readsRegister(AArch64::NZCV, &TRI)) { 1645 AArch64CC::CondCode CC = findCondCodeUsedByInstr(Instr); 1646 if (CC == AArch64CC::Invalid) // Unsupported conditional instruction 1647 return None; 1648 NZCVUsedAfterCmp |= getUsedNZCV(CC); 1649 if (CCUseInstrs) 1650 CCUseInstrs->push_back(&Instr); 1651 } 1652 if (Instr.modifiesRegister(AArch64::NZCV, &TRI)) 1653 break; 1654 } 1655 if (NZCVUsedAfterCmp.C || NZCVUsedAfterCmp.V) 1656 return None; 1657 return NZCVUsedAfterCmp; 1658 } 1659 1660 static bool isADDSRegImm(unsigned Opcode) { 1661 return Opcode == AArch64::ADDSWri || Opcode == AArch64::ADDSXri; 1662 } 1663 1664 static bool isSUBSRegImm(unsigned Opcode) { 1665 return Opcode == AArch64::SUBSWri || Opcode == AArch64::SUBSXri; 1666 } 1667 1668 /// Check if CmpInstr can be substituted by MI. 1669 /// 1670 /// CmpInstr can be substituted: 1671 /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0' 1672 /// - and, MI and CmpInstr are from the same MachineBB 1673 /// - and, condition flags are not alive in successors of the CmpInstr parent 1674 /// - and, if MI opcode is the S form there must be no defs of flags between 1675 /// MI and CmpInstr 1676 /// or if MI opcode is not the S form there must be neither defs of flags 1677 /// nor uses of flags between MI and CmpInstr. 1678 /// - and C/V flags are not used after CmpInstr 1679 static bool canInstrSubstituteCmpInstr(MachineInstr &MI, MachineInstr &CmpInstr, 1680 const TargetRegisterInfo &TRI) { 1681 assert(sForm(MI) != AArch64::INSTRUCTION_LIST_END); 1682 1683 const unsigned CmpOpcode = CmpInstr.getOpcode(); 1684 if (!isADDSRegImm(CmpOpcode) && !isSUBSRegImm(CmpOpcode)) 1685 return false; 1686 1687 if (!examineCFlagsUse(MI, CmpInstr, TRI)) 1688 return false; 1689 1690 AccessKind AccessToCheck = AK_Write; 1691 if (sForm(MI) != MI.getOpcode()) 1692 AccessToCheck = AK_All; 1693 return !areCFlagsAccessedBetweenInstrs(&MI, &CmpInstr, &TRI, AccessToCheck); 1694 } 1695 1696 /// Substitute an instruction comparing to zero with another instruction 1697 /// which produces needed condition flags. 1698 /// 1699 /// Return true on success. 1700 bool AArch64InstrInfo::substituteCmpToZero( 1701 MachineInstr &CmpInstr, unsigned SrcReg, 1702 const MachineRegisterInfo &MRI) const { 1703 // Get the unique definition of SrcReg. 1704 MachineInstr *MI = MRI.getUniqueVRegDef(SrcReg); 1705 if (!MI) 1706 return false; 1707 1708 const TargetRegisterInfo &TRI = getRegisterInfo(); 1709 1710 unsigned NewOpc = sForm(*MI); 1711 if (NewOpc == AArch64::INSTRUCTION_LIST_END) 1712 return false; 1713 1714 if (!canInstrSubstituteCmpInstr(*MI, CmpInstr, TRI)) 1715 return false; 1716 1717 // Update the instruction to set NZCV. 1718 MI->setDesc(get(NewOpc)); 1719 CmpInstr.eraseFromParent(); 1720 bool succeeded = UpdateOperandRegClass(*MI); 1721 (void)succeeded; 1722 assert(succeeded && "Some operands reg class are incompatible!"); 1723 MI->addRegisterDefined(AArch64::NZCV, &TRI); 1724 return true; 1725 } 1726 1727 /// \returns True if \p CmpInstr can be removed. 1728 /// 1729 /// \p IsInvertCC is true if, after removing \p CmpInstr, condition 1730 /// codes used in \p CCUseInstrs must be inverted. 1731 static bool canCmpInstrBeRemoved(MachineInstr &MI, MachineInstr &CmpInstr, 1732 int CmpValue, const TargetRegisterInfo &TRI, 1733 SmallVectorImpl<MachineInstr *> &CCUseInstrs, 1734 bool &IsInvertCC) { 1735 assert((CmpValue == 0 || CmpValue == 1) && 1736 "Only comparisons to 0 or 1 considered for removal!"); 1737 1738 // MI is 'CSINCWr %vreg, wzr, wzr, <cc>' or 'CSINCXr %vreg, xzr, xzr, <cc>' 1739 unsigned MIOpc = MI.getOpcode(); 1740 if (MIOpc == AArch64::CSINCWr) { 1741 if (MI.getOperand(1).getReg() != AArch64::WZR || 1742 MI.getOperand(2).getReg() != AArch64::WZR) 1743 return false; 1744 } else if (MIOpc == AArch64::CSINCXr) { 1745 if (MI.getOperand(1).getReg() != AArch64::XZR || 1746 MI.getOperand(2).getReg() != AArch64::XZR) 1747 return false; 1748 } else { 1749 return false; 1750 } 1751 AArch64CC::CondCode MICC = findCondCodeUsedByInstr(MI); 1752 if (MICC == AArch64CC::Invalid) 1753 return false; 1754 1755 // NZCV needs to be defined 1756 if (MI.findRegisterDefOperandIdx(AArch64::NZCV, true) != -1) 1757 return false; 1758 1759 // CmpInstr is 'ADDS %vreg, 0' or 'SUBS %vreg, 0' or 'SUBS %vreg, 1' 1760 const unsigned CmpOpcode = CmpInstr.getOpcode(); 1761 bool IsSubsRegImm = isSUBSRegImm(CmpOpcode); 1762 if (CmpValue && !IsSubsRegImm) 1763 return false; 1764 if (!CmpValue && !IsSubsRegImm && !isADDSRegImm(CmpOpcode)) 1765 return false; 1766 1767 // MI conditions allowed: eq, ne, mi, pl 1768 UsedNZCV MIUsedNZCV = getUsedNZCV(MICC); 1769 if (MIUsedNZCV.C || MIUsedNZCV.V) 1770 return false; 1771 1772 Optional<UsedNZCV> NZCVUsedAfterCmp = 1773 examineCFlagsUse(MI, CmpInstr, TRI, &CCUseInstrs); 1774 // Condition flags are not used in CmpInstr basic block successors and only 1775 // Z or N flags allowed to be used after CmpInstr within its basic block 1776 if (!NZCVUsedAfterCmp) 1777 return false; 1778 // Z or N flag used after CmpInstr must correspond to the flag used in MI 1779 if ((MIUsedNZCV.Z && NZCVUsedAfterCmp->N) || 1780 (MIUsedNZCV.N && NZCVUsedAfterCmp->Z)) 1781 return false; 1782 // If CmpInstr is comparison to zero MI conditions are limited to eq, ne 1783 if (MIUsedNZCV.N && !CmpValue) 1784 return false; 1785 1786 // There must be no defs of flags between MI and CmpInstr 1787 if (areCFlagsAccessedBetweenInstrs(&MI, &CmpInstr, &TRI, AK_Write)) 1788 return false; 1789 1790 // Condition code is inverted in the following cases: 1791 // 1. MI condition is ne; CmpInstr is 'ADDS %vreg, 0' or 'SUBS %vreg, 0' 1792 // 2. MI condition is eq, pl; CmpInstr is 'SUBS %vreg, 1' 1793 IsInvertCC = (CmpValue && (MICC == AArch64CC::EQ || MICC == AArch64CC::PL)) || 1794 (!CmpValue && MICC == AArch64CC::NE); 1795 return true; 1796 } 1797 1798 /// Remove comparision in csinc-cmp sequence 1799 /// 1800 /// Examples: 1801 /// 1. \code 1802 /// csinc w9, wzr, wzr, ne 1803 /// cmp w9, #0 1804 /// b.eq 1805 /// \endcode 1806 /// to 1807 /// \code 1808 /// csinc w9, wzr, wzr, ne 1809 /// b.ne 1810 /// \endcode 1811 /// 1812 /// 2. \code 1813 /// csinc x2, xzr, xzr, mi 1814 /// cmp x2, #1 1815 /// b.pl 1816 /// \endcode 1817 /// to 1818 /// \code 1819 /// csinc x2, xzr, xzr, mi 1820 /// b.pl 1821 /// \endcode 1822 /// 1823 /// \param CmpInstr comparison instruction 1824 /// \return True when comparison removed 1825 bool AArch64InstrInfo::removeCmpToZeroOrOne( 1826 MachineInstr &CmpInstr, unsigned SrcReg, int CmpValue, 1827 const MachineRegisterInfo &MRI) const { 1828 MachineInstr *MI = MRI.getUniqueVRegDef(SrcReg); 1829 if (!MI) 1830 return false; 1831 const TargetRegisterInfo &TRI = getRegisterInfo(); 1832 SmallVector<MachineInstr *, 4> CCUseInstrs; 1833 bool IsInvertCC = false; 1834 if (!canCmpInstrBeRemoved(*MI, CmpInstr, CmpValue, TRI, CCUseInstrs, 1835 IsInvertCC)) 1836 return false; 1837 // Make transformation 1838 CmpInstr.eraseFromParent(); 1839 if (IsInvertCC) { 1840 // Invert condition codes in CmpInstr CC users 1841 for (MachineInstr *CCUseInstr : CCUseInstrs) { 1842 int Idx = findCondCodeUseOperandIdxForBranchOrSelect(*CCUseInstr); 1843 assert(Idx >= 0 && "Unexpected instruction using CC."); 1844 MachineOperand &CCOperand = CCUseInstr->getOperand(Idx); 1845 AArch64CC::CondCode CCUse = AArch64CC::getInvertedCondCode( 1846 static_cast<AArch64CC::CondCode>(CCOperand.getImm())); 1847 CCOperand.setImm(CCUse); 1848 } 1849 } 1850 return true; 1851 } 1852 1853 bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1854 if (MI.getOpcode() != TargetOpcode::LOAD_STACK_GUARD && 1855 MI.getOpcode() != AArch64::CATCHRET) 1856 return false; 1857 1858 MachineBasicBlock &MBB = *MI.getParent(); 1859 auto &Subtarget = MBB.getParent()->getSubtarget<AArch64Subtarget>(); 1860 auto TRI = Subtarget.getRegisterInfo(); 1861 DebugLoc DL = MI.getDebugLoc(); 1862 1863 if (MI.getOpcode() == AArch64::CATCHRET) { 1864 // Skip to the first instruction before the epilog. 1865 const TargetInstrInfo *TII = 1866 MBB.getParent()->getSubtarget().getInstrInfo(); 1867 MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB(); 1868 auto MBBI = MachineBasicBlock::iterator(MI); 1869 MachineBasicBlock::iterator FirstEpilogSEH = std::prev(MBBI); 1870 while (FirstEpilogSEH->getFlag(MachineInstr::FrameDestroy) && 1871 FirstEpilogSEH != MBB.begin()) 1872 FirstEpilogSEH = std::prev(FirstEpilogSEH); 1873 if (FirstEpilogSEH != MBB.begin()) 1874 FirstEpilogSEH = std::next(FirstEpilogSEH); 1875 BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADRP)) 1876 .addReg(AArch64::X0, RegState::Define) 1877 .addMBB(TargetMBB); 1878 BuildMI(MBB, FirstEpilogSEH, DL, TII->get(AArch64::ADDXri)) 1879 .addReg(AArch64::X0, RegState::Define) 1880 .addReg(AArch64::X0) 1881 .addMBB(TargetMBB) 1882 .addImm(0); 1883 return true; 1884 } 1885 1886 Register Reg = MI.getOperand(0).getReg(); 1887 Module &M = *MBB.getParent()->getFunction().getParent(); 1888 if (M.getStackProtectorGuard() == "sysreg") { 1889 const AArch64SysReg::SysReg *SrcReg = 1890 AArch64SysReg::lookupSysRegByName(M.getStackProtectorGuardReg()); 1891 if (!SrcReg) 1892 report_fatal_error("Unknown SysReg for Stack Protector Guard Register"); 1893 1894 // mrs xN, sysreg 1895 BuildMI(MBB, MI, DL, get(AArch64::MRS)) 1896 .addDef(Reg, RegState::Renamable) 1897 .addImm(SrcReg->Encoding); 1898 int Offset = M.getStackProtectorGuardOffset(); 1899 if (Offset >= 0 && Offset <= 32760 && Offset % 8 == 0) { 1900 // ldr xN, [xN, #offset] 1901 BuildMI(MBB, MI, DL, get(AArch64::LDRXui)) 1902 .addDef(Reg) 1903 .addUse(Reg, RegState::Kill) 1904 .addImm(Offset / 8); 1905 } else if (Offset >= -256 && Offset <= 255) { 1906 // ldur xN, [xN, #offset] 1907 BuildMI(MBB, MI, DL, get(AArch64::LDURXi)) 1908 .addDef(Reg) 1909 .addUse(Reg, RegState::Kill) 1910 .addImm(Offset); 1911 } else if (Offset >= -4095 && Offset <= 4095) { 1912 if (Offset > 0) { 1913 // add xN, xN, #offset 1914 BuildMI(MBB, MI, DL, get(AArch64::ADDXri)) 1915 .addDef(Reg) 1916 .addUse(Reg, RegState::Kill) 1917 .addImm(Offset) 1918 .addImm(0); 1919 } else { 1920 // sub xN, xN, #offset 1921 BuildMI(MBB, MI, DL, get(AArch64::SUBXri)) 1922 .addDef(Reg) 1923 .addUse(Reg, RegState::Kill) 1924 .addImm(-Offset) 1925 .addImm(0); 1926 } 1927 // ldr xN, [xN] 1928 BuildMI(MBB, MI, DL, get(AArch64::LDRXui)) 1929 .addDef(Reg) 1930 .addUse(Reg, RegState::Kill) 1931 .addImm(0); 1932 } else { 1933 // Cases that are larger than +/- 4095 and not a multiple of 8, or larger 1934 // than 23760. 1935 // It might be nice to use AArch64::MOVi32imm here, which would get 1936 // expanded in PreSched2 after PostRA, but our lone scratch Reg already 1937 // contains the MRS result. findScratchNonCalleeSaveRegister() in 1938 // AArch64FrameLowering might help us find such a scratch register 1939 // though. If we failed to find a scratch register, we could emit a 1940 // stream of add instructions to build up the immediate. Or, we could try 1941 // to insert a AArch64::MOVi32imm before register allocation so that we 1942 // didn't need to scavenge for a scratch register. 1943 report_fatal_error("Unable to encode Stack Protector Guard Offset"); 1944 } 1945 MBB.erase(MI); 1946 return true; 1947 } 1948 1949 const GlobalValue *GV = 1950 cast<GlobalValue>((*MI.memoperands_begin())->getValue()); 1951 const TargetMachine &TM = MBB.getParent()->getTarget(); 1952 unsigned OpFlags = Subtarget.ClassifyGlobalReference(GV, TM); 1953 const unsigned char MO_NC = AArch64II::MO_NC; 1954 1955 if ((OpFlags & AArch64II::MO_GOT) != 0) { 1956 BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg) 1957 .addGlobalAddress(GV, 0, OpFlags); 1958 if (Subtarget.isTargetILP32()) { 1959 unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32); 1960 BuildMI(MBB, MI, DL, get(AArch64::LDRWui)) 1961 .addDef(Reg32, RegState::Dead) 1962 .addUse(Reg, RegState::Kill) 1963 .addImm(0) 1964 .addMemOperand(*MI.memoperands_begin()) 1965 .addDef(Reg, RegState::Implicit); 1966 } else { 1967 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg) 1968 .addReg(Reg, RegState::Kill) 1969 .addImm(0) 1970 .addMemOperand(*MI.memoperands_begin()); 1971 } 1972 } else if (TM.getCodeModel() == CodeModel::Large) { 1973 assert(!Subtarget.isTargetILP32() && "how can large exist in ILP32?"); 1974 BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg) 1975 .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC) 1976 .addImm(0); 1977 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg) 1978 .addReg(Reg, RegState::Kill) 1979 .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC) 1980 .addImm(16); 1981 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg) 1982 .addReg(Reg, RegState::Kill) 1983 .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC) 1984 .addImm(32); 1985 BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg) 1986 .addReg(Reg, RegState::Kill) 1987 .addGlobalAddress(GV, 0, AArch64II::MO_G3) 1988 .addImm(48); 1989 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg) 1990 .addReg(Reg, RegState::Kill) 1991 .addImm(0) 1992 .addMemOperand(*MI.memoperands_begin()); 1993 } else if (TM.getCodeModel() == CodeModel::Tiny) { 1994 BuildMI(MBB, MI, DL, get(AArch64::ADR), Reg) 1995 .addGlobalAddress(GV, 0, OpFlags); 1996 } else { 1997 BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg) 1998 .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE); 1999 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC; 2000 if (Subtarget.isTargetILP32()) { 2001 unsigned Reg32 = TRI->getSubReg(Reg, AArch64::sub_32); 2002 BuildMI(MBB, MI, DL, get(AArch64::LDRWui)) 2003 .addDef(Reg32, RegState::Dead) 2004 .addUse(Reg, RegState::Kill) 2005 .addGlobalAddress(GV, 0, LoFlags) 2006 .addMemOperand(*MI.memoperands_begin()) 2007 .addDef(Reg, RegState::Implicit); 2008 } else { 2009 BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg) 2010 .addReg(Reg, RegState::Kill) 2011 .addGlobalAddress(GV, 0, LoFlags) 2012 .addMemOperand(*MI.memoperands_begin()); 2013 } 2014 } 2015 2016 MBB.erase(MI); 2017 2018 return true; 2019 } 2020 2021 // Return true if this instruction simply sets its single destination register 2022 // to zero. This is equivalent to a register rename of the zero-register. 2023 bool AArch64InstrInfo::isGPRZero(const MachineInstr &MI) { 2024 switch (MI.getOpcode()) { 2025 default: 2026 break; 2027 case AArch64::MOVZWi: 2028 case AArch64::MOVZXi: // movz Rd, #0 (LSL #0) 2029 if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) { 2030 assert(MI.getDesc().getNumOperands() == 3 && 2031 MI.getOperand(2).getImm() == 0 && "invalid MOVZi operands"); 2032 return true; 2033 } 2034 break; 2035 case AArch64::ANDWri: // and Rd, Rzr, #imm 2036 return MI.getOperand(1).getReg() == AArch64::WZR; 2037 case AArch64::ANDXri: 2038 return MI.getOperand(1).getReg() == AArch64::XZR; 2039 case TargetOpcode::COPY: 2040 return MI.getOperand(1).getReg() == AArch64::WZR; 2041 } 2042 return false; 2043 } 2044 2045 // Return true if this instruction simply renames a general register without 2046 // modifying bits. 2047 bool AArch64InstrInfo::isGPRCopy(const MachineInstr &MI) { 2048 switch (MI.getOpcode()) { 2049 default: 2050 break; 2051 case TargetOpcode::COPY: { 2052 // GPR32 copies will by lowered to ORRXrs 2053 Register DstReg = MI.getOperand(0).getReg(); 2054 return (AArch64::GPR32RegClass.contains(DstReg) || 2055 AArch64::GPR64RegClass.contains(DstReg)); 2056 } 2057 case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0) 2058 if (MI.getOperand(1).getReg() == AArch64::XZR) { 2059 assert(MI.getDesc().getNumOperands() == 4 && 2060 MI.getOperand(3).getImm() == 0 && "invalid ORRrs operands"); 2061 return true; 2062 } 2063 break; 2064 case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0) 2065 if (MI.getOperand(2).getImm() == 0) { 2066 assert(MI.getDesc().getNumOperands() == 4 && 2067 MI.getOperand(3).getImm() == 0 && "invalid ADDXri operands"); 2068 return true; 2069 } 2070 break; 2071 } 2072 return false; 2073 } 2074 2075 // Return true if this instruction simply renames a general register without 2076 // modifying bits. 2077 bool AArch64InstrInfo::isFPRCopy(const MachineInstr &MI) { 2078 switch (MI.getOpcode()) { 2079 default: 2080 break; 2081 case TargetOpcode::COPY: { 2082 Register DstReg = MI.getOperand(0).getReg(); 2083 return AArch64::FPR128RegClass.contains(DstReg); 2084 } 2085 case AArch64::ORRv16i8: 2086 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) { 2087 assert(MI.getDesc().getNumOperands() == 3 && MI.getOperand(0).isReg() && 2088 "invalid ORRv16i8 operands"); 2089 return true; 2090 } 2091 break; 2092 } 2093 return false; 2094 } 2095 2096 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 2097 int &FrameIndex) const { 2098 switch (MI.getOpcode()) { 2099 default: 2100 break; 2101 case AArch64::LDRWui: 2102 case AArch64::LDRXui: 2103 case AArch64::LDRBui: 2104 case AArch64::LDRHui: 2105 case AArch64::LDRSui: 2106 case AArch64::LDRDui: 2107 case AArch64::LDRQui: 2108 if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() && 2109 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) { 2110 FrameIndex = MI.getOperand(1).getIndex(); 2111 return MI.getOperand(0).getReg(); 2112 } 2113 break; 2114 } 2115 2116 return 0; 2117 } 2118 2119 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 2120 int &FrameIndex) const { 2121 switch (MI.getOpcode()) { 2122 default: 2123 break; 2124 case AArch64::STRWui: 2125 case AArch64::STRXui: 2126 case AArch64::STRBui: 2127 case AArch64::STRHui: 2128 case AArch64::STRSui: 2129 case AArch64::STRDui: 2130 case AArch64::STRQui: 2131 case AArch64::LDR_PXI: 2132 case AArch64::STR_PXI: 2133 if (MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).isFI() && 2134 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) { 2135 FrameIndex = MI.getOperand(1).getIndex(); 2136 return MI.getOperand(0).getReg(); 2137 } 2138 break; 2139 } 2140 return 0; 2141 } 2142 2143 /// Check all MachineMemOperands for a hint to suppress pairing. 2144 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr &MI) { 2145 return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) { 2146 return MMO->getFlags() & MOSuppressPair; 2147 }); 2148 } 2149 2150 /// Set a flag on the first MachineMemOperand to suppress pairing. 2151 void AArch64InstrInfo::suppressLdStPair(MachineInstr &MI) { 2152 if (MI.memoperands_empty()) 2153 return; 2154 (*MI.memoperands_begin())->setFlags(MOSuppressPair); 2155 } 2156 2157 /// Check all MachineMemOperands for a hint that the load/store is strided. 2158 bool AArch64InstrInfo::isStridedAccess(const MachineInstr &MI) { 2159 return llvm::any_of(MI.memoperands(), [](MachineMemOperand *MMO) { 2160 return MMO->getFlags() & MOStridedAccess; 2161 }); 2162 } 2163 2164 bool AArch64InstrInfo::hasUnscaledLdStOffset(unsigned Opc) { 2165 switch (Opc) { 2166 default: 2167 return false; 2168 case AArch64::STURSi: 2169 case AArch64::STRSpre: 2170 case AArch64::STURDi: 2171 case AArch64::STRDpre: 2172 case AArch64::STURQi: 2173 case AArch64::STRQpre: 2174 case AArch64::STURBBi: 2175 case AArch64::STURHHi: 2176 case AArch64::STURWi: 2177 case AArch64::STRWpre: 2178 case AArch64::STURXi: 2179 case AArch64::STRXpre: 2180 case AArch64::LDURSi: 2181 case AArch64::LDRSpre: 2182 case AArch64::LDURDi: 2183 case AArch64::LDRDpre: 2184 case AArch64::LDURQi: 2185 case AArch64::LDRQpre: 2186 case AArch64::LDURWi: 2187 case AArch64::LDRWpre: 2188 case AArch64::LDURXi: 2189 case AArch64::LDRXpre: 2190 case AArch64::LDURSWi: 2191 case AArch64::LDURHHi: 2192 case AArch64::LDURBBi: 2193 case AArch64::LDURSBWi: 2194 case AArch64::LDURSHWi: 2195 return true; 2196 } 2197 } 2198 2199 Optional<unsigned> AArch64InstrInfo::getUnscaledLdSt(unsigned Opc) { 2200 switch (Opc) { 2201 default: return {}; 2202 case AArch64::PRFMui: return AArch64::PRFUMi; 2203 case AArch64::LDRXui: return AArch64::LDURXi; 2204 case AArch64::LDRWui: return AArch64::LDURWi; 2205 case AArch64::LDRBui: return AArch64::LDURBi; 2206 case AArch64::LDRHui: return AArch64::LDURHi; 2207 case AArch64::LDRSui: return AArch64::LDURSi; 2208 case AArch64::LDRDui: return AArch64::LDURDi; 2209 case AArch64::LDRQui: return AArch64::LDURQi; 2210 case AArch64::LDRBBui: return AArch64::LDURBBi; 2211 case AArch64::LDRHHui: return AArch64::LDURHHi; 2212 case AArch64::LDRSBXui: return AArch64::LDURSBXi; 2213 case AArch64::LDRSBWui: return AArch64::LDURSBWi; 2214 case AArch64::LDRSHXui: return AArch64::LDURSHXi; 2215 case AArch64::LDRSHWui: return AArch64::LDURSHWi; 2216 case AArch64::LDRSWui: return AArch64::LDURSWi; 2217 case AArch64::STRXui: return AArch64::STURXi; 2218 case AArch64::STRWui: return AArch64::STURWi; 2219 case AArch64::STRBui: return AArch64::STURBi; 2220 case AArch64::STRHui: return AArch64::STURHi; 2221 case AArch64::STRSui: return AArch64::STURSi; 2222 case AArch64::STRDui: return AArch64::STURDi; 2223 case AArch64::STRQui: return AArch64::STURQi; 2224 case AArch64::STRBBui: return AArch64::STURBBi; 2225 case AArch64::STRHHui: return AArch64::STURHHi; 2226 } 2227 } 2228 2229 unsigned AArch64InstrInfo::getLoadStoreImmIdx(unsigned Opc) { 2230 switch (Opc) { 2231 default: 2232 return 2; 2233 case AArch64::LDPXi: 2234 case AArch64::LDPDi: 2235 case AArch64::STPXi: 2236 case AArch64::STPDi: 2237 case AArch64::LDNPXi: 2238 case AArch64::LDNPDi: 2239 case AArch64::STNPXi: 2240 case AArch64::STNPDi: 2241 case AArch64::LDPQi: 2242 case AArch64::STPQi: 2243 case AArch64::LDNPQi: 2244 case AArch64::STNPQi: 2245 case AArch64::LDPWi: 2246 case AArch64::LDPSi: 2247 case AArch64::STPWi: 2248 case AArch64::STPSi: 2249 case AArch64::LDNPWi: 2250 case AArch64::LDNPSi: 2251 case AArch64::STNPWi: 2252 case AArch64::STNPSi: 2253 case AArch64::LDG: 2254 case AArch64::STGPi: 2255 2256 case AArch64::LD1B_IMM: 2257 case AArch64::LD1B_H_IMM: 2258 case AArch64::LD1B_S_IMM: 2259 case AArch64::LD1B_D_IMM: 2260 case AArch64::LD1SB_H_IMM: 2261 case AArch64::LD1SB_S_IMM: 2262 case AArch64::LD1SB_D_IMM: 2263 case AArch64::LD1H_IMM: 2264 case AArch64::LD1H_S_IMM: 2265 case AArch64::LD1H_D_IMM: 2266 case AArch64::LD1SH_S_IMM: 2267 case AArch64::LD1SH_D_IMM: 2268 case AArch64::LD1W_IMM: 2269 case AArch64::LD1W_D_IMM: 2270 case AArch64::LD1SW_D_IMM: 2271 case AArch64::LD1D_IMM: 2272 2273 case AArch64::ST1B_IMM: 2274 case AArch64::ST1B_H_IMM: 2275 case AArch64::ST1B_S_IMM: 2276 case AArch64::ST1B_D_IMM: 2277 case AArch64::ST1H_IMM: 2278 case AArch64::ST1H_S_IMM: 2279 case AArch64::ST1H_D_IMM: 2280 case AArch64::ST1W_IMM: 2281 case AArch64::ST1W_D_IMM: 2282 case AArch64::ST1D_IMM: 2283 2284 case AArch64::LD1RB_IMM: 2285 case AArch64::LD1RB_H_IMM: 2286 case AArch64::LD1RB_S_IMM: 2287 case AArch64::LD1RB_D_IMM: 2288 case AArch64::LD1RSB_H_IMM: 2289 case AArch64::LD1RSB_S_IMM: 2290 case AArch64::LD1RSB_D_IMM: 2291 case AArch64::LD1RH_IMM: 2292 case AArch64::LD1RH_S_IMM: 2293 case AArch64::LD1RH_D_IMM: 2294 case AArch64::LD1RSH_S_IMM: 2295 case AArch64::LD1RSH_D_IMM: 2296 case AArch64::LD1RW_IMM: 2297 case AArch64::LD1RW_D_IMM: 2298 case AArch64::LD1RSW_IMM: 2299 case AArch64::LD1RD_IMM: 2300 2301 case AArch64::LDNT1B_ZRI: 2302 case AArch64::LDNT1H_ZRI: 2303 case AArch64::LDNT1W_ZRI: 2304 case AArch64::LDNT1D_ZRI: 2305 case AArch64::STNT1B_ZRI: 2306 case AArch64::STNT1H_ZRI: 2307 case AArch64::STNT1W_ZRI: 2308 case AArch64::STNT1D_ZRI: 2309 2310 case AArch64::LDNF1B_IMM: 2311 case AArch64::LDNF1B_H_IMM: 2312 case AArch64::LDNF1B_S_IMM: 2313 case AArch64::LDNF1B_D_IMM: 2314 case AArch64::LDNF1SB_H_IMM: 2315 case AArch64::LDNF1SB_S_IMM: 2316 case AArch64::LDNF1SB_D_IMM: 2317 case AArch64::LDNF1H_IMM: 2318 case AArch64::LDNF1H_S_IMM: 2319 case AArch64::LDNF1H_D_IMM: 2320 case AArch64::LDNF1SH_S_IMM: 2321 case AArch64::LDNF1SH_D_IMM: 2322 case AArch64::LDNF1W_IMM: 2323 case AArch64::LDNF1W_D_IMM: 2324 case AArch64::LDNF1SW_D_IMM: 2325 case AArch64::LDNF1D_IMM: 2326 return 3; 2327 case AArch64::ADDG: 2328 case AArch64::STGOffset: 2329 case AArch64::LDR_PXI: 2330 case AArch64::STR_PXI: 2331 return 2; 2332 } 2333 } 2334 2335 bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr &MI) { 2336 switch (MI.getOpcode()) { 2337 default: 2338 return false; 2339 // Scaled instructions. 2340 case AArch64::STRSui: 2341 case AArch64::STRDui: 2342 case AArch64::STRQui: 2343 case AArch64::STRXui: 2344 case AArch64::STRWui: 2345 case AArch64::LDRSui: 2346 case AArch64::LDRDui: 2347 case AArch64::LDRQui: 2348 case AArch64::LDRXui: 2349 case AArch64::LDRWui: 2350 case AArch64::LDRSWui: 2351 // Unscaled instructions. 2352 case AArch64::STURSi: 2353 case AArch64::STRSpre: 2354 case AArch64::STURDi: 2355 case AArch64::STRDpre: 2356 case AArch64::STURQi: 2357 case AArch64::STRQpre: 2358 case AArch64::STURWi: 2359 case AArch64::STRWpre: 2360 case AArch64::STURXi: 2361 case AArch64::STRXpre: 2362 case AArch64::LDURSi: 2363 case AArch64::LDRSpre: 2364 case AArch64::LDURDi: 2365 case AArch64::LDRDpre: 2366 case AArch64::LDURQi: 2367 case AArch64::LDRQpre: 2368 case AArch64::LDURWi: 2369 case AArch64::LDRWpre: 2370 case AArch64::LDURXi: 2371 case AArch64::LDRXpre: 2372 case AArch64::LDURSWi: 2373 return true; 2374 } 2375 } 2376 2377 unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc, 2378 bool &Is64Bit) { 2379 switch (Opc) { 2380 default: 2381 llvm_unreachable("Opcode has no flag setting equivalent!"); 2382 // 32-bit cases: 2383 case AArch64::ADDWri: 2384 Is64Bit = false; 2385 return AArch64::ADDSWri; 2386 case AArch64::ADDWrr: 2387 Is64Bit = false; 2388 return AArch64::ADDSWrr; 2389 case AArch64::ADDWrs: 2390 Is64Bit = false; 2391 return AArch64::ADDSWrs; 2392 case AArch64::ADDWrx: 2393 Is64Bit = false; 2394 return AArch64::ADDSWrx; 2395 case AArch64::ANDWri: 2396 Is64Bit = false; 2397 return AArch64::ANDSWri; 2398 case AArch64::ANDWrr: 2399 Is64Bit = false; 2400 return AArch64::ANDSWrr; 2401 case AArch64::ANDWrs: 2402 Is64Bit = false; 2403 return AArch64::ANDSWrs; 2404 case AArch64::BICWrr: 2405 Is64Bit = false; 2406 return AArch64::BICSWrr; 2407 case AArch64::BICWrs: 2408 Is64Bit = false; 2409 return AArch64::BICSWrs; 2410 case AArch64::SUBWri: 2411 Is64Bit = false; 2412 return AArch64::SUBSWri; 2413 case AArch64::SUBWrr: 2414 Is64Bit = false; 2415 return AArch64::SUBSWrr; 2416 case AArch64::SUBWrs: 2417 Is64Bit = false; 2418 return AArch64::SUBSWrs; 2419 case AArch64::SUBWrx: 2420 Is64Bit = false; 2421 return AArch64::SUBSWrx; 2422 // 64-bit cases: 2423 case AArch64::ADDXri: 2424 Is64Bit = true; 2425 return AArch64::ADDSXri; 2426 case AArch64::ADDXrr: 2427 Is64Bit = true; 2428 return AArch64::ADDSXrr; 2429 case AArch64::ADDXrs: 2430 Is64Bit = true; 2431 return AArch64::ADDSXrs; 2432 case AArch64::ADDXrx: 2433 Is64Bit = true; 2434 return AArch64::ADDSXrx; 2435 case AArch64::ANDXri: 2436 Is64Bit = true; 2437 return AArch64::ANDSXri; 2438 case AArch64::ANDXrr: 2439 Is64Bit = true; 2440 return AArch64::ANDSXrr; 2441 case AArch64::ANDXrs: 2442 Is64Bit = true; 2443 return AArch64::ANDSXrs; 2444 case AArch64::BICXrr: 2445 Is64Bit = true; 2446 return AArch64::BICSXrr; 2447 case AArch64::BICXrs: 2448 Is64Bit = true; 2449 return AArch64::BICSXrs; 2450 case AArch64::SUBXri: 2451 Is64Bit = true; 2452 return AArch64::SUBSXri; 2453 case AArch64::SUBXrr: 2454 Is64Bit = true; 2455 return AArch64::SUBSXrr; 2456 case AArch64::SUBXrs: 2457 Is64Bit = true; 2458 return AArch64::SUBSXrs; 2459 case AArch64::SUBXrx: 2460 Is64Bit = true; 2461 return AArch64::SUBSXrx; 2462 } 2463 } 2464 2465 // Is this a candidate for ld/st merging or pairing? For example, we don't 2466 // touch volatiles or load/stores that have a hint to avoid pair formation. 2467 bool AArch64InstrInfo::isCandidateToMergeOrPair(const MachineInstr &MI) const { 2468 2469 bool IsPreLdSt = isPreLdSt(MI); 2470 2471 // If this is a volatile load/store, don't mess with it. 2472 if (MI.hasOrderedMemoryRef()) 2473 return false; 2474 2475 // Make sure this is a reg/fi+imm (as opposed to an address reloc). 2476 // For Pre-inc LD/ST, the operand is shifted by one. 2477 assert((MI.getOperand(IsPreLdSt ? 2 : 1).isReg() || 2478 MI.getOperand(IsPreLdSt ? 2 : 1).isFI()) && 2479 "Expected a reg or frame index operand."); 2480 2481 // For Pre-indexed addressing quadword instructions, the third operand is the 2482 // immediate value. 2483 bool IsImmPreLdSt = IsPreLdSt && MI.getOperand(3).isImm(); 2484 2485 if (!MI.getOperand(2).isImm() && !IsImmPreLdSt) 2486 return false; 2487 2488 // Can't merge/pair if the instruction modifies the base register. 2489 // e.g., ldr x0, [x0] 2490 // This case will never occur with an FI base. 2491 // However, if the instruction is an LDR/STR<S,D,Q,W,X>pre, it can be merged. 2492 // For example: 2493 // ldr q0, [x11, #32]! 2494 // ldr q1, [x11, #16] 2495 // to 2496 // ldp q0, q1, [x11, #32]! 2497 if (MI.getOperand(1).isReg() && !IsPreLdSt) { 2498 Register BaseReg = MI.getOperand(1).getReg(); 2499 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2500 if (MI.modifiesRegister(BaseReg, TRI)) 2501 return false; 2502 } 2503 2504 // Check if this load/store has a hint to avoid pair formation. 2505 // MachineMemOperands hints are set by the AArch64StorePairSuppress pass. 2506 if (isLdStPairSuppressed(MI)) 2507 return false; 2508 2509 // Do not pair any callee-save store/reload instructions in the 2510 // prologue/epilogue if the CFI information encoded the operations as separate 2511 // instructions, as that will cause the size of the actual prologue to mismatch 2512 // with the prologue size recorded in the Windows CFI. 2513 const MCAsmInfo *MAI = MI.getMF()->getTarget().getMCAsmInfo(); 2514 bool NeedsWinCFI = MAI->usesWindowsCFI() && 2515 MI.getMF()->getFunction().needsUnwindTableEntry(); 2516 if (NeedsWinCFI && (MI.getFlag(MachineInstr::FrameSetup) || 2517 MI.getFlag(MachineInstr::FrameDestroy))) 2518 return false; 2519 2520 // On some CPUs quad load/store pairs are slower than two single load/stores. 2521 if (Subtarget.isPaired128Slow()) { 2522 switch (MI.getOpcode()) { 2523 default: 2524 break; 2525 case AArch64::LDURQi: 2526 case AArch64::STURQi: 2527 case AArch64::LDRQui: 2528 case AArch64::STRQui: 2529 return false; 2530 } 2531 } 2532 2533 return true; 2534 } 2535 2536 bool AArch64InstrInfo::getMemOperandsWithOffsetWidth( 2537 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 2538 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 2539 const TargetRegisterInfo *TRI) const { 2540 if (!LdSt.mayLoadOrStore()) 2541 return false; 2542 2543 const MachineOperand *BaseOp; 2544 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, OffsetIsScalable, 2545 Width, TRI)) 2546 return false; 2547 BaseOps.push_back(BaseOp); 2548 return true; 2549 } 2550 2551 Optional<ExtAddrMode> 2552 AArch64InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI, 2553 const TargetRegisterInfo *TRI) const { 2554 const MachineOperand *Base; // Filled with the base operand of MI. 2555 int64_t Offset; // Filled with the offset of MI. 2556 bool OffsetIsScalable; 2557 if (!getMemOperandWithOffset(MemI, Base, Offset, OffsetIsScalable, TRI)) 2558 return None; 2559 2560 if (!Base->isReg()) 2561 return None; 2562 ExtAddrMode AM; 2563 AM.BaseReg = Base->getReg(); 2564 AM.Displacement = Offset; 2565 AM.ScaledReg = 0; 2566 AM.Scale = 0; 2567 return AM; 2568 } 2569 2570 bool AArch64InstrInfo::getMemOperandWithOffsetWidth( 2571 const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset, 2572 bool &OffsetIsScalable, unsigned &Width, 2573 const TargetRegisterInfo *TRI) const { 2574 assert(LdSt.mayLoadOrStore() && "Expected a memory operation."); 2575 // Handle only loads/stores with base register followed by immediate offset. 2576 if (LdSt.getNumExplicitOperands() == 3) { 2577 // Non-paired instruction (e.g., ldr x1, [x0, #8]). 2578 if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) || 2579 !LdSt.getOperand(2).isImm()) 2580 return false; 2581 } else if (LdSt.getNumExplicitOperands() == 4) { 2582 // Paired instruction (e.g., ldp x1, x2, [x0, #8]). 2583 if (!LdSt.getOperand(1).isReg() || 2584 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()) || 2585 !LdSt.getOperand(3).isImm()) 2586 return false; 2587 } else 2588 return false; 2589 2590 // Get the scaling factor for the instruction and set the width for the 2591 // instruction. 2592 TypeSize Scale(0U, false); 2593 int64_t Dummy1, Dummy2; 2594 2595 // If this returns false, then it's an instruction we don't want to handle. 2596 if (!getMemOpInfo(LdSt.getOpcode(), Scale, Width, Dummy1, Dummy2)) 2597 return false; 2598 2599 // Compute the offset. Offset is calculated as the immediate operand 2600 // multiplied by the scaling factor. Unscaled instructions have scaling factor 2601 // set to 1. 2602 if (LdSt.getNumExplicitOperands() == 3) { 2603 BaseOp = &LdSt.getOperand(1); 2604 Offset = LdSt.getOperand(2).getImm() * Scale.getKnownMinSize(); 2605 } else { 2606 assert(LdSt.getNumExplicitOperands() == 4 && "invalid number of operands"); 2607 BaseOp = &LdSt.getOperand(2); 2608 Offset = LdSt.getOperand(3).getImm() * Scale.getKnownMinSize(); 2609 } 2610 OffsetIsScalable = Scale.isScalable(); 2611 2612 if (!BaseOp->isReg() && !BaseOp->isFI()) 2613 return false; 2614 2615 return true; 2616 } 2617 2618 MachineOperand & 2619 AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const { 2620 assert(LdSt.mayLoadOrStore() && "Expected a memory operation."); 2621 MachineOperand &OfsOp = LdSt.getOperand(LdSt.getNumExplicitOperands() - 1); 2622 assert(OfsOp.isImm() && "Offset operand wasn't immediate."); 2623 return OfsOp; 2624 } 2625 2626 bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode, TypeSize &Scale, 2627 unsigned &Width, int64_t &MinOffset, 2628 int64_t &MaxOffset) { 2629 const unsigned SVEMaxBytesPerVector = AArch64::SVEMaxBitsPerVector / 8; 2630 switch (Opcode) { 2631 // Not a memory operation or something we want to handle. 2632 default: 2633 Scale = TypeSize::Fixed(0); 2634 Width = 0; 2635 MinOffset = MaxOffset = 0; 2636 return false; 2637 case AArch64::STRWpost: 2638 case AArch64::LDRWpost: 2639 Width = 32; 2640 Scale = TypeSize::Fixed(4); 2641 MinOffset = -256; 2642 MaxOffset = 255; 2643 break; 2644 case AArch64::LDURQi: 2645 case AArch64::STURQi: 2646 Width = 16; 2647 Scale = TypeSize::Fixed(1); 2648 MinOffset = -256; 2649 MaxOffset = 255; 2650 break; 2651 case AArch64::PRFUMi: 2652 case AArch64::LDURXi: 2653 case AArch64::LDURDi: 2654 case AArch64::STURXi: 2655 case AArch64::STURDi: 2656 Width = 8; 2657 Scale = TypeSize::Fixed(1); 2658 MinOffset = -256; 2659 MaxOffset = 255; 2660 break; 2661 case AArch64::LDURWi: 2662 case AArch64::LDURSi: 2663 case AArch64::LDURSWi: 2664 case AArch64::STURWi: 2665 case AArch64::STURSi: 2666 Width = 4; 2667 Scale = TypeSize::Fixed(1); 2668 MinOffset = -256; 2669 MaxOffset = 255; 2670 break; 2671 case AArch64::LDURHi: 2672 case AArch64::LDURHHi: 2673 case AArch64::LDURSHXi: 2674 case AArch64::LDURSHWi: 2675 case AArch64::STURHi: 2676 case AArch64::STURHHi: 2677 Width = 2; 2678 Scale = TypeSize::Fixed(1); 2679 MinOffset = -256; 2680 MaxOffset = 255; 2681 break; 2682 case AArch64::LDURBi: 2683 case AArch64::LDURBBi: 2684 case AArch64::LDURSBXi: 2685 case AArch64::LDURSBWi: 2686 case AArch64::STURBi: 2687 case AArch64::STURBBi: 2688 Width = 1; 2689 Scale = TypeSize::Fixed(1); 2690 MinOffset = -256; 2691 MaxOffset = 255; 2692 break; 2693 case AArch64::LDPQi: 2694 case AArch64::LDNPQi: 2695 case AArch64::STPQi: 2696 case AArch64::STNPQi: 2697 Scale = TypeSize::Fixed(16); 2698 Width = 32; 2699 MinOffset = -64; 2700 MaxOffset = 63; 2701 break; 2702 case AArch64::LDRQui: 2703 case AArch64::STRQui: 2704 Scale = TypeSize::Fixed(16); 2705 Width = 16; 2706 MinOffset = 0; 2707 MaxOffset = 4095; 2708 break; 2709 case AArch64::LDPXi: 2710 case AArch64::LDPDi: 2711 case AArch64::LDNPXi: 2712 case AArch64::LDNPDi: 2713 case AArch64::STPXi: 2714 case AArch64::STPDi: 2715 case AArch64::STNPXi: 2716 case AArch64::STNPDi: 2717 Scale = TypeSize::Fixed(8); 2718 Width = 16; 2719 MinOffset = -64; 2720 MaxOffset = 63; 2721 break; 2722 case AArch64::PRFMui: 2723 case AArch64::LDRXui: 2724 case AArch64::LDRDui: 2725 case AArch64::STRXui: 2726 case AArch64::STRDui: 2727 Scale = TypeSize::Fixed(8); 2728 Width = 8; 2729 MinOffset = 0; 2730 MaxOffset = 4095; 2731 break; 2732 case AArch64::StoreSwiftAsyncContext: 2733 // Store is an STRXui, but there might be an ADDXri in the expansion too. 2734 Scale = TypeSize::Fixed(1); 2735 Width = 8; 2736 MinOffset = 0; 2737 MaxOffset = 4095; 2738 break; 2739 case AArch64::LDPWi: 2740 case AArch64::LDPSi: 2741 case AArch64::LDNPWi: 2742 case AArch64::LDNPSi: 2743 case AArch64::STPWi: 2744 case AArch64::STPSi: 2745 case AArch64::STNPWi: 2746 case AArch64::STNPSi: 2747 Scale = TypeSize::Fixed(4); 2748 Width = 8; 2749 MinOffset = -64; 2750 MaxOffset = 63; 2751 break; 2752 case AArch64::LDRWui: 2753 case AArch64::LDRSui: 2754 case AArch64::LDRSWui: 2755 case AArch64::STRWui: 2756 case AArch64::STRSui: 2757 Scale = TypeSize::Fixed(4); 2758 Width = 4; 2759 MinOffset = 0; 2760 MaxOffset = 4095; 2761 break; 2762 case AArch64::LDRHui: 2763 case AArch64::LDRHHui: 2764 case AArch64::LDRSHWui: 2765 case AArch64::LDRSHXui: 2766 case AArch64::STRHui: 2767 case AArch64::STRHHui: 2768 Scale = TypeSize::Fixed(2); 2769 Width = 2; 2770 MinOffset = 0; 2771 MaxOffset = 4095; 2772 break; 2773 case AArch64::LDRBui: 2774 case AArch64::LDRBBui: 2775 case AArch64::LDRSBWui: 2776 case AArch64::LDRSBXui: 2777 case AArch64::STRBui: 2778 case AArch64::STRBBui: 2779 Scale = TypeSize::Fixed(1); 2780 Width = 1; 2781 MinOffset = 0; 2782 MaxOffset = 4095; 2783 break; 2784 case AArch64::STPXpre: 2785 case AArch64::LDPXpost: 2786 case AArch64::STPDpre: 2787 case AArch64::LDPDpost: 2788 Scale = TypeSize::Fixed(8); 2789 Width = 8; 2790 MinOffset = -512; 2791 MaxOffset = 504; 2792 break; 2793 case AArch64::STPQpre: 2794 case AArch64::LDPQpost: 2795 Scale = TypeSize::Fixed(16); 2796 Width = 16; 2797 MinOffset = -1024; 2798 MaxOffset = 1008; 2799 break; 2800 case AArch64::STRXpre: 2801 case AArch64::STRDpre: 2802 case AArch64::LDRXpost: 2803 case AArch64::LDRDpost: 2804 Scale = TypeSize::Fixed(1); 2805 Width = 8; 2806 MinOffset = -256; 2807 MaxOffset = 255; 2808 break; 2809 case AArch64::STRQpre: 2810 case AArch64::LDRQpost: 2811 Scale = TypeSize::Fixed(1); 2812 Width = 16; 2813 MinOffset = -256; 2814 MaxOffset = 255; 2815 break; 2816 case AArch64::ADDG: 2817 Scale = TypeSize::Fixed(16); 2818 Width = 0; 2819 MinOffset = 0; 2820 MaxOffset = 63; 2821 break; 2822 case AArch64::TAGPstack: 2823 Scale = TypeSize::Fixed(16); 2824 Width = 0; 2825 // TAGP with a negative offset turns into SUBP, which has a maximum offset 2826 // of 63 (not 64!). 2827 MinOffset = -63; 2828 MaxOffset = 63; 2829 break; 2830 case AArch64::LDG: 2831 case AArch64::STGOffset: 2832 case AArch64::STZGOffset: 2833 Scale = TypeSize::Fixed(16); 2834 Width = 16; 2835 MinOffset = -256; 2836 MaxOffset = 255; 2837 break; 2838 case AArch64::STR_ZZZZXI: 2839 case AArch64::LDR_ZZZZXI: 2840 Scale = TypeSize::Scalable(16); 2841 Width = SVEMaxBytesPerVector * 4; 2842 MinOffset = -256; 2843 MaxOffset = 252; 2844 break; 2845 case AArch64::STR_ZZZXI: 2846 case AArch64::LDR_ZZZXI: 2847 Scale = TypeSize::Scalable(16); 2848 Width = SVEMaxBytesPerVector * 3; 2849 MinOffset = -256; 2850 MaxOffset = 253; 2851 break; 2852 case AArch64::STR_ZZXI: 2853 case AArch64::LDR_ZZXI: 2854 Scale = TypeSize::Scalable(16); 2855 Width = SVEMaxBytesPerVector * 2; 2856 MinOffset = -256; 2857 MaxOffset = 254; 2858 break; 2859 case AArch64::LDR_PXI: 2860 case AArch64::STR_PXI: 2861 Scale = TypeSize::Scalable(2); 2862 Width = SVEMaxBytesPerVector / 8; 2863 MinOffset = -256; 2864 MaxOffset = 255; 2865 break; 2866 case AArch64::LDR_ZXI: 2867 case AArch64::STR_ZXI: 2868 Scale = TypeSize::Scalable(16); 2869 Width = SVEMaxBytesPerVector; 2870 MinOffset = -256; 2871 MaxOffset = 255; 2872 break; 2873 case AArch64::LD1B_IMM: 2874 case AArch64::LD1H_IMM: 2875 case AArch64::LD1W_IMM: 2876 case AArch64::LD1D_IMM: 2877 case AArch64::LDNT1B_ZRI: 2878 case AArch64::LDNT1H_ZRI: 2879 case AArch64::LDNT1W_ZRI: 2880 case AArch64::LDNT1D_ZRI: 2881 case AArch64::ST1B_IMM: 2882 case AArch64::ST1H_IMM: 2883 case AArch64::ST1W_IMM: 2884 case AArch64::ST1D_IMM: 2885 case AArch64::STNT1B_ZRI: 2886 case AArch64::STNT1H_ZRI: 2887 case AArch64::STNT1W_ZRI: 2888 case AArch64::STNT1D_ZRI: 2889 case AArch64::LDNF1B_IMM: 2890 case AArch64::LDNF1H_IMM: 2891 case AArch64::LDNF1W_IMM: 2892 case AArch64::LDNF1D_IMM: 2893 // A full vectors worth of data 2894 // Width = mbytes * elements 2895 Scale = TypeSize::Scalable(16); 2896 Width = SVEMaxBytesPerVector; 2897 MinOffset = -8; 2898 MaxOffset = 7; 2899 break; 2900 case AArch64::LD1B_H_IMM: 2901 case AArch64::LD1SB_H_IMM: 2902 case AArch64::LD1H_S_IMM: 2903 case AArch64::LD1SH_S_IMM: 2904 case AArch64::LD1W_D_IMM: 2905 case AArch64::LD1SW_D_IMM: 2906 case AArch64::ST1B_H_IMM: 2907 case AArch64::ST1H_S_IMM: 2908 case AArch64::ST1W_D_IMM: 2909 case AArch64::LDNF1B_H_IMM: 2910 case AArch64::LDNF1SB_H_IMM: 2911 case AArch64::LDNF1H_S_IMM: 2912 case AArch64::LDNF1SH_S_IMM: 2913 case AArch64::LDNF1W_D_IMM: 2914 case AArch64::LDNF1SW_D_IMM: 2915 // A half vector worth of data 2916 // Width = mbytes * elements 2917 Scale = TypeSize::Scalable(8); 2918 Width = SVEMaxBytesPerVector / 2; 2919 MinOffset = -8; 2920 MaxOffset = 7; 2921 break; 2922 case AArch64::LD1B_S_IMM: 2923 case AArch64::LD1SB_S_IMM: 2924 case AArch64::LD1H_D_IMM: 2925 case AArch64::LD1SH_D_IMM: 2926 case AArch64::ST1B_S_IMM: 2927 case AArch64::ST1H_D_IMM: 2928 case AArch64::LDNF1B_S_IMM: 2929 case AArch64::LDNF1SB_S_IMM: 2930 case AArch64::LDNF1H_D_IMM: 2931 case AArch64::LDNF1SH_D_IMM: 2932 // A quarter vector worth of data 2933 // Width = mbytes * elements 2934 Scale = TypeSize::Scalable(4); 2935 Width = SVEMaxBytesPerVector / 4; 2936 MinOffset = -8; 2937 MaxOffset = 7; 2938 break; 2939 case AArch64::LD1B_D_IMM: 2940 case AArch64::LD1SB_D_IMM: 2941 case AArch64::ST1B_D_IMM: 2942 case AArch64::LDNF1B_D_IMM: 2943 case AArch64::LDNF1SB_D_IMM: 2944 // A eighth vector worth of data 2945 // Width = mbytes * elements 2946 Scale = TypeSize::Scalable(2); 2947 Width = SVEMaxBytesPerVector / 8; 2948 MinOffset = -8; 2949 MaxOffset = 7; 2950 break; 2951 case AArch64::ST2GOffset: 2952 case AArch64::STZ2GOffset: 2953 Scale = TypeSize::Fixed(16); 2954 Width = 32; 2955 MinOffset = -256; 2956 MaxOffset = 255; 2957 break; 2958 case AArch64::STGPi: 2959 Scale = TypeSize::Fixed(16); 2960 Width = 16; 2961 MinOffset = -64; 2962 MaxOffset = 63; 2963 break; 2964 case AArch64::LD1RB_IMM: 2965 case AArch64::LD1RB_H_IMM: 2966 case AArch64::LD1RB_S_IMM: 2967 case AArch64::LD1RB_D_IMM: 2968 case AArch64::LD1RSB_H_IMM: 2969 case AArch64::LD1RSB_S_IMM: 2970 case AArch64::LD1RSB_D_IMM: 2971 Scale = TypeSize::Fixed(1); 2972 Width = 1; 2973 MinOffset = 0; 2974 MaxOffset = 63; 2975 break; 2976 case AArch64::LD1RH_IMM: 2977 case AArch64::LD1RH_S_IMM: 2978 case AArch64::LD1RH_D_IMM: 2979 case AArch64::LD1RSH_S_IMM: 2980 case AArch64::LD1RSH_D_IMM: 2981 Scale = TypeSize::Fixed(2); 2982 Width = 2; 2983 MinOffset = 0; 2984 MaxOffset = 63; 2985 break; 2986 case AArch64::LD1RW_IMM: 2987 case AArch64::LD1RW_D_IMM: 2988 case AArch64::LD1RSW_IMM: 2989 Scale = TypeSize::Fixed(4); 2990 Width = 4; 2991 MinOffset = 0; 2992 MaxOffset = 63; 2993 break; 2994 case AArch64::LD1RD_IMM: 2995 Scale = TypeSize::Fixed(8); 2996 Width = 8; 2997 MinOffset = 0; 2998 MaxOffset = 63; 2999 break; 3000 } 3001 3002 return true; 3003 } 3004 3005 // Scaling factor for unscaled load or store. 3006 int AArch64InstrInfo::getMemScale(unsigned Opc) { 3007 switch (Opc) { 3008 default: 3009 llvm_unreachable("Opcode has unknown scale!"); 3010 case AArch64::LDRBBui: 3011 case AArch64::LDURBBi: 3012 case AArch64::LDRSBWui: 3013 case AArch64::LDURSBWi: 3014 case AArch64::STRBBui: 3015 case AArch64::STURBBi: 3016 return 1; 3017 case AArch64::LDRHHui: 3018 case AArch64::LDURHHi: 3019 case AArch64::LDRSHWui: 3020 case AArch64::LDURSHWi: 3021 case AArch64::STRHHui: 3022 case AArch64::STURHHi: 3023 return 2; 3024 case AArch64::LDRSui: 3025 case AArch64::LDURSi: 3026 case AArch64::LDRSpre: 3027 case AArch64::LDRSWui: 3028 case AArch64::LDURSWi: 3029 case AArch64::LDRWpre: 3030 case AArch64::LDRWui: 3031 case AArch64::LDURWi: 3032 case AArch64::STRSui: 3033 case AArch64::STURSi: 3034 case AArch64::STRSpre: 3035 case AArch64::STRWui: 3036 case AArch64::STURWi: 3037 case AArch64::STRWpre: 3038 case AArch64::LDPSi: 3039 case AArch64::LDPSWi: 3040 case AArch64::LDPWi: 3041 case AArch64::STPSi: 3042 case AArch64::STPWi: 3043 return 4; 3044 case AArch64::LDRDui: 3045 case AArch64::LDURDi: 3046 case AArch64::LDRDpre: 3047 case AArch64::LDRXui: 3048 case AArch64::LDURXi: 3049 case AArch64::LDRXpre: 3050 case AArch64::STRDui: 3051 case AArch64::STURDi: 3052 case AArch64::STRDpre: 3053 case AArch64::STRXui: 3054 case AArch64::STURXi: 3055 case AArch64::STRXpre: 3056 case AArch64::LDPDi: 3057 case AArch64::LDPXi: 3058 case AArch64::STPDi: 3059 case AArch64::STPXi: 3060 return 8; 3061 case AArch64::LDRQui: 3062 case AArch64::LDURQi: 3063 case AArch64::STRQui: 3064 case AArch64::STURQi: 3065 case AArch64::STRQpre: 3066 case AArch64::LDPQi: 3067 case AArch64::LDRQpre: 3068 case AArch64::STPQi: 3069 case AArch64::STGOffset: 3070 case AArch64::STZGOffset: 3071 case AArch64::ST2GOffset: 3072 case AArch64::STZ2GOffset: 3073 case AArch64::STGPi: 3074 return 16; 3075 } 3076 } 3077 3078 bool AArch64InstrInfo::isPreLd(const MachineInstr &MI) { 3079 switch (MI.getOpcode()) { 3080 default: 3081 return false; 3082 case AArch64::LDRWpre: 3083 case AArch64::LDRXpre: 3084 case AArch64::LDRSpre: 3085 case AArch64::LDRDpre: 3086 case AArch64::LDRQpre: 3087 return true; 3088 } 3089 } 3090 3091 bool AArch64InstrInfo::isPreSt(const MachineInstr &MI) { 3092 switch (MI.getOpcode()) { 3093 default: 3094 return false; 3095 case AArch64::STRWpre: 3096 case AArch64::STRXpre: 3097 case AArch64::STRSpre: 3098 case AArch64::STRDpre: 3099 case AArch64::STRQpre: 3100 return true; 3101 } 3102 } 3103 3104 bool AArch64InstrInfo::isPreLdSt(const MachineInstr &MI) { 3105 return isPreLd(MI) || isPreSt(MI); 3106 } 3107 3108 // Scale the unscaled offsets. Returns false if the unscaled offset can't be 3109 // scaled. 3110 static bool scaleOffset(unsigned Opc, int64_t &Offset) { 3111 int Scale = AArch64InstrInfo::getMemScale(Opc); 3112 3113 // If the byte-offset isn't a multiple of the stride, we can't scale this 3114 // offset. 3115 if (Offset % Scale != 0) 3116 return false; 3117 3118 // Convert the byte-offset used by unscaled into an "element" offset used 3119 // by the scaled pair load/store instructions. 3120 Offset /= Scale; 3121 return true; 3122 } 3123 3124 static bool canPairLdStOpc(unsigned FirstOpc, unsigned SecondOpc) { 3125 if (FirstOpc == SecondOpc) 3126 return true; 3127 // We can also pair sign-ext and zero-ext instructions. 3128 switch (FirstOpc) { 3129 default: 3130 return false; 3131 case AArch64::LDRWui: 3132 case AArch64::LDURWi: 3133 return SecondOpc == AArch64::LDRSWui || SecondOpc == AArch64::LDURSWi; 3134 case AArch64::LDRSWui: 3135 case AArch64::LDURSWi: 3136 return SecondOpc == AArch64::LDRWui || SecondOpc == AArch64::LDURWi; 3137 } 3138 // These instructions can't be paired based on their opcodes. 3139 return false; 3140 } 3141 3142 static bool shouldClusterFI(const MachineFrameInfo &MFI, int FI1, 3143 int64_t Offset1, unsigned Opcode1, int FI2, 3144 int64_t Offset2, unsigned Opcode2) { 3145 // Accesses through fixed stack object frame indices may access a different 3146 // fixed stack slot. Check that the object offsets + offsets match. 3147 if (MFI.isFixedObjectIndex(FI1) && MFI.isFixedObjectIndex(FI2)) { 3148 int64_t ObjectOffset1 = MFI.getObjectOffset(FI1); 3149 int64_t ObjectOffset2 = MFI.getObjectOffset(FI2); 3150 assert(ObjectOffset1 <= ObjectOffset2 && "Object offsets are not ordered."); 3151 // Convert to scaled object offsets. 3152 int Scale1 = AArch64InstrInfo::getMemScale(Opcode1); 3153 if (ObjectOffset1 % Scale1 != 0) 3154 return false; 3155 ObjectOffset1 /= Scale1; 3156 int Scale2 = AArch64InstrInfo::getMemScale(Opcode2); 3157 if (ObjectOffset2 % Scale2 != 0) 3158 return false; 3159 ObjectOffset2 /= Scale2; 3160 ObjectOffset1 += Offset1; 3161 ObjectOffset2 += Offset2; 3162 return ObjectOffset1 + 1 == ObjectOffset2; 3163 } 3164 3165 return FI1 == FI2; 3166 } 3167 3168 /// Detect opportunities for ldp/stp formation. 3169 /// 3170 /// Only called for LdSt for which getMemOperandWithOffset returns true. 3171 bool AArch64InstrInfo::shouldClusterMemOps( 3172 ArrayRef<const MachineOperand *> BaseOps1, 3173 ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, 3174 unsigned NumBytes) const { 3175 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); 3176 const MachineOperand &BaseOp1 = *BaseOps1.front(); 3177 const MachineOperand &BaseOp2 = *BaseOps2.front(); 3178 const MachineInstr &FirstLdSt = *BaseOp1.getParent(); 3179 const MachineInstr &SecondLdSt = *BaseOp2.getParent(); 3180 if (BaseOp1.getType() != BaseOp2.getType()) 3181 return false; 3182 3183 assert((BaseOp1.isReg() || BaseOp1.isFI()) && 3184 "Only base registers and frame indices are supported."); 3185 3186 // Check for both base regs and base FI. 3187 if (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) 3188 return false; 3189 3190 // Only cluster up to a single pair. 3191 if (NumLoads > 2) 3192 return false; 3193 3194 if (!isPairableLdStInst(FirstLdSt) || !isPairableLdStInst(SecondLdSt)) 3195 return false; 3196 3197 // Can we pair these instructions based on their opcodes? 3198 unsigned FirstOpc = FirstLdSt.getOpcode(); 3199 unsigned SecondOpc = SecondLdSt.getOpcode(); 3200 if (!canPairLdStOpc(FirstOpc, SecondOpc)) 3201 return false; 3202 3203 // Can't merge volatiles or load/stores that have a hint to avoid pair 3204 // formation, for example. 3205 if (!isCandidateToMergeOrPair(FirstLdSt) || 3206 !isCandidateToMergeOrPair(SecondLdSt)) 3207 return false; 3208 3209 // isCandidateToMergeOrPair guarantees that operand 2 is an immediate. 3210 int64_t Offset1 = FirstLdSt.getOperand(2).getImm(); 3211 if (hasUnscaledLdStOffset(FirstOpc) && !scaleOffset(FirstOpc, Offset1)) 3212 return false; 3213 3214 int64_t Offset2 = SecondLdSt.getOperand(2).getImm(); 3215 if (hasUnscaledLdStOffset(SecondOpc) && !scaleOffset(SecondOpc, Offset2)) 3216 return false; 3217 3218 // Pairwise instructions have a 7-bit signed offset field. 3219 if (Offset1 > 63 || Offset1 < -64) 3220 return false; 3221 3222 // The caller should already have ordered First/SecondLdSt by offset. 3223 // Note: except for non-equal frame index bases 3224 if (BaseOp1.isFI()) { 3225 assert((!BaseOp1.isIdenticalTo(BaseOp2) || Offset1 <= Offset2) && 3226 "Caller should have ordered offsets."); 3227 3228 const MachineFrameInfo &MFI = 3229 FirstLdSt.getParent()->getParent()->getFrameInfo(); 3230 return shouldClusterFI(MFI, BaseOp1.getIndex(), Offset1, FirstOpc, 3231 BaseOp2.getIndex(), Offset2, SecondOpc); 3232 } 3233 3234 assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); 3235 3236 return Offset1 + 1 == Offset2; 3237 } 3238 3239 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB, 3240 unsigned Reg, unsigned SubIdx, 3241 unsigned State, 3242 const TargetRegisterInfo *TRI) { 3243 if (!SubIdx) 3244 return MIB.addReg(Reg, State); 3245 3246 if (Register::isPhysicalRegister(Reg)) 3247 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 3248 return MIB.addReg(Reg, State, SubIdx); 3249 } 3250 3251 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg, 3252 unsigned NumRegs) { 3253 // We really want the positive remainder mod 32 here, that happens to be 3254 // easily obtainable with a mask. 3255 return ((DestReg - SrcReg) & 0x1f) < NumRegs; 3256 } 3257 3258 void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock &MBB, 3259 MachineBasicBlock::iterator I, 3260 const DebugLoc &DL, MCRegister DestReg, 3261 MCRegister SrcReg, bool KillSrc, 3262 unsigned Opcode, 3263 ArrayRef<unsigned> Indices) const { 3264 assert(Subtarget.hasNEON() && "Unexpected register copy without NEON"); 3265 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3266 uint16_t DestEncoding = TRI->getEncodingValue(DestReg); 3267 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg); 3268 unsigned NumRegs = Indices.size(); 3269 3270 int SubReg = 0, End = NumRegs, Incr = 1; 3271 if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) { 3272 SubReg = NumRegs - 1; 3273 End = -1; 3274 Incr = -1; 3275 } 3276 3277 for (; SubReg != End; SubReg += Incr) { 3278 const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode)); 3279 AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI); 3280 AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI); 3281 AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI); 3282 } 3283 } 3284 3285 void AArch64InstrInfo::copyGPRRegTuple(MachineBasicBlock &MBB, 3286 MachineBasicBlock::iterator I, 3287 DebugLoc DL, unsigned DestReg, 3288 unsigned SrcReg, bool KillSrc, 3289 unsigned Opcode, unsigned ZeroReg, 3290 llvm::ArrayRef<unsigned> Indices) const { 3291 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3292 unsigned NumRegs = Indices.size(); 3293 3294 #ifndef NDEBUG 3295 uint16_t DestEncoding = TRI->getEncodingValue(DestReg); 3296 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg); 3297 assert(DestEncoding % NumRegs == 0 && SrcEncoding % NumRegs == 0 && 3298 "GPR reg sequences should not be able to overlap"); 3299 #endif 3300 3301 for (unsigned SubReg = 0; SubReg != NumRegs; ++SubReg) { 3302 const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode)); 3303 AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI); 3304 MIB.addReg(ZeroReg); 3305 AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI); 3306 MIB.addImm(0); 3307 } 3308 } 3309 3310 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 3311 MachineBasicBlock::iterator I, 3312 const DebugLoc &DL, MCRegister DestReg, 3313 MCRegister SrcReg, bool KillSrc) const { 3314 if (AArch64::GPR32spRegClass.contains(DestReg) && 3315 (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) { 3316 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3317 3318 if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) { 3319 // If either operand is WSP, expand to ADD #0. 3320 if (Subtarget.hasZeroCycleRegMove()) { 3321 // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move. 3322 MCRegister DestRegX = TRI->getMatchingSuperReg( 3323 DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass); 3324 MCRegister SrcRegX = TRI->getMatchingSuperReg( 3325 SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass); 3326 // This instruction is reading and writing X registers. This may upset 3327 // the register scavenger and machine verifier, so we need to indicate 3328 // that we are reading an undefined value from SrcRegX, but a proper 3329 // value from SrcReg. 3330 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX) 3331 .addReg(SrcRegX, RegState::Undef) 3332 .addImm(0) 3333 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 3334 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc)); 3335 } else { 3336 BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg) 3337 .addReg(SrcReg, getKillRegState(KillSrc)) 3338 .addImm(0) 3339 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 3340 } 3341 } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroingGP()) { 3342 BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg) 3343 .addImm(0) 3344 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 3345 } else { 3346 if (Subtarget.hasZeroCycleRegMove()) { 3347 // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move. 3348 MCRegister DestRegX = TRI->getMatchingSuperReg( 3349 DestReg, AArch64::sub_32, &AArch64::GPR64spRegClass); 3350 MCRegister SrcRegX = TRI->getMatchingSuperReg( 3351 SrcReg, AArch64::sub_32, &AArch64::GPR64spRegClass); 3352 // This instruction is reading and writing X registers. This may upset 3353 // the register scavenger and machine verifier, so we need to indicate 3354 // that we are reading an undefined value from SrcRegX, but a proper 3355 // value from SrcReg. 3356 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX) 3357 .addReg(AArch64::XZR) 3358 .addReg(SrcRegX, RegState::Undef) 3359 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc)); 3360 } else { 3361 // Otherwise, expand to ORR WZR. 3362 BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg) 3363 .addReg(AArch64::WZR) 3364 .addReg(SrcReg, getKillRegState(KillSrc)); 3365 } 3366 } 3367 return; 3368 } 3369 3370 // Copy a Predicate register by ORRing with itself. 3371 if (AArch64::PPRRegClass.contains(DestReg) && 3372 AArch64::PPRRegClass.contains(SrcReg)) { 3373 assert(Subtarget.hasSVE() && "Unexpected SVE register."); 3374 BuildMI(MBB, I, DL, get(AArch64::ORR_PPzPP), DestReg) 3375 .addReg(SrcReg) // Pg 3376 .addReg(SrcReg) 3377 .addReg(SrcReg, getKillRegState(KillSrc)); 3378 return; 3379 } 3380 3381 // Copy a Z register by ORRing with itself. 3382 if (AArch64::ZPRRegClass.contains(DestReg) && 3383 AArch64::ZPRRegClass.contains(SrcReg)) { 3384 assert(Subtarget.hasSVE() && "Unexpected SVE register."); 3385 BuildMI(MBB, I, DL, get(AArch64::ORR_ZZZ), DestReg) 3386 .addReg(SrcReg) 3387 .addReg(SrcReg, getKillRegState(KillSrc)); 3388 return; 3389 } 3390 3391 // Copy a Z register pair by copying the individual sub-registers. 3392 if (AArch64::ZPR2RegClass.contains(DestReg) && 3393 AArch64::ZPR2RegClass.contains(SrcReg)) { 3394 static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1}; 3395 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ, 3396 Indices); 3397 return; 3398 } 3399 3400 // Copy a Z register triple by copying the individual sub-registers. 3401 if (AArch64::ZPR3RegClass.contains(DestReg) && 3402 AArch64::ZPR3RegClass.contains(SrcReg)) { 3403 static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1, 3404 AArch64::zsub2}; 3405 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ, 3406 Indices); 3407 return; 3408 } 3409 3410 // Copy a Z register quad by copying the individual sub-registers. 3411 if (AArch64::ZPR4RegClass.contains(DestReg) && 3412 AArch64::ZPR4RegClass.contains(SrcReg)) { 3413 static const unsigned Indices[] = {AArch64::zsub0, AArch64::zsub1, 3414 AArch64::zsub2, AArch64::zsub3}; 3415 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORR_ZZZ, 3416 Indices); 3417 return; 3418 } 3419 3420 if (AArch64::GPR64spRegClass.contains(DestReg) && 3421 (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) { 3422 if (DestReg == AArch64::SP || SrcReg == AArch64::SP) { 3423 // If either operand is SP, expand to ADD #0. 3424 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg) 3425 .addReg(SrcReg, getKillRegState(KillSrc)) 3426 .addImm(0) 3427 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 3428 } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroingGP()) { 3429 BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg) 3430 .addImm(0) 3431 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 3432 } else { 3433 // Otherwise, expand to ORR XZR. 3434 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg) 3435 .addReg(AArch64::XZR) 3436 .addReg(SrcReg, getKillRegState(KillSrc)); 3437 } 3438 return; 3439 } 3440 3441 // Copy a DDDD register quad by copying the individual sub-registers. 3442 if (AArch64::DDDDRegClass.contains(DestReg) && 3443 AArch64::DDDDRegClass.contains(SrcReg)) { 3444 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1, 3445 AArch64::dsub2, AArch64::dsub3}; 3446 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, 3447 Indices); 3448 return; 3449 } 3450 3451 // Copy a DDD register triple by copying the individual sub-registers. 3452 if (AArch64::DDDRegClass.contains(DestReg) && 3453 AArch64::DDDRegClass.contains(SrcReg)) { 3454 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1, 3455 AArch64::dsub2}; 3456 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, 3457 Indices); 3458 return; 3459 } 3460 3461 // Copy a DD register pair by copying the individual sub-registers. 3462 if (AArch64::DDRegClass.contains(DestReg) && 3463 AArch64::DDRegClass.contains(SrcReg)) { 3464 static const unsigned Indices[] = {AArch64::dsub0, AArch64::dsub1}; 3465 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8, 3466 Indices); 3467 return; 3468 } 3469 3470 // Copy a QQQQ register quad by copying the individual sub-registers. 3471 if (AArch64::QQQQRegClass.contains(DestReg) && 3472 AArch64::QQQQRegClass.contains(SrcReg)) { 3473 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1, 3474 AArch64::qsub2, AArch64::qsub3}; 3475 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, 3476 Indices); 3477 return; 3478 } 3479 3480 // Copy a QQQ register triple by copying the individual sub-registers. 3481 if (AArch64::QQQRegClass.contains(DestReg) && 3482 AArch64::QQQRegClass.contains(SrcReg)) { 3483 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1, 3484 AArch64::qsub2}; 3485 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, 3486 Indices); 3487 return; 3488 } 3489 3490 // Copy a QQ register pair by copying the individual sub-registers. 3491 if (AArch64::QQRegClass.contains(DestReg) && 3492 AArch64::QQRegClass.contains(SrcReg)) { 3493 static const unsigned Indices[] = {AArch64::qsub0, AArch64::qsub1}; 3494 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8, 3495 Indices); 3496 return; 3497 } 3498 3499 if (AArch64::XSeqPairsClassRegClass.contains(DestReg) && 3500 AArch64::XSeqPairsClassRegClass.contains(SrcReg)) { 3501 static const unsigned Indices[] = {AArch64::sube64, AArch64::subo64}; 3502 copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRXrs, 3503 AArch64::XZR, Indices); 3504 return; 3505 } 3506 3507 if (AArch64::WSeqPairsClassRegClass.contains(DestReg) && 3508 AArch64::WSeqPairsClassRegClass.contains(SrcReg)) { 3509 static const unsigned Indices[] = {AArch64::sube32, AArch64::subo32}; 3510 copyGPRRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRWrs, 3511 AArch64::WZR, Indices); 3512 return; 3513 } 3514 3515 if (AArch64::FPR128RegClass.contains(DestReg) && 3516 AArch64::FPR128RegClass.contains(SrcReg)) { 3517 if (Subtarget.hasNEON()) { 3518 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg) 3519 .addReg(SrcReg) 3520 .addReg(SrcReg, getKillRegState(KillSrc)); 3521 } else { 3522 BuildMI(MBB, I, DL, get(AArch64::STRQpre)) 3523 .addReg(AArch64::SP, RegState::Define) 3524 .addReg(SrcReg, getKillRegState(KillSrc)) 3525 .addReg(AArch64::SP) 3526 .addImm(-16); 3527 BuildMI(MBB, I, DL, get(AArch64::LDRQpre)) 3528 .addReg(AArch64::SP, RegState::Define) 3529 .addReg(DestReg, RegState::Define) 3530 .addReg(AArch64::SP) 3531 .addImm(16); 3532 } 3533 return; 3534 } 3535 3536 if (AArch64::FPR64RegClass.contains(DestReg) && 3537 AArch64::FPR64RegClass.contains(SrcReg)) { 3538 BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg) 3539 .addReg(SrcReg, getKillRegState(KillSrc)); 3540 return; 3541 } 3542 3543 if (AArch64::FPR32RegClass.contains(DestReg) && 3544 AArch64::FPR32RegClass.contains(SrcReg)) { 3545 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) 3546 .addReg(SrcReg, getKillRegState(KillSrc)); 3547 return; 3548 } 3549 3550 if (AArch64::FPR16RegClass.contains(DestReg) && 3551 AArch64::FPR16RegClass.contains(SrcReg)) { 3552 DestReg = 3553 RI.getMatchingSuperReg(DestReg, AArch64::hsub, &AArch64::FPR32RegClass); 3554 SrcReg = 3555 RI.getMatchingSuperReg(SrcReg, AArch64::hsub, &AArch64::FPR32RegClass); 3556 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) 3557 .addReg(SrcReg, getKillRegState(KillSrc)); 3558 return; 3559 } 3560 3561 if (AArch64::FPR8RegClass.contains(DestReg) && 3562 AArch64::FPR8RegClass.contains(SrcReg)) { 3563 DestReg = 3564 RI.getMatchingSuperReg(DestReg, AArch64::bsub, &AArch64::FPR32RegClass); 3565 SrcReg = 3566 RI.getMatchingSuperReg(SrcReg, AArch64::bsub, &AArch64::FPR32RegClass); 3567 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg) 3568 .addReg(SrcReg, getKillRegState(KillSrc)); 3569 return; 3570 } 3571 3572 // Copies between GPR64 and FPR64. 3573 if (AArch64::FPR64RegClass.contains(DestReg) && 3574 AArch64::GPR64RegClass.contains(SrcReg)) { 3575 BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg) 3576 .addReg(SrcReg, getKillRegState(KillSrc)); 3577 return; 3578 } 3579 if (AArch64::GPR64RegClass.contains(DestReg) && 3580 AArch64::FPR64RegClass.contains(SrcReg)) { 3581 BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg) 3582 .addReg(SrcReg, getKillRegState(KillSrc)); 3583 return; 3584 } 3585 // Copies between GPR32 and FPR32. 3586 if (AArch64::FPR32RegClass.contains(DestReg) && 3587 AArch64::GPR32RegClass.contains(SrcReg)) { 3588 BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg) 3589 .addReg(SrcReg, getKillRegState(KillSrc)); 3590 return; 3591 } 3592 if (AArch64::GPR32RegClass.contains(DestReg) && 3593 AArch64::FPR32RegClass.contains(SrcReg)) { 3594 BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg) 3595 .addReg(SrcReg, getKillRegState(KillSrc)); 3596 return; 3597 } 3598 3599 if (DestReg == AArch64::NZCV) { 3600 assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy"); 3601 BuildMI(MBB, I, DL, get(AArch64::MSR)) 3602 .addImm(AArch64SysReg::NZCV) 3603 .addReg(SrcReg, getKillRegState(KillSrc)) 3604 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define); 3605 return; 3606 } 3607 3608 if (SrcReg == AArch64::NZCV) { 3609 assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy"); 3610 BuildMI(MBB, I, DL, get(AArch64::MRS), DestReg) 3611 .addImm(AArch64SysReg::NZCV) 3612 .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc)); 3613 return; 3614 } 3615 3616 #ifndef NDEBUG 3617 const TargetRegisterInfo &TRI = getRegisterInfo(); 3618 errs() << TRI.getRegAsmName(DestReg) << " = COPY " 3619 << TRI.getRegAsmName(SrcReg) << "\n"; 3620 #endif 3621 llvm_unreachable("unimplemented reg-to-reg copy"); 3622 } 3623 3624 static void storeRegPairToStackSlot(const TargetRegisterInfo &TRI, 3625 MachineBasicBlock &MBB, 3626 MachineBasicBlock::iterator InsertBefore, 3627 const MCInstrDesc &MCID, 3628 Register SrcReg, bool IsKill, 3629 unsigned SubIdx0, unsigned SubIdx1, int FI, 3630 MachineMemOperand *MMO) { 3631 Register SrcReg0 = SrcReg; 3632 Register SrcReg1 = SrcReg; 3633 if (Register::isPhysicalRegister(SrcReg)) { 3634 SrcReg0 = TRI.getSubReg(SrcReg, SubIdx0); 3635 SubIdx0 = 0; 3636 SrcReg1 = TRI.getSubReg(SrcReg, SubIdx1); 3637 SubIdx1 = 0; 3638 } 3639 BuildMI(MBB, InsertBefore, DebugLoc(), MCID) 3640 .addReg(SrcReg0, getKillRegState(IsKill), SubIdx0) 3641 .addReg(SrcReg1, getKillRegState(IsKill), SubIdx1) 3642 .addFrameIndex(FI) 3643 .addImm(0) 3644 .addMemOperand(MMO); 3645 } 3646 3647 void AArch64InstrInfo::storeRegToStackSlot( 3648 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, 3649 bool isKill, int FI, const TargetRegisterClass *RC, 3650 const TargetRegisterInfo *TRI) const { 3651 MachineFunction &MF = *MBB.getParent(); 3652 MachineFrameInfo &MFI = MF.getFrameInfo(); 3653 3654 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 3655 MachineMemOperand *MMO = 3656 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 3657 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 3658 unsigned Opc = 0; 3659 bool Offset = true; 3660 unsigned StackID = TargetStackID::Default; 3661 switch (TRI->getSpillSize(*RC)) { 3662 case 1: 3663 if (AArch64::FPR8RegClass.hasSubClassEq(RC)) 3664 Opc = AArch64::STRBui; 3665 break; 3666 case 2: 3667 if (AArch64::FPR16RegClass.hasSubClassEq(RC)) 3668 Opc = AArch64::STRHui; 3669 else if (AArch64::PPRRegClass.hasSubClassEq(RC)) { 3670 assert(Subtarget.hasSVE() && "Unexpected register store without SVE"); 3671 Opc = AArch64::STR_PXI; 3672 StackID = TargetStackID::ScalableVector; 3673 } 3674 break; 3675 case 4: 3676 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) { 3677 Opc = AArch64::STRWui; 3678 if (Register::isVirtualRegister(SrcReg)) 3679 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass); 3680 else 3681 assert(SrcReg != AArch64::WSP); 3682 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC)) 3683 Opc = AArch64::STRSui; 3684 break; 3685 case 8: 3686 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) { 3687 Opc = AArch64::STRXui; 3688 if (Register::isVirtualRegister(SrcReg)) 3689 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass); 3690 else 3691 assert(SrcReg != AArch64::SP); 3692 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) { 3693 Opc = AArch64::STRDui; 3694 } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) { 3695 storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI, 3696 get(AArch64::STPWi), SrcReg, isKill, 3697 AArch64::sube32, AArch64::subo32, FI, MMO); 3698 return; 3699 } 3700 break; 3701 case 16: 3702 if (AArch64::FPR128RegClass.hasSubClassEq(RC)) 3703 Opc = AArch64::STRQui; 3704 else if (AArch64::DDRegClass.hasSubClassEq(RC)) { 3705 assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); 3706 Opc = AArch64::ST1Twov1d; 3707 Offset = false; 3708 } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) { 3709 storeRegPairToStackSlot(getRegisterInfo(), MBB, MBBI, 3710 get(AArch64::STPXi), SrcReg, isKill, 3711 AArch64::sube64, AArch64::subo64, FI, MMO); 3712 return; 3713 } else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) { 3714 assert(Subtarget.hasSVE() && "Unexpected register store without SVE"); 3715 Opc = AArch64::STR_ZXI; 3716 StackID = TargetStackID::ScalableVector; 3717 } 3718 break; 3719 case 24: 3720 if (AArch64::DDDRegClass.hasSubClassEq(RC)) { 3721 assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); 3722 Opc = AArch64::ST1Threev1d; 3723 Offset = false; 3724 } 3725 break; 3726 case 32: 3727 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) { 3728 assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); 3729 Opc = AArch64::ST1Fourv1d; 3730 Offset = false; 3731 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) { 3732 assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); 3733 Opc = AArch64::ST1Twov2d; 3734 Offset = false; 3735 } else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) { 3736 assert(Subtarget.hasSVE() && "Unexpected register store without SVE"); 3737 Opc = AArch64::STR_ZZXI; 3738 StackID = TargetStackID::ScalableVector; 3739 } 3740 break; 3741 case 48: 3742 if (AArch64::QQQRegClass.hasSubClassEq(RC)) { 3743 assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); 3744 Opc = AArch64::ST1Threev2d; 3745 Offset = false; 3746 } else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) { 3747 assert(Subtarget.hasSVE() && "Unexpected register store without SVE"); 3748 Opc = AArch64::STR_ZZZXI; 3749 StackID = TargetStackID::ScalableVector; 3750 } 3751 break; 3752 case 64: 3753 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) { 3754 assert(Subtarget.hasNEON() && "Unexpected register store without NEON"); 3755 Opc = AArch64::ST1Fourv2d; 3756 Offset = false; 3757 } else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) { 3758 assert(Subtarget.hasSVE() && "Unexpected register store without SVE"); 3759 Opc = AArch64::STR_ZZZZXI; 3760 StackID = TargetStackID::ScalableVector; 3761 } 3762 break; 3763 } 3764 assert(Opc && "Unknown register class"); 3765 MFI.setStackID(FI, StackID); 3766 3767 const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc)) 3768 .addReg(SrcReg, getKillRegState(isKill)) 3769 .addFrameIndex(FI); 3770 3771 if (Offset) 3772 MI.addImm(0); 3773 MI.addMemOperand(MMO); 3774 } 3775 3776 static void loadRegPairFromStackSlot(const TargetRegisterInfo &TRI, 3777 MachineBasicBlock &MBB, 3778 MachineBasicBlock::iterator InsertBefore, 3779 const MCInstrDesc &MCID, 3780 Register DestReg, unsigned SubIdx0, 3781 unsigned SubIdx1, int FI, 3782 MachineMemOperand *MMO) { 3783 Register DestReg0 = DestReg; 3784 Register DestReg1 = DestReg; 3785 bool IsUndef = true; 3786 if (Register::isPhysicalRegister(DestReg)) { 3787 DestReg0 = TRI.getSubReg(DestReg, SubIdx0); 3788 SubIdx0 = 0; 3789 DestReg1 = TRI.getSubReg(DestReg, SubIdx1); 3790 SubIdx1 = 0; 3791 IsUndef = false; 3792 } 3793 BuildMI(MBB, InsertBefore, DebugLoc(), MCID) 3794 .addReg(DestReg0, RegState::Define | getUndefRegState(IsUndef), SubIdx0) 3795 .addReg(DestReg1, RegState::Define | getUndefRegState(IsUndef), SubIdx1) 3796 .addFrameIndex(FI) 3797 .addImm(0) 3798 .addMemOperand(MMO); 3799 } 3800 3801 void AArch64InstrInfo::loadRegFromStackSlot( 3802 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, 3803 int FI, const TargetRegisterClass *RC, 3804 const TargetRegisterInfo *TRI) const { 3805 MachineFunction &MF = *MBB.getParent(); 3806 MachineFrameInfo &MFI = MF.getFrameInfo(); 3807 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 3808 MachineMemOperand *MMO = 3809 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 3810 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 3811 3812 unsigned Opc = 0; 3813 bool Offset = true; 3814 unsigned StackID = TargetStackID::Default; 3815 switch (TRI->getSpillSize(*RC)) { 3816 case 1: 3817 if (AArch64::FPR8RegClass.hasSubClassEq(RC)) 3818 Opc = AArch64::LDRBui; 3819 break; 3820 case 2: 3821 if (AArch64::FPR16RegClass.hasSubClassEq(RC)) 3822 Opc = AArch64::LDRHui; 3823 else if (AArch64::PPRRegClass.hasSubClassEq(RC)) { 3824 assert(Subtarget.hasSVE() && "Unexpected register load without SVE"); 3825 Opc = AArch64::LDR_PXI; 3826 StackID = TargetStackID::ScalableVector; 3827 } 3828 break; 3829 case 4: 3830 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) { 3831 Opc = AArch64::LDRWui; 3832 if (Register::isVirtualRegister(DestReg)) 3833 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass); 3834 else 3835 assert(DestReg != AArch64::WSP); 3836 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC)) 3837 Opc = AArch64::LDRSui; 3838 break; 3839 case 8: 3840 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) { 3841 Opc = AArch64::LDRXui; 3842 if (Register::isVirtualRegister(DestReg)) 3843 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass); 3844 else 3845 assert(DestReg != AArch64::SP); 3846 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC)) { 3847 Opc = AArch64::LDRDui; 3848 } else if (AArch64::WSeqPairsClassRegClass.hasSubClassEq(RC)) { 3849 loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI, 3850 get(AArch64::LDPWi), DestReg, AArch64::sube32, 3851 AArch64::subo32, FI, MMO); 3852 return; 3853 } 3854 break; 3855 case 16: 3856 if (AArch64::FPR128RegClass.hasSubClassEq(RC)) 3857 Opc = AArch64::LDRQui; 3858 else if (AArch64::DDRegClass.hasSubClassEq(RC)) { 3859 assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); 3860 Opc = AArch64::LD1Twov1d; 3861 Offset = false; 3862 } else if (AArch64::XSeqPairsClassRegClass.hasSubClassEq(RC)) { 3863 loadRegPairFromStackSlot(getRegisterInfo(), MBB, MBBI, 3864 get(AArch64::LDPXi), DestReg, AArch64::sube64, 3865 AArch64::subo64, FI, MMO); 3866 return; 3867 } else if (AArch64::ZPRRegClass.hasSubClassEq(RC)) { 3868 assert(Subtarget.hasSVE() && "Unexpected register load without SVE"); 3869 Opc = AArch64::LDR_ZXI; 3870 StackID = TargetStackID::ScalableVector; 3871 } 3872 break; 3873 case 24: 3874 if (AArch64::DDDRegClass.hasSubClassEq(RC)) { 3875 assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); 3876 Opc = AArch64::LD1Threev1d; 3877 Offset = false; 3878 } 3879 break; 3880 case 32: 3881 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) { 3882 assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); 3883 Opc = AArch64::LD1Fourv1d; 3884 Offset = false; 3885 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) { 3886 assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); 3887 Opc = AArch64::LD1Twov2d; 3888 Offset = false; 3889 } else if (AArch64::ZPR2RegClass.hasSubClassEq(RC)) { 3890 assert(Subtarget.hasSVE() && "Unexpected register load without SVE"); 3891 Opc = AArch64::LDR_ZZXI; 3892 StackID = TargetStackID::ScalableVector; 3893 } 3894 break; 3895 case 48: 3896 if (AArch64::QQQRegClass.hasSubClassEq(RC)) { 3897 assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); 3898 Opc = AArch64::LD1Threev2d; 3899 Offset = false; 3900 } else if (AArch64::ZPR3RegClass.hasSubClassEq(RC)) { 3901 assert(Subtarget.hasSVE() && "Unexpected register load without SVE"); 3902 Opc = AArch64::LDR_ZZZXI; 3903 StackID = TargetStackID::ScalableVector; 3904 } 3905 break; 3906 case 64: 3907 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) { 3908 assert(Subtarget.hasNEON() && "Unexpected register load without NEON"); 3909 Opc = AArch64::LD1Fourv2d; 3910 Offset = false; 3911 } else if (AArch64::ZPR4RegClass.hasSubClassEq(RC)) { 3912 assert(Subtarget.hasSVE() && "Unexpected register load without SVE"); 3913 Opc = AArch64::LDR_ZZZZXI; 3914 StackID = TargetStackID::ScalableVector; 3915 } 3916 break; 3917 } 3918 3919 assert(Opc && "Unknown register class"); 3920 MFI.setStackID(FI, StackID); 3921 3922 const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DebugLoc(), get(Opc)) 3923 .addReg(DestReg, getDefRegState(true)) 3924 .addFrameIndex(FI); 3925 if (Offset) 3926 MI.addImm(0); 3927 MI.addMemOperand(MMO); 3928 } 3929 3930 bool llvm::isNZCVTouchedInInstructionRange(const MachineInstr &DefMI, 3931 const MachineInstr &UseMI, 3932 const TargetRegisterInfo *TRI) { 3933 return any_of(instructionsWithoutDebug(std::next(DefMI.getIterator()), 3934 UseMI.getIterator()), 3935 [TRI](const MachineInstr &I) { 3936 return I.modifiesRegister(AArch64::NZCV, TRI) || 3937 I.readsRegister(AArch64::NZCV, TRI); 3938 }); 3939 } 3940 3941 void AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets( 3942 const StackOffset &Offset, int64_t &ByteSized, int64_t &VGSized) { 3943 // The smallest scalable element supported by scaled SVE addressing 3944 // modes are predicates, which are 2 scalable bytes in size. So the scalable 3945 // byte offset must always be a multiple of 2. 3946 assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset"); 3947 3948 // VGSized offsets are divided by '2', because the VG register is the 3949 // the number of 64bit granules as opposed to 128bit vector chunks, 3950 // which is how the 'n' in e.g. MVT::nxv1i8 is modelled. 3951 // So, for a stack offset of 16 MVT::nxv1i8's, the size is n x 16 bytes. 3952 // VG = n * 2 and the dwarf offset must be VG * 8 bytes. 3953 ByteSized = Offset.getFixed(); 3954 VGSized = Offset.getScalable() / 2; 3955 } 3956 3957 /// Returns the offset in parts to which this frame offset can be 3958 /// decomposed for the purpose of describing a frame offset. 3959 /// For non-scalable offsets this is simply its byte size. 3960 void AArch64InstrInfo::decomposeStackOffsetForFrameOffsets( 3961 const StackOffset &Offset, int64_t &NumBytes, int64_t &NumPredicateVectors, 3962 int64_t &NumDataVectors) { 3963 // The smallest scalable element supported by scaled SVE addressing 3964 // modes are predicates, which are 2 scalable bytes in size. So the scalable 3965 // byte offset must always be a multiple of 2. 3966 assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset"); 3967 3968 NumBytes = Offset.getFixed(); 3969 NumDataVectors = 0; 3970 NumPredicateVectors = Offset.getScalable() / 2; 3971 // This method is used to get the offsets to adjust the frame offset. 3972 // If the function requires ADDPL to be used and needs more than two ADDPL 3973 // instructions, part of the offset is folded into NumDataVectors so that it 3974 // uses ADDVL for part of it, reducing the number of ADDPL instructions. 3975 if (NumPredicateVectors % 8 == 0 || NumPredicateVectors < -64 || 3976 NumPredicateVectors > 62) { 3977 NumDataVectors = NumPredicateVectors / 8; 3978 NumPredicateVectors -= NumDataVectors * 8; 3979 } 3980 } 3981 3982 // Helper function to emit a frame offset adjustment from a given 3983 // pointer (SrcReg), stored into DestReg. This function is explicit 3984 // in that it requires the opcode. 3985 static void emitFrameOffsetAdj(MachineBasicBlock &MBB, 3986 MachineBasicBlock::iterator MBBI, 3987 const DebugLoc &DL, unsigned DestReg, 3988 unsigned SrcReg, int64_t Offset, unsigned Opc, 3989 const TargetInstrInfo *TII, 3990 MachineInstr::MIFlag Flag, bool NeedsWinCFI, 3991 bool *HasWinCFI) { 3992 int Sign = 1; 3993 unsigned MaxEncoding, ShiftSize; 3994 switch (Opc) { 3995 case AArch64::ADDXri: 3996 case AArch64::ADDSXri: 3997 case AArch64::SUBXri: 3998 case AArch64::SUBSXri: 3999 MaxEncoding = 0xfff; 4000 ShiftSize = 12; 4001 break; 4002 case AArch64::ADDVL_XXI: 4003 case AArch64::ADDPL_XXI: 4004 MaxEncoding = 31; 4005 ShiftSize = 0; 4006 if (Offset < 0) { 4007 MaxEncoding = 32; 4008 Sign = -1; 4009 Offset = -Offset; 4010 } 4011 break; 4012 default: 4013 llvm_unreachable("Unsupported opcode"); 4014 } 4015 4016 // FIXME: If the offset won't fit in 24-bits, compute the offset into a 4017 // scratch register. If DestReg is a virtual register, use it as the 4018 // scratch register; otherwise, create a new virtual register (to be 4019 // replaced by the scavenger at the end of PEI). That case can be optimized 4020 // slightly if DestReg is SP which is always 16-byte aligned, so the scratch 4021 // register can be loaded with offset%8 and the add/sub can use an extending 4022 // instruction with LSL#3. 4023 // Currently the function handles any offsets but generates a poor sequence 4024 // of code. 4025 // assert(Offset < (1 << 24) && "unimplemented reg plus immediate"); 4026 4027 const unsigned MaxEncodableValue = MaxEncoding << ShiftSize; 4028 Register TmpReg = DestReg; 4029 if (TmpReg == AArch64::XZR) 4030 TmpReg = MBB.getParent()->getRegInfo().createVirtualRegister( 4031 &AArch64::GPR64RegClass); 4032 do { 4033 uint64_t ThisVal = std::min<uint64_t>(Offset, MaxEncodableValue); 4034 unsigned LocalShiftSize = 0; 4035 if (ThisVal > MaxEncoding) { 4036 ThisVal = ThisVal >> ShiftSize; 4037 LocalShiftSize = ShiftSize; 4038 } 4039 assert((ThisVal >> ShiftSize) <= MaxEncoding && 4040 "Encoding cannot handle value that big"); 4041 4042 Offset -= ThisVal << LocalShiftSize; 4043 if (Offset == 0) 4044 TmpReg = DestReg; 4045 auto MBI = BuildMI(MBB, MBBI, DL, TII->get(Opc), TmpReg) 4046 .addReg(SrcReg) 4047 .addImm(Sign * (int)ThisVal); 4048 if (ShiftSize) 4049 MBI = MBI.addImm( 4050 AArch64_AM::getShifterImm(AArch64_AM::LSL, LocalShiftSize)); 4051 MBI = MBI.setMIFlag(Flag); 4052 4053 if (NeedsWinCFI) { 4054 assert(Sign == 1 && "SEH directives should always have a positive sign"); 4055 int Imm = (int)(ThisVal << LocalShiftSize); 4056 if ((DestReg == AArch64::FP && SrcReg == AArch64::SP) || 4057 (SrcReg == AArch64::FP && DestReg == AArch64::SP)) { 4058 if (HasWinCFI) 4059 *HasWinCFI = true; 4060 if (Imm == 0) 4061 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_SetFP)).setMIFlag(Flag); 4062 else 4063 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_AddFP)) 4064 .addImm(Imm) 4065 .setMIFlag(Flag); 4066 assert(Offset == 0 && "Expected remaining offset to be zero to " 4067 "emit a single SEH directive"); 4068 } else if (DestReg == AArch64::SP) { 4069 if (HasWinCFI) 4070 *HasWinCFI = true; 4071 assert(SrcReg == AArch64::SP && "Unexpected SrcReg for SEH_StackAlloc"); 4072 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 4073 .addImm(Imm) 4074 .setMIFlag(Flag); 4075 } 4076 if (HasWinCFI) 4077 *HasWinCFI = true; 4078 } 4079 4080 SrcReg = TmpReg; 4081 } while (Offset); 4082 } 4083 4084 void llvm::emitFrameOffset(MachineBasicBlock &MBB, 4085 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 4086 unsigned DestReg, unsigned SrcReg, 4087 StackOffset Offset, const TargetInstrInfo *TII, 4088 MachineInstr::MIFlag Flag, bool SetNZCV, 4089 bool NeedsWinCFI, bool *HasWinCFI) { 4090 int64_t Bytes, NumPredicateVectors, NumDataVectors; 4091 AArch64InstrInfo::decomposeStackOffsetForFrameOffsets( 4092 Offset, Bytes, NumPredicateVectors, NumDataVectors); 4093 4094 // First emit non-scalable frame offsets, or a simple 'mov'. 4095 if (Bytes || (!Offset && SrcReg != DestReg)) { 4096 assert((DestReg != AArch64::SP || Bytes % 8 == 0) && 4097 "SP increment/decrement not 8-byte aligned"); 4098 unsigned Opc = SetNZCV ? AArch64::ADDSXri : AArch64::ADDXri; 4099 if (Bytes < 0) { 4100 Bytes = -Bytes; 4101 Opc = SetNZCV ? AArch64::SUBSXri : AArch64::SUBXri; 4102 } 4103 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, Bytes, Opc, TII, Flag, 4104 NeedsWinCFI, HasWinCFI); 4105 SrcReg = DestReg; 4106 } 4107 4108 assert(!(SetNZCV && (NumPredicateVectors || NumDataVectors)) && 4109 "SetNZCV not supported with SVE vectors"); 4110 assert(!(NeedsWinCFI && (NumPredicateVectors || NumDataVectors)) && 4111 "WinCFI not supported with SVE vectors"); 4112 4113 if (NumDataVectors) { 4114 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumDataVectors, 4115 AArch64::ADDVL_XXI, TII, Flag, NeedsWinCFI, nullptr); 4116 SrcReg = DestReg; 4117 } 4118 4119 if (NumPredicateVectors) { 4120 assert(DestReg != AArch64::SP && "Unaligned access to SP"); 4121 emitFrameOffsetAdj(MBB, MBBI, DL, DestReg, SrcReg, NumPredicateVectors, 4122 AArch64::ADDPL_XXI, TII, Flag, NeedsWinCFI, nullptr); 4123 } 4124 } 4125 4126 MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl( 4127 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 4128 MachineBasicBlock::iterator InsertPt, int FrameIndex, 4129 LiveIntervals *LIS, VirtRegMap *VRM) const { 4130 // This is a bit of a hack. Consider this instruction: 4131 // 4132 // %0 = COPY %sp; GPR64all:%0 4133 // 4134 // We explicitly chose GPR64all for the virtual register so such a copy might 4135 // be eliminated by RegisterCoalescer. However, that may not be possible, and 4136 // %0 may even spill. We can't spill %sp, and since it is in the GPR64all 4137 // register class, TargetInstrInfo::foldMemoryOperand() is going to try. 4138 // 4139 // To prevent that, we are going to constrain the %0 register class here. 4140 // 4141 // <rdar://problem/11522048> 4142 // 4143 if (MI.isFullCopy()) { 4144 Register DstReg = MI.getOperand(0).getReg(); 4145 Register SrcReg = MI.getOperand(1).getReg(); 4146 if (SrcReg == AArch64::SP && Register::isVirtualRegister(DstReg)) { 4147 MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass); 4148 return nullptr; 4149 } 4150 if (DstReg == AArch64::SP && Register::isVirtualRegister(SrcReg)) { 4151 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass); 4152 return nullptr; 4153 } 4154 } 4155 4156 // Handle the case where a copy is being spilled or filled but the source 4157 // and destination register class don't match. For example: 4158 // 4159 // %0 = COPY %xzr; GPR64common:%0 4160 // 4161 // In this case we can still safely fold away the COPY and generate the 4162 // following spill code: 4163 // 4164 // STRXui %xzr, %stack.0 4165 // 4166 // This also eliminates spilled cross register class COPYs (e.g. between x and 4167 // d regs) of the same size. For example: 4168 // 4169 // %0 = COPY %1; GPR64:%0, FPR64:%1 4170 // 4171 // will be filled as 4172 // 4173 // LDRDui %0, fi<#0> 4174 // 4175 // instead of 4176 // 4177 // LDRXui %Temp, fi<#0> 4178 // %0 = FMOV %Temp 4179 // 4180 if (MI.isCopy() && Ops.size() == 1 && 4181 // Make sure we're only folding the explicit COPY defs/uses. 4182 (Ops[0] == 0 || Ops[0] == 1)) { 4183 bool IsSpill = Ops[0] == 0; 4184 bool IsFill = !IsSpill; 4185 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 4186 const MachineRegisterInfo &MRI = MF.getRegInfo(); 4187 MachineBasicBlock &MBB = *MI.getParent(); 4188 const MachineOperand &DstMO = MI.getOperand(0); 4189 const MachineOperand &SrcMO = MI.getOperand(1); 4190 Register DstReg = DstMO.getReg(); 4191 Register SrcReg = SrcMO.getReg(); 4192 // This is slightly expensive to compute for physical regs since 4193 // getMinimalPhysRegClass is slow. 4194 auto getRegClass = [&](unsigned Reg) { 4195 return Register::isVirtualRegister(Reg) ? MRI.getRegClass(Reg) 4196 : TRI.getMinimalPhysRegClass(Reg); 4197 }; 4198 4199 if (DstMO.getSubReg() == 0 && SrcMO.getSubReg() == 0) { 4200 assert(TRI.getRegSizeInBits(*getRegClass(DstReg)) == 4201 TRI.getRegSizeInBits(*getRegClass(SrcReg)) && 4202 "Mismatched register size in non subreg COPY"); 4203 if (IsSpill) 4204 storeRegToStackSlot(MBB, InsertPt, SrcReg, SrcMO.isKill(), FrameIndex, 4205 getRegClass(SrcReg), &TRI); 4206 else 4207 loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, 4208 getRegClass(DstReg), &TRI); 4209 return &*--InsertPt; 4210 } 4211 4212 // Handle cases like spilling def of: 4213 // 4214 // %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0 4215 // 4216 // where the physical register source can be widened and stored to the full 4217 // virtual reg destination stack slot, in this case producing: 4218 // 4219 // STRXui %xzr, %stack.0 4220 // 4221 if (IsSpill && DstMO.isUndef() && Register::isPhysicalRegister(SrcReg)) { 4222 assert(SrcMO.getSubReg() == 0 && 4223 "Unexpected subreg on physical register"); 4224 const TargetRegisterClass *SpillRC; 4225 unsigned SpillSubreg; 4226 switch (DstMO.getSubReg()) { 4227 default: 4228 SpillRC = nullptr; 4229 break; 4230 case AArch64::sub_32: 4231 case AArch64::ssub: 4232 if (AArch64::GPR32RegClass.contains(SrcReg)) { 4233 SpillRC = &AArch64::GPR64RegClass; 4234 SpillSubreg = AArch64::sub_32; 4235 } else if (AArch64::FPR32RegClass.contains(SrcReg)) { 4236 SpillRC = &AArch64::FPR64RegClass; 4237 SpillSubreg = AArch64::ssub; 4238 } else 4239 SpillRC = nullptr; 4240 break; 4241 case AArch64::dsub: 4242 if (AArch64::FPR64RegClass.contains(SrcReg)) { 4243 SpillRC = &AArch64::FPR128RegClass; 4244 SpillSubreg = AArch64::dsub; 4245 } else 4246 SpillRC = nullptr; 4247 break; 4248 } 4249 4250 if (SpillRC) 4251 if (unsigned WidenedSrcReg = 4252 TRI.getMatchingSuperReg(SrcReg, SpillSubreg, SpillRC)) { 4253 storeRegToStackSlot(MBB, InsertPt, WidenedSrcReg, SrcMO.isKill(), 4254 FrameIndex, SpillRC, &TRI); 4255 return &*--InsertPt; 4256 } 4257 } 4258 4259 // Handle cases like filling use of: 4260 // 4261 // %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1 4262 // 4263 // where we can load the full virtual reg source stack slot, into the subreg 4264 // destination, in this case producing: 4265 // 4266 // LDRWui %0:sub_32<def,read-undef>, %stack.0 4267 // 4268 if (IsFill && SrcMO.getSubReg() == 0 && DstMO.isUndef()) { 4269 const TargetRegisterClass *FillRC; 4270 switch (DstMO.getSubReg()) { 4271 default: 4272 FillRC = nullptr; 4273 break; 4274 case AArch64::sub_32: 4275 FillRC = &AArch64::GPR32RegClass; 4276 break; 4277 case AArch64::ssub: 4278 FillRC = &AArch64::FPR32RegClass; 4279 break; 4280 case AArch64::dsub: 4281 FillRC = &AArch64::FPR64RegClass; 4282 break; 4283 } 4284 4285 if (FillRC) { 4286 assert(TRI.getRegSizeInBits(*getRegClass(SrcReg)) == 4287 TRI.getRegSizeInBits(*FillRC) && 4288 "Mismatched regclass size on folded subreg COPY"); 4289 loadRegFromStackSlot(MBB, InsertPt, DstReg, FrameIndex, FillRC, &TRI); 4290 MachineInstr &LoadMI = *--InsertPt; 4291 MachineOperand &LoadDst = LoadMI.getOperand(0); 4292 assert(LoadDst.getSubReg() == 0 && "unexpected subreg on fill load"); 4293 LoadDst.setSubReg(DstMO.getSubReg()); 4294 LoadDst.setIsUndef(); 4295 return &LoadMI; 4296 } 4297 } 4298 } 4299 4300 // Cannot fold. 4301 return nullptr; 4302 } 4303 4304 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, 4305 StackOffset &SOffset, 4306 bool *OutUseUnscaledOp, 4307 unsigned *OutUnscaledOp, 4308 int64_t *EmittableOffset) { 4309 // Set output values in case of early exit. 4310 if (EmittableOffset) 4311 *EmittableOffset = 0; 4312 if (OutUseUnscaledOp) 4313 *OutUseUnscaledOp = false; 4314 if (OutUnscaledOp) 4315 *OutUnscaledOp = 0; 4316 4317 // Exit early for structured vector spills/fills as they can't take an 4318 // immediate offset. 4319 switch (MI.getOpcode()) { 4320 default: 4321 break; 4322 case AArch64::LD1Twov2d: 4323 case AArch64::LD1Threev2d: 4324 case AArch64::LD1Fourv2d: 4325 case AArch64::LD1Twov1d: 4326 case AArch64::LD1Threev1d: 4327 case AArch64::LD1Fourv1d: 4328 case AArch64::ST1Twov2d: 4329 case AArch64::ST1Threev2d: 4330 case AArch64::ST1Fourv2d: 4331 case AArch64::ST1Twov1d: 4332 case AArch64::ST1Threev1d: 4333 case AArch64::ST1Fourv1d: 4334 case AArch64::ST1i8: 4335 case AArch64::ST1i16: 4336 case AArch64::ST1i32: 4337 case AArch64::ST1i64: 4338 case AArch64::IRG: 4339 case AArch64::IRGstack: 4340 case AArch64::STGloop: 4341 case AArch64::STZGloop: 4342 return AArch64FrameOffsetCannotUpdate; 4343 } 4344 4345 // Get the min/max offset and the scale. 4346 TypeSize ScaleValue(0U, false); 4347 unsigned Width; 4348 int64_t MinOff, MaxOff; 4349 if (!AArch64InstrInfo::getMemOpInfo(MI.getOpcode(), ScaleValue, Width, MinOff, 4350 MaxOff)) 4351 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal"); 4352 4353 // Construct the complete offset. 4354 bool IsMulVL = ScaleValue.isScalable(); 4355 unsigned Scale = ScaleValue.getKnownMinSize(); 4356 int64_t Offset = IsMulVL ? SOffset.getScalable() : SOffset.getFixed(); 4357 4358 const MachineOperand &ImmOpnd = 4359 MI.getOperand(AArch64InstrInfo::getLoadStoreImmIdx(MI.getOpcode())); 4360 Offset += ImmOpnd.getImm() * Scale; 4361 4362 // If the offset doesn't match the scale, we rewrite the instruction to 4363 // use the unscaled instruction instead. Likewise, if we have a negative 4364 // offset and there is an unscaled op to use. 4365 Optional<unsigned> UnscaledOp = 4366 AArch64InstrInfo::getUnscaledLdSt(MI.getOpcode()); 4367 bool useUnscaledOp = UnscaledOp && (Offset % Scale || Offset < 0); 4368 if (useUnscaledOp && 4369 !AArch64InstrInfo::getMemOpInfo(*UnscaledOp, ScaleValue, Width, MinOff, 4370 MaxOff)) 4371 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal"); 4372 4373 Scale = ScaleValue.getKnownMinSize(); 4374 assert(IsMulVL == ScaleValue.isScalable() && 4375 "Unscaled opcode has different value for scalable"); 4376 4377 int64_t Remainder = Offset % Scale; 4378 assert(!(Remainder && useUnscaledOp) && 4379 "Cannot have remainder when using unscaled op"); 4380 4381 assert(MinOff < MaxOff && "Unexpected Min/Max offsets"); 4382 int64_t NewOffset = Offset / Scale; 4383 if (MinOff <= NewOffset && NewOffset <= MaxOff) 4384 Offset = Remainder; 4385 else { 4386 NewOffset = NewOffset < 0 ? MinOff : MaxOff; 4387 Offset = Offset - NewOffset * Scale + Remainder; 4388 } 4389 4390 if (EmittableOffset) 4391 *EmittableOffset = NewOffset; 4392 if (OutUseUnscaledOp) 4393 *OutUseUnscaledOp = useUnscaledOp; 4394 if (OutUnscaledOp && UnscaledOp) 4395 *OutUnscaledOp = *UnscaledOp; 4396 4397 if (IsMulVL) 4398 SOffset = StackOffset::get(SOffset.getFixed(), Offset); 4399 else 4400 SOffset = StackOffset::get(Offset, SOffset.getScalable()); 4401 return AArch64FrameOffsetCanUpdate | 4402 (SOffset ? 0 : AArch64FrameOffsetIsLegal); 4403 } 4404 4405 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 4406 unsigned FrameReg, StackOffset &Offset, 4407 const AArch64InstrInfo *TII) { 4408 unsigned Opcode = MI.getOpcode(); 4409 unsigned ImmIdx = FrameRegIdx + 1; 4410 4411 if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) { 4412 Offset += StackOffset::getFixed(MI.getOperand(ImmIdx).getImm()); 4413 emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(), 4414 MI.getOperand(0).getReg(), FrameReg, Offset, TII, 4415 MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri)); 4416 MI.eraseFromParent(); 4417 Offset = StackOffset(); 4418 return true; 4419 } 4420 4421 int64_t NewOffset; 4422 unsigned UnscaledOp; 4423 bool UseUnscaledOp; 4424 int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp, 4425 &UnscaledOp, &NewOffset); 4426 if (Status & AArch64FrameOffsetCanUpdate) { 4427 if (Status & AArch64FrameOffsetIsLegal) 4428 // Replace the FrameIndex with FrameReg. 4429 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 4430 if (UseUnscaledOp) 4431 MI.setDesc(TII->get(UnscaledOp)); 4432 4433 MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset); 4434 return !Offset; 4435 } 4436 4437 return false; 4438 } 4439 4440 MCInst AArch64InstrInfo::getNop() const { 4441 return MCInstBuilder(AArch64::HINT).addImm(0); 4442 } 4443 4444 // AArch64 supports MachineCombiner. 4445 bool AArch64InstrInfo::useMachineCombiner() const { return true; } 4446 4447 // True when Opc sets flag 4448 static bool isCombineInstrSettingFlag(unsigned Opc) { 4449 switch (Opc) { 4450 case AArch64::ADDSWrr: 4451 case AArch64::ADDSWri: 4452 case AArch64::ADDSXrr: 4453 case AArch64::ADDSXri: 4454 case AArch64::SUBSWrr: 4455 case AArch64::SUBSXrr: 4456 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi. 4457 case AArch64::SUBSWri: 4458 case AArch64::SUBSXri: 4459 return true; 4460 default: 4461 break; 4462 } 4463 return false; 4464 } 4465 4466 // 32b Opcodes that can be combined with a MUL 4467 static bool isCombineInstrCandidate32(unsigned Opc) { 4468 switch (Opc) { 4469 case AArch64::ADDWrr: 4470 case AArch64::ADDWri: 4471 case AArch64::SUBWrr: 4472 case AArch64::ADDSWrr: 4473 case AArch64::ADDSWri: 4474 case AArch64::SUBSWrr: 4475 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi. 4476 case AArch64::SUBWri: 4477 case AArch64::SUBSWri: 4478 return true; 4479 default: 4480 break; 4481 } 4482 return false; 4483 } 4484 4485 // 64b Opcodes that can be combined with a MUL 4486 static bool isCombineInstrCandidate64(unsigned Opc) { 4487 switch (Opc) { 4488 case AArch64::ADDXrr: 4489 case AArch64::ADDXri: 4490 case AArch64::SUBXrr: 4491 case AArch64::ADDSXrr: 4492 case AArch64::ADDSXri: 4493 case AArch64::SUBSXrr: 4494 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi. 4495 case AArch64::SUBXri: 4496 case AArch64::SUBSXri: 4497 case AArch64::ADDv8i8: 4498 case AArch64::ADDv16i8: 4499 case AArch64::ADDv4i16: 4500 case AArch64::ADDv8i16: 4501 case AArch64::ADDv2i32: 4502 case AArch64::ADDv4i32: 4503 case AArch64::SUBv8i8: 4504 case AArch64::SUBv16i8: 4505 case AArch64::SUBv4i16: 4506 case AArch64::SUBv8i16: 4507 case AArch64::SUBv2i32: 4508 case AArch64::SUBv4i32: 4509 return true; 4510 default: 4511 break; 4512 } 4513 return false; 4514 } 4515 4516 // FP Opcodes that can be combined with a FMUL. 4517 static bool isCombineInstrCandidateFP(const MachineInstr &Inst) { 4518 switch (Inst.getOpcode()) { 4519 default: 4520 break; 4521 case AArch64::FADDHrr: 4522 case AArch64::FADDSrr: 4523 case AArch64::FADDDrr: 4524 case AArch64::FADDv4f16: 4525 case AArch64::FADDv8f16: 4526 case AArch64::FADDv2f32: 4527 case AArch64::FADDv2f64: 4528 case AArch64::FADDv4f32: 4529 case AArch64::FSUBHrr: 4530 case AArch64::FSUBSrr: 4531 case AArch64::FSUBDrr: 4532 case AArch64::FSUBv4f16: 4533 case AArch64::FSUBv8f16: 4534 case AArch64::FSUBv2f32: 4535 case AArch64::FSUBv2f64: 4536 case AArch64::FSUBv4f32: 4537 TargetOptions Options = Inst.getParent()->getParent()->getTarget().Options; 4538 // We can fuse FADD/FSUB with FMUL, if fusion is either allowed globally by 4539 // the target options or if FADD/FSUB has the contract fast-math flag. 4540 return Options.UnsafeFPMath || 4541 Options.AllowFPOpFusion == FPOpFusion::Fast || 4542 Inst.getFlag(MachineInstr::FmContract); 4543 return true; 4544 } 4545 return false; 4546 } 4547 4548 // Opcodes that can be combined with a MUL 4549 static bool isCombineInstrCandidate(unsigned Opc) { 4550 return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc)); 4551 } 4552 4553 // 4554 // Utility routine that checks if \param MO is defined by an 4555 // \param CombineOpc instruction in the basic block \param MBB 4556 static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO, 4557 unsigned CombineOpc, unsigned ZeroReg = 0, 4558 bool CheckZeroReg = false) { 4559 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 4560 MachineInstr *MI = nullptr; 4561 4562 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) 4563 MI = MRI.getUniqueVRegDef(MO.getReg()); 4564 // And it needs to be in the trace (otherwise, it won't have a depth). 4565 if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != CombineOpc) 4566 return false; 4567 // Must only used by the user we combine with. 4568 if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 4569 return false; 4570 4571 if (CheckZeroReg) { 4572 assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() && 4573 MI->getOperand(1).isReg() && MI->getOperand(2).isReg() && 4574 MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs"); 4575 // The third input reg must be zero. 4576 if (MI->getOperand(3).getReg() != ZeroReg) 4577 return false; 4578 } 4579 4580 return true; 4581 } 4582 4583 // 4584 // Is \param MO defined by an integer multiply and can be combined? 4585 static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO, 4586 unsigned MulOpc, unsigned ZeroReg) { 4587 return canCombine(MBB, MO, MulOpc, ZeroReg, true); 4588 } 4589 4590 // 4591 // Is \param MO defined by a floating-point multiply and can be combined? 4592 static bool canCombineWithFMUL(MachineBasicBlock &MBB, MachineOperand &MO, 4593 unsigned MulOpc) { 4594 return canCombine(MBB, MO, MulOpc); 4595 } 4596 4597 // TODO: There are many more machine instruction opcodes to match: 4598 // 1. Other data types (integer, vectors) 4599 // 2. Other math / logic operations (xor, or) 4600 // 3. Other forms of the same operation (intrinsics and other variants) 4601 bool AArch64InstrInfo::isAssociativeAndCommutative( 4602 const MachineInstr &Inst) const { 4603 switch (Inst.getOpcode()) { 4604 case AArch64::FADDDrr: 4605 case AArch64::FADDSrr: 4606 case AArch64::FADDv2f32: 4607 case AArch64::FADDv2f64: 4608 case AArch64::FADDv4f32: 4609 case AArch64::FMULDrr: 4610 case AArch64::FMULSrr: 4611 case AArch64::FMULX32: 4612 case AArch64::FMULX64: 4613 case AArch64::FMULXv2f32: 4614 case AArch64::FMULXv2f64: 4615 case AArch64::FMULXv4f32: 4616 case AArch64::FMULv2f32: 4617 case AArch64::FMULv2f64: 4618 case AArch64::FMULv4f32: 4619 return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; 4620 default: 4621 return false; 4622 } 4623 } 4624 4625 /// Find instructions that can be turned into madd. 4626 static bool getMaddPatterns(MachineInstr &Root, 4627 SmallVectorImpl<MachineCombinerPattern> &Patterns) { 4628 unsigned Opc = Root.getOpcode(); 4629 MachineBasicBlock &MBB = *Root.getParent(); 4630 bool Found = false; 4631 4632 if (!isCombineInstrCandidate(Opc)) 4633 return false; 4634 if (isCombineInstrSettingFlag(Opc)) { 4635 int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true); 4636 // When NZCV is live bail out. 4637 if (Cmp_NZCV == -1) 4638 return false; 4639 unsigned NewOpc = convertToNonFlagSettingOpc(Root); 4640 // When opcode can't change bail out. 4641 // CHECKME: do we miss any cases for opcode conversion? 4642 if (NewOpc == Opc) 4643 return false; 4644 Opc = NewOpc; 4645 } 4646 4647 auto setFound = [&](int Opcode, int Operand, unsigned ZeroReg, 4648 MachineCombinerPattern Pattern) { 4649 if (canCombineWithMUL(MBB, Root.getOperand(Operand), Opcode, ZeroReg)) { 4650 Patterns.push_back(Pattern); 4651 Found = true; 4652 } 4653 }; 4654 4655 auto setVFound = [&](int Opcode, int Operand, MachineCombinerPattern Pattern) { 4656 if (canCombine(MBB, Root.getOperand(Operand), Opcode)) { 4657 Patterns.push_back(Pattern); 4658 Found = true; 4659 } 4660 }; 4661 4662 typedef MachineCombinerPattern MCP; 4663 4664 switch (Opc) { 4665 default: 4666 break; 4667 case AArch64::ADDWrr: 4668 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() && 4669 "ADDWrr does not have register operands"); 4670 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDW_OP1); 4671 setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULADDW_OP2); 4672 break; 4673 case AArch64::ADDXrr: 4674 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDX_OP1); 4675 setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULADDX_OP2); 4676 break; 4677 case AArch64::SUBWrr: 4678 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBW_OP1); 4679 setFound(AArch64::MADDWrrr, 2, AArch64::WZR, MCP::MULSUBW_OP2); 4680 break; 4681 case AArch64::SUBXrr: 4682 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBX_OP1); 4683 setFound(AArch64::MADDXrrr, 2, AArch64::XZR, MCP::MULSUBX_OP2); 4684 break; 4685 case AArch64::ADDWri: 4686 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULADDWI_OP1); 4687 break; 4688 case AArch64::ADDXri: 4689 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULADDXI_OP1); 4690 break; 4691 case AArch64::SUBWri: 4692 setFound(AArch64::MADDWrrr, 1, AArch64::WZR, MCP::MULSUBWI_OP1); 4693 break; 4694 case AArch64::SUBXri: 4695 setFound(AArch64::MADDXrrr, 1, AArch64::XZR, MCP::MULSUBXI_OP1); 4696 break; 4697 case AArch64::ADDv8i8: 4698 setVFound(AArch64::MULv8i8, 1, MCP::MULADDv8i8_OP1); 4699 setVFound(AArch64::MULv8i8, 2, MCP::MULADDv8i8_OP2); 4700 break; 4701 case AArch64::ADDv16i8: 4702 setVFound(AArch64::MULv16i8, 1, MCP::MULADDv16i8_OP1); 4703 setVFound(AArch64::MULv16i8, 2, MCP::MULADDv16i8_OP2); 4704 break; 4705 case AArch64::ADDv4i16: 4706 setVFound(AArch64::MULv4i16, 1, MCP::MULADDv4i16_OP1); 4707 setVFound(AArch64::MULv4i16, 2, MCP::MULADDv4i16_OP2); 4708 setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULADDv4i16_indexed_OP1); 4709 setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULADDv4i16_indexed_OP2); 4710 break; 4711 case AArch64::ADDv8i16: 4712 setVFound(AArch64::MULv8i16, 1, MCP::MULADDv8i16_OP1); 4713 setVFound(AArch64::MULv8i16, 2, MCP::MULADDv8i16_OP2); 4714 setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULADDv8i16_indexed_OP1); 4715 setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULADDv8i16_indexed_OP2); 4716 break; 4717 case AArch64::ADDv2i32: 4718 setVFound(AArch64::MULv2i32, 1, MCP::MULADDv2i32_OP1); 4719 setVFound(AArch64::MULv2i32, 2, MCP::MULADDv2i32_OP2); 4720 setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULADDv2i32_indexed_OP1); 4721 setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULADDv2i32_indexed_OP2); 4722 break; 4723 case AArch64::ADDv4i32: 4724 setVFound(AArch64::MULv4i32, 1, MCP::MULADDv4i32_OP1); 4725 setVFound(AArch64::MULv4i32, 2, MCP::MULADDv4i32_OP2); 4726 setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULADDv4i32_indexed_OP1); 4727 setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULADDv4i32_indexed_OP2); 4728 break; 4729 case AArch64::SUBv8i8: 4730 setVFound(AArch64::MULv8i8, 1, MCP::MULSUBv8i8_OP1); 4731 setVFound(AArch64::MULv8i8, 2, MCP::MULSUBv8i8_OP2); 4732 break; 4733 case AArch64::SUBv16i8: 4734 setVFound(AArch64::MULv16i8, 1, MCP::MULSUBv16i8_OP1); 4735 setVFound(AArch64::MULv16i8, 2, MCP::MULSUBv16i8_OP2); 4736 break; 4737 case AArch64::SUBv4i16: 4738 setVFound(AArch64::MULv4i16, 1, MCP::MULSUBv4i16_OP1); 4739 setVFound(AArch64::MULv4i16, 2, MCP::MULSUBv4i16_OP2); 4740 setVFound(AArch64::MULv4i16_indexed, 1, MCP::MULSUBv4i16_indexed_OP1); 4741 setVFound(AArch64::MULv4i16_indexed, 2, MCP::MULSUBv4i16_indexed_OP2); 4742 break; 4743 case AArch64::SUBv8i16: 4744 setVFound(AArch64::MULv8i16, 1, MCP::MULSUBv8i16_OP1); 4745 setVFound(AArch64::MULv8i16, 2, MCP::MULSUBv8i16_OP2); 4746 setVFound(AArch64::MULv8i16_indexed, 1, MCP::MULSUBv8i16_indexed_OP1); 4747 setVFound(AArch64::MULv8i16_indexed, 2, MCP::MULSUBv8i16_indexed_OP2); 4748 break; 4749 case AArch64::SUBv2i32: 4750 setVFound(AArch64::MULv2i32, 1, MCP::MULSUBv2i32_OP1); 4751 setVFound(AArch64::MULv2i32, 2, MCP::MULSUBv2i32_OP2); 4752 setVFound(AArch64::MULv2i32_indexed, 1, MCP::MULSUBv2i32_indexed_OP1); 4753 setVFound(AArch64::MULv2i32_indexed, 2, MCP::MULSUBv2i32_indexed_OP2); 4754 break; 4755 case AArch64::SUBv4i32: 4756 setVFound(AArch64::MULv4i32, 1, MCP::MULSUBv4i32_OP1); 4757 setVFound(AArch64::MULv4i32, 2, MCP::MULSUBv4i32_OP2); 4758 setVFound(AArch64::MULv4i32_indexed, 1, MCP::MULSUBv4i32_indexed_OP1); 4759 setVFound(AArch64::MULv4i32_indexed, 2, MCP::MULSUBv4i32_indexed_OP2); 4760 break; 4761 } 4762 return Found; 4763 } 4764 /// Floating-Point Support 4765 4766 /// Find instructions that can be turned into madd. 4767 static bool getFMAPatterns(MachineInstr &Root, 4768 SmallVectorImpl<MachineCombinerPattern> &Patterns) { 4769 4770 if (!isCombineInstrCandidateFP(Root)) 4771 return false; 4772 4773 MachineBasicBlock &MBB = *Root.getParent(); 4774 bool Found = false; 4775 4776 auto Match = [&](int Opcode, int Operand, 4777 MachineCombinerPattern Pattern) -> bool { 4778 if (canCombineWithFMUL(MBB, Root.getOperand(Operand), Opcode)) { 4779 Patterns.push_back(Pattern); 4780 return true; 4781 } 4782 return false; 4783 }; 4784 4785 typedef MachineCombinerPattern MCP; 4786 4787 switch (Root.getOpcode()) { 4788 default: 4789 assert(false && "Unsupported FP instruction in combiner\n"); 4790 break; 4791 case AArch64::FADDHrr: 4792 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() && 4793 "FADDHrr does not have register operands"); 4794 4795 Found = Match(AArch64::FMULHrr, 1, MCP::FMULADDH_OP1); 4796 Found |= Match(AArch64::FMULHrr, 2, MCP::FMULADDH_OP2); 4797 break; 4798 case AArch64::FADDSrr: 4799 assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() && 4800 "FADDSrr does not have register operands"); 4801 4802 Found |= Match(AArch64::FMULSrr, 1, MCP::FMULADDS_OP1) || 4803 Match(AArch64::FMULv1i32_indexed, 1, MCP::FMLAv1i32_indexed_OP1); 4804 4805 Found |= Match(AArch64::FMULSrr, 2, MCP::FMULADDS_OP2) || 4806 Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLAv1i32_indexed_OP2); 4807 break; 4808 case AArch64::FADDDrr: 4809 Found |= Match(AArch64::FMULDrr, 1, MCP::FMULADDD_OP1) || 4810 Match(AArch64::FMULv1i64_indexed, 1, MCP::FMLAv1i64_indexed_OP1); 4811 4812 Found |= Match(AArch64::FMULDrr, 2, MCP::FMULADDD_OP2) || 4813 Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLAv1i64_indexed_OP2); 4814 break; 4815 case AArch64::FADDv4f16: 4816 Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLAv4i16_indexed_OP1) || 4817 Match(AArch64::FMULv4f16, 1, MCP::FMLAv4f16_OP1); 4818 4819 Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLAv4i16_indexed_OP2) || 4820 Match(AArch64::FMULv4f16, 2, MCP::FMLAv4f16_OP2); 4821 break; 4822 case AArch64::FADDv8f16: 4823 Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLAv8i16_indexed_OP1) || 4824 Match(AArch64::FMULv8f16, 1, MCP::FMLAv8f16_OP1); 4825 4826 Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLAv8i16_indexed_OP2) || 4827 Match(AArch64::FMULv8f16, 2, MCP::FMLAv8f16_OP2); 4828 break; 4829 case AArch64::FADDv2f32: 4830 Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLAv2i32_indexed_OP1) || 4831 Match(AArch64::FMULv2f32, 1, MCP::FMLAv2f32_OP1); 4832 4833 Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLAv2i32_indexed_OP2) || 4834 Match(AArch64::FMULv2f32, 2, MCP::FMLAv2f32_OP2); 4835 break; 4836 case AArch64::FADDv2f64: 4837 Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLAv2i64_indexed_OP1) || 4838 Match(AArch64::FMULv2f64, 1, MCP::FMLAv2f64_OP1); 4839 4840 Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLAv2i64_indexed_OP2) || 4841 Match(AArch64::FMULv2f64, 2, MCP::FMLAv2f64_OP2); 4842 break; 4843 case AArch64::FADDv4f32: 4844 Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLAv4i32_indexed_OP1) || 4845 Match(AArch64::FMULv4f32, 1, MCP::FMLAv4f32_OP1); 4846 4847 Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLAv4i32_indexed_OP2) || 4848 Match(AArch64::FMULv4f32, 2, MCP::FMLAv4f32_OP2); 4849 break; 4850 case AArch64::FSUBHrr: 4851 Found = Match(AArch64::FMULHrr, 1, MCP::FMULSUBH_OP1); 4852 Found |= Match(AArch64::FMULHrr, 2, MCP::FMULSUBH_OP2); 4853 Found |= Match(AArch64::FNMULHrr, 1, MCP::FNMULSUBH_OP1); 4854 break; 4855 case AArch64::FSUBSrr: 4856 Found = Match(AArch64::FMULSrr, 1, MCP::FMULSUBS_OP1); 4857 4858 Found |= Match(AArch64::FMULSrr, 2, MCP::FMULSUBS_OP2) || 4859 Match(AArch64::FMULv1i32_indexed, 2, MCP::FMLSv1i32_indexed_OP2); 4860 4861 Found |= Match(AArch64::FNMULSrr, 1, MCP::FNMULSUBS_OP1); 4862 break; 4863 case AArch64::FSUBDrr: 4864 Found = Match(AArch64::FMULDrr, 1, MCP::FMULSUBD_OP1); 4865 4866 Found |= Match(AArch64::FMULDrr, 2, MCP::FMULSUBD_OP2) || 4867 Match(AArch64::FMULv1i64_indexed, 2, MCP::FMLSv1i64_indexed_OP2); 4868 4869 Found |= Match(AArch64::FNMULDrr, 1, MCP::FNMULSUBD_OP1); 4870 break; 4871 case AArch64::FSUBv4f16: 4872 Found |= Match(AArch64::FMULv4i16_indexed, 2, MCP::FMLSv4i16_indexed_OP2) || 4873 Match(AArch64::FMULv4f16, 2, MCP::FMLSv4f16_OP2); 4874 4875 Found |= Match(AArch64::FMULv4i16_indexed, 1, MCP::FMLSv4i16_indexed_OP1) || 4876 Match(AArch64::FMULv4f16, 1, MCP::FMLSv4f16_OP1); 4877 break; 4878 case AArch64::FSUBv8f16: 4879 Found |= Match(AArch64::FMULv8i16_indexed, 2, MCP::FMLSv8i16_indexed_OP2) || 4880 Match(AArch64::FMULv8f16, 2, MCP::FMLSv8f16_OP2); 4881 4882 Found |= Match(AArch64::FMULv8i16_indexed, 1, MCP::FMLSv8i16_indexed_OP1) || 4883 Match(AArch64::FMULv8f16, 1, MCP::FMLSv8f16_OP1); 4884 break; 4885 case AArch64::FSUBv2f32: 4886 Found |= Match(AArch64::FMULv2i32_indexed, 2, MCP::FMLSv2i32_indexed_OP2) || 4887 Match(AArch64::FMULv2f32, 2, MCP::FMLSv2f32_OP2); 4888 4889 Found |= Match(AArch64::FMULv2i32_indexed, 1, MCP::FMLSv2i32_indexed_OP1) || 4890 Match(AArch64::FMULv2f32, 1, MCP::FMLSv2f32_OP1); 4891 break; 4892 case AArch64::FSUBv2f64: 4893 Found |= Match(AArch64::FMULv2i64_indexed, 2, MCP::FMLSv2i64_indexed_OP2) || 4894 Match(AArch64::FMULv2f64, 2, MCP::FMLSv2f64_OP2); 4895 4896 Found |= Match(AArch64::FMULv2i64_indexed, 1, MCP::FMLSv2i64_indexed_OP1) || 4897 Match(AArch64::FMULv2f64, 1, MCP::FMLSv2f64_OP1); 4898 break; 4899 case AArch64::FSUBv4f32: 4900 Found |= Match(AArch64::FMULv4i32_indexed, 2, MCP::FMLSv4i32_indexed_OP2) || 4901 Match(AArch64::FMULv4f32, 2, MCP::FMLSv4f32_OP2); 4902 4903 Found |= Match(AArch64::FMULv4i32_indexed, 1, MCP::FMLSv4i32_indexed_OP1) || 4904 Match(AArch64::FMULv4f32, 1, MCP::FMLSv4f32_OP1); 4905 break; 4906 } 4907 return Found; 4908 } 4909 4910 static bool getFMULPatterns(MachineInstr &Root, 4911 SmallVectorImpl<MachineCombinerPattern> &Patterns) { 4912 MachineBasicBlock &MBB = *Root.getParent(); 4913 bool Found = false; 4914 4915 auto Match = [&](unsigned Opcode, int Operand, 4916 MachineCombinerPattern Pattern) -> bool { 4917 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 4918 MachineOperand &MO = Root.getOperand(Operand); 4919 MachineInstr *MI = nullptr; 4920 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) 4921 MI = MRI.getUniqueVRegDef(MO.getReg()); 4922 if (MI && MI->getOpcode() == Opcode) { 4923 Patterns.push_back(Pattern); 4924 return true; 4925 } 4926 return false; 4927 }; 4928 4929 typedef MachineCombinerPattern MCP; 4930 4931 switch (Root.getOpcode()) { 4932 default: 4933 return false; 4934 case AArch64::FMULv2f32: 4935 Found = Match(AArch64::DUPv2i32lane, 1, MCP::FMULv2i32_indexed_OP1); 4936 Found |= Match(AArch64::DUPv2i32lane, 2, MCP::FMULv2i32_indexed_OP2); 4937 break; 4938 case AArch64::FMULv2f64: 4939 Found = Match(AArch64::DUPv2i64lane, 1, MCP::FMULv2i64_indexed_OP1); 4940 Found |= Match(AArch64::DUPv2i64lane, 2, MCP::FMULv2i64_indexed_OP2); 4941 break; 4942 case AArch64::FMULv4f16: 4943 Found = Match(AArch64::DUPv4i16lane, 1, MCP::FMULv4i16_indexed_OP1); 4944 Found |= Match(AArch64::DUPv4i16lane, 2, MCP::FMULv4i16_indexed_OP2); 4945 break; 4946 case AArch64::FMULv4f32: 4947 Found = Match(AArch64::DUPv4i32lane, 1, MCP::FMULv4i32_indexed_OP1); 4948 Found |= Match(AArch64::DUPv4i32lane, 2, MCP::FMULv4i32_indexed_OP2); 4949 break; 4950 case AArch64::FMULv8f16: 4951 Found = Match(AArch64::DUPv8i16lane, 1, MCP::FMULv8i16_indexed_OP1); 4952 Found |= Match(AArch64::DUPv8i16lane, 2, MCP::FMULv8i16_indexed_OP2); 4953 break; 4954 } 4955 4956 return Found; 4957 } 4958 4959 /// Return true when a code sequence can improve throughput. It 4960 /// should be called only for instructions in loops. 4961 /// \param Pattern - combiner pattern 4962 bool AArch64InstrInfo::isThroughputPattern( 4963 MachineCombinerPattern Pattern) const { 4964 switch (Pattern) { 4965 default: 4966 break; 4967 case MachineCombinerPattern::FMULADDH_OP1: 4968 case MachineCombinerPattern::FMULADDH_OP2: 4969 case MachineCombinerPattern::FMULSUBH_OP1: 4970 case MachineCombinerPattern::FMULSUBH_OP2: 4971 case MachineCombinerPattern::FMULADDS_OP1: 4972 case MachineCombinerPattern::FMULADDS_OP2: 4973 case MachineCombinerPattern::FMULSUBS_OP1: 4974 case MachineCombinerPattern::FMULSUBS_OP2: 4975 case MachineCombinerPattern::FMULADDD_OP1: 4976 case MachineCombinerPattern::FMULADDD_OP2: 4977 case MachineCombinerPattern::FMULSUBD_OP1: 4978 case MachineCombinerPattern::FMULSUBD_OP2: 4979 case MachineCombinerPattern::FNMULSUBH_OP1: 4980 case MachineCombinerPattern::FNMULSUBS_OP1: 4981 case MachineCombinerPattern::FNMULSUBD_OP1: 4982 case MachineCombinerPattern::FMLAv4i16_indexed_OP1: 4983 case MachineCombinerPattern::FMLAv4i16_indexed_OP2: 4984 case MachineCombinerPattern::FMLAv8i16_indexed_OP1: 4985 case MachineCombinerPattern::FMLAv8i16_indexed_OP2: 4986 case MachineCombinerPattern::FMLAv1i32_indexed_OP1: 4987 case MachineCombinerPattern::FMLAv1i32_indexed_OP2: 4988 case MachineCombinerPattern::FMLAv1i64_indexed_OP1: 4989 case MachineCombinerPattern::FMLAv1i64_indexed_OP2: 4990 case MachineCombinerPattern::FMLAv4f16_OP2: 4991 case MachineCombinerPattern::FMLAv4f16_OP1: 4992 case MachineCombinerPattern::FMLAv8f16_OP1: 4993 case MachineCombinerPattern::FMLAv8f16_OP2: 4994 case MachineCombinerPattern::FMLAv2f32_OP2: 4995 case MachineCombinerPattern::FMLAv2f32_OP1: 4996 case MachineCombinerPattern::FMLAv2f64_OP1: 4997 case MachineCombinerPattern::FMLAv2f64_OP2: 4998 case MachineCombinerPattern::FMLAv2i32_indexed_OP1: 4999 case MachineCombinerPattern::FMLAv2i32_indexed_OP2: 5000 case MachineCombinerPattern::FMLAv2i64_indexed_OP1: 5001 case MachineCombinerPattern::FMLAv2i64_indexed_OP2: 5002 case MachineCombinerPattern::FMLAv4f32_OP1: 5003 case MachineCombinerPattern::FMLAv4f32_OP2: 5004 case MachineCombinerPattern::FMLAv4i32_indexed_OP1: 5005 case MachineCombinerPattern::FMLAv4i32_indexed_OP2: 5006 case MachineCombinerPattern::FMLSv4i16_indexed_OP1: 5007 case MachineCombinerPattern::FMLSv4i16_indexed_OP2: 5008 case MachineCombinerPattern::FMLSv8i16_indexed_OP1: 5009 case MachineCombinerPattern::FMLSv8i16_indexed_OP2: 5010 case MachineCombinerPattern::FMLSv1i32_indexed_OP2: 5011 case MachineCombinerPattern::FMLSv1i64_indexed_OP2: 5012 case MachineCombinerPattern::FMLSv2i32_indexed_OP2: 5013 case MachineCombinerPattern::FMLSv2i64_indexed_OP2: 5014 case MachineCombinerPattern::FMLSv4f16_OP1: 5015 case MachineCombinerPattern::FMLSv4f16_OP2: 5016 case MachineCombinerPattern::FMLSv8f16_OP1: 5017 case MachineCombinerPattern::FMLSv8f16_OP2: 5018 case MachineCombinerPattern::FMLSv2f32_OP2: 5019 case MachineCombinerPattern::FMLSv2f64_OP2: 5020 case MachineCombinerPattern::FMLSv4i32_indexed_OP2: 5021 case MachineCombinerPattern::FMLSv4f32_OP2: 5022 case MachineCombinerPattern::FMULv2i32_indexed_OP1: 5023 case MachineCombinerPattern::FMULv2i32_indexed_OP2: 5024 case MachineCombinerPattern::FMULv2i64_indexed_OP1: 5025 case MachineCombinerPattern::FMULv2i64_indexed_OP2: 5026 case MachineCombinerPattern::FMULv4i16_indexed_OP1: 5027 case MachineCombinerPattern::FMULv4i16_indexed_OP2: 5028 case MachineCombinerPattern::FMULv4i32_indexed_OP1: 5029 case MachineCombinerPattern::FMULv4i32_indexed_OP2: 5030 case MachineCombinerPattern::FMULv8i16_indexed_OP1: 5031 case MachineCombinerPattern::FMULv8i16_indexed_OP2: 5032 case MachineCombinerPattern::MULADDv8i8_OP1: 5033 case MachineCombinerPattern::MULADDv8i8_OP2: 5034 case MachineCombinerPattern::MULADDv16i8_OP1: 5035 case MachineCombinerPattern::MULADDv16i8_OP2: 5036 case MachineCombinerPattern::MULADDv4i16_OP1: 5037 case MachineCombinerPattern::MULADDv4i16_OP2: 5038 case MachineCombinerPattern::MULADDv8i16_OP1: 5039 case MachineCombinerPattern::MULADDv8i16_OP2: 5040 case MachineCombinerPattern::MULADDv2i32_OP1: 5041 case MachineCombinerPattern::MULADDv2i32_OP2: 5042 case MachineCombinerPattern::MULADDv4i32_OP1: 5043 case MachineCombinerPattern::MULADDv4i32_OP2: 5044 case MachineCombinerPattern::MULSUBv8i8_OP1: 5045 case MachineCombinerPattern::MULSUBv8i8_OP2: 5046 case MachineCombinerPattern::MULSUBv16i8_OP1: 5047 case MachineCombinerPattern::MULSUBv16i8_OP2: 5048 case MachineCombinerPattern::MULSUBv4i16_OP1: 5049 case MachineCombinerPattern::MULSUBv4i16_OP2: 5050 case MachineCombinerPattern::MULSUBv8i16_OP1: 5051 case MachineCombinerPattern::MULSUBv8i16_OP2: 5052 case MachineCombinerPattern::MULSUBv2i32_OP1: 5053 case MachineCombinerPattern::MULSUBv2i32_OP2: 5054 case MachineCombinerPattern::MULSUBv4i32_OP1: 5055 case MachineCombinerPattern::MULSUBv4i32_OP2: 5056 case MachineCombinerPattern::MULADDv4i16_indexed_OP1: 5057 case MachineCombinerPattern::MULADDv4i16_indexed_OP2: 5058 case MachineCombinerPattern::MULADDv8i16_indexed_OP1: 5059 case MachineCombinerPattern::MULADDv8i16_indexed_OP2: 5060 case MachineCombinerPattern::MULADDv2i32_indexed_OP1: 5061 case MachineCombinerPattern::MULADDv2i32_indexed_OP2: 5062 case MachineCombinerPattern::MULADDv4i32_indexed_OP1: 5063 case MachineCombinerPattern::MULADDv4i32_indexed_OP2: 5064 case MachineCombinerPattern::MULSUBv4i16_indexed_OP1: 5065 case MachineCombinerPattern::MULSUBv4i16_indexed_OP2: 5066 case MachineCombinerPattern::MULSUBv8i16_indexed_OP1: 5067 case MachineCombinerPattern::MULSUBv8i16_indexed_OP2: 5068 case MachineCombinerPattern::MULSUBv2i32_indexed_OP1: 5069 case MachineCombinerPattern::MULSUBv2i32_indexed_OP2: 5070 case MachineCombinerPattern::MULSUBv4i32_indexed_OP1: 5071 case MachineCombinerPattern::MULSUBv4i32_indexed_OP2: 5072 return true; 5073 } // end switch (Pattern) 5074 return false; 5075 } 5076 /// Return true when there is potentially a faster code sequence for an 5077 /// instruction chain ending in \p Root. All potential patterns are listed in 5078 /// the \p Pattern vector. Pattern should be sorted in priority order since the 5079 /// pattern evaluator stops checking as soon as it finds a faster sequence. 5080 5081 bool AArch64InstrInfo::getMachineCombinerPatterns( 5082 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 5083 bool DoRegPressureReduce) const { 5084 // Integer patterns 5085 if (getMaddPatterns(Root, Patterns)) 5086 return true; 5087 // Floating point patterns 5088 if (getFMULPatterns(Root, Patterns)) 5089 return true; 5090 if (getFMAPatterns(Root, Patterns)) 5091 return true; 5092 5093 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, 5094 DoRegPressureReduce); 5095 } 5096 5097 enum class FMAInstKind { Default, Indexed, Accumulator }; 5098 /// genFusedMultiply - Generate fused multiply instructions. 5099 /// This function supports both integer and floating point instructions. 5100 /// A typical example: 5101 /// F|MUL I=A,B,0 5102 /// F|ADD R,I,C 5103 /// ==> F|MADD R,A,B,C 5104 /// \param MF Containing MachineFunction 5105 /// \param MRI Register information 5106 /// \param TII Target information 5107 /// \param Root is the F|ADD instruction 5108 /// \param [out] InsInstrs is a vector of machine instructions and will 5109 /// contain the generated madd instruction 5110 /// \param IdxMulOpd is index of operand in Root that is the result of 5111 /// the F|MUL. In the example above IdxMulOpd is 1. 5112 /// \param MaddOpc the opcode fo the f|madd instruction 5113 /// \param RC Register class of operands 5114 /// \param kind of fma instruction (addressing mode) to be generated 5115 /// \param ReplacedAddend is the result register from the instruction 5116 /// replacing the non-combined operand, if any. 5117 static MachineInstr * 5118 genFusedMultiply(MachineFunction &MF, MachineRegisterInfo &MRI, 5119 const TargetInstrInfo *TII, MachineInstr &Root, 5120 SmallVectorImpl<MachineInstr *> &InsInstrs, unsigned IdxMulOpd, 5121 unsigned MaddOpc, const TargetRegisterClass *RC, 5122 FMAInstKind kind = FMAInstKind::Default, 5123 const Register *ReplacedAddend = nullptr) { 5124 assert(IdxMulOpd == 1 || IdxMulOpd == 2); 5125 5126 unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1; 5127 MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg()); 5128 Register ResultReg = Root.getOperand(0).getReg(); 5129 Register SrcReg0 = MUL->getOperand(1).getReg(); 5130 bool Src0IsKill = MUL->getOperand(1).isKill(); 5131 Register SrcReg1 = MUL->getOperand(2).getReg(); 5132 bool Src1IsKill = MUL->getOperand(2).isKill(); 5133 5134 unsigned SrcReg2; 5135 bool Src2IsKill; 5136 if (ReplacedAddend) { 5137 // If we just generated a new addend, we must be it's only use. 5138 SrcReg2 = *ReplacedAddend; 5139 Src2IsKill = true; 5140 } else { 5141 SrcReg2 = Root.getOperand(IdxOtherOpd).getReg(); 5142 Src2IsKill = Root.getOperand(IdxOtherOpd).isKill(); 5143 } 5144 5145 if (Register::isVirtualRegister(ResultReg)) 5146 MRI.constrainRegClass(ResultReg, RC); 5147 if (Register::isVirtualRegister(SrcReg0)) 5148 MRI.constrainRegClass(SrcReg0, RC); 5149 if (Register::isVirtualRegister(SrcReg1)) 5150 MRI.constrainRegClass(SrcReg1, RC); 5151 if (Register::isVirtualRegister(SrcReg2)) 5152 MRI.constrainRegClass(SrcReg2, RC); 5153 5154 MachineInstrBuilder MIB; 5155 if (kind == FMAInstKind::Default) 5156 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg) 5157 .addReg(SrcReg0, getKillRegState(Src0IsKill)) 5158 .addReg(SrcReg1, getKillRegState(Src1IsKill)) 5159 .addReg(SrcReg2, getKillRegState(Src2IsKill)); 5160 else if (kind == FMAInstKind::Indexed) 5161 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg) 5162 .addReg(SrcReg2, getKillRegState(Src2IsKill)) 5163 .addReg(SrcReg0, getKillRegState(Src0IsKill)) 5164 .addReg(SrcReg1, getKillRegState(Src1IsKill)) 5165 .addImm(MUL->getOperand(3).getImm()); 5166 else if (kind == FMAInstKind::Accumulator) 5167 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg) 5168 .addReg(SrcReg2, getKillRegState(Src2IsKill)) 5169 .addReg(SrcReg0, getKillRegState(Src0IsKill)) 5170 .addReg(SrcReg1, getKillRegState(Src1IsKill)); 5171 else 5172 assert(false && "Invalid FMA instruction kind \n"); 5173 // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL) 5174 InsInstrs.push_back(MIB); 5175 return MUL; 5176 } 5177 5178 /// Fold (FMUL x (DUP y lane)) into (FMUL_indexed x y lane) 5179 static MachineInstr * 5180 genIndexedMultiply(MachineInstr &Root, 5181 SmallVectorImpl<MachineInstr *> &InsInstrs, 5182 unsigned IdxDupOp, unsigned MulOpc, 5183 const TargetRegisterClass *RC, MachineRegisterInfo &MRI) { 5184 assert(((IdxDupOp == 1) || (IdxDupOp == 2)) && 5185 "Invalid index of FMUL operand"); 5186 5187 MachineFunction &MF = *Root.getMF(); 5188 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 5189 5190 MachineInstr *Dup = 5191 MF.getRegInfo().getUniqueVRegDef(Root.getOperand(IdxDupOp).getReg()); 5192 5193 Register DupSrcReg = Dup->getOperand(1).getReg(); 5194 MRI.clearKillFlags(DupSrcReg); 5195 MRI.constrainRegClass(DupSrcReg, RC); 5196 5197 unsigned DupSrcLane = Dup->getOperand(2).getImm(); 5198 5199 unsigned IdxMulOp = IdxDupOp == 1 ? 2 : 1; 5200 MachineOperand &MulOp = Root.getOperand(IdxMulOp); 5201 5202 Register ResultReg = Root.getOperand(0).getReg(); 5203 5204 MachineInstrBuilder MIB; 5205 MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MulOpc), ResultReg) 5206 .add(MulOp) 5207 .addReg(DupSrcReg) 5208 .addImm(DupSrcLane); 5209 5210 InsInstrs.push_back(MIB); 5211 return &Root; 5212 } 5213 5214 /// genFusedMultiplyAcc - Helper to generate fused multiply accumulate 5215 /// instructions. 5216 /// 5217 /// \see genFusedMultiply 5218 static MachineInstr *genFusedMultiplyAcc( 5219 MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII, 5220 MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs, 5221 unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) { 5222 return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC, 5223 FMAInstKind::Accumulator); 5224 } 5225 5226 /// genNeg - Helper to generate an intermediate negation of the second operand 5227 /// of Root 5228 static Register genNeg(MachineFunction &MF, MachineRegisterInfo &MRI, 5229 const TargetInstrInfo *TII, MachineInstr &Root, 5230 SmallVectorImpl<MachineInstr *> &InsInstrs, 5231 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, 5232 unsigned MnegOpc, const TargetRegisterClass *RC) { 5233 Register NewVR = MRI.createVirtualRegister(RC); 5234 MachineInstrBuilder MIB = 5235 BuildMI(MF, Root.getDebugLoc(), TII->get(MnegOpc), NewVR) 5236 .add(Root.getOperand(2)); 5237 InsInstrs.push_back(MIB); 5238 5239 assert(InstrIdxForVirtReg.empty()); 5240 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 5241 5242 return NewVR; 5243 } 5244 5245 /// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate 5246 /// instructions with an additional negation of the accumulator 5247 static MachineInstr *genFusedMultiplyAccNeg( 5248 MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII, 5249 MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs, 5250 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd, 5251 unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) { 5252 assert(IdxMulOpd == 1); 5253 5254 Register NewVR = 5255 genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC); 5256 return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC, 5257 FMAInstKind::Accumulator, &NewVR); 5258 } 5259 5260 /// genFusedMultiplyIdx - Helper to generate fused multiply accumulate 5261 /// instructions. 5262 /// 5263 /// \see genFusedMultiply 5264 static MachineInstr *genFusedMultiplyIdx( 5265 MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII, 5266 MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs, 5267 unsigned IdxMulOpd, unsigned MaddOpc, const TargetRegisterClass *RC) { 5268 return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC, 5269 FMAInstKind::Indexed); 5270 } 5271 5272 /// genFusedMultiplyAccNeg - Helper to generate fused multiply accumulate 5273 /// instructions with an additional negation of the accumulator 5274 static MachineInstr *genFusedMultiplyIdxNeg( 5275 MachineFunction &MF, MachineRegisterInfo &MRI, const TargetInstrInfo *TII, 5276 MachineInstr &Root, SmallVectorImpl<MachineInstr *> &InsInstrs, 5277 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned IdxMulOpd, 5278 unsigned MaddOpc, unsigned MnegOpc, const TargetRegisterClass *RC) { 5279 assert(IdxMulOpd == 1); 5280 5281 Register NewVR = 5282 genNeg(MF, MRI, TII, Root, InsInstrs, InstrIdxForVirtReg, MnegOpc, RC); 5283 5284 return genFusedMultiply(MF, MRI, TII, Root, InsInstrs, IdxMulOpd, MaddOpc, RC, 5285 FMAInstKind::Indexed, &NewVR); 5286 } 5287 5288 /// genMaddR - Generate madd instruction and combine mul and add using 5289 /// an extra virtual register 5290 /// Example - an ADD intermediate needs to be stored in a register: 5291 /// MUL I=A,B,0 5292 /// ADD R,I,Imm 5293 /// ==> ORR V, ZR, Imm 5294 /// ==> MADD R,A,B,V 5295 /// \param MF Containing MachineFunction 5296 /// \param MRI Register information 5297 /// \param TII Target information 5298 /// \param Root is the ADD instruction 5299 /// \param [out] InsInstrs is a vector of machine instructions and will 5300 /// contain the generated madd instruction 5301 /// \param IdxMulOpd is index of operand in Root that is the result of 5302 /// the MUL. In the example above IdxMulOpd is 1. 5303 /// \param MaddOpc the opcode fo the madd instruction 5304 /// \param VR is a virtual register that holds the value of an ADD operand 5305 /// (V in the example above). 5306 /// \param RC Register class of operands 5307 static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI, 5308 const TargetInstrInfo *TII, MachineInstr &Root, 5309 SmallVectorImpl<MachineInstr *> &InsInstrs, 5310 unsigned IdxMulOpd, unsigned MaddOpc, unsigned VR, 5311 const TargetRegisterClass *RC) { 5312 assert(IdxMulOpd == 1 || IdxMulOpd == 2); 5313 5314 MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg()); 5315 Register ResultReg = Root.getOperand(0).getReg(); 5316 Register SrcReg0 = MUL->getOperand(1).getReg(); 5317 bool Src0IsKill = MUL->getOperand(1).isKill(); 5318 Register SrcReg1 = MUL->getOperand(2).getReg(); 5319 bool Src1IsKill = MUL->getOperand(2).isKill(); 5320 5321 if (Register::isVirtualRegister(ResultReg)) 5322 MRI.constrainRegClass(ResultReg, RC); 5323 if (Register::isVirtualRegister(SrcReg0)) 5324 MRI.constrainRegClass(SrcReg0, RC); 5325 if (Register::isVirtualRegister(SrcReg1)) 5326 MRI.constrainRegClass(SrcReg1, RC); 5327 if (Register::isVirtualRegister(VR)) 5328 MRI.constrainRegClass(VR, RC); 5329 5330 MachineInstrBuilder MIB = 5331 BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc), ResultReg) 5332 .addReg(SrcReg0, getKillRegState(Src0IsKill)) 5333 .addReg(SrcReg1, getKillRegState(Src1IsKill)) 5334 .addReg(VR); 5335 // Insert the MADD 5336 InsInstrs.push_back(MIB); 5337 return MUL; 5338 } 5339 5340 /// When getMachineCombinerPatterns() finds potential patterns, 5341 /// this function generates the instructions that could replace the 5342 /// original code sequence 5343 void AArch64InstrInfo::genAlternativeCodeSequence( 5344 MachineInstr &Root, MachineCombinerPattern Pattern, 5345 SmallVectorImpl<MachineInstr *> &InsInstrs, 5346 SmallVectorImpl<MachineInstr *> &DelInstrs, 5347 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 5348 MachineBasicBlock &MBB = *Root.getParent(); 5349 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 5350 MachineFunction &MF = *MBB.getParent(); 5351 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 5352 5353 MachineInstr *MUL = nullptr; 5354 const TargetRegisterClass *RC; 5355 unsigned Opc; 5356 switch (Pattern) { 5357 default: 5358 // Reassociate instructions. 5359 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 5360 DelInstrs, InstrIdxForVirtReg); 5361 return; 5362 case MachineCombinerPattern::MULADDW_OP1: 5363 case MachineCombinerPattern::MULADDX_OP1: 5364 // MUL I=A,B,0 5365 // ADD R,I,C 5366 // ==> MADD R,A,B,C 5367 // --- Create(MADD); 5368 if (Pattern == MachineCombinerPattern::MULADDW_OP1) { 5369 Opc = AArch64::MADDWrrr; 5370 RC = &AArch64::GPR32RegClass; 5371 } else { 5372 Opc = AArch64::MADDXrrr; 5373 RC = &AArch64::GPR64RegClass; 5374 } 5375 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5376 break; 5377 case MachineCombinerPattern::MULADDW_OP2: 5378 case MachineCombinerPattern::MULADDX_OP2: 5379 // MUL I=A,B,0 5380 // ADD R,C,I 5381 // ==> MADD R,A,B,C 5382 // --- Create(MADD); 5383 if (Pattern == MachineCombinerPattern::MULADDW_OP2) { 5384 Opc = AArch64::MADDWrrr; 5385 RC = &AArch64::GPR32RegClass; 5386 } else { 5387 Opc = AArch64::MADDXrrr; 5388 RC = &AArch64::GPR64RegClass; 5389 } 5390 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5391 break; 5392 case MachineCombinerPattern::MULADDWI_OP1: 5393 case MachineCombinerPattern::MULADDXI_OP1: { 5394 // MUL I=A,B,0 5395 // ADD R,I,Imm 5396 // ==> ORR V, ZR, Imm 5397 // ==> MADD R,A,B,V 5398 // --- Create(MADD); 5399 const TargetRegisterClass *OrrRC; 5400 unsigned BitSize, OrrOpc, ZeroReg; 5401 if (Pattern == MachineCombinerPattern::MULADDWI_OP1) { 5402 OrrOpc = AArch64::ORRWri; 5403 OrrRC = &AArch64::GPR32spRegClass; 5404 BitSize = 32; 5405 ZeroReg = AArch64::WZR; 5406 Opc = AArch64::MADDWrrr; 5407 RC = &AArch64::GPR32RegClass; 5408 } else { 5409 OrrOpc = AArch64::ORRXri; 5410 OrrRC = &AArch64::GPR64spRegClass; 5411 BitSize = 64; 5412 ZeroReg = AArch64::XZR; 5413 Opc = AArch64::MADDXrrr; 5414 RC = &AArch64::GPR64RegClass; 5415 } 5416 Register NewVR = MRI.createVirtualRegister(OrrRC); 5417 uint64_t Imm = Root.getOperand(2).getImm(); 5418 5419 if (Root.getOperand(3).isImm()) { 5420 unsigned Val = Root.getOperand(3).getImm(); 5421 Imm = Imm << Val; 5422 } 5423 uint64_t UImm = SignExtend64(Imm, BitSize); 5424 uint64_t Encoding; 5425 if (!AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) 5426 return; 5427 MachineInstrBuilder MIB1 = 5428 BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR) 5429 .addReg(ZeroReg) 5430 .addImm(Encoding); 5431 InsInstrs.push_back(MIB1); 5432 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 5433 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC); 5434 break; 5435 } 5436 case MachineCombinerPattern::MULSUBW_OP1: 5437 case MachineCombinerPattern::MULSUBX_OP1: { 5438 // MUL I=A,B,0 5439 // SUB R,I, C 5440 // ==> SUB V, 0, C 5441 // ==> MADD R,A,B,V // = -C + A*B 5442 // --- Create(MADD); 5443 const TargetRegisterClass *SubRC; 5444 unsigned SubOpc, ZeroReg; 5445 if (Pattern == MachineCombinerPattern::MULSUBW_OP1) { 5446 SubOpc = AArch64::SUBWrr; 5447 SubRC = &AArch64::GPR32spRegClass; 5448 ZeroReg = AArch64::WZR; 5449 Opc = AArch64::MADDWrrr; 5450 RC = &AArch64::GPR32RegClass; 5451 } else { 5452 SubOpc = AArch64::SUBXrr; 5453 SubRC = &AArch64::GPR64spRegClass; 5454 ZeroReg = AArch64::XZR; 5455 Opc = AArch64::MADDXrrr; 5456 RC = &AArch64::GPR64RegClass; 5457 } 5458 Register NewVR = MRI.createVirtualRegister(SubRC); 5459 // SUB NewVR, 0, C 5460 MachineInstrBuilder MIB1 = 5461 BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR) 5462 .addReg(ZeroReg) 5463 .add(Root.getOperand(2)); 5464 InsInstrs.push_back(MIB1); 5465 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 5466 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC); 5467 break; 5468 } 5469 case MachineCombinerPattern::MULSUBW_OP2: 5470 case MachineCombinerPattern::MULSUBX_OP2: 5471 // MUL I=A,B,0 5472 // SUB R,C,I 5473 // ==> MSUB R,A,B,C (computes C - A*B) 5474 // --- Create(MSUB); 5475 if (Pattern == MachineCombinerPattern::MULSUBW_OP2) { 5476 Opc = AArch64::MSUBWrrr; 5477 RC = &AArch64::GPR32RegClass; 5478 } else { 5479 Opc = AArch64::MSUBXrrr; 5480 RC = &AArch64::GPR64RegClass; 5481 } 5482 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5483 break; 5484 case MachineCombinerPattern::MULSUBWI_OP1: 5485 case MachineCombinerPattern::MULSUBXI_OP1: { 5486 // MUL I=A,B,0 5487 // SUB R,I, Imm 5488 // ==> ORR V, ZR, -Imm 5489 // ==> MADD R,A,B,V // = -Imm + A*B 5490 // --- Create(MADD); 5491 const TargetRegisterClass *OrrRC; 5492 unsigned BitSize, OrrOpc, ZeroReg; 5493 if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) { 5494 OrrOpc = AArch64::ORRWri; 5495 OrrRC = &AArch64::GPR32spRegClass; 5496 BitSize = 32; 5497 ZeroReg = AArch64::WZR; 5498 Opc = AArch64::MADDWrrr; 5499 RC = &AArch64::GPR32RegClass; 5500 } else { 5501 OrrOpc = AArch64::ORRXri; 5502 OrrRC = &AArch64::GPR64spRegClass; 5503 BitSize = 64; 5504 ZeroReg = AArch64::XZR; 5505 Opc = AArch64::MADDXrrr; 5506 RC = &AArch64::GPR64RegClass; 5507 } 5508 Register NewVR = MRI.createVirtualRegister(OrrRC); 5509 uint64_t Imm = Root.getOperand(2).getImm(); 5510 if (Root.getOperand(3).isImm()) { 5511 unsigned Val = Root.getOperand(3).getImm(); 5512 Imm = Imm << Val; 5513 } 5514 uint64_t UImm = SignExtend64(-Imm, BitSize); 5515 uint64_t Encoding; 5516 if (!AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) 5517 return; 5518 MachineInstrBuilder MIB1 = 5519 BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR) 5520 .addReg(ZeroReg) 5521 .addImm(Encoding); 5522 InsInstrs.push_back(MIB1); 5523 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 5524 MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC); 5525 break; 5526 } 5527 5528 case MachineCombinerPattern::MULADDv8i8_OP1: 5529 Opc = AArch64::MLAv8i8; 5530 RC = &AArch64::FPR64RegClass; 5531 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5532 break; 5533 case MachineCombinerPattern::MULADDv8i8_OP2: 5534 Opc = AArch64::MLAv8i8; 5535 RC = &AArch64::FPR64RegClass; 5536 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5537 break; 5538 case MachineCombinerPattern::MULADDv16i8_OP1: 5539 Opc = AArch64::MLAv16i8; 5540 RC = &AArch64::FPR128RegClass; 5541 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5542 break; 5543 case MachineCombinerPattern::MULADDv16i8_OP2: 5544 Opc = AArch64::MLAv16i8; 5545 RC = &AArch64::FPR128RegClass; 5546 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5547 break; 5548 case MachineCombinerPattern::MULADDv4i16_OP1: 5549 Opc = AArch64::MLAv4i16; 5550 RC = &AArch64::FPR64RegClass; 5551 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5552 break; 5553 case MachineCombinerPattern::MULADDv4i16_OP2: 5554 Opc = AArch64::MLAv4i16; 5555 RC = &AArch64::FPR64RegClass; 5556 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5557 break; 5558 case MachineCombinerPattern::MULADDv8i16_OP1: 5559 Opc = AArch64::MLAv8i16; 5560 RC = &AArch64::FPR128RegClass; 5561 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5562 break; 5563 case MachineCombinerPattern::MULADDv8i16_OP2: 5564 Opc = AArch64::MLAv8i16; 5565 RC = &AArch64::FPR128RegClass; 5566 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5567 break; 5568 case MachineCombinerPattern::MULADDv2i32_OP1: 5569 Opc = AArch64::MLAv2i32; 5570 RC = &AArch64::FPR64RegClass; 5571 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5572 break; 5573 case MachineCombinerPattern::MULADDv2i32_OP2: 5574 Opc = AArch64::MLAv2i32; 5575 RC = &AArch64::FPR64RegClass; 5576 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5577 break; 5578 case MachineCombinerPattern::MULADDv4i32_OP1: 5579 Opc = AArch64::MLAv4i32; 5580 RC = &AArch64::FPR128RegClass; 5581 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5582 break; 5583 case MachineCombinerPattern::MULADDv4i32_OP2: 5584 Opc = AArch64::MLAv4i32; 5585 RC = &AArch64::FPR128RegClass; 5586 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5587 break; 5588 5589 case MachineCombinerPattern::MULSUBv8i8_OP1: 5590 Opc = AArch64::MLAv8i8; 5591 RC = &AArch64::FPR64RegClass; 5592 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs, 5593 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i8, 5594 RC); 5595 break; 5596 case MachineCombinerPattern::MULSUBv8i8_OP2: 5597 Opc = AArch64::MLSv8i8; 5598 RC = &AArch64::FPR64RegClass; 5599 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5600 break; 5601 case MachineCombinerPattern::MULSUBv16i8_OP1: 5602 Opc = AArch64::MLAv16i8; 5603 RC = &AArch64::FPR128RegClass; 5604 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs, 5605 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv16i8, 5606 RC); 5607 break; 5608 case MachineCombinerPattern::MULSUBv16i8_OP2: 5609 Opc = AArch64::MLSv16i8; 5610 RC = &AArch64::FPR128RegClass; 5611 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5612 break; 5613 case MachineCombinerPattern::MULSUBv4i16_OP1: 5614 Opc = AArch64::MLAv4i16; 5615 RC = &AArch64::FPR64RegClass; 5616 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs, 5617 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16, 5618 RC); 5619 break; 5620 case MachineCombinerPattern::MULSUBv4i16_OP2: 5621 Opc = AArch64::MLSv4i16; 5622 RC = &AArch64::FPR64RegClass; 5623 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5624 break; 5625 case MachineCombinerPattern::MULSUBv8i16_OP1: 5626 Opc = AArch64::MLAv8i16; 5627 RC = &AArch64::FPR128RegClass; 5628 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs, 5629 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16, 5630 RC); 5631 break; 5632 case MachineCombinerPattern::MULSUBv8i16_OP2: 5633 Opc = AArch64::MLSv8i16; 5634 RC = &AArch64::FPR128RegClass; 5635 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5636 break; 5637 case MachineCombinerPattern::MULSUBv2i32_OP1: 5638 Opc = AArch64::MLAv2i32; 5639 RC = &AArch64::FPR64RegClass; 5640 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs, 5641 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32, 5642 RC); 5643 break; 5644 case MachineCombinerPattern::MULSUBv2i32_OP2: 5645 Opc = AArch64::MLSv2i32; 5646 RC = &AArch64::FPR64RegClass; 5647 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5648 break; 5649 case MachineCombinerPattern::MULSUBv4i32_OP1: 5650 Opc = AArch64::MLAv4i32; 5651 RC = &AArch64::FPR128RegClass; 5652 MUL = genFusedMultiplyAccNeg(MF, MRI, TII, Root, InsInstrs, 5653 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32, 5654 RC); 5655 break; 5656 case MachineCombinerPattern::MULSUBv4i32_OP2: 5657 Opc = AArch64::MLSv4i32; 5658 RC = &AArch64::FPR128RegClass; 5659 MUL = genFusedMultiplyAcc(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5660 break; 5661 5662 case MachineCombinerPattern::MULADDv4i16_indexed_OP1: 5663 Opc = AArch64::MLAv4i16_indexed; 5664 RC = &AArch64::FPR64RegClass; 5665 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5666 break; 5667 case MachineCombinerPattern::MULADDv4i16_indexed_OP2: 5668 Opc = AArch64::MLAv4i16_indexed; 5669 RC = &AArch64::FPR64RegClass; 5670 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5671 break; 5672 case MachineCombinerPattern::MULADDv8i16_indexed_OP1: 5673 Opc = AArch64::MLAv8i16_indexed; 5674 RC = &AArch64::FPR128RegClass; 5675 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5676 break; 5677 case MachineCombinerPattern::MULADDv8i16_indexed_OP2: 5678 Opc = AArch64::MLAv8i16_indexed; 5679 RC = &AArch64::FPR128RegClass; 5680 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5681 break; 5682 case MachineCombinerPattern::MULADDv2i32_indexed_OP1: 5683 Opc = AArch64::MLAv2i32_indexed; 5684 RC = &AArch64::FPR64RegClass; 5685 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5686 break; 5687 case MachineCombinerPattern::MULADDv2i32_indexed_OP2: 5688 Opc = AArch64::MLAv2i32_indexed; 5689 RC = &AArch64::FPR64RegClass; 5690 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5691 break; 5692 case MachineCombinerPattern::MULADDv4i32_indexed_OP1: 5693 Opc = AArch64::MLAv4i32_indexed; 5694 RC = &AArch64::FPR128RegClass; 5695 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5696 break; 5697 case MachineCombinerPattern::MULADDv4i32_indexed_OP2: 5698 Opc = AArch64::MLAv4i32_indexed; 5699 RC = &AArch64::FPR128RegClass; 5700 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5701 break; 5702 5703 case MachineCombinerPattern::MULSUBv4i16_indexed_OP1: 5704 Opc = AArch64::MLAv4i16_indexed; 5705 RC = &AArch64::FPR64RegClass; 5706 MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs, 5707 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i16, 5708 RC); 5709 break; 5710 case MachineCombinerPattern::MULSUBv4i16_indexed_OP2: 5711 Opc = AArch64::MLSv4i16_indexed; 5712 RC = &AArch64::FPR64RegClass; 5713 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5714 break; 5715 case MachineCombinerPattern::MULSUBv8i16_indexed_OP1: 5716 Opc = AArch64::MLAv8i16_indexed; 5717 RC = &AArch64::FPR128RegClass; 5718 MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs, 5719 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv8i16, 5720 RC); 5721 break; 5722 case MachineCombinerPattern::MULSUBv8i16_indexed_OP2: 5723 Opc = AArch64::MLSv8i16_indexed; 5724 RC = &AArch64::FPR128RegClass; 5725 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5726 break; 5727 case MachineCombinerPattern::MULSUBv2i32_indexed_OP1: 5728 Opc = AArch64::MLAv2i32_indexed; 5729 RC = &AArch64::FPR64RegClass; 5730 MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs, 5731 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv2i32, 5732 RC); 5733 break; 5734 case MachineCombinerPattern::MULSUBv2i32_indexed_OP2: 5735 Opc = AArch64::MLSv2i32_indexed; 5736 RC = &AArch64::FPR64RegClass; 5737 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5738 break; 5739 case MachineCombinerPattern::MULSUBv4i32_indexed_OP1: 5740 Opc = AArch64::MLAv4i32_indexed; 5741 RC = &AArch64::FPR128RegClass; 5742 MUL = genFusedMultiplyIdxNeg(MF, MRI, TII, Root, InsInstrs, 5743 InstrIdxForVirtReg, 1, Opc, AArch64::NEGv4i32, 5744 RC); 5745 break; 5746 case MachineCombinerPattern::MULSUBv4i32_indexed_OP2: 5747 Opc = AArch64::MLSv4i32_indexed; 5748 RC = &AArch64::FPR128RegClass; 5749 MUL = genFusedMultiplyIdx(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5750 break; 5751 5752 // Floating Point Support 5753 case MachineCombinerPattern::FMULADDH_OP1: 5754 Opc = AArch64::FMADDHrrr; 5755 RC = &AArch64::FPR16RegClass; 5756 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5757 break; 5758 case MachineCombinerPattern::FMULADDS_OP1: 5759 Opc = AArch64::FMADDSrrr; 5760 RC = &AArch64::FPR32RegClass; 5761 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5762 break; 5763 case MachineCombinerPattern::FMULADDD_OP1: 5764 Opc = AArch64::FMADDDrrr; 5765 RC = &AArch64::FPR64RegClass; 5766 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5767 break; 5768 5769 case MachineCombinerPattern::FMULADDH_OP2: 5770 Opc = AArch64::FMADDHrrr; 5771 RC = &AArch64::FPR16RegClass; 5772 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5773 break; 5774 case MachineCombinerPattern::FMULADDS_OP2: 5775 Opc = AArch64::FMADDSrrr; 5776 RC = &AArch64::FPR32RegClass; 5777 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5778 break; 5779 case MachineCombinerPattern::FMULADDD_OP2: 5780 Opc = AArch64::FMADDDrrr; 5781 RC = &AArch64::FPR64RegClass; 5782 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5783 break; 5784 5785 case MachineCombinerPattern::FMLAv1i32_indexed_OP1: 5786 Opc = AArch64::FMLAv1i32_indexed; 5787 RC = &AArch64::FPR32RegClass; 5788 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5789 FMAInstKind::Indexed); 5790 break; 5791 case MachineCombinerPattern::FMLAv1i32_indexed_OP2: 5792 Opc = AArch64::FMLAv1i32_indexed; 5793 RC = &AArch64::FPR32RegClass; 5794 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5795 FMAInstKind::Indexed); 5796 break; 5797 5798 case MachineCombinerPattern::FMLAv1i64_indexed_OP1: 5799 Opc = AArch64::FMLAv1i64_indexed; 5800 RC = &AArch64::FPR64RegClass; 5801 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5802 FMAInstKind::Indexed); 5803 break; 5804 case MachineCombinerPattern::FMLAv1i64_indexed_OP2: 5805 Opc = AArch64::FMLAv1i64_indexed; 5806 RC = &AArch64::FPR64RegClass; 5807 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5808 FMAInstKind::Indexed); 5809 break; 5810 5811 case MachineCombinerPattern::FMLAv4i16_indexed_OP1: 5812 RC = &AArch64::FPR64RegClass; 5813 Opc = AArch64::FMLAv4i16_indexed; 5814 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5815 FMAInstKind::Indexed); 5816 break; 5817 case MachineCombinerPattern::FMLAv4f16_OP1: 5818 RC = &AArch64::FPR64RegClass; 5819 Opc = AArch64::FMLAv4f16; 5820 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5821 FMAInstKind::Accumulator); 5822 break; 5823 case MachineCombinerPattern::FMLAv4i16_indexed_OP2: 5824 RC = &AArch64::FPR64RegClass; 5825 Opc = AArch64::FMLAv4i16_indexed; 5826 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5827 FMAInstKind::Indexed); 5828 break; 5829 case MachineCombinerPattern::FMLAv4f16_OP2: 5830 RC = &AArch64::FPR64RegClass; 5831 Opc = AArch64::FMLAv4f16; 5832 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5833 FMAInstKind::Accumulator); 5834 break; 5835 5836 case MachineCombinerPattern::FMLAv2i32_indexed_OP1: 5837 case MachineCombinerPattern::FMLAv2f32_OP1: 5838 RC = &AArch64::FPR64RegClass; 5839 if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP1) { 5840 Opc = AArch64::FMLAv2i32_indexed; 5841 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5842 FMAInstKind::Indexed); 5843 } else { 5844 Opc = AArch64::FMLAv2f32; 5845 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5846 FMAInstKind::Accumulator); 5847 } 5848 break; 5849 case MachineCombinerPattern::FMLAv2i32_indexed_OP2: 5850 case MachineCombinerPattern::FMLAv2f32_OP2: 5851 RC = &AArch64::FPR64RegClass; 5852 if (Pattern == MachineCombinerPattern::FMLAv2i32_indexed_OP2) { 5853 Opc = AArch64::FMLAv2i32_indexed; 5854 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5855 FMAInstKind::Indexed); 5856 } else { 5857 Opc = AArch64::FMLAv2f32; 5858 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5859 FMAInstKind::Accumulator); 5860 } 5861 break; 5862 5863 case MachineCombinerPattern::FMLAv8i16_indexed_OP1: 5864 RC = &AArch64::FPR128RegClass; 5865 Opc = AArch64::FMLAv8i16_indexed; 5866 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5867 FMAInstKind::Indexed); 5868 break; 5869 case MachineCombinerPattern::FMLAv8f16_OP1: 5870 RC = &AArch64::FPR128RegClass; 5871 Opc = AArch64::FMLAv8f16; 5872 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5873 FMAInstKind::Accumulator); 5874 break; 5875 case MachineCombinerPattern::FMLAv8i16_indexed_OP2: 5876 RC = &AArch64::FPR128RegClass; 5877 Opc = AArch64::FMLAv8i16_indexed; 5878 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5879 FMAInstKind::Indexed); 5880 break; 5881 case MachineCombinerPattern::FMLAv8f16_OP2: 5882 RC = &AArch64::FPR128RegClass; 5883 Opc = AArch64::FMLAv8f16; 5884 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5885 FMAInstKind::Accumulator); 5886 break; 5887 5888 case MachineCombinerPattern::FMLAv2i64_indexed_OP1: 5889 case MachineCombinerPattern::FMLAv2f64_OP1: 5890 RC = &AArch64::FPR128RegClass; 5891 if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP1) { 5892 Opc = AArch64::FMLAv2i64_indexed; 5893 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5894 FMAInstKind::Indexed); 5895 } else { 5896 Opc = AArch64::FMLAv2f64; 5897 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5898 FMAInstKind::Accumulator); 5899 } 5900 break; 5901 case MachineCombinerPattern::FMLAv2i64_indexed_OP2: 5902 case MachineCombinerPattern::FMLAv2f64_OP2: 5903 RC = &AArch64::FPR128RegClass; 5904 if (Pattern == MachineCombinerPattern::FMLAv2i64_indexed_OP2) { 5905 Opc = AArch64::FMLAv2i64_indexed; 5906 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5907 FMAInstKind::Indexed); 5908 } else { 5909 Opc = AArch64::FMLAv2f64; 5910 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5911 FMAInstKind::Accumulator); 5912 } 5913 break; 5914 5915 case MachineCombinerPattern::FMLAv4i32_indexed_OP1: 5916 case MachineCombinerPattern::FMLAv4f32_OP1: 5917 RC = &AArch64::FPR128RegClass; 5918 if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP1) { 5919 Opc = AArch64::FMLAv4i32_indexed; 5920 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5921 FMAInstKind::Indexed); 5922 } else { 5923 Opc = AArch64::FMLAv4f32; 5924 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 5925 FMAInstKind::Accumulator); 5926 } 5927 break; 5928 5929 case MachineCombinerPattern::FMLAv4i32_indexed_OP2: 5930 case MachineCombinerPattern::FMLAv4f32_OP2: 5931 RC = &AArch64::FPR128RegClass; 5932 if (Pattern == MachineCombinerPattern::FMLAv4i32_indexed_OP2) { 5933 Opc = AArch64::FMLAv4i32_indexed; 5934 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5935 FMAInstKind::Indexed); 5936 } else { 5937 Opc = AArch64::FMLAv4f32; 5938 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5939 FMAInstKind::Accumulator); 5940 } 5941 break; 5942 5943 case MachineCombinerPattern::FMULSUBH_OP1: 5944 Opc = AArch64::FNMSUBHrrr; 5945 RC = &AArch64::FPR16RegClass; 5946 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5947 break; 5948 case MachineCombinerPattern::FMULSUBS_OP1: 5949 Opc = AArch64::FNMSUBSrrr; 5950 RC = &AArch64::FPR32RegClass; 5951 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5952 break; 5953 case MachineCombinerPattern::FMULSUBD_OP1: 5954 Opc = AArch64::FNMSUBDrrr; 5955 RC = &AArch64::FPR64RegClass; 5956 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5957 break; 5958 5959 case MachineCombinerPattern::FNMULSUBH_OP1: 5960 Opc = AArch64::FNMADDHrrr; 5961 RC = &AArch64::FPR16RegClass; 5962 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5963 break; 5964 case MachineCombinerPattern::FNMULSUBS_OP1: 5965 Opc = AArch64::FNMADDSrrr; 5966 RC = &AArch64::FPR32RegClass; 5967 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5968 break; 5969 case MachineCombinerPattern::FNMULSUBD_OP1: 5970 Opc = AArch64::FNMADDDrrr; 5971 RC = &AArch64::FPR64RegClass; 5972 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC); 5973 break; 5974 5975 case MachineCombinerPattern::FMULSUBH_OP2: 5976 Opc = AArch64::FMSUBHrrr; 5977 RC = &AArch64::FPR16RegClass; 5978 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5979 break; 5980 case MachineCombinerPattern::FMULSUBS_OP2: 5981 Opc = AArch64::FMSUBSrrr; 5982 RC = &AArch64::FPR32RegClass; 5983 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5984 break; 5985 case MachineCombinerPattern::FMULSUBD_OP2: 5986 Opc = AArch64::FMSUBDrrr; 5987 RC = &AArch64::FPR64RegClass; 5988 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC); 5989 break; 5990 5991 case MachineCombinerPattern::FMLSv1i32_indexed_OP2: 5992 Opc = AArch64::FMLSv1i32_indexed; 5993 RC = &AArch64::FPR32RegClass; 5994 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 5995 FMAInstKind::Indexed); 5996 break; 5997 5998 case MachineCombinerPattern::FMLSv1i64_indexed_OP2: 5999 Opc = AArch64::FMLSv1i64_indexed; 6000 RC = &AArch64::FPR64RegClass; 6001 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6002 FMAInstKind::Indexed); 6003 break; 6004 6005 case MachineCombinerPattern::FMLSv4f16_OP1: 6006 case MachineCombinerPattern::FMLSv4i16_indexed_OP1: { 6007 RC = &AArch64::FPR64RegClass; 6008 Register NewVR = MRI.createVirtualRegister(RC); 6009 MachineInstrBuilder MIB1 = 6010 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f16), NewVR) 6011 .add(Root.getOperand(2)); 6012 InsInstrs.push_back(MIB1); 6013 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 6014 if (Pattern == MachineCombinerPattern::FMLSv4f16_OP1) { 6015 Opc = AArch64::FMLAv4f16; 6016 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6017 FMAInstKind::Accumulator, &NewVR); 6018 } else { 6019 Opc = AArch64::FMLAv4i16_indexed; 6020 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6021 FMAInstKind::Indexed, &NewVR); 6022 } 6023 break; 6024 } 6025 case MachineCombinerPattern::FMLSv4f16_OP2: 6026 RC = &AArch64::FPR64RegClass; 6027 Opc = AArch64::FMLSv4f16; 6028 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6029 FMAInstKind::Accumulator); 6030 break; 6031 case MachineCombinerPattern::FMLSv4i16_indexed_OP2: 6032 RC = &AArch64::FPR64RegClass; 6033 Opc = AArch64::FMLSv4i16_indexed; 6034 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6035 FMAInstKind::Indexed); 6036 break; 6037 6038 case MachineCombinerPattern::FMLSv2f32_OP2: 6039 case MachineCombinerPattern::FMLSv2i32_indexed_OP2: 6040 RC = &AArch64::FPR64RegClass; 6041 if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP2) { 6042 Opc = AArch64::FMLSv2i32_indexed; 6043 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6044 FMAInstKind::Indexed); 6045 } else { 6046 Opc = AArch64::FMLSv2f32; 6047 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6048 FMAInstKind::Accumulator); 6049 } 6050 break; 6051 6052 case MachineCombinerPattern::FMLSv8f16_OP1: 6053 case MachineCombinerPattern::FMLSv8i16_indexed_OP1: { 6054 RC = &AArch64::FPR128RegClass; 6055 Register NewVR = MRI.createVirtualRegister(RC); 6056 MachineInstrBuilder MIB1 = 6057 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv8f16), NewVR) 6058 .add(Root.getOperand(2)); 6059 InsInstrs.push_back(MIB1); 6060 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 6061 if (Pattern == MachineCombinerPattern::FMLSv8f16_OP1) { 6062 Opc = AArch64::FMLAv8f16; 6063 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6064 FMAInstKind::Accumulator, &NewVR); 6065 } else { 6066 Opc = AArch64::FMLAv8i16_indexed; 6067 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6068 FMAInstKind::Indexed, &NewVR); 6069 } 6070 break; 6071 } 6072 case MachineCombinerPattern::FMLSv8f16_OP2: 6073 RC = &AArch64::FPR128RegClass; 6074 Opc = AArch64::FMLSv8f16; 6075 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6076 FMAInstKind::Accumulator); 6077 break; 6078 case MachineCombinerPattern::FMLSv8i16_indexed_OP2: 6079 RC = &AArch64::FPR128RegClass; 6080 Opc = AArch64::FMLSv8i16_indexed; 6081 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6082 FMAInstKind::Indexed); 6083 break; 6084 6085 case MachineCombinerPattern::FMLSv2f64_OP2: 6086 case MachineCombinerPattern::FMLSv2i64_indexed_OP2: 6087 RC = &AArch64::FPR128RegClass; 6088 if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP2) { 6089 Opc = AArch64::FMLSv2i64_indexed; 6090 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6091 FMAInstKind::Indexed); 6092 } else { 6093 Opc = AArch64::FMLSv2f64; 6094 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6095 FMAInstKind::Accumulator); 6096 } 6097 break; 6098 6099 case MachineCombinerPattern::FMLSv4f32_OP2: 6100 case MachineCombinerPattern::FMLSv4i32_indexed_OP2: 6101 RC = &AArch64::FPR128RegClass; 6102 if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP2) { 6103 Opc = AArch64::FMLSv4i32_indexed; 6104 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6105 FMAInstKind::Indexed); 6106 } else { 6107 Opc = AArch64::FMLSv4f32; 6108 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC, 6109 FMAInstKind::Accumulator); 6110 } 6111 break; 6112 case MachineCombinerPattern::FMLSv2f32_OP1: 6113 case MachineCombinerPattern::FMLSv2i32_indexed_OP1: { 6114 RC = &AArch64::FPR64RegClass; 6115 Register NewVR = MRI.createVirtualRegister(RC); 6116 MachineInstrBuilder MIB1 = 6117 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f32), NewVR) 6118 .add(Root.getOperand(2)); 6119 InsInstrs.push_back(MIB1); 6120 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 6121 if (Pattern == MachineCombinerPattern::FMLSv2i32_indexed_OP1) { 6122 Opc = AArch64::FMLAv2i32_indexed; 6123 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6124 FMAInstKind::Indexed, &NewVR); 6125 } else { 6126 Opc = AArch64::FMLAv2f32; 6127 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6128 FMAInstKind::Accumulator, &NewVR); 6129 } 6130 break; 6131 } 6132 case MachineCombinerPattern::FMLSv4f32_OP1: 6133 case MachineCombinerPattern::FMLSv4i32_indexed_OP1: { 6134 RC = &AArch64::FPR128RegClass; 6135 Register NewVR = MRI.createVirtualRegister(RC); 6136 MachineInstrBuilder MIB1 = 6137 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv4f32), NewVR) 6138 .add(Root.getOperand(2)); 6139 InsInstrs.push_back(MIB1); 6140 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 6141 if (Pattern == MachineCombinerPattern::FMLSv4i32_indexed_OP1) { 6142 Opc = AArch64::FMLAv4i32_indexed; 6143 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6144 FMAInstKind::Indexed, &NewVR); 6145 } else { 6146 Opc = AArch64::FMLAv4f32; 6147 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6148 FMAInstKind::Accumulator, &NewVR); 6149 } 6150 break; 6151 } 6152 case MachineCombinerPattern::FMLSv2f64_OP1: 6153 case MachineCombinerPattern::FMLSv2i64_indexed_OP1: { 6154 RC = &AArch64::FPR128RegClass; 6155 Register NewVR = MRI.createVirtualRegister(RC); 6156 MachineInstrBuilder MIB1 = 6157 BuildMI(MF, Root.getDebugLoc(), TII->get(AArch64::FNEGv2f64), NewVR) 6158 .add(Root.getOperand(2)); 6159 InsInstrs.push_back(MIB1); 6160 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 6161 if (Pattern == MachineCombinerPattern::FMLSv2i64_indexed_OP1) { 6162 Opc = AArch64::FMLAv2i64_indexed; 6163 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6164 FMAInstKind::Indexed, &NewVR); 6165 } else { 6166 Opc = AArch64::FMLAv2f64; 6167 MUL = genFusedMultiply(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC, 6168 FMAInstKind::Accumulator, &NewVR); 6169 } 6170 break; 6171 } 6172 case MachineCombinerPattern::FMULv2i32_indexed_OP1: 6173 case MachineCombinerPattern::FMULv2i32_indexed_OP2: { 6174 unsigned IdxDupOp = 6175 (Pattern == MachineCombinerPattern::FMULv2i32_indexed_OP1) ? 1 : 2; 6176 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv2i32_indexed, 6177 &AArch64::FPR128RegClass, MRI); 6178 break; 6179 } 6180 case MachineCombinerPattern::FMULv2i64_indexed_OP1: 6181 case MachineCombinerPattern::FMULv2i64_indexed_OP2: { 6182 unsigned IdxDupOp = 6183 (Pattern == MachineCombinerPattern::FMULv2i64_indexed_OP1) ? 1 : 2; 6184 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv2i64_indexed, 6185 &AArch64::FPR128RegClass, MRI); 6186 break; 6187 } 6188 case MachineCombinerPattern::FMULv4i16_indexed_OP1: 6189 case MachineCombinerPattern::FMULv4i16_indexed_OP2: { 6190 unsigned IdxDupOp = 6191 (Pattern == MachineCombinerPattern::FMULv4i16_indexed_OP1) ? 1 : 2; 6192 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv4i16_indexed, 6193 &AArch64::FPR128_loRegClass, MRI); 6194 break; 6195 } 6196 case MachineCombinerPattern::FMULv4i32_indexed_OP1: 6197 case MachineCombinerPattern::FMULv4i32_indexed_OP2: { 6198 unsigned IdxDupOp = 6199 (Pattern == MachineCombinerPattern::FMULv4i32_indexed_OP1) ? 1 : 2; 6200 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv4i32_indexed, 6201 &AArch64::FPR128RegClass, MRI); 6202 break; 6203 } 6204 case MachineCombinerPattern::FMULv8i16_indexed_OP1: 6205 case MachineCombinerPattern::FMULv8i16_indexed_OP2: { 6206 unsigned IdxDupOp = 6207 (Pattern == MachineCombinerPattern::FMULv8i16_indexed_OP1) ? 1 : 2; 6208 genIndexedMultiply(Root, InsInstrs, IdxDupOp, AArch64::FMULv8i16_indexed, 6209 &AArch64::FPR128_loRegClass, MRI); 6210 break; 6211 } 6212 } // end switch (Pattern) 6213 // Record MUL and ADD/SUB for deletion 6214 if (MUL) 6215 DelInstrs.push_back(MUL); 6216 DelInstrs.push_back(&Root); 6217 } 6218 6219 /// Replace csincr-branch sequence by simple conditional branch 6220 /// 6221 /// Examples: 6222 /// 1. \code 6223 /// csinc w9, wzr, wzr, <condition code> 6224 /// tbnz w9, #0, 0x44 6225 /// \endcode 6226 /// to 6227 /// \code 6228 /// b.<inverted condition code> 6229 /// \endcode 6230 /// 6231 /// 2. \code 6232 /// csinc w9, wzr, wzr, <condition code> 6233 /// tbz w9, #0, 0x44 6234 /// \endcode 6235 /// to 6236 /// \code 6237 /// b.<condition code> 6238 /// \endcode 6239 /// 6240 /// Replace compare and branch sequence by TBZ/TBNZ instruction when the 6241 /// compare's constant operand is power of 2. 6242 /// 6243 /// Examples: 6244 /// \code 6245 /// and w8, w8, #0x400 6246 /// cbnz w8, L1 6247 /// \endcode 6248 /// to 6249 /// \code 6250 /// tbnz w8, #10, L1 6251 /// \endcode 6252 /// 6253 /// \param MI Conditional Branch 6254 /// \return True when the simple conditional branch is generated 6255 /// 6256 bool AArch64InstrInfo::optimizeCondBranch(MachineInstr &MI) const { 6257 bool IsNegativeBranch = false; 6258 bool IsTestAndBranch = false; 6259 unsigned TargetBBInMI = 0; 6260 switch (MI.getOpcode()) { 6261 default: 6262 llvm_unreachable("Unknown branch instruction?"); 6263 case AArch64::Bcc: 6264 return false; 6265 case AArch64::CBZW: 6266 case AArch64::CBZX: 6267 TargetBBInMI = 1; 6268 break; 6269 case AArch64::CBNZW: 6270 case AArch64::CBNZX: 6271 TargetBBInMI = 1; 6272 IsNegativeBranch = true; 6273 break; 6274 case AArch64::TBZW: 6275 case AArch64::TBZX: 6276 TargetBBInMI = 2; 6277 IsTestAndBranch = true; 6278 break; 6279 case AArch64::TBNZW: 6280 case AArch64::TBNZX: 6281 TargetBBInMI = 2; 6282 IsNegativeBranch = true; 6283 IsTestAndBranch = true; 6284 break; 6285 } 6286 // So we increment a zero register and test for bits other 6287 // than bit 0? Conservatively bail out in case the verifier 6288 // missed this case. 6289 if (IsTestAndBranch && MI.getOperand(1).getImm()) 6290 return false; 6291 6292 // Find Definition. 6293 assert(MI.getParent() && "Incomplete machine instruciton\n"); 6294 MachineBasicBlock *MBB = MI.getParent(); 6295 MachineFunction *MF = MBB->getParent(); 6296 MachineRegisterInfo *MRI = &MF->getRegInfo(); 6297 Register VReg = MI.getOperand(0).getReg(); 6298 if (!Register::isVirtualRegister(VReg)) 6299 return false; 6300 6301 MachineInstr *DefMI = MRI->getVRegDef(VReg); 6302 6303 // Look through COPY instructions to find definition. 6304 while (DefMI->isCopy()) { 6305 Register CopyVReg = DefMI->getOperand(1).getReg(); 6306 if (!MRI->hasOneNonDBGUse(CopyVReg)) 6307 return false; 6308 if (!MRI->hasOneDef(CopyVReg)) 6309 return false; 6310 DefMI = MRI->getVRegDef(CopyVReg); 6311 } 6312 6313 switch (DefMI->getOpcode()) { 6314 default: 6315 return false; 6316 // Fold AND into a TBZ/TBNZ if constant operand is power of 2. 6317 case AArch64::ANDWri: 6318 case AArch64::ANDXri: { 6319 if (IsTestAndBranch) 6320 return false; 6321 if (DefMI->getParent() != MBB) 6322 return false; 6323 if (!MRI->hasOneNonDBGUse(VReg)) 6324 return false; 6325 6326 bool Is32Bit = (DefMI->getOpcode() == AArch64::ANDWri); 6327 uint64_t Mask = AArch64_AM::decodeLogicalImmediate( 6328 DefMI->getOperand(2).getImm(), Is32Bit ? 32 : 64); 6329 if (!isPowerOf2_64(Mask)) 6330 return false; 6331 6332 MachineOperand &MO = DefMI->getOperand(1); 6333 Register NewReg = MO.getReg(); 6334 if (!Register::isVirtualRegister(NewReg)) 6335 return false; 6336 6337 assert(!MRI->def_empty(NewReg) && "Register must be defined."); 6338 6339 MachineBasicBlock &RefToMBB = *MBB; 6340 MachineBasicBlock *TBB = MI.getOperand(1).getMBB(); 6341 DebugLoc DL = MI.getDebugLoc(); 6342 unsigned Imm = Log2_64(Mask); 6343 unsigned Opc = (Imm < 32) 6344 ? (IsNegativeBranch ? AArch64::TBNZW : AArch64::TBZW) 6345 : (IsNegativeBranch ? AArch64::TBNZX : AArch64::TBZX); 6346 MachineInstr *NewMI = BuildMI(RefToMBB, MI, DL, get(Opc)) 6347 .addReg(NewReg) 6348 .addImm(Imm) 6349 .addMBB(TBB); 6350 // Register lives on to the CBZ now. 6351 MO.setIsKill(false); 6352 6353 // For immediate smaller than 32, we need to use the 32-bit 6354 // variant (W) in all cases. Indeed the 64-bit variant does not 6355 // allow to encode them. 6356 // Therefore, if the input register is 64-bit, we need to take the 6357 // 32-bit sub-part. 6358 if (!Is32Bit && Imm < 32) 6359 NewMI->getOperand(0).setSubReg(AArch64::sub_32); 6360 MI.eraseFromParent(); 6361 return true; 6362 } 6363 // Look for CSINC 6364 case AArch64::CSINCWr: 6365 case AArch64::CSINCXr: { 6366 if (!(DefMI->getOperand(1).getReg() == AArch64::WZR && 6367 DefMI->getOperand(2).getReg() == AArch64::WZR) && 6368 !(DefMI->getOperand(1).getReg() == AArch64::XZR && 6369 DefMI->getOperand(2).getReg() == AArch64::XZR)) 6370 return false; 6371 6372 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1) 6373 return false; 6374 6375 AArch64CC::CondCode CC = (AArch64CC::CondCode)DefMI->getOperand(3).getImm(); 6376 // Convert only when the condition code is not modified between 6377 // the CSINC and the branch. The CC may be used by other 6378 // instructions in between. 6379 if (areCFlagsAccessedBetweenInstrs(DefMI, MI, &getRegisterInfo(), AK_Write)) 6380 return false; 6381 MachineBasicBlock &RefToMBB = *MBB; 6382 MachineBasicBlock *TBB = MI.getOperand(TargetBBInMI).getMBB(); 6383 DebugLoc DL = MI.getDebugLoc(); 6384 if (IsNegativeBranch) 6385 CC = AArch64CC::getInvertedCondCode(CC); 6386 BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB); 6387 MI.eraseFromParent(); 6388 return true; 6389 } 6390 } 6391 } 6392 6393 std::pair<unsigned, unsigned> 6394 AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 6395 const unsigned Mask = AArch64II::MO_FRAGMENT; 6396 return std::make_pair(TF & Mask, TF & ~Mask); 6397 } 6398 6399 ArrayRef<std::pair<unsigned, const char *>> 6400 AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 6401 using namespace AArch64II; 6402 6403 static const std::pair<unsigned, const char *> TargetFlags[] = { 6404 {MO_PAGE, "aarch64-page"}, {MO_PAGEOFF, "aarch64-pageoff"}, 6405 {MO_G3, "aarch64-g3"}, {MO_G2, "aarch64-g2"}, 6406 {MO_G1, "aarch64-g1"}, {MO_G0, "aarch64-g0"}, 6407 {MO_HI12, "aarch64-hi12"}}; 6408 return makeArrayRef(TargetFlags); 6409 } 6410 6411 ArrayRef<std::pair<unsigned, const char *>> 6412 AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 6413 using namespace AArch64II; 6414 6415 static const std::pair<unsigned, const char *> TargetFlags[] = { 6416 {MO_COFFSTUB, "aarch64-coffstub"}, 6417 {MO_GOT, "aarch64-got"}, 6418 {MO_NC, "aarch64-nc"}, 6419 {MO_S, "aarch64-s"}, 6420 {MO_TLS, "aarch64-tls"}, 6421 {MO_DLLIMPORT, "aarch64-dllimport"}, 6422 {MO_PREL, "aarch64-prel"}, 6423 {MO_TAGGED, "aarch64-tagged"}}; 6424 return makeArrayRef(TargetFlags); 6425 } 6426 6427 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> 6428 AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const { 6429 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] = 6430 {{MOSuppressPair, "aarch64-suppress-pair"}, 6431 {MOStridedAccess, "aarch64-strided-access"}}; 6432 return makeArrayRef(TargetFlags); 6433 } 6434 6435 /// Constants defining how certain sequences should be outlined. 6436 /// This encompasses how an outlined function should be called, and what kind of 6437 /// frame should be emitted for that outlined function. 6438 /// 6439 /// \p MachineOutlinerDefault implies that the function should be called with 6440 /// a save and restore of LR to the stack. 6441 /// 6442 /// That is, 6443 /// 6444 /// I1 Save LR OUTLINED_FUNCTION: 6445 /// I2 --> BL OUTLINED_FUNCTION I1 6446 /// I3 Restore LR I2 6447 /// I3 6448 /// RET 6449 /// 6450 /// * Call construction overhead: 3 (save + BL + restore) 6451 /// * Frame construction overhead: 1 (ret) 6452 /// * Requires stack fixups? Yes 6453 /// 6454 /// \p MachineOutlinerTailCall implies that the function is being created from 6455 /// a sequence of instructions ending in a return. 6456 /// 6457 /// That is, 6458 /// 6459 /// I1 OUTLINED_FUNCTION: 6460 /// I2 --> B OUTLINED_FUNCTION I1 6461 /// RET I2 6462 /// RET 6463 /// 6464 /// * Call construction overhead: 1 (B) 6465 /// * Frame construction overhead: 0 (Return included in sequence) 6466 /// * Requires stack fixups? No 6467 /// 6468 /// \p MachineOutlinerNoLRSave implies that the function should be called using 6469 /// a BL instruction, but doesn't require LR to be saved and restored. This 6470 /// happens when LR is known to be dead. 6471 /// 6472 /// That is, 6473 /// 6474 /// I1 OUTLINED_FUNCTION: 6475 /// I2 --> BL OUTLINED_FUNCTION I1 6476 /// I3 I2 6477 /// I3 6478 /// RET 6479 /// 6480 /// * Call construction overhead: 1 (BL) 6481 /// * Frame construction overhead: 1 (RET) 6482 /// * Requires stack fixups? No 6483 /// 6484 /// \p MachineOutlinerThunk implies that the function is being created from 6485 /// a sequence of instructions ending in a call. The outlined function is 6486 /// called with a BL instruction, and the outlined function tail-calls the 6487 /// original call destination. 6488 /// 6489 /// That is, 6490 /// 6491 /// I1 OUTLINED_FUNCTION: 6492 /// I2 --> BL OUTLINED_FUNCTION I1 6493 /// BL f I2 6494 /// B f 6495 /// * Call construction overhead: 1 (BL) 6496 /// * Frame construction overhead: 0 6497 /// * Requires stack fixups? No 6498 /// 6499 /// \p MachineOutlinerRegSave implies that the function should be called with a 6500 /// save and restore of LR to an available register. This allows us to avoid 6501 /// stack fixups. Note that this outlining variant is compatible with the 6502 /// NoLRSave case. 6503 /// 6504 /// That is, 6505 /// 6506 /// I1 Save LR OUTLINED_FUNCTION: 6507 /// I2 --> BL OUTLINED_FUNCTION I1 6508 /// I3 Restore LR I2 6509 /// I3 6510 /// RET 6511 /// 6512 /// * Call construction overhead: 3 (save + BL + restore) 6513 /// * Frame construction overhead: 1 (ret) 6514 /// * Requires stack fixups? No 6515 enum MachineOutlinerClass { 6516 MachineOutlinerDefault, /// Emit a save, restore, call, and return. 6517 MachineOutlinerTailCall, /// Only emit a branch. 6518 MachineOutlinerNoLRSave, /// Emit a call and return. 6519 MachineOutlinerThunk, /// Emit a call and tail-call. 6520 MachineOutlinerRegSave /// Same as default, but save to a register. 6521 }; 6522 6523 enum MachineOutlinerMBBFlags { 6524 LRUnavailableSomewhere = 0x2, 6525 HasCalls = 0x4, 6526 UnsafeRegsDead = 0x8 6527 }; 6528 6529 unsigned 6530 AArch64InstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const { 6531 assert(C.LRUWasSet && "LRU wasn't set?"); 6532 MachineFunction *MF = C.getMF(); 6533 const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>( 6534 MF->getSubtarget().getRegisterInfo()); 6535 6536 // Check if there is an available register across the sequence that we can 6537 // use. 6538 for (unsigned Reg : AArch64::GPR64RegClass) { 6539 if (!ARI->isReservedReg(*MF, Reg) && 6540 Reg != AArch64::LR && // LR is not reserved, but don't use it. 6541 Reg != AArch64::X16 && // X16 is not guaranteed to be preserved. 6542 Reg != AArch64::X17 && // Ditto for X17. 6543 C.LRU.available(Reg) && C.UsedInSequence.available(Reg)) 6544 return Reg; 6545 } 6546 6547 // No suitable register. Return 0. 6548 return 0u; 6549 } 6550 6551 static bool 6552 outliningCandidatesSigningScopeConsensus(const outliner::Candidate &a, 6553 const outliner::Candidate &b) { 6554 const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>(); 6555 const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>(); 6556 6557 return MFIa->shouldSignReturnAddress(false) == MFIb->shouldSignReturnAddress(false) && 6558 MFIa->shouldSignReturnAddress(true) == MFIb->shouldSignReturnAddress(true); 6559 } 6560 6561 static bool 6562 outliningCandidatesSigningKeyConsensus(const outliner::Candidate &a, 6563 const outliner::Candidate &b) { 6564 const auto &MFIa = a.getMF()->getInfo<AArch64FunctionInfo>(); 6565 const auto &MFIb = b.getMF()->getInfo<AArch64FunctionInfo>(); 6566 6567 return MFIa->shouldSignWithBKey() == MFIb->shouldSignWithBKey(); 6568 } 6569 6570 static bool outliningCandidatesV8_3OpsConsensus(const outliner::Candidate &a, 6571 const outliner::Candidate &b) { 6572 const AArch64Subtarget &SubtargetA = 6573 a.getMF()->getSubtarget<AArch64Subtarget>(); 6574 const AArch64Subtarget &SubtargetB = 6575 b.getMF()->getSubtarget<AArch64Subtarget>(); 6576 return SubtargetA.hasV8_3aOps() == SubtargetB.hasV8_3aOps(); 6577 } 6578 6579 outliner::OutlinedFunction AArch64InstrInfo::getOutliningCandidateInfo( 6580 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 6581 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 6582 unsigned SequenceSize = 6583 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 6584 [this](unsigned Sum, const MachineInstr &MI) { 6585 return Sum + getInstSizeInBytes(MI); 6586 }); 6587 unsigned NumBytesToCreateFrame = 0; 6588 6589 // We only allow outlining for functions having exactly matching return 6590 // address signing attributes, i.e., all share the same value for the 6591 // attribute "sign-return-address" and all share the same type of key they 6592 // are signed with. 6593 // Additionally we require all functions to simultaniously either support 6594 // v8.3a features or not. Otherwise an outlined function could get signed 6595 // using dedicated v8.3 instructions and a call from a function that doesn't 6596 // support v8.3 instructions would therefore be invalid. 6597 if (std::adjacent_find( 6598 RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), 6599 [](const outliner::Candidate &a, const outliner::Candidate &b) { 6600 // Return true if a and b are non-equal w.r.t. return address 6601 // signing or support of v8.3a features 6602 if (outliningCandidatesSigningScopeConsensus(a, b) && 6603 outliningCandidatesSigningKeyConsensus(a, b) && 6604 outliningCandidatesV8_3OpsConsensus(a, b)) { 6605 return false; 6606 } 6607 return true; 6608 }) != RepeatedSequenceLocs.end()) { 6609 return outliner::OutlinedFunction(); 6610 } 6611 6612 // Since at this point all candidates agree on their return address signing 6613 // picking just one is fine. If the candidate functions potentially sign their 6614 // return addresses, the outlined function should do the same. Note that in 6615 // the case of "sign-return-address"="non-leaf" this is an assumption: It is 6616 // not certainly true that the outlined function will have to sign its return 6617 // address but this decision is made later, when the decision to outline 6618 // has already been made. 6619 // The same holds for the number of additional instructions we need: On 6620 // v8.3a RET can be replaced by RETAA/RETAB and no AUT instruction is 6621 // necessary. However, at this point we don't know if the outlined function 6622 // will have a RET instruction so we assume the worst. 6623 const TargetRegisterInfo &TRI = getRegisterInfo(); 6624 if (FirstCand.getMF() 6625 ->getInfo<AArch64FunctionInfo>() 6626 ->shouldSignReturnAddress(true)) { 6627 // One PAC and one AUT instructions 6628 NumBytesToCreateFrame += 8; 6629 6630 // We have to check if sp modifying instructions would get outlined. 6631 // If so we only allow outlining if sp is unchanged overall, so matching 6632 // sub and add instructions are okay to outline, all other sp modifications 6633 // are not 6634 auto hasIllegalSPModification = [&TRI](outliner::Candidate &C) { 6635 int SPValue = 0; 6636 MachineBasicBlock::iterator MBBI = C.front(); 6637 for (;;) { 6638 if (MBBI->modifiesRegister(AArch64::SP, &TRI)) { 6639 switch (MBBI->getOpcode()) { 6640 case AArch64::ADDXri: 6641 case AArch64::ADDWri: 6642 assert(MBBI->getNumOperands() == 4 && "Wrong number of operands"); 6643 assert(MBBI->getOperand(2).isImm() && 6644 "Expected operand to be immediate"); 6645 assert(MBBI->getOperand(1).isReg() && 6646 "Expected operand to be a register"); 6647 // Check if the add just increments sp. If so, we search for 6648 // matching sub instructions that decrement sp. If not, the 6649 // modification is illegal 6650 if (MBBI->getOperand(1).getReg() == AArch64::SP) 6651 SPValue += MBBI->getOperand(2).getImm(); 6652 else 6653 return true; 6654 break; 6655 case AArch64::SUBXri: 6656 case AArch64::SUBWri: 6657 assert(MBBI->getNumOperands() == 4 && "Wrong number of operands"); 6658 assert(MBBI->getOperand(2).isImm() && 6659 "Expected operand to be immediate"); 6660 assert(MBBI->getOperand(1).isReg() && 6661 "Expected operand to be a register"); 6662 // Check if the sub just decrements sp. If so, we search for 6663 // matching add instructions that increment sp. If not, the 6664 // modification is illegal 6665 if (MBBI->getOperand(1).getReg() == AArch64::SP) 6666 SPValue -= MBBI->getOperand(2).getImm(); 6667 else 6668 return true; 6669 break; 6670 default: 6671 return true; 6672 } 6673 } 6674 if (MBBI == C.back()) 6675 break; 6676 ++MBBI; 6677 } 6678 if (SPValue) 6679 return true; 6680 return false; 6681 }; 6682 // Remove candidates with illegal stack modifying instructions 6683 llvm::erase_if(RepeatedSequenceLocs, hasIllegalSPModification); 6684 6685 // If the sequence doesn't have enough candidates left, then we're done. 6686 if (RepeatedSequenceLocs.size() < 2) 6687 return outliner::OutlinedFunction(); 6688 } 6689 6690 // Properties about candidate MBBs that hold for all of them. 6691 unsigned FlagsSetInAll = 0xF; 6692 6693 // Compute liveness information for each candidate, and set FlagsSetInAll. 6694 std::for_each(RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), 6695 [&FlagsSetInAll](outliner::Candidate &C) { 6696 FlagsSetInAll &= C.Flags; 6697 }); 6698 6699 // According to the AArch64 Procedure Call Standard, the following are 6700 // undefined on entry/exit from a function call: 6701 // 6702 // * Registers x16, x17, (and thus w16, w17) 6703 // * Condition codes (and thus the NZCV register) 6704 // 6705 // Because if this, we can't outline any sequence of instructions where 6706 // one 6707 // of these registers is live into/across it. Thus, we need to delete 6708 // those 6709 // candidates. 6710 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 6711 // If the unsafe registers in this block are all dead, then we don't need 6712 // to compute liveness here. 6713 if (C.Flags & UnsafeRegsDead) 6714 return false; 6715 C.initLRU(TRI); 6716 LiveRegUnits LRU = C.LRU; 6717 return (!LRU.available(AArch64::W16) || !LRU.available(AArch64::W17) || 6718 !LRU.available(AArch64::NZCV)); 6719 }; 6720 6721 // Are there any candidates where those registers are live? 6722 if (!(FlagsSetInAll & UnsafeRegsDead)) { 6723 // Erase every candidate that violates the restrictions above. (It could be 6724 // true that we have viable candidates, so it's not worth bailing out in 6725 // the case that, say, 1 out of 20 candidates violate the restructions.) 6726 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 6727 6728 // If the sequence doesn't have enough candidates left, then we're done. 6729 if (RepeatedSequenceLocs.size() < 2) 6730 return outliner::OutlinedFunction(); 6731 } 6732 6733 // At this point, we have only "safe" candidates to outline. Figure out 6734 // frame + call instruction information. 6735 6736 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 6737 6738 // Helper lambda which sets call information for every candidate. 6739 auto SetCandidateCallInfo = 6740 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 6741 for (outliner::Candidate &C : RepeatedSequenceLocs) 6742 C.setCallInfo(CallID, NumBytesForCall); 6743 }; 6744 6745 unsigned FrameID = MachineOutlinerDefault; 6746 NumBytesToCreateFrame += 4; 6747 6748 bool HasBTI = any_of(RepeatedSequenceLocs, [](outliner::Candidate &C) { 6749 return C.getMF()->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement(); 6750 }); 6751 6752 // We check to see if CFI Instructions are present, and if they are 6753 // we find the number of CFI Instructions in the candidates. 6754 unsigned CFICount = 0; 6755 MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front(); 6756 for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx(); 6757 Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) { 6758 if (MBBI->isCFIInstruction()) 6759 CFICount++; 6760 MBBI++; 6761 } 6762 6763 // We compare the number of found CFI Instructions to the number of CFI 6764 // instructions in the parent function for each candidate. We must check this 6765 // since if we outline one of the CFI instructions in a function, we have to 6766 // outline them all for correctness. If we do not, the address offsets will be 6767 // incorrect between the two sections of the program. 6768 for (outliner::Candidate &C : RepeatedSequenceLocs) { 6769 std::vector<MCCFIInstruction> CFIInstructions = 6770 C.getMF()->getFrameInstructions(); 6771 6772 if (CFICount > 0 && CFICount != CFIInstructions.size()) 6773 return outliner::OutlinedFunction(); 6774 } 6775 6776 // Returns true if an instructions is safe to fix up, false otherwise. 6777 auto IsSafeToFixup = [this, &TRI](MachineInstr &MI) { 6778 if (MI.isCall()) 6779 return true; 6780 6781 if (!MI.modifiesRegister(AArch64::SP, &TRI) && 6782 !MI.readsRegister(AArch64::SP, &TRI)) 6783 return true; 6784 6785 // Any modification of SP will break our code to save/restore LR. 6786 // FIXME: We could handle some instructions which add a constant 6787 // offset to SP, with a bit more work. 6788 if (MI.modifiesRegister(AArch64::SP, &TRI)) 6789 return false; 6790 6791 // At this point, we have a stack instruction that we might need to 6792 // fix up. We'll handle it if it's a load or store. 6793 if (MI.mayLoadOrStore()) { 6794 const MachineOperand *Base; // Filled with the base operand of MI. 6795 int64_t Offset; // Filled with the offset of MI. 6796 bool OffsetIsScalable; 6797 6798 // Does it allow us to offset the base operand and is the base the 6799 // register SP? 6800 if (!getMemOperandWithOffset(MI, Base, Offset, OffsetIsScalable, &TRI) || 6801 !Base->isReg() || Base->getReg() != AArch64::SP) 6802 return false; 6803 6804 // Fixe-up code below assumes bytes. 6805 if (OffsetIsScalable) 6806 return false; 6807 6808 // Find the minimum/maximum offset for this instruction and check 6809 // if fixing it up would be in range. 6810 int64_t MinOffset, 6811 MaxOffset; // Unscaled offsets for the instruction. 6812 TypeSize Scale(0U, false); // The scale to multiply the offsets by. 6813 unsigned DummyWidth; 6814 getMemOpInfo(MI.getOpcode(), Scale, DummyWidth, MinOffset, MaxOffset); 6815 6816 Offset += 16; // Update the offset to what it would be if we outlined. 6817 if (Offset < MinOffset * (int64_t)Scale.getFixedSize() || 6818 Offset > MaxOffset * (int64_t)Scale.getFixedSize()) 6819 return false; 6820 6821 // It's in range, so we can outline it. 6822 return true; 6823 } 6824 6825 // FIXME: Add handling for instructions like "add x0, sp, #8". 6826 6827 // We can't fix it up, so don't outline it. 6828 return false; 6829 }; 6830 6831 // True if it's possible to fix up each stack instruction in this sequence. 6832 // Important for frames/call variants that modify the stack. 6833 bool AllStackInstrsSafe = std::all_of( 6834 FirstCand.front(), std::next(FirstCand.back()), IsSafeToFixup); 6835 6836 // If the last instruction in any candidate is a terminator, then we should 6837 // tail call all of the candidates. 6838 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 6839 FrameID = MachineOutlinerTailCall; 6840 NumBytesToCreateFrame = 0; 6841 SetCandidateCallInfo(MachineOutlinerTailCall, 4); 6842 } 6843 6844 else if (LastInstrOpcode == AArch64::BL || 6845 ((LastInstrOpcode == AArch64::BLR || 6846 LastInstrOpcode == AArch64::BLRNoIP) && 6847 !HasBTI)) { 6848 // FIXME: Do we need to check if the code after this uses the value of LR? 6849 FrameID = MachineOutlinerThunk; 6850 NumBytesToCreateFrame = 0; 6851 SetCandidateCallInfo(MachineOutlinerThunk, 4); 6852 } 6853 6854 else { 6855 // We need to decide how to emit calls + frames. We can always emit the same 6856 // frame if we don't need to save to the stack. If we have to save to the 6857 // stack, then we need a different frame. 6858 unsigned NumBytesNoStackCalls = 0; 6859 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 6860 6861 // Check if we have to save LR. 6862 for (outliner::Candidate &C : RepeatedSequenceLocs) { 6863 C.initLRU(TRI); 6864 6865 // If we have a noreturn caller, then we're going to be conservative and 6866 // say that we have to save LR. If we don't have a ret at the end of the 6867 // block, then we can't reason about liveness accurately. 6868 // 6869 // FIXME: We can probably do better than always disabling this in 6870 // noreturn functions by fixing up the liveness info. 6871 bool IsNoReturn = 6872 C.getMF()->getFunction().hasFnAttribute(Attribute::NoReturn); 6873 6874 // Is LR available? If so, we don't need a save. 6875 if (C.LRU.available(AArch64::LR) && !IsNoReturn) { 6876 NumBytesNoStackCalls += 4; 6877 C.setCallInfo(MachineOutlinerNoLRSave, 4); 6878 CandidatesWithoutStackFixups.push_back(C); 6879 } 6880 6881 // Is an unused register available? If so, we won't modify the stack, so 6882 // we can outline with the same frame type as those that don't save LR. 6883 else if (findRegisterToSaveLRTo(C)) { 6884 NumBytesNoStackCalls += 12; 6885 C.setCallInfo(MachineOutlinerRegSave, 12); 6886 CandidatesWithoutStackFixups.push_back(C); 6887 } 6888 6889 // Is SP used in the sequence at all? If not, we don't have to modify 6890 // the stack, so we are guaranteed to get the same frame. 6891 else if (C.UsedInSequence.available(AArch64::SP)) { 6892 NumBytesNoStackCalls += 12; 6893 C.setCallInfo(MachineOutlinerDefault, 12); 6894 CandidatesWithoutStackFixups.push_back(C); 6895 } 6896 6897 // If we outline this, we need to modify the stack. Pretend we don't 6898 // outline this by saving all of its bytes. 6899 else { 6900 NumBytesNoStackCalls += SequenceSize; 6901 } 6902 } 6903 6904 // If there are no places where we have to save LR, then note that we 6905 // don't have to update the stack. Otherwise, give every candidate the 6906 // default call type, as long as it's safe to do so. 6907 if (!AllStackInstrsSafe || 6908 NumBytesNoStackCalls <= RepeatedSequenceLocs.size() * 12) { 6909 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 6910 FrameID = MachineOutlinerNoLRSave; 6911 } else { 6912 SetCandidateCallInfo(MachineOutlinerDefault, 12); 6913 6914 // Bugzilla ID: 46767 6915 // TODO: Check if fixing up the stack more than once is safe so we can 6916 // outline these. 6917 // 6918 // An outline resulting in a caller that requires stack fixups at the 6919 // callsite to a callee that also requires stack fixups can happen when 6920 // there are no available registers at the candidate callsite for a 6921 // candidate that itself also has calls. 6922 // 6923 // In other words if function_containing_sequence in the following pseudo 6924 // assembly requires that we save LR at the point of the call, but there 6925 // are no available registers: in this case we save using SP and as a 6926 // result the SP offsets requires stack fixups by multiples of 16. 6927 // 6928 // function_containing_sequence: 6929 // ... 6930 // save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N 6931 // call OUTLINED_FUNCTION_N 6932 // restore LR from SP 6933 // ... 6934 // 6935 // OUTLINED_FUNCTION_N: 6936 // save LR to SP <- Requires stack instr fixups in OUTLINED_FUNCTION_N 6937 // ... 6938 // bl foo 6939 // restore LR from SP 6940 // ret 6941 // 6942 // Because the code to handle more than one stack fixup does not 6943 // currently have the proper checks for legality, these cases will assert 6944 // in the AArch64 MachineOutliner. This is because the code to do this 6945 // needs more hardening, testing, better checks that generated code is 6946 // legal, etc and because it is only verified to handle a single pass of 6947 // stack fixup. 6948 // 6949 // The assert happens in AArch64InstrInfo::buildOutlinedFrame to catch 6950 // these cases until they are known to be handled. Bugzilla 46767 is 6951 // referenced in comments at the assert site. 6952 // 6953 // To avoid asserting (or generating non-legal code on noassert builds) 6954 // we remove all candidates which would need more than one stack fixup by 6955 // pruning the cases where the candidate has calls while also having no 6956 // available LR and having no available general purpose registers to copy 6957 // LR to (ie one extra stack save/restore). 6958 // 6959 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 6960 erase_if(RepeatedSequenceLocs, [this](outliner::Candidate &C) { 6961 return (std::any_of( 6962 C.front(), std::next(C.back()), 6963 [](const MachineInstr &MI) { return MI.isCall(); })) && 6964 (!C.LRU.available(AArch64::LR) || !findRegisterToSaveLRTo(C)); 6965 }); 6966 } 6967 } 6968 6969 // If we dropped all of the candidates, bail out here. 6970 if (RepeatedSequenceLocs.size() < 2) { 6971 RepeatedSequenceLocs.clear(); 6972 return outliner::OutlinedFunction(); 6973 } 6974 } 6975 6976 // Does every candidate's MBB contain a call? If so, then we might have a call 6977 // in the range. 6978 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 6979 // Check if the range contains a call. These require a save + restore of the 6980 // link register. 6981 bool ModStackToSaveLR = false; 6982 if (std::any_of(FirstCand.front(), FirstCand.back(), 6983 [](const MachineInstr &MI) { return MI.isCall(); })) 6984 ModStackToSaveLR = true; 6985 6986 // Handle the last instruction separately. If this is a tail call, then the 6987 // last instruction is a call. We don't want to save + restore in this case. 6988 // However, it could be possible that the last instruction is a call without 6989 // it being valid to tail call this sequence. We should consider this as 6990 // well. 6991 else if (FrameID != MachineOutlinerThunk && 6992 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) 6993 ModStackToSaveLR = true; 6994 6995 if (ModStackToSaveLR) { 6996 // We can't fix up the stack. Bail out. 6997 if (!AllStackInstrsSafe) { 6998 RepeatedSequenceLocs.clear(); 6999 return outliner::OutlinedFunction(); 7000 } 7001 7002 // Save + restore LR. 7003 NumBytesToCreateFrame += 8; 7004 } 7005 } 7006 7007 // If we have CFI instructions, we can only outline if the outlined section 7008 // can be a tail call 7009 if (FrameID != MachineOutlinerTailCall && CFICount > 0) 7010 return outliner::OutlinedFunction(); 7011 7012 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 7013 NumBytesToCreateFrame, FrameID); 7014 } 7015 7016 bool AArch64InstrInfo::isFunctionSafeToOutlineFrom( 7017 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 7018 const Function &F = MF.getFunction(); 7019 7020 // Can F be deduplicated by the linker? If it can, don't outline from it. 7021 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 7022 return false; 7023 7024 // Don't outline from functions with section markings; the program could 7025 // expect that all the code is in the named section. 7026 // FIXME: Allow outlining from multiple functions with the same section 7027 // marking. 7028 if (F.hasSection()) 7029 return false; 7030 7031 // Outlining from functions with redzones is unsafe since the outliner may 7032 // modify the stack. Check if hasRedZone is true or unknown; if yes, don't 7033 // outline from it. 7034 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 7035 if (!AFI || AFI->hasRedZone().getValueOr(true)) 7036 return false; 7037 7038 // FIXME: Teach the outliner to generate/handle Windows unwind info. 7039 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 7040 return false; 7041 7042 // It's safe to outline from MF. 7043 return true; 7044 } 7045 7046 bool AArch64InstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 7047 unsigned &Flags) const { 7048 if (!TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags)) 7049 return false; 7050 // Check if LR is available through all of the MBB. If it's not, then set 7051 // a flag. 7052 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 7053 "Suitable Machine Function for outlining must track liveness"); 7054 LiveRegUnits LRU(getRegisterInfo()); 7055 7056 std::for_each(MBB.rbegin(), MBB.rend(), 7057 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); }); 7058 7059 // Check if each of the unsafe registers are available... 7060 bool W16AvailableInBlock = LRU.available(AArch64::W16); 7061 bool W17AvailableInBlock = LRU.available(AArch64::W17); 7062 bool NZCVAvailableInBlock = LRU.available(AArch64::NZCV); 7063 7064 // If all of these are dead (and not live out), we know we don't have to check 7065 // them later. 7066 if (W16AvailableInBlock && W17AvailableInBlock && NZCVAvailableInBlock) 7067 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 7068 7069 // Now, add the live outs to the set. 7070 LRU.addLiveOuts(MBB); 7071 7072 // If any of these registers is available in the MBB, but also a live out of 7073 // the block, then we know outlining is unsafe. 7074 if (W16AvailableInBlock && !LRU.available(AArch64::W16)) 7075 return false; 7076 if (W17AvailableInBlock && !LRU.available(AArch64::W17)) 7077 return false; 7078 if (NZCVAvailableInBlock && !LRU.available(AArch64::NZCV)) 7079 return false; 7080 7081 // Check if there's a call inside this MachineBasicBlock. If there is, then 7082 // set a flag. 7083 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 7084 Flags |= MachineOutlinerMBBFlags::HasCalls; 7085 7086 MachineFunction *MF = MBB.getParent(); 7087 7088 // In the event that we outline, we may have to save LR. If there is an 7089 // available register in the MBB, then we'll always save LR there. Check if 7090 // this is true. 7091 bool CanSaveLR = false; 7092 const AArch64RegisterInfo *ARI = static_cast<const AArch64RegisterInfo *>( 7093 MF->getSubtarget().getRegisterInfo()); 7094 7095 // Check if there is an available register across the sequence that we can 7096 // use. 7097 for (unsigned Reg : AArch64::GPR64RegClass) { 7098 if (!ARI->isReservedReg(*MF, Reg) && Reg != AArch64::LR && 7099 Reg != AArch64::X16 && Reg != AArch64::X17 && LRU.available(Reg)) { 7100 CanSaveLR = true; 7101 break; 7102 } 7103 } 7104 7105 // Check if we have a register we can save LR to, and if LR was used 7106 // somewhere. If both of those things are true, then we need to evaluate the 7107 // safety of outlining stack instructions later. 7108 if (!CanSaveLR && !LRU.available(AArch64::LR)) 7109 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 7110 7111 return true; 7112 } 7113 7114 outliner::InstrType 7115 AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, 7116 unsigned Flags) const { 7117 MachineInstr &MI = *MIT; 7118 MachineBasicBlock *MBB = MI.getParent(); 7119 MachineFunction *MF = MBB->getParent(); 7120 AArch64FunctionInfo *FuncInfo = MF->getInfo<AArch64FunctionInfo>(); 7121 7122 // Don't outline anything used for return address signing. The outlined 7123 // function will get signed later if needed 7124 switch (MI.getOpcode()) { 7125 case AArch64::PACIASP: 7126 case AArch64::PACIBSP: 7127 case AArch64::AUTIASP: 7128 case AArch64::AUTIBSP: 7129 case AArch64::RETAA: 7130 case AArch64::RETAB: 7131 case AArch64::EMITBKEY: 7132 return outliner::InstrType::Illegal; 7133 } 7134 7135 // Don't outline LOHs. 7136 if (FuncInfo->getLOHRelated().count(&MI)) 7137 return outliner::InstrType::Illegal; 7138 7139 // We can only outline these if we will tail call the outlined function, or 7140 // fix up the CFI offsets. Currently, CFI instructions are outlined only if 7141 // in a tail call. 7142 // 7143 // FIXME: If the proper fixups for the offset are implemented, this should be 7144 // possible. 7145 if (MI.isCFIInstruction()) 7146 return outliner::InstrType::Legal; 7147 7148 // Don't allow debug values to impact outlining type. 7149 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 7150 return outliner::InstrType::Invisible; 7151 7152 // At this point, KILL instructions don't really tell us much so we can go 7153 // ahead and skip over them. 7154 if (MI.isKill()) 7155 return outliner::InstrType::Invisible; 7156 7157 // Is this a terminator for a basic block? 7158 if (MI.isTerminator()) { 7159 7160 // Is this the end of a function? 7161 if (MI.getParent()->succ_empty()) 7162 return outliner::InstrType::Legal; 7163 7164 // It's not, so don't outline it. 7165 return outliner::InstrType::Illegal; 7166 } 7167 7168 // Make sure none of the operands are un-outlinable. 7169 for (const MachineOperand &MOP : MI.operands()) { 7170 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 7171 MOP.isTargetIndex()) 7172 return outliner::InstrType::Illegal; 7173 7174 // If it uses LR or W30 explicitly, then don't touch it. 7175 if (MOP.isReg() && !MOP.isImplicit() && 7176 (MOP.getReg() == AArch64::LR || MOP.getReg() == AArch64::W30)) 7177 return outliner::InstrType::Illegal; 7178 } 7179 7180 // Special cases for instructions that can always be outlined, but will fail 7181 // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always 7182 // be outlined because they don't require a *specific* value to be in LR. 7183 if (MI.getOpcode() == AArch64::ADRP) 7184 return outliner::InstrType::Legal; 7185 7186 // If MI is a call we might be able to outline it. We don't want to outline 7187 // any calls that rely on the position of items on the stack. When we outline 7188 // something containing a call, we have to emit a save and restore of LR in 7189 // the outlined function. Currently, this always happens by saving LR to the 7190 // stack. Thus, if we outline, say, half the parameters for a function call 7191 // plus the call, then we'll break the callee's expectations for the layout 7192 // of the stack. 7193 // 7194 // FIXME: Allow calls to functions which construct a stack frame, as long 7195 // as they don't access arguments on the stack. 7196 // FIXME: Figure out some way to analyze functions defined in other modules. 7197 // We should be able to compute the memory usage based on the IR calling 7198 // convention, even if we can't see the definition. 7199 if (MI.isCall()) { 7200 // Get the function associated with the call. Look at each operand and find 7201 // the one that represents the callee and get its name. 7202 const Function *Callee = nullptr; 7203 for (const MachineOperand &MOP : MI.operands()) { 7204 if (MOP.isGlobal()) { 7205 Callee = dyn_cast<Function>(MOP.getGlobal()); 7206 break; 7207 } 7208 } 7209 7210 // Never outline calls to mcount. There isn't any rule that would require 7211 // this, but the Linux kernel's "ftrace" feature depends on it. 7212 if (Callee && Callee->getName() == "\01_mcount") 7213 return outliner::InstrType::Illegal; 7214 7215 // If we don't know anything about the callee, assume it depends on the 7216 // stack layout of the caller. In that case, it's only legal to outline 7217 // as a tail-call. Explicitly list the call instructions we know about so we 7218 // don't get unexpected results with call pseudo-instructions. 7219 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 7220 if (MI.getOpcode() == AArch64::BLR || 7221 MI.getOpcode() == AArch64::BLRNoIP || MI.getOpcode() == AArch64::BL) 7222 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 7223 7224 if (!Callee) 7225 return UnknownCallOutlineType; 7226 7227 // We have a function we have information about. Check it if it's something 7228 // can safely outline. 7229 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 7230 7231 // We don't know what's going on with the callee at all. Don't touch it. 7232 if (!CalleeMF) 7233 return UnknownCallOutlineType; 7234 7235 // Check if we know anything about the callee saves on the function. If we 7236 // don't, then don't touch it, since that implies that we haven't 7237 // computed anything about its stack frame yet. 7238 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 7239 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 7240 MFI.getNumObjects() > 0) 7241 return UnknownCallOutlineType; 7242 7243 // At this point, we can say that CalleeMF ought to not pass anything on the 7244 // stack. Therefore, we can outline it. 7245 return outliner::InstrType::Legal; 7246 } 7247 7248 // Don't outline positions. 7249 if (MI.isPosition()) 7250 return outliner::InstrType::Illegal; 7251 7252 // Don't touch the link register or W30. 7253 if (MI.readsRegister(AArch64::W30, &getRegisterInfo()) || 7254 MI.modifiesRegister(AArch64::W30, &getRegisterInfo())) 7255 return outliner::InstrType::Illegal; 7256 7257 // Don't outline BTI instructions, because that will prevent the outlining 7258 // site from being indirectly callable. 7259 if (MI.getOpcode() == AArch64::HINT) { 7260 int64_t Imm = MI.getOperand(0).getImm(); 7261 if (Imm == 32 || Imm == 34 || Imm == 36 || Imm == 38) 7262 return outliner::InstrType::Illegal; 7263 } 7264 7265 return outliner::InstrType::Legal; 7266 } 7267 7268 void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 7269 for (MachineInstr &MI : MBB) { 7270 const MachineOperand *Base; 7271 unsigned Width; 7272 int64_t Offset; 7273 bool OffsetIsScalable; 7274 7275 // Is this a load or store with an immediate offset with SP as the base? 7276 if (!MI.mayLoadOrStore() || 7277 !getMemOperandWithOffsetWidth(MI, Base, Offset, OffsetIsScalable, Width, 7278 &RI) || 7279 (Base->isReg() && Base->getReg() != AArch64::SP)) 7280 continue; 7281 7282 // It is, so we have to fix it up. 7283 TypeSize Scale(0U, false); 7284 int64_t Dummy1, Dummy2; 7285 7286 MachineOperand &StackOffsetOperand = getMemOpBaseRegImmOfsOffsetOperand(MI); 7287 assert(StackOffsetOperand.isImm() && "Stack offset wasn't immediate!"); 7288 getMemOpInfo(MI.getOpcode(), Scale, Width, Dummy1, Dummy2); 7289 assert(Scale != 0 && "Unexpected opcode!"); 7290 assert(!OffsetIsScalable && "Expected offset to be a byte offset"); 7291 7292 // We've pushed the return address to the stack, so add 16 to the offset. 7293 // This is safe, since we already checked if it would overflow when we 7294 // checked if this instruction was legal to outline. 7295 int64_t NewImm = (Offset + 16) / (int64_t)Scale.getFixedSize(); 7296 StackOffsetOperand.setImm(NewImm); 7297 } 7298 } 7299 7300 static void signOutlinedFunction(MachineFunction &MF, MachineBasicBlock &MBB, 7301 bool ShouldSignReturnAddr, 7302 bool ShouldSignReturnAddrWithAKey) { 7303 if (ShouldSignReturnAddr) { 7304 MachineBasicBlock::iterator MBBPAC = MBB.begin(); 7305 MachineBasicBlock::iterator MBBAUT = MBB.getFirstTerminator(); 7306 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 7307 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 7308 DebugLoc DL; 7309 7310 if (MBBAUT != MBB.end()) 7311 DL = MBBAUT->getDebugLoc(); 7312 7313 // At the very beginning of the basic block we insert the following 7314 // depending on the key type 7315 // 7316 // a_key: b_key: 7317 // PACIASP EMITBKEY 7318 // CFI_INSTRUCTION PACIBSP 7319 // CFI_INSTRUCTION 7320 unsigned PACI; 7321 if (ShouldSignReturnAddrWithAKey) { 7322 PACI = Subtarget.hasPAuth() ? AArch64::PACIA : AArch64::PACIASP; 7323 } else { 7324 BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::EMITBKEY)) 7325 .setMIFlag(MachineInstr::FrameSetup); 7326 PACI = Subtarget.hasPAuth() ? AArch64::PACIB : AArch64::PACIBSP; 7327 } 7328 7329 auto MI = BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(PACI)); 7330 if (Subtarget.hasPAuth()) 7331 MI.addReg(AArch64::LR, RegState::Define) 7332 .addReg(AArch64::LR) 7333 .addReg(AArch64::SP, RegState::InternalRead); 7334 MI.setMIFlag(MachineInstr::FrameSetup); 7335 7336 unsigned CFIIndex = 7337 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 7338 BuildMI(MBB, MBBPAC, DebugLoc(), TII->get(AArch64::CFI_INSTRUCTION)) 7339 .addCFIIndex(CFIIndex) 7340 .setMIFlags(MachineInstr::FrameSetup); 7341 7342 // If v8.3a features are available we can replace a RET instruction by 7343 // RETAA or RETAB and omit the AUT instructions 7344 if (Subtarget.hasPAuth() && MBBAUT != MBB.end() && 7345 MBBAUT->getOpcode() == AArch64::RET) { 7346 BuildMI(MBB, MBBAUT, DL, 7347 TII->get(ShouldSignReturnAddrWithAKey ? AArch64::RETAA 7348 : AArch64::RETAB)) 7349 .copyImplicitOps(*MBBAUT); 7350 MBB.erase(MBBAUT); 7351 } else { 7352 BuildMI(MBB, MBBAUT, DL, 7353 TII->get(ShouldSignReturnAddrWithAKey ? AArch64::AUTIASP 7354 : AArch64::AUTIBSP)) 7355 .setMIFlag(MachineInstr::FrameDestroy); 7356 } 7357 } 7358 } 7359 7360 void AArch64InstrInfo::buildOutlinedFrame( 7361 MachineBasicBlock &MBB, MachineFunction &MF, 7362 const outliner::OutlinedFunction &OF) const { 7363 7364 AArch64FunctionInfo *FI = MF.getInfo<AArch64FunctionInfo>(); 7365 7366 if (OF.FrameConstructionID == MachineOutlinerTailCall) 7367 FI->setOutliningStyle("Tail Call"); 7368 else if (OF.FrameConstructionID == MachineOutlinerThunk) { 7369 // For thunk outlining, rewrite the last instruction from a call to a 7370 // tail-call. 7371 MachineInstr *Call = &*--MBB.instr_end(); 7372 unsigned TailOpcode; 7373 if (Call->getOpcode() == AArch64::BL) { 7374 TailOpcode = AArch64::TCRETURNdi; 7375 } else { 7376 assert(Call->getOpcode() == AArch64::BLR || 7377 Call->getOpcode() == AArch64::BLRNoIP); 7378 TailOpcode = AArch64::TCRETURNriALL; 7379 } 7380 MachineInstr *TC = BuildMI(MF, DebugLoc(), get(TailOpcode)) 7381 .add(Call->getOperand(0)) 7382 .addImm(0); 7383 MBB.insert(MBB.end(), TC); 7384 Call->eraseFromParent(); 7385 7386 FI->setOutliningStyle("Thunk"); 7387 } 7388 7389 bool IsLeafFunction = true; 7390 7391 // Is there a call in the outlined range? 7392 auto IsNonTailCall = [](const MachineInstr &MI) { 7393 return MI.isCall() && !MI.isReturn(); 7394 }; 7395 7396 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 7397 // Fix up the instructions in the range, since we're going to modify the 7398 // stack. 7399 7400 // Bugzilla ID: 46767 7401 // TODO: Check if fixing up twice is safe so we can outline these. 7402 assert(OF.FrameConstructionID != MachineOutlinerDefault && 7403 "Can only fix up stack references once"); 7404 fixupPostOutline(MBB); 7405 7406 IsLeafFunction = false; 7407 7408 // LR has to be a live in so that we can save it. 7409 if (!MBB.isLiveIn(AArch64::LR)) 7410 MBB.addLiveIn(AArch64::LR); 7411 7412 MachineBasicBlock::iterator It = MBB.begin(); 7413 MachineBasicBlock::iterator Et = MBB.end(); 7414 7415 if (OF.FrameConstructionID == MachineOutlinerTailCall || 7416 OF.FrameConstructionID == MachineOutlinerThunk) 7417 Et = std::prev(MBB.end()); 7418 7419 // Insert a save before the outlined region 7420 MachineInstr *STRXpre = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre)) 7421 .addReg(AArch64::SP, RegState::Define) 7422 .addReg(AArch64::LR) 7423 .addReg(AArch64::SP) 7424 .addImm(-16); 7425 It = MBB.insert(It, STRXpre); 7426 7427 const TargetSubtargetInfo &STI = MF.getSubtarget(); 7428 const MCRegisterInfo *MRI = STI.getRegisterInfo(); 7429 unsigned DwarfReg = MRI->getDwarfRegNum(AArch64::LR, true); 7430 7431 // Add a CFI saying the stack was moved 16 B down. 7432 int64_t StackPosEntry = 7433 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 16)); 7434 BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION)) 7435 .addCFIIndex(StackPosEntry) 7436 .setMIFlags(MachineInstr::FrameSetup); 7437 7438 // Add a CFI saying that the LR that we want to find is now 16 B higher than 7439 // before. 7440 int64_t LRPosEntry = 7441 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg, -16)); 7442 BuildMI(MBB, It, DebugLoc(), get(AArch64::CFI_INSTRUCTION)) 7443 .addCFIIndex(LRPosEntry) 7444 .setMIFlags(MachineInstr::FrameSetup); 7445 7446 // Insert a restore before the terminator for the function. 7447 MachineInstr *LDRXpost = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost)) 7448 .addReg(AArch64::SP, RegState::Define) 7449 .addReg(AArch64::LR, RegState::Define) 7450 .addReg(AArch64::SP) 7451 .addImm(16); 7452 Et = MBB.insert(Et, LDRXpost); 7453 } 7454 7455 // If a bunch of candidates reach this point they must agree on their return 7456 // address signing. It is therefore enough to just consider the signing 7457 // behaviour of one of them 7458 const auto &MFI = *OF.Candidates.front().getMF()->getInfo<AArch64FunctionInfo>(); 7459 bool ShouldSignReturnAddr = MFI.shouldSignReturnAddress(!IsLeafFunction); 7460 7461 // a_key is the default 7462 bool ShouldSignReturnAddrWithAKey = !MFI.shouldSignWithBKey(); 7463 7464 // If this is a tail call outlined function, then there's already a return. 7465 if (OF.FrameConstructionID == MachineOutlinerTailCall || 7466 OF.FrameConstructionID == MachineOutlinerThunk) { 7467 signOutlinedFunction(MF, MBB, ShouldSignReturnAddr, 7468 ShouldSignReturnAddrWithAKey); 7469 return; 7470 } 7471 7472 // It's not a tail call, so we have to insert the return ourselves. 7473 7474 // LR has to be a live in so that we can return to it. 7475 if (!MBB.isLiveIn(AArch64::LR)) 7476 MBB.addLiveIn(AArch64::LR); 7477 7478 MachineInstr *ret = BuildMI(MF, DebugLoc(), get(AArch64::RET)) 7479 .addReg(AArch64::LR); 7480 MBB.insert(MBB.end(), ret); 7481 7482 signOutlinedFunction(MF, MBB, ShouldSignReturnAddr, 7483 ShouldSignReturnAddrWithAKey); 7484 7485 FI->setOutliningStyle("Function"); 7486 7487 // Did we have to modify the stack by saving the link register? 7488 if (OF.FrameConstructionID != MachineOutlinerDefault) 7489 return; 7490 7491 // We modified the stack. 7492 // Walk over the basic block and fix up all the stack accesses. 7493 fixupPostOutline(MBB); 7494 } 7495 7496 MachineBasicBlock::iterator AArch64InstrInfo::insertOutlinedCall( 7497 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 7498 MachineFunction &MF, const outliner::Candidate &C) const { 7499 7500 // Are we tail calling? 7501 if (C.CallConstructionID == MachineOutlinerTailCall) { 7502 // If yes, then we can just branch to the label. 7503 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::TCRETURNdi)) 7504 .addGlobalAddress(M.getNamedValue(MF.getName())) 7505 .addImm(0)); 7506 return It; 7507 } 7508 7509 // Are we saving the link register? 7510 if (C.CallConstructionID == MachineOutlinerNoLRSave || 7511 C.CallConstructionID == MachineOutlinerThunk) { 7512 // No, so just insert the call. 7513 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL)) 7514 .addGlobalAddress(M.getNamedValue(MF.getName()))); 7515 return It; 7516 } 7517 7518 // We want to return the spot where we inserted the call. 7519 MachineBasicBlock::iterator CallPt; 7520 7521 // Instructions for saving and restoring LR around the call instruction we're 7522 // going to insert. 7523 MachineInstr *Save; 7524 MachineInstr *Restore; 7525 // Can we save to a register? 7526 if (C.CallConstructionID == MachineOutlinerRegSave) { 7527 // FIXME: This logic should be sunk into a target-specific interface so that 7528 // we don't have to recompute the register. 7529 unsigned Reg = findRegisterToSaveLRTo(C); 7530 assert(Reg != 0 && "No callee-saved register available?"); 7531 7532 // LR has to be a live in so that we can save it. 7533 if (!MBB.isLiveIn(AArch64::LR)) 7534 MBB.addLiveIn(AArch64::LR); 7535 7536 // Save and restore LR from Reg. 7537 Save = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), Reg) 7538 .addReg(AArch64::XZR) 7539 .addReg(AArch64::LR) 7540 .addImm(0); 7541 Restore = BuildMI(MF, DebugLoc(), get(AArch64::ORRXrs), AArch64::LR) 7542 .addReg(AArch64::XZR) 7543 .addReg(Reg) 7544 .addImm(0); 7545 } else { 7546 // We have the default case. Save and restore from SP. 7547 Save = BuildMI(MF, DebugLoc(), get(AArch64::STRXpre)) 7548 .addReg(AArch64::SP, RegState::Define) 7549 .addReg(AArch64::LR) 7550 .addReg(AArch64::SP) 7551 .addImm(-16); 7552 Restore = BuildMI(MF, DebugLoc(), get(AArch64::LDRXpost)) 7553 .addReg(AArch64::SP, RegState::Define) 7554 .addReg(AArch64::LR, RegState::Define) 7555 .addReg(AArch64::SP) 7556 .addImm(16); 7557 } 7558 7559 It = MBB.insert(It, Save); 7560 It++; 7561 7562 // Insert the call. 7563 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(AArch64::BL)) 7564 .addGlobalAddress(M.getNamedValue(MF.getName()))); 7565 CallPt = It; 7566 It++; 7567 7568 It = MBB.insert(It, Restore); 7569 return CallPt; 7570 } 7571 7572 bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault( 7573 MachineFunction &MF) const { 7574 return MF.getFunction().hasMinSize(); 7575 } 7576 7577 Optional<DestSourcePair> 7578 AArch64InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 7579 7580 // AArch64::ORRWrs and AArch64::ORRXrs with WZR/XZR reg 7581 // and zero immediate operands used as an alias for mov instruction. 7582 if (MI.getOpcode() == AArch64::ORRWrs && 7583 MI.getOperand(1).getReg() == AArch64::WZR && 7584 MI.getOperand(3).getImm() == 0x0) { 7585 return DestSourcePair{MI.getOperand(0), MI.getOperand(2)}; 7586 } 7587 7588 if (MI.getOpcode() == AArch64::ORRXrs && 7589 MI.getOperand(1).getReg() == AArch64::XZR && 7590 MI.getOperand(3).getImm() == 0x0) { 7591 return DestSourcePair{MI.getOperand(0), MI.getOperand(2)}; 7592 } 7593 7594 return None; 7595 } 7596 7597 Optional<RegImmPair> AArch64InstrInfo::isAddImmediate(const MachineInstr &MI, 7598 Register Reg) const { 7599 int Sign = 1; 7600 int64_t Offset = 0; 7601 7602 // TODO: Handle cases where Reg is a super- or sub-register of the 7603 // destination register. 7604 const MachineOperand &Op0 = MI.getOperand(0); 7605 if (!Op0.isReg() || Reg != Op0.getReg()) 7606 return None; 7607 7608 switch (MI.getOpcode()) { 7609 default: 7610 return None; 7611 case AArch64::SUBWri: 7612 case AArch64::SUBXri: 7613 case AArch64::SUBSWri: 7614 case AArch64::SUBSXri: 7615 Sign *= -1; 7616 LLVM_FALLTHROUGH; 7617 case AArch64::ADDSWri: 7618 case AArch64::ADDSXri: 7619 case AArch64::ADDWri: 7620 case AArch64::ADDXri: { 7621 // TODO: Third operand can be global address (usually some string). 7622 if (!MI.getOperand(0).isReg() || !MI.getOperand(1).isReg() || 7623 !MI.getOperand(2).isImm()) 7624 return None; 7625 int Shift = MI.getOperand(3).getImm(); 7626 assert((Shift == 0 || Shift == 12) && "Shift can be either 0 or 12"); 7627 Offset = Sign * (MI.getOperand(2).getImm() << Shift); 7628 } 7629 } 7630 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 7631 } 7632 7633 /// If the given ORR instruction is a copy, and \p DescribedReg overlaps with 7634 /// the destination register then, if possible, describe the value in terms of 7635 /// the source register. 7636 static Optional<ParamLoadedValue> 7637 describeORRLoadedValue(const MachineInstr &MI, Register DescribedReg, 7638 const TargetInstrInfo *TII, 7639 const TargetRegisterInfo *TRI) { 7640 auto DestSrc = TII->isCopyInstr(MI); 7641 if (!DestSrc) 7642 return None; 7643 7644 Register DestReg = DestSrc->Destination->getReg(); 7645 Register SrcReg = DestSrc->Source->getReg(); 7646 7647 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 7648 7649 // If the described register is the destination, just return the source. 7650 if (DestReg == DescribedReg) 7651 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 7652 7653 // ORRWrs zero-extends to 64-bits, so we need to consider such cases. 7654 if (MI.getOpcode() == AArch64::ORRWrs && 7655 TRI->isSuperRegister(DestReg, DescribedReg)) 7656 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 7657 7658 // We may need to describe the lower part of a ORRXrs move. 7659 if (MI.getOpcode() == AArch64::ORRXrs && 7660 TRI->isSubRegister(DestReg, DescribedReg)) { 7661 Register SrcSubReg = TRI->getSubReg(SrcReg, AArch64::sub_32); 7662 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr); 7663 } 7664 7665 assert(!TRI->isSuperOrSubRegisterEq(DestReg, DescribedReg) && 7666 "Unhandled ORR[XW]rs copy case"); 7667 7668 return None; 7669 } 7670 7671 Optional<ParamLoadedValue> 7672 AArch64InstrInfo::describeLoadedValue(const MachineInstr &MI, 7673 Register Reg) const { 7674 const MachineFunction *MF = MI.getMF(); 7675 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 7676 switch (MI.getOpcode()) { 7677 case AArch64::MOVZWi: 7678 case AArch64::MOVZXi: { 7679 // MOVZWi may be used for producing zero-extended 32-bit immediates in 7680 // 64-bit parameters, so we need to consider super-registers. 7681 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 7682 return None; 7683 7684 if (!MI.getOperand(1).isImm()) 7685 return None; 7686 int64_t Immediate = MI.getOperand(1).getImm(); 7687 int Shift = MI.getOperand(2).getImm(); 7688 return ParamLoadedValue(MachineOperand::CreateImm(Immediate << Shift), 7689 nullptr); 7690 } 7691 case AArch64::ORRWrs: 7692 case AArch64::ORRXrs: 7693 return describeORRLoadedValue(MI, Reg, this, TRI); 7694 } 7695 7696 return TargetInstrInfo::describeLoadedValue(MI, Reg); 7697 } 7698 7699 bool AArch64InstrInfo::isExtendLikelyToBeFolded( 7700 MachineInstr &ExtMI, MachineRegisterInfo &MRI) const { 7701 assert(ExtMI.getOpcode() == TargetOpcode::G_SEXT || 7702 ExtMI.getOpcode() == TargetOpcode::G_ZEXT || 7703 ExtMI.getOpcode() == TargetOpcode::G_ANYEXT); 7704 7705 // Anyexts are nops. 7706 if (ExtMI.getOpcode() == TargetOpcode::G_ANYEXT) 7707 return true; 7708 7709 Register DefReg = ExtMI.getOperand(0).getReg(); 7710 if (!MRI.hasOneNonDBGUse(DefReg)) 7711 return false; 7712 7713 // It's likely that a sext/zext as a G_PTR_ADD offset will be folded into an 7714 // addressing mode. 7715 auto *UserMI = &*MRI.use_instr_nodbg_begin(DefReg); 7716 return UserMI->getOpcode() == TargetOpcode::G_PTR_ADD; 7717 } 7718 7719 uint64_t AArch64InstrInfo::getElementSizeForOpcode(unsigned Opc) const { 7720 return get(Opc).TSFlags & AArch64::ElementSizeMask; 7721 } 7722 7723 bool AArch64InstrInfo::isPTestLikeOpcode(unsigned Opc) const { 7724 return get(Opc).TSFlags & AArch64::InstrFlagIsPTestLike; 7725 } 7726 7727 bool AArch64InstrInfo::isWhileOpcode(unsigned Opc) const { 7728 return get(Opc).TSFlags & AArch64::InstrFlagIsWhile; 7729 } 7730 7731 unsigned int 7732 AArch64InstrInfo::getTailDuplicateSize(CodeGenOpt::Level OptLevel) const { 7733 return OptLevel >= CodeGenOpt::Aggressive ? 6 : 2; 7734 } 7735 7736 unsigned llvm::getBLRCallOpcode(const MachineFunction &MF) { 7737 if (MF.getSubtarget<AArch64Subtarget>().hardenSlsBlr()) 7738 return AArch64::BLRNoIP; 7739 else 7740 return AArch64::BLR; 7741 } 7742 7743 #define GET_INSTRINFO_HELPERS 7744 #define GET_INSTRMAP_INFO 7745 #include "AArch64GenInstrInfo.inc" 7746