xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp (revision ece7a5e9849032f4a31e725714c2db89d055b706)
1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AArch64ExpandImm.h"
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/CallingConvLower.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineMemOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/TargetCallingConv.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/OperandTraits.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/MC/MCRegisterInfo.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/KnownBits.h"
74 #include "llvm/Support/MachineValueType.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <algorithm>
80 #include <bitset>
81 #include <cassert>
82 #include <cctype>
83 #include <cstdint>
84 #include <cstdlib>
85 #include <iterator>
86 #include <limits>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace llvm::PatternMatch;
93 
94 #define DEBUG_TYPE "aarch64-lower"
95 
96 STATISTIC(NumTailCalls, "Number of tail calls");
97 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
98 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
99 
100 static cl::opt<bool>
101 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
102                            cl::desc("Allow AArch64 SLI/SRI formation"),
103                            cl::init(false));
104 
105 // FIXME: The necessary dtprel relocations don't seem to be supported
106 // well in the GNU bfd and gold linkers at the moment. Therefore, by
107 // default, for now, fall back to GeneralDynamic code generation.
108 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
109     "aarch64-elf-ldtls-generation", cl::Hidden,
110     cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
111     cl::init(false));
112 
113 static cl::opt<bool>
114 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
115                          cl::desc("Enable AArch64 logical imm instruction "
116                                   "optimization"),
117                          cl::init(true));
118 
119 /// Value type used for condition codes.
120 static const MVT MVT_CC = MVT::i32;
121 
122 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
123                                              const AArch64Subtarget &STI)
124     : TargetLowering(TM), Subtarget(&STI) {
125   // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
126   // we have to make something up. Arbitrarily, choose ZeroOrOne.
127   setBooleanContents(ZeroOrOneBooleanContent);
128   // When comparing vectors the result sets the different elements in the
129   // vector to all-one or all-zero.
130   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
131 
132   // Set up the register classes.
133   addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
134   addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
135 
136   if (Subtarget->hasFPARMv8()) {
137     addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
138     addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
139     addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
140     addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
141   }
142 
143   if (Subtarget->hasNEON()) {
144     addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
145     addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
146     // Someone set us up the NEON.
147     addDRTypeForNEON(MVT::v2f32);
148     addDRTypeForNEON(MVT::v8i8);
149     addDRTypeForNEON(MVT::v4i16);
150     addDRTypeForNEON(MVT::v2i32);
151     addDRTypeForNEON(MVT::v1i64);
152     addDRTypeForNEON(MVT::v1f64);
153     addDRTypeForNEON(MVT::v4f16);
154 
155     addQRTypeForNEON(MVT::v4f32);
156     addQRTypeForNEON(MVT::v2f64);
157     addQRTypeForNEON(MVT::v16i8);
158     addQRTypeForNEON(MVT::v8i16);
159     addQRTypeForNEON(MVT::v4i32);
160     addQRTypeForNEON(MVT::v2i64);
161     addQRTypeForNEON(MVT::v8f16);
162   }
163 
164   // Compute derived properties from the register classes
165   computeRegisterProperties(Subtarget->getRegisterInfo());
166 
167   // Provide all sorts of operation actions
168   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
169   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
170   setOperationAction(ISD::SETCC, MVT::i32, Custom);
171   setOperationAction(ISD::SETCC, MVT::i64, Custom);
172   setOperationAction(ISD::SETCC, MVT::f16, Custom);
173   setOperationAction(ISD::SETCC, MVT::f32, Custom);
174   setOperationAction(ISD::SETCC, MVT::f64, Custom);
175   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
176   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
177   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
178   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
179   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
180   setOperationAction(ISD::BR_CC, MVT::f16, Custom);
181   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
182   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
183   setOperationAction(ISD::SELECT, MVT::i32, Custom);
184   setOperationAction(ISD::SELECT, MVT::i64, Custom);
185   setOperationAction(ISD::SELECT, MVT::f16, Custom);
186   setOperationAction(ISD::SELECT, MVT::f32, Custom);
187   setOperationAction(ISD::SELECT, MVT::f64, Custom);
188   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
189   setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
190   setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
191   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
192   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
193   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
194   setOperationAction(ISD::JumpTable, MVT::i64, Custom);
195 
196   setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
197   setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
198   setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
199 
200   setOperationAction(ISD::FREM, MVT::f32, Expand);
201   setOperationAction(ISD::FREM, MVT::f64, Expand);
202   setOperationAction(ISD::FREM, MVT::f80, Expand);
203 
204   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
205 
206   // Custom lowering hooks are needed for XOR
207   // to fold it into CSINC/CSINV.
208   setOperationAction(ISD::XOR, MVT::i32, Custom);
209   setOperationAction(ISD::XOR, MVT::i64, Custom);
210 
211   // Virtually no operation on f128 is legal, but LLVM can't expand them when
212   // there's a valid register class, so we need custom operations in most cases.
213   setOperationAction(ISD::FABS, MVT::f128, Expand);
214   setOperationAction(ISD::FADD, MVT::f128, Custom);
215   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
216   setOperationAction(ISD::FCOS, MVT::f128, Expand);
217   setOperationAction(ISD::FDIV, MVT::f128, Custom);
218   setOperationAction(ISD::FMA, MVT::f128, Expand);
219   setOperationAction(ISD::FMUL, MVT::f128, Custom);
220   setOperationAction(ISD::FNEG, MVT::f128, Expand);
221   setOperationAction(ISD::FPOW, MVT::f128, Expand);
222   setOperationAction(ISD::FREM, MVT::f128, Expand);
223   setOperationAction(ISD::FRINT, MVT::f128, Expand);
224   setOperationAction(ISD::FSIN, MVT::f128, Expand);
225   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
226   setOperationAction(ISD::FSQRT, MVT::f128, Expand);
227   setOperationAction(ISD::FSUB, MVT::f128, Custom);
228   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
229   setOperationAction(ISD::SETCC, MVT::f128, Custom);
230   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
231   setOperationAction(ISD::SELECT, MVT::f128, Custom);
232   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
233   setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
234 
235   // Lowering for many of the conversions is actually specified by the non-f128
236   // type. The LowerXXX function will be trivial when f128 isn't involved.
237   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
238   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
239   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
240   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
241   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
242   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
243   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
244   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
245   setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
246   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
247   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
248   setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
249   setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
250   setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
251 
252   // Variable arguments.
253   setOperationAction(ISD::VASTART, MVT::Other, Custom);
254   setOperationAction(ISD::VAARG, MVT::Other, Custom);
255   setOperationAction(ISD::VACOPY, MVT::Other, Custom);
256   setOperationAction(ISD::VAEND, MVT::Other, Expand);
257 
258   // Variable-sized objects.
259   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
260   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
261 
262   if (Subtarget->isTargetWindows())
263     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
264   else
265     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
266 
267   // Constant pool entries
268   setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
269 
270   // BlockAddress
271   setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
272 
273   // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
274   setOperationAction(ISD::ADDC, MVT::i32, Custom);
275   setOperationAction(ISD::ADDE, MVT::i32, Custom);
276   setOperationAction(ISD::SUBC, MVT::i32, Custom);
277   setOperationAction(ISD::SUBE, MVT::i32, Custom);
278   setOperationAction(ISD::ADDC, MVT::i64, Custom);
279   setOperationAction(ISD::ADDE, MVT::i64, Custom);
280   setOperationAction(ISD::SUBC, MVT::i64, Custom);
281   setOperationAction(ISD::SUBE, MVT::i64, Custom);
282 
283   // AArch64 lacks both left-rotate and popcount instructions.
284   setOperationAction(ISD::ROTL, MVT::i32, Expand);
285   setOperationAction(ISD::ROTL, MVT::i64, Expand);
286   for (MVT VT : MVT::vector_valuetypes()) {
287     setOperationAction(ISD::ROTL, VT, Expand);
288     setOperationAction(ISD::ROTR, VT, Expand);
289   }
290 
291   // AArch64 doesn't have {U|S}MUL_LOHI.
292   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
293   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
294 
295   setOperationAction(ISD::CTPOP, MVT::i32, Custom);
296   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
297 
298   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
299   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
300   for (MVT VT : MVT::vector_valuetypes()) {
301     setOperationAction(ISD::SDIVREM, VT, Expand);
302     setOperationAction(ISD::UDIVREM, VT, Expand);
303   }
304   setOperationAction(ISD::SREM, MVT::i32, Expand);
305   setOperationAction(ISD::SREM, MVT::i64, Expand);
306   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
307   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
308   setOperationAction(ISD::UREM, MVT::i32, Expand);
309   setOperationAction(ISD::UREM, MVT::i64, Expand);
310 
311   // Custom lower Add/Sub/Mul with overflow.
312   setOperationAction(ISD::SADDO, MVT::i32, Custom);
313   setOperationAction(ISD::SADDO, MVT::i64, Custom);
314   setOperationAction(ISD::UADDO, MVT::i32, Custom);
315   setOperationAction(ISD::UADDO, MVT::i64, Custom);
316   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
317   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
318   setOperationAction(ISD::USUBO, MVT::i32, Custom);
319   setOperationAction(ISD::USUBO, MVT::i64, Custom);
320   setOperationAction(ISD::SMULO, MVT::i32, Custom);
321   setOperationAction(ISD::SMULO, MVT::i64, Custom);
322   setOperationAction(ISD::UMULO, MVT::i32, Custom);
323   setOperationAction(ISD::UMULO, MVT::i64, Custom);
324 
325   setOperationAction(ISD::FSIN, MVT::f32, Expand);
326   setOperationAction(ISD::FSIN, MVT::f64, Expand);
327   setOperationAction(ISD::FCOS, MVT::f32, Expand);
328   setOperationAction(ISD::FCOS, MVT::f64, Expand);
329   setOperationAction(ISD::FPOW, MVT::f32, Expand);
330   setOperationAction(ISD::FPOW, MVT::f64, Expand);
331   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
332   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
333   if (Subtarget->hasFullFP16())
334     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
335   else
336     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
337 
338   setOperationAction(ISD::FREM,    MVT::f16,   Promote);
339   setOperationAction(ISD::FREM,    MVT::v4f16, Expand);
340   setOperationAction(ISD::FREM,    MVT::v8f16, Expand);
341   setOperationAction(ISD::FPOW,    MVT::f16,   Promote);
342   setOperationAction(ISD::FPOW,    MVT::v4f16, Expand);
343   setOperationAction(ISD::FPOW,    MVT::v8f16, Expand);
344   setOperationAction(ISD::FPOWI,   MVT::f16,   Promote);
345   setOperationAction(ISD::FPOWI,   MVT::v4f16, Expand);
346   setOperationAction(ISD::FPOWI,   MVT::v8f16, Expand);
347   setOperationAction(ISD::FCOS,    MVT::f16,   Promote);
348   setOperationAction(ISD::FCOS,    MVT::v4f16, Expand);
349   setOperationAction(ISD::FCOS,    MVT::v8f16, Expand);
350   setOperationAction(ISD::FSIN,    MVT::f16,   Promote);
351   setOperationAction(ISD::FSIN,    MVT::v4f16, Expand);
352   setOperationAction(ISD::FSIN,    MVT::v8f16, Expand);
353   setOperationAction(ISD::FSINCOS, MVT::f16,   Promote);
354   setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
355   setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
356   setOperationAction(ISD::FEXP,    MVT::f16,   Promote);
357   setOperationAction(ISD::FEXP,    MVT::v4f16, Expand);
358   setOperationAction(ISD::FEXP,    MVT::v8f16, Expand);
359   setOperationAction(ISD::FEXP2,   MVT::f16,   Promote);
360   setOperationAction(ISD::FEXP2,   MVT::v4f16, Expand);
361   setOperationAction(ISD::FEXP2,   MVT::v8f16, Expand);
362   setOperationAction(ISD::FLOG,    MVT::f16,   Promote);
363   setOperationAction(ISD::FLOG,    MVT::v4f16, Expand);
364   setOperationAction(ISD::FLOG,    MVT::v8f16, Expand);
365   setOperationAction(ISD::FLOG2,   MVT::f16,   Promote);
366   setOperationAction(ISD::FLOG2,   MVT::v4f16, Expand);
367   setOperationAction(ISD::FLOG2,   MVT::v8f16, Expand);
368   setOperationAction(ISD::FLOG10,  MVT::f16,   Promote);
369   setOperationAction(ISD::FLOG10,  MVT::v4f16, Expand);
370   setOperationAction(ISD::FLOG10,  MVT::v8f16, Expand);
371 
372   if (!Subtarget->hasFullFP16()) {
373     setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
374     setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
375     setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
376     setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
377     setOperationAction(ISD::FADD,        MVT::f16,  Promote);
378     setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
379     setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
380     setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
381     setOperationAction(ISD::FMA,         MVT::f16,  Promote);
382     setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
383     setOperationAction(ISD::FABS,        MVT::f16,  Promote);
384     setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
385     setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
386     setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
387     setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
388     setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
389     setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
390     setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
391     setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
392     setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
393     setOperationAction(ISD::FMINIMUM,    MVT::f16,  Promote);
394     setOperationAction(ISD::FMAXIMUM,    MVT::f16,  Promote);
395 
396     // promote v4f16 to v4f32 when that is known to be safe.
397     setOperationAction(ISD::FADD,        MVT::v4f16, Promote);
398     setOperationAction(ISD::FSUB,        MVT::v4f16, Promote);
399     setOperationAction(ISD::FMUL,        MVT::v4f16, Promote);
400     setOperationAction(ISD::FDIV,        MVT::v4f16, Promote);
401     setOperationAction(ISD::FP_EXTEND,   MVT::v4f16, Promote);
402     setOperationAction(ISD::FP_ROUND,    MVT::v4f16, Promote);
403     AddPromotedToType(ISD::FADD,         MVT::v4f16, MVT::v4f32);
404     AddPromotedToType(ISD::FSUB,         MVT::v4f16, MVT::v4f32);
405     AddPromotedToType(ISD::FMUL,         MVT::v4f16, MVT::v4f32);
406     AddPromotedToType(ISD::FDIV,         MVT::v4f16, MVT::v4f32);
407     AddPromotedToType(ISD::FP_EXTEND,    MVT::v4f16, MVT::v4f32);
408     AddPromotedToType(ISD::FP_ROUND,     MVT::v4f16, MVT::v4f32);
409 
410     setOperationAction(ISD::FABS,        MVT::v4f16, Expand);
411     setOperationAction(ISD::FNEG,        MVT::v4f16, Expand);
412     setOperationAction(ISD::FROUND,      MVT::v4f16, Expand);
413     setOperationAction(ISD::FMA,         MVT::v4f16, Expand);
414     setOperationAction(ISD::SETCC,       MVT::v4f16, Expand);
415     setOperationAction(ISD::BR_CC,       MVT::v4f16, Expand);
416     setOperationAction(ISD::SELECT,      MVT::v4f16, Expand);
417     setOperationAction(ISD::SELECT_CC,   MVT::v4f16, Expand);
418     setOperationAction(ISD::FTRUNC,      MVT::v4f16, Expand);
419     setOperationAction(ISD::FCOPYSIGN,   MVT::v4f16, Expand);
420     setOperationAction(ISD::FFLOOR,      MVT::v4f16, Expand);
421     setOperationAction(ISD::FCEIL,       MVT::v4f16, Expand);
422     setOperationAction(ISD::FRINT,       MVT::v4f16, Expand);
423     setOperationAction(ISD::FNEARBYINT,  MVT::v4f16, Expand);
424     setOperationAction(ISD::FSQRT,       MVT::v4f16, Expand);
425 
426     setOperationAction(ISD::FABS,        MVT::v8f16, Expand);
427     setOperationAction(ISD::FADD,        MVT::v8f16, Expand);
428     setOperationAction(ISD::FCEIL,       MVT::v8f16, Expand);
429     setOperationAction(ISD::FCOPYSIGN,   MVT::v8f16, Expand);
430     setOperationAction(ISD::FDIV,        MVT::v8f16, Expand);
431     setOperationAction(ISD::FFLOOR,      MVT::v8f16, Expand);
432     setOperationAction(ISD::FMA,         MVT::v8f16, Expand);
433     setOperationAction(ISD::FMUL,        MVT::v8f16, Expand);
434     setOperationAction(ISD::FNEARBYINT,  MVT::v8f16, Expand);
435     setOperationAction(ISD::FNEG,        MVT::v8f16, Expand);
436     setOperationAction(ISD::FROUND,      MVT::v8f16, Expand);
437     setOperationAction(ISD::FRINT,       MVT::v8f16, Expand);
438     setOperationAction(ISD::FSQRT,       MVT::v8f16, Expand);
439     setOperationAction(ISD::FSUB,        MVT::v8f16, Expand);
440     setOperationAction(ISD::FTRUNC,      MVT::v8f16, Expand);
441     setOperationAction(ISD::SETCC,       MVT::v8f16, Expand);
442     setOperationAction(ISD::BR_CC,       MVT::v8f16, Expand);
443     setOperationAction(ISD::SELECT,      MVT::v8f16, Expand);
444     setOperationAction(ISD::SELECT_CC,   MVT::v8f16, Expand);
445     setOperationAction(ISD::FP_EXTEND,   MVT::v8f16, Expand);
446   }
447 
448   // AArch64 has implementations of a lot of rounding-like FP operations.
449   for (MVT Ty : {MVT::f32, MVT::f64}) {
450     setOperationAction(ISD::FFLOOR, Ty, Legal);
451     setOperationAction(ISD::FNEARBYINT, Ty, Legal);
452     setOperationAction(ISD::FCEIL, Ty, Legal);
453     setOperationAction(ISD::FRINT, Ty, Legal);
454     setOperationAction(ISD::FTRUNC, Ty, Legal);
455     setOperationAction(ISD::FROUND, Ty, Legal);
456     setOperationAction(ISD::FMINNUM, Ty, Legal);
457     setOperationAction(ISD::FMAXNUM, Ty, Legal);
458     setOperationAction(ISD::FMINIMUM, Ty, Legal);
459     setOperationAction(ISD::FMAXIMUM, Ty, Legal);
460     setOperationAction(ISD::LROUND, Ty, Legal);
461     setOperationAction(ISD::LLROUND, Ty, Legal);
462     setOperationAction(ISD::LRINT, Ty, Legal);
463     setOperationAction(ISD::LLRINT, Ty, Legal);
464   }
465 
466   if (Subtarget->hasFullFP16()) {
467     setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
468     setOperationAction(ISD::FFLOOR,  MVT::f16, Legal);
469     setOperationAction(ISD::FCEIL,   MVT::f16, Legal);
470     setOperationAction(ISD::FRINT,   MVT::f16, Legal);
471     setOperationAction(ISD::FTRUNC,  MVT::f16, Legal);
472     setOperationAction(ISD::FROUND,  MVT::f16, Legal);
473     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
474     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
475     setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
476     setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
477   }
478 
479   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
480 
481   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
482 
483   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
484   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
485   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
486   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
487   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
488 
489   // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
490   // This requires the Performance Monitors extension.
491   if (Subtarget->hasPerfMon())
492     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
493 
494   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
495       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
496     // Issue __sincos_stret if available.
497     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
498     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
499   } else {
500     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
501     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
502   }
503 
504   // Make floating-point constants legal for the large code model, so they don't
505   // become loads from the constant pool.
506   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
507     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
508     setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
509   }
510 
511   // AArch64 does not have floating-point extending loads, i1 sign-extending
512   // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
513   for (MVT VT : MVT::fp_valuetypes()) {
514     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
515     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
516     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
517     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
518   }
519   for (MVT VT : MVT::integer_valuetypes())
520     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
521 
522   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
523   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
524   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
525   setTruncStoreAction(MVT::f128, MVT::f80, Expand);
526   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
527   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
528   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
529 
530   setOperationAction(ISD::BITCAST, MVT::i16, Custom);
531   setOperationAction(ISD::BITCAST, MVT::f16, Custom);
532 
533   // Indexed loads and stores are supported.
534   for (unsigned im = (unsigned)ISD::PRE_INC;
535        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
536     setIndexedLoadAction(im, MVT::i8, Legal);
537     setIndexedLoadAction(im, MVT::i16, Legal);
538     setIndexedLoadAction(im, MVT::i32, Legal);
539     setIndexedLoadAction(im, MVT::i64, Legal);
540     setIndexedLoadAction(im, MVT::f64, Legal);
541     setIndexedLoadAction(im, MVT::f32, Legal);
542     setIndexedLoadAction(im, MVT::f16, Legal);
543     setIndexedStoreAction(im, MVT::i8, Legal);
544     setIndexedStoreAction(im, MVT::i16, Legal);
545     setIndexedStoreAction(im, MVT::i32, Legal);
546     setIndexedStoreAction(im, MVT::i64, Legal);
547     setIndexedStoreAction(im, MVT::f64, Legal);
548     setIndexedStoreAction(im, MVT::f32, Legal);
549     setIndexedStoreAction(im, MVT::f16, Legal);
550   }
551 
552   // Trap.
553   setOperationAction(ISD::TRAP, MVT::Other, Legal);
554   if (Subtarget->isTargetWindows())
555     setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
556 
557   // We combine OR nodes for bitfield operations.
558   setTargetDAGCombine(ISD::OR);
559   // Try to create BICs for vector ANDs.
560   setTargetDAGCombine(ISD::AND);
561 
562   // Vector add and sub nodes may conceal a high-half opportunity.
563   // Also, try to fold ADD into CSINC/CSINV..
564   setTargetDAGCombine(ISD::ADD);
565   setTargetDAGCombine(ISD::SUB);
566   setTargetDAGCombine(ISD::SRL);
567   setTargetDAGCombine(ISD::XOR);
568   setTargetDAGCombine(ISD::SINT_TO_FP);
569   setTargetDAGCombine(ISD::UINT_TO_FP);
570 
571   setTargetDAGCombine(ISD::FP_TO_SINT);
572   setTargetDAGCombine(ISD::FP_TO_UINT);
573   setTargetDAGCombine(ISD::FDIV);
574 
575   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
576 
577   setTargetDAGCombine(ISD::ANY_EXTEND);
578   setTargetDAGCombine(ISD::ZERO_EXTEND);
579   setTargetDAGCombine(ISD::SIGN_EXTEND);
580   setTargetDAGCombine(ISD::BITCAST);
581   setTargetDAGCombine(ISD::CONCAT_VECTORS);
582   setTargetDAGCombine(ISD::STORE);
583   if (Subtarget->supportsAddressTopByteIgnored())
584     setTargetDAGCombine(ISD::LOAD);
585 
586   setTargetDAGCombine(ISD::MUL);
587 
588   setTargetDAGCombine(ISD::SELECT);
589   setTargetDAGCombine(ISD::VSELECT);
590 
591   setTargetDAGCombine(ISD::INTRINSIC_VOID);
592   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
593   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
594 
595   setTargetDAGCombine(ISD::GlobalAddress);
596 
597   // In case of strict alignment, avoid an excessive number of byte wide stores.
598   MaxStoresPerMemsetOptSize = 8;
599   MaxStoresPerMemset = Subtarget->requiresStrictAlign()
600                        ? MaxStoresPerMemsetOptSize : 32;
601 
602   MaxGluedStoresPerMemcpy = 4;
603   MaxStoresPerMemcpyOptSize = 4;
604   MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
605                        ? MaxStoresPerMemcpyOptSize : 16;
606 
607   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
608 
609   MaxLoadsPerMemcmpOptSize = 4;
610   MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign()
611                       ? MaxLoadsPerMemcmpOptSize : 8;
612 
613   setStackPointerRegisterToSaveRestore(AArch64::SP);
614 
615   setSchedulingPreference(Sched::Hybrid);
616 
617   EnableExtLdPromotion = true;
618 
619   // Set required alignment.
620   setMinFunctionAlignment(2);
621   // Set preferred alignments.
622   setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
623   setPrefLoopAlignment(STI.getPrefLoopAlignment());
624 
625   // Only change the limit for entries in a jump table if specified by
626   // the sub target, but not at the command line.
627   unsigned MaxJT = STI.getMaximumJumpTableSize();
628   if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
629     setMaximumJumpTableSize(MaxJT);
630 
631   setHasExtractBitsInsn(true);
632 
633   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
634 
635   if (Subtarget->hasNEON()) {
636     // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
637     // silliness like this:
638     setOperationAction(ISD::FABS, MVT::v1f64, Expand);
639     setOperationAction(ISD::FADD, MVT::v1f64, Expand);
640     setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
641     setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
642     setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
643     setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
644     setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
645     setOperationAction(ISD::FMA, MVT::v1f64, Expand);
646     setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
647     setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
648     setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
649     setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
650     setOperationAction(ISD::FREM, MVT::v1f64, Expand);
651     setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
652     setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
653     setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
654     setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
655     setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
656     setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
657     setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
658     setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
659     setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
660     setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
661     setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
662     setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
663 
664     setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
665     setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
666     setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
667     setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
668     setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
669 
670     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
671 
672     // AArch64 doesn't have a direct vector ->f32 conversion instructions for
673     // elements smaller than i32, so promote the input to i32 first.
674     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
675     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
676     // i8 vector elements also need promotion to i32 for v8i8
677     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
678     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
679     // Similarly, there is no direct i32 -> f64 vector conversion instruction.
680     setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
681     setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
682     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
683     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
684     // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
685     // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
686     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
687     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
688 
689     if (Subtarget->hasFullFP16()) {
690       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
691       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
692       setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
693       setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
694     } else {
695       // when AArch64 doesn't have fullfp16 support, promote the input
696       // to i32 first.
697       setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
698       setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
699       setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
700       setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
701     }
702 
703     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
704     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
705 
706     // AArch64 doesn't have MUL.2d:
707     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
708     // Custom handling for some quad-vector types to detect MULL.
709     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
710     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
711     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
712 
713     // Vector reductions
714     for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
715                     MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
716       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
717       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
718       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
719       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
720       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
721     }
722     for (MVT VT : { MVT::v4f16, MVT::v2f32,
723                     MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
724       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
725       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
726     }
727 
728     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
729     setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
730     // Likewise, narrowing and extending vector loads/stores aren't handled
731     // directly.
732     for (MVT VT : MVT::vector_valuetypes()) {
733       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
734 
735       if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
736         setOperationAction(ISD::MULHS, VT, Legal);
737         setOperationAction(ISD::MULHU, VT, Legal);
738       } else {
739         setOperationAction(ISD::MULHS, VT, Expand);
740         setOperationAction(ISD::MULHU, VT, Expand);
741       }
742       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
743       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
744 
745       setOperationAction(ISD::BSWAP, VT, Expand);
746       setOperationAction(ISD::CTTZ, VT, Expand);
747 
748       for (MVT InnerVT : MVT::vector_valuetypes()) {
749         setTruncStoreAction(VT, InnerVT, Expand);
750         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
751         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
752         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
753       }
754     }
755 
756     // AArch64 has implementations of a lot of rounding-like FP operations.
757     for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
758       setOperationAction(ISD::FFLOOR, Ty, Legal);
759       setOperationAction(ISD::FNEARBYINT, Ty, Legal);
760       setOperationAction(ISD::FCEIL, Ty, Legal);
761       setOperationAction(ISD::FRINT, Ty, Legal);
762       setOperationAction(ISD::FTRUNC, Ty, Legal);
763       setOperationAction(ISD::FROUND, Ty, Legal);
764     }
765 
766     if (Subtarget->hasFullFP16()) {
767       for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
768         setOperationAction(ISD::FFLOOR, Ty, Legal);
769         setOperationAction(ISD::FNEARBYINT, Ty, Legal);
770         setOperationAction(ISD::FCEIL, Ty, Legal);
771         setOperationAction(ISD::FRINT, Ty, Legal);
772         setOperationAction(ISD::FTRUNC, Ty, Legal);
773         setOperationAction(ISD::FROUND, Ty, Legal);
774       }
775     }
776 
777     setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
778   }
779 
780   PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
781 }
782 
783 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
784   assert(VT.isVector() && "VT should be a vector type");
785 
786   if (VT.isFloatingPoint()) {
787     MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
788     setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
789     setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
790   }
791 
792   // Mark vector float intrinsics as expand.
793   if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
794     setOperationAction(ISD::FSIN, VT, Expand);
795     setOperationAction(ISD::FCOS, VT, Expand);
796     setOperationAction(ISD::FPOW, VT, Expand);
797     setOperationAction(ISD::FLOG, VT, Expand);
798     setOperationAction(ISD::FLOG2, VT, Expand);
799     setOperationAction(ISD::FLOG10, VT, Expand);
800     setOperationAction(ISD::FEXP, VT, Expand);
801     setOperationAction(ISD::FEXP2, VT, Expand);
802 
803     // But we do support custom-lowering for FCOPYSIGN.
804     setOperationAction(ISD::FCOPYSIGN, VT, Custom);
805   }
806 
807   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
808   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
809   setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
810   setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
811   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
812   setOperationAction(ISD::SRA, VT, Custom);
813   setOperationAction(ISD::SRL, VT, Custom);
814   setOperationAction(ISD::SHL, VT, Custom);
815   setOperationAction(ISD::OR, VT, Custom);
816   setOperationAction(ISD::SETCC, VT, Custom);
817   setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
818 
819   setOperationAction(ISD::SELECT, VT, Expand);
820   setOperationAction(ISD::SELECT_CC, VT, Expand);
821   setOperationAction(ISD::VSELECT, VT, Expand);
822   for (MVT InnerVT : MVT::all_valuetypes())
823     setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
824 
825   // CNT supports only B element sizes, then use UADDLP to widen.
826   if (VT != MVT::v8i8 && VT != MVT::v16i8)
827     setOperationAction(ISD::CTPOP, VT, Custom);
828 
829   setOperationAction(ISD::UDIV, VT, Expand);
830   setOperationAction(ISD::SDIV, VT, Expand);
831   setOperationAction(ISD::UREM, VT, Expand);
832   setOperationAction(ISD::SREM, VT, Expand);
833   setOperationAction(ISD::FREM, VT, Expand);
834 
835   setOperationAction(ISD::FP_TO_SINT, VT, Custom);
836   setOperationAction(ISD::FP_TO_UINT, VT, Custom);
837 
838   if (!VT.isFloatingPoint())
839     setOperationAction(ISD::ABS, VT, Legal);
840 
841   // [SU][MIN|MAX] are available for all NEON types apart from i64.
842   if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
843     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
844       setOperationAction(Opcode, VT, Legal);
845 
846   // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
847   if (VT.isFloatingPoint() &&
848       (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
849     for (unsigned Opcode :
850          {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
851       setOperationAction(Opcode, VT, Legal);
852 
853   if (Subtarget->isLittleEndian()) {
854     for (unsigned im = (unsigned)ISD::PRE_INC;
855          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
856       setIndexedLoadAction(im, VT, Legal);
857       setIndexedStoreAction(im, VT, Legal);
858     }
859   }
860 }
861 
862 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
863   addRegisterClass(VT, &AArch64::FPR64RegClass);
864   addTypeForNEON(VT, MVT::v2i32);
865 }
866 
867 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
868   addRegisterClass(VT, &AArch64::FPR128RegClass);
869   addTypeForNEON(VT, MVT::v4i32);
870 }
871 
872 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
873                                               EVT VT) const {
874   if (!VT.isVector())
875     return MVT::i32;
876   return VT.changeVectorElementTypeToInteger();
877 }
878 
879 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
880                                const APInt &Demanded,
881                                TargetLowering::TargetLoweringOpt &TLO,
882                                unsigned NewOpc) {
883   uint64_t OldImm = Imm, NewImm, Enc;
884   uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
885 
886   // Return if the immediate is already all zeros, all ones, a bimm32 or a
887   // bimm64.
888   if (Imm == 0 || Imm == Mask ||
889       AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
890     return false;
891 
892   unsigned EltSize = Size;
893   uint64_t DemandedBits = Demanded.getZExtValue();
894 
895   // Clear bits that are not demanded.
896   Imm &= DemandedBits;
897 
898   while (true) {
899     // The goal here is to set the non-demanded bits in a way that minimizes
900     // the number of switching between 0 and 1. In order to achieve this goal,
901     // we set the non-demanded bits to the value of the preceding demanded bits.
902     // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
903     // non-demanded bit), we copy bit0 (1) to the least significant 'x',
904     // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
905     // The final result is 0b11000011.
906     uint64_t NonDemandedBits = ~DemandedBits;
907     uint64_t InvertedImm = ~Imm & DemandedBits;
908     uint64_t RotatedImm =
909         ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
910         NonDemandedBits;
911     uint64_t Sum = RotatedImm + NonDemandedBits;
912     bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
913     uint64_t Ones = (Sum + Carry) & NonDemandedBits;
914     NewImm = (Imm | Ones) & Mask;
915 
916     // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
917     // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
918     // we halve the element size and continue the search.
919     if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
920       break;
921 
922     // We cannot shrink the element size any further if it is 2-bits.
923     if (EltSize == 2)
924       return false;
925 
926     EltSize /= 2;
927     Mask >>= EltSize;
928     uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
929 
930     // Return if there is mismatch in any of the demanded bits of Imm and Hi.
931     if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
932       return false;
933 
934     // Merge the upper and lower halves of Imm and DemandedBits.
935     Imm |= Hi;
936     DemandedBits |= DemandedBitsHi;
937   }
938 
939   ++NumOptimizedImms;
940 
941   // Replicate the element across the register width.
942   while (EltSize < Size) {
943     NewImm |= NewImm << EltSize;
944     EltSize *= 2;
945   }
946 
947   (void)OldImm;
948   assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
949          "demanded bits should never be altered");
950   assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
951 
952   // Create the new constant immediate node.
953   EVT VT = Op.getValueType();
954   SDLoc DL(Op);
955   SDValue New;
956 
957   // If the new constant immediate is all-zeros or all-ones, let the target
958   // independent DAG combine optimize this node.
959   if (NewImm == 0 || NewImm == OrigMask) {
960     New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
961                           TLO.DAG.getConstant(NewImm, DL, VT));
962   // Otherwise, create a machine node so that target independent DAG combine
963   // doesn't undo this optimization.
964   } else {
965     Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
966     SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
967     New = SDValue(
968         TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
969   }
970 
971   return TLO.CombineTo(Op, New);
972 }
973 
974 bool AArch64TargetLowering::targetShrinkDemandedConstant(
975     SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
976   // Delay this optimization to as late as possible.
977   if (!TLO.LegalOps)
978     return false;
979 
980   if (!EnableOptimizeLogicalImm)
981     return false;
982 
983   EVT VT = Op.getValueType();
984   if (VT.isVector())
985     return false;
986 
987   unsigned Size = VT.getSizeInBits();
988   assert((Size == 32 || Size == 64) &&
989          "i32 or i64 is expected after legalization.");
990 
991   // Exit early if we demand all bits.
992   if (Demanded.countPopulation() == Size)
993     return false;
994 
995   unsigned NewOpc;
996   switch (Op.getOpcode()) {
997   default:
998     return false;
999   case ISD::AND:
1000     NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
1001     break;
1002   case ISD::OR:
1003     NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
1004     break;
1005   case ISD::XOR:
1006     NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
1007     break;
1008   }
1009   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1010   if (!C)
1011     return false;
1012   uint64_t Imm = C->getZExtValue();
1013   return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
1014 }
1015 
1016 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
1017 /// Mask are known to be either zero or one and return them Known.
1018 void AArch64TargetLowering::computeKnownBitsForTargetNode(
1019     const SDValue Op, KnownBits &Known,
1020     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
1021   switch (Op.getOpcode()) {
1022   default:
1023     break;
1024   case AArch64ISD::CSEL: {
1025     KnownBits Known2;
1026     Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1027     Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1028     Known.Zero &= Known2.Zero;
1029     Known.One &= Known2.One;
1030     break;
1031   }
1032   case ISD::INTRINSIC_W_CHAIN: {
1033     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
1034     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
1035     switch (IntID) {
1036     default: return;
1037     case Intrinsic::aarch64_ldaxr:
1038     case Intrinsic::aarch64_ldxr: {
1039       unsigned BitWidth = Known.getBitWidth();
1040       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
1041       unsigned MemBits = VT.getScalarSizeInBits();
1042       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1043       return;
1044     }
1045     }
1046     break;
1047   }
1048   case ISD::INTRINSIC_WO_CHAIN:
1049   case ISD::INTRINSIC_VOID: {
1050     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1051     switch (IntNo) {
1052     default:
1053       break;
1054     case Intrinsic::aarch64_neon_umaxv:
1055     case Intrinsic::aarch64_neon_uminv: {
1056       // Figure out the datatype of the vector operand. The UMINV instruction
1057       // will zero extend the result, so we can mark as known zero all the
1058       // bits larger than the element datatype. 32-bit or larget doesn't need
1059       // this as those are legal types and will be handled by isel directly.
1060       MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
1061       unsigned BitWidth = Known.getBitWidth();
1062       if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1063         assert(BitWidth >= 8 && "Unexpected width!");
1064         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
1065         Known.Zero |= Mask;
1066       } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1067         assert(BitWidth >= 16 && "Unexpected width!");
1068         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
1069         Known.Zero |= Mask;
1070       }
1071       break;
1072     } break;
1073     }
1074   }
1075   }
1076 }
1077 
1078 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
1079                                                   EVT) const {
1080   return MVT::i64;
1081 }
1082 
1083 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1084     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1085     bool *Fast) const {
1086   if (Subtarget->requiresStrictAlign())
1087     return false;
1088 
1089   if (Fast) {
1090     // Some CPUs are fine with unaligned stores except for 128-bit ones.
1091     *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
1092             // See comments in performSTORECombine() for more details about
1093             // these conditions.
1094 
1095             // Code that uses clang vector extensions can mark that it
1096             // wants unaligned accesses to be treated as fast by
1097             // underspecifying alignment to be 1 or 2.
1098             Align <= 2 ||
1099 
1100             // Disregard v2i64. Memcpy lowering produces those and splitting
1101             // them regresses performance on micro-benchmarks and olden/bh.
1102             VT == MVT::v2i64;
1103   }
1104   return true;
1105 }
1106 
1107 FastISel *
1108 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1109                                       const TargetLibraryInfo *libInfo) const {
1110   return AArch64::createFastISel(funcInfo, libInfo);
1111 }
1112 
1113 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
1114   switch ((AArch64ISD::NodeType)Opcode) {
1115   case AArch64ISD::FIRST_NUMBER:      break;
1116   case AArch64ISD::CALL:              return "AArch64ISD::CALL";
1117   case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
1118   case AArch64ISD::ADR:               return "AArch64ISD::ADR";
1119   case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
1120   case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
1121   case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
1122   case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
1123   case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
1124   case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
1125   case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
1126   case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
1127   case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
1128   case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
1129   case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
1130   case AArch64ISD::ADC:               return "AArch64ISD::ADC";
1131   case AArch64ISD::SBC:               return "AArch64ISD::SBC";
1132   case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
1133   case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
1134   case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
1135   case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
1136   case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
1137   case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
1138   case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
1139   case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
1140   case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
1141   case AArch64ISD::DUP:               return "AArch64ISD::DUP";
1142   case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
1143   case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
1144   case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
1145   case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
1146   case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
1147   case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
1148   case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
1149   case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
1150   case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
1151   case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
1152   case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
1153   case AArch64ISD::BICi:              return "AArch64ISD::BICi";
1154   case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
1155   case AArch64ISD::BSL:               return "AArch64ISD::BSL";
1156   case AArch64ISD::NEG:               return "AArch64ISD::NEG";
1157   case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
1158   case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
1159   case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
1160   case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
1161   case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
1162   case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
1163   case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
1164   case AArch64ISD::REV16:             return "AArch64ISD::REV16";
1165   case AArch64ISD::REV32:             return "AArch64ISD::REV32";
1166   case AArch64ISD::REV64:             return "AArch64ISD::REV64";
1167   case AArch64ISD::EXT:               return "AArch64ISD::EXT";
1168   case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
1169   case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
1170   case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
1171   case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
1172   case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
1173   case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
1174   case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
1175   case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
1176   case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
1177   case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
1178   case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
1179   case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
1180   case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
1181   case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
1182   case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
1183   case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
1184   case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
1185   case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
1186   case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
1187   case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
1188   case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
1189   case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
1190   case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
1191   case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
1192   case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
1193   case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
1194   case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
1195   case AArch64ISD::NOT:               return "AArch64ISD::NOT";
1196   case AArch64ISD::BIT:               return "AArch64ISD::BIT";
1197   case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
1198   case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
1199   case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
1200   case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
1201   case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
1202   case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
1203   case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
1204   case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
1205   case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
1206   case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
1207   case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
1208   case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
1209   case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
1210   case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
1211   case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
1212   case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
1213   case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
1214   case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
1215   case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
1216   case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
1217   case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
1218   case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
1219   case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
1220   case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
1221   case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
1222   case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
1223   case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
1224   case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
1225   case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
1226   case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
1227   case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
1228   case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
1229   case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
1230   case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
1231   case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
1232   case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
1233   case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
1234   case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
1235   case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
1236   case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
1237   case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
1238   case AArch64ISD::FRECPS:            return "AArch64ISD::FRECPS";
1239   case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
1240   case AArch64ISD::FRSQRTS:           return "AArch64ISD::FRSQRTS";
1241   case AArch64ISD::STG:               return "AArch64ISD::STG";
1242   case AArch64ISD::STZG:              return "AArch64ISD::STZG";
1243   case AArch64ISD::ST2G:              return "AArch64ISD::ST2G";
1244   case AArch64ISD::STZ2G:             return "AArch64ISD::STZ2G";
1245   }
1246   return nullptr;
1247 }
1248 
1249 MachineBasicBlock *
1250 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
1251                                     MachineBasicBlock *MBB) const {
1252   // We materialise the F128CSEL pseudo-instruction as some control flow and a
1253   // phi node:
1254 
1255   // OrigBB:
1256   //     [... previous instrs leading to comparison ...]
1257   //     b.ne TrueBB
1258   //     b EndBB
1259   // TrueBB:
1260   //     ; Fallthrough
1261   // EndBB:
1262   //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1263 
1264   MachineFunction *MF = MBB->getParent();
1265   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1266   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1267   DebugLoc DL = MI.getDebugLoc();
1268   MachineFunction::iterator It = ++MBB->getIterator();
1269 
1270   unsigned DestReg = MI.getOperand(0).getReg();
1271   unsigned IfTrueReg = MI.getOperand(1).getReg();
1272   unsigned IfFalseReg = MI.getOperand(2).getReg();
1273   unsigned CondCode = MI.getOperand(3).getImm();
1274   bool NZCVKilled = MI.getOperand(4).isKill();
1275 
1276   MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
1277   MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
1278   MF->insert(It, TrueBB);
1279   MF->insert(It, EndBB);
1280 
1281   // Transfer rest of current basic-block to EndBB
1282   EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
1283                 MBB->end());
1284   EndBB->transferSuccessorsAndUpdatePHIs(MBB);
1285 
1286   BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1287   BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1288   MBB->addSuccessor(TrueBB);
1289   MBB->addSuccessor(EndBB);
1290 
1291   // TrueBB falls through to the end.
1292   TrueBB->addSuccessor(EndBB);
1293 
1294   if (!NZCVKilled) {
1295     TrueBB->addLiveIn(AArch64::NZCV);
1296     EndBB->addLiveIn(AArch64::NZCV);
1297   }
1298 
1299   BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1300       .addReg(IfTrueReg)
1301       .addMBB(TrueBB)
1302       .addReg(IfFalseReg)
1303       .addMBB(MBB);
1304 
1305   MI.eraseFromParent();
1306   return EndBB;
1307 }
1308 
1309 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
1310        MachineInstr &MI, MachineBasicBlock *BB) const {
1311   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
1312              BB->getParent()->getFunction().getPersonalityFn())) &&
1313          "SEH does not use catchret!");
1314   return BB;
1315 }
1316 
1317 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad(
1318      MachineInstr &MI, MachineBasicBlock *BB) const {
1319   MI.eraseFromParent();
1320   return BB;
1321 }
1322 
1323 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1324     MachineInstr &MI, MachineBasicBlock *BB) const {
1325   switch (MI.getOpcode()) {
1326   default:
1327 #ifndef NDEBUG
1328     MI.dump();
1329 #endif
1330     llvm_unreachable("Unexpected instruction for custom inserter!");
1331 
1332   case AArch64::F128CSEL:
1333     return EmitF128CSEL(MI, BB);
1334 
1335   case TargetOpcode::STACKMAP:
1336   case TargetOpcode::PATCHPOINT:
1337     return emitPatchPoint(MI, BB);
1338 
1339   case AArch64::CATCHRET:
1340     return EmitLoweredCatchRet(MI, BB);
1341   case AArch64::CATCHPAD:
1342     return EmitLoweredCatchPad(MI, BB);
1343   }
1344 }
1345 
1346 //===----------------------------------------------------------------------===//
1347 // AArch64 Lowering private implementation.
1348 //===----------------------------------------------------------------------===//
1349 
1350 //===----------------------------------------------------------------------===//
1351 // Lowering Code
1352 //===----------------------------------------------------------------------===//
1353 
1354 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1355 /// CC
1356 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1357   switch (CC) {
1358   default:
1359     llvm_unreachable("Unknown condition code!");
1360   case ISD::SETNE:
1361     return AArch64CC::NE;
1362   case ISD::SETEQ:
1363     return AArch64CC::EQ;
1364   case ISD::SETGT:
1365     return AArch64CC::GT;
1366   case ISD::SETGE:
1367     return AArch64CC::GE;
1368   case ISD::SETLT:
1369     return AArch64CC::LT;
1370   case ISD::SETLE:
1371     return AArch64CC::LE;
1372   case ISD::SETUGT:
1373     return AArch64CC::HI;
1374   case ISD::SETUGE:
1375     return AArch64CC::HS;
1376   case ISD::SETULT:
1377     return AArch64CC::LO;
1378   case ISD::SETULE:
1379     return AArch64CC::LS;
1380   }
1381 }
1382 
1383 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1384 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1385                                   AArch64CC::CondCode &CondCode,
1386                                   AArch64CC::CondCode &CondCode2) {
1387   CondCode2 = AArch64CC::AL;
1388   switch (CC) {
1389   default:
1390     llvm_unreachable("Unknown FP condition!");
1391   case ISD::SETEQ:
1392   case ISD::SETOEQ:
1393     CondCode = AArch64CC::EQ;
1394     break;
1395   case ISD::SETGT:
1396   case ISD::SETOGT:
1397     CondCode = AArch64CC::GT;
1398     break;
1399   case ISD::SETGE:
1400   case ISD::SETOGE:
1401     CondCode = AArch64CC::GE;
1402     break;
1403   case ISD::SETOLT:
1404     CondCode = AArch64CC::MI;
1405     break;
1406   case ISD::SETOLE:
1407     CondCode = AArch64CC::LS;
1408     break;
1409   case ISD::SETONE:
1410     CondCode = AArch64CC::MI;
1411     CondCode2 = AArch64CC::GT;
1412     break;
1413   case ISD::SETO:
1414     CondCode = AArch64CC::VC;
1415     break;
1416   case ISD::SETUO:
1417     CondCode = AArch64CC::VS;
1418     break;
1419   case ISD::SETUEQ:
1420     CondCode = AArch64CC::EQ;
1421     CondCode2 = AArch64CC::VS;
1422     break;
1423   case ISD::SETUGT:
1424     CondCode = AArch64CC::HI;
1425     break;
1426   case ISD::SETUGE:
1427     CondCode = AArch64CC::PL;
1428     break;
1429   case ISD::SETLT:
1430   case ISD::SETULT:
1431     CondCode = AArch64CC::LT;
1432     break;
1433   case ISD::SETLE:
1434   case ISD::SETULE:
1435     CondCode = AArch64CC::LE;
1436     break;
1437   case ISD::SETNE:
1438   case ISD::SETUNE:
1439     CondCode = AArch64CC::NE;
1440     break;
1441   }
1442 }
1443 
1444 /// Convert a DAG fp condition code to an AArch64 CC.
1445 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1446 /// should be AND'ed instead of OR'ed.
1447 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1448                                      AArch64CC::CondCode &CondCode,
1449                                      AArch64CC::CondCode &CondCode2) {
1450   CondCode2 = AArch64CC::AL;
1451   switch (CC) {
1452   default:
1453     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1454     assert(CondCode2 == AArch64CC::AL);
1455     break;
1456   case ISD::SETONE:
1457     // (a one b)
1458     // == ((a olt b) || (a ogt b))
1459     // == ((a ord b) && (a une b))
1460     CondCode = AArch64CC::VC;
1461     CondCode2 = AArch64CC::NE;
1462     break;
1463   case ISD::SETUEQ:
1464     // (a ueq b)
1465     // == ((a uno b) || (a oeq b))
1466     // == ((a ule b) && (a uge b))
1467     CondCode = AArch64CC::PL;
1468     CondCode2 = AArch64CC::LE;
1469     break;
1470   }
1471 }
1472 
1473 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1474 /// CC usable with the vector instructions. Fewer operations are available
1475 /// without a real NZCV register, so we have to use less efficient combinations
1476 /// to get the same effect.
1477 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1478                                         AArch64CC::CondCode &CondCode,
1479                                         AArch64CC::CondCode &CondCode2,
1480                                         bool &Invert) {
1481   Invert = false;
1482   switch (CC) {
1483   default:
1484     // Mostly the scalar mappings work fine.
1485     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1486     break;
1487   case ISD::SETUO:
1488     Invert = true;
1489     LLVM_FALLTHROUGH;
1490   case ISD::SETO:
1491     CondCode = AArch64CC::MI;
1492     CondCode2 = AArch64CC::GE;
1493     break;
1494   case ISD::SETUEQ:
1495   case ISD::SETULT:
1496   case ISD::SETULE:
1497   case ISD::SETUGT:
1498   case ISD::SETUGE:
1499     // All of the compare-mask comparisons are ordered, but we can switch
1500     // between the two by a double inversion. E.g. ULE == !OGT.
1501     Invert = true;
1502     changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1503     break;
1504   }
1505 }
1506 
1507 static bool isLegalArithImmed(uint64_t C) {
1508   // Matches AArch64DAGToDAGISel::SelectArithImmed().
1509   bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1510   LLVM_DEBUG(dbgs() << "Is imm " << C
1511                     << " legal: " << (IsLegal ? "yes\n" : "no\n"));
1512   return IsLegal;
1513 }
1514 
1515 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
1516 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
1517 // can be set differently by this operation. It comes down to whether
1518 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1519 // everything is fine. If not then the optimization is wrong. Thus general
1520 // comparisons are only valid if op2 != 0.
1521 //
1522 // So, finally, the only LLVM-native comparisons that don't mention C and V
1523 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1524 // the absence of information about op2.
1525 static bool isCMN(SDValue Op, ISD::CondCode CC) {
1526   return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
1527          (CC == ISD::SETEQ || CC == ISD::SETNE);
1528 }
1529 
1530 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1531                               const SDLoc &dl, SelectionDAG &DAG) {
1532   EVT VT = LHS.getValueType();
1533   const bool FullFP16 =
1534     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1535 
1536   if (VT.isFloatingPoint()) {
1537     assert(VT != MVT::f128);
1538     if (VT == MVT::f16 && !FullFP16) {
1539       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1540       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1541       VT = MVT::f32;
1542     }
1543     return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1544   }
1545 
1546   // The CMP instruction is just an alias for SUBS, and representing it as
1547   // SUBS means that it's possible to get CSE with subtract operations.
1548   // A later phase can perform the optimization of setting the destination
1549   // register to WZR/XZR if it ends up being unused.
1550   unsigned Opcode = AArch64ISD::SUBS;
1551 
1552   if (isCMN(RHS, CC)) {
1553     // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
1554     Opcode = AArch64ISD::ADDS;
1555     RHS = RHS.getOperand(1);
1556   } else if (isCMN(LHS, CC)) {
1557     // As we are looking for EQ/NE compares, the operands can be commuted ; can
1558     // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
1559     Opcode = AArch64ISD::ADDS;
1560     LHS = LHS.getOperand(1);
1561   } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1562              !isUnsignedIntSetCC(CC)) {
1563     // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1564     // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1565     // of the signed comparisons.
1566     Opcode = AArch64ISD::ANDS;
1567     RHS = LHS.getOperand(1);
1568     LHS = LHS.getOperand(0);
1569   }
1570 
1571   return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1572       .getValue(1);
1573 }
1574 
1575 /// \defgroup AArch64CCMP CMP;CCMP matching
1576 ///
1577 /// These functions deal with the formation of CMP;CCMP;... sequences.
1578 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1579 /// a comparison. They set the NZCV flags to a predefined value if their
1580 /// predicate is false. This allows to express arbitrary conjunctions, for
1581 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1582 /// expressed as:
1583 ///   cmp A
1584 ///   ccmp B, inv(CB), CA
1585 ///   check for CB flags
1586 ///
1587 /// This naturally lets us implement chains of AND operations with SETCC
1588 /// operands. And we can even implement some other situations by transforming
1589 /// them:
1590 ///   - We can implement (NEG SETCC) i.e. negating a single comparison by
1591 ///     negating the flags used in a CCMP/FCCMP operations.
1592 ///   - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1593 ///     by negating the flags we test for afterwards. i.e.
1594 ///     NEG (CMP CCMP CCCMP ...) can be implemented.
1595 ///   - Note that we can only ever negate all previously processed results.
1596 ///     What we can not implement by flipping the flags to test is a negation
1597 ///     of two sub-trees (because the negation affects all sub-trees emitted so
1598 ///     far, so the 2nd sub-tree we emit would also affect the first).
1599 /// With those tools we can implement some OR operations:
1600 ///   - (OR (SETCC A) (SETCC B)) can be implemented via:
1601 ///     NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1602 ///   - After transforming OR to NEG/AND combinations we may be able to use NEG
1603 ///     elimination rules from earlier to implement the whole thing as a
1604 ///     CCMP/FCCMP chain.
1605 ///
1606 /// As complete example:
1607 ///     or (or (setCA (cmp A)) (setCB (cmp B)))
1608 ///        (and (setCC (cmp C)) (setCD (cmp D)))"
1609 /// can be reassociated to:
1610 ///     or (and (setCC (cmp C)) setCD (cmp D))
1611 //         (or (setCA (cmp A)) (setCB (cmp B)))
1612 /// can be transformed to:
1613 ///     not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1614 ///              (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1615 /// which can be implemented as:
1616 ///   cmp C
1617 ///   ccmp D, inv(CD), CC
1618 ///   ccmp A, CA, inv(CD)
1619 ///   ccmp B, CB, inv(CA)
1620 ///   check for CB flags
1621 ///
1622 /// A counterexample is "or (and A B) (and C D)" which translates to
1623 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1624 /// can only implement 1 of the inner (not) operations, but not both!
1625 /// @{
1626 
1627 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
1628 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1629                                          ISD::CondCode CC, SDValue CCOp,
1630                                          AArch64CC::CondCode Predicate,
1631                                          AArch64CC::CondCode OutCC,
1632                                          const SDLoc &DL, SelectionDAG &DAG) {
1633   unsigned Opcode = 0;
1634   const bool FullFP16 =
1635     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1636 
1637   if (LHS.getValueType().isFloatingPoint()) {
1638     assert(LHS.getValueType() != MVT::f128);
1639     if (LHS.getValueType() == MVT::f16 && !FullFP16) {
1640       LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1641       RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1642     }
1643     Opcode = AArch64ISD::FCCMP;
1644   } else if (RHS.getOpcode() == ISD::SUB) {
1645     SDValue SubOp0 = RHS.getOperand(0);
1646     if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1647       // See emitComparison() on why we can only do this for SETEQ and SETNE.
1648       Opcode = AArch64ISD::CCMN;
1649       RHS = RHS.getOperand(1);
1650     }
1651   }
1652   if (Opcode == 0)
1653     Opcode = AArch64ISD::CCMP;
1654 
1655   SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1656   AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1657   unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1658   SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1659   return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1660 }
1661 
1662 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1663 /// expressed as a conjunction. See \ref AArch64CCMP.
1664 /// \param CanNegate    Set to true if we can negate the whole sub-tree just by
1665 ///                     changing the conditions on the SETCC tests.
1666 ///                     (this means we can call emitConjunctionRec() with
1667 ///                      Negate==true on this sub-tree)
1668 /// \param MustBeFirst  Set to true if this subtree needs to be negated and we
1669 ///                     cannot do the negation naturally. We are required to
1670 ///                     emit the subtree first in this case.
1671 /// \param WillNegate   Is true if are called when the result of this
1672 ///                     subexpression must be negated. This happens when the
1673 ///                     outer expression is an OR. We can use this fact to know
1674 ///                     that we have a double negation (or (or ...) ...) that
1675 ///                     can be implemented for free.
1676 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
1677                                bool &MustBeFirst, bool WillNegate,
1678                                unsigned Depth = 0) {
1679   if (!Val.hasOneUse())
1680     return false;
1681   unsigned Opcode = Val->getOpcode();
1682   if (Opcode == ISD::SETCC) {
1683     if (Val->getOperand(0).getValueType() == MVT::f128)
1684       return false;
1685     CanNegate = true;
1686     MustBeFirst = false;
1687     return true;
1688   }
1689   // Protect against exponential runtime and stack overflow.
1690   if (Depth > 6)
1691     return false;
1692   if (Opcode == ISD::AND || Opcode == ISD::OR) {
1693     bool IsOR = Opcode == ISD::OR;
1694     SDValue O0 = Val->getOperand(0);
1695     SDValue O1 = Val->getOperand(1);
1696     bool CanNegateL;
1697     bool MustBeFirstL;
1698     if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
1699       return false;
1700     bool CanNegateR;
1701     bool MustBeFirstR;
1702     if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
1703       return false;
1704 
1705     if (MustBeFirstL && MustBeFirstR)
1706       return false;
1707 
1708     if (IsOR) {
1709       // For an OR expression we need to be able to naturally negate at least
1710       // one side or we cannot do the transformation at all.
1711       if (!CanNegateL && !CanNegateR)
1712         return false;
1713       // If we the result of the OR will be negated and we can naturally negate
1714       // the leafs, then this sub-tree as a whole negates naturally.
1715       CanNegate = WillNegate && CanNegateL && CanNegateR;
1716       // If we cannot naturally negate the whole sub-tree, then this must be
1717       // emitted first.
1718       MustBeFirst = !CanNegate;
1719     } else {
1720       assert(Opcode == ISD::AND && "Must be OR or AND");
1721       // We cannot naturally negate an AND operation.
1722       CanNegate = false;
1723       MustBeFirst = MustBeFirstL || MustBeFirstR;
1724     }
1725     return true;
1726   }
1727   return false;
1728 }
1729 
1730 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1731 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1732 /// Tries to transform the given i1 producing node @p Val to a series compare
1733 /// and conditional compare operations. @returns an NZCV flags producing node
1734 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1735 /// transformation was not possible.
1736 /// \p Negate is true if we want this sub-tree being negated just by changing
1737 /// SETCC conditions.
1738 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
1739     AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1740     AArch64CC::CondCode Predicate) {
1741   // We're at a tree leaf, produce a conditional comparison operation.
1742   unsigned Opcode = Val->getOpcode();
1743   if (Opcode == ISD::SETCC) {
1744     SDValue LHS = Val->getOperand(0);
1745     SDValue RHS = Val->getOperand(1);
1746     ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1747     bool isInteger = LHS.getValueType().isInteger();
1748     if (Negate)
1749       CC = getSetCCInverse(CC, isInteger);
1750     SDLoc DL(Val);
1751     // Determine OutCC and handle FP special case.
1752     if (isInteger) {
1753       OutCC = changeIntCCToAArch64CC(CC);
1754     } else {
1755       assert(LHS.getValueType().isFloatingPoint());
1756       AArch64CC::CondCode ExtraCC;
1757       changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1758       // Some floating point conditions can't be tested with a single condition
1759       // code. Construct an additional comparison in this case.
1760       if (ExtraCC != AArch64CC::AL) {
1761         SDValue ExtraCmp;
1762         if (!CCOp.getNode())
1763           ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1764         else
1765           ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1766                                                ExtraCC, DL, DAG);
1767         CCOp = ExtraCmp;
1768         Predicate = ExtraCC;
1769       }
1770     }
1771 
1772     // Produce a normal comparison if we are first in the chain
1773     if (!CCOp)
1774       return emitComparison(LHS, RHS, CC, DL, DAG);
1775     // Otherwise produce a ccmp.
1776     return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1777                                      DAG);
1778   }
1779   assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
1780 
1781   bool IsOR = Opcode == ISD::OR;
1782 
1783   SDValue LHS = Val->getOperand(0);
1784   bool CanNegateL;
1785   bool MustBeFirstL;
1786   bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
1787   assert(ValidL && "Valid conjunction/disjunction tree");
1788   (void)ValidL;
1789 
1790   SDValue RHS = Val->getOperand(1);
1791   bool CanNegateR;
1792   bool MustBeFirstR;
1793   bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
1794   assert(ValidR && "Valid conjunction/disjunction tree");
1795   (void)ValidR;
1796 
1797   // Swap sub-tree that must come first to the right side.
1798   if (MustBeFirstL) {
1799     assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
1800     std::swap(LHS, RHS);
1801     std::swap(CanNegateL, CanNegateR);
1802     std::swap(MustBeFirstL, MustBeFirstR);
1803   }
1804 
1805   bool NegateR;
1806   bool NegateAfterR;
1807   bool NegateL;
1808   bool NegateAfterAll;
1809   if (Opcode == ISD::OR) {
1810     // Swap the sub-tree that we can negate naturally to the left.
1811     if (!CanNegateL) {
1812       assert(CanNegateR && "at least one side must be negatable");
1813       assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
1814       assert(!Negate);
1815       std::swap(LHS, RHS);
1816       NegateR = false;
1817       NegateAfterR = true;
1818     } else {
1819       // Negate the left sub-tree if possible, otherwise negate the result.
1820       NegateR = CanNegateR;
1821       NegateAfterR = !CanNegateR;
1822     }
1823     NegateL = true;
1824     NegateAfterAll = !Negate;
1825   } else {
1826     assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
1827     assert(!Negate && "Valid conjunction/disjunction tree");
1828 
1829     NegateL = false;
1830     NegateR = false;
1831     NegateAfterR = false;
1832     NegateAfterAll = false;
1833   }
1834 
1835   // Emit sub-trees.
1836   AArch64CC::CondCode RHSCC;
1837   SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
1838   if (NegateAfterR)
1839     RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1840   SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
1841   if (NegateAfterAll)
1842     OutCC = AArch64CC::getInvertedCondCode(OutCC);
1843   return CmpL;
1844 }
1845 
1846 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
1847 /// In some cases this is even possible with OR operations in the expression.
1848 /// See \ref AArch64CCMP.
1849 /// \see emitConjunctionRec().
1850 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
1851                                AArch64CC::CondCode &OutCC) {
1852   bool DummyCanNegate;
1853   bool DummyMustBeFirst;
1854   if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
1855     return SDValue();
1856 
1857   return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
1858 }
1859 
1860 /// @}
1861 
1862 /// Returns how profitable it is to fold a comparison's operand's shift and/or
1863 /// extension operations.
1864 static unsigned getCmpOperandFoldingProfit(SDValue Op) {
1865   auto isSupportedExtend = [&](SDValue V) {
1866     if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
1867       return true;
1868 
1869     if (V.getOpcode() == ISD::AND)
1870       if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
1871         uint64_t Mask = MaskCst->getZExtValue();
1872         return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
1873       }
1874 
1875     return false;
1876   };
1877 
1878   if (!Op.hasOneUse())
1879     return 0;
1880 
1881   if (isSupportedExtend(Op))
1882     return 1;
1883 
1884   unsigned Opc = Op.getOpcode();
1885   if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
1886     if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1887       uint64_t Shift = ShiftCst->getZExtValue();
1888       if (isSupportedExtend(Op.getOperand(0)))
1889         return (Shift <= 4) ? 2 : 1;
1890       EVT VT = Op.getValueType();
1891       if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
1892         return 1;
1893     }
1894 
1895   return 0;
1896 }
1897 
1898 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1899                              SDValue &AArch64cc, SelectionDAG &DAG,
1900                              const SDLoc &dl) {
1901   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1902     EVT VT = RHS.getValueType();
1903     uint64_t C = RHSC->getZExtValue();
1904     if (!isLegalArithImmed(C)) {
1905       // Constant does not fit, try adjusting it by one?
1906       switch (CC) {
1907       default:
1908         break;
1909       case ISD::SETLT:
1910       case ISD::SETGE:
1911         if ((VT == MVT::i32 && C != 0x80000000 &&
1912              isLegalArithImmed((uint32_t)(C - 1))) ||
1913             (VT == MVT::i64 && C != 0x80000000ULL &&
1914              isLegalArithImmed(C - 1ULL))) {
1915           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1916           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1917           RHS = DAG.getConstant(C, dl, VT);
1918         }
1919         break;
1920       case ISD::SETULT:
1921       case ISD::SETUGE:
1922         if ((VT == MVT::i32 && C != 0 &&
1923              isLegalArithImmed((uint32_t)(C - 1))) ||
1924             (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1925           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1926           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1927           RHS = DAG.getConstant(C, dl, VT);
1928         }
1929         break;
1930       case ISD::SETLE:
1931       case ISD::SETGT:
1932         if ((VT == MVT::i32 && C != INT32_MAX &&
1933              isLegalArithImmed((uint32_t)(C + 1))) ||
1934             (VT == MVT::i64 && C != INT64_MAX &&
1935              isLegalArithImmed(C + 1ULL))) {
1936           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1937           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1938           RHS = DAG.getConstant(C, dl, VT);
1939         }
1940         break;
1941       case ISD::SETULE:
1942       case ISD::SETUGT:
1943         if ((VT == MVT::i32 && C != UINT32_MAX &&
1944              isLegalArithImmed((uint32_t)(C + 1))) ||
1945             (VT == MVT::i64 && C != UINT64_MAX &&
1946              isLegalArithImmed(C + 1ULL))) {
1947           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1948           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1949           RHS = DAG.getConstant(C, dl, VT);
1950         }
1951         break;
1952       }
1953     }
1954   }
1955 
1956   // Comparisons are canonicalized so that the RHS operand is simpler than the
1957   // LHS one, the extreme case being when RHS is an immediate. However, AArch64
1958   // can fold some shift+extend operations on the RHS operand, so swap the
1959   // operands if that can be done.
1960   //
1961   // For example:
1962   //    lsl     w13, w11, #1
1963   //    cmp     w13, w12
1964   // can be turned into:
1965   //    cmp     w12, w11, lsl #1
1966   if (!isa<ConstantSDNode>(RHS) ||
1967       !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
1968     SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;
1969 
1970     if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
1971       std::swap(LHS, RHS);
1972       CC = ISD::getSetCCSwappedOperands(CC);
1973     }
1974   }
1975 
1976   SDValue Cmp;
1977   AArch64CC::CondCode AArch64CC;
1978   if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1979     const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1980 
1981     // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1982     // For the i8 operand, the largest immediate is 255, so this can be easily
1983     // encoded in the compare instruction. For the i16 operand, however, the
1984     // largest immediate cannot be encoded in the compare.
1985     // Therefore, use a sign extending load and cmn to avoid materializing the
1986     // -1 constant. For example,
1987     // movz w1, #65535
1988     // ldrh w0, [x0, #0]
1989     // cmp w0, w1
1990     // >
1991     // ldrsh w0, [x0, #0]
1992     // cmn w0, #1
1993     // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1994     // if and only if (sext LHS) == (sext RHS). The checks are in place to
1995     // ensure both the LHS and RHS are truly zero extended and to make sure the
1996     // transformation is profitable.
1997     if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1998         cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1999         cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
2000         LHS.getNode()->hasNUsesOfValue(1, 0)) {
2001       int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
2002       if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
2003         SDValue SExt =
2004             DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
2005                         DAG.getValueType(MVT::i16));
2006         Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
2007                                                    RHS.getValueType()),
2008                              CC, dl, DAG);
2009         AArch64CC = changeIntCCToAArch64CC(CC);
2010       }
2011     }
2012 
2013     if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
2014       if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
2015         if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
2016           AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
2017       }
2018     }
2019   }
2020 
2021   if (!Cmp) {
2022     Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
2023     AArch64CC = changeIntCCToAArch64CC(CC);
2024   }
2025   AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
2026   return Cmp;
2027 }
2028 
2029 static std::pair<SDValue, SDValue>
2030 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
2031   assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
2032          "Unsupported value type");
2033   SDValue Value, Overflow;
2034   SDLoc DL(Op);
2035   SDValue LHS = Op.getOperand(0);
2036   SDValue RHS = Op.getOperand(1);
2037   unsigned Opc = 0;
2038   switch (Op.getOpcode()) {
2039   default:
2040     llvm_unreachable("Unknown overflow instruction!");
2041   case ISD::SADDO:
2042     Opc = AArch64ISD::ADDS;
2043     CC = AArch64CC::VS;
2044     break;
2045   case ISD::UADDO:
2046     Opc = AArch64ISD::ADDS;
2047     CC = AArch64CC::HS;
2048     break;
2049   case ISD::SSUBO:
2050     Opc = AArch64ISD::SUBS;
2051     CC = AArch64CC::VS;
2052     break;
2053   case ISD::USUBO:
2054     Opc = AArch64ISD::SUBS;
2055     CC = AArch64CC::LO;
2056     break;
2057   // Multiply needs a little bit extra work.
2058   case ISD::SMULO:
2059   case ISD::UMULO: {
2060     CC = AArch64CC::NE;
2061     bool IsSigned = Op.getOpcode() == ISD::SMULO;
2062     if (Op.getValueType() == MVT::i32) {
2063       unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2064       // For a 32 bit multiply with overflow check we want the instruction
2065       // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2066       // need to generate the following pattern:
2067       // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2068       LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
2069       RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
2070       SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2071       SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
2072                                 DAG.getConstant(0, DL, MVT::i64));
2073       // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2074       // operation. We need to clear out the upper 32 bits, because we used a
2075       // widening multiply that wrote all 64 bits. In the end this should be a
2076       // noop.
2077       Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
2078       if (IsSigned) {
2079         // The signed overflow check requires more than just a simple check for
2080         // any bit set in the upper 32 bits of the result. These bits could be
2081         // just the sign bits of a negative number. To perform the overflow
2082         // check we have to arithmetic shift right the 32nd bit of the result by
2083         // 31 bits. Then we compare the result to the upper 32 bits.
2084         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
2085                                         DAG.getConstant(32, DL, MVT::i64));
2086         UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
2087         SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
2088                                         DAG.getConstant(31, DL, MVT::i64));
2089         // It is important that LowerBits is last, otherwise the arithmetic
2090         // shift will not be folded into the compare (SUBS).
2091         SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
2092         Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2093                        .getValue(1);
2094       } else {
2095         // The overflow check for unsigned multiply is easy. We only need to
2096         // check if any of the upper 32 bits are set. This can be done with a
2097         // CMP (shifted register). For that we need to generate the following
2098         // pattern:
2099         // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2100         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2101                                         DAG.getConstant(32, DL, MVT::i64));
2102         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2103         Overflow =
2104             DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2105                         DAG.getConstant(0, DL, MVT::i64),
2106                         UpperBits).getValue(1);
2107       }
2108       break;
2109     }
2110     assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
2111     // For the 64 bit multiply
2112     Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2113     if (IsSigned) {
2114       SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
2115       SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
2116                                       DAG.getConstant(63, DL, MVT::i64));
2117       // It is important that LowerBits is last, otherwise the arithmetic
2118       // shift will not be folded into the compare (SUBS).
2119       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2120       Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2121                      .getValue(1);
2122     } else {
2123       SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
2124       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2125       Overflow =
2126           DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2127                       DAG.getConstant(0, DL, MVT::i64),
2128                       UpperBits).getValue(1);
2129     }
2130     break;
2131   }
2132   } // switch (...)
2133 
2134   if (Opc) {
2135     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
2136 
2137     // Emit the AArch64 operation with overflow check.
2138     Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
2139     Overflow = Value.getValue(1);
2140   }
2141   return std::make_pair(Value, Overflow);
2142 }
2143 
2144 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
2145                                              RTLIB::Libcall Call) const {
2146   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2147   return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
2148 }
2149 
2150 // Returns true if the given Op is the overflow flag result of an overflow
2151 // intrinsic operation.
2152 static bool isOverflowIntrOpRes(SDValue Op) {
2153   unsigned Opc = Op.getOpcode();
2154   return (Op.getResNo() == 1 &&
2155           (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2156            Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2157 }
2158 
2159 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
2160   SDValue Sel = Op.getOperand(0);
2161   SDValue Other = Op.getOperand(1);
2162   SDLoc dl(Sel);
2163 
2164   // If the operand is an overflow checking operation, invert the condition
2165   // code and kill the Not operation. I.e., transform:
2166   // (xor (overflow_op_bool, 1))
2167   //   -->
2168   // (csel 1, 0, invert(cc), overflow_op_bool)
2169   // ... which later gets transformed to just a cset instruction with an
2170   // inverted condition code, rather than a cset + eor sequence.
2171   if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
2172     // Only lower legal XALUO ops.
2173     if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
2174       return SDValue();
2175 
2176     SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2177     SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2178     AArch64CC::CondCode CC;
2179     SDValue Value, Overflow;
2180     std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
2181     SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2182     return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
2183                        CCVal, Overflow);
2184   }
2185   // If neither operand is a SELECT_CC, give up.
2186   if (Sel.getOpcode() != ISD::SELECT_CC)
2187     std::swap(Sel, Other);
2188   if (Sel.getOpcode() != ISD::SELECT_CC)
2189     return Op;
2190 
2191   // The folding we want to perform is:
2192   // (xor x, (select_cc a, b, cc, 0, -1) )
2193   //   -->
2194   // (csel x, (xor x, -1), cc ...)
2195   //
2196   // The latter will get matched to a CSINV instruction.
2197 
2198   ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
2199   SDValue LHS = Sel.getOperand(0);
2200   SDValue RHS = Sel.getOperand(1);
2201   SDValue TVal = Sel.getOperand(2);
2202   SDValue FVal = Sel.getOperand(3);
2203 
2204   // FIXME: This could be generalized to non-integer comparisons.
2205   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
2206     return Op;
2207 
2208   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
2209   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
2210 
2211   // The values aren't constants, this isn't the pattern we're looking for.
2212   if (!CFVal || !CTVal)
2213     return Op;
2214 
2215   // We can commute the SELECT_CC by inverting the condition.  This
2216   // might be needed to make this fit into a CSINV pattern.
2217   if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
2218     std::swap(TVal, FVal);
2219     std::swap(CTVal, CFVal);
2220     CC = ISD::getSetCCInverse(CC, true);
2221   }
2222 
2223   // If the constants line up, perform the transform!
2224   if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
2225     SDValue CCVal;
2226     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2227 
2228     FVal = Other;
2229     TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
2230                        DAG.getConstant(-1ULL, dl, Other.getValueType()));
2231 
2232     return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
2233                        CCVal, Cmp);
2234   }
2235 
2236   return Op;
2237 }
2238 
2239 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2240   EVT VT = Op.getValueType();
2241 
2242   // Let legalize expand this if it isn't a legal type yet.
2243   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2244     return SDValue();
2245 
2246   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
2247 
2248   unsigned Opc;
2249   bool ExtraOp = false;
2250   switch (Op.getOpcode()) {
2251   default:
2252     llvm_unreachable("Invalid code");
2253   case ISD::ADDC:
2254     Opc = AArch64ISD::ADDS;
2255     break;
2256   case ISD::SUBC:
2257     Opc = AArch64ISD::SUBS;
2258     break;
2259   case ISD::ADDE:
2260     Opc = AArch64ISD::ADCS;
2261     ExtraOp = true;
2262     break;
2263   case ISD::SUBE:
2264     Opc = AArch64ISD::SBCS;
2265     ExtraOp = true;
2266     break;
2267   }
2268 
2269   if (!ExtraOp)
2270     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2271   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2272                      Op.getOperand(2));
2273 }
2274 
2275 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
2276   // Let legalize expand this if it isn't a legal type yet.
2277   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
2278     return SDValue();
2279 
2280   SDLoc dl(Op);
2281   AArch64CC::CondCode CC;
2282   // The actual operation that sets the overflow or carry flag.
2283   SDValue Value, Overflow;
2284   std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
2285 
2286   // We use 0 and 1 as false and true values.
2287   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2288   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2289 
2290   // We use an inverted condition, because the conditional select is inverted
2291   // too. This will allow it to be selected to a single instruction:
2292   // CSINC Wd, WZR, WZR, invert(cond).
2293   SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2294   Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
2295                          CCVal, Overflow);
2296 
2297   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
2298   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
2299 }
2300 
2301 // Prefetch operands are:
2302 // 1: Address to prefetch
2303 // 2: bool isWrite
2304 // 3: int locality (0 = no locality ... 3 = extreme locality)
2305 // 4: bool isDataCache
2306 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
2307   SDLoc DL(Op);
2308   unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2309   unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
2310   unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2311 
2312   bool IsStream = !Locality;
2313   // When the locality number is set
2314   if (Locality) {
2315     // The front-end should have filtered out the out-of-range values
2316     assert(Locality <= 3 && "Prefetch locality out-of-range");
2317     // The locality degree is the opposite of the cache speed.
2318     // Put the number the other way around.
2319     // The encoding starts at 0 for level 1
2320     Locality = 3 - Locality;
2321   }
2322 
2323   // built the mask value encoding the expected behavior.
2324   unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
2325                    (!IsData << 3) |     // IsDataCache bit
2326                    (Locality << 1) |    // Cache level bits
2327                    (unsigned)IsStream;  // Stream bit
2328   return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
2329                      DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
2330 }
2331 
2332 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
2333                                               SelectionDAG &DAG) const {
2334   assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2335 
2336   RTLIB::Libcall LC;
2337   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2338 
2339   return LowerF128Call(Op, DAG, LC);
2340 }
2341 
2342 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
2343                                              SelectionDAG &DAG) const {
2344   if (Op.getOperand(0).getValueType() != MVT::f128) {
2345     // It's legal except when f128 is involved
2346     return Op;
2347   }
2348 
2349   RTLIB::Libcall LC;
2350   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2351 
2352   // FP_ROUND node has a second operand indicating whether it is known to be
2353   // precise. That doesn't take part in the LibCall so we can't directly use
2354   // LowerF128Call.
2355   SDValue SrcVal = Op.getOperand(0);
2356   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
2357                      SDLoc(Op)).first;
2358 }
2359 
2360 SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
2361                                                     SelectionDAG &DAG) const {
2362   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2363   // Any additional optimization in this function should be recorded
2364   // in the cost tables.
2365   EVT InVT = Op.getOperand(0).getValueType();
2366   EVT VT = Op.getValueType();
2367   unsigned NumElts = InVT.getVectorNumElements();
2368 
2369   // f16 conversions are promoted to f32 when full fp16 is not supported.
2370   if (InVT.getVectorElementType() == MVT::f16 &&
2371       !Subtarget->hasFullFP16()) {
2372     MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
2373     SDLoc dl(Op);
2374     return DAG.getNode(
2375         Op.getOpcode(), dl, Op.getValueType(),
2376         DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
2377   }
2378 
2379   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2380     SDLoc dl(Op);
2381     SDValue Cv =
2382         DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
2383                     Op.getOperand(0));
2384     return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
2385   }
2386 
2387   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2388     SDLoc dl(Op);
2389     MVT ExtVT =
2390         MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
2391                          VT.getVectorNumElements());
2392     SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
2393     return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
2394   }
2395 
2396   // Type changing conversions are illegal.
2397   return Op;
2398 }
2399 
2400 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
2401                                               SelectionDAG &DAG) const {
2402   if (Op.getOperand(0).getValueType().isVector())
2403     return LowerVectorFP_TO_INT(Op, DAG);
2404 
2405   // f16 conversions are promoted to f32 when full fp16 is not supported.
2406   if (Op.getOperand(0).getValueType() == MVT::f16 &&
2407       !Subtarget->hasFullFP16()) {
2408     SDLoc dl(Op);
2409     return DAG.getNode(
2410         Op.getOpcode(), dl, Op.getValueType(),
2411         DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
2412   }
2413 
2414   if (Op.getOperand(0).getValueType() != MVT::f128) {
2415     // It's legal except when f128 is involved
2416     return Op;
2417   }
2418 
2419   RTLIB::Libcall LC;
2420   if (Op.getOpcode() == ISD::FP_TO_SINT)
2421     LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2422   else
2423     LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2424 
2425   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2426   return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
2427 }
2428 
2429 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2430   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2431   // Any additional optimization in this function should be recorded
2432   // in the cost tables.
2433   EVT VT = Op.getValueType();
2434   SDLoc dl(Op);
2435   SDValue In = Op.getOperand(0);
2436   EVT InVT = In.getValueType();
2437 
2438   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2439     MVT CastVT =
2440         MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
2441                          InVT.getVectorNumElements());
2442     In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
2443     return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
2444   }
2445 
2446   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2447     unsigned CastOpc =
2448         Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2449     EVT CastVT = VT.changeVectorElementTypeToInteger();
2450     In = DAG.getNode(CastOpc, dl, CastVT, In);
2451     return DAG.getNode(Op.getOpcode(), dl, VT, In);
2452   }
2453 
2454   return Op;
2455 }
2456 
2457 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2458                                             SelectionDAG &DAG) const {
2459   if (Op.getValueType().isVector())
2460     return LowerVectorINT_TO_FP(Op, DAG);
2461 
2462   // f16 conversions are promoted to f32 when full fp16 is not supported.
2463   if (Op.getValueType() == MVT::f16 &&
2464       !Subtarget->hasFullFP16()) {
2465     SDLoc dl(Op);
2466     return DAG.getNode(
2467         ISD::FP_ROUND, dl, MVT::f16,
2468         DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2469         DAG.getIntPtrConstant(0, dl));
2470   }
2471 
2472   // i128 conversions are libcalls.
2473   if (Op.getOperand(0).getValueType() == MVT::i128)
2474     return SDValue();
2475 
2476   // Other conversions are legal, unless it's to the completely software-based
2477   // fp128.
2478   if (Op.getValueType() != MVT::f128)
2479     return Op;
2480 
2481   RTLIB::Libcall LC;
2482   if (Op.getOpcode() == ISD::SINT_TO_FP)
2483     LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2484   else
2485     LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2486 
2487   return LowerF128Call(Op, DAG, LC);
2488 }
2489 
2490 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2491                                             SelectionDAG &DAG) const {
2492   // For iOS, we want to call an alternative entry point: __sincos_stret,
2493   // which returns the values in two S / D registers.
2494   SDLoc dl(Op);
2495   SDValue Arg = Op.getOperand(0);
2496   EVT ArgVT = Arg.getValueType();
2497   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2498 
2499   ArgListTy Args;
2500   ArgListEntry Entry;
2501 
2502   Entry.Node = Arg;
2503   Entry.Ty = ArgTy;
2504   Entry.IsSExt = false;
2505   Entry.IsZExt = false;
2506   Args.push_back(Entry);
2507 
2508   RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
2509                                         : RTLIB::SINCOS_STRET_F32;
2510   const char *LibcallName = getLibcallName(LC);
2511   SDValue Callee =
2512       DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2513 
2514   StructType *RetTy = StructType::get(ArgTy, ArgTy);
2515   TargetLowering::CallLoweringInfo CLI(DAG);
2516   CLI.setDebugLoc(dl)
2517       .setChain(DAG.getEntryNode())
2518       .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2519 
2520   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2521   return CallResult.first;
2522 }
2523 
2524 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2525   if (Op.getValueType() != MVT::f16)
2526     return SDValue();
2527 
2528   assert(Op.getOperand(0).getValueType() == MVT::i16);
2529   SDLoc DL(Op);
2530 
2531   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2532   Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2533   return SDValue(
2534       DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2535                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2536       0);
2537 }
2538 
2539 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2540   if (OrigVT.getSizeInBits() >= 64)
2541     return OrigVT;
2542 
2543   assert(OrigVT.isSimple() && "Expecting a simple value type");
2544 
2545   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2546   switch (OrigSimpleTy) {
2547   default: llvm_unreachable("Unexpected Vector Type");
2548   case MVT::v2i8:
2549   case MVT::v2i16:
2550      return MVT::v2i32;
2551   case MVT::v4i8:
2552     return  MVT::v4i16;
2553   }
2554 }
2555 
2556 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2557                                                  const EVT &OrigTy,
2558                                                  const EVT &ExtTy,
2559                                                  unsigned ExtOpcode) {
2560   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2561   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2562   // 64-bits we need to insert a new extension so that it will be 64-bits.
2563   assert(ExtTy.is128BitVector() && "Unexpected extension size");
2564   if (OrigTy.getSizeInBits() >= 64)
2565     return N;
2566 
2567   // Must extend size to at least 64 bits to be used as an operand for VMULL.
2568   EVT NewVT = getExtensionTo64Bits(OrigTy);
2569 
2570   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2571 }
2572 
2573 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2574                                    bool isSigned) {
2575   EVT VT = N->getValueType(0);
2576 
2577   if (N->getOpcode() != ISD::BUILD_VECTOR)
2578     return false;
2579 
2580   for (const SDValue &Elt : N->op_values()) {
2581     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2582       unsigned EltSize = VT.getScalarSizeInBits();
2583       unsigned HalfSize = EltSize / 2;
2584       if (isSigned) {
2585         if (!isIntN(HalfSize, C->getSExtValue()))
2586           return false;
2587       } else {
2588         if (!isUIntN(HalfSize, C->getZExtValue()))
2589           return false;
2590       }
2591       continue;
2592     }
2593     return false;
2594   }
2595 
2596   return true;
2597 }
2598 
2599 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2600   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2601     return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2602                                              N->getOperand(0)->getValueType(0),
2603                                              N->getValueType(0),
2604                                              N->getOpcode());
2605 
2606   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2607   EVT VT = N->getValueType(0);
2608   SDLoc dl(N);
2609   unsigned EltSize = VT.getScalarSizeInBits() / 2;
2610   unsigned NumElts = VT.getVectorNumElements();
2611   MVT TruncVT = MVT::getIntegerVT(EltSize);
2612   SmallVector<SDValue, 8> Ops;
2613   for (unsigned i = 0; i != NumElts; ++i) {
2614     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2615     const APInt &CInt = C->getAPIntValue();
2616     // Element types smaller than 32 bits are not legal, so use i32 elements.
2617     // The values are implicitly truncated so sext vs. zext doesn't matter.
2618     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2619   }
2620   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2621 }
2622 
2623 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2624   return N->getOpcode() == ISD::SIGN_EXTEND ||
2625          isExtendedBUILD_VECTOR(N, DAG, true);
2626 }
2627 
2628 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2629   return N->getOpcode() == ISD::ZERO_EXTEND ||
2630          isExtendedBUILD_VECTOR(N, DAG, false);
2631 }
2632 
2633 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2634   unsigned Opcode = N->getOpcode();
2635   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2636     SDNode *N0 = N->getOperand(0).getNode();
2637     SDNode *N1 = N->getOperand(1).getNode();
2638     return N0->hasOneUse() && N1->hasOneUse() &&
2639       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2640   }
2641   return false;
2642 }
2643 
2644 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2645   unsigned Opcode = N->getOpcode();
2646   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2647     SDNode *N0 = N->getOperand(0).getNode();
2648     SDNode *N1 = N->getOperand(1).getNode();
2649     return N0->hasOneUse() && N1->hasOneUse() &&
2650       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2651   }
2652   return false;
2653 }
2654 
2655 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2656                                                 SelectionDAG &DAG) const {
2657   // The rounding mode is in bits 23:22 of the FPSCR.
2658   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2659   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2660   // so that the shift + and get folded into a bitfield extract.
2661   SDLoc dl(Op);
2662 
2663   SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
2664                                 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
2665                                                 MVT::i64));
2666   SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
2667   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
2668                                   DAG.getConstant(1U << 22, dl, MVT::i32));
2669   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2670                               DAG.getConstant(22, dl, MVT::i32));
2671   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2672                      DAG.getConstant(3, dl, MVT::i32));
2673 }
2674 
2675 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2676   // Multiplications are only custom-lowered for 128-bit vectors so that
2677   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
2678   EVT VT = Op.getValueType();
2679   assert(VT.is128BitVector() && VT.isInteger() &&
2680          "unexpected type for custom-lowering ISD::MUL");
2681   SDNode *N0 = Op.getOperand(0).getNode();
2682   SDNode *N1 = Op.getOperand(1).getNode();
2683   unsigned NewOpc = 0;
2684   bool isMLA = false;
2685   bool isN0SExt = isSignExtended(N0, DAG);
2686   bool isN1SExt = isSignExtended(N1, DAG);
2687   if (isN0SExt && isN1SExt)
2688     NewOpc = AArch64ISD::SMULL;
2689   else {
2690     bool isN0ZExt = isZeroExtended(N0, DAG);
2691     bool isN1ZExt = isZeroExtended(N1, DAG);
2692     if (isN0ZExt && isN1ZExt)
2693       NewOpc = AArch64ISD::UMULL;
2694     else if (isN1SExt || isN1ZExt) {
2695       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2696       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2697       if (isN1SExt && isAddSubSExt(N0, DAG)) {
2698         NewOpc = AArch64ISD::SMULL;
2699         isMLA = true;
2700       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2701         NewOpc =  AArch64ISD::UMULL;
2702         isMLA = true;
2703       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2704         std::swap(N0, N1);
2705         NewOpc =  AArch64ISD::UMULL;
2706         isMLA = true;
2707       }
2708     }
2709 
2710     if (!NewOpc) {
2711       if (VT == MVT::v2i64)
2712         // Fall through to expand this.  It is not legal.
2713         return SDValue();
2714       else
2715         // Other vector multiplications are legal.
2716         return Op;
2717     }
2718   }
2719 
2720   // Legalize to a S/UMULL instruction
2721   SDLoc DL(Op);
2722   SDValue Op0;
2723   SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2724   if (!isMLA) {
2725     Op0 = skipExtensionForVectorMULL(N0, DAG);
2726     assert(Op0.getValueType().is64BitVector() &&
2727            Op1.getValueType().is64BitVector() &&
2728            "unexpected types for extended operands to VMULL");
2729     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2730   }
2731   // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2732   // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2733   // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2734   SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2735   SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2736   EVT Op1VT = Op1.getValueType();
2737   return DAG.getNode(N0->getOpcode(), DL, VT,
2738                      DAG.getNode(NewOpc, DL, VT,
2739                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2740                      DAG.getNode(NewOpc, DL, VT,
2741                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2742 }
2743 
2744 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2745                                                      SelectionDAG &DAG) const {
2746   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2747   SDLoc dl(Op);
2748   switch (IntNo) {
2749   default: return SDValue();    // Don't custom lower most intrinsics.
2750   case Intrinsic::thread_pointer: {
2751     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2752     return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2753   }
2754   case Intrinsic::aarch64_neon_abs: {
2755     EVT Ty = Op.getValueType();
2756     if (Ty == MVT::i64) {
2757       SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
2758                                    Op.getOperand(1));
2759       Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
2760       return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
2761     } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
2762       return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
2763     } else {
2764       report_fatal_error("Unexpected type for AArch64 NEON intrinic");
2765     }
2766   }
2767   case Intrinsic::aarch64_neon_smax:
2768     return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2769                        Op.getOperand(1), Op.getOperand(2));
2770   case Intrinsic::aarch64_neon_umax:
2771     return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2772                        Op.getOperand(1), Op.getOperand(2));
2773   case Intrinsic::aarch64_neon_smin:
2774     return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2775                        Op.getOperand(1), Op.getOperand(2));
2776   case Intrinsic::aarch64_neon_umin:
2777     return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2778                        Op.getOperand(1), Op.getOperand(2));
2779 
2780   case Intrinsic::localaddress: {
2781     const auto &MF = DAG.getMachineFunction();
2782     const auto *RegInfo = Subtarget->getRegisterInfo();
2783     unsigned Reg = RegInfo->getLocalAddressRegister(MF);
2784     return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
2785                               Op.getSimpleValueType());
2786   }
2787 
2788   case Intrinsic::eh_recoverfp: {
2789     // FIXME: This needs to be implemented to correctly handle highly aligned
2790     // stack objects. For now we simply return the incoming FP. Refer D53541
2791     // for more details.
2792     SDValue FnOp = Op.getOperand(1);
2793     SDValue IncomingFPOp = Op.getOperand(2);
2794     GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
2795     auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
2796     if (!Fn)
2797       report_fatal_error(
2798           "llvm.eh.recoverfp must take a function as the first argument");
2799     return IncomingFPOp;
2800   }
2801   }
2802 }
2803 
2804 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
2805 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
2806                                         EVT VT, EVT MemVT,
2807                                         SelectionDAG &DAG) {
2808   assert(VT.isVector() && "VT should be a vector type");
2809   assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
2810 
2811   SDValue Value = ST->getValue();
2812 
2813   // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
2814   // the word lane which represent the v4i8 subvector.  It optimizes the store
2815   // to:
2816   //
2817   //   xtn  v0.8b, v0.8h
2818   //   str  s0, [x0]
2819 
2820   SDValue Undef = DAG.getUNDEF(MVT::i16);
2821   SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
2822                                         {Undef, Undef, Undef, Undef});
2823 
2824   SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
2825                                  Value, UndefVec);
2826   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
2827 
2828   Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
2829   SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
2830                                      Trunc, DAG.getConstant(0, DL, MVT::i64));
2831 
2832   return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
2833                       ST->getBasePtr(), ST->getMemOperand());
2834 }
2835 
2836 // Custom lowering for any store, vector or scalar and/or default or with
2837 // a truncate operations.  Currently only custom lower truncate operation
2838 // from vector v4i16 to v4i8.
2839 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
2840                                           SelectionDAG &DAG) const {
2841   SDLoc Dl(Op);
2842   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
2843   assert (StoreNode && "Can only custom lower store nodes");
2844 
2845   SDValue Value = StoreNode->getValue();
2846 
2847   EVT VT = Value.getValueType();
2848   EVT MemVT = StoreNode->getMemoryVT();
2849 
2850   assert (VT.isVector() && "Can only custom lower vector store types");
2851 
2852   unsigned AS = StoreNode->getAddressSpace();
2853   unsigned Align = StoreNode->getAlignment();
2854   if (Align < MemVT.getStoreSize() &&
2855       !allowsMisalignedMemoryAccesses(
2856           MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) {
2857     return scalarizeVectorStore(StoreNode, DAG);
2858   }
2859 
2860   if (StoreNode->isTruncatingStore()) {
2861     return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
2862   }
2863 
2864   return SDValue();
2865 }
2866 
2867 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2868                                               SelectionDAG &DAG) const {
2869   LLVM_DEBUG(dbgs() << "Custom lowering: ");
2870   LLVM_DEBUG(Op.dump());
2871 
2872   switch (Op.getOpcode()) {
2873   default:
2874     llvm_unreachable("unimplemented operand");
2875     return SDValue();
2876   case ISD::BITCAST:
2877     return LowerBITCAST(Op, DAG);
2878   case ISD::GlobalAddress:
2879     return LowerGlobalAddress(Op, DAG);
2880   case ISD::GlobalTLSAddress:
2881     return LowerGlobalTLSAddress(Op, DAG);
2882   case ISD::SETCC:
2883     return LowerSETCC(Op, DAG);
2884   case ISD::BR_CC:
2885     return LowerBR_CC(Op, DAG);
2886   case ISD::SELECT:
2887     return LowerSELECT(Op, DAG);
2888   case ISD::SELECT_CC:
2889     return LowerSELECT_CC(Op, DAG);
2890   case ISD::JumpTable:
2891     return LowerJumpTable(Op, DAG);
2892   case ISD::BR_JT:
2893     return LowerBR_JT(Op, DAG);
2894   case ISD::ConstantPool:
2895     return LowerConstantPool(Op, DAG);
2896   case ISD::BlockAddress:
2897     return LowerBlockAddress(Op, DAG);
2898   case ISD::VASTART:
2899     return LowerVASTART(Op, DAG);
2900   case ISD::VACOPY:
2901     return LowerVACOPY(Op, DAG);
2902   case ISD::VAARG:
2903     return LowerVAARG(Op, DAG);
2904   case ISD::ADDC:
2905   case ISD::ADDE:
2906   case ISD::SUBC:
2907   case ISD::SUBE:
2908     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2909   case ISD::SADDO:
2910   case ISD::UADDO:
2911   case ISD::SSUBO:
2912   case ISD::USUBO:
2913   case ISD::SMULO:
2914   case ISD::UMULO:
2915     return LowerXALUO(Op, DAG);
2916   case ISD::FADD:
2917     return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2918   case ISD::FSUB:
2919     return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2920   case ISD::FMUL:
2921     return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2922   case ISD::FDIV:
2923     return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2924   case ISD::FP_ROUND:
2925     return LowerFP_ROUND(Op, DAG);
2926   case ISD::FP_EXTEND:
2927     return LowerFP_EXTEND(Op, DAG);
2928   case ISD::FRAMEADDR:
2929     return LowerFRAMEADDR(Op, DAG);
2930   case ISD::SPONENTRY:
2931     return LowerSPONENTRY(Op, DAG);
2932   case ISD::RETURNADDR:
2933     return LowerRETURNADDR(Op, DAG);
2934   case ISD::ADDROFRETURNADDR:
2935     return LowerADDROFRETURNADDR(Op, DAG);
2936   case ISD::INSERT_VECTOR_ELT:
2937     return LowerINSERT_VECTOR_ELT(Op, DAG);
2938   case ISD::EXTRACT_VECTOR_ELT:
2939     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2940   case ISD::BUILD_VECTOR:
2941     return LowerBUILD_VECTOR(Op, DAG);
2942   case ISD::VECTOR_SHUFFLE:
2943     return LowerVECTOR_SHUFFLE(Op, DAG);
2944   case ISD::EXTRACT_SUBVECTOR:
2945     return LowerEXTRACT_SUBVECTOR(Op, DAG);
2946   case ISD::SRA:
2947   case ISD::SRL:
2948   case ISD::SHL:
2949     return LowerVectorSRA_SRL_SHL(Op, DAG);
2950   case ISD::SHL_PARTS:
2951     return LowerShiftLeftParts(Op, DAG);
2952   case ISD::SRL_PARTS:
2953   case ISD::SRA_PARTS:
2954     return LowerShiftRightParts(Op, DAG);
2955   case ISD::CTPOP:
2956     return LowerCTPOP(Op, DAG);
2957   case ISD::FCOPYSIGN:
2958     return LowerFCOPYSIGN(Op, DAG);
2959   case ISD::OR:
2960     return LowerVectorOR(Op, DAG);
2961   case ISD::XOR:
2962     return LowerXOR(Op, DAG);
2963   case ISD::PREFETCH:
2964     return LowerPREFETCH(Op, DAG);
2965   case ISD::SINT_TO_FP:
2966   case ISD::UINT_TO_FP:
2967     return LowerINT_TO_FP(Op, DAG);
2968   case ISD::FP_TO_SINT:
2969   case ISD::FP_TO_UINT:
2970     return LowerFP_TO_INT(Op, DAG);
2971   case ISD::FSINCOS:
2972     return LowerFSINCOS(Op, DAG);
2973   case ISD::FLT_ROUNDS_:
2974     return LowerFLT_ROUNDS_(Op, DAG);
2975   case ISD::MUL:
2976     return LowerMUL(Op, DAG);
2977   case ISD::INTRINSIC_WO_CHAIN:
2978     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2979   case ISD::STORE:
2980     return LowerSTORE(Op, DAG);
2981   case ISD::VECREDUCE_ADD:
2982   case ISD::VECREDUCE_SMAX:
2983   case ISD::VECREDUCE_SMIN:
2984   case ISD::VECREDUCE_UMAX:
2985   case ISD::VECREDUCE_UMIN:
2986   case ISD::VECREDUCE_FMAX:
2987   case ISD::VECREDUCE_FMIN:
2988     return LowerVECREDUCE(Op, DAG);
2989   case ISD::ATOMIC_LOAD_SUB:
2990     return LowerATOMIC_LOAD_SUB(Op, DAG);
2991   case ISD::ATOMIC_LOAD_AND:
2992     return LowerATOMIC_LOAD_AND(Op, DAG);
2993   case ISD::DYNAMIC_STACKALLOC:
2994     return LowerDYNAMIC_STACKALLOC(Op, DAG);
2995   }
2996 }
2997 
2998 //===----------------------------------------------------------------------===//
2999 //                      Calling Convention Implementation
3000 //===----------------------------------------------------------------------===//
3001 
3002 /// Selects the correct CCAssignFn for a given CallingConvention value.
3003 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
3004                                                      bool IsVarArg) const {
3005   switch (CC) {
3006   default:
3007     report_fatal_error("Unsupported calling convention.");
3008   case CallingConv::WebKit_JS:
3009     return CC_AArch64_WebKit_JS;
3010   case CallingConv::GHC:
3011     return CC_AArch64_GHC;
3012   case CallingConv::C:
3013   case CallingConv::Fast:
3014   case CallingConv::PreserveMost:
3015   case CallingConv::CXX_FAST_TLS:
3016   case CallingConv::Swift:
3017     if (Subtarget->isTargetWindows() && IsVarArg)
3018       return CC_AArch64_Win64_VarArg;
3019     if (!Subtarget->isTargetDarwin())
3020       return CC_AArch64_AAPCS;
3021     return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
3022   case CallingConv::Win64:
3023     return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
3024   case CallingConv::AArch64_VectorCall:
3025     return CC_AArch64_AAPCS;
3026   }
3027 }
3028 
3029 CCAssignFn *
3030 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
3031   return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
3032                                       : RetCC_AArch64_AAPCS;
3033 }
3034 
3035 SDValue AArch64TargetLowering::LowerFormalArguments(
3036     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3037     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3038     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3039   MachineFunction &MF = DAG.getMachineFunction();
3040   MachineFrameInfo &MFI = MF.getFrameInfo();
3041   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3042 
3043   // Assign locations to all of the incoming arguments.
3044   SmallVector<CCValAssign, 16> ArgLocs;
3045   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3046                  *DAG.getContext());
3047 
3048   // At this point, Ins[].VT may already be promoted to i32. To correctly
3049   // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3050   // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3051   // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
3052   // we use a special version of AnalyzeFormalArguments to pass in ValVT and
3053   // LocVT.
3054   unsigned NumArgs = Ins.size();
3055   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3056   unsigned CurArgIdx = 0;
3057   for (unsigned i = 0; i != NumArgs; ++i) {
3058     MVT ValVT = Ins[i].VT;
3059     if (Ins[i].isOrigArg()) {
3060       std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3061       CurArgIdx = Ins[i].getOrigArgIndex();
3062 
3063       // Get type of the original argument.
3064       EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
3065                                   /*AllowUnknown*/ true);
3066       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
3067       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3068       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3069         ValVT = MVT::i8;
3070       else if (ActualMVT == MVT::i16)
3071         ValVT = MVT::i16;
3072     }
3073     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3074     bool Res =
3075         AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
3076     assert(!Res && "Call operand has unhandled type");
3077     (void)Res;
3078   }
3079   assert(ArgLocs.size() == Ins.size());
3080   SmallVector<SDValue, 16> ArgValues;
3081   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3082     CCValAssign &VA = ArgLocs[i];
3083 
3084     if (Ins[i].Flags.isByVal()) {
3085       // Byval is used for HFAs in the PCS, but the system should work in a
3086       // non-compliant manner for larger structs.
3087       EVT PtrVT = getPointerTy(DAG.getDataLayout());
3088       int Size = Ins[i].Flags.getByValSize();
3089       unsigned NumRegs = (Size + 7) / 8;
3090 
3091       // FIXME: This works on big-endian for composite byvals, which are the common
3092       // case. It should also work for fundamental types too.
3093       unsigned FrameIdx =
3094         MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
3095       SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
3096       InVals.push_back(FrameIdxN);
3097 
3098       continue;
3099     }
3100 
3101     if (VA.isRegLoc()) {
3102       // Arguments stored in registers.
3103       EVT RegVT = VA.getLocVT();
3104 
3105       SDValue ArgValue;
3106       const TargetRegisterClass *RC;
3107 
3108       if (RegVT == MVT::i32)
3109         RC = &AArch64::GPR32RegClass;
3110       else if (RegVT == MVT::i64)
3111         RC = &AArch64::GPR64RegClass;
3112       else if (RegVT == MVT::f16)
3113         RC = &AArch64::FPR16RegClass;
3114       else if (RegVT == MVT::f32)
3115         RC = &AArch64::FPR32RegClass;
3116       else if (RegVT == MVT::f64 || RegVT.is64BitVector())
3117         RC = &AArch64::FPR64RegClass;
3118       else if (RegVT == MVT::f128 || RegVT.is128BitVector())
3119         RC = &AArch64::FPR128RegClass;
3120       else
3121         llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3122 
3123       // Transform the arguments in physical registers into virtual ones.
3124       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3125       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3126 
3127       // If this is an 8, 16 or 32-bit value, it is really passed promoted
3128       // to 64 bits.  Insert an assert[sz]ext to capture this, then
3129       // truncate to the right size.
3130       switch (VA.getLocInfo()) {
3131       default:
3132         llvm_unreachable("Unknown loc info!");
3133       case CCValAssign::Full:
3134         break;
3135       case CCValAssign::BCvt:
3136         ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
3137         break;
3138       case CCValAssign::AExt:
3139       case CCValAssign::SExt:
3140       case CCValAssign::ZExt:
3141         // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
3142         // nodes after our lowering.
3143         assert(RegVT == Ins[i].VT && "incorrect register location selected");
3144         break;
3145       }
3146 
3147       InVals.push_back(ArgValue);
3148 
3149     } else { // VA.isRegLoc()
3150       assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
3151       unsigned ArgOffset = VA.getLocMemOffset();
3152       unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
3153 
3154       uint32_t BEAlign = 0;
3155       if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
3156           !Ins[i].Flags.isInConsecutiveRegs())
3157         BEAlign = 8 - ArgSize;
3158 
3159       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
3160 
3161       // Create load nodes to retrieve arguments from the stack.
3162       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3163       SDValue ArgValue;
3164 
3165       // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3166       ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3167       MVT MemVT = VA.getValVT();
3168 
3169       switch (VA.getLocInfo()) {
3170       default:
3171         break;
3172       case CCValAssign::BCvt:
3173         MemVT = VA.getLocVT();
3174         break;
3175       case CCValAssign::SExt:
3176         ExtType = ISD::SEXTLOAD;
3177         break;
3178       case CCValAssign::ZExt:
3179         ExtType = ISD::ZEXTLOAD;
3180         break;
3181       case CCValAssign::AExt:
3182         ExtType = ISD::EXTLOAD;
3183         break;
3184       }
3185 
3186       ArgValue = DAG.getExtLoad(
3187           ExtType, DL, VA.getLocVT(), Chain, FIN,
3188           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3189           MemVT);
3190 
3191       InVals.push_back(ArgValue);
3192     }
3193   }
3194 
3195   // varargs
3196   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3197   if (isVarArg) {
3198     if (!Subtarget->isTargetDarwin() || IsWin64) {
3199       // The AAPCS variadic function ABI is identical to the non-variadic
3200       // one. As a result there may be more arguments in registers and we should
3201       // save them for future reference.
3202       // Win64 variadic functions also pass arguments in registers, but all float
3203       // arguments are passed in integer registers.
3204       saveVarArgRegisters(CCInfo, DAG, DL, Chain);
3205     }
3206 
3207     // This will point to the next argument passed via stack.
3208     unsigned StackOffset = CCInfo.getNextStackOffset();
3209     // We currently pass all varargs at 8-byte alignment.
3210     StackOffset = ((StackOffset + 7) & ~7);
3211     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
3212 
3213     if (MFI.hasMustTailInVarArgFunc()) {
3214       SmallVector<MVT, 2> RegParmTypes;
3215       RegParmTypes.push_back(MVT::i64);
3216       RegParmTypes.push_back(MVT::f128);
3217       // Compute the set of forwarded registers. The rest are scratch.
3218       SmallVectorImpl<ForwardedRegister> &Forwards =
3219                                        FuncInfo->getForwardedMustTailRegParms();
3220       CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
3221                                                CC_AArch64_AAPCS);
3222 
3223       // Conservatively forward X8, since it might be used for aggregate return.
3224       if (!CCInfo.isAllocated(AArch64::X8)) {
3225         unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
3226         Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
3227       }
3228     }
3229   }
3230 
3231   // On Windows, InReg pointers must be returned, so record the pointer in a
3232   // virtual register at the start of the function so it can be returned in the
3233   // epilogue.
3234   if (IsWin64) {
3235     for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
3236       if (Ins[I].Flags.isInReg()) {
3237         assert(!FuncInfo->getSRetReturnReg());
3238 
3239         MVT PtrTy = getPointerTy(DAG.getDataLayout());
3240         unsigned Reg =
3241           MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
3242         FuncInfo->setSRetReturnReg(Reg);
3243 
3244         SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
3245         Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3246         break;
3247       }
3248     }
3249   }
3250 
3251   unsigned StackArgSize = CCInfo.getNextStackOffset();
3252   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3253   if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
3254     // This is a non-standard ABI so by fiat I say we're allowed to make full
3255     // use of the stack area to be popped, which must be aligned to 16 bytes in
3256     // any case:
3257     StackArgSize = alignTo(StackArgSize, 16);
3258 
3259     // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3260     // a multiple of 16.
3261     FuncInfo->setArgumentStackToRestore(StackArgSize);
3262 
3263     // This realignment carries over to the available bytes below. Our own
3264     // callers will guarantee the space is free by giving an aligned value to
3265     // CALLSEQ_START.
3266   }
3267   // Even if we're not expected to free up the space, it's useful to know how
3268   // much is there while considering tail calls (because we can reuse it).
3269   FuncInfo->setBytesInStackArgArea(StackArgSize);
3270 
3271   if (Subtarget->hasCustomCallingConv())
3272     Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
3273 
3274   return Chain;
3275 }
3276 
3277 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
3278                                                 SelectionDAG &DAG,
3279                                                 const SDLoc &DL,
3280                                                 SDValue &Chain) const {
3281   MachineFunction &MF = DAG.getMachineFunction();
3282   MachineFrameInfo &MFI = MF.getFrameInfo();
3283   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3284   auto PtrVT = getPointerTy(DAG.getDataLayout());
3285   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3286 
3287   SmallVector<SDValue, 8> MemOps;
3288 
3289   static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
3290                                           AArch64::X3, AArch64::X4, AArch64::X5,
3291                                           AArch64::X6, AArch64::X7 };
3292   static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
3293   unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
3294 
3295   unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
3296   int GPRIdx = 0;
3297   if (GPRSaveSize != 0) {
3298     if (IsWin64) {
3299       GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
3300       if (GPRSaveSize & 15)
3301         // The extra size here, if triggered, will always be 8.
3302         MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
3303     } else
3304       GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
3305 
3306     SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
3307 
3308     for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
3309       unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
3310       SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
3311       SDValue Store = DAG.getStore(
3312           Val.getValue(1), DL, Val, FIN,
3313           IsWin64
3314               ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
3315                                                   GPRIdx,
3316                                                   (i - FirstVariadicGPR) * 8)
3317               : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
3318       MemOps.push_back(Store);
3319       FIN =
3320           DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
3321     }
3322   }
3323   FuncInfo->setVarArgsGPRIndex(GPRIdx);
3324   FuncInfo->setVarArgsGPRSize(GPRSaveSize);
3325 
3326   if (Subtarget->hasFPARMv8() && !IsWin64) {
3327     static const MCPhysReg FPRArgRegs[] = {
3328         AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
3329         AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
3330     static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
3331     unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
3332 
3333     unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
3334     int FPRIdx = 0;
3335     if (FPRSaveSize != 0) {
3336       FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
3337 
3338       SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
3339 
3340       for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
3341         unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
3342         SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
3343 
3344         SDValue Store = DAG.getStore(
3345             Val.getValue(1), DL, Val, FIN,
3346             MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
3347         MemOps.push_back(Store);
3348         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
3349                           DAG.getConstant(16, DL, PtrVT));
3350       }
3351     }
3352     FuncInfo->setVarArgsFPRIndex(FPRIdx);
3353     FuncInfo->setVarArgsFPRSize(FPRSaveSize);
3354   }
3355 
3356   if (!MemOps.empty()) {
3357     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3358   }
3359 }
3360 
3361 /// LowerCallResult - Lower the result values of a call into the
3362 /// appropriate copies out of appropriate physical registers.
3363 SDValue AArch64TargetLowering::LowerCallResult(
3364     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
3365     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3366     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
3367     SDValue ThisVal) const {
3368   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3369                           ? RetCC_AArch64_WebKit_JS
3370                           : RetCC_AArch64_AAPCS;
3371   // Assign locations to each value returned by this call.
3372   SmallVector<CCValAssign, 16> RVLocs;
3373   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3374                  *DAG.getContext());
3375   CCInfo.AnalyzeCallResult(Ins, RetCC);
3376 
3377   // Copy all of the result registers out of their specified physreg.
3378   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3379     CCValAssign VA = RVLocs[i];
3380 
3381     // Pass 'this' value directly from the argument to return value, to avoid
3382     // reg unit interference
3383     if (i == 0 && isThisReturn) {
3384       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
3385              "unexpected return calling convention register assignment");
3386       InVals.push_back(ThisVal);
3387       continue;
3388     }
3389 
3390     SDValue Val =
3391         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
3392     Chain = Val.getValue(1);
3393     InFlag = Val.getValue(2);
3394 
3395     switch (VA.getLocInfo()) {
3396     default:
3397       llvm_unreachable("Unknown loc info!");
3398     case CCValAssign::Full:
3399       break;
3400     case CCValAssign::BCvt:
3401       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3402       break;
3403     }
3404 
3405     InVals.push_back(Val);
3406   }
3407 
3408   return Chain;
3409 }
3410 
3411 /// Return true if the calling convention is one that we can guarantee TCO for.
3412 static bool canGuaranteeTCO(CallingConv::ID CC) {
3413   return CC == CallingConv::Fast;
3414 }
3415 
3416 /// Return true if we might ever do TCO for calls with this calling convention.
3417 static bool mayTailCallThisCC(CallingConv::ID CC) {
3418   switch (CC) {
3419   case CallingConv::C:
3420   case CallingConv::PreserveMost:
3421   case CallingConv::Swift:
3422     return true;
3423   default:
3424     return canGuaranteeTCO(CC);
3425   }
3426 }
3427 
3428 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3429     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
3430     const SmallVectorImpl<ISD::OutputArg> &Outs,
3431     const SmallVectorImpl<SDValue> &OutVals,
3432     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3433   if (!mayTailCallThisCC(CalleeCC))
3434     return false;
3435 
3436   MachineFunction &MF = DAG.getMachineFunction();
3437   const Function &CallerF = MF.getFunction();
3438   CallingConv::ID CallerCC = CallerF.getCallingConv();
3439   bool CCMatch = CallerCC == CalleeCC;
3440 
3441   // Byval parameters hand the function a pointer directly into the stack area
3442   // we want to reuse during a tail call. Working around this *is* possible (see
3443   // X86) but less efficient and uglier in LowerCall.
3444   for (Function::const_arg_iterator i = CallerF.arg_begin(),
3445                                     e = CallerF.arg_end();
3446        i != e; ++i) {
3447     if (i->hasByValAttr())
3448       return false;
3449 
3450     // On Windows, "inreg" attributes signify non-aggregate indirect returns.
3451     // In this case, it is necessary to save/restore X0 in the callee. Tail
3452     // call opt interferes with this. So we disable tail call opt when the
3453     // caller has an argument with "inreg" attribute.
3454 
3455     // FIXME: Check whether the callee also has an "inreg" argument.
3456     if (i->hasInRegAttr())
3457       return false;
3458   }
3459 
3460   if (getTargetMachine().Options.GuaranteedTailCallOpt)
3461     return canGuaranteeTCO(CalleeCC) && CCMatch;
3462 
3463   // Externally-defined functions with weak linkage should not be
3464   // tail-called on AArch64 when the OS does not support dynamic
3465   // pre-emption of symbols, as the AAELF spec requires normal calls
3466   // to undefined weak functions to be replaced with a NOP or jump to the
3467   // next instruction. The behaviour of branch instructions in this
3468   // situation (as used for tail calls) is implementation-defined, so we
3469   // cannot rely on the linker replacing the tail call with a return.
3470   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3471     const GlobalValue *GV = G->getGlobal();
3472     const Triple &TT = getTargetMachine().getTargetTriple();
3473     if (GV->hasExternalWeakLinkage() &&
3474         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3475       return false;
3476   }
3477 
3478   // Now we search for cases where we can use a tail call without changing the
3479   // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3480   // concept.
3481 
3482   // I want anyone implementing a new calling convention to think long and hard
3483   // about this assert.
3484   assert((!isVarArg || CalleeCC == CallingConv::C) &&
3485          "Unexpected variadic calling convention");
3486 
3487   LLVMContext &C = *DAG.getContext();
3488   if (isVarArg && !Outs.empty()) {
3489     // At least two cases here: if caller is fastcc then we can't have any
3490     // memory arguments (we'd be expected to clean up the stack afterwards). If
3491     // caller is C then we could potentially use its argument area.
3492 
3493     // FIXME: for now we take the most conservative of these in both cases:
3494     // disallow all variadic memory operands.
3495     SmallVector<CCValAssign, 16> ArgLocs;
3496     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3497 
3498     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
3499     for (const CCValAssign &ArgLoc : ArgLocs)
3500       if (!ArgLoc.isRegLoc())
3501         return false;
3502   }
3503 
3504   // Check that the call results are passed in the same way.
3505   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
3506                                   CCAssignFnForCall(CalleeCC, isVarArg),
3507                                   CCAssignFnForCall(CallerCC, isVarArg)))
3508     return false;
3509   // The callee has to preserve all registers the caller needs to preserve.
3510   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3511   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3512   if (!CCMatch) {
3513     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3514     if (Subtarget->hasCustomCallingConv()) {
3515       TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
3516       TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
3517     }
3518     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3519       return false;
3520   }
3521 
3522   // Nothing more to check if the callee is taking no arguments
3523   if (Outs.empty())
3524     return true;
3525 
3526   SmallVector<CCValAssign, 16> ArgLocs;
3527   CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3528 
3529   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3530 
3531   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3532 
3533   // If the stack arguments for this call do not fit into our own save area then
3534   // the call cannot be made tail.
3535   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3536     return false;
3537 
3538   const MachineRegisterInfo &MRI = MF.getRegInfo();
3539   if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3540     return false;
3541 
3542   return true;
3543 }
3544 
3545 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
3546                                                    SelectionDAG &DAG,
3547                                                    MachineFrameInfo &MFI,
3548                                                    int ClobberedFI) const {
3549   SmallVector<SDValue, 8> ArgChains;
3550   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
3551   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
3552 
3553   // Include the original chain at the beginning of the list. When this is
3554   // used by target LowerCall hooks, this helps legalize find the
3555   // CALLSEQ_BEGIN node.
3556   ArgChains.push_back(Chain);
3557 
3558   // Add a chain value for each stack argument corresponding
3559   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
3560                             UE = DAG.getEntryNode().getNode()->use_end();
3561        U != UE; ++U)
3562     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3563       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3564         if (FI->getIndex() < 0) {
3565           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
3566           int64_t InLastByte = InFirstByte;
3567           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
3568 
3569           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
3570               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
3571             ArgChains.push_back(SDValue(L, 1));
3572         }
3573 
3574   // Build a tokenfactor for all the chains.
3575   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
3576 }
3577 
3578 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
3579                                                    bool TailCallOpt) const {
3580   return CallCC == CallingConv::Fast && TailCallOpt;
3581 }
3582 
3583 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3584 /// and add input and output parameter nodes.
3585 SDValue
3586 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
3587                                  SmallVectorImpl<SDValue> &InVals) const {
3588   SelectionDAG &DAG = CLI.DAG;
3589   SDLoc &DL = CLI.DL;
3590   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3591   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3592   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3593   SDValue Chain = CLI.Chain;
3594   SDValue Callee = CLI.Callee;
3595   bool &IsTailCall = CLI.IsTailCall;
3596   CallingConv::ID CallConv = CLI.CallConv;
3597   bool IsVarArg = CLI.IsVarArg;
3598 
3599   MachineFunction &MF = DAG.getMachineFunction();
3600   bool IsThisReturn = false;
3601 
3602   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3603   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3604   bool IsSibCall = false;
3605 
3606   if (IsTailCall) {
3607     // Check if it's really possible to do a tail call.
3608     IsTailCall = isEligibleForTailCallOptimization(
3609         Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3610     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3611       report_fatal_error("failed to perform tail call elimination on a call "
3612                          "site marked musttail");
3613 
3614     // A sibling call is one where we're under the usual C ABI and not planning
3615     // to change that but can still do a tail call:
3616     if (!TailCallOpt && IsTailCall)
3617       IsSibCall = true;
3618 
3619     if (IsTailCall)
3620       ++NumTailCalls;
3621   }
3622 
3623   // Analyze operands of the call, assigning locations to each operand.
3624   SmallVector<CCValAssign, 16> ArgLocs;
3625   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3626                  *DAG.getContext());
3627 
3628   if (IsVarArg) {
3629     // Handle fixed and variable vector arguments differently.
3630     // Variable vector arguments always go into memory.
3631     unsigned NumArgs = Outs.size();
3632 
3633     for (unsigned i = 0; i != NumArgs; ++i) {
3634       MVT ArgVT = Outs[i].VT;
3635       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3636       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
3637                                                /*IsVarArg=*/ !Outs[i].IsFixed);
3638       bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3639       assert(!Res && "Call operand has unhandled type");
3640       (void)Res;
3641     }
3642   } else {
3643     // At this point, Outs[].VT may already be promoted to i32. To correctly
3644     // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3645     // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3646     // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3647     // we use a special version of AnalyzeCallOperands to pass in ValVT and
3648     // LocVT.
3649     unsigned NumArgs = Outs.size();
3650     for (unsigned i = 0; i != NumArgs; ++i) {
3651       MVT ValVT = Outs[i].VT;
3652       // Get type of the original argument.
3653       EVT ActualVT = getValueType(DAG.getDataLayout(),
3654                                   CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
3655                                   /*AllowUnknown*/ true);
3656       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
3657       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3658       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3659       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3660         ValVT = MVT::i8;
3661       else if (ActualMVT == MVT::i16)
3662         ValVT = MVT::i16;
3663 
3664       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3665       bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
3666       assert(!Res && "Call operand has unhandled type");
3667       (void)Res;
3668     }
3669   }
3670 
3671   // Get a count of how many bytes are to be pushed on the stack.
3672   unsigned NumBytes = CCInfo.getNextStackOffset();
3673 
3674   if (IsSibCall) {
3675     // Since we're not changing the ABI to make this a tail call, the memory
3676     // operands are already available in the caller's incoming argument space.
3677     NumBytes = 0;
3678   }
3679 
3680   // FPDiff is the byte offset of the call's argument area from the callee's.
3681   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3682   // by this amount for a tail call. In a sibling call it must be 0 because the
3683   // caller will deallocate the entire stack and the callee still expects its
3684   // arguments to begin at SP+0. Completely unused for non-tail calls.
3685   int FPDiff = 0;
3686 
3687   if (IsTailCall && !IsSibCall) {
3688     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3689 
3690     // Since callee will pop argument stack as a tail call, we must keep the
3691     // popped size 16-byte aligned.
3692     NumBytes = alignTo(NumBytes, 16);
3693 
3694     // FPDiff will be negative if this tail call requires more space than we
3695     // would automatically have in our incoming argument space. Positive if we
3696     // can actually shrink the stack.
3697     FPDiff = NumReusableBytes - NumBytes;
3698 
3699     // The stack pointer must be 16-byte aligned at all times it's used for a
3700     // memory operation, which in practice means at *all* times and in
3701     // particular across call boundaries. Therefore our own arguments started at
3702     // a 16-byte aligned SP and the delta applied for the tail call should
3703     // satisfy the same constraint.
3704     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3705   }
3706 
3707   // Adjust the stack pointer for the new arguments...
3708   // These operations are automatically eliminated by the prolog/epilog pass
3709   if (!IsSibCall)
3710     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
3711 
3712   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3713                                         getPointerTy(DAG.getDataLayout()));
3714 
3715   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3716   SmallVector<SDValue, 8> MemOpChains;
3717   auto PtrVT = getPointerTy(DAG.getDataLayout());
3718 
3719   if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) {
3720     const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
3721     for (const auto &F : Forwards) {
3722       SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
3723        RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
3724     }
3725   }
3726 
3727   // Walk the register/memloc assignments, inserting copies/loads.
3728   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3729        ++i, ++realArgIdx) {
3730     CCValAssign &VA = ArgLocs[i];
3731     SDValue Arg = OutVals[realArgIdx];
3732     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3733 
3734     // Promote the value if needed.
3735     switch (VA.getLocInfo()) {
3736     default:
3737       llvm_unreachable("Unknown loc info!");
3738     case CCValAssign::Full:
3739       break;
3740     case CCValAssign::SExt:
3741       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3742       break;
3743     case CCValAssign::ZExt:
3744       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3745       break;
3746     case CCValAssign::AExt:
3747       if (Outs[realArgIdx].ArgVT == MVT::i1) {
3748         // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3749         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3750         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3751       }
3752       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3753       break;
3754     case CCValAssign::BCvt:
3755       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3756       break;
3757     case CCValAssign::FPExt:
3758       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3759       break;
3760     }
3761 
3762     if (VA.isRegLoc()) {
3763       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
3764           Outs[0].VT == MVT::i64) {
3765         assert(VA.getLocVT() == MVT::i64 &&
3766                "unexpected calling convention register assignment");
3767         assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3768                "unexpected use of 'returned'");
3769         IsThisReturn = true;
3770       }
3771       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3772     } else {
3773       assert(VA.isMemLoc());
3774 
3775       SDValue DstAddr;
3776       MachinePointerInfo DstInfo;
3777 
3778       // FIXME: This works on big-endian for composite byvals, which are the
3779       // common case. It should also work for fundamental types too.
3780       uint32_t BEAlign = 0;
3781       unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3782                                         : VA.getValVT().getSizeInBits();
3783       OpSize = (OpSize + 7) / 8;
3784       if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3785           !Flags.isInConsecutiveRegs()) {
3786         if (OpSize < 8)
3787           BEAlign = 8 - OpSize;
3788       }
3789       unsigned LocMemOffset = VA.getLocMemOffset();
3790       int32_t Offset = LocMemOffset + BEAlign;
3791       SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3792       PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3793 
3794       if (IsTailCall) {
3795         Offset = Offset + FPDiff;
3796         int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
3797 
3798         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3799         DstInfo =
3800             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3801 
3802         // Make sure any stack arguments overlapping with where we're storing
3803         // are loaded before this eventual operation. Otherwise they'll be
3804         // clobbered.
3805         Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3806       } else {
3807         SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3808 
3809         DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3810         DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3811                                                LocMemOffset);
3812       }
3813 
3814       if (Outs[i].Flags.isByVal()) {
3815         SDValue SizeNode =
3816             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3817         SDValue Cpy = DAG.getMemcpy(
3818             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3819             /*isVol = */ false, /*AlwaysInline = */ false,
3820             /*isTailCall = */ false,
3821             DstInfo, MachinePointerInfo());
3822 
3823         MemOpChains.push_back(Cpy);
3824       } else {
3825         // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3826         // promoted to a legal register type i32, we should truncate Arg back to
3827         // i1/i8/i16.
3828         if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3829             VA.getValVT() == MVT::i16)
3830           Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3831 
3832         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
3833         MemOpChains.push_back(Store);
3834       }
3835     }
3836   }
3837 
3838   if (!MemOpChains.empty())
3839     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3840 
3841   // Build a sequence of copy-to-reg nodes chained together with token chain
3842   // and flag operands which copy the outgoing args into the appropriate regs.
3843   SDValue InFlag;
3844   for (auto &RegToPass : RegsToPass) {
3845     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3846                              RegToPass.second, InFlag);
3847     InFlag = Chain.getValue(1);
3848   }
3849 
3850   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3851   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3852   // node so that legalize doesn't hack it.
3853   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3854     auto GV = G->getGlobal();
3855     if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
3856         AArch64II::MO_GOT) {
3857       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3858       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3859     } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
3860       assert(Subtarget->isTargetWindows() &&
3861              "Windows is the only supported COFF target");
3862       Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
3863     } else {
3864       const GlobalValue *GV = G->getGlobal();
3865       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3866     }
3867   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3868     if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3869         Subtarget->isTargetMachO()) {
3870       const char *Sym = S->getSymbol();
3871       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3872       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3873     } else {
3874       const char *Sym = S->getSymbol();
3875       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3876     }
3877   }
3878 
3879   // We don't usually want to end the call-sequence here because we would tidy
3880   // the frame up *after* the call, however in the ABI-changing tail-call case
3881   // we've carefully laid out the parameters so that when sp is reset they'll be
3882   // in the correct location.
3883   if (IsTailCall && !IsSibCall) {
3884     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3885                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3886     InFlag = Chain.getValue(1);
3887   }
3888 
3889   std::vector<SDValue> Ops;
3890   Ops.push_back(Chain);
3891   Ops.push_back(Callee);
3892 
3893   if (IsTailCall) {
3894     // Each tail call may have to adjust the stack by a different amount, so
3895     // this information must travel along with the operation for eventual
3896     // consumption by emitEpilogue.
3897     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3898   }
3899 
3900   // Add argument registers to the end of the list so that they are known live
3901   // into the call.
3902   for (auto &RegToPass : RegsToPass)
3903     Ops.push_back(DAG.getRegister(RegToPass.first,
3904                                   RegToPass.second.getValueType()));
3905 
3906   // Add a register mask operand representing the call-preserved registers.
3907   const uint32_t *Mask;
3908   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3909   if (IsThisReturn) {
3910     // For 'this' returns, use the X0-preserving mask if applicable
3911     Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3912     if (!Mask) {
3913       IsThisReturn = false;
3914       Mask = TRI->getCallPreservedMask(MF, CallConv);
3915     }
3916   } else
3917     Mask = TRI->getCallPreservedMask(MF, CallConv);
3918 
3919   if (Subtarget->hasCustomCallingConv())
3920     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
3921 
3922   if (TRI->isAnyArgRegReserved(MF))
3923     TRI->emitReservedArgRegCallError(MF);
3924 
3925   assert(Mask && "Missing call preserved mask for calling convention");
3926   Ops.push_back(DAG.getRegisterMask(Mask));
3927 
3928   if (InFlag.getNode())
3929     Ops.push_back(InFlag);
3930 
3931   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3932 
3933   // If we're doing a tall call, use a TC_RETURN here rather than an
3934   // actual call instruction.
3935   if (IsTailCall) {
3936     MF.getFrameInfo().setHasTailCall();
3937     return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
3938   }
3939 
3940   // Returns a chain and a flag for retval copy to use.
3941   Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3942   InFlag = Chain.getValue(1);
3943 
3944   uint64_t CalleePopBytes =
3945       DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
3946 
3947   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3948                              DAG.getIntPtrConstant(CalleePopBytes, DL, true),
3949                              InFlag, DL);
3950   if (!Ins.empty())
3951     InFlag = Chain.getValue(1);
3952 
3953   // Handle result values, copying them out of physregs into vregs that we
3954   // return.
3955   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3956                          InVals, IsThisReturn,
3957                          IsThisReturn ? OutVals[0] : SDValue());
3958 }
3959 
3960 bool AArch64TargetLowering::CanLowerReturn(
3961     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3962     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3963   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3964                           ? RetCC_AArch64_WebKit_JS
3965                           : RetCC_AArch64_AAPCS;
3966   SmallVector<CCValAssign, 16> RVLocs;
3967   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3968   return CCInfo.CheckReturn(Outs, RetCC);
3969 }
3970 
3971 SDValue
3972 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3973                                    bool isVarArg,
3974                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3975                                    const SmallVectorImpl<SDValue> &OutVals,
3976                                    const SDLoc &DL, SelectionDAG &DAG) const {
3977   auto &MF = DAG.getMachineFunction();
3978   auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3979 
3980   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3981                           ? RetCC_AArch64_WebKit_JS
3982                           : RetCC_AArch64_AAPCS;
3983   SmallVector<CCValAssign, 16> RVLocs;
3984   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3985                  *DAG.getContext());
3986   CCInfo.AnalyzeReturn(Outs, RetCC);
3987 
3988   // Copy the result values into the output registers.
3989   SDValue Flag;
3990   SmallVector<SDValue, 4> RetOps(1, Chain);
3991   for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3992        ++i, ++realRVLocIdx) {
3993     CCValAssign &VA = RVLocs[i];
3994     assert(VA.isRegLoc() && "Can only return in registers!");
3995     SDValue Arg = OutVals[realRVLocIdx];
3996 
3997     switch (VA.getLocInfo()) {
3998     default:
3999       llvm_unreachable("Unknown loc info!");
4000     case CCValAssign::Full:
4001       if (Outs[i].ArgVT == MVT::i1) {
4002         // AAPCS requires i1 to be zero-extended to i8 by the producer of the
4003         // value. This is strictly redundant on Darwin (which uses "zeroext
4004         // i1"), but will be optimised out before ISel.
4005         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
4006         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
4007       }
4008       break;
4009     case CCValAssign::BCvt:
4010       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
4011       break;
4012     }
4013 
4014     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
4015     Flag = Chain.getValue(1);
4016     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4017   }
4018 
4019   // Windows AArch64 ABIs require that for returning structs by value we copy
4020   // the sret argument into X0 for the return.
4021   // We saved the argument into a virtual register in the entry block,
4022   // so now we copy the value out and into X0.
4023   if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
4024     SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
4025                                      getPointerTy(MF.getDataLayout()));
4026 
4027     unsigned RetValReg = AArch64::X0;
4028     Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
4029     Flag = Chain.getValue(1);
4030 
4031     RetOps.push_back(
4032       DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
4033   }
4034 
4035   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4036   const MCPhysReg *I =
4037       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
4038   if (I) {
4039     for (; *I; ++I) {
4040       if (AArch64::GPR64RegClass.contains(*I))
4041         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
4042       else if (AArch64::FPR64RegClass.contains(*I))
4043         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
4044       else
4045         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
4046     }
4047   }
4048 
4049   RetOps[0] = Chain; // Update chain.
4050 
4051   // Add the flag if we have it.
4052   if (Flag.getNode())
4053     RetOps.push_back(Flag);
4054 
4055   return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
4056 }
4057 
4058 //===----------------------------------------------------------------------===//
4059 //  Other Lowering Code
4060 //===----------------------------------------------------------------------===//
4061 
4062 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
4063                                              SelectionDAG &DAG,
4064                                              unsigned Flag) const {
4065   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
4066                                     N->getOffset(), Flag);
4067 }
4068 
4069 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
4070                                              SelectionDAG &DAG,
4071                                              unsigned Flag) const {
4072   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
4073 }
4074 
4075 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
4076                                              SelectionDAG &DAG,
4077                                              unsigned Flag) const {
4078   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
4079                                    N->getOffset(), Flag);
4080 }
4081 
4082 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
4083                                              SelectionDAG &DAG,
4084                                              unsigned Flag) const {
4085   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
4086 }
4087 
4088 // (loadGOT sym)
4089 template <class NodeTy>
4090 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
4091                                       unsigned Flags) const {
4092   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
4093   SDLoc DL(N);
4094   EVT Ty = getPointerTy(DAG.getDataLayout());
4095   SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
4096   // FIXME: Once remat is capable of dealing with instructions with register
4097   // operands, expand this into two nodes instead of using a wrapper node.
4098   return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
4099 }
4100 
4101 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
4102 template <class NodeTy>
4103 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
4104                                             unsigned Flags) const {
4105   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
4106   SDLoc DL(N);
4107   EVT Ty = getPointerTy(DAG.getDataLayout());
4108   const unsigned char MO_NC = AArch64II::MO_NC;
4109   return DAG.getNode(
4110       AArch64ISD::WrapperLarge, DL, Ty,
4111       getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
4112       getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
4113       getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
4114       getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
4115 }
4116 
4117 // (addlow (adrp %hi(sym)) %lo(sym))
4118 template <class NodeTy>
4119 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
4120                                        unsigned Flags) const {
4121   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
4122   SDLoc DL(N);
4123   EVT Ty = getPointerTy(DAG.getDataLayout());
4124   SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
4125   SDValue Lo = getTargetNode(N, Ty, DAG,
4126                              AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
4127   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
4128   return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
4129 }
4130 
4131 // (adr sym)
4132 template <class NodeTy>
4133 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
4134                                            unsigned Flags) const {
4135   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
4136   SDLoc DL(N);
4137   EVT Ty = getPointerTy(DAG.getDataLayout());
4138   SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
4139   return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
4140 }
4141 
4142 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
4143                                                   SelectionDAG &DAG) const {
4144   GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
4145   const GlobalValue *GV = GN->getGlobal();
4146   unsigned char OpFlags =
4147       Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4148 
4149   if (OpFlags != AArch64II::MO_NO_FLAG)
4150     assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
4151            "unexpected offset in global node");
4152 
4153   // This also catches the large code model case for Darwin, and tiny code
4154   // model with got relocations.
4155   if ((OpFlags & AArch64II::MO_GOT) != 0) {
4156     return getGOT(GN, DAG, OpFlags);
4157   }
4158 
4159   SDValue Result;
4160   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4161     Result = getAddrLarge(GN, DAG, OpFlags);
4162   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
4163     Result = getAddrTiny(GN, DAG, OpFlags);
4164   } else {
4165     Result = getAddr(GN, DAG, OpFlags);
4166   }
4167   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4168   SDLoc DL(GN);
4169   if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
4170     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4171                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4172   return Result;
4173 }
4174 
4175 /// Convert a TLS address reference into the correct sequence of loads
4176 /// and calls to compute the variable's address (for Darwin, currently) and
4177 /// return an SDValue containing the final node.
4178 
4179 /// Darwin only has one TLS scheme which must be capable of dealing with the
4180 /// fully general situation, in the worst case. This means:
4181 ///     + "extern __thread" declaration.
4182 ///     + Defined in a possibly unknown dynamic library.
4183 ///
4184 /// The general system is that each __thread variable has a [3 x i64] descriptor
4185 /// which contains information used by the runtime to calculate the address. The
4186 /// only part of this the compiler needs to know about is the first xword, which
4187 /// contains a function pointer that must be called with the address of the
4188 /// entire descriptor in "x0".
4189 ///
4190 /// Since this descriptor may be in a different unit, in general even the
4191 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
4192 /// is:
4193 ///     adrp x0, _var@TLVPPAGE
4194 ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
4195 ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
4196 ///                                      ; the function pointer
4197 ///     blr x1                           ; Uses descriptor address in x0
4198 ///     ; Address of _var is now in x0.
4199 ///
4200 /// If the address of _var's descriptor *is* known to the linker, then it can
4201 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4202 /// a slight efficiency gain.
4203 SDValue
4204 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
4205                                                    SelectionDAG &DAG) const {
4206   assert(Subtarget->isTargetDarwin() &&
4207          "This function expects a Darwin target");
4208 
4209   SDLoc DL(Op);
4210   MVT PtrVT = getPointerTy(DAG.getDataLayout());
4211   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4212 
4213   SDValue TLVPAddr =
4214       DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4215   SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
4216 
4217   // The first entry in the descriptor is a function pointer that we must call
4218   // to obtain the address of the variable.
4219   SDValue Chain = DAG.getEntryNode();
4220   SDValue FuncTLVGet = DAG.getLoad(
4221       MVT::i64, DL, Chain, DescAddr,
4222       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
4223       /* Alignment = */ 8,
4224       MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant |
4225           MachineMemOperand::MODereferenceable);
4226   Chain = FuncTLVGet.getValue(1);
4227 
4228   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4229   MFI.setAdjustsStack(true);
4230 
4231   // TLS calls preserve all registers except those that absolutely must be
4232   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4233   // silly).
4234   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4235   const uint32_t *Mask = TRI->getTLSCallPreservedMask();
4236   if (Subtarget->hasCustomCallingConv())
4237     TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
4238 
4239   // Finally, we can make the call. This is just a degenerate version of a
4240   // normal AArch64 call node: x0 takes the address of the descriptor, and
4241   // returns the address of the variable in this thread.
4242   Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
4243   Chain =
4244       DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
4245                   Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
4246                   DAG.getRegisterMask(Mask), Chain.getValue(1));
4247   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
4248 }
4249 
4250 /// When accessing thread-local variables under either the general-dynamic or
4251 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4252 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4253 /// is a function pointer to carry out the resolution.
4254 ///
4255 /// The sequence is:
4256 ///    adrp  x0, :tlsdesc:var
4257 ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
4258 ///    add   x0, x0, #:tlsdesc_lo12:var
4259 ///    .tlsdesccall var
4260 ///    blr   x1
4261 ///    (TPIDR_EL0 offset now in x0)
4262 ///
4263 ///  The above sequence must be produced unscheduled, to enable the linker to
4264 ///  optimize/relax this sequence.
4265 ///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4266 ///  above sequence, and expanded really late in the compilation flow, to ensure
4267 ///  the sequence is produced as per above.
4268 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
4269                                                       const SDLoc &DL,
4270                                                       SelectionDAG &DAG) const {
4271   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4272 
4273   SDValue Chain = DAG.getEntryNode();
4274   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4275 
4276   Chain =
4277       DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
4278   SDValue Glue = Chain.getValue(1);
4279 
4280   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
4281 }
4282 
4283 SDValue
4284 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
4285                                                 SelectionDAG &DAG) const {
4286   assert(Subtarget->isTargetELF() && "This function expects an ELF target");
4287   if (getTargetMachine().getCodeModel() == CodeModel::Large)
4288     report_fatal_error("ELF TLS only supported in small memory model");
4289   // Different choices can be made for the maximum size of the TLS area for a
4290   // module. For the small address model, the default TLS size is 16MiB and the
4291   // maximum TLS size is 4GiB.
4292   // FIXME: add -mtls-size command line option and make it control the 16MiB
4293   // vs. 4GiB code sequence generation.
4294   // FIXME: add tiny codemodel support. We currently generate the same code as
4295   // small, which may be larger than needed.
4296   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4297 
4298   TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
4299 
4300   if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
4301     if (Model == TLSModel::LocalDynamic)
4302       Model = TLSModel::GeneralDynamic;
4303   }
4304 
4305   SDValue TPOff;
4306   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4307   SDLoc DL(Op);
4308   const GlobalValue *GV = GA->getGlobal();
4309 
4310   SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
4311 
4312   if (Model == TLSModel::LocalExec) {
4313     SDValue HiVar = DAG.getTargetGlobalAddress(
4314         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4315     SDValue LoVar = DAG.getTargetGlobalAddress(
4316         GV, DL, PtrVT, 0,
4317         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4318 
4319     SDValue TPWithOff_lo =
4320         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
4321                                    HiVar,
4322                                    DAG.getTargetConstant(0, DL, MVT::i32)),
4323                 0);
4324     SDValue TPWithOff =
4325         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
4326                                    LoVar,
4327                                    DAG.getTargetConstant(0, DL, MVT::i32)),
4328                 0);
4329     return TPWithOff;
4330   } else if (Model == TLSModel::InitialExec) {
4331     TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4332     TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
4333   } else if (Model == TLSModel::LocalDynamic) {
4334     // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4335     // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4336     // the beginning of the module's TLS region, followed by a DTPREL offset
4337     // calculation.
4338 
4339     // These accesses will need deduplicating if there's more than one.
4340     AArch64FunctionInfo *MFI =
4341         DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4342     MFI->incNumLocalDynamicTLSAccesses();
4343 
4344     // The call needs a relocation too for linker relaxation. It doesn't make
4345     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4346     // the address.
4347     SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
4348                                                   AArch64II::MO_TLS);
4349 
4350     // Now we can calculate the offset from TPIDR_EL0 to this module's
4351     // thread-local area.
4352     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4353 
4354     // Now use :dtprel_whatever: operations to calculate this variable's offset
4355     // in its thread-storage area.
4356     SDValue HiVar = DAG.getTargetGlobalAddress(
4357         GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4358     SDValue LoVar = DAG.getTargetGlobalAddress(
4359         GV, DL, MVT::i64, 0,
4360         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4361 
4362     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
4363                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4364                     0);
4365     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
4366                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4367                     0);
4368   } else if (Model == TLSModel::GeneralDynamic) {
4369     // The call needs a relocation too for linker relaxation. It doesn't make
4370     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4371     // the address.
4372     SDValue SymAddr =
4373         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4374 
4375     // Finally we can make a call to calculate the offset from tpidr_el0.
4376     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4377   } else
4378     llvm_unreachable("Unsupported ELF TLS access model");
4379 
4380   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4381 }
4382 
4383 SDValue
4384 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
4385                                                     SelectionDAG &DAG) const {
4386   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
4387 
4388   SDValue Chain = DAG.getEntryNode();
4389   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4390   SDLoc DL(Op);
4391 
4392   SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
4393 
4394   // Load the ThreadLocalStoragePointer from the TEB
4395   // A pointer to the TLS array is located at offset 0x58 from the TEB.
4396   SDValue TLSArray =
4397       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
4398   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
4399   Chain = TLSArray.getValue(1);
4400 
4401   // Load the TLS index from the C runtime;
4402   // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4403   // This also does the same as LOADgot, but using a generic i32 load,
4404   // while LOADgot only loads i64.
4405   SDValue TLSIndexHi =
4406       DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
4407   SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
4408       "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4409   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
4410   SDValue TLSIndex =
4411       DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
4412   TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
4413   Chain = TLSIndex.getValue(1);
4414 
4415   // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4416   // offset into the TLSArray.
4417   TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
4418   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
4419                              DAG.getConstant(3, DL, PtrVT));
4420   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
4421                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
4422                             MachinePointerInfo());
4423   Chain = TLS.getValue(1);
4424 
4425   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4426   const GlobalValue *GV = GA->getGlobal();
4427   SDValue TGAHi = DAG.getTargetGlobalAddress(
4428       GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4429   SDValue TGALo = DAG.getTargetGlobalAddress(
4430       GV, DL, PtrVT, 0,
4431       AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4432 
4433   // Add the offset from the start of the .tls section (section base).
4434   SDValue Addr =
4435       SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
4436                                  DAG.getTargetConstant(0, DL, MVT::i32)),
4437               0);
4438   Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
4439   return Addr;
4440 }
4441 
4442 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
4443                                                      SelectionDAG &DAG) const {
4444   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4445   if (DAG.getTarget().useEmulatedTLS())
4446     return LowerToTLSEmulatedModel(GA, DAG);
4447 
4448   if (Subtarget->isTargetDarwin())
4449     return LowerDarwinGlobalTLSAddress(Op, DAG);
4450   if (Subtarget->isTargetELF())
4451     return LowerELFGlobalTLSAddress(Op, DAG);
4452   if (Subtarget->isTargetWindows())
4453     return LowerWindowsGlobalTLSAddress(Op, DAG);
4454 
4455   llvm_unreachable("Unexpected platform trying to use TLS");
4456 }
4457 
4458 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4459   SDValue Chain = Op.getOperand(0);
4460   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4461   SDValue LHS = Op.getOperand(2);
4462   SDValue RHS = Op.getOperand(3);
4463   SDValue Dest = Op.getOperand(4);
4464   SDLoc dl(Op);
4465 
4466   MachineFunction &MF = DAG.getMachineFunction();
4467   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
4468   // will not be produced, as they are conditional branch instructions that do
4469   // not set flags.
4470   bool ProduceNonFlagSettingCondBr =
4471       !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
4472 
4473   // Handle f128 first, since lowering it will result in comparing the return
4474   // value of a libcall against zero, which is just what the rest of LowerBR_CC
4475   // is expecting to deal with.
4476   if (LHS.getValueType() == MVT::f128) {
4477     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4478 
4479     // If softenSetCCOperands returned a scalar, we need to compare the result
4480     // against zero to select between true and false values.
4481     if (!RHS.getNode()) {
4482       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4483       CC = ISD::SETNE;
4484     }
4485   }
4486 
4487   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4488   // instruction.
4489   if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
4490       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4491     // Only lower legal XALUO ops.
4492     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4493       return SDValue();
4494 
4495     // The actual operation with overflow check.
4496     AArch64CC::CondCode OFCC;
4497     SDValue Value, Overflow;
4498     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
4499 
4500     if (CC == ISD::SETNE)
4501       OFCC = getInvertedCondCode(OFCC);
4502     SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
4503 
4504     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4505                        Overflow);
4506   }
4507 
4508   if (LHS.getValueType().isInteger()) {
4509     assert((LHS.getValueType() == RHS.getValueType()) &&
4510            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4511 
4512     // If the RHS of the comparison is zero, we can potentially fold this
4513     // to a specialized branch.
4514     const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
4515     if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
4516       if (CC == ISD::SETEQ) {
4517         // See if we can use a TBZ to fold in an AND as well.
4518         // TBZ has a smaller branch displacement than CBZ.  If the offset is
4519         // out of bounds, a late MI-layer pass rewrites branches.
4520         // 403.gcc is an example that hits this case.
4521         if (LHS.getOpcode() == ISD::AND &&
4522             isa<ConstantSDNode>(LHS.getOperand(1)) &&
4523             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4524           SDValue Test = LHS.getOperand(0);
4525           uint64_t Mask = LHS.getConstantOperandVal(1);
4526           return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
4527                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4528                              Dest);
4529         }
4530 
4531         return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
4532       } else if (CC == ISD::SETNE) {
4533         // See if we can use a TBZ to fold in an AND as well.
4534         // TBZ has a smaller branch displacement than CBZ.  If the offset is
4535         // out of bounds, a late MI-layer pass rewrites branches.
4536         // 403.gcc is an example that hits this case.
4537         if (LHS.getOpcode() == ISD::AND &&
4538             isa<ConstantSDNode>(LHS.getOperand(1)) &&
4539             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4540           SDValue Test = LHS.getOperand(0);
4541           uint64_t Mask = LHS.getConstantOperandVal(1);
4542           return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
4543                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4544                              Dest);
4545         }
4546 
4547         return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
4548       } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
4549         // Don't combine AND since emitComparison converts the AND to an ANDS
4550         // (a.k.a. TST) and the test in the test bit and branch instruction
4551         // becomes redundant.  This would also increase register pressure.
4552         uint64_t Mask = LHS.getValueSizeInBits() - 1;
4553         return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
4554                            DAG.getConstant(Mask, dl, MVT::i64), Dest);
4555       }
4556     }
4557     if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
4558         LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
4559       // Don't combine AND since emitComparison converts the AND to an ANDS
4560       // (a.k.a. TST) and the test in the test bit and branch instruction
4561       // becomes redundant.  This would also increase register pressure.
4562       uint64_t Mask = LHS.getValueSizeInBits() - 1;
4563       return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
4564                          DAG.getConstant(Mask, dl, MVT::i64), Dest);
4565     }
4566 
4567     SDValue CCVal;
4568     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4569     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4570                        Cmp);
4571   }
4572 
4573   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4574          LHS.getValueType() == MVT::f64);
4575 
4576   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4577   // clean.  Some of them require two branches to implement.
4578   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4579   AArch64CC::CondCode CC1, CC2;
4580   changeFPCCToAArch64CC(CC, CC1, CC2);
4581   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4582   SDValue BR1 =
4583       DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
4584   if (CC2 != AArch64CC::AL) {
4585     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4586     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
4587                        Cmp);
4588   }
4589 
4590   return BR1;
4591 }
4592 
4593 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
4594                                               SelectionDAG &DAG) const {
4595   EVT VT = Op.getValueType();
4596   SDLoc DL(Op);
4597 
4598   SDValue In1 = Op.getOperand(0);
4599   SDValue In2 = Op.getOperand(1);
4600   EVT SrcVT = In2.getValueType();
4601 
4602   if (SrcVT.bitsLT(VT))
4603     In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
4604   else if (SrcVT.bitsGT(VT))
4605     In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
4606 
4607   EVT VecVT;
4608   uint64_t EltMask;
4609   SDValue VecVal1, VecVal2;
4610 
4611   auto setVecVal = [&] (int Idx) {
4612     if (!VT.isVector()) {
4613       VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4614                                           DAG.getUNDEF(VecVT), In1);
4615       VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4616                                           DAG.getUNDEF(VecVT), In2);
4617     } else {
4618       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
4619       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
4620     }
4621   };
4622 
4623   if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
4624     VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
4625     EltMask = 0x80000000ULL;
4626     setVecVal(AArch64::ssub);
4627   } else if (VT == MVT::f64 || VT == MVT::v2f64) {
4628     VecVT = MVT::v2i64;
4629 
4630     // We want to materialize a mask with the high bit set, but the AdvSIMD
4631     // immediate moves cannot materialize that in a single instruction for
4632     // 64-bit elements. Instead, materialize zero and then negate it.
4633     EltMask = 0;
4634 
4635     setVecVal(AArch64::dsub);
4636   } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
4637     VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
4638     EltMask = 0x8000ULL;
4639     setVecVal(AArch64::hsub);
4640   } else {
4641     llvm_unreachable("Invalid type for copysign!");
4642   }
4643 
4644   SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
4645 
4646   // If we couldn't materialize the mask above, then the mask vector will be
4647   // the zero vector, and we need to negate it here.
4648   if (VT == MVT::f64 || VT == MVT::v2f64) {
4649     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
4650     BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
4651     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
4652   }
4653 
4654   SDValue Sel =
4655       DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
4656 
4657   if (VT == MVT::f16)
4658     return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
4659   if (VT == MVT::f32)
4660     return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
4661   else if (VT == MVT::f64)
4662     return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
4663   else
4664     return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
4665 }
4666 
4667 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
4668   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
4669           Attribute::NoImplicitFloat))
4670     return SDValue();
4671 
4672   if (!Subtarget->hasNEON())
4673     return SDValue();
4674 
4675   // While there is no integer popcount instruction, it can
4676   // be more efficiently lowered to the following sequence that uses
4677   // AdvSIMD registers/instructions as long as the copies to/from
4678   // the AdvSIMD registers are cheap.
4679   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
4680   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
4681   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
4682   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
4683   SDValue Val = Op.getOperand(0);
4684   SDLoc DL(Op);
4685   EVT VT = Op.getValueType();
4686 
4687   if (VT == MVT::i32 || VT == MVT::i64) {
4688     if (VT == MVT::i32)
4689       Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
4690     Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
4691 
4692     SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
4693     SDValue UaddLV = DAG.getNode(
4694         ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
4695         DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
4696 
4697     if (VT == MVT::i64)
4698       UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
4699     return UaddLV;
4700   }
4701 
4702   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
4703           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
4704          "Unexpected type for custom ctpop lowering");
4705 
4706   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4707   Val = DAG.getBitcast(VT8Bit, Val);
4708   Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
4709 
4710   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
4711   unsigned EltSize = 8;
4712   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
4713   while (EltSize != VT.getScalarSizeInBits()) {
4714     EltSize *= 2;
4715     NumElts /= 2;
4716     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
4717     Val = DAG.getNode(
4718         ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
4719         DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
4720   }
4721 
4722   return Val;
4723 }
4724 
4725 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
4726 
4727   if (Op.getValueType().isVector())
4728     return LowerVSETCC(Op, DAG);
4729 
4730   SDValue LHS = Op.getOperand(0);
4731   SDValue RHS = Op.getOperand(1);
4732   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4733   SDLoc dl(Op);
4734 
4735   // We chose ZeroOrOneBooleanContents, so use zero and one.
4736   EVT VT = Op.getValueType();
4737   SDValue TVal = DAG.getConstant(1, dl, VT);
4738   SDValue FVal = DAG.getConstant(0, dl, VT);
4739 
4740   // Handle f128 first, since one possible outcome is a normal integer
4741   // comparison which gets picked up by the next if statement.
4742   if (LHS.getValueType() == MVT::f128) {
4743     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4744 
4745     // If softenSetCCOperands returned a scalar, use it.
4746     if (!RHS.getNode()) {
4747       assert(LHS.getValueType() == Op.getValueType() &&
4748              "Unexpected setcc expansion!");
4749       return LHS;
4750     }
4751   }
4752 
4753   if (LHS.getValueType().isInteger()) {
4754     SDValue CCVal;
4755     SDValue Cmp =
4756         getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
4757 
4758     // Note that we inverted the condition above, so we reverse the order of
4759     // the true and false operands here.  This will allow the setcc to be
4760     // matched to a single CSINC instruction.
4761     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
4762   }
4763 
4764   // Now we know we're dealing with FP values.
4765   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4766          LHS.getValueType() == MVT::f64);
4767 
4768   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
4769   // and do the comparison.
4770   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4771 
4772   AArch64CC::CondCode CC1, CC2;
4773   changeFPCCToAArch64CC(CC, CC1, CC2);
4774   if (CC2 == AArch64CC::AL) {
4775     changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
4776     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4777 
4778     // Note that we inverted the condition above, so we reverse the order of
4779     // the true and false operands here.  This will allow the setcc to be
4780     // matched to a single CSINC instruction.
4781     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
4782   } else {
4783     // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
4784     // totally clean.  Some of them require two CSELs to implement.  As is in
4785     // this case, we emit the first CSEL and then emit a second using the output
4786     // of the first as the RHS.  We're effectively OR'ing the two CC's together.
4787 
4788     // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
4789     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4790     SDValue CS1 =
4791         DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4792 
4793     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4794     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4795   }
4796 }
4797 
4798 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
4799                                               SDValue RHS, SDValue TVal,
4800                                               SDValue FVal, const SDLoc &dl,
4801                                               SelectionDAG &DAG) const {
4802   // Handle f128 first, because it will result in a comparison of some RTLIB
4803   // call result against zero.
4804   if (LHS.getValueType() == MVT::f128) {
4805     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4806 
4807     // If softenSetCCOperands returned a scalar, we need to compare the result
4808     // against zero to select between true and false values.
4809     if (!RHS.getNode()) {
4810       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4811       CC = ISD::SETNE;
4812     }
4813   }
4814 
4815   // Also handle f16, for which we need to do a f32 comparison.
4816   if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
4817     LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
4818     RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
4819   }
4820 
4821   // Next, handle integers.
4822   if (LHS.getValueType().isInteger()) {
4823     assert((LHS.getValueType() == RHS.getValueType()) &&
4824            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4825 
4826     unsigned Opcode = AArch64ISD::CSEL;
4827 
4828     // If both the TVal and the FVal are constants, see if we can swap them in
4829     // order to for a CSINV or CSINC out of them.
4830     ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
4831     ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
4832 
4833     if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
4834       std::swap(TVal, FVal);
4835       std::swap(CTVal, CFVal);
4836       CC = ISD::getSetCCInverse(CC, true);
4837     } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
4838       std::swap(TVal, FVal);
4839       std::swap(CTVal, CFVal);
4840       CC = ISD::getSetCCInverse(CC, true);
4841     } else if (TVal.getOpcode() == ISD::XOR) {
4842       // If TVal is a NOT we want to swap TVal and FVal so that we can match
4843       // with a CSINV rather than a CSEL.
4844       if (isAllOnesConstant(TVal.getOperand(1))) {
4845         std::swap(TVal, FVal);
4846         std::swap(CTVal, CFVal);
4847         CC = ISD::getSetCCInverse(CC, true);
4848       }
4849     } else if (TVal.getOpcode() == ISD::SUB) {
4850       // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
4851       // that we can match with a CSNEG rather than a CSEL.
4852       if (isNullConstant(TVal.getOperand(0))) {
4853         std::swap(TVal, FVal);
4854         std::swap(CTVal, CFVal);
4855         CC = ISD::getSetCCInverse(CC, true);
4856       }
4857     } else if (CTVal && CFVal) {
4858       const int64_t TrueVal = CTVal->getSExtValue();
4859       const int64_t FalseVal = CFVal->getSExtValue();
4860       bool Swap = false;
4861 
4862       // If both TVal and FVal are constants, see if FVal is the
4863       // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
4864       // instead of a CSEL in that case.
4865       if (TrueVal == ~FalseVal) {
4866         Opcode = AArch64ISD::CSINV;
4867       } else if (TrueVal == -FalseVal) {
4868         Opcode = AArch64ISD::CSNEG;
4869       } else if (TVal.getValueType() == MVT::i32) {
4870         // If our operands are only 32-bit wide, make sure we use 32-bit
4871         // arithmetic for the check whether we can use CSINC. This ensures that
4872         // the addition in the check will wrap around properly in case there is
4873         // an overflow (which would not be the case if we do the check with
4874         // 64-bit arithmetic).
4875         const uint32_t TrueVal32 = CTVal->getZExtValue();
4876         const uint32_t FalseVal32 = CFVal->getZExtValue();
4877 
4878         if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4879           Opcode = AArch64ISD::CSINC;
4880 
4881           if (TrueVal32 > FalseVal32) {
4882             Swap = true;
4883           }
4884         }
4885         // 64-bit check whether we can use CSINC.
4886       } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4887         Opcode = AArch64ISD::CSINC;
4888 
4889         if (TrueVal > FalseVal) {
4890           Swap = true;
4891         }
4892       }
4893 
4894       // Swap TVal and FVal if necessary.
4895       if (Swap) {
4896         std::swap(TVal, FVal);
4897         std::swap(CTVal, CFVal);
4898         CC = ISD::getSetCCInverse(CC, true);
4899       }
4900 
4901       if (Opcode != AArch64ISD::CSEL) {
4902         // Drop FVal since we can get its value by simply inverting/negating
4903         // TVal.
4904         FVal = TVal;
4905       }
4906     }
4907 
4908     // Avoid materializing a constant when possible by reusing a known value in
4909     // a register.  However, don't perform this optimization if the known value
4910     // is one, zero or negative one in the case of a CSEL.  We can always
4911     // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
4912     // FVal, respectively.
4913     ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
4914     if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
4915         !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
4916       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4917       // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
4918       // "a != C ? x : a" to avoid materializing C.
4919       if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
4920         TVal = LHS;
4921       else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
4922         FVal = LHS;
4923     } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
4924       assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
4925       // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
4926       // avoid materializing C.
4927       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4928       if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
4929         Opcode = AArch64ISD::CSINV;
4930         TVal = LHS;
4931         FVal = DAG.getConstant(0, dl, FVal.getValueType());
4932       }
4933     }
4934 
4935     SDValue CCVal;
4936     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4937     EVT VT = TVal.getValueType();
4938     return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4939   }
4940 
4941   // Now we know we're dealing with FP values.
4942   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4943          LHS.getValueType() == MVT::f64);
4944   assert(LHS.getValueType() == RHS.getValueType());
4945   EVT VT = TVal.getValueType();
4946   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4947 
4948   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4949   // clean.  Some of them require two CSELs to implement.
4950   AArch64CC::CondCode CC1, CC2;
4951   changeFPCCToAArch64CC(CC, CC1, CC2);
4952 
4953   if (DAG.getTarget().Options.UnsafeFPMath) {
4954     // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
4955     // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
4956     ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
4957     if (RHSVal && RHSVal->isZero()) {
4958       ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
4959       ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
4960 
4961       if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
4962           CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
4963         TVal = LHS;
4964       else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
4965                CFVal && CFVal->isZero() &&
4966                FVal.getValueType() == LHS.getValueType())
4967         FVal = LHS;
4968     }
4969   }
4970 
4971   // Emit first, and possibly only, CSEL.
4972   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4973   SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4974 
4975   // If we need a second CSEL, emit it, using the output of the first as the
4976   // RHS.  We're effectively OR'ing the two CC's together.
4977   if (CC2 != AArch64CC::AL) {
4978     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4979     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4980   }
4981 
4982   // Otherwise, return the output of the first CSEL.
4983   return CS1;
4984 }
4985 
4986 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4987                                               SelectionDAG &DAG) const {
4988   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4989   SDValue LHS = Op.getOperand(0);
4990   SDValue RHS = Op.getOperand(1);
4991   SDValue TVal = Op.getOperand(2);
4992   SDValue FVal = Op.getOperand(3);
4993   SDLoc DL(Op);
4994   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4995 }
4996 
4997 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4998                                            SelectionDAG &DAG) const {
4999   SDValue CCVal = Op->getOperand(0);
5000   SDValue TVal = Op->getOperand(1);
5001   SDValue FVal = Op->getOperand(2);
5002   SDLoc DL(Op);
5003 
5004   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
5005   // instruction.
5006   if (isOverflowIntrOpRes(CCVal)) {
5007     // Only lower legal XALUO ops.
5008     if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
5009       return SDValue();
5010 
5011     AArch64CC::CondCode OFCC;
5012     SDValue Value, Overflow;
5013     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
5014     SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
5015 
5016     return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
5017                        CCVal, Overflow);
5018   }
5019 
5020   // Lower it the same way as we would lower a SELECT_CC node.
5021   ISD::CondCode CC;
5022   SDValue LHS, RHS;
5023   if (CCVal.getOpcode() == ISD::SETCC) {
5024     LHS = CCVal.getOperand(0);
5025     RHS = CCVal.getOperand(1);
5026     CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
5027   } else {
5028     LHS = CCVal;
5029     RHS = DAG.getConstant(0, DL, CCVal.getValueType());
5030     CC = ISD::SETNE;
5031   }
5032   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
5033 }
5034 
5035 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
5036                                               SelectionDAG &DAG) const {
5037   // Jump table entries as PC relative offsets. No additional tweaking
5038   // is necessary here. Just get the address of the jump table.
5039   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5040 
5041   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5042       !Subtarget->isTargetMachO()) {
5043     return getAddrLarge(JT, DAG);
5044   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5045     return getAddrTiny(JT, DAG);
5046   }
5047   return getAddr(JT, DAG);
5048 }
5049 
5050 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
5051                                           SelectionDAG &DAG) const {
5052   // Jump table entries as PC relative offsets. No additional tweaking
5053   // is necessary here. Just get the address of the jump table.
5054   SDLoc DL(Op);
5055   SDValue JT = Op.getOperand(1);
5056   SDValue Entry = Op.getOperand(2);
5057   int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
5058 
5059   SDNode *Dest =
5060       DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
5061                          Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
5062   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
5063                      SDValue(Dest, 0));
5064 }
5065 
5066 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
5067                                                  SelectionDAG &DAG) const {
5068   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5069 
5070   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
5071     // Use the GOT for the large code model on iOS.
5072     if (Subtarget->isTargetMachO()) {
5073       return getGOT(CP, DAG);
5074     }
5075     return getAddrLarge(CP, DAG);
5076   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5077     return getAddrTiny(CP, DAG);
5078   } else {
5079     return getAddr(CP, DAG);
5080   }
5081 }
5082 
5083 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
5084                                                SelectionDAG &DAG) const {
5085   BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
5086   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5087       !Subtarget->isTargetMachO()) {
5088     return getAddrLarge(BA, DAG);
5089   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5090     return getAddrTiny(BA, DAG);
5091   }
5092   return getAddr(BA, DAG);
5093 }
5094 
5095 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
5096                                                  SelectionDAG &DAG) const {
5097   AArch64FunctionInfo *FuncInfo =
5098       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5099 
5100   SDLoc DL(Op);
5101   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
5102                                  getPointerTy(DAG.getDataLayout()));
5103   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5104   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5105                       MachinePointerInfo(SV));
5106 }
5107 
5108 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
5109                                                   SelectionDAG &DAG) const {
5110   AArch64FunctionInfo *FuncInfo =
5111       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5112 
5113   SDLoc DL(Op);
5114   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
5115                                      ? FuncInfo->getVarArgsGPRIndex()
5116                                      : FuncInfo->getVarArgsStackIndex(),
5117                                  getPointerTy(DAG.getDataLayout()));
5118   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5119   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5120                       MachinePointerInfo(SV));
5121 }
5122 
5123 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
5124                                                 SelectionDAG &DAG) const {
5125   // The layout of the va_list struct is specified in the AArch64 Procedure Call
5126   // Standard, section B.3.
5127   MachineFunction &MF = DAG.getMachineFunction();
5128   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5129   auto PtrVT = getPointerTy(DAG.getDataLayout());
5130   SDLoc DL(Op);
5131 
5132   SDValue Chain = Op.getOperand(0);
5133   SDValue VAList = Op.getOperand(1);
5134   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5135   SmallVector<SDValue, 4> MemOps;
5136 
5137   // void *__stack at offset 0
5138   SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
5139   MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
5140                                 MachinePointerInfo(SV), /* Alignment = */ 8));
5141 
5142   // void *__gr_top at offset 8
5143   int GPRSize = FuncInfo->getVarArgsGPRSize();
5144   if (GPRSize > 0) {
5145     SDValue GRTop, GRTopAddr;
5146 
5147     GRTopAddr =
5148         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
5149 
5150     GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
5151     GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
5152                         DAG.getConstant(GPRSize, DL, PtrVT));
5153 
5154     MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
5155                                   MachinePointerInfo(SV, 8),
5156                                   /* Alignment = */ 8));
5157   }
5158 
5159   // void *__vr_top at offset 16
5160   int FPRSize = FuncInfo->getVarArgsFPRSize();
5161   if (FPRSize > 0) {
5162     SDValue VRTop, VRTopAddr;
5163     VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5164                             DAG.getConstant(16, DL, PtrVT));
5165 
5166     VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
5167     VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
5168                         DAG.getConstant(FPRSize, DL, PtrVT));
5169 
5170     MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
5171                                   MachinePointerInfo(SV, 16),
5172                                   /* Alignment = */ 8));
5173   }
5174 
5175   // int __gr_offs at offset 24
5176   SDValue GROffsAddr =
5177       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
5178   MemOps.push_back(DAG.getStore(
5179       Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
5180       MachinePointerInfo(SV, 24), /* Alignment = */ 4));
5181 
5182   // int __vr_offs at offset 28
5183   SDValue VROffsAddr =
5184       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
5185   MemOps.push_back(DAG.getStore(
5186       Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
5187       MachinePointerInfo(SV, 28), /* Alignment = */ 4));
5188 
5189   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
5190 }
5191 
5192 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
5193                                             SelectionDAG &DAG) const {
5194   MachineFunction &MF = DAG.getMachineFunction();
5195 
5196   if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
5197     return LowerWin64_VASTART(Op, DAG);
5198   else if (Subtarget->isTargetDarwin())
5199     return LowerDarwin_VASTART(Op, DAG);
5200   else
5201     return LowerAAPCS_VASTART(Op, DAG);
5202 }
5203 
5204 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
5205                                            SelectionDAG &DAG) const {
5206   // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
5207   // pointer.
5208   SDLoc DL(Op);
5209   unsigned VaListSize =
5210       Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32;
5211   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5212   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5213 
5214   return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
5215                        Op.getOperand(2),
5216                        DAG.getConstant(VaListSize, DL, MVT::i32),
5217                        8, false, false, false, MachinePointerInfo(DestSV),
5218                        MachinePointerInfo(SrcSV));
5219 }
5220 
5221 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
5222   assert(Subtarget->isTargetDarwin() &&
5223          "automatic va_arg instruction only works on Darwin");
5224 
5225   const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5226   EVT VT = Op.getValueType();
5227   SDLoc DL(Op);
5228   SDValue Chain = Op.getOperand(0);
5229   SDValue Addr = Op.getOperand(1);
5230   unsigned Align = Op.getConstantOperandVal(3);
5231   auto PtrVT = getPointerTy(DAG.getDataLayout());
5232 
5233   SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
5234   Chain = VAList.getValue(1);
5235 
5236   if (Align > 8) {
5237     assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
5238     VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5239                          DAG.getConstant(Align - 1, DL, PtrVT));
5240     VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
5241                          DAG.getConstant(-(int64_t)Align, DL, PtrVT));
5242   }
5243 
5244   Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5245   uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
5246 
5247   // Scalar integer and FP values smaller than 64 bits are implicitly extended
5248   // up to 64 bits.  At the very least, we have to increase the striding of the
5249   // vaargs list to match this, and for FP values we need to introduce
5250   // FP_ROUND nodes as well.
5251   if (VT.isInteger() && !VT.isVector())
5252     ArgSize = 8;
5253   bool NeedFPTrunc = false;
5254   if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
5255     ArgSize = 8;
5256     NeedFPTrunc = true;
5257   }
5258 
5259   // Increment the pointer, VAList, to the next vaarg
5260   SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5261                                DAG.getConstant(ArgSize, DL, PtrVT));
5262   // Store the incremented VAList to the legalized pointer
5263   SDValue APStore =
5264       DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
5265 
5266   // Load the actual argument out of the pointer VAList
5267   if (NeedFPTrunc) {
5268     // Load the value as an f64.
5269     SDValue WideFP =
5270         DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
5271     // Round the value down to an f32.
5272     SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
5273                                    DAG.getIntPtrConstant(1, DL));
5274     SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
5275     // Merge the rounded value with the chain output of the load.
5276     return DAG.getMergeValues(Ops, DL);
5277   }
5278 
5279   return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
5280 }
5281 
5282 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
5283                                               SelectionDAG &DAG) const {
5284   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5285   MFI.setFrameAddressIsTaken(true);
5286 
5287   EVT VT = Op.getValueType();
5288   SDLoc DL(Op);
5289   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5290   SDValue FrameAddr =
5291       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5292   while (Depth--)
5293     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
5294                             MachinePointerInfo());
5295   return FrameAddr;
5296 }
5297 
5298 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
5299                                               SelectionDAG &DAG) const {
5300   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5301 
5302   EVT VT = getPointerTy(DAG.getDataLayout());
5303   SDLoc DL(Op);
5304   int FI = MFI.CreateFixedObject(4, 0, false);
5305   return DAG.getFrameIndex(FI, VT);
5306 }
5307 
5308 #define GET_REGISTER_MATCHER
5309 #include "AArch64GenAsmMatcher.inc"
5310 
5311 // FIXME? Maybe this could be a TableGen attribute on some registers and
5312 // this table could be generated automatically from RegInfo.
5313 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
5314                                                   SelectionDAG &DAG) const {
5315   unsigned Reg = MatchRegisterName(RegName);
5316   if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
5317     const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
5318     unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
5319     if (!Subtarget->isXRegisterReserved(DwarfRegNum))
5320       Reg = 0;
5321   }
5322   if (Reg)
5323     return Reg;
5324   report_fatal_error(Twine("Invalid register name \""
5325                               + StringRef(RegName)  + "\"."));
5326 }
5327 
5328 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
5329                                                      SelectionDAG &DAG) const {
5330   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
5331 
5332   EVT VT = Op.getValueType();
5333   SDLoc DL(Op);
5334 
5335   SDValue FrameAddr =
5336       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5337   SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5338 
5339   return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
5340 }
5341 
5342 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
5343                                                SelectionDAG &DAG) const {
5344   MachineFunction &MF = DAG.getMachineFunction();
5345   MachineFrameInfo &MFI = MF.getFrameInfo();
5346   MFI.setReturnAddressIsTaken(true);
5347 
5348   EVT VT = Op.getValueType();
5349   SDLoc DL(Op);
5350   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5351   if (Depth) {
5352     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5353     SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5354     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
5355                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
5356                        MachinePointerInfo());
5357   }
5358 
5359   // Return LR, which contains the return address. Mark it an implicit live-in.
5360   unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
5361   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5362 }
5363 
5364 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5365 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5366 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
5367                                                     SelectionDAG &DAG) const {
5368   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5369   EVT VT = Op.getValueType();
5370   unsigned VTBits = VT.getSizeInBits();
5371   SDLoc dl(Op);
5372   SDValue ShOpLo = Op.getOperand(0);
5373   SDValue ShOpHi = Op.getOperand(1);
5374   SDValue ShAmt = Op.getOperand(2);
5375   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5376 
5377   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5378 
5379   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5380                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5381   SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5382 
5383   // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5384   // is "undef". We wanted 0, so CSEL it directly.
5385   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5386                                ISD::SETEQ, dl, DAG);
5387   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5388   HiBitsForLo =
5389       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5390                   HiBitsForLo, CCVal, Cmp);
5391 
5392   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5393                                    DAG.getConstant(VTBits, dl, MVT::i64));
5394 
5395   SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5396   SDValue LoForNormalShift =
5397       DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
5398 
5399   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5400                        dl, DAG);
5401   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5402   SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5403   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5404                            LoForNormalShift, CCVal, Cmp);
5405 
5406   // AArch64 shifts larger than the register width are wrapped rather than
5407   // clamped, so we can't just emit "hi >> x".
5408   SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5409   SDValue HiForBigShift =
5410       Opc == ISD::SRA
5411           ? DAG.getNode(Opc, dl, VT, ShOpHi,
5412                         DAG.getConstant(VTBits - 1, dl, MVT::i64))
5413           : DAG.getConstant(0, dl, VT);
5414   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5415                            HiForNormalShift, CCVal, Cmp);
5416 
5417   SDValue Ops[2] = { Lo, Hi };
5418   return DAG.getMergeValues(Ops, dl);
5419 }
5420 
5421 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5422 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5423 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
5424                                                    SelectionDAG &DAG) const {
5425   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5426   EVT VT = Op.getValueType();
5427   unsigned VTBits = VT.getSizeInBits();
5428   SDLoc dl(Op);
5429   SDValue ShOpLo = Op.getOperand(0);
5430   SDValue ShOpHi = Op.getOperand(1);
5431   SDValue ShAmt = Op.getOperand(2);
5432 
5433   assert(Op.getOpcode() == ISD::SHL_PARTS);
5434   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5435                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5436   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5437 
5438   // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5439   // is "undef". We wanted 0, so CSEL it directly.
5440   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5441                                ISD::SETEQ, dl, DAG);
5442   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5443   LoBitsForHi =
5444       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5445                   LoBitsForHi, CCVal, Cmp);
5446 
5447   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5448                                    DAG.getConstant(VTBits, dl, MVT::i64));
5449   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5450   SDValue HiForNormalShift =
5451       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
5452 
5453   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5454 
5455   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5456                        dl, DAG);
5457   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5458   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5459                            HiForNormalShift, CCVal, Cmp);
5460 
5461   // AArch64 shifts of larger than register sizes are wrapped rather than
5462   // clamped, so we can't just emit "lo << a" if a is too big.
5463   SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
5464   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5465   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5466                            LoForNormalShift, CCVal, Cmp);
5467 
5468   SDValue Ops[2] = { Lo, Hi };
5469   return DAG.getMergeValues(Ops, dl);
5470 }
5471 
5472 bool AArch64TargetLowering::isOffsetFoldingLegal(
5473     const GlobalAddressSDNode *GA) const {
5474   // Offsets are folded in the DAG combine rather than here so that we can
5475   // intelligently choose an offset based on the uses.
5476   return false;
5477 }
5478 
5479 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
5480                                          bool OptForSize) const {
5481   bool IsLegal = false;
5482   // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
5483   // 16-bit case when target has full fp16 support.
5484   // FIXME: We should be able to handle f128 as well with a clever lowering.
5485   const APInt ImmInt = Imm.bitcastToAPInt();
5486   if (VT == MVT::f64)
5487     IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
5488   else if (VT == MVT::f32)
5489     IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
5490   else if (VT == MVT::f16 && Subtarget->hasFullFP16())
5491     IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
5492   // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
5493   //       generate that fmov.
5494 
5495   // If we can not materialize in immediate field for fmov, check if the
5496   // value can be encoded as the immediate operand of a logical instruction.
5497   // The immediate value will be created with either MOVZ, MOVN, or ORR.
5498   if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
5499     // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
5500     // however the mov+fmov sequence is always better because of the reduced
5501     // cache pressure. The timings are still the same if you consider
5502     // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
5503     // movw+movk is fused). So we limit up to 2 instrdduction at most.
5504     SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
5505     AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
5506 			      Insn);
5507     unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
5508     IsLegal = Insn.size() <= Limit;
5509   }
5510 
5511   LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
5512                     << " imm value: "; Imm.dump(););
5513   return IsLegal;
5514 }
5515 
5516 //===----------------------------------------------------------------------===//
5517 //                          AArch64 Optimization Hooks
5518 //===----------------------------------------------------------------------===//
5519 
5520 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
5521                            SDValue Operand, SelectionDAG &DAG,
5522                            int &ExtraSteps) {
5523   EVT VT = Operand.getValueType();
5524   if (ST->hasNEON() &&
5525       (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
5526        VT == MVT::f32 || VT == MVT::v1f32 ||
5527        VT == MVT::v2f32 || VT == MVT::v4f32)) {
5528     if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
5529       // For the reciprocal estimates, convergence is quadratic, so the number
5530       // of digits is doubled after each iteration.  In ARMv8, the accuracy of
5531       // the initial estimate is 2^-8.  Thus the number of extra steps to refine
5532       // the result for float (23 mantissa bits) is 2 and for double (52
5533       // mantissa bits) is 3.
5534       ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
5535 
5536     return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
5537   }
5538 
5539   return SDValue();
5540 }
5541 
5542 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
5543                                                SelectionDAG &DAG, int Enabled,
5544                                                int &ExtraSteps,
5545                                                bool &UseOneConst,
5546                                                bool Reciprocal) const {
5547   if (Enabled == ReciprocalEstimate::Enabled ||
5548       (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
5549     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
5550                                        DAG, ExtraSteps)) {
5551       SDLoc DL(Operand);
5552       EVT VT = Operand.getValueType();
5553 
5554       SDNodeFlags Flags;
5555       Flags.setAllowReassociation(true);
5556 
5557       // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
5558       // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
5559       for (int i = ExtraSteps; i > 0; --i) {
5560         SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
5561                                    Flags);
5562         Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
5563         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5564       }
5565       if (!Reciprocal) {
5566         EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
5567                                       VT);
5568         SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5569         SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
5570 
5571         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
5572         // Correct the result if the operand is 0.0.
5573         Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
5574                                VT, Eq, Operand, Estimate);
5575       }
5576 
5577       ExtraSteps = 0;
5578       return Estimate;
5579     }
5580 
5581   return SDValue();
5582 }
5583 
5584 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
5585                                                 SelectionDAG &DAG, int Enabled,
5586                                                 int &ExtraSteps) const {
5587   if (Enabled == ReciprocalEstimate::Enabled)
5588     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
5589                                        DAG, ExtraSteps)) {
5590       SDLoc DL(Operand);
5591       EVT VT = Operand.getValueType();
5592 
5593       SDNodeFlags Flags;
5594       Flags.setAllowReassociation(true);
5595 
5596       // Newton reciprocal iteration: E * (2 - X * E)
5597       // AArch64 reciprocal iteration instruction: (2 - M * N)
5598       for (int i = ExtraSteps; i > 0; --i) {
5599         SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
5600                                    Estimate, Flags);
5601         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5602       }
5603 
5604       ExtraSteps = 0;
5605       return Estimate;
5606     }
5607 
5608   return SDValue();
5609 }
5610 
5611 //===----------------------------------------------------------------------===//
5612 //                          AArch64 Inline Assembly Support
5613 //===----------------------------------------------------------------------===//
5614 
5615 // Table of Constraints
5616 // TODO: This is the current set of constraints supported by ARM for the
5617 // compiler, not all of them may make sense.
5618 //
5619 // r - A general register
5620 // w - An FP/SIMD register of some size in the range v0-v31
5621 // x - An FP/SIMD register of some size in the range v0-v15
5622 // I - Constant that can be used with an ADD instruction
5623 // J - Constant that can be used with a SUB instruction
5624 // K - Constant that can be used with a 32-bit logical instruction
5625 // L - Constant that can be used with a 64-bit logical instruction
5626 // M - Constant that can be used as a 32-bit MOV immediate
5627 // N - Constant that can be used as a 64-bit MOV immediate
5628 // Q - A memory reference with base register and no offset
5629 // S - A symbolic address
5630 // Y - Floating point constant zero
5631 // Z - Integer constant zero
5632 //
5633 //   Note that general register operands will be output using their 64-bit x
5634 // register name, whatever the size of the variable, unless the asm operand
5635 // is prefixed by the %w modifier. Floating-point and SIMD register operands
5636 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
5637 // %q modifier.
5638 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5639   // At this point, we have to lower this constraint to something else, so we
5640   // lower it to an "r" or "w". However, by doing this we will force the result
5641   // to be in register, while the X constraint is much more permissive.
5642   //
5643   // Although we are correct (we are free to emit anything, without
5644   // constraints), we might break use cases that would expect us to be more
5645   // efficient and emit something else.
5646   if (!Subtarget->hasFPARMv8())
5647     return "r";
5648 
5649   if (ConstraintVT.isFloatingPoint())
5650     return "w";
5651 
5652   if (ConstraintVT.isVector() &&
5653      (ConstraintVT.getSizeInBits() == 64 ||
5654       ConstraintVT.getSizeInBits() == 128))
5655     return "w";
5656 
5657   return "r";
5658 }
5659 
5660 /// getConstraintType - Given a constraint letter, return the type of
5661 /// constraint it is for this target.
5662 AArch64TargetLowering::ConstraintType
5663 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
5664   if (Constraint.size() == 1) {
5665     switch (Constraint[0]) {
5666     default:
5667       break;
5668     case 'x':
5669     case 'w':
5670       return C_RegisterClass;
5671     // An address with a single base register. Due to the way we
5672     // currently handle addresses it is the same as 'r'.
5673     case 'Q':
5674       return C_Memory;
5675     case 'I':
5676     case 'J':
5677     case 'K':
5678     case 'L':
5679     case 'M':
5680     case 'N':
5681     case 'Y':
5682     case 'Z':
5683       return C_Immediate;
5684     case 'z':
5685     case 'S': // A symbolic address
5686       return C_Other;
5687     }
5688   }
5689   return TargetLowering::getConstraintType(Constraint);
5690 }
5691 
5692 /// Examine constraint type and operand type and determine a weight value.
5693 /// This object must already have been set up with the operand type
5694 /// and the current alternative constraint selected.
5695 TargetLowering::ConstraintWeight
5696 AArch64TargetLowering::getSingleConstraintMatchWeight(
5697     AsmOperandInfo &info, const char *constraint) const {
5698   ConstraintWeight weight = CW_Invalid;
5699   Value *CallOperandVal = info.CallOperandVal;
5700   // If we don't have a value, we can't do a match,
5701   // but allow it at the lowest weight.
5702   if (!CallOperandVal)
5703     return CW_Default;
5704   Type *type = CallOperandVal->getType();
5705   // Look at the constraint type.
5706   switch (*constraint) {
5707   default:
5708     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5709     break;
5710   case 'x':
5711   case 'w':
5712     if (type->isFloatingPointTy() || type->isVectorTy())
5713       weight = CW_Register;
5714     break;
5715   case 'z':
5716     weight = CW_Constant;
5717     break;
5718   }
5719   return weight;
5720 }
5721 
5722 std::pair<unsigned, const TargetRegisterClass *>
5723 AArch64TargetLowering::getRegForInlineAsmConstraint(
5724     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
5725   if (Constraint.size() == 1) {
5726     switch (Constraint[0]) {
5727     case 'r':
5728       if (VT.getSizeInBits() == 64)
5729         return std::make_pair(0U, &AArch64::GPR64commonRegClass);
5730       return std::make_pair(0U, &AArch64::GPR32commonRegClass);
5731     case 'w':
5732       if (!Subtarget->hasFPARMv8())
5733         break;
5734       if (VT.getSizeInBits() == 16)
5735         return std::make_pair(0U, &AArch64::FPR16RegClass);
5736       if (VT.getSizeInBits() == 32)
5737         return std::make_pair(0U, &AArch64::FPR32RegClass);
5738       if (VT.getSizeInBits() == 64)
5739         return std::make_pair(0U, &AArch64::FPR64RegClass);
5740       if (VT.getSizeInBits() == 128)
5741         return std::make_pair(0U, &AArch64::FPR128RegClass);
5742       break;
5743     // The instructions that this constraint is designed for can
5744     // only take 128-bit registers so just use that regclass.
5745     case 'x':
5746       if (!Subtarget->hasFPARMv8())
5747         break;
5748       if (VT.getSizeInBits() == 128)
5749         return std::make_pair(0U, &AArch64::FPR128_loRegClass);
5750       break;
5751     }
5752   }
5753   if (StringRef("{cc}").equals_lower(Constraint))
5754     return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
5755 
5756   // Use the default implementation in TargetLowering to convert the register
5757   // constraint into a member of a register class.
5758   std::pair<unsigned, const TargetRegisterClass *> Res;
5759   Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5760 
5761   // Not found as a standard register?
5762   if (!Res.second) {
5763     unsigned Size = Constraint.size();
5764     if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
5765         tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
5766       int RegNo;
5767       bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
5768       if (!Failed && RegNo >= 0 && RegNo <= 31) {
5769         // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
5770         // By default we'll emit v0-v31 for this unless there's a modifier where
5771         // we'll emit the correct register as well.
5772         if (VT != MVT::Other && VT.getSizeInBits() == 64) {
5773           Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
5774           Res.second = &AArch64::FPR64RegClass;
5775         } else {
5776           Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
5777           Res.second = &AArch64::FPR128RegClass;
5778         }
5779       }
5780     }
5781   }
5782 
5783   if (Res.second && !Subtarget->hasFPARMv8() &&
5784       !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
5785       !AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
5786     return std::make_pair(0U, nullptr);
5787 
5788   return Res;
5789 }
5790 
5791 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5792 /// vector.  If it is invalid, don't add anything to Ops.
5793 void AArch64TargetLowering::LowerAsmOperandForConstraint(
5794     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
5795     SelectionDAG &DAG) const {
5796   SDValue Result;
5797 
5798   // Currently only support length 1 constraints.
5799   if (Constraint.length() != 1)
5800     return;
5801 
5802   char ConstraintLetter = Constraint[0];
5803   switch (ConstraintLetter) {
5804   default:
5805     break;
5806 
5807   // This set of constraints deal with valid constants for various instructions.
5808   // Validate and return a target constant for them if we can.
5809   case 'z': {
5810     // 'z' maps to xzr or wzr so it needs an input of 0.
5811     if (!isNullConstant(Op))
5812       return;
5813 
5814     if (Op.getValueType() == MVT::i64)
5815       Result = DAG.getRegister(AArch64::XZR, MVT::i64);
5816     else
5817       Result = DAG.getRegister(AArch64::WZR, MVT::i32);
5818     break;
5819   }
5820   case 'S': {
5821     // An absolute symbolic address or label reference.
5822     if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5823       Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5824                                           GA->getValueType(0));
5825     } else if (const BlockAddressSDNode *BA =
5826                    dyn_cast<BlockAddressSDNode>(Op)) {
5827       Result =
5828           DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
5829     } else if (const ExternalSymbolSDNode *ES =
5830                    dyn_cast<ExternalSymbolSDNode>(Op)) {
5831       Result =
5832           DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
5833     } else
5834       return;
5835     break;
5836   }
5837 
5838   case 'I':
5839   case 'J':
5840   case 'K':
5841   case 'L':
5842   case 'M':
5843   case 'N':
5844     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5845     if (!C)
5846       return;
5847 
5848     // Grab the value and do some validation.
5849     uint64_t CVal = C->getZExtValue();
5850     switch (ConstraintLetter) {
5851     // The I constraint applies only to simple ADD or SUB immediate operands:
5852     // i.e. 0 to 4095 with optional shift by 12
5853     // The J constraint applies only to ADD or SUB immediates that would be
5854     // valid when negated, i.e. if [an add pattern] were to be output as a SUB
5855     // instruction [or vice versa], in other words -1 to -4095 with optional
5856     // left shift by 12.
5857     case 'I':
5858       if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
5859         break;
5860       return;
5861     case 'J': {
5862       uint64_t NVal = -C->getSExtValue();
5863       if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
5864         CVal = C->getSExtValue();
5865         break;
5866       }
5867       return;
5868     }
5869     // The K and L constraints apply *only* to logical immediates, including
5870     // what used to be the MOVI alias for ORR (though the MOVI alias has now
5871     // been removed and MOV should be used). So these constraints have to
5872     // distinguish between bit patterns that are valid 32-bit or 64-bit
5873     // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
5874     // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
5875     // versa.
5876     case 'K':
5877       if (AArch64_AM::isLogicalImmediate(CVal, 32))
5878         break;
5879       return;
5880     case 'L':
5881       if (AArch64_AM::isLogicalImmediate(CVal, 64))
5882         break;
5883       return;
5884     // The M and N constraints are a superset of K and L respectively, for use
5885     // with the MOV (immediate) alias. As well as the logical immediates they
5886     // also match 32 or 64-bit immediates that can be loaded either using a
5887     // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
5888     // (M) or 64-bit 0x1234000000000000 (N) etc.
5889     // As a note some of this code is liberally stolen from the asm parser.
5890     case 'M': {
5891       if (!isUInt<32>(CVal))
5892         return;
5893       if (AArch64_AM::isLogicalImmediate(CVal, 32))
5894         break;
5895       if ((CVal & 0xFFFF) == CVal)
5896         break;
5897       if ((CVal & 0xFFFF0000ULL) == CVal)
5898         break;
5899       uint64_t NCVal = ~(uint32_t)CVal;
5900       if ((NCVal & 0xFFFFULL) == NCVal)
5901         break;
5902       if ((NCVal & 0xFFFF0000ULL) == NCVal)
5903         break;
5904       return;
5905     }
5906     case 'N': {
5907       if (AArch64_AM::isLogicalImmediate(CVal, 64))
5908         break;
5909       if ((CVal & 0xFFFFULL) == CVal)
5910         break;
5911       if ((CVal & 0xFFFF0000ULL) == CVal)
5912         break;
5913       if ((CVal & 0xFFFF00000000ULL) == CVal)
5914         break;
5915       if ((CVal & 0xFFFF000000000000ULL) == CVal)
5916         break;
5917       uint64_t NCVal = ~CVal;
5918       if ((NCVal & 0xFFFFULL) == NCVal)
5919         break;
5920       if ((NCVal & 0xFFFF0000ULL) == NCVal)
5921         break;
5922       if ((NCVal & 0xFFFF00000000ULL) == NCVal)
5923         break;
5924       if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
5925         break;
5926       return;
5927     }
5928     default:
5929       return;
5930     }
5931 
5932     // All assembler immediates are 64-bit integers.
5933     Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
5934     break;
5935   }
5936 
5937   if (Result.getNode()) {
5938     Ops.push_back(Result);
5939     return;
5940   }
5941 
5942   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5943 }
5944 
5945 //===----------------------------------------------------------------------===//
5946 //                     AArch64 Advanced SIMD Support
5947 //===----------------------------------------------------------------------===//
5948 
5949 /// WidenVector - Given a value in the V64 register class, produce the
5950 /// equivalent value in the V128 register class.
5951 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
5952   EVT VT = V64Reg.getValueType();
5953   unsigned NarrowSize = VT.getVectorNumElements();
5954   MVT EltTy = VT.getVectorElementType().getSimpleVT();
5955   MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
5956   SDLoc DL(V64Reg);
5957 
5958   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
5959                      V64Reg, DAG.getConstant(0, DL, MVT::i32));
5960 }
5961 
5962 /// getExtFactor - Determine the adjustment factor for the position when
5963 /// generating an "extract from vector registers" instruction.
5964 static unsigned getExtFactor(SDValue &V) {
5965   EVT EltType = V.getValueType().getVectorElementType();
5966   return EltType.getSizeInBits() / 8;
5967 }
5968 
5969 /// NarrowVector - Given a value in the V128 register class, produce the
5970 /// equivalent value in the V64 register class.
5971 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
5972   EVT VT = V128Reg.getValueType();
5973   unsigned WideSize = VT.getVectorNumElements();
5974   MVT EltTy = VT.getVectorElementType().getSimpleVT();
5975   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
5976   SDLoc DL(V128Reg);
5977 
5978   return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
5979 }
5980 
5981 // Gather data to see if the operation can be modelled as a
5982 // shuffle in combination with VEXTs.
5983 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
5984                                                   SelectionDAG &DAG) const {
5985   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5986   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
5987   SDLoc dl(Op);
5988   EVT VT = Op.getValueType();
5989   unsigned NumElts = VT.getVectorNumElements();
5990 
5991   struct ShuffleSourceInfo {
5992     SDValue Vec;
5993     unsigned MinElt;
5994     unsigned MaxElt;
5995 
5996     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
5997     // be compatible with the shuffle we intend to construct. As a result
5998     // ShuffleVec will be some sliding window into the original Vec.
5999     SDValue ShuffleVec;
6000 
6001     // Code should guarantee that element i in Vec starts at element "WindowBase
6002     // + i * WindowScale in ShuffleVec".
6003     int WindowBase;
6004     int WindowScale;
6005 
6006     ShuffleSourceInfo(SDValue Vec)
6007       : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
6008           ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
6009 
6010     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6011   };
6012 
6013   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6014   // node.
6015   SmallVector<ShuffleSourceInfo, 2> Sources;
6016   for (unsigned i = 0; i < NumElts; ++i) {
6017     SDValue V = Op.getOperand(i);
6018     if (V.isUndef())
6019       continue;
6020     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6021              !isa<ConstantSDNode>(V.getOperand(1))) {
6022       LLVM_DEBUG(
6023           dbgs() << "Reshuffle failed: "
6024                     "a shuffle can only come from building a vector from "
6025                     "various elements of other vectors, provided their "
6026                     "indices are constant\n");
6027       return SDValue();
6028     }
6029 
6030     // Add this element source to the list if it's not already there.
6031     SDValue SourceVec = V.getOperand(0);
6032     auto Source = find(Sources, SourceVec);
6033     if (Source == Sources.end())
6034       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6035 
6036     // Update the minimum and maximum lane number seen.
6037     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6038     Source->MinElt = std::min(Source->MinElt, EltNo);
6039     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6040   }
6041 
6042   if (Sources.size() > 2) {
6043     LLVM_DEBUG(
6044         dbgs() << "Reshuffle failed: currently only do something sane when at "
6045                   "most two source vectors are involved\n");
6046     return SDValue();
6047   }
6048 
6049   // Find out the smallest element size among result and two sources, and use
6050   // it as element size to build the shuffle_vector.
6051   EVT SmallestEltTy = VT.getVectorElementType();
6052   for (auto &Source : Sources) {
6053     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6054     if (SrcEltTy.bitsLT(SmallestEltTy)) {
6055       SmallestEltTy = SrcEltTy;
6056     }
6057   }
6058   unsigned ResMultiplier =
6059       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6060   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6061   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6062 
6063   // If the source vector is too wide or too narrow, we may nevertheless be able
6064   // to construct a compatible shuffle either by concatenating it with UNDEF or
6065   // extracting a suitable range of elements.
6066   for (auto &Src : Sources) {
6067     EVT SrcVT = Src.ShuffleVec.getValueType();
6068 
6069     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6070       continue;
6071 
6072     // This stage of the search produces a source with the same element type as
6073     // the original, but with a total width matching the BUILD_VECTOR output.
6074     EVT EltVT = SrcVT.getVectorElementType();
6075     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6076     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6077 
6078     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6079       assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
6080       // We can pad out the smaller vector for free, so if it's part of a
6081       // shuffle...
6082       Src.ShuffleVec =
6083           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6084                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6085       continue;
6086     }
6087 
6088     assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
6089 
6090     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6091       LLVM_DEBUG(
6092           dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
6093       return SDValue();
6094     }
6095 
6096     if (Src.MinElt >= NumSrcElts) {
6097       // The extraction can just take the second half
6098       Src.ShuffleVec =
6099           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6100                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
6101       Src.WindowBase = -NumSrcElts;
6102     } else if (Src.MaxElt < NumSrcElts) {
6103       // The extraction can just take the first half
6104       Src.ShuffleVec =
6105           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6106                       DAG.getConstant(0, dl, MVT::i64));
6107     } else {
6108       // An actual VEXT is needed
6109       SDValue VEXTSrc1 =
6110           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6111                       DAG.getConstant(0, dl, MVT::i64));
6112       SDValue VEXTSrc2 =
6113           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6114                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
6115       unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
6116 
6117       Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
6118                                    VEXTSrc2,
6119                                    DAG.getConstant(Imm, dl, MVT::i32));
6120       Src.WindowBase = -Src.MinElt;
6121     }
6122   }
6123 
6124   // Another possible incompatibility occurs from the vector element types. We
6125   // can fix this by bitcasting the source vectors to the same type we intend
6126   // for the shuffle.
6127   for (auto &Src : Sources) {
6128     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6129     if (SrcEltTy == SmallestEltTy)
6130       continue;
6131     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6132     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6133     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6134     Src.WindowBase *= Src.WindowScale;
6135   }
6136 
6137   // Final sanity check before we try to actually produce a shuffle.
6138   LLVM_DEBUG(for (auto Src
6139                   : Sources)
6140                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6141 
6142   // The stars all align, our next step is to produce the mask for the shuffle.
6143   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6144   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6145   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6146     SDValue Entry = Op.getOperand(i);
6147     if (Entry.isUndef())
6148       continue;
6149 
6150     auto Src = find(Sources, Entry.getOperand(0));
6151     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6152 
6153     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6154     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6155     // segment.
6156     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6157     int BitsDefined =
6158         std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
6159     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6160 
6161     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6162     // starting at the appropriate offset.
6163     int *LaneMask = &Mask[i * ResMultiplier];
6164 
6165     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6166     ExtractBase += NumElts * (Src - Sources.begin());
6167     for (int j = 0; j < LanesDefined; ++j)
6168       LaneMask[j] = ExtractBase + j;
6169   }
6170 
6171   // Final check before we try to produce nonsense...
6172   if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
6173     LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
6174     return SDValue();
6175   }
6176 
6177   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6178   for (unsigned i = 0; i < Sources.size(); ++i)
6179     ShuffleOps[i] = Sources[i].ShuffleVec;
6180 
6181   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6182                                          ShuffleOps[1], Mask);
6183   SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6184 
6185   LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
6186              dbgs() << "Reshuffle, creating node: "; V.dump(););
6187 
6188   return V;
6189 }
6190 
6191 // check if an EXT instruction can handle the shuffle mask when the
6192 // vector sources of the shuffle are the same.
6193 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6194   unsigned NumElts = VT.getVectorNumElements();
6195 
6196   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6197   if (M[0] < 0)
6198     return false;
6199 
6200   Imm = M[0];
6201 
6202   // If this is a VEXT shuffle, the immediate value is the index of the first
6203   // element.  The other shuffle indices must be the successive elements after
6204   // the first one.
6205   unsigned ExpectedElt = Imm;
6206   for (unsigned i = 1; i < NumElts; ++i) {
6207     // Increment the expected index.  If it wraps around, just follow it
6208     // back to index zero and keep going.
6209     ++ExpectedElt;
6210     if (ExpectedElt == NumElts)
6211       ExpectedElt = 0;
6212 
6213     if (M[i] < 0)
6214       continue; // ignore UNDEF indices
6215     if (ExpectedElt != static_cast<unsigned>(M[i]))
6216       return false;
6217   }
6218 
6219   return true;
6220 }
6221 
6222 // check if an EXT instruction can handle the shuffle mask when the
6223 // vector sources of the shuffle are different.
6224 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
6225                       unsigned &Imm) {
6226   // Look for the first non-undef element.
6227   const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
6228 
6229   // Benefit form APInt to handle overflow when calculating expected element.
6230   unsigned NumElts = VT.getVectorNumElements();
6231   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
6232   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
6233   // The following shuffle indices must be the successive elements after the
6234   // first real element.
6235   const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
6236       [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
6237   if (FirstWrongElt != M.end())
6238     return false;
6239 
6240   // The index of an EXT is the first element if it is not UNDEF.
6241   // Watch out for the beginning UNDEFs. The EXT index should be the expected
6242   // value of the first element.  E.g.
6243   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
6244   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
6245   // ExpectedElt is the last mask index plus 1.
6246   Imm = ExpectedElt.getZExtValue();
6247 
6248   // There are two difference cases requiring to reverse input vectors.
6249   // For example, for vector <4 x i32> we have the following cases,
6250   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
6251   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
6252   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
6253   // to reverse two input vectors.
6254   if (Imm < NumElts)
6255     ReverseEXT = true;
6256   else
6257     Imm -= NumElts;
6258 
6259   return true;
6260 }
6261 
6262 /// isREVMask - Check if a vector shuffle corresponds to a REV
6263 /// instruction with the specified blocksize.  (The order of the elements
6264 /// within each block of the vector is reversed.)
6265 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6266   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
6267          "Only possible block sizes for REV are: 16, 32, 64");
6268 
6269   unsigned EltSz = VT.getScalarSizeInBits();
6270   if (EltSz == 64)
6271     return false;
6272 
6273   unsigned NumElts = VT.getVectorNumElements();
6274   unsigned BlockElts = M[0] + 1;
6275   // If the first shuffle index is UNDEF, be optimistic.
6276   if (M[0] < 0)
6277     BlockElts = BlockSize / EltSz;
6278 
6279   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6280     return false;
6281 
6282   for (unsigned i = 0; i < NumElts; ++i) {
6283     if (M[i] < 0)
6284       continue; // ignore UNDEF indices
6285     if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
6286       return false;
6287   }
6288 
6289   return true;
6290 }
6291 
6292 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6293   unsigned NumElts = VT.getVectorNumElements();
6294   WhichResult = (M[0] == 0 ? 0 : 1);
6295   unsigned Idx = WhichResult * NumElts / 2;
6296   for (unsigned i = 0; i != NumElts; i += 2) {
6297     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6298         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
6299       return false;
6300     Idx += 1;
6301   }
6302 
6303   return true;
6304 }
6305 
6306 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6307   unsigned NumElts = VT.getVectorNumElements();
6308   WhichResult = (M[0] == 0 ? 0 : 1);
6309   for (unsigned i = 0; i != NumElts; ++i) {
6310     if (M[i] < 0)
6311       continue; // ignore UNDEF indices
6312     if ((unsigned)M[i] != 2 * i + WhichResult)
6313       return false;
6314   }
6315 
6316   return true;
6317 }
6318 
6319 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6320   unsigned NumElts = VT.getVectorNumElements();
6321   if (NumElts % 2 != 0)
6322     return false;
6323   WhichResult = (M[0] == 0 ? 0 : 1);
6324   for (unsigned i = 0; i < NumElts; i += 2) {
6325     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6326         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
6327       return false;
6328   }
6329   return true;
6330 }
6331 
6332 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6333 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6334 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6335 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6336   unsigned NumElts = VT.getVectorNumElements();
6337   if (NumElts % 2 != 0)
6338     return false;
6339   WhichResult = (M[0] == 0 ? 0 : 1);
6340   unsigned Idx = WhichResult * NumElts / 2;
6341   for (unsigned i = 0; i != NumElts; i += 2) {
6342     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6343         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
6344       return false;
6345     Idx += 1;
6346   }
6347 
6348   return true;
6349 }
6350 
6351 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6352 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6353 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6354 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6355   unsigned Half = VT.getVectorNumElements() / 2;
6356   WhichResult = (M[0] == 0 ? 0 : 1);
6357   for (unsigned j = 0; j != 2; ++j) {
6358     unsigned Idx = WhichResult;
6359     for (unsigned i = 0; i != Half; ++i) {
6360       int MIdx = M[i + j * Half];
6361       if (MIdx >= 0 && (unsigned)MIdx != Idx)
6362         return false;
6363       Idx += 2;
6364     }
6365   }
6366 
6367   return true;
6368 }
6369 
6370 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6371 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6372 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6373 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6374   unsigned NumElts = VT.getVectorNumElements();
6375   if (NumElts % 2 != 0)
6376     return false;
6377   WhichResult = (M[0] == 0 ? 0 : 1);
6378   for (unsigned i = 0; i < NumElts; i += 2) {
6379     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6380         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
6381       return false;
6382   }
6383   return true;
6384 }
6385 
6386 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
6387                       bool &DstIsLeft, int &Anomaly) {
6388   if (M.size() != static_cast<size_t>(NumInputElements))
6389     return false;
6390 
6391   int NumLHSMatch = 0, NumRHSMatch = 0;
6392   int LastLHSMismatch = -1, LastRHSMismatch = -1;
6393 
6394   for (int i = 0; i < NumInputElements; ++i) {
6395     if (M[i] == -1) {
6396       ++NumLHSMatch;
6397       ++NumRHSMatch;
6398       continue;
6399     }
6400 
6401     if (M[i] == i)
6402       ++NumLHSMatch;
6403     else
6404       LastLHSMismatch = i;
6405 
6406     if (M[i] == i + NumInputElements)
6407       ++NumRHSMatch;
6408     else
6409       LastRHSMismatch = i;
6410   }
6411 
6412   if (NumLHSMatch == NumInputElements - 1) {
6413     DstIsLeft = true;
6414     Anomaly = LastLHSMismatch;
6415     return true;
6416   } else if (NumRHSMatch == NumInputElements - 1) {
6417     DstIsLeft = false;
6418     Anomaly = LastRHSMismatch;
6419     return true;
6420   }
6421 
6422   return false;
6423 }
6424 
6425 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
6426   if (VT.getSizeInBits() != 128)
6427     return false;
6428 
6429   unsigned NumElts = VT.getVectorNumElements();
6430 
6431   for (int I = 0, E = NumElts / 2; I != E; I++) {
6432     if (Mask[I] != I)
6433       return false;
6434   }
6435 
6436   int Offset = NumElts / 2;
6437   for (int I = NumElts / 2, E = NumElts; I != E; I++) {
6438     if (Mask[I] != I + SplitLHS * Offset)
6439       return false;
6440   }
6441 
6442   return true;
6443 }
6444 
6445 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
6446   SDLoc DL(Op);
6447   EVT VT = Op.getValueType();
6448   SDValue V0 = Op.getOperand(0);
6449   SDValue V1 = Op.getOperand(1);
6450   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
6451 
6452   if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
6453       VT.getVectorElementType() != V1.getValueType().getVectorElementType())
6454     return SDValue();
6455 
6456   bool SplitV0 = V0.getValueSizeInBits() == 128;
6457 
6458   if (!isConcatMask(Mask, VT, SplitV0))
6459     return SDValue();
6460 
6461   EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
6462                                 VT.getVectorNumElements() / 2);
6463   if (SplitV0) {
6464     V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
6465                      DAG.getConstant(0, DL, MVT::i64));
6466   }
6467   if (V1.getValueSizeInBits() == 128) {
6468     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
6469                      DAG.getConstant(0, DL, MVT::i64));
6470   }
6471   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
6472 }
6473 
6474 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6475 /// the specified operations to build the shuffle.
6476 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6477                                       SDValue RHS, SelectionDAG &DAG,
6478                                       const SDLoc &dl) {
6479   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6480   unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
6481   unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
6482 
6483   enum {
6484     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6485     OP_VREV,
6486     OP_VDUP0,
6487     OP_VDUP1,
6488     OP_VDUP2,
6489     OP_VDUP3,
6490     OP_VEXT1,
6491     OP_VEXT2,
6492     OP_VEXT3,
6493     OP_VUZPL, // VUZP, left result
6494     OP_VUZPR, // VUZP, right result
6495     OP_VZIPL, // VZIP, left result
6496     OP_VZIPR, // VZIP, right result
6497     OP_VTRNL, // VTRN, left result
6498     OP_VTRNR  // VTRN, right result
6499   };
6500 
6501   if (OpNum == OP_COPY) {
6502     if (LHSID == (1 * 9 + 2) * 9 + 3)
6503       return LHS;
6504     assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
6505     return RHS;
6506   }
6507 
6508   SDValue OpLHS, OpRHS;
6509   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6510   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6511   EVT VT = OpLHS.getValueType();
6512 
6513   switch (OpNum) {
6514   default:
6515     llvm_unreachable("Unknown shuffle opcode!");
6516   case OP_VREV:
6517     // VREV divides the vector in half and swaps within the half.
6518     if (VT.getVectorElementType() == MVT::i32 ||
6519         VT.getVectorElementType() == MVT::f32)
6520       return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
6521     // vrev <4 x i16> -> REV32
6522     if (VT.getVectorElementType() == MVT::i16 ||
6523         VT.getVectorElementType() == MVT::f16)
6524       return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
6525     // vrev <4 x i8> -> REV16
6526     assert(VT.getVectorElementType() == MVT::i8);
6527     return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
6528   case OP_VDUP0:
6529   case OP_VDUP1:
6530   case OP_VDUP2:
6531   case OP_VDUP3: {
6532     EVT EltTy = VT.getVectorElementType();
6533     unsigned Opcode;
6534     if (EltTy == MVT::i8)
6535       Opcode = AArch64ISD::DUPLANE8;
6536     else if (EltTy == MVT::i16 || EltTy == MVT::f16)
6537       Opcode = AArch64ISD::DUPLANE16;
6538     else if (EltTy == MVT::i32 || EltTy == MVT::f32)
6539       Opcode = AArch64ISD::DUPLANE32;
6540     else if (EltTy == MVT::i64 || EltTy == MVT::f64)
6541       Opcode = AArch64ISD::DUPLANE64;
6542     else
6543       llvm_unreachable("Invalid vector element type?");
6544 
6545     if (VT.getSizeInBits() == 64)
6546       OpLHS = WidenVector(OpLHS, DAG);
6547     SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
6548     return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
6549   }
6550   case OP_VEXT1:
6551   case OP_VEXT2:
6552   case OP_VEXT3: {
6553     unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
6554     return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
6555                        DAG.getConstant(Imm, dl, MVT::i32));
6556   }
6557   case OP_VUZPL:
6558     return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
6559                        OpRHS);
6560   case OP_VUZPR:
6561     return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
6562                        OpRHS);
6563   case OP_VZIPL:
6564     return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
6565                        OpRHS);
6566   case OP_VZIPR:
6567     return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
6568                        OpRHS);
6569   case OP_VTRNL:
6570     return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
6571                        OpRHS);
6572   case OP_VTRNR:
6573     return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
6574                        OpRHS);
6575   }
6576 }
6577 
6578 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
6579                            SelectionDAG &DAG) {
6580   // Check to see if we can use the TBL instruction.
6581   SDValue V1 = Op.getOperand(0);
6582   SDValue V2 = Op.getOperand(1);
6583   SDLoc DL(Op);
6584 
6585   EVT EltVT = Op.getValueType().getVectorElementType();
6586   unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
6587 
6588   SmallVector<SDValue, 8> TBLMask;
6589   for (int Val : ShuffleMask) {
6590     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
6591       unsigned Offset = Byte + Val * BytesPerElt;
6592       TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
6593     }
6594   }
6595 
6596   MVT IndexVT = MVT::v8i8;
6597   unsigned IndexLen = 8;
6598   if (Op.getValueSizeInBits() == 128) {
6599     IndexVT = MVT::v16i8;
6600     IndexLen = 16;
6601   }
6602 
6603   SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
6604   SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
6605 
6606   SDValue Shuffle;
6607   if (V2.getNode()->isUndef()) {
6608     if (IndexLen == 8)
6609       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
6610     Shuffle = DAG.getNode(
6611         ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6612         DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6613         DAG.getBuildVector(IndexVT, DL,
6614                            makeArrayRef(TBLMask.data(), IndexLen)));
6615   } else {
6616     if (IndexLen == 8) {
6617       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
6618       Shuffle = DAG.getNode(
6619           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6620           DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6621           DAG.getBuildVector(IndexVT, DL,
6622                              makeArrayRef(TBLMask.data(), IndexLen)));
6623     } else {
6624       // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
6625       // cannot currently represent the register constraints on the input
6626       // table registers.
6627       //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
6628       //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
6629       //                   IndexLen));
6630       Shuffle = DAG.getNode(
6631           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6632           DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
6633           V2Cst, DAG.getBuildVector(IndexVT, DL,
6634                                     makeArrayRef(TBLMask.data(), IndexLen)));
6635     }
6636   }
6637   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
6638 }
6639 
6640 static unsigned getDUPLANEOp(EVT EltType) {
6641   if (EltType == MVT::i8)
6642     return AArch64ISD::DUPLANE8;
6643   if (EltType == MVT::i16 || EltType == MVT::f16)
6644     return AArch64ISD::DUPLANE16;
6645   if (EltType == MVT::i32 || EltType == MVT::f32)
6646     return AArch64ISD::DUPLANE32;
6647   if (EltType == MVT::i64 || EltType == MVT::f64)
6648     return AArch64ISD::DUPLANE64;
6649 
6650   llvm_unreachable("Invalid vector element type?");
6651 }
6652 
6653 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
6654                                                    SelectionDAG &DAG) const {
6655   SDLoc dl(Op);
6656   EVT VT = Op.getValueType();
6657 
6658   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6659 
6660   // Convert shuffles that are directly supported on NEON to target-specific
6661   // DAG nodes, instead of keeping them as shuffles and matching them again
6662   // during code selection.  This is more efficient and avoids the possibility
6663   // of inconsistencies between legalization and selection.
6664   ArrayRef<int> ShuffleMask = SVN->getMask();
6665 
6666   SDValue V1 = Op.getOperand(0);
6667   SDValue V2 = Op.getOperand(1);
6668 
6669   if (SVN->isSplat()) {
6670     int Lane = SVN->getSplatIndex();
6671     // If this is undef splat, generate it via "just" vdup, if possible.
6672     if (Lane == -1)
6673       Lane = 0;
6674 
6675     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
6676       return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
6677                          V1.getOperand(0));
6678     // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
6679     // constant. If so, we can just reference the lane's definition directly.
6680     if (V1.getOpcode() == ISD::BUILD_VECTOR &&
6681         !isa<ConstantSDNode>(V1.getOperand(Lane)))
6682       return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
6683 
6684     // Otherwise, duplicate from the lane of the input vector.
6685     unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
6686 
6687     // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
6688     // to make a vector of the same size as this SHUFFLE. We can ignore the
6689     // extract entirely, and canonicalise the concat using WidenVector.
6690     if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6691       Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
6692       V1 = V1.getOperand(0);
6693     } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
6694       unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
6695       Lane -= Idx * VT.getVectorNumElements() / 2;
6696       V1 = WidenVector(V1.getOperand(Idx), DAG);
6697     } else if (VT.getSizeInBits() == 64)
6698       V1 = WidenVector(V1, DAG);
6699 
6700     return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
6701   }
6702 
6703   if (isREVMask(ShuffleMask, VT, 64))
6704     return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
6705   if (isREVMask(ShuffleMask, VT, 32))
6706     return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
6707   if (isREVMask(ShuffleMask, VT, 16))
6708     return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
6709 
6710   bool ReverseEXT = false;
6711   unsigned Imm;
6712   if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
6713     if (ReverseEXT)
6714       std::swap(V1, V2);
6715     Imm *= getExtFactor(V1);
6716     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
6717                        DAG.getConstant(Imm, dl, MVT::i32));
6718   } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
6719     Imm *= getExtFactor(V1);
6720     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
6721                        DAG.getConstant(Imm, dl, MVT::i32));
6722   }
6723 
6724   unsigned WhichResult;
6725   if (isZIPMask(ShuffleMask, VT, WhichResult)) {
6726     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6727     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6728   }
6729   if (isUZPMask(ShuffleMask, VT, WhichResult)) {
6730     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6731     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6732   }
6733   if (isTRNMask(ShuffleMask, VT, WhichResult)) {
6734     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6735     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6736   }
6737 
6738   if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6739     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6740     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6741   }
6742   if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6743     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6744     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6745   }
6746   if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6747     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6748     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6749   }
6750 
6751   if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
6752     return Concat;
6753 
6754   bool DstIsLeft;
6755   int Anomaly;
6756   int NumInputElements = V1.getValueType().getVectorNumElements();
6757   if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
6758     SDValue DstVec = DstIsLeft ? V1 : V2;
6759     SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
6760 
6761     SDValue SrcVec = V1;
6762     int SrcLane = ShuffleMask[Anomaly];
6763     if (SrcLane >= NumInputElements) {
6764       SrcVec = V2;
6765       SrcLane -= VT.getVectorNumElements();
6766     }
6767     SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
6768 
6769     EVT ScalarVT = VT.getVectorElementType();
6770 
6771     if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
6772       ScalarVT = MVT::i32;
6773 
6774     return DAG.getNode(
6775         ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
6776         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
6777         DstLaneV);
6778   }
6779 
6780   // If the shuffle is not directly supported and it has 4 elements, use
6781   // the PerfectShuffle-generated table to synthesize it from other shuffles.
6782   unsigned NumElts = VT.getVectorNumElements();
6783   if (NumElts == 4) {
6784     unsigned PFIndexes[4];
6785     for (unsigned i = 0; i != 4; ++i) {
6786       if (ShuffleMask[i] < 0)
6787         PFIndexes[i] = 8;
6788       else
6789         PFIndexes[i] = ShuffleMask[i];
6790     }
6791 
6792     // Compute the index in the perfect shuffle table.
6793     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6794                             PFIndexes[2] * 9 + PFIndexes[3];
6795     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6796     unsigned Cost = (PFEntry >> 30);
6797 
6798     if (Cost <= 4)
6799       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6800   }
6801 
6802   return GenerateTBL(Op, ShuffleMask, DAG);
6803 }
6804 
6805 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
6806                                APInt &UndefBits) {
6807   EVT VT = BVN->getValueType(0);
6808   APInt SplatBits, SplatUndef;
6809   unsigned SplatBitSize;
6810   bool HasAnyUndefs;
6811   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6812     unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
6813 
6814     for (unsigned i = 0; i < NumSplats; ++i) {
6815       CnstBits <<= SplatBitSize;
6816       UndefBits <<= SplatBitSize;
6817       CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
6818       UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
6819     }
6820 
6821     return true;
6822   }
6823 
6824   return false;
6825 }
6826 
6827 // Try 64-bit splatted SIMD immediate.
6828 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6829                                  const APInt &Bits) {
6830   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6831     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6832     EVT VT = Op.getValueType();
6833     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
6834 
6835     if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
6836       Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
6837 
6838       SDLoc dl(Op);
6839       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6840                                 DAG.getConstant(Value, dl, MVT::i32));
6841       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6842     }
6843   }
6844 
6845   return SDValue();
6846 }
6847 
6848 // Try 32-bit splatted SIMD immediate.
6849 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6850                                   const APInt &Bits,
6851                                   const SDValue *LHS = nullptr) {
6852   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6853     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6854     EVT VT = Op.getValueType();
6855     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6856     bool isAdvSIMDModImm = false;
6857     uint64_t Shift;
6858 
6859     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
6860       Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
6861       Shift = 0;
6862     }
6863     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
6864       Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
6865       Shift = 8;
6866     }
6867     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
6868       Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
6869       Shift = 16;
6870     }
6871     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
6872       Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
6873       Shift = 24;
6874     }
6875 
6876     if (isAdvSIMDModImm) {
6877       SDLoc dl(Op);
6878       SDValue Mov;
6879 
6880       if (LHS)
6881         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6882                           DAG.getConstant(Value, dl, MVT::i32),
6883                           DAG.getConstant(Shift, dl, MVT::i32));
6884       else
6885         Mov = DAG.getNode(NewOp, dl, MovTy,
6886                           DAG.getConstant(Value, dl, MVT::i32),
6887                           DAG.getConstant(Shift, dl, MVT::i32));
6888 
6889       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6890     }
6891   }
6892 
6893   return SDValue();
6894 }
6895 
6896 // Try 16-bit splatted SIMD immediate.
6897 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6898                                   const APInt &Bits,
6899                                   const SDValue *LHS = nullptr) {
6900   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6901     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6902     EVT VT = Op.getValueType();
6903     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6904     bool isAdvSIMDModImm = false;
6905     uint64_t Shift;
6906 
6907     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
6908       Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
6909       Shift = 0;
6910     }
6911     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
6912       Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
6913       Shift = 8;
6914     }
6915 
6916     if (isAdvSIMDModImm) {
6917       SDLoc dl(Op);
6918       SDValue Mov;
6919 
6920       if (LHS)
6921         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6922                           DAG.getConstant(Value, dl, MVT::i32),
6923                           DAG.getConstant(Shift, dl, MVT::i32));
6924       else
6925         Mov = DAG.getNode(NewOp, dl, MovTy,
6926                           DAG.getConstant(Value, dl, MVT::i32),
6927                           DAG.getConstant(Shift, dl, MVT::i32));
6928 
6929       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6930     }
6931   }
6932 
6933   return SDValue();
6934 }
6935 
6936 // Try 32-bit splatted SIMD immediate with shifted ones.
6937 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
6938                                     SelectionDAG &DAG, const APInt &Bits) {
6939   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6940     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6941     EVT VT = Op.getValueType();
6942     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6943     bool isAdvSIMDModImm = false;
6944     uint64_t Shift;
6945 
6946     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
6947       Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
6948       Shift = 264;
6949     }
6950     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
6951       Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
6952       Shift = 272;
6953     }
6954 
6955     if (isAdvSIMDModImm) {
6956       SDLoc dl(Op);
6957       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6958                                 DAG.getConstant(Value, dl, MVT::i32),
6959                                 DAG.getConstant(Shift, dl, MVT::i32));
6960       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6961     }
6962   }
6963 
6964   return SDValue();
6965 }
6966 
6967 // Try 8-bit splatted SIMD immediate.
6968 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6969                                  const APInt &Bits) {
6970   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6971     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6972     EVT VT = Op.getValueType();
6973     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6974 
6975     if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
6976       Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
6977 
6978       SDLoc dl(Op);
6979       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6980                                 DAG.getConstant(Value, dl, MVT::i32));
6981       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6982     }
6983   }
6984 
6985   return SDValue();
6986 }
6987 
6988 // Try FP splatted SIMD immediate.
6989 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6990                                   const APInt &Bits) {
6991   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6992     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6993     EVT VT = Op.getValueType();
6994     bool isWide = (VT.getSizeInBits() == 128);
6995     MVT MovTy;
6996     bool isAdvSIMDModImm = false;
6997 
6998     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
6999       Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
7000       MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
7001     }
7002     else if (isWide &&
7003              (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
7004       Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
7005       MovTy = MVT::v2f64;
7006     }
7007 
7008     if (isAdvSIMDModImm) {
7009       SDLoc dl(Op);
7010       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7011                                 DAG.getConstant(Value, dl, MVT::i32));
7012       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7013     }
7014   }
7015 
7016   return SDValue();
7017 }
7018 
7019 // Specialized code to quickly find if PotentialBVec is a BuildVector that
7020 // consists of only the same constant int value, returned in reference arg
7021 // ConstVal
7022 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
7023                                      uint64_t &ConstVal) {
7024   BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
7025   if (!Bvec)
7026     return false;
7027   ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
7028   if (!FirstElt)
7029     return false;
7030   EVT VT = Bvec->getValueType(0);
7031   unsigned NumElts = VT.getVectorNumElements();
7032   for (unsigned i = 1; i < NumElts; ++i)
7033     if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
7034       return false;
7035   ConstVal = FirstElt->getZExtValue();
7036   return true;
7037 }
7038 
7039 static unsigned getIntrinsicID(const SDNode *N) {
7040   unsigned Opcode = N->getOpcode();
7041   switch (Opcode) {
7042   default:
7043     return Intrinsic::not_intrinsic;
7044   case ISD::INTRINSIC_WO_CHAIN: {
7045     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7046     if (IID < Intrinsic::num_intrinsics)
7047       return IID;
7048     return Intrinsic::not_intrinsic;
7049   }
7050   }
7051 }
7052 
7053 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
7054 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
7055 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
7056 // Also, logical shift right -> sri, with the same structure.
7057 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
7058   EVT VT = N->getValueType(0);
7059 
7060   if (!VT.isVector())
7061     return SDValue();
7062 
7063   SDLoc DL(N);
7064 
7065   // Is the first op an AND?
7066   const SDValue And = N->getOperand(0);
7067   if (And.getOpcode() != ISD::AND)
7068     return SDValue();
7069 
7070   // Is the second op an shl or lshr?
7071   SDValue Shift = N->getOperand(1);
7072   // This will have been turned into: AArch64ISD::VSHL vector, #shift
7073   // or AArch64ISD::VLSHR vector, #shift
7074   unsigned ShiftOpc = Shift.getOpcode();
7075   if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
7076     return SDValue();
7077   bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
7078 
7079   // Is the shift amount constant?
7080   ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7081   if (!C2node)
7082     return SDValue();
7083 
7084   // Is the and mask vector all constant?
7085   uint64_t C1;
7086   if (!isAllConstantBuildVector(And.getOperand(1), C1))
7087     return SDValue();
7088 
7089   // Is C1 == ~C2, taking into account how much one can shift elements of a
7090   // particular size?
7091   uint64_t C2 = C2node->getZExtValue();
7092   unsigned ElemSizeInBits = VT.getScalarSizeInBits();
7093   if (C2 > ElemSizeInBits)
7094     return SDValue();
7095   unsigned ElemMask = (1 << ElemSizeInBits) - 1;
7096   if ((C1 & ElemMask) != (~C2 & ElemMask))
7097     return SDValue();
7098 
7099   SDValue X = And.getOperand(0);
7100   SDValue Y = Shift.getOperand(0);
7101 
7102   unsigned Intrin =
7103       IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
7104   SDValue ResultSLI =
7105       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7106                   DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
7107                   Shift.getOperand(1));
7108 
7109   LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
7110   LLVM_DEBUG(N->dump(&DAG));
7111   LLVM_DEBUG(dbgs() << "into: \n");
7112   LLVM_DEBUG(ResultSLI->dump(&DAG));
7113 
7114   ++NumShiftInserts;
7115   return ResultSLI;
7116 }
7117 
7118 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
7119                                              SelectionDAG &DAG) const {
7120   // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
7121   if (EnableAArch64SlrGeneration) {
7122     if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
7123       return Res;
7124   }
7125 
7126   EVT VT = Op.getValueType();
7127 
7128   SDValue LHS = Op.getOperand(0);
7129   BuildVectorSDNode *BVN =
7130       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
7131   if (!BVN) {
7132     // OR commutes, so try swapping the operands.
7133     LHS = Op.getOperand(1);
7134     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
7135   }
7136   if (!BVN)
7137     return Op;
7138 
7139   APInt DefBits(VT.getSizeInBits(), 0);
7140   APInt UndefBits(VT.getSizeInBits(), 0);
7141   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7142     SDValue NewOp;
7143 
7144     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7145                                     DefBits, &LHS)) ||
7146         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7147                                     DefBits, &LHS)))
7148       return NewOp;
7149 
7150     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7151                                     UndefBits, &LHS)) ||
7152         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7153                                     UndefBits, &LHS)))
7154       return NewOp;
7155   }
7156 
7157   // We can always fall back to a non-immediate OR.
7158   return Op;
7159 }
7160 
7161 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
7162 // be truncated to fit element width.
7163 static SDValue NormalizeBuildVector(SDValue Op,
7164                                     SelectionDAG &DAG) {
7165   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7166   SDLoc dl(Op);
7167   EVT VT = Op.getValueType();
7168   EVT EltTy= VT.getVectorElementType();
7169 
7170   if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
7171     return Op;
7172 
7173   SmallVector<SDValue, 16> Ops;
7174   for (SDValue Lane : Op->ops()) {
7175     // For integer vectors, type legalization would have promoted the
7176     // operands already. Otherwise, if Op is a floating-point splat
7177     // (with operands cast to integers), then the only possibilities
7178     // are constants and UNDEFs.
7179     if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
7180       APInt LowBits(EltTy.getSizeInBits(),
7181                     CstLane->getZExtValue());
7182       Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
7183     } else if (Lane.getNode()->isUndef()) {
7184       Lane = DAG.getUNDEF(MVT::i32);
7185     } else {
7186       assert(Lane.getValueType() == MVT::i32 &&
7187              "Unexpected BUILD_VECTOR operand type");
7188     }
7189     Ops.push_back(Lane);
7190   }
7191   return DAG.getBuildVector(VT, dl, Ops);
7192 }
7193 
7194 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
7195   EVT VT = Op.getValueType();
7196 
7197   APInt DefBits(VT.getSizeInBits(), 0);
7198   APInt UndefBits(VT.getSizeInBits(), 0);
7199   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7200   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7201     SDValue NewOp;
7202     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7203         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7204         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7205         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7206         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7207         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7208       return NewOp;
7209 
7210     DefBits = ~DefBits;
7211     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7212         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7213         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7214       return NewOp;
7215 
7216     DefBits = UndefBits;
7217     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7218         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7219         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7220         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7221         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7222         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7223       return NewOp;
7224 
7225     DefBits = ~UndefBits;
7226     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7227         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7228         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7229       return NewOp;
7230   }
7231 
7232   return SDValue();
7233 }
7234 
7235 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
7236                                                  SelectionDAG &DAG) const {
7237   EVT VT = Op.getValueType();
7238 
7239   // Try to build a simple constant vector.
7240   Op = NormalizeBuildVector(Op, DAG);
7241   if (VT.isInteger()) {
7242     // Certain vector constants, used to express things like logical NOT and
7243     // arithmetic NEG, are passed through unmodified.  This allows special
7244     // patterns for these operations to match, which will lower these constants
7245     // to whatever is proven necessary.
7246     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7247     if (BVN->isConstant())
7248       if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
7249         unsigned BitSize = VT.getVectorElementType().getSizeInBits();
7250         APInt Val(BitSize,
7251                   Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
7252         if (Val.isNullValue() || Val.isAllOnesValue())
7253           return Op;
7254       }
7255   }
7256 
7257   if (SDValue V = ConstantBuildVector(Op, DAG))
7258     return V;
7259 
7260   // Scan through the operands to find some interesting properties we can
7261   // exploit:
7262   //   1) If only one value is used, we can use a DUP, or
7263   //   2) if only the low element is not undef, we can just insert that, or
7264   //   3) if only one constant value is used (w/ some non-constant lanes),
7265   //      we can splat the constant value into the whole vector then fill
7266   //      in the non-constant lanes.
7267   //   4) FIXME: If different constant values are used, but we can intelligently
7268   //             select the values we'll be overwriting for the non-constant
7269   //             lanes such that we can directly materialize the vector
7270   //             some other way (MOVI, e.g.), we can be sneaky.
7271   //   5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7272   SDLoc dl(Op);
7273   unsigned NumElts = VT.getVectorNumElements();
7274   bool isOnlyLowElement = true;
7275   bool usesOnlyOneValue = true;
7276   bool usesOnlyOneConstantValue = true;
7277   bool isConstant = true;
7278   bool AllLanesExtractElt = true;
7279   unsigned NumConstantLanes = 0;
7280   SDValue Value;
7281   SDValue ConstantValue;
7282   for (unsigned i = 0; i < NumElts; ++i) {
7283     SDValue V = Op.getOperand(i);
7284     if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7285       AllLanesExtractElt = false;
7286     if (V.isUndef())
7287       continue;
7288     if (i > 0)
7289       isOnlyLowElement = false;
7290     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7291       isConstant = false;
7292 
7293     if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
7294       ++NumConstantLanes;
7295       if (!ConstantValue.getNode())
7296         ConstantValue = V;
7297       else if (ConstantValue != V)
7298         usesOnlyOneConstantValue = false;
7299     }
7300 
7301     if (!Value.getNode())
7302       Value = V;
7303     else if (V != Value)
7304       usesOnlyOneValue = false;
7305   }
7306 
7307   if (!Value.getNode()) {
7308     LLVM_DEBUG(
7309         dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7310     return DAG.getUNDEF(VT);
7311   }
7312 
7313   // Convert BUILD_VECTOR where all elements but the lowest are undef into
7314   // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
7315   // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
7316   if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) {
7317     LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7318                          "SCALAR_TO_VECTOR node\n");
7319     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7320   }
7321 
7322   if (AllLanesExtractElt) {
7323     SDNode *Vector = nullptr;
7324     bool Even = false;
7325     bool Odd = false;
7326     // Check whether the extract elements match the Even pattern <0,2,4,...> or
7327     // the Odd pattern <1,3,5,...>.
7328     for (unsigned i = 0; i < NumElts; ++i) {
7329       SDValue V = Op.getOperand(i);
7330       const SDNode *N = V.getNode();
7331       if (!isa<ConstantSDNode>(N->getOperand(1)))
7332         break;
7333       SDValue N0 = N->getOperand(0);
7334 
7335       // All elements are extracted from the same vector.
7336       if (!Vector) {
7337         Vector = N0.getNode();
7338         // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7339         // BUILD_VECTOR.
7340         if (VT.getVectorElementType() !=
7341             N0.getValueType().getVectorElementType())
7342           break;
7343       } else if (Vector != N0.getNode()) {
7344         Odd = false;
7345         Even = false;
7346         break;
7347       }
7348 
7349       // Extracted values are either at Even indices <0,2,4,...> or at Odd
7350       // indices <1,3,5,...>.
7351       uint64_t Val = N->getConstantOperandVal(1);
7352       if (Val == 2 * i) {
7353         Even = true;
7354         continue;
7355       }
7356       if (Val - 1 == 2 * i) {
7357         Odd = true;
7358         continue;
7359       }
7360 
7361       // Something does not match: abort.
7362       Odd = false;
7363       Even = false;
7364       break;
7365     }
7366     if (Even || Odd) {
7367       SDValue LHS =
7368           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7369                       DAG.getConstant(0, dl, MVT::i64));
7370       SDValue RHS =
7371           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7372                       DAG.getConstant(NumElts, dl, MVT::i64));
7373 
7374       if (Even && !Odd)
7375         return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
7376                            RHS);
7377       if (Odd && !Even)
7378         return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
7379                            RHS);
7380     }
7381   }
7382 
7383   // Use DUP for non-constant splats. For f32 constant splats, reduce to
7384   // i32 and try again.
7385   if (usesOnlyOneValue) {
7386     if (!isConstant) {
7387       if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7388           Value.getValueType() != VT) {
7389         LLVM_DEBUG(
7390             dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7391         return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
7392       }
7393 
7394       // This is actually a DUPLANExx operation, which keeps everything vectory.
7395 
7396       SDValue Lane = Value.getOperand(1);
7397       Value = Value.getOperand(0);
7398       if (Value.getValueSizeInBits() == 64) {
7399         LLVM_DEBUG(
7400             dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
7401                       "widening it\n");
7402         Value = WidenVector(Value, DAG);
7403       }
7404 
7405       unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
7406       return DAG.getNode(Opcode, dl, VT, Value, Lane);
7407     }
7408 
7409     if (VT.getVectorElementType().isFloatingPoint()) {
7410       SmallVector<SDValue, 8> Ops;
7411       EVT EltTy = VT.getVectorElementType();
7412       assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
7413               "Unsupported floating-point vector type");
7414       LLVM_DEBUG(
7415           dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
7416                     "BITCASTS, and try again\n");
7417       MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
7418       for (unsigned i = 0; i < NumElts; ++i)
7419         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
7420       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
7421       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7422       LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
7423                  Val.dump(););
7424       Val = LowerBUILD_VECTOR(Val, DAG);
7425       if (Val.getNode())
7426         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7427     }
7428   }
7429 
7430   // If there was only one constant value used and for more than one lane,
7431   // start by splatting that value, then replace the non-constant lanes. This
7432   // is better than the default, which will perform a separate initialization
7433   // for each lane.
7434   if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
7435     // Firstly, try to materialize the splat constant.
7436     SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
7437             Val = ConstantBuildVector(Vec, DAG);
7438     if (!Val) {
7439       // Otherwise, materialize the constant and splat it.
7440       Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
7441       DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
7442     }
7443 
7444     // Now insert the non-constant lanes.
7445     for (unsigned i = 0; i < NumElts; ++i) {
7446       SDValue V = Op.getOperand(i);
7447       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7448       if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
7449         // Note that type legalization likely mucked about with the VT of the
7450         // source operand, so we may have to convert it here before inserting.
7451         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
7452     }
7453     return Val;
7454   }
7455 
7456   // This will generate a load from the constant pool.
7457   if (isConstant) {
7458     LLVM_DEBUG(
7459         dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
7460                   "expansion\n");
7461     return SDValue();
7462   }
7463 
7464   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7465   if (NumElts >= 4) {
7466     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7467       return shuffle;
7468   }
7469 
7470   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7471   // know the default expansion would otherwise fall back on something even
7472   // worse. For a vector with one or two non-undef values, that's
7473   // scalar_to_vector for the elements followed by a shuffle (provided the
7474   // shuffle is valid for the target) and materialization element by element
7475   // on the stack followed by a load for everything else.
7476   if (!isConstant && !usesOnlyOneValue) {
7477     LLVM_DEBUG(
7478         dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
7479                   "of INSERT_VECTOR_ELT\n");
7480 
7481     SDValue Vec = DAG.getUNDEF(VT);
7482     SDValue Op0 = Op.getOperand(0);
7483     unsigned i = 0;
7484 
7485     // Use SCALAR_TO_VECTOR for lane zero to
7486     // a) Avoid a RMW dependency on the full vector register, and
7487     // b) Allow the register coalescer to fold away the copy if the
7488     //    value is already in an S or D register, and we're forced to emit an
7489     //    INSERT_SUBREG that we can't fold anywhere.
7490     //
7491     // We also allow types like i8 and i16 which are illegal scalar but legal
7492     // vector element types. After type-legalization the inserted value is
7493     // extended (i32) and it is safe to cast them to the vector type by ignoring
7494     // the upper bits of the lowest lane (e.g. v8i8, v4i16).
7495     if (!Op0.isUndef()) {
7496       LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
7497       Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
7498       ++i;
7499     }
7500     LLVM_DEBUG(if (i < NumElts) dbgs()
7501                    << "Creating nodes for the other vector elements:\n";);
7502     for (; i < NumElts; ++i) {
7503       SDValue V = Op.getOperand(i);
7504       if (V.isUndef())
7505         continue;
7506       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7507       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7508     }
7509     return Vec;
7510   }
7511 
7512   LLVM_DEBUG(
7513       dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
7514                 "better alternative\n");
7515   return SDValue();
7516 }
7517 
7518 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
7519                                                       SelectionDAG &DAG) const {
7520   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
7521 
7522   // Check for non-constant or out of range lane.
7523   EVT VT = Op.getOperand(0).getValueType();
7524   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7525   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7526     return SDValue();
7527 
7528 
7529   // Insertion/extraction are legal for V128 types.
7530   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7531       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7532       VT == MVT::v8f16)
7533     return Op;
7534 
7535   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7536       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7537     return SDValue();
7538 
7539   // For V64 types, we perform insertion by expanding the value
7540   // to a V128 type and perform the insertion on that.
7541   SDLoc DL(Op);
7542   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7543   EVT WideTy = WideVec.getValueType();
7544 
7545   SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
7546                              Op.getOperand(1), Op.getOperand(2));
7547   // Re-narrow the resultant vector.
7548   return NarrowVector(Node, DAG);
7549 }
7550 
7551 SDValue
7552 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7553                                                SelectionDAG &DAG) const {
7554   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
7555 
7556   // Check for non-constant or out of range lane.
7557   EVT VT = Op.getOperand(0).getValueType();
7558   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7559   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7560     return SDValue();
7561 
7562 
7563   // Insertion/extraction are legal for V128 types.
7564   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7565       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7566       VT == MVT::v8f16)
7567     return Op;
7568 
7569   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7570       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7571     return SDValue();
7572 
7573   // For V64 types, we perform extraction by expanding the value
7574   // to a V128 type and perform the extraction on that.
7575   SDLoc DL(Op);
7576   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7577   EVT WideTy = WideVec.getValueType();
7578 
7579   EVT ExtrTy = WideTy.getVectorElementType();
7580   if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
7581     ExtrTy = MVT::i32;
7582 
7583   // For extractions, we just return the result directly.
7584   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
7585                      Op.getOperand(1));
7586 }
7587 
7588 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
7589                                                       SelectionDAG &DAG) const {
7590   EVT VT = Op.getOperand(0).getValueType();
7591   SDLoc dl(Op);
7592   // Just in case...
7593   if (!VT.isVector())
7594     return SDValue();
7595 
7596   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7597   if (!Cst)
7598     return SDValue();
7599   unsigned Val = Cst->getZExtValue();
7600 
7601   unsigned Size = Op.getValueSizeInBits();
7602 
7603   // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
7604   if (Val == 0)
7605     return Op;
7606 
7607   // If this is extracting the upper 64-bits of a 128-bit vector, we match
7608   // that directly.
7609   if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
7610     return Op;
7611 
7612   return SDValue();
7613 }
7614 
7615 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7616   if (VT.getVectorNumElements() == 4 &&
7617       (VT.is128BitVector() || VT.is64BitVector())) {
7618     unsigned PFIndexes[4];
7619     for (unsigned i = 0; i != 4; ++i) {
7620       if (M[i] < 0)
7621         PFIndexes[i] = 8;
7622       else
7623         PFIndexes[i] = M[i];
7624     }
7625 
7626     // Compute the index in the perfect shuffle table.
7627     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
7628                             PFIndexes[2] * 9 + PFIndexes[3];
7629     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7630     unsigned Cost = (PFEntry >> 30);
7631 
7632     if (Cost <= 4)
7633       return true;
7634   }
7635 
7636   bool DummyBool;
7637   int DummyInt;
7638   unsigned DummyUnsigned;
7639 
7640   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
7641           isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
7642           isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
7643           // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
7644           isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
7645           isZIPMask(M, VT, DummyUnsigned) ||
7646           isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
7647           isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
7648           isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
7649           isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
7650           isConcatMask(M, VT, VT.getSizeInBits() == 128));
7651 }
7652 
7653 /// getVShiftImm - Check if this is a valid build_vector for the immediate
7654 /// operand of a vector shift operation, where all the elements of the
7655 /// build_vector must have the same constant integer value.
7656 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7657   // Ignore bit_converts.
7658   while (Op.getOpcode() == ISD::BITCAST)
7659     Op = Op.getOperand(0);
7660   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7661   APInt SplatBits, SplatUndef;
7662   unsigned SplatBitSize;
7663   bool HasAnyUndefs;
7664   if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7665                                     HasAnyUndefs, ElementBits) ||
7666       SplatBitSize > ElementBits)
7667     return false;
7668   Cnt = SplatBits.getSExtValue();
7669   return true;
7670 }
7671 
7672 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7673 /// operand of a vector shift left operation.  That value must be in the range:
7674 ///   0 <= Value < ElementBits for a left shift; or
7675 ///   0 <= Value <= ElementBits for a long left shift.
7676 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7677   assert(VT.isVector() && "vector shift count is not a vector type");
7678   int64_t ElementBits = VT.getScalarSizeInBits();
7679   if (!getVShiftImm(Op, ElementBits, Cnt))
7680     return false;
7681   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
7682 }
7683 
7684 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7685 /// operand of a vector shift right operation. The value must be in the range:
7686 ///   1 <= Value <= ElementBits for a right shift; or
7687 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
7688   assert(VT.isVector() && "vector shift count is not a vector type");
7689   int64_t ElementBits = VT.getScalarSizeInBits();
7690   if (!getVShiftImm(Op, ElementBits, Cnt))
7691     return false;
7692   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
7693 }
7694 
7695 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
7696                                                       SelectionDAG &DAG) const {
7697   EVT VT = Op.getValueType();
7698   SDLoc DL(Op);
7699   int64_t Cnt;
7700 
7701   if (!Op.getOperand(1).getValueType().isVector())
7702     return Op;
7703   unsigned EltSize = VT.getScalarSizeInBits();
7704 
7705   switch (Op.getOpcode()) {
7706   default:
7707     llvm_unreachable("unexpected shift opcode");
7708 
7709   case ISD::SHL:
7710     if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
7711       return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
7712                          DAG.getConstant(Cnt, DL, MVT::i32));
7713     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7714                        DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
7715                                        MVT::i32),
7716                        Op.getOperand(0), Op.getOperand(1));
7717   case ISD::SRA:
7718   case ISD::SRL:
7719     // Right shift immediate
7720     if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
7721       unsigned Opc =
7722           (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
7723       return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
7724                          DAG.getConstant(Cnt, DL, MVT::i32));
7725     }
7726 
7727     // Right shift register.  Note, there is not a shift right register
7728     // instruction, but the shift left register instruction takes a signed
7729     // value, where negative numbers specify a right shift.
7730     unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
7731                                                 : Intrinsic::aarch64_neon_ushl;
7732     // negate the shift amount
7733     SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
7734     SDValue NegShiftLeft =
7735         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7736                     DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
7737                     NegShift);
7738     return NegShiftLeft;
7739   }
7740 
7741   return SDValue();
7742 }
7743 
7744 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
7745                                     AArch64CC::CondCode CC, bool NoNans, EVT VT,
7746                                     const SDLoc &dl, SelectionDAG &DAG) {
7747   EVT SrcVT = LHS.getValueType();
7748   assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
7749          "function only supposed to emit natural comparisons");
7750 
7751   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
7752   APInt CnstBits(VT.getSizeInBits(), 0);
7753   APInt UndefBits(VT.getSizeInBits(), 0);
7754   bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
7755   bool IsZero = IsCnst && (CnstBits == 0);
7756 
7757   if (SrcVT.getVectorElementType().isFloatingPoint()) {
7758     switch (CC) {
7759     default:
7760       return SDValue();
7761     case AArch64CC::NE: {
7762       SDValue Fcmeq;
7763       if (IsZero)
7764         Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7765       else
7766         Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7767       return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
7768     }
7769     case AArch64CC::EQ:
7770       if (IsZero)
7771         return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7772       return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7773     case AArch64CC::GE:
7774       if (IsZero)
7775         return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
7776       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
7777     case AArch64CC::GT:
7778       if (IsZero)
7779         return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
7780       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
7781     case AArch64CC::LS:
7782       if (IsZero)
7783         return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
7784       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
7785     case AArch64CC::LT:
7786       if (!NoNans)
7787         return SDValue();
7788       // If we ignore NaNs then we can use to the MI implementation.
7789       LLVM_FALLTHROUGH;
7790     case AArch64CC::MI:
7791       if (IsZero)
7792         return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
7793       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
7794     }
7795   }
7796 
7797   switch (CC) {
7798   default:
7799     return SDValue();
7800   case AArch64CC::NE: {
7801     SDValue Cmeq;
7802     if (IsZero)
7803       Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7804     else
7805       Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7806     return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
7807   }
7808   case AArch64CC::EQ:
7809     if (IsZero)
7810       return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7811     return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7812   case AArch64CC::GE:
7813     if (IsZero)
7814       return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
7815     return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
7816   case AArch64CC::GT:
7817     if (IsZero)
7818       return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
7819     return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
7820   case AArch64CC::LE:
7821     if (IsZero)
7822       return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
7823     return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
7824   case AArch64CC::LS:
7825     return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
7826   case AArch64CC::LO:
7827     return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
7828   case AArch64CC::LT:
7829     if (IsZero)
7830       return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
7831     return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
7832   case AArch64CC::HI:
7833     return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
7834   case AArch64CC::HS:
7835     return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
7836   }
7837 }
7838 
7839 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
7840                                            SelectionDAG &DAG) const {
7841   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7842   SDValue LHS = Op.getOperand(0);
7843   SDValue RHS = Op.getOperand(1);
7844   EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
7845   SDLoc dl(Op);
7846 
7847   if (LHS.getValueType().getVectorElementType().isInteger()) {
7848     assert(LHS.getValueType() == RHS.getValueType());
7849     AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
7850     SDValue Cmp =
7851         EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
7852     return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7853   }
7854 
7855   const bool FullFP16 =
7856     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
7857 
7858   // Make v4f16 (only) fcmp operations utilise vector instructions
7859   // v8f16 support will be a litle more complicated
7860   if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
7861     if (LHS.getValueType().getVectorNumElements() == 4) {
7862       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
7863       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
7864       SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
7865       DAG.ReplaceAllUsesWith(Op, NewSetcc);
7866       CmpVT = MVT::v4i32;
7867     } else
7868       return SDValue();
7869   }
7870 
7871   assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
7872           LHS.getValueType().getVectorElementType() != MVT::f128);
7873 
7874   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
7875   // clean.  Some of them require two branches to implement.
7876   AArch64CC::CondCode CC1, CC2;
7877   bool ShouldInvert;
7878   changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
7879 
7880   bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
7881   SDValue Cmp =
7882       EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
7883   if (!Cmp.getNode())
7884     return SDValue();
7885 
7886   if (CC2 != AArch64CC::AL) {
7887     SDValue Cmp2 =
7888         EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
7889     if (!Cmp2.getNode())
7890       return SDValue();
7891 
7892     Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
7893   }
7894 
7895   Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7896 
7897   if (ShouldInvert)
7898     Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
7899 
7900   return Cmp;
7901 }
7902 
7903 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
7904                                   SelectionDAG &DAG) {
7905   SDValue VecOp = ScalarOp.getOperand(0);
7906   auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
7907   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
7908                      DAG.getConstant(0, DL, MVT::i64));
7909 }
7910 
7911 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
7912                                               SelectionDAG &DAG) const {
7913   SDLoc dl(Op);
7914   switch (Op.getOpcode()) {
7915   case ISD::VECREDUCE_ADD:
7916     return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
7917   case ISD::VECREDUCE_SMAX:
7918     return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
7919   case ISD::VECREDUCE_SMIN:
7920     return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
7921   case ISD::VECREDUCE_UMAX:
7922     return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
7923   case ISD::VECREDUCE_UMIN:
7924     return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
7925   case ISD::VECREDUCE_FMAX: {
7926     assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
7927     return DAG.getNode(
7928         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
7929         DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
7930         Op.getOperand(0));
7931   }
7932   case ISD::VECREDUCE_FMIN: {
7933     assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
7934     return DAG.getNode(
7935         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
7936         DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
7937         Op.getOperand(0));
7938   }
7939   default:
7940     llvm_unreachable("Unhandled reduction");
7941   }
7942 }
7943 
7944 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
7945                                                     SelectionDAG &DAG) const {
7946   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
7947   if (!Subtarget.hasLSE())
7948     return SDValue();
7949 
7950   // LSE has an atomic load-add instruction, but not a load-sub.
7951   SDLoc dl(Op);
7952   MVT VT = Op.getSimpleValueType();
7953   SDValue RHS = Op.getOperand(2);
7954   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
7955   RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
7956   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
7957                        Op.getOperand(0), Op.getOperand(1), RHS,
7958                        AN->getMemOperand());
7959 }
7960 
7961 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
7962                                                     SelectionDAG &DAG) const {
7963   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
7964   if (!Subtarget.hasLSE())
7965     return SDValue();
7966 
7967   // LSE has an atomic load-clear instruction, but not a load-and.
7968   SDLoc dl(Op);
7969   MVT VT = Op.getSimpleValueType();
7970   SDValue RHS = Op.getOperand(2);
7971   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
7972   RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
7973   return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
7974                        Op.getOperand(0), Op.getOperand(1), RHS,
7975                        AN->getMemOperand());
7976 }
7977 
7978 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
7979     SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
7980   SDLoc dl(Op);
7981   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7982   SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
7983 
7984   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
7985   const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
7986   if (Subtarget->hasCustomCallingConv())
7987     TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
7988 
7989   Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
7990                      DAG.getConstant(4, dl, MVT::i64));
7991   Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
7992   Chain =
7993       DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
7994                   Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
7995                   DAG.getRegisterMask(Mask), Chain.getValue(1));
7996   // To match the actual intent better, we should read the output from X15 here
7997   // again (instead of potentially spilling it to the stack), but rereading Size
7998   // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
7999   // here.
8000 
8001   Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
8002                      DAG.getConstant(4, dl, MVT::i64));
8003   return Chain;
8004 }
8005 
8006 SDValue
8007 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8008                                                SelectionDAG &DAG) const {
8009   assert(Subtarget->isTargetWindows() &&
8010          "Only Windows alloca probing supported");
8011   SDLoc dl(Op);
8012   // Get the inputs.
8013   SDNode *Node = Op.getNode();
8014   SDValue Chain = Op.getOperand(0);
8015   SDValue Size = Op.getOperand(1);
8016   unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8017   EVT VT = Node->getValueType(0);
8018 
8019   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
8020           "no-stack-arg-probe")) {
8021     SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8022     Chain = SP.getValue(1);
8023     SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8024     if (Align)
8025       SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8026                        DAG.getConstant(-(uint64_t)Align, dl, VT));
8027     Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8028     SDValue Ops[2] = {SP, Chain};
8029     return DAG.getMergeValues(Ops, dl);
8030   }
8031 
8032   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
8033 
8034   Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
8035 
8036   SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8037   Chain = SP.getValue(1);
8038   SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8039   if (Align)
8040     SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8041                      DAG.getConstant(-(uint64_t)Align, dl, VT));
8042   Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8043 
8044   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
8045                              DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
8046 
8047   SDValue Ops[2] = {SP, Chain};
8048   return DAG.getMergeValues(Ops, dl);
8049 }
8050 
8051 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8052 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8053 /// specified in the intrinsic calls.
8054 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8055                                                const CallInst &I,
8056                                                MachineFunction &MF,
8057                                                unsigned Intrinsic) const {
8058   auto &DL = I.getModule()->getDataLayout();
8059   switch (Intrinsic) {
8060   case Intrinsic::aarch64_neon_ld2:
8061   case Intrinsic::aarch64_neon_ld3:
8062   case Intrinsic::aarch64_neon_ld4:
8063   case Intrinsic::aarch64_neon_ld1x2:
8064   case Intrinsic::aarch64_neon_ld1x3:
8065   case Intrinsic::aarch64_neon_ld1x4:
8066   case Intrinsic::aarch64_neon_ld2lane:
8067   case Intrinsic::aarch64_neon_ld3lane:
8068   case Intrinsic::aarch64_neon_ld4lane:
8069   case Intrinsic::aarch64_neon_ld2r:
8070   case Intrinsic::aarch64_neon_ld3r:
8071   case Intrinsic::aarch64_neon_ld4r: {
8072     Info.opc = ISD::INTRINSIC_W_CHAIN;
8073     // Conservatively set memVT to the entire set of vectors loaded.
8074     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
8075     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8076     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8077     Info.offset = 0;
8078     Info.align = 0;
8079     // volatile loads with NEON intrinsics not supported
8080     Info.flags = MachineMemOperand::MOLoad;
8081     return true;
8082   }
8083   case Intrinsic::aarch64_neon_st2:
8084   case Intrinsic::aarch64_neon_st3:
8085   case Intrinsic::aarch64_neon_st4:
8086   case Intrinsic::aarch64_neon_st1x2:
8087   case Intrinsic::aarch64_neon_st1x3:
8088   case Intrinsic::aarch64_neon_st1x4:
8089   case Intrinsic::aarch64_neon_st2lane:
8090   case Intrinsic::aarch64_neon_st3lane:
8091   case Intrinsic::aarch64_neon_st4lane: {
8092     Info.opc = ISD::INTRINSIC_VOID;
8093     // Conservatively set memVT to the entire set of vectors stored.
8094     unsigned NumElts = 0;
8095     for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8096       Type *ArgTy = I.getArgOperand(ArgI)->getType();
8097       if (!ArgTy->isVectorTy())
8098         break;
8099       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
8100     }
8101     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8102     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8103     Info.offset = 0;
8104     Info.align = 0;
8105     // volatile stores with NEON intrinsics not supported
8106     Info.flags = MachineMemOperand::MOStore;
8107     return true;
8108   }
8109   case Intrinsic::aarch64_ldaxr:
8110   case Intrinsic::aarch64_ldxr: {
8111     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
8112     Info.opc = ISD::INTRINSIC_W_CHAIN;
8113     Info.memVT = MVT::getVT(PtrTy->getElementType());
8114     Info.ptrVal = I.getArgOperand(0);
8115     Info.offset = 0;
8116     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
8117     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8118     return true;
8119   }
8120   case Intrinsic::aarch64_stlxr:
8121   case Intrinsic::aarch64_stxr: {
8122     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
8123     Info.opc = ISD::INTRINSIC_W_CHAIN;
8124     Info.memVT = MVT::getVT(PtrTy->getElementType());
8125     Info.ptrVal = I.getArgOperand(1);
8126     Info.offset = 0;
8127     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
8128     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8129     return true;
8130   }
8131   case Intrinsic::aarch64_ldaxp:
8132   case Intrinsic::aarch64_ldxp:
8133     Info.opc = ISD::INTRINSIC_W_CHAIN;
8134     Info.memVT = MVT::i128;
8135     Info.ptrVal = I.getArgOperand(0);
8136     Info.offset = 0;
8137     Info.align = 16;
8138     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8139     return true;
8140   case Intrinsic::aarch64_stlxp:
8141   case Intrinsic::aarch64_stxp:
8142     Info.opc = ISD::INTRINSIC_W_CHAIN;
8143     Info.memVT = MVT::i128;
8144     Info.ptrVal = I.getArgOperand(2);
8145     Info.offset = 0;
8146     Info.align = 16;
8147     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8148     return true;
8149   default:
8150     break;
8151   }
8152 
8153   return false;
8154 }
8155 
8156 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
8157                                                   ISD::LoadExtType ExtTy,
8158                                                   EVT NewVT) const {
8159   // TODO: This may be worth removing. Check regression tests for diffs.
8160   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
8161     return false;
8162 
8163   // If we're reducing the load width in order to avoid having to use an extra
8164   // instruction to do extension then it's probably a good idea.
8165   if (ExtTy != ISD::NON_EXTLOAD)
8166     return true;
8167   // Don't reduce load width if it would prevent us from combining a shift into
8168   // the offset.
8169   MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
8170   assert(Mem);
8171   const SDValue &Base = Mem->getBasePtr();
8172   if (Base.getOpcode() == ISD::ADD &&
8173       Base.getOperand(1).getOpcode() == ISD::SHL &&
8174       Base.getOperand(1).hasOneUse() &&
8175       Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
8176     // The shift can be combined if it matches the size of the value being
8177     // loaded (and so reducing the width would make it not match).
8178     uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
8179     uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
8180     if (ShiftAmount == Log2_32(LoadBytes))
8181       return false;
8182   }
8183   // We have no reason to disallow reducing the load width, so allow it.
8184   return true;
8185 }
8186 
8187 // Truncations from 64-bit GPR to 32-bit GPR is free.
8188 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
8189   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8190     return false;
8191   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8192   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8193   return NumBits1 > NumBits2;
8194 }
8195 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8196   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8197     return false;
8198   unsigned NumBits1 = VT1.getSizeInBits();
8199   unsigned NumBits2 = VT2.getSizeInBits();
8200   return NumBits1 > NumBits2;
8201 }
8202 
8203 /// Check if it is profitable to hoist instruction in then/else to if.
8204 /// Not profitable if I and it's user can form a FMA instruction
8205 /// because we prefer FMSUB/FMADD.
8206 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
8207   if (I->getOpcode() != Instruction::FMul)
8208     return true;
8209 
8210   if (!I->hasOneUse())
8211     return true;
8212 
8213   Instruction *User = I->user_back();
8214 
8215   if (User &&
8216       !(User->getOpcode() == Instruction::FSub ||
8217         User->getOpcode() == Instruction::FAdd))
8218     return true;
8219 
8220   const TargetOptions &Options = getTargetMachine().Options;
8221   const DataLayout &DL = I->getModule()->getDataLayout();
8222   EVT VT = getValueType(DL, User->getOperand(0)->getType());
8223 
8224   return !(isFMAFasterThanFMulAndFAdd(VT) &&
8225            isOperationLegalOrCustom(ISD::FMA, VT) &&
8226            (Options.AllowFPOpFusion == FPOpFusion::Fast ||
8227             Options.UnsafeFPMath));
8228 }
8229 
8230 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
8231 // 64-bit GPR.
8232 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
8233   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8234     return false;
8235   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8236   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8237   return NumBits1 == 32 && NumBits2 == 64;
8238 }
8239 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8240   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8241     return false;
8242   unsigned NumBits1 = VT1.getSizeInBits();
8243   unsigned NumBits2 = VT2.getSizeInBits();
8244   return NumBits1 == 32 && NumBits2 == 64;
8245 }
8246 
8247 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
8248   EVT VT1 = Val.getValueType();
8249   if (isZExtFree(VT1, VT2)) {
8250     return true;
8251   }
8252 
8253   if (Val.getOpcode() != ISD::LOAD)
8254     return false;
8255 
8256   // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
8257   return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
8258           VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
8259           VT1.getSizeInBits() <= 32);
8260 }
8261 
8262 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
8263   if (isa<FPExtInst>(Ext))
8264     return false;
8265 
8266   // Vector types are not free.
8267   if (Ext->getType()->isVectorTy())
8268     return false;
8269 
8270   for (const Use &U : Ext->uses()) {
8271     // The extension is free if we can fold it with a left shift in an
8272     // addressing mode or an arithmetic operation: add, sub, and cmp.
8273 
8274     // Is there a shift?
8275     const Instruction *Instr = cast<Instruction>(U.getUser());
8276 
8277     // Is this a constant shift?
8278     switch (Instr->getOpcode()) {
8279     case Instruction::Shl:
8280       if (!isa<ConstantInt>(Instr->getOperand(1)))
8281         return false;
8282       break;
8283     case Instruction::GetElementPtr: {
8284       gep_type_iterator GTI = gep_type_begin(Instr);
8285       auto &DL = Ext->getModule()->getDataLayout();
8286       std::advance(GTI, U.getOperandNo()-1);
8287       Type *IdxTy = GTI.getIndexedType();
8288       // This extension will end up with a shift because of the scaling factor.
8289       // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8290       // Get the shift amount based on the scaling factor:
8291       // log2(sizeof(IdxTy)) - log2(8).
8292       uint64_t ShiftAmt =
8293           countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
8294       // Is the constant foldable in the shift of the addressing mode?
8295       // I.e., shift amount is between 1 and 4 inclusive.
8296       if (ShiftAmt == 0 || ShiftAmt > 4)
8297         return false;
8298       break;
8299     }
8300     case Instruction::Trunc:
8301       // Check if this is a noop.
8302       // trunc(sext ty1 to ty2) to ty1.
8303       if (Instr->getType() == Ext->getOperand(0)->getType())
8304         continue;
8305       LLVM_FALLTHROUGH;
8306     default:
8307       return false;
8308     }
8309 
8310     // At this point we can use the bfm family, so this extension is free
8311     // for that use.
8312   }
8313   return true;
8314 }
8315 
8316 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower
8317 /// or upper half of the vector elements.
8318 static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
8319   auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
8320     auto *FullVT = cast<VectorType>(FullV->getType());
8321     auto *HalfVT = cast<VectorType>(HalfV->getType());
8322     return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth();
8323   };
8324 
8325   auto extractHalf = [](Value *FullV, Value *HalfV) {
8326     auto *FullVT = cast<VectorType>(FullV->getType());
8327     auto *HalfVT = cast<VectorType>(HalfV->getType());
8328     return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
8329   };
8330 
8331   Constant *M1, *M2;
8332   Value *S1Op1, *S2Op1;
8333   if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) ||
8334       !match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2))))
8335     return false;
8336 
8337   // Check that the operands are half as wide as the result and we extract
8338   // half of the elements of the input vectors.
8339   if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
8340       !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
8341     return false;
8342 
8343   // Check the mask extracts either the lower or upper half of vector
8344   // elements.
8345   int M1Start = -1;
8346   int M2Start = -1;
8347   int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2;
8348   if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
8349       !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
8350       M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
8351     return false;
8352 
8353   return true;
8354 }
8355 
8356 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
8357 /// of the vector elements.
8358 static bool areExtractExts(Value *Ext1, Value *Ext2) {
8359   auto areExtDoubled = [](Instruction *Ext) {
8360     return Ext->getType()->getScalarSizeInBits() ==
8361            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
8362   };
8363 
8364   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
8365       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
8366       !areExtDoubled(cast<Instruction>(Ext1)) ||
8367       !areExtDoubled(cast<Instruction>(Ext2)))
8368     return false;
8369 
8370   return true;
8371 }
8372 
8373 /// Check if sinking \p I's operands to I's basic block is profitable, because
8374 /// the operands can be folded into a target instruction, e.g.
8375 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
8376 bool AArch64TargetLowering::shouldSinkOperands(
8377     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
8378   if (!I->getType()->isVectorTy())
8379     return false;
8380 
8381   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
8382     switch (II->getIntrinsicID()) {
8383     case Intrinsic::aarch64_neon_umull:
8384       if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
8385         return false;
8386       Ops.push_back(&II->getOperandUse(0));
8387       Ops.push_back(&II->getOperandUse(1));
8388       return true;
8389     default:
8390       return false;
8391     }
8392   }
8393 
8394   switch (I->getOpcode()) {
8395   case Instruction::Sub:
8396   case Instruction::Add: {
8397     if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
8398       return false;
8399 
8400     // If the exts' operands extract either the lower or upper elements, we
8401     // can sink them too.
8402     auto Ext1 = cast<Instruction>(I->getOperand(0));
8403     auto Ext2 = cast<Instruction>(I->getOperand(1));
8404     if (areExtractShuffleVectors(Ext1, Ext2)) {
8405       Ops.push_back(&Ext1->getOperandUse(0));
8406       Ops.push_back(&Ext2->getOperandUse(0));
8407     }
8408 
8409     Ops.push_back(&I->getOperandUse(0));
8410     Ops.push_back(&I->getOperandUse(1));
8411 
8412     return true;
8413   }
8414   default:
8415     return false;
8416   }
8417   return false;
8418 }
8419 
8420 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
8421                                           unsigned &RequiredAligment) const {
8422   if (!LoadedType.isSimple() ||
8423       (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
8424     return false;
8425   // Cyclone supports unaligned accesses.
8426   RequiredAligment = 0;
8427   unsigned NumBits = LoadedType.getSizeInBits();
8428   return NumBits == 32 || NumBits == 64;
8429 }
8430 
8431 /// A helper function for determining the number of interleaved accesses we
8432 /// will generate when lowering accesses of the given type.
8433 unsigned
8434 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
8435                                                  const DataLayout &DL) const {
8436   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
8437 }
8438 
8439 MachineMemOperand::Flags
8440 AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
8441   if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
8442       I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
8443     return MOStridedAccess;
8444   return MachineMemOperand::MONone;
8445 }
8446 
8447 bool AArch64TargetLowering::isLegalInterleavedAccessType(
8448     VectorType *VecTy, const DataLayout &DL) const {
8449 
8450   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
8451   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
8452 
8453   // Ensure the number of vector elements is greater than 1.
8454   if (VecTy->getNumElements() < 2)
8455     return false;
8456 
8457   // Ensure the element type is legal.
8458   if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
8459     return false;
8460 
8461   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
8462   // 128 will be split into multiple interleaved accesses.
8463   return VecSize == 64 || VecSize % 128 == 0;
8464 }
8465 
8466 /// Lower an interleaved load into a ldN intrinsic.
8467 ///
8468 /// E.g. Lower an interleaved load (Factor = 2):
8469 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
8470 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
8471 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
8472 ///
8473 ///      Into:
8474 ///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
8475 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
8476 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
8477 bool AArch64TargetLowering::lowerInterleavedLoad(
8478     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
8479     ArrayRef<unsigned> Indices, unsigned Factor) const {
8480   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8481          "Invalid interleave factor");
8482   assert(!Shuffles.empty() && "Empty shufflevector input");
8483   assert(Shuffles.size() == Indices.size() &&
8484          "Unmatched number of shufflevectors and indices");
8485 
8486   const DataLayout &DL = LI->getModule()->getDataLayout();
8487 
8488   VectorType *VecTy = Shuffles[0]->getType();
8489 
8490   // Skip if we do not have NEON and skip illegal vector types. We can
8491   // "legalize" wide vector types into multiple interleaved accesses as long as
8492   // the vector types are divisible by 128.
8493   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
8494     return false;
8495 
8496   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
8497 
8498   // A pointer vector can not be the return type of the ldN intrinsics. Need to
8499   // load integer vectors first and then convert to pointer vectors.
8500   Type *EltTy = VecTy->getVectorElementType();
8501   if (EltTy->isPointerTy())
8502     VecTy =
8503         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
8504 
8505   IRBuilder<> Builder(LI);
8506 
8507   // The base address of the load.
8508   Value *BaseAddr = LI->getPointerOperand();
8509 
8510   if (NumLoads > 1) {
8511     // If we're going to generate more than one load, reset the sub-vector type
8512     // to something legal.
8513     VecTy = VectorType::get(VecTy->getVectorElementType(),
8514                             VecTy->getVectorNumElements() / NumLoads);
8515 
8516     // We will compute the pointer operand of each load from the original base
8517     // address using GEPs. Cast the base address to a pointer to the scalar
8518     // element type.
8519     BaseAddr = Builder.CreateBitCast(
8520         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
8521                       LI->getPointerAddressSpace()));
8522   }
8523 
8524   Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
8525   Type *Tys[2] = {VecTy, PtrTy};
8526   static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
8527                                             Intrinsic::aarch64_neon_ld3,
8528                                             Intrinsic::aarch64_neon_ld4};
8529   Function *LdNFunc =
8530       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
8531 
8532   // Holds sub-vectors extracted from the load intrinsic return values. The
8533   // sub-vectors are associated with the shufflevector instructions they will
8534   // replace.
8535   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
8536 
8537   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
8538 
8539     // If we're generating more than one load, compute the base address of
8540     // subsequent loads as an offset from the previous.
8541     if (LoadCount > 0)
8542       BaseAddr =
8543           Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
8544                                      VecTy->getVectorNumElements() * Factor);
8545 
8546     CallInst *LdN = Builder.CreateCall(
8547         LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
8548 
8549     // Extract and store the sub-vectors returned by the load intrinsic.
8550     for (unsigned i = 0; i < Shuffles.size(); i++) {
8551       ShuffleVectorInst *SVI = Shuffles[i];
8552       unsigned Index = Indices[i];
8553 
8554       Value *SubVec = Builder.CreateExtractValue(LdN, Index);
8555 
8556       // Convert the integer vector to pointer vector if the element is pointer.
8557       if (EltTy->isPointerTy())
8558         SubVec = Builder.CreateIntToPtr(
8559             SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
8560                                     VecTy->getVectorNumElements()));
8561       SubVecs[SVI].push_back(SubVec);
8562     }
8563   }
8564 
8565   // Replace uses of the shufflevector instructions with the sub-vectors
8566   // returned by the load intrinsic. If a shufflevector instruction is
8567   // associated with more than one sub-vector, those sub-vectors will be
8568   // concatenated into a single wide vector.
8569   for (ShuffleVectorInst *SVI : Shuffles) {
8570     auto &SubVec = SubVecs[SVI];
8571     auto *WideVec =
8572         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
8573     SVI->replaceAllUsesWith(WideVec);
8574   }
8575 
8576   return true;
8577 }
8578 
8579 /// Lower an interleaved store into a stN intrinsic.
8580 ///
8581 /// E.g. Lower an interleaved store (Factor = 3):
8582 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
8583 ///                 <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
8584 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
8585 ///
8586 ///      Into:
8587 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
8588 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
8589 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
8590 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8591 ///
8592 /// Note that the new shufflevectors will be removed and we'll only generate one
8593 /// st3 instruction in CodeGen.
8594 ///
8595 /// Example for a more general valid mask (Factor 3). Lower:
8596 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
8597 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
8598 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
8599 ///
8600 ///      Into:
8601 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
8602 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
8603 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
8604 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8605 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
8606                                                   ShuffleVectorInst *SVI,
8607                                                   unsigned Factor) const {
8608   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8609          "Invalid interleave factor");
8610 
8611   VectorType *VecTy = SVI->getType();
8612   assert(VecTy->getVectorNumElements() % Factor == 0 &&
8613          "Invalid interleaved store");
8614 
8615   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
8616   Type *EltTy = VecTy->getVectorElementType();
8617   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
8618 
8619   const DataLayout &DL = SI->getModule()->getDataLayout();
8620 
8621   // Skip if we do not have NEON and skip illegal vector types. We can
8622   // "legalize" wide vector types into multiple interleaved accesses as long as
8623   // the vector types are divisible by 128.
8624   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
8625     return false;
8626 
8627   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
8628 
8629   Value *Op0 = SVI->getOperand(0);
8630   Value *Op1 = SVI->getOperand(1);
8631   IRBuilder<> Builder(SI);
8632 
8633   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
8634   // vectors to integer vectors.
8635   if (EltTy->isPointerTy()) {
8636     Type *IntTy = DL.getIntPtrType(EltTy);
8637     unsigned NumOpElts = Op0->getType()->getVectorNumElements();
8638 
8639     // Convert to the corresponding integer vector.
8640     Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
8641     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
8642     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
8643 
8644     SubVecTy = VectorType::get(IntTy, LaneLen);
8645   }
8646 
8647   // The base address of the store.
8648   Value *BaseAddr = SI->getPointerOperand();
8649 
8650   if (NumStores > 1) {
8651     // If we're going to generate more than one store, reset the lane length
8652     // and sub-vector type to something legal.
8653     LaneLen /= NumStores;
8654     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
8655 
8656     // We will compute the pointer operand of each store from the original base
8657     // address using GEPs. Cast the base address to a pointer to the scalar
8658     // element type.
8659     BaseAddr = Builder.CreateBitCast(
8660         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
8661                       SI->getPointerAddressSpace()));
8662   }
8663 
8664   auto Mask = SVI->getShuffleMask();
8665 
8666   Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
8667   Type *Tys[2] = {SubVecTy, PtrTy};
8668   static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
8669                                              Intrinsic::aarch64_neon_st3,
8670                                              Intrinsic::aarch64_neon_st4};
8671   Function *StNFunc =
8672       Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
8673 
8674   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
8675 
8676     SmallVector<Value *, 5> Ops;
8677 
8678     // Split the shufflevector operands into sub vectors for the new stN call.
8679     for (unsigned i = 0; i < Factor; i++) {
8680       unsigned IdxI = StoreCount * LaneLen * Factor + i;
8681       if (Mask[IdxI] >= 0) {
8682         Ops.push_back(Builder.CreateShuffleVector(
8683             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
8684       } else {
8685         unsigned StartMask = 0;
8686         for (unsigned j = 1; j < LaneLen; j++) {
8687           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
8688           if (Mask[IdxJ * Factor + IdxI] >= 0) {
8689             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
8690             break;
8691           }
8692         }
8693         // Note: Filling undef gaps with random elements is ok, since
8694         // those elements were being written anyway (with undefs).
8695         // In the case of all undefs we're defaulting to using elems from 0
8696         // Note: StartMask cannot be negative, it's checked in
8697         // isReInterleaveMask
8698         Ops.push_back(Builder.CreateShuffleVector(
8699             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
8700       }
8701     }
8702 
8703     // If we generating more than one store, we compute the base address of
8704     // subsequent stores as an offset from the previous.
8705     if (StoreCount > 0)
8706       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
8707                                             BaseAddr, LaneLen * Factor);
8708 
8709     Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
8710     Builder.CreateCall(StNFunc, Ops);
8711   }
8712   return true;
8713 }
8714 
8715 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8716                        unsigned AlignCheck) {
8717   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8718           (DstAlign == 0 || DstAlign % AlignCheck == 0));
8719 }
8720 
8721 EVT AArch64TargetLowering::getOptimalMemOpType(
8722     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
8723     bool ZeroMemset, bool MemcpyStrSrc,
8724     const AttributeList &FuncAttributes) const {
8725   bool CanImplicitFloat =
8726       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
8727   bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
8728   bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
8729   // Only use AdvSIMD to implement memset of 32-byte and above. It would have
8730   // taken one instruction to materialize the v2i64 zero and one store (with
8731   // restrictive addressing mode). Just do i64 stores.
8732   bool IsSmallMemset = IsMemset && Size < 32;
8733   auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
8734     if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
8735       return true;
8736     bool Fast;
8737     return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
8738                                           &Fast) &&
8739            Fast;
8740   };
8741 
8742   if (CanUseNEON && IsMemset && !IsSmallMemset &&
8743       AlignmentIsAcceptable(MVT::v2i64, 16))
8744     return MVT::v2i64;
8745   if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
8746     return MVT::f128;
8747   if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
8748     return MVT::i64;
8749   if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
8750     return MVT::i32;
8751   return MVT::Other;
8752 }
8753 
8754 // 12-bit optionally shifted immediates are legal for adds.
8755 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
8756   if (Immed == std::numeric_limits<int64_t>::min()) {
8757     LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
8758                       << ": avoid UB for INT64_MIN\n");
8759     return false;
8760   }
8761   // Same encoding for add/sub, just flip the sign.
8762   Immed = std::abs(Immed);
8763   bool IsLegal = ((Immed >> 12) == 0 ||
8764                   ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
8765   LLVM_DEBUG(dbgs() << "Is " << Immed
8766                     << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
8767   return IsLegal;
8768 }
8769 
8770 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
8771 // immediates is the same as for an add or a sub.
8772 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
8773   return isLegalAddImmediate(Immed);
8774 }
8775 
8776 /// isLegalAddressingMode - Return true if the addressing mode represented
8777 /// by AM is legal for this target, for a load/store of the specified type.
8778 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
8779                                                   const AddrMode &AM, Type *Ty,
8780                                                   unsigned AS, Instruction *I) const {
8781   // AArch64 has five basic addressing modes:
8782   //  reg
8783   //  reg + 9-bit signed offset
8784   //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
8785   //  reg1 + reg2
8786   //  reg + SIZE_IN_BYTES * reg
8787 
8788   // No global is ever allowed as a base.
8789   if (AM.BaseGV)
8790     return false;
8791 
8792   // No reg+reg+imm addressing.
8793   if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
8794     return false;
8795 
8796   // check reg + imm case:
8797   // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
8798   uint64_t NumBytes = 0;
8799   if (Ty->isSized()) {
8800     uint64_t NumBits = DL.getTypeSizeInBits(Ty);
8801     NumBytes = NumBits / 8;
8802     if (!isPowerOf2_64(NumBits))
8803       NumBytes = 0;
8804   }
8805 
8806   if (!AM.Scale) {
8807     int64_t Offset = AM.BaseOffs;
8808 
8809     // 9-bit signed offset
8810     if (isInt<9>(Offset))
8811       return true;
8812 
8813     // 12-bit unsigned offset
8814     unsigned shift = Log2_64(NumBytes);
8815     if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
8816         // Must be a multiple of NumBytes (NumBytes is a power of 2)
8817         (Offset >> shift) << shift == Offset)
8818       return true;
8819     return false;
8820   }
8821 
8822   // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
8823 
8824   return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
8825 }
8826 
8827 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
8828   // Consider splitting large offset of struct or array.
8829   return true;
8830 }
8831 
8832 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
8833                                                 const AddrMode &AM, Type *Ty,
8834                                                 unsigned AS) const {
8835   // Scaling factors are not free at all.
8836   // Operands                     | Rt Latency
8837   // -------------------------------------------
8838   // Rt, [Xn, Xm]                 | 4
8839   // -------------------------------------------
8840   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
8841   // Rt, [Xn, Wm, <extend> #imm]  |
8842   if (isLegalAddressingMode(DL, AM, Ty, AS))
8843     // Scale represents reg2 * scale, thus account for 1 if
8844     // it is not equal to 0 or 1.
8845     return AM.Scale != 0 && AM.Scale != 1;
8846   return -1;
8847 }
8848 
8849 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
8850   VT = VT.getScalarType();
8851 
8852   if (!VT.isSimple())
8853     return false;
8854 
8855   switch (VT.getSimpleVT().SimpleTy) {
8856   case MVT::f32:
8857   case MVT::f64:
8858     return true;
8859   default:
8860     break;
8861   }
8862 
8863   return false;
8864 }
8865 
8866 const MCPhysReg *
8867 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
8868   // LR is a callee-save register, but we must treat it as clobbered by any call
8869   // site. Hence we include LR in the scratch registers, which are in turn added
8870   // as implicit-defs for stackmaps and patchpoints.
8871   static const MCPhysReg ScratchRegs[] = {
8872     AArch64::X16, AArch64::X17, AArch64::LR, 0
8873   };
8874   return ScratchRegs;
8875 }
8876 
8877 bool
8878 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
8879                                                      CombineLevel Level) const {
8880   N = N->getOperand(0).getNode();
8881   EVT VT = N->getValueType(0);
8882     // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
8883     // it with shift to let it be lowered to UBFX.
8884   if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
8885       isa<ConstantSDNode>(N->getOperand(1))) {
8886     uint64_t TruncMask = N->getConstantOperandVal(1);
8887     if (isMask_64(TruncMask) &&
8888       N->getOperand(0).getOpcode() == ISD::SRL &&
8889       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
8890       return false;
8891   }
8892   return true;
8893 }
8894 
8895 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
8896                                                               Type *Ty) const {
8897   assert(Ty->isIntegerTy());
8898 
8899   unsigned BitSize = Ty->getPrimitiveSizeInBits();
8900   if (BitSize == 0)
8901     return false;
8902 
8903   int64_t Val = Imm.getSExtValue();
8904   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
8905     return true;
8906 
8907   if ((int64_t)Val < 0)
8908     Val = ~Val;
8909   if (BitSize == 32)
8910     Val &= (1LL << 32) - 1;
8911 
8912   unsigned LZ = countLeadingZeros((uint64_t)Val);
8913   unsigned Shift = (63 - LZ) / 16;
8914   // MOVZ is free so return true for one or fewer MOVK.
8915   return Shift < 3;
8916 }
8917 
8918 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
8919                                                     unsigned Index) const {
8920   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
8921     return false;
8922 
8923   return (Index == 0 || Index == ResVT.getVectorNumElements());
8924 }
8925 
8926 /// Turn vector tests of the signbit in the form of:
8927 ///   xor (sra X, elt_size(X)-1), -1
8928 /// into:
8929 ///   cmge X, X, #0
8930 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
8931                                          const AArch64Subtarget *Subtarget) {
8932   EVT VT = N->getValueType(0);
8933   if (!Subtarget->hasNEON() || !VT.isVector())
8934     return SDValue();
8935 
8936   // There must be a shift right algebraic before the xor, and the xor must be a
8937   // 'not' operation.
8938   SDValue Shift = N->getOperand(0);
8939   SDValue Ones = N->getOperand(1);
8940   if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
8941       !ISD::isBuildVectorAllOnes(Ones.getNode()))
8942     return SDValue();
8943 
8944   // The shift should be smearing the sign bit across each vector element.
8945   auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
8946   EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
8947   if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
8948     return SDValue();
8949 
8950   return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
8951 }
8952 
8953 // Generate SUBS and CSEL for integer abs.
8954 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
8955   EVT VT = N->getValueType(0);
8956 
8957   SDValue N0 = N->getOperand(0);
8958   SDValue N1 = N->getOperand(1);
8959   SDLoc DL(N);
8960 
8961   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
8962   // and change it to SUB and CSEL.
8963   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
8964       N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
8965       N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
8966     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
8967       if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
8968         SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
8969                                   N0.getOperand(0));
8970         // Generate SUBS & CSEL.
8971         SDValue Cmp =
8972             DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
8973                         N0.getOperand(0), DAG.getConstant(0, DL, VT));
8974         return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
8975                            DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
8976                            SDValue(Cmp.getNode(), 1));
8977       }
8978   return SDValue();
8979 }
8980 
8981 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
8982                                  TargetLowering::DAGCombinerInfo &DCI,
8983                                  const AArch64Subtarget *Subtarget) {
8984   if (DCI.isBeforeLegalizeOps())
8985     return SDValue();
8986 
8987   if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
8988     return Cmp;
8989 
8990   return performIntegerAbsCombine(N, DAG);
8991 }
8992 
8993 SDValue
8994 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8995                                      SelectionDAG &DAG,
8996                                      SmallVectorImpl<SDNode *> &Created) const {
8997   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
8998   if (isIntDivCheap(N->getValueType(0), Attr))
8999     return SDValue(N,0); // Lower SDIV as SDIV
9000 
9001   // fold (sdiv X, pow2)
9002   EVT VT = N->getValueType(0);
9003   if ((VT != MVT::i32 && VT != MVT::i64) ||
9004       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
9005     return SDValue();
9006 
9007   SDLoc DL(N);
9008   SDValue N0 = N->getOperand(0);
9009   unsigned Lg2 = Divisor.countTrailingZeros();
9010   SDValue Zero = DAG.getConstant(0, DL, VT);
9011   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
9012 
9013   // Add (N0 < 0) ? Pow2 - 1 : 0;
9014   SDValue CCVal;
9015   SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
9016   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
9017   SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
9018 
9019   Created.push_back(Cmp.getNode());
9020   Created.push_back(Add.getNode());
9021   Created.push_back(CSel.getNode());
9022 
9023   // Divide by pow2.
9024   SDValue SRA =
9025       DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
9026 
9027   // If we're dividing by a positive value, we're done.  Otherwise, we must
9028   // negate the result.
9029   if (Divisor.isNonNegative())
9030     return SRA;
9031 
9032   Created.push_back(SRA.getNode());
9033   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
9034 }
9035 
9036 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
9037                                  TargetLowering::DAGCombinerInfo &DCI,
9038                                  const AArch64Subtarget *Subtarget) {
9039   if (DCI.isBeforeLegalizeOps())
9040     return SDValue();
9041 
9042   // The below optimizations require a constant RHS.
9043   if (!isa<ConstantSDNode>(N->getOperand(1)))
9044     return SDValue();
9045 
9046   ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
9047   const APInt &ConstValue = C->getAPIntValue();
9048 
9049   // Multiplication of a power of two plus/minus one can be done more
9050   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
9051   // future CPUs have a cheaper MADD instruction, this may need to be
9052   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
9053   // 64-bit is 5 cycles, so this is always a win.
9054   // More aggressively, some multiplications N0 * C can be lowered to
9055   // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
9056   // e.g. 6=3*2=(2+1)*2.
9057   // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
9058   // which equals to (1+2)*16-(1+2).
9059   SDValue N0 = N->getOperand(0);
9060   // TrailingZeroes is used to test if the mul can be lowered to
9061   // shift+add+shift.
9062   unsigned TrailingZeroes = ConstValue.countTrailingZeros();
9063   if (TrailingZeroes) {
9064     // Conservatively do not lower to shift+add+shift if the mul might be
9065     // folded into smul or umul.
9066     if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
9067                             isZeroExtended(N0.getNode(), DAG)))
9068       return SDValue();
9069     // Conservatively do not lower to shift+add+shift if the mul might be
9070     // folded into madd or msub.
9071     if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
9072                            N->use_begin()->getOpcode() == ISD::SUB))
9073       return SDValue();
9074   }
9075   // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
9076   // and shift+add+shift.
9077   APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
9078 
9079   unsigned ShiftAmt, AddSubOpc;
9080   // Is the shifted value the LHS operand of the add/sub?
9081   bool ShiftValUseIsN0 = true;
9082   // Do we need to negate the result?
9083   bool NegateResult = false;
9084 
9085   if (ConstValue.isNonNegative()) {
9086     // (mul x, 2^N + 1) => (add (shl x, N), x)
9087     // (mul x, 2^N - 1) => (sub (shl x, N), x)
9088     // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
9089     APInt SCVMinus1 = ShiftedConstValue - 1;
9090     APInt CVPlus1 = ConstValue + 1;
9091     if (SCVMinus1.isPowerOf2()) {
9092       ShiftAmt = SCVMinus1.logBase2();
9093       AddSubOpc = ISD::ADD;
9094     } else if (CVPlus1.isPowerOf2()) {
9095       ShiftAmt = CVPlus1.logBase2();
9096       AddSubOpc = ISD::SUB;
9097     } else
9098       return SDValue();
9099   } else {
9100     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9101     // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9102     APInt CVNegPlus1 = -ConstValue + 1;
9103     APInt CVNegMinus1 = -ConstValue - 1;
9104     if (CVNegPlus1.isPowerOf2()) {
9105       ShiftAmt = CVNegPlus1.logBase2();
9106       AddSubOpc = ISD::SUB;
9107       ShiftValUseIsN0 = false;
9108     } else if (CVNegMinus1.isPowerOf2()) {
9109       ShiftAmt = CVNegMinus1.logBase2();
9110       AddSubOpc = ISD::ADD;
9111       NegateResult = true;
9112     } else
9113       return SDValue();
9114   }
9115 
9116   SDLoc DL(N);
9117   EVT VT = N->getValueType(0);
9118   SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
9119                                    DAG.getConstant(ShiftAmt, DL, MVT::i64));
9120 
9121   SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
9122   SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
9123   SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
9124   assert(!(NegateResult && TrailingZeroes) &&
9125          "NegateResult and TrailingZeroes cannot both be true for now.");
9126   // Negate the result.
9127   if (NegateResult)
9128     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
9129   // Shift the result.
9130   if (TrailingZeroes)
9131     return DAG.getNode(ISD::SHL, DL, VT, Res,
9132                        DAG.getConstant(TrailingZeroes, DL, MVT::i64));
9133   return Res;
9134 }
9135 
9136 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
9137                                                          SelectionDAG &DAG) {
9138   // Take advantage of vector comparisons producing 0 or -1 in each lane to
9139   // optimize away operation when it's from a constant.
9140   //
9141   // The general transformation is:
9142   //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
9143   //       AND(VECTOR_CMP(x,y), constant2)
9144   //    constant2 = UNARYOP(constant)
9145 
9146   // Early exit if this isn't a vector operation, the operand of the
9147   // unary operation isn't a bitwise AND, or if the sizes of the operations
9148   // aren't the same.
9149   EVT VT = N->getValueType(0);
9150   if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
9151       N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
9152       VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
9153     return SDValue();
9154 
9155   // Now check that the other operand of the AND is a constant. We could
9156   // make the transformation for non-constant splats as well, but it's unclear
9157   // that would be a benefit as it would not eliminate any operations, just
9158   // perform one more step in scalar code before moving to the vector unit.
9159   if (BuildVectorSDNode *BV =
9160           dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
9161     // Bail out if the vector isn't a constant.
9162     if (!BV->isConstant())
9163       return SDValue();
9164 
9165     // Everything checks out. Build up the new and improved node.
9166     SDLoc DL(N);
9167     EVT IntVT = BV->getValueType(0);
9168     // Create a new constant of the appropriate type for the transformed
9169     // DAG.
9170     SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
9171     // The AND node needs bitcasts to/from an integer vector type around it.
9172     SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
9173     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
9174                                  N->getOperand(0)->getOperand(0), MaskConst);
9175     SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
9176     return Res;
9177   }
9178 
9179   return SDValue();
9180 }
9181 
9182 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
9183                                      const AArch64Subtarget *Subtarget) {
9184   // First try to optimize away the conversion when it's conditionally from
9185   // a constant. Vectors only.
9186   if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
9187     return Res;
9188 
9189   EVT VT = N->getValueType(0);
9190   if (VT != MVT::f32 && VT != MVT::f64)
9191     return SDValue();
9192 
9193   // Only optimize when the source and destination types have the same width.
9194   if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
9195     return SDValue();
9196 
9197   // If the result of an integer load is only used by an integer-to-float
9198   // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
9199   // This eliminates an "integer-to-vector-move" UOP and improves throughput.
9200   SDValue N0 = N->getOperand(0);
9201   if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
9202       // Do not change the width of a volatile load.
9203       !cast<LoadSDNode>(N0)->isVolatile()) {
9204     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9205     SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
9206                                LN0->getPointerInfo(), LN0->getAlignment(),
9207                                LN0->getMemOperand()->getFlags());
9208 
9209     // Make sure successors of the original load stay after it by updating them
9210     // to use the new Chain.
9211     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
9212 
9213     unsigned Opcode =
9214         (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
9215     return DAG.getNode(Opcode, SDLoc(N), VT, Load);
9216   }
9217 
9218   return SDValue();
9219 }
9220 
9221 /// Fold a floating-point multiply by power of two into floating-point to
9222 /// fixed-point conversion.
9223 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
9224                                      TargetLowering::DAGCombinerInfo &DCI,
9225                                      const AArch64Subtarget *Subtarget) {
9226   if (!Subtarget->hasNEON())
9227     return SDValue();
9228 
9229   if (!N->getValueType(0).isSimple())
9230     return SDValue();
9231 
9232   SDValue Op = N->getOperand(0);
9233   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9234       Op.getOpcode() != ISD::FMUL)
9235     return SDValue();
9236 
9237   SDValue ConstVec = Op->getOperand(1);
9238   if (!isa<BuildVectorSDNode>(ConstVec))
9239     return SDValue();
9240 
9241   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9242   uint32_t FloatBits = FloatTy.getSizeInBits();
9243   if (FloatBits != 32 && FloatBits != 64)
9244     return SDValue();
9245 
9246   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9247   uint32_t IntBits = IntTy.getSizeInBits();
9248   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9249     return SDValue();
9250 
9251   // Avoid conversions where iN is larger than the float (e.g., float -> i64).
9252   if (IntBits > FloatBits)
9253     return SDValue();
9254 
9255   BitVector UndefElements;
9256   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9257   int32_t Bits = IntBits == 64 ? 64 : 32;
9258   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
9259   if (C == -1 || C == 0 || C > Bits)
9260     return SDValue();
9261 
9262   MVT ResTy;
9263   unsigned NumLanes = Op.getValueType().getVectorNumElements();
9264   switch (NumLanes) {
9265   default:
9266     return SDValue();
9267   case 2:
9268     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9269     break;
9270   case 4:
9271     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9272     break;
9273   }
9274 
9275   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9276     return SDValue();
9277 
9278   assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
9279          "Illegal vector type after legalization");
9280 
9281   SDLoc DL(N);
9282   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
9283   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
9284                                       : Intrinsic::aarch64_neon_vcvtfp2fxu;
9285   SDValue FixConv =
9286       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
9287                   DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
9288                   Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
9289   // We can handle smaller integers by generating an extra trunc.
9290   if (IntBits < FloatBits)
9291     FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
9292 
9293   return FixConv;
9294 }
9295 
9296 /// Fold a floating-point divide by power of two into fixed-point to
9297 /// floating-point conversion.
9298 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
9299                                   TargetLowering::DAGCombinerInfo &DCI,
9300                                   const AArch64Subtarget *Subtarget) {
9301   if (!Subtarget->hasNEON())
9302     return SDValue();
9303 
9304   SDValue Op = N->getOperand(0);
9305   unsigned Opc = Op->getOpcode();
9306   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9307       !Op.getOperand(0).getValueType().isSimple() ||
9308       (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
9309     return SDValue();
9310 
9311   SDValue ConstVec = N->getOperand(1);
9312   if (!isa<BuildVectorSDNode>(ConstVec))
9313     return SDValue();
9314 
9315   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9316   int32_t IntBits = IntTy.getSizeInBits();
9317   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9318     return SDValue();
9319 
9320   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9321   int32_t FloatBits = FloatTy.getSizeInBits();
9322   if (FloatBits != 32 && FloatBits != 64)
9323     return SDValue();
9324 
9325   // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
9326   if (IntBits > FloatBits)
9327     return SDValue();
9328 
9329   BitVector UndefElements;
9330   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9331   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
9332   if (C == -1 || C == 0 || C > FloatBits)
9333     return SDValue();
9334 
9335   MVT ResTy;
9336   unsigned NumLanes = Op.getValueType().getVectorNumElements();
9337   switch (NumLanes) {
9338   default:
9339     return SDValue();
9340   case 2:
9341     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9342     break;
9343   case 4:
9344     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9345     break;
9346   }
9347 
9348   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9349     return SDValue();
9350 
9351   SDLoc DL(N);
9352   SDValue ConvInput = Op.getOperand(0);
9353   bool IsSigned = Opc == ISD::SINT_TO_FP;
9354   if (IntBits < FloatBits)
9355     ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
9356                             ResTy, ConvInput);
9357 
9358   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
9359                                       : Intrinsic::aarch64_neon_vcvtfxu2fp;
9360   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
9361                      DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
9362                      DAG.getConstant(C, DL, MVT::i32));
9363 }
9364 
9365 /// An EXTR instruction is made up of two shifts, ORed together. This helper
9366 /// searches for and classifies those shifts.
9367 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
9368                          bool &FromHi) {
9369   if (N.getOpcode() == ISD::SHL)
9370     FromHi = false;
9371   else if (N.getOpcode() == ISD::SRL)
9372     FromHi = true;
9373   else
9374     return false;
9375 
9376   if (!isa<ConstantSDNode>(N.getOperand(1)))
9377     return false;
9378 
9379   ShiftAmount = N->getConstantOperandVal(1);
9380   Src = N->getOperand(0);
9381   return true;
9382 }
9383 
9384 /// EXTR instruction extracts a contiguous chunk of bits from two existing
9385 /// registers viewed as a high/low pair. This function looks for the pattern:
9386 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
9387 /// with an EXTR. Can't quite be done in TableGen because the two immediates
9388 /// aren't independent.
9389 static SDValue tryCombineToEXTR(SDNode *N,
9390                                 TargetLowering::DAGCombinerInfo &DCI) {
9391   SelectionDAG &DAG = DCI.DAG;
9392   SDLoc DL(N);
9393   EVT VT = N->getValueType(0);
9394 
9395   assert(N->getOpcode() == ISD::OR && "Unexpected root");
9396 
9397   if (VT != MVT::i32 && VT != MVT::i64)
9398     return SDValue();
9399 
9400   SDValue LHS;
9401   uint32_t ShiftLHS = 0;
9402   bool LHSFromHi = false;
9403   if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
9404     return SDValue();
9405 
9406   SDValue RHS;
9407   uint32_t ShiftRHS = 0;
9408   bool RHSFromHi = false;
9409   if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
9410     return SDValue();
9411 
9412   // If they're both trying to come from the high part of the register, they're
9413   // not really an EXTR.
9414   if (LHSFromHi == RHSFromHi)
9415     return SDValue();
9416 
9417   if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
9418     return SDValue();
9419 
9420   if (LHSFromHi) {
9421     std::swap(LHS, RHS);
9422     std::swap(ShiftLHS, ShiftRHS);
9423   }
9424 
9425   return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
9426                      DAG.getConstant(ShiftRHS, DL, MVT::i64));
9427 }
9428 
9429 static SDValue tryCombineToBSL(SDNode *N,
9430                                 TargetLowering::DAGCombinerInfo &DCI) {
9431   EVT VT = N->getValueType(0);
9432   SelectionDAG &DAG = DCI.DAG;
9433   SDLoc DL(N);
9434 
9435   if (!VT.isVector())
9436     return SDValue();
9437 
9438   SDValue N0 = N->getOperand(0);
9439   if (N0.getOpcode() != ISD::AND)
9440     return SDValue();
9441 
9442   SDValue N1 = N->getOperand(1);
9443   if (N1.getOpcode() != ISD::AND)
9444     return SDValue();
9445 
9446   // We only have to look for constant vectors here since the general, variable
9447   // case can be handled in TableGen.
9448   unsigned Bits = VT.getScalarSizeInBits();
9449   uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
9450   for (int i = 1; i >= 0; --i)
9451     for (int j = 1; j >= 0; --j) {
9452       BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
9453       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
9454       if (!BVN0 || !BVN1)
9455         continue;
9456 
9457       bool FoundMatch = true;
9458       for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
9459         ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
9460         ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
9461         if (!CN0 || !CN1 ||
9462             CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
9463           FoundMatch = false;
9464           break;
9465         }
9466       }
9467 
9468       if (FoundMatch)
9469         return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
9470                            N0->getOperand(1 - i), N1->getOperand(1 - j));
9471     }
9472 
9473   return SDValue();
9474 }
9475 
9476 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
9477                                 const AArch64Subtarget *Subtarget) {
9478   // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
9479   SelectionDAG &DAG = DCI.DAG;
9480   EVT VT = N->getValueType(0);
9481 
9482   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9483     return SDValue();
9484 
9485   if (SDValue Res = tryCombineToEXTR(N, DCI))
9486     return Res;
9487 
9488   if (SDValue Res = tryCombineToBSL(N, DCI))
9489     return Res;
9490 
9491   return SDValue();
9492 }
9493 
9494 static SDValue performANDCombine(SDNode *N,
9495                                  TargetLowering::DAGCombinerInfo &DCI) {
9496   SelectionDAG &DAG = DCI.DAG;
9497   SDValue LHS = N->getOperand(0);
9498   EVT VT = N->getValueType(0);
9499   if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
9500     return SDValue();
9501 
9502   BuildVectorSDNode *BVN =
9503       dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode());
9504   if (!BVN)
9505     return SDValue();
9506 
9507   // AND does not accept an immediate, so check if we can use a BIC immediate
9508   // instruction instead. We do this here instead of using a (and x, (mvni imm))
9509   // pattern in isel, because some immediates may be lowered to the preferred
9510   // (and x, (movi imm)) form, even though an mvni representation also exists.
9511   APInt DefBits(VT.getSizeInBits(), 0);
9512   APInt UndefBits(VT.getSizeInBits(), 0);
9513   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
9514     SDValue NewOp;
9515 
9516     DefBits = ~DefBits;
9517     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
9518                                     DefBits, &LHS)) ||
9519         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
9520                                     DefBits, &LHS)))
9521       return NewOp;
9522 
9523     UndefBits = ~UndefBits;
9524     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
9525                                     UndefBits, &LHS)) ||
9526         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
9527                                     UndefBits, &LHS)))
9528       return NewOp;
9529   }
9530 
9531   return SDValue();
9532 }
9533 
9534 static SDValue performSRLCombine(SDNode *N,
9535                                  TargetLowering::DAGCombinerInfo &DCI) {
9536   SelectionDAG &DAG = DCI.DAG;
9537   EVT VT = N->getValueType(0);
9538   if (VT != MVT::i32 && VT != MVT::i64)
9539     return SDValue();
9540 
9541   // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
9542   // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
9543   // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
9544   SDValue N0 = N->getOperand(0);
9545   if (N0.getOpcode() == ISD::BSWAP) {
9546     SDLoc DL(N);
9547     SDValue N1 = N->getOperand(1);
9548     SDValue N00 = N0.getOperand(0);
9549     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9550       uint64_t ShiftAmt = C->getZExtValue();
9551       if (VT == MVT::i32 && ShiftAmt == 16 &&
9552           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
9553         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9554       if (VT == MVT::i64 && ShiftAmt == 32 &&
9555           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
9556         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9557     }
9558   }
9559   return SDValue();
9560 }
9561 
9562 static SDValue performBitcastCombine(SDNode *N,
9563                                      TargetLowering::DAGCombinerInfo &DCI,
9564                                      SelectionDAG &DAG) {
9565   // Wait 'til after everything is legalized to try this. That way we have
9566   // legal vector types and such.
9567   if (DCI.isBeforeLegalizeOps())
9568     return SDValue();
9569 
9570   // Remove extraneous bitcasts around an extract_subvector.
9571   // For example,
9572   //    (v4i16 (bitconvert
9573   //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
9574   //  becomes
9575   //    (extract_subvector ((v8i16 ...), (i64 4)))
9576 
9577   // Only interested in 64-bit vectors as the ultimate result.
9578   EVT VT = N->getValueType(0);
9579   if (!VT.isVector())
9580     return SDValue();
9581   if (VT.getSimpleVT().getSizeInBits() != 64)
9582     return SDValue();
9583   // Is the operand an extract_subvector starting at the beginning or halfway
9584   // point of the vector? A low half may also come through as an
9585   // EXTRACT_SUBREG, so look for that, too.
9586   SDValue Op0 = N->getOperand(0);
9587   if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
9588       !(Op0->isMachineOpcode() &&
9589         Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
9590     return SDValue();
9591   uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
9592   if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
9593     if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
9594       return SDValue();
9595   } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
9596     if (idx != AArch64::dsub)
9597       return SDValue();
9598     // The dsub reference is equivalent to a lane zero subvector reference.
9599     idx = 0;
9600   }
9601   // Look through the bitcast of the input to the extract.
9602   if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
9603     return SDValue();
9604   SDValue Source = Op0->getOperand(0)->getOperand(0);
9605   // If the source type has twice the number of elements as our destination
9606   // type, we know this is an extract of the high or low half of the vector.
9607   EVT SVT = Source->getValueType(0);
9608   if (!SVT.isVector() ||
9609       SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
9610     return SDValue();
9611 
9612   LLVM_DEBUG(
9613       dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
9614 
9615   // Create the simplified form to just extract the low or high half of the
9616   // vector directly rather than bothering with the bitcasts.
9617   SDLoc dl(N);
9618   unsigned NumElements = VT.getVectorNumElements();
9619   if (idx) {
9620     SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
9621     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
9622   } else {
9623     SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
9624     return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
9625                                       Source, SubReg),
9626                    0);
9627   }
9628 }
9629 
9630 static SDValue performConcatVectorsCombine(SDNode *N,
9631                                            TargetLowering::DAGCombinerInfo &DCI,
9632                                            SelectionDAG &DAG) {
9633   SDLoc dl(N);
9634   EVT VT = N->getValueType(0);
9635   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
9636 
9637   // Optimize concat_vectors of truncated vectors, where the intermediate
9638   // type is illegal, to avoid said illegality,  e.g.,
9639   //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
9640   //                          (v2i16 (truncate (v2i64)))))
9641   // ->
9642   //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
9643   //                                    (v4i32 (bitcast (v2i64))),
9644   //                                    <0, 2, 4, 6>)))
9645   // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
9646   // on both input and result type, so we might generate worse code.
9647   // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
9648   if (N->getNumOperands() == 2 &&
9649       N0->getOpcode() == ISD::TRUNCATE &&
9650       N1->getOpcode() == ISD::TRUNCATE) {
9651     SDValue N00 = N0->getOperand(0);
9652     SDValue N10 = N1->getOperand(0);
9653     EVT N00VT = N00.getValueType();
9654 
9655     if (N00VT == N10.getValueType() &&
9656         (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
9657         N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
9658       MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
9659       SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
9660       for (size_t i = 0; i < Mask.size(); ++i)
9661         Mask[i] = i * 2;
9662       return DAG.getNode(ISD::TRUNCATE, dl, VT,
9663                          DAG.getVectorShuffle(
9664                              MidVT, dl,
9665                              DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
9666                              DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
9667     }
9668   }
9669 
9670   // Wait 'til after everything is legalized to try this. That way we have
9671   // legal vector types and such.
9672   if (DCI.isBeforeLegalizeOps())
9673     return SDValue();
9674 
9675   // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
9676   // splat. The indexed instructions are going to be expecting a DUPLANE64, so
9677   // canonicalise to that.
9678   if (N0 == N1 && VT.getVectorNumElements() == 2) {
9679     assert(VT.getScalarSizeInBits() == 64);
9680     return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
9681                        DAG.getConstant(0, dl, MVT::i64));
9682   }
9683 
9684   // Canonicalise concat_vectors so that the right-hand vector has as few
9685   // bit-casts as possible before its real operation. The primary matching
9686   // destination for these operations will be the narrowing "2" instructions,
9687   // which depend on the operation being performed on this right-hand vector.
9688   // For example,
9689   //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
9690   // becomes
9691   //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
9692 
9693   if (N1->getOpcode() != ISD::BITCAST)
9694     return SDValue();
9695   SDValue RHS = N1->getOperand(0);
9696   MVT RHSTy = RHS.getValueType().getSimpleVT();
9697   // If the RHS is not a vector, this is not the pattern we're looking for.
9698   if (!RHSTy.isVector())
9699     return SDValue();
9700 
9701   LLVM_DEBUG(
9702       dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
9703 
9704   MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
9705                                   RHSTy.getVectorNumElements() * 2);
9706   return DAG.getNode(ISD::BITCAST, dl, VT,
9707                      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
9708                                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
9709                                  RHS));
9710 }
9711 
9712 static SDValue tryCombineFixedPointConvert(SDNode *N,
9713                                            TargetLowering::DAGCombinerInfo &DCI,
9714                                            SelectionDAG &DAG) {
9715   // Wait until after everything is legalized to try this. That way we have
9716   // legal vector types and such.
9717   if (DCI.isBeforeLegalizeOps())
9718     return SDValue();
9719   // Transform a scalar conversion of a value from a lane extract into a
9720   // lane extract of a vector conversion. E.g., from foo1 to foo2:
9721   // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
9722   // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
9723   //
9724   // The second form interacts better with instruction selection and the
9725   // register allocator to avoid cross-class register copies that aren't
9726   // coalescable due to a lane reference.
9727 
9728   // Check the operand and see if it originates from a lane extract.
9729   SDValue Op1 = N->getOperand(1);
9730   if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9731     // Yep, no additional predication needed. Perform the transform.
9732     SDValue IID = N->getOperand(0);
9733     SDValue Shift = N->getOperand(2);
9734     SDValue Vec = Op1.getOperand(0);
9735     SDValue Lane = Op1.getOperand(1);
9736     EVT ResTy = N->getValueType(0);
9737     EVT VecResTy;
9738     SDLoc DL(N);
9739 
9740     // The vector width should be 128 bits by the time we get here, even
9741     // if it started as 64 bits (the extract_vector handling will have
9742     // done so).
9743     assert(Vec.getValueSizeInBits() == 128 &&
9744            "unexpected vector size on extract_vector_elt!");
9745     if (Vec.getValueType() == MVT::v4i32)
9746       VecResTy = MVT::v4f32;
9747     else if (Vec.getValueType() == MVT::v2i64)
9748       VecResTy = MVT::v2f64;
9749     else
9750       llvm_unreachable("unexpected vector type!");
9751 
9752     SDValue Convert =
9753         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
9754     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
9755   }
9756   return SDValue();
9757 }
9758 
9759 // AArch64 high-vector "long" operations are formed by performing the non-high
9760 // version on an extract_subvector of each operand which gets the high half:
9761 //
9762 //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
9763 //
9764 // However, there are cases which don't have an extract_high explicitly, but
9765 // have another operation that can be made compatible with one for free. For
9766 // example:
9767 //
9768 //  (dupv64 scalar) --> (extract_high (dup128 scalar))
9769 //
9770 // This routine does the actual conversion of such DUPs, once outer routines
9771 // have determined that everything else is in order.
9772 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
9773 // similarly here.
9774 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
9775   switch (N.getOpcode()) {
9776   case AArch64ISD::DUP:
9777   case AArch64ISD::DUPLANE8:
9778   case AArch64ISD::DUPLANE16:
9779   case AArch64ISD::DUPLANE32:
9780   case AArch64ISD::DUPLANE64:
9781   case AArch64ISD::MOVI:
9782   case AArch64ISD::MOVIshift:
9783   case AArch64ISD::MOVIedit:
9784   case AArch64ISD::MOVImsl:
9785   case AArch64ISD::MVNIshift:
9786   case AArch64ISD::MVNImsl:
9787     break;
9788   default:
9789     // FMOV could be supported, but isn't very useful, as it would only occur
9790     // if you passed a bitcast' floating point immediate to an eligible long
9791     // integer op (addl, smull, ...).
9792     return SDValue();
9793   }
9794 
9795   MVT NarrowTy = N.getSimpleValueType();
9796   if (!NarrowTy.is64BitVector())
9797     return SDValue();
9798 
9799   MVT ElementTy = NarrowTy.getVectorElementType();
9800   unsigned NumElems = NarrowTy.getVectorNumElements();
9801   MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
9802 
9803   SDLoc dl(N);
9804   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
9805                      DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
9806                      DAG.getConstant(NumElems, dl, MVT::i64));
9807 }
9808 
9809 static bool isEssentiallyExtractHighSubvector(SDValue N) {
9810   if (N.getOpcode() == ISD::BITCAST)
9811     N = N.getOperand(0);
9812   if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9813     return false;
9814   return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
9815          N.getOperand(0).getValueType().getVectorNumElements() / 2;
9816 }
9817 
9818 /// Helper structure to keep track of ISD::SET_CC operands.
9819 struct GenericSetCCInfo {
9820   const SDValue *Opnd0;
9821   const SDValue *Opnd1;
9822   ISD::CondCode CC;
9823 };
9824 
9825 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
9826 struct AArch64SetCCInfo {
9827   const SDValue *Cmp;
9828   AArch64CC::CondCode CC;
9829 };
9830 
9831 /// Helper structure to keep track of SetCC information.
9832 union SetCCInfo {
9833   GenericSetCCInfo Generic;
9834   AArch64SetCCInfo AArch64;
9835 };
9836 
9837 /// Helper structure to be able to read SetCC information.  If set to
9838 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
9839 /// GenericSetCCInfo.
9840 struct SetCCInfoAndKind {
9841   SetCCInfo Info;
9842   bool IsAArch64;
9843 };
9844 
9845 /// Check whether or not \p Op is a SET_CC operation, either a generic or
9846 /// an
9847 /// AArch64 lowered one.
9848 /// \p SetCCInfo is filled accordingly.
9849 /// \post SetCCInfo is meanginfull only when this function returns true.
9850 /// \return True when Op is a kind of SET_CC operation.
9851 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
9852   // If this is a setcc, this is straight forward.
9853   if (Op.getOpcode() == ISD::SETCC) {
9854     SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
9855     SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
9856     SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9857     SetCCInfo.IsAArch64 = false;
9858     return true;
9859   }
9860   // Otherwise, check if this is a matching csel instruction.
9861   // In other words:
9862   // - csel 1, 0, cc
9863   // - csel 0, 1, !cc
9864   if (Op.getOpcode() != AArch64ISD::CSEL)
9865     return false;
9866   // Set the information about the operands.
9867   // TODO: we want the operands of the Cmp not the csel
9868   SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
9869   SetCCInfo.IsAArch64 = true;
9870   SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
9871       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
9872 
9873   // Check that the operands matches the constraints:
9874   // (1) Both operands must be constants.
9875   // (2) One must be 1 and the other must be 0.
9876   ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
9877   ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9878 
9879   // Check (1).
9880   if (!TValue || !FValue)
9881     return false;
9882 
9883   // Check (2).
9884   if (!TValue->isOne()) {
9885     // Update the comparison when we are interested in !cc.
9886     std::swap(TValue, FValue);
9887     SetCCInfo.Info.AArch64.CC =
9888         AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
9889   }
9890   return TValue->isOne() && FValue->isNullValue();
9891 }
9892 
9893 // Returns true if Op is setcc or zext of setcc.
9894 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
9895   if (isSetCC(Op, Info))
9896     return true;
9897   return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
9898     isSetCC(Op->getOperand(0), Info));
9899 }
9900 
9901 // The folding we want to perform is:
9902 // (add x, [zext] (setcc cc ...) )
9903 //   -->
9904 // (csel x, (add x, 1), !cc ...)
9905 //
9906 // The latter will get matched to a CSINC instruction.
9907 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
9908   assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
9909   SDValue LHS = Op->getOperand(0);
9910   SDValue RHS = Op->getOperand(1);
9911   SetCCInfoAndKind InfoAndKind;
9912 
9913   // If neither operand is a SET_CC, give up.
9914   if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
9915     std::swap(LHS, RHS);
9916     if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
9917       return SDValue();
9918   }
9919 
9920   // FIXME: This could be generatized to work for FP comparisons.
9921   EVT CmpVT = InfoAndKind.IsAArch64
9922                   ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
9923                   : InfoAndKind.Info.Generic.Opnd0->getValueType();
9924   if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
9925     return SDValue();
9926 
9927   SDValue CCVal;
9928   SDValue Cmp;
9929   SDLoc dl(Op);
9930   if (InfoAndKind.IsAArch64) {
9931     CCVal = DAG.getConstant(
9932         AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
9933         MVT::i32);
9934     Cmp = *InfoAndKind.Info.AArch64.Cmp;
9935   } else
9936     Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
9937                       *InfoAndKind.Info.Generic.Opnd1,
9938                       ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
9939                       CCVal, DAG, dl);
9940 
9941   EVT VT = Op->getValueType(0);
9942   LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
9943   return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
9944 }
9945 
9946 // The basic add/sub long vector instructions have variants with "2" on the end
9947 // which act on the high-half of their inputs. They are normally matched by
9948 // patterns like:
9949 //
9950 // (add (zeroext (extract_high LHS)),
9951 //      (zeroext (extract_high RHS)))
9952 // -> uaddl2 vD, vN, vM
9953 //
9954 // However, if one of the extracts is something like a duplicate, this
9955 // instruction can still be used profitably. This function puts the DAG into a
9956 // more appropriate form for those patterns to trigger.
9957 static SDValue performAddSubLongCombine(SDNode *N,
9958                                         TargetLowering::DAGCombinerInfo &DCI,
9959                                         SelectionDAG &DAG) {
9960   if (DCI.isBeforeLegalizeOps())
9961     return SDValue();
9962 
9963   MVT VT = N->getSimpleValueType(0);
9964   if (!VT.is128BitVector()) {
9965     if (N->getOpcode() == ISD::ADD)
9966       return performSetccAddFolding(N, DAG);
9967     return SDValue();
9968   }
9969 
9970   // Make sure both branches are extended in the same way.
9971   SDValue LHS = N->getOperand(0);
9972   SDValue RHS = N->getOperand(1);
9973   if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
9974        LHS.getOpcode() != ISD::SIGN_EXTEND) ||
9975       LHS.getOpcode() != RHS.getOpcode())
9976     return SDValue();
9977 
9978   unsigned ExtType = LHS.getOpcode();
9979 
9980   // It's not worth doing if at least one of the inputs isn't already an
9981   // extract, but we don't know which it'll be so we have to try both.
9982   if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
9983     RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
9984     if (!RHS.getNode())
9985       return SDValue();
9986 
9987     RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
9988   } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
9989     LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
9990     if (!LHS.getNode())
9991       return SDValue();
9992 
9993     LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
9994   }
9995 
9996   return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
9997 }
9998 
9999 // Massage DAGs which we can use the high-half "long" operations on into
10000 // something isel will recognize better. E.g.
10001 //
10002 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
10003 //   (aarch64_neon_umull (extract_high (v2i64 vec)))
10004 //                     (extract_high (v2i64 (dup128 scalar)))))
10005 //
10006 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
10007                                        TargetLowering::DAGCombinerInfo &DCI,
10008                                        SelectionDAG &DAG) {
10009   if (DCI.isBeforeLegalizeOps())
10010     return SDValue();
10011 
10012   SDValue LHS = N->getOperand(1);
10013   SDValue RHS = N->getOperand(2);
10014   assert(LHS.getValueType().is64BitVector() &&
10015          RHS.getValueType().is64BitVector() &&
10016          "unexpected shape for long operation");
10017 
10018   // Either node could be a DUP, but it's not worth doing both of them (you'd
10019   // just as well use the non-high version) so look for a corresponding extract
10020   // operation on the other "wing".
10021   if (isEssentiallyExtractHighSubvector(LHS)) {
10022     RHS = tryExtendDUPToExtractHigh(RHS, DAG);
10023     if (!RHS.getNode())
10024       return SDValue();
10025   } else if (isEssentiallyExtractHighSubvector(RHS)) {
10026     LHS = tryExtendDUPToExtractHigh(LHS, DAG);
10027     if (!LHS.getNode())
10028       return SDValue();
10029   }
10030 
10031   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
10032                      N->getOperand(0), LHS, RHS);
10033 }
10034 
10035 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
10036   MVT ElemTy = N->getSimpleValueType(0).getScalarType();
10037   unsigned ElemBits = ElemTy.getSizeInBits();
10038 
10039   int64_t ShiftAmount;
10040   if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
10041     APInt SplatValue, SplatUndef;
10042     unsigned SplatBitSize;
10043     bool HasAnyUndefs;
10044     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
10045                               HasAnyUndefs, ElemBits) ||
10046         SplatBitSize != ElemBits)
10047       return SDValue();
10048 
10049     ShiftAmount = SplatValue.getSExtValue();
10050   } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
10051     ShiftAmount = CVN->getSExtValue();
10052   } else
10053     return SDValue();
10054 
10055   unsigned Opcode;
10056   bool IsRightShift;
10057   switch (IID) {
10058   default:
10059     llvm_unreachable("Unknown shift intrinsic");
10060   case Intrinsic::aarch64_neon_sqshl:
10061     Opcode = AArch64ISD::SQSHL_I;
10062     IsRightShift = false;
10063     break;
10064   case Intrinsic::aarch64_neon_uqshl:
10065     Opcode = AArch64ISD::UQSHL_I;
10066     IsRightShift = false;
10067     break;
10068   case Intrinsic::aarch64_neon_srshl:
10069     Opcode = AArch64ISD::SRSHR_I;
10070     IsRightShift = true;
10071     break;
10072   case Intrinsic::aarch64_neon_urshl:
10073     Opcode = AArch64ISD::URSHR_I;
10074     IsRightShift = true;
10075     break;
10076   case Intrinsic::aarch64_neon_sqshlu:
10077     Opcode = AArch64ISD::SQSHLU_I;
10078     IsRightShift = false;
10079     break;
10080   }
10081 
10082   if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
10083     SDLoc dl(N);
10084     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
10085                        DAG.getConstant(-ShiftAmount, dl, MVT::i32));
10086   } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
10087     SDLoc dl(N);
10088     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
10089                        DAG.getConstant(ShiftAmount, dl, MVT::i32));
10090   }
10091 
10092   return SDValue();
10093 }
10094 
10095 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
10096 // the intrinsics must be legal and take an i32, this means there's almost
10097 // certainly going to be a zext in the DAG which we can eliminate.
10098 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
10099   SDValue AndN = N->getOperand(2);
10100   if (AndN.getOpcode() != ISD::AND)
10101     return SDValue();
10102 
10103   ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
10104   if (!CMask || CMask->getZExtValue() != Mask)
10105     return SDValue();
10106 
10107   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
10108                      N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
10109 }
10110 
10111 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
10112                                            SelectionDAG &DAG) {
10113   SDLoc dl(N);
10114   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
10115                      DAG.getNode(Opc, dl,
10116                                  N->getOperand(1).getSimpleValueType(),
10117                                  N->getOperand(1)),
10118                      DAG.getConstant(0, dl, MVT::i64));
10119 }
10120 
10121 static SDValue performIntrinsicCombine(SDNode *N,
10122                                        TargetLowering::DAGCombinerInfo &DCI,
10123                                        const AArch64Subtarget *Subtarget) {
10124   SelectionDAG &DAG = DCI.DAG;
10125   unsigned IID = getIntrinsicID(N);
10126   switch (IID) {
10127   default:
10128     break;
10129   case Intrinsic::aarch64_neon_vcvtfxs2fp:
10130   case Intrinsic::aarch64_neon_vcvtfxu2fp:
10131     return tryCombineFixedPointConvert(N, DCI, DAG);
10132   case Intrinsic::aarch64_neon_saddv:
10133     return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
10134   case Intrinsic::aarch64_neon_uaddv:
10135     return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
10136   case Intrinsic::aarch64_neon_sminv:
10137     return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
10138   case Intrinsic::aarch64_neon_uminv:
10139     return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
10140   case Intrinsic::aarch64_neon_smaxv:
10141     return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
10142   case Intrinsic::aarch64_neon_umaxv:
10143     return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
10144   case Intrinsic::aarch64_neon_fmax:
10145     return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
10146                        N->getOperand(1), N->getOperand(2));
10147   case Intrinsic::aarch64_neon_fmin:
10148     return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
10149                        N->getOperand(1), N->getOperand(2));
10150   case Intrinsic::aarch64_neon_fmaxnm:
10151     return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
10152                        N->getOperand(1), N->getOperand(2));
10153   case Intrinsic::aarch64_neon_fminnm:
10154     return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
10155                        N->getOperand(1), N->getOperand(2));
10156   case Intrinsic::aarch64_neon_smull:
10157   case Intrinsic::aarch64_neon_umull:
10158   case Intrinsic::aarch64_neon_pmull:
10159   case Intrinsic::aarch64_neon_sqdmull:
10160     return tryCombineLongOpWithDup(IID, N, DCI, DAG);
10161   case Intrinsic::aarch64_neon_sqshl:
10162   case Intrinsic::aarch64_neon_uqshl:
10163   case Intrinsic::aarch64_neon_sqshlu:
10164   case Intrinsic::aarch64_neon_srshl:
10165   case Intrinsic::aarch64_neon_urshl:
10166     return tryCombineShiftImm(IID, N, DAG);
10167   case Intrinsic::aarch64_crc32b:
10168   case Intrinsic::aarch64_crc32cb:
10169     return tryCombineCRC32(0xff, N, DAG);
10170   case Intrinsic::aarch64_crc32h:
10171   case Intrinsic::aarch64_crc32ch:
10172     return tryCombineCRC32(0xffff, N, DAG);
10173   }
10174   return SDValue();
10175 }
10176 
10177 static SDValue performExtendCombine(SDNode *N,
10178                                     TargetLowering::DAGCombinerInfo &DCI,
10179                                     SelectionDAG &DAG) {
10180   // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
10181   // we can convert that DUP into another extract_high (of a bigger DUP), which
10182   // helps the backend to decide that an sabdl2 would be useful, saving a real
10183   // extract_high operation.
10184   if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
10185       N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
10186     SDNode *ABDNode = N->getOperand(0).getNode();
10187     unsigned IID = getIntrinsicID(ABDNode);
10188     if (IID == Intrinsic::aarch64_neon_sabd ||
10189         IID == Intrinsic::aarch64_neon_uabd) {
10190       SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
10191       if (!NewABD.getNode())
10192         return SDValue();
10193 
10194       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
10195                          NewABD);
10196     }
10197   }
10198 
10199   // This is effectively a custom type legalization for AArch64.
10200   //
10201   // Type legalization will split an extend of a small, legal, type to a larger
10202   // illegal type by first splitting the destination type, often creating
10203   // illegal source types, which then get legalized in isel-confusing ways,
10204   // leading to really terrible codegen. E.g.,
10205   //   %result = v8i32 sext v8i8 %value
10206   // becomes
10207   //   %losrc = extract_subreg %value, ...
10208   //   %hisrc = extract_subreg %value, ...
10209   //   %lo = v4i32 sext v4i8 %losrc
10210   //   %hi = v4i32 sext v4i8 %hisrc
10211   // Things go rapidly downhill from there.
10212   //
10213   // For AArch64, the [sz]ext vector instructions can only go up one element
10214   // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
10215   // take two instructions.
10216   //
10217   // This implies that the most efficient way to do the extend from v8i8
10218   // to two v4i32 values is to first extend the v8i8 to v8i16, then do
10219   // the normal splitting to happen for the v8i16->v8i32.
10220 
10221   // This is pre-legalization to catch some cases where the default
10222   // type legalization will create ill-tempered code.
10223   if (!DCI.isBeforeLegalizeOps())
10224     return SDValue();
10225 
10226   // We're only interested in cleaning things up for non-legal vector types
10227   // here. If both the source and destination are legal, things will just
10228   // work naturally without any fiddling.
10229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10230   EVT ResVT = N->getValueType(0);
10231   if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
10232     return SDValue();
10233   // If the vector type isn't a simple VT, it's beyond the scope of what
10234   // we're  worried about here. Let legalization do its thing and hope for
10235   // the best.
10236   SDValue Src = N->getOperand(0);
10237   EVT SrcVT = Src->getValueType(0);
10238   if (!ResVT.isSimple() || !SrcVT.isSimple())
10239     return SDValue();
10240 
10241   // If the source VT is a 64-bit vector, we can play games and get the
10242   // better results we want.
10243   if (SrcVT.getSizeInBits() != 64)
10244     return SDValue();
10245 
10246   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
10247   unsigned ElementCount = SrcVT.getVectorNumElements();
10248   SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
10249   SDLoc DL(N);
10250   Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
10251 
10252   // Now split the rest of the operation into two halves, each with a 64
10253   // bit source.
10254   EVT LoVT, HiVT;
10255   SDValue Lo, Hi;
10256   unsigned NumElements = ResVT.getVectorNumElements();
10257   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
10258   LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
10259                                  ResVT.getVectorElementType(), NumElements / 2);
10260 
10261   EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
10262                                LoVT.getVectorNumElements());
10263   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
10264                    DAG.getConstant(0, DL, MVT::i64));
10265   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
10266                    DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
10267   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
10268   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
10269 
10270   // Now combine the parts back together so we still have a single result
10271   // like the combiner expects.
10272   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
10273 }
10274 
10275 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
10276                                SDValue SplatVal, unsigned NumVecElts) {
10277   assert(!St.isTruncatingStore() && "cannot split truncating vector store");
10278   unsigned OrigAlignment = St.getAlignment();
10279   unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
10280 
10281   // Create scalar stores. This is at least as good as the code sequence for a
10282   // split unaligned store which is a dup.s, ext.b, and two stores.
10283   // Most of the time the three stores should be replaced by store pair
10284   // instructions (stp).
10285   SDLoc DL(&St);
10286   SDValue BasePtr = St.getBasePtr();
10287   uint64_t BaseOffset = 0;
10288 
10289   const MachinePointerInfo &PtrInfo = St.getPointerInfo();
10290   SDValue NewST1 =
10291       DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
10292                    OrigAlignment, St.getMemOperand()->getFlags());
10293 
10294   // As this in ISel, we will not merge this add which may degrade results.
10295   if (BasePtr->getOpcode() == ISD::ADD &&
10296       isa<ConstantSDNode>(BasePtr->getOperand(1))) {
10297     BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
10298     BasePtr = BasePtr->getOperand(0);
10299   }
10300 
10301   unsigned Offset = EltOffset;
10302   while (--NumVecElts) {
10303     unsigned Alignment = MinAlign(OrigAlignment, Offset);
10304     SDValue OffsetPtr =
10305         DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10306                     DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
10307     NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
10308                           PtrInfo.getWithOffset(Offset), Alignment,
10309                           St.getMemOperand()->getFlags());
10310     Offset += EltOffset;
10311   }
10312   return NewST1;
10313 }
10314 
10315 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The
10316 /// load store optimizer pass will merge them to store pair stores.  This should
10317 /// be better than a movi to create the vector zero followed by a vector store
10318 /// if the zero constant is not re-used, since one instructions and one register
10319 /// live range will be removed.
10320 ///
10321 /// For example, the final generated code should be:
10322 ///
10323 ///   stp xzr, xzr, [x0]
10324 ///
10325 /// instead of:
10326 ///
10327 ///   movi v0.2d, #0
10328 ///   str q0, [x0]
10329 ///
10330 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
10331   SDValue StVal = St.getValue();
10332   EVT VT = StVal.getValueType();
10333 
10334   // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
10335   // 2, 3 or 4 i32 elements.
10336   int NumVecElts = VT.getVectorNumElements();
10337   if (!(((NumVecElts == 2 || NumVecElts == 3) &&
10338          VT.getVectorElementType().getSizeInBits() == 64) ||
10339         ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
10340          VT.getVectorElementType().getSizeInBits() == 32)))
10341     return SDValue();
10342 
10343   if (StVal.getOpcode() != ISD::BUILD_VECTOR)
10344     return SDValue();
10345 
10346   // If the zero constant has more than one use then the vector store could be
10347   // better since the constant mov will be amortized and stp q instructions
10348   // should be able to be formed.
10349   if (!StVal.hasOneUse())
10350     return SDValue();
10351 
10352   // If the store is truncating then it's going down to i16 or smaller, which
10353   // means it can be implemented in a single store anyway.
10354   if (St.isTruncatingStore())
10355     return SDValue();
10356 
10357   // If the immediate offset of the address operand is too large for the stp
10358   // instruction, then bail out.
10359   if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
10360     int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
10361     if (Offset < -512 || Offset > 504)
10362       return SDValue();
10363   }
10364 
10365   for (int I = 0; I < NumVecElts; ++I) {
10366     SDValue EltVal = StVal.getOperand(I);
10367     if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
10368       return SDValue();
10369   }
10370 
10371   // Use a CopyFromReg WZR/XZR here to prevent
10372   // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
10373   SDLoc DL(&St);
10374   unsigned ZeroReg;
10375   EVT ZeroVT;
10376   if (VT.getVectorElementType().getSizeInBits() == 32) {
10377     ZeroReg = AArch64::WZR;
10378     ZeroVT = MVT::i32;
10379   } else {
10380     ZeroReg = AArch64::XZR;
10381     ZeroVT = MVT::i64;
10382   }
10383   SDValue SplatVal =
10384       DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
10385   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10386 }
10387 
10388 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
10389 /// value. The load store optimizer pass will merge them to store pair stores.
10390 /// This has better performance than a splat of the scalar followed by a split
10391 /// vector store. Even if the stores are not merged it is four stores vs a dup,
10392 /// followed by an ext.b and two stores.
10393 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
10394   SDValue StVal = St.getValue();
10395   EVT VT = StVal.getValueType();
10396 
10397   // Don't replace floating point stores, they possibly won't be transformed to
10398   // stp because of the store pair suppress pass.
10399   if (VT.isFloatingPoint())
10400     return SDValue();
10401 
10402   // We can express a splat as store pair(s) for 2 or 4 elements.
10403   unsigned NumVecElts = VT.getVectorNumElements();
10404   if (NumVecElts != 4 && NumVecElts != 2)
10405     return SDValue();
10406 
10407   // If the store is truncating then it's going down to i16 or smaller, which
10408   // means it can be implemented in a single store anyway.
10409   if (St.isTruncatingStore())
10410     return SDValue();
10411 
10412   // Check that this is a splat.
10413   // Make sure that each of the relevant vector element locations are inserted
10414   // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
10415   std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
10416   SDValue SplatVal;
10417   for (unsigned I = 0; I < NumVecElts; ++I) {
10418     // Check for insert vector elements.
10419     if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
10420       return SDValue();
10421 
10422     // Check that same value is inserted at each vector element.
10423     if (I == 0)
10424       SplatVal = StVal.getOperand(1);
10425     else if (StVal.getOperand(1) != SplatVal)
10426       return SDValue();
10427 
10428     // Check insert element index.
10429     ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
10430     if (!CIndex)
10431       return SDValue();
10432     uint64_t IndexVal = CIndex->getZExtValue();
10433     if (IndexVal >= NumVecElts)
10434       return SDValue();
10435     IndexNotInserted.reset(IndexVal);
10436 
10437     StVal = StVal.getOperand(0);
10438   }
10439   // Check that all vector element locations were inserted to.
10440   if (IndexNotInserted.any())
10441       return SDValue();
10442 
10443   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10444 }
10445 
10446 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
10447                            SelectionDAG &DAG,
10448                            const AArch64Subtarget *Subtarget) {
10449 
10450   StoreSDNode *S = cast<StoreSDNode>(N);
10451   if (S->isVolatile() || S->isIndexed())
10452     return SDValue();
10453 
10454   SDValue StVal = S->getValue();
10455   EVT VT = StVal.getValueType();
10456   if (!VT.isVector())
10457     return SDValue();
10458 
10459   // If we get a splat of zeros, convert this vector store to a store of
10460   // scalars. They will be merged into store pairs of xzr thereby removing one
10461   // instruction and one register.
10462   if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
10463     return ReplacedZeroSplat;
10464 
10465   // FIXME: The logic for deciding if an unaligned store should be split should
10466   // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
10467   // a call to that function here.
10468 
10469   if (!Subtarget->isMisaligned128StoreSlow())
10470     return SDValue();
10471 
10472   // Don't split at -Oz.
10473   if (DAG.getMachineFunction().getFunction().hasMinSize())
10474     return SDValue();
10475 
10476   // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
10477   // those up regresses performance on micro-benchmarks and olden/bh.
10478   if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
10479     return SDValue();
10480 
10481   // Split unaligned 16B stores. They are terrible for performance.
10482   // Don't split stores with alignment of 1 or 2. Code that uses clang vector
10483   // extensions can use this to mark that it does not want splitting to happen
10484   // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
10485   // eliminating alignment hazards is only 1 in 8 for alignment of 2.
10486   if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
10487       S->getAlignment() <= 2)
10488     return SDValue();
10489 
10490   // If we get a splat of a scalar convert this vector store to a store of
10491   // scalars. They will be merged into store pairs thereby removing two
10492   // instructions.
10493   if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
10494     return ReplacedSplat;
10495 
10496   SDLoc DL(S);
10497   unsigned NumElts = VT.getVectorNumElements() / 2;
10498   // Split VT into two.
10499   EVT HalfVT =
10500       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
10501   SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10502                                    DAG.getConstant(0, DL, MVT::i64));
10503   SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10504                                    DAG.getConstant(NumElts, DL, MVT::i64));
10505   SDValue BasePtr = S->getBasePtr();
10506   SDValue NewST1 =
10507       DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
10508                    S->getAlignment(), S->getMemOperand()->getFlags());
10509   SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10510                                   DAG.getConstant(8, DL, MVT::i64));
10511   return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
10512                       S->getPointerInfo(), S->getAlignment(),
10513                       S->getMemOperand()->getFlags());
10514 }
10515 
10516 /// Target-specific DAG combine function for post-increment LD1 (lane) and
10517 /// post-increment LD1R.
10518 static SDValue performPostLD1Combine(SDNode *N,
10519                                      TargetLowering::DAGCombinerInfo &DCI,
10520                                      bool IsLaneOp) {
10521   if (DCI.isBeforeLegalizeOps())
10522     return SDValue();
10523 
10524   SelectionDAG &DAG = DCI.DAG;
10525   EVT VT = N->getValueType(0);
10526 
10527   unsigned LoadIdx = IsLaneOp ? 1 : 0;
10528   SDNode *LD = N->getOperand(LoadIdx).getNode();
10529   // If it is not LOAD, can not do such combine.
10530   if (LD->getOpcode() != ISD::LOAD)
10531     return SDValue();
10532 
10533   // The vector lane must be a constant in the LD1LANE opcode.
10534   SDValue Lane;
10535   if (IsLaneOp) {
10536     Lane = N->getOperand(2);
10537     auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
10538     if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
10539       return SDValue();
10540   }
10541 
10542   LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
10543   EVT MemVT = LoadSDN->getMemoryVT();
10544   // Check if memory operand is the same type as the vector element.
10545   if (MemVT != VT.getVectorElementType())
10546     return SDValue();
10547 
10548   // Check if there are other uses. If so, do not combine as it will introduce
10549   // an extra load.
10550   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
10551        ++UI) {
10552     if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
10553       continue;
10554     if (*UI != N)
10555       return SDValue();
10556   }
10557 
10558   SDValue Addr = LD->getOperand(1);
10559   SDValue Vector = N->getOperand(0);
10560   // Search for a use of the address operand that is an increment.
10561   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
10562        Addr.getNode()->use_end(); UI != UE; ++UI) {
10563     SDNode *User = *UI;
10564     if (User->getOpcode() != ISD::ADD
10565         || UI.getUse().getResNo() != Addr.getResNo())
10566       continue;
10567 
10568     // If the increment is a constant, it must match the memory ref size.
10569     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10570     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10571       uint32_t IncVal = CInc->getZExtValue();
10572       unsigned NumBytes = VT.getScalarSizeInBits() / 8;
10573       if (IncVal != NumBytes)
10574         continue;
10575       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10576     }
10577 
10578     // To avoid cycle construction make sure that neither the load nor the add
10579     // are predecessors to each other or the Vector.
10580     SmallPtrSet<const SDNode *, 32> Visited;
10581     SmallVector<const SDNode *, 16> Worklist;
10582     Visited.insert(Addr.getNode());
10583     Worklist.push_back(User);
10584     Worklist.push_back(LD);
10585     Worklist.push_back(Vector.getNode());
10586     if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
10587         SDNode::hasPredecessorHelper(User, Visited, Worklist))
10588       continue;
10589 
10590     SmallVector<SDValue, 8> Ops;
10591     Ops.push_back(LD->getOperand(0));  // Chain
10592     if (IsLaneOp) {
10593       Ops.push_back(Vector);           // The vector to be inserted
10594       Ops.push_back(Lane);             // The lane to be inserted in the vector
10595     }
10596     Ops.push_back(Addr);
10597     Ops.push_back(Inc);
10598 
10599     EVT Tys[3] = { VT, MVT::i64, MVT::Other };
10600     SDVTList SDTys = DAG.getVTList(Tys);
10601     unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
10602     SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
10603                                            MemVT,
10604                                            LoadSDN->getMemOperand());
10605 
10606     // Update the uses.
10607     SDValue NewResults[] = {
10608         SDValue(LD, 0),            // The result of load
10609         SDValue(UpdN.getNode(), 2) // Chain
10610     };
10611     DCI.CombineTo(LD, NewResults);
10612     DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
10613     DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
10614 
10615     break;
10616   }
10617   return SDValue();
10618 }
10619 
10620 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
10621 /// address translation.
10622 static bool performTBISimplification(SDValue Addr,
10623                                      TargetLowering::DAGCombinerInfo &DCI,
10624                                      SelectionDAG &DAG) {
10625   APInt DemandedMask = APInt::getLowBitsSet(64, 56);
10626   KnownBits Known;
10627   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10628                                         !DCI.isBeforeLegalizeOps());
10629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10630   if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
10631     DCI.CommitTargetLoweringOpt(TLO);
10632     return true;
10633   }
10634   return false;
10635 }
10636 
10637 static SDValue performSTORECombine(SDNode *N,
10638                                    TargetLowering::DAGCombinerInfo &DCI,
10639                                    SelectionDAG &DAG,
10640                                    const AArch64Subtarget *Subtarget) {
10641   if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
10642     return Split;
10643 
10644   if (Subtarget->supportsAddressTopByteIgnored() &&
10645       performTBISimplification(N->getOperand(2), DCI, DAG))
10646     return SDValue(N, 0);
10647 
10648   return SDValue();
10649 }
10650 
10651 
10652 /// Target-specific DAG combine function for NEON load/store intrinsics
10653 /// to merge base address updates.
10654 static SDValue performNEONPostLDSTCombine(SDNode *N,
10655                                           TargetLowering::DAGCombinerInfo &DCI,
10656                                           SelectionDAG &DAG) {
10657   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10658     return SDValue();
10659 
10660   unsigned AddrOpIdx = N->getNumOperands() - 1;
10661   SDValue Addr = N->getOperand(AddrOpIdx);
10662 
10663   // Search for a use of the address operand that is an increment.
10664   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
10665        UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
10666     SDNode *User = *UI;
10667     if (User->getOpcode() != ISD::ADD ||
10668         UI.getUse().getResNo() != Addr.getResNo())
10669       continue;
10670 
10671     // Check that the add is independent of the load/store.  Otherwise, folding
10672     // it would create a cycle.
10673     SmallPtrSet<const SDNode *, 32> Visited;
10674     SmallVector<const SDNode *, 16> Worklist;
10675     Visited.insert(Addr.getNode());
10676     Worklist.push_back(N);
10677     Worklist.push_back(User);
10678     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
10679         SDNode::hasPredecessorHelper(User, Visited, Worklist))
10680       continue;
10681 
10682     // Find the new opcode for the updating load/store.
10683     bool IsStore = false;
10684     bool IsLaneOp = false;
10685     bool IsDupOp = false;
10686     unsigned NewOpc = 0;
10687     unsigned NumVecs = 0;
10688     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10689     switch (IntNo) {
10690     default: llvm_unreachable("unexpected intrinsic for Neon base update");
10691     case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
10692       NumVecs = 2; break;
10693     case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
10694       NumVecs = 3; break;
10695     case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
10696       NumVecs = 4; break;
10697     case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
10698       NumVecs = 2; IsStore = true; break;
10699     case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
10700       NumVecs = 3; IsStore = true; break;
10701     case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
10702       NumVecs = 4; IsStore = true; break;
10703     case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
10704       NumVecs = 2; break;
10705     case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
10706       NumVecs = 3; break;
10707     case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
10708       NumVecs = 4; break;
10709     case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
10710       NumVecs = 2; IsStore = true; break;
10711     case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
10712       NumVecs = 3; IsStore = true; break;
10713     case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
10714       NumVecs = 4; IsStore = true; break;
10715     case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
10716       NumVecs = 2; IsDupOp = true; break;
10717     case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
10718       NumVecs = 3; IsDupOp = true; break;
10719     case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
10720       NumVecs = 4; IsDupOp = true; break;
10721     case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
10722       NumVecs = 2; IsLaneOp = true; break;
10723     case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
10724       NumVecs = 3; IsLaneOp = true; break;
10725     case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
10726       NumVecs = 4; IsLaneOp = true; break;
10727     case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
10728       NumVecs = 2; IsStore = true; IsLaneOp = true; break;
10729     case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
10730       NumVecs = 3; IsStore = true; IsLaneOp = true; break;
10731     case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
10732       NumVecs = 4; IsStore = true; IsLaneOp = true; break;
10733     }
10734 
10735     EVT VecTy;
10736     if (IsStore)
10737       VecTy = N->getOperand(2).getValueType();
10738     else
10739       VecTy = N->getValueType(0);
10740 
10741     // If the increment is a constant, it must match the memory ref size.
10742     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10743     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10744       uint32_t IncVal = CInc->getZExtValue();
10745       unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
10746       if (IsLaneOp || IsDupOp)
10747         NumBytes /= VecTy.getVectorNumElements();
10748       if (IncVal != NumBytes)
10749         continue;
10750       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10751     }
10752     SmallVector<SDValue, 8> Ops;
10753     Ops.push_back(N->getOperand(0)); // Incoming chain
10754     // Load lane and store have vector list as input.
10755     if (IsLaneOp || IsStore)
10756       for (unsigned i = 2; i < AddrOpIdx; ++i)
10757         Ops.push_back(N->getOperand(i));
10758     Ops.push_back(Addr); // Base register
10759     Ops.push_back(Inc);
10760 
10761     // Return Types.
10762     EVT Tys[6];
10763     unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
10764     unsigned n;
10765     for (n = 0; n < NumResultVecs; ++n)
10766       Tys[n] = VecTy;
10767     Tys[n++] = MVT::i64;  // Type of write back register
10768     Tys[n] = MVT::Other;  // Type of the chain
10769     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
10770 
10771     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
10772     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
10773                                            MemInt->getMemoryVT(),
10774                                            MemInt->getMemOperand());
10775 
10776     // Update the uses.
10777     std::vector<SDValue> NewResults;
10778     for (unsigned i = 0; i < NumResultVecs; ++i) {
10779       NewResults.push_back(SDValue(UpdN.getNode(), i));
10780     }
10781     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
10782     DCI.CombineTo(N, NewResults);
10783     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
10784 
10785     break;
10786   }
10787   return SDValue();
10788 }
10789 
10790 // Checks to see if the value is the prescribed width and returns information
10791 // about its extension mode.
10792 static
10793 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
10794   ExtType = ISD::NON_EXTLOAD;
10795   switch(V.getNode()->getOpcode()) {
10796   default:
10797     return false;
10798   case ISD::LOAD: {
10799     LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
10800     if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
10801        || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
10802       ExtType = LoadNode->getExtensionType();
10803       return true;
10804     }
10805     return false;
10806   }
10807   case ISD::AssertSext: {
10808     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10809     if ((TypeNode->getVT() == MVT::i8 && width == 8)
10810        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10811       ExtType = ISD::SEXTLOAD;
10812       return true;
10813     }
10814     return false;
10815   }
10816   case ISD::AssertZext: {
10817     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10818     if ((TypeNode->getVT() == MVT::i8 && width == 8)
10819        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10820       ExtType = ISD::ZEXTLOAD;
10821       return true;
10822     }
10823     return false;
10824   }
10825   case ISD::Constant:
10826   case ISD::TargetConstant: {
10827     return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
10828            1LL << (width - 1);
10829   }
10830   }
10831 
10832   return true;
10833 }
10834 
10835 // This function does a whole lot of voodoo to determine if the tests are
10836 // equivalent without and with a mask. Essentially what happens is that given a
10837 // DAG resembling:
10838 //
10839 //  +-------------+ +-------------+ +-------------+ +-------------+
10840 //  |    Input    | | AddConstant | | CompConstant| |     CC      |
10841 //  +-------------+ +-------------+ +-------------+ +-------------+
10842 //           |           |           |               |
10843 //           V           V           |    +----------+
10844 //          +-------------+  +----+  |    |
10845 //          |     ADD     |  |0xff|  |    |
10846 //          +-------------+  +----+  |    |
10847 //                  |           |    |    |
10848 //                  V           V    |    |
10849 //                 +-------------+   |    |
10850 //                 |     AND     |   |    |
10851 //                 +-------------+   |    |
10852 //                      |            |    |
10853 //                      +-----+      |    |
10854 //                            |      |    |
10855 //                            V      V    V
10856 //                           +-------------+
10857 //                           |     CMP     |
10858 //                           +-------------+
10859 //
10860 // The AND node may be safely removed for some combinations of inputs. In
10861 // particular we need to take into account the extension type of the Input,
10862 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
10863 // width of the input (this can work for any width inputs, the above graph is
10864 // specific to 8 bits.
10865 //
10866 // The specific equations were worked out by generating output tables for each
10867 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
10868 // problem was simplified by working with 4 bit inputs, which means we only
10869 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
10870 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
10871 // patterns present in both extensions (0,7). For every distinct set of
10872 // AddConstant and CompConstants bit patterns we can consider the masked and
10873 // unmasked versions to be equivalent if the result of this function is true for
10874 // all 16 distinct bit patterns of for the current extension type of Input (w0).
10875 //
10876 //   sub      w8, w0, w1
10877 //   and      w10, w8, #0x0f
10878 //   cmp      w8, w2
10879 //   cset     w9, AArch64CC
10880 //   cmp      w10, w2
10881 //   cset     w11, AArch64CC
10882 //   cmp      w9, w11
10883 //   cset     w0, eq
10884 //   ret
10885 //
10886 // Since the above function shows when the outputs are equivalent it defines
10887 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
10888 // would be expensive to run during compiles. The equations below were written
10889 // in a test harness that confirmed they gave equivalent outputs to the above
10890 // for all inputs function, so they can be used determine if the removal is
10891 // legal instead.
10892 //
10893 // isEquivalentMaskless() is the code for testing if the AND can be removed
10894 // factored out of the DAG recognition as the DAG can take several forms.
10895 
10896 static bool isEquivalentMaskless(unsigned CC, unsigned width,
10897                                  ISD::LoadExtType ExtType, int AddConstant,
10898                                  int CompConstant) {
10899   // By being careful about our equations and only writing the in term
10900   // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
10901   // make them generally applicable to all bit widths.
10902   int MaxUInt = (1 << width);
10903 
10904   // For the purposes of these comparisons sign extending the type is
10905   // equivalent to zero extending the add and displacing it by half the integer
10906   // width. Provided we are careful and make sure our equations are valid over
10907   // the whole range we can just adjust the input and avoid writing equations
10908   // for sign extended inputs.
10909   if (ExtType == ISD::SEXTLOAD)
10910     AddConstant -= (1 << (width-1));
10911 
10912   switch(CC) {
10913   case AArch64CC::LE:
10914   case AArch64CC::GT:
10915     if ((AddConstant == 0) ||
10916         (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
10917         (AddConstant >= 0 && CompConstant < 0) ||
10918         (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
10919       return true;
10920     break;
10921   case AArch64CC::LT:
10922   case AArch64CC::GE:
10923     if ((AddConstant == 0) ||
10924         (AddConstant >= 0 && CompConstant <= 0) ||
10925         (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
10926       return true;
10927     break;
10928   case AArch64CC::HI:
10929   case AArch64CC::LS:
10930     if ((AddConstant >= 0 && CompConstant < 0) ||
10931        (AddConstant <= 0 && CompConstant >= -1 &&
10932         CompConstant < AddConstant + MaxUInt))
10933       return true;
10934    break;
10935   case AArch64CC::PL:
10936   case AArch64CC::MI:
10937     if ((AddConstant == 0) ||
10938         (AddConstant > 0 && CompConstant <= 0) ||
10939         (AddConstant < 0 && CompConstant <= AddConstant))
10940       return true;
10941     break;
10942   case AArch64CC::LO:
10943   case AArch64CC::HS:
10944     if ((AddConstant >= 0 && CompConstant <= 0) ||
10945         (AddConstant <= 0 && CompConstant >= 0 &&
10946          CompConstant <= AddConstant + MaxUInt))
10947       return true;
10948     break;
10949   case AArch64CC::EQ:
10950   case AArch64CC::NE:
10951     if ((AddConstant > 0 && CompConstant < 0) ||
10952         (AddConstant < 0 && CompConstant >= 0 &&
10953          CompConstant < AddConstant + MaxUInt) ||
10954         (AddConstant >= 0 && CompConstant >= 0 &&
10955          CompConstant >= AddConstant) ||
10956         (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
10957       return true;
10958     break;
10959   case AArch64CC::VS:
10960   case AArch64CC::VC:
10961   case AArch64CC::AL:
10962   case AArch64CC::NV:
10963     return true;
10964   case AArch64CC::Invalid:
10965     break;
10966   }
10967 
10968   return false;
10969 }
10970 
10971 static
10972 SDValue performCONDCombine(SDNode *N,
10973                            TargetLowering::DAGCombinerInfo &DCI,
10974                            SelectionDAG &DAG, unsigned CCIndex,
10975                            unsigned CmpIndex) {
10976   unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
10977   SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
10978   unsigned CondOpcode = SubsNode->getOpcode();
10979 
10980   if (CondOpcode != AArch64ISD::SUBS)
10981     return SDValue();
10982 
10983   // There is a SUBS feeding this condition. Is it fed by a mask we can
10984   // use?
10985 
10986   SDNode *AndNode = SubsNode->getOperand(0).getNode();
10987   unsigned MaskBits = 0;
10988 
10989   if (AndNode->getOpcode() != ISD::AND)
10990     return SDValue();
10991 
10992   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
10993     uint32_t CNV = CN->getZExtValue();
10994     if (CNV == 255)
10995       MaskBits = 8;
10996     else if (CNV == 65535)
10997       MaskBits = 16;
10998   }
10999 
11000   if (!MaskBits)
11001     return SDValue();
11002 
11003   SDValue AddValue = AndNode->getOperand(0);
11004 
11005   if (AddValue.getOpcode() != ISD::ADD)
11006     return SDValue();
11007 
11008   // The basic dag structure is correct, grab the inputs and validate them.
11009 
11010   SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
11011   SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
11012   SDValue SubsInputValue = SubsNode->getOperand(1);
11013 
11014   // The mask is present and the provenance of all the values is a smaller type,
11015   // lets see if the mask is superfluous.
11016 
11017   if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
11018       !isa<ConstantSDNode>(SubsInputValue.getNode()))
11019     return SDValue();
11020 
11021   ISD::LoadExtType ExtType;
11022 
11023   if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
11024       !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
11025       !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
11026     return SDValue();
11027 
11028   if(!isEquivalentMaskless(CC, MaskBits, ExtType,
11029                 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
11030                 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
11031     return SDValue();
11032 
11033   // The AND is not necessary, remove it.
11034 
11035   SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
11036                                SubsNode->getValueType(1));
11037   SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
11038 
11039   SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
11040   DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
11041 
11042   return SDValue(N, 0);
11043 }
11044 
11045 // Optimize compare with zero and branch.
11046 static SDValue performBRCONDCombine(SDNode *N,
11047                                     TargetLowering::DAGCombinerInfo &DCI,
11048                                     SelectionDAG &DAG) {
11049   MachineFunction &MF = DAG.getMachineFunction();
11050   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
11051   // will not be produced, as they are conditional branch instructions that do
11052   // not set flags.
11053   if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
11054     return SDValue();
11055 
11056   if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
11057     N = NV.getNode();
11058   SDValue Chain = N->getOperand(0);
11059   SDValue Dest = N->getOperand(1);
11060   SDValue CCVal = N->getOperand(2);
11061   SDValue Cmp = N->getOperand(3);
11062 
11063   assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
11064   unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
11065   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
11066     return SDValue();
11067 
11068   unsigned CmpOpc = Cmp.getOpcode();
11069   if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
11070     return SDValue();
11071 
11072   // Only attempt folding if there is only one use of the flag and no use of the
11073   // value.
11074   if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
11075     return SDValue();
11076 
11077   SDValue LHS = Cmp.getOperand(0);
11078   SDValue RHS = Cmp.getOperand(1);
11079 
11080   assert(LHS.getValueType() == RHS.getValueType() &&
11081          "Expected the value type to be the same for both operands!");
11082   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
11083     return SDValue();
11084 
11085   if (isNullConstant(LHS))
11086     std::swap(LHS, RHS);
11087 
11088   if (!isNullConstant(RHS))
11089     return SDValue();
11090 
11091   if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
11092       LHS.getOpcode() == ISD::SRL)
11093     return SDValue();
11094 
11095   // Fold the compare into the branch instruction.
11096   SDValue BR;
11097   if (CC == AArch64CC::EQ)
11098     BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
11099   else
11100     BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
11101 
11102   // Do not add new nodes to DAG combiner worklist.
11103   DCI.CombineTo(N, BR, false);
11104 
11105   return SDValue();
11106 }
11107 
11108 // Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
11109 // as well as whether the test should be inverted.  This code is required to
11110 // catch these cases (as opposed to standard dag combines) because
11111 // AArch64ISD::TBZ is matched during legalization.
11112 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
11113                                  SelectionDAG &DAG) {
11114 
11115   if (!Op->hasOneUse())
11116     return Op;
11117 
11118   // We don't handle undef/constant-fold cases below, as they should have
11119   // already been taken care of (e.g. and of 0, test of undefined shifted bits,
11120   // etc.)
11121 
11122   // (tbz (trunc x), b) -> (tbz x, b)
11123   // This case is just here to enable more of the below cases to be caught.
11124   if (Op->getOpcode() == ISD::TRUNCATE &&
11125       Bit < Op->getValueType(0).getSizeInBits()) {
11126     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11127   }
11128 
11129   // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
11130   if (Op->getOpcode() == ISD::ANY_EXTEND &&
11131       Bit < Op->getOperand(0).getValueSizeInBits()) {
11132     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11133   }
11134 
11135   if (Op->getNumOperands() != 2)
11136     return Op;
11137 
11138   auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11139   if (!C)
11140     return Op;
11141 
11142   switch (Op->getOpcode()) {
11143   default:
11144     return Op;
11145 
11146   // (tbz (and x, m), b) -> (tbz x, b)
11147   case ISD::AND:
11148     if ((C->getZExtValue() >> Bit) & 1)
11149       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11150     return Op;
11151 
11152   // (tbz (shl x, c), b) -> (tbz x, b-c)
11153   case ISD::SHL:
11154     if (C->getZExtValue() <= Bit &&
11155         (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
11156       Bit = Bit - C->getZExtValue();
11157       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11158     }
11159     return Op;
11160 
11161   // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
11162   case ISD::SRA:
11163     Bit = Bit + C->getZExtValue();
11164     if (Bit >= Op->getValueType(0).getSizeInBits())
11165       Bit = Op->getValueType(0).getSizeInBits() - 1;
11166     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11167 
11168   // (tbz (srl x, c), b) -> (tbz x, b+c)
11169   case ISD::SRL:
11170     if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
11171       Bit = Bit + C->getZExtValue();
11172       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11173     }
11174     return Op;
11175 
11176   // (tbz (xor x, -1), b) -> (tbnz x, b)
11177   case ISD::XOR:
11178     if ((C->getZExtValue() >> Bit) & 1)
11179       Invert = !Invert;
11180     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
11181   }
11182 }
11183 
11184 // Optimize test single bit zero/non-zero and branch.
11185 static SDValue performTBZCombine(SDNode *N,
11186                                  TargetLowering::DAGCombinerInfo &DCI,
11187                                  SelectionDAG &DAG) {
11188   unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11189   bool Invert = false;
11190   SDValue TestSrc = N->getOperand(1);
11191   SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
11192 
11193   if (TestSrc == NewTestSrc)
11194     return SDValue();
11195 
11196   unsigned NewOpc = N->getOpcode();
11197   if (Invert) {
11198     if (NewOpc == AArch64ISD::TBZ)
11199       NewOpc = AArch64ISD::TBNZ;
11200     else {
11201       assert(NewOpc == AArch64ISD::TBNZ);
11202       NewOpc = AArch64ISD::TBZ;
11203     }
11204   }
11205 
11206   SDLoc DL(N);
11207   return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
11208                      DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
11209 }
11210 
11211 // vselect (v1i1 setcc) ->
11212 //     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
11213 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
11214 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
11215 // such VSELECT.
11216 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
11217   SDValue N0 = N->getOperand(0);
11218   EVT CCVT = N0.getValueType();
11219 
11220   if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
11221       CCVT.getVectorElementType() != MVT::i1)
11222     return SDValue();
11223 
11224   EVT ResVT = N->getValueType(0);
11225   EVT CmpVT = N0.getOperand(0).getValueType();
11226   // Only combine when the result type is of the same size as the compared
11227   // operands.
11228   if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
11229     return SDValue();
11230 
11231   SDValue IfTrue = N->getOperand(1);
11232   SDValue IfFalse = N->getOperand(2);
11233   SDValue SetCC =
11234       DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
11235                    N0.getOperand(0), N0.getOperand(1),
11236                    cast<CondCodeSDNode>(N0.getOperand(2))->get());
11237   return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
11238                      IfTrue, IfFalse);
11239 }
11240 
11241 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
11242 /// the compare-mask instructions rather than going via NZCV, even if LHS and
11243 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
11244 /// with a vector one followed by a DUP shuffle on the result.
11245 static SDValue performSelectCombine(SDNode *N,
11246                                     TargetLowering::DAGCombinerInfo &DCI) {
11247   SelectionDAG &DAG = DCI.DAG;
11248   SDValue N0 = N->getOperand(0);
11249   EVT ResVT = N->getValueType(0);
11250 
11251   if (N0.getOpcode() != ISD::SETCC)
11252     return SDValue();
11253 
11254   // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
11255   // scalar SetCCResultType. We also don't expect vectors, because we assume
11256   // that selects fed by vector SETCCs are canonicalized to VSELECT.
11257   assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
11258          "Scalar-SETCC feeding SELECT has unexpected result type!");
11259 
11260   // If NumMaskElts == 0, the comparison is larger than select result. The
11261   // largest real NEON comparison is 64-bits per lane, which means the result is
11262   // at most 32-bits and an illegal vector. Just bail out for now.
11263   EVT SrcVT = N0.getOperand(0).getValueType();
11264 
11265   // Don't try to do this optimization when the setcc itself has i1 operands.
11266   // There are no legal vectors of i1, so this would be pointless.
11267   if (SrcVT == MVT::i1)
11268     return SDValue();
11269 
11270   int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
11271   if (!ResVT.isVector() || NumMaskElts == 0)
11272     return SDValue();
11273 
11274   SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
11275   EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
11276 
11277   // Also bail out if the vector CCVT isn't the same size as ResVT.
11278   // This can happen if the SETCC operand size doesn't divide the ResVT size
11279   // (e.g., f64 vs v3f32).
11280   if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
11281     return SDValue();
11282 
11283   // Make sure we didn't create illegal types, if we're not supposed to.
11284   assert(DCI.isBeforeLegalize() ||
11285          DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
11286 
11287   // First perform a vector comparison, where lane 0 is the one we're interested
11288   // in.
11289   SDLoc DL(N0);
11290   SDValue LHS =
11291       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
11292   SDValue RHS =
11293       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
11294   SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
11295 
11296   // Now duplicate the comparison mask we want across all other lanes.
11297   SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
11298   SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
11299   Mask = DAG.getNode(ISD::BITCAST, DL,
11300                      ResVT.changeVectorElementTypeToInteger(), Mask);
11301 
11302   return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
11303 }
11304 
11305 /// Get rid of unnecessary NVCASTs (that don't change the type).
11306 static SDValue performNVCASTCombine(SDNode *N) {
11307   if (N->getValueType(0) == N->getOperand(0).getValueType())
11308     return N->getOperand(0);
11309 
11310   return SDValue();
11311 }
11312 
11313 // If all users of the globaladdr are of the form (globaladdr + constant), find
11314 // the smallest constant, fold it into the globaladdr's offset and rewrite the
11315 // globaladdr as (globaladdr + constant) - constant.
11316 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
11317                                            const AArch64Subtarget *Subtarget,
11318                                            const TargetMachine &TM) {
11319   auto *GN = cast<GlobalAddressSDNode>(N);
11320   if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
11321       AArch64II::MO_NO_FLAG)
11322     return SDValue();
11323 
11324   uint64_t MinOffset = -1ull;
11325   for (SDNode *N : GN->uses()) {
11326     if (N->getOpcode() != ISD::ADD)
11327       return SDValue();
11328     auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
11329     if (!C)
11330       C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11331     if (!C)
11332       return SDValue();
11333     MinOffset = std::min(MinOffset, C->getZExtValue());
11334   }
11335   uint64_t Offset = MinOffset + GN->getOffset();
11336 
11337   // Require that the new offset is larger than the existing one. Otherwise, we
11338   // can end up oscillating between two possible DAGs, for example,
11339   // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
11340   if (Offset <= uint64_t(GN->getOffset()))
11341     return SDValue();
11342 
11343   // Check whether folding this offset is legal. It must not go out of bounds of
11344   // the referenced object to avoid violating the code model, and must be
11345   // smaller than 2^21 because this is the largest offset expressible in all
11346   // object formats.
11347   //
11348   // This check also prevents us from folding negative offsets, which will end
11349   // up being treated in the same way as large positive ones. They could also
11350   // cause code model violations, and aren't really common enough to matter.
11351   if (Offset >= (1 << 21))
11352     return SDValue();
11353 
11354   const GlobalValue *GV = GN->getGlobal();
11355   Type *T = GV->getValueType();
11356   if (!T->isSized() ||
11357       Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
11358     return SDValue();
11359 
11360   SDLoc DL(GN);
11361   SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
11362   return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
11363                      DAG.getConstant(MinOffset, DL, MVT::i64));
11364 }
11365 
11366 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
11367                                                  DAGCombinerInfo &DCI) const {
11368   SelectionDAG &DAG = DCI.DAG;
11369   switch (N->getOpcode()) {
11370   default:
11371     LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
11372     break;
11373   case ISD::ADD:
11374   case ISD::SUB:
11375     return performAddSubLongCombine(N, DCI, DAG);
11376   case ISD::XOR:
11377     return performXorCombine(N, DAG, DCI, Subtarget);
11378   case ISD::MUL:
11379     return performMulCombine(N, DAG, DCI, Subtarget);
11380   case ISD::SINT_TO_FP:
11381   case ISD::UINT_TO_FP:
11382     return performIntToFpCombine(N, DAG, Subtarget);
11383   case ISD::FP_TO_SINT:
11384   case ISD::FP_TO_UINT:
11385     return performFpToIntCombine(N, DAG, DCI, Subtarget);
11386   case ISD::FDIV:
11387     return performFDivCombine(N, DAG, DCI, Subtarget);
11388   case ISD::OR:
11389     return performORCombine(N, DCI, Subtarget);
11390   case ISD::AND:
11391     return performANDCombine(N, DCI);
11392   case ISD::SRL:
11393     return performSRLCombine(N, DCI);
11394   case ISD::INTRINSIC_WO_CHAIN:
11395     return performIntrinsicCombine(N, DCI, Subtarget);
11396   case ISD::ANY_EXTEND:
11397   case ISD::ZERO_EXTEND:
11398   case ISD::SIGN_EXTEND:
11399     return performExtendCombine(N, DCI, DAG);
11400   case ISD::BITCAST:
11401     return performBitcastCombine(N, DCI, DAG);
11402   case ISD::CONCAT_VECTORS:
11403     return performConcatVectorsCombine(N, DCI, DAG);
11404   case ISD::SELECT:
11405     return performSelectCombine(N, DCI);
11406   case ISD::VSELECT:
11407     return performVSelectCombine(N, DCI.DAG);
11408   case ISD::LOAD:
11409     if (performTBISimplification(N->getOperand(1), DCI, DAG))
11410       return SDValue(N, 0);
11411     break;
11412   case ISD::STORE:
11413     return performSTORECombine(N, DCI, DAG, Subtarget);
11414   case AArch64ISD::BRCOND:
11415     return performBRCONDCombine(N, DCI, DAG);
11416   case AArch64ISD::TBNZ:
11417   case AArch64ISD::TBZ:
11418     return performTBZCombine(N, DCI, DAG);
11419   case AArch64ISD::CSEL:
11420     return performCONDCombine(N, DCI, DAG, 2, 3);
11421   case AArch64ISD::DUP:
11422     return performPostLD1Combine(N, DCI, false);
11423   case AArch64ISD::NVCAST:
11424     return performNVCASTCombine(N);
11425   case ISD::INSERT_VECTOR_ELT:
11426     return performPostLD1Combine(N, DCI, true);
11427   case ISD::INTRINSIC_VOID:
11428   case ISD::INTRINSIC_W_CHAIN:
11429     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11430     case Intrinsic::aarch64_neon_ld2:
11431     case Intrinsic::aarch64_neon_ld3:
11432     case Intrinsic::aarch64_neon_ld4:
11433     case Intrinsic::aarch64_neon_ld1x2:
11434     case Intrinsic::aarch64_neon_ld1x3:
11435     case Intrinsic::aarch64_neon_ld1x4:
11436     case Intrinsic::aarch64_neon_ld2lane:
11437     case Intrinsic::aarch64_neon_ld3lane:
11438     case Intrinsic::aarch64_neon_ld4lane:
11439     case Intrinsic::aarch64_neon_ld2r:
11440     case Intrinsic::aarch64_neon_ld3r:
11441     case Intrinsic::aarch64_neon_ld4r:
11442     case Intrinsic::aarch64_neon_st2:
11443     case Intrinsic::aarch64_neon_st3:
11444     case Intrinsic::aarch64_neon_st4:
11445     case Intrinsic::aarch64_neon_st1x2:
11446     case Intrinsic::aarch64_neon_st1x3:
11447     case Intrinsic::aarch64_neon_st1x4:
11448     case Intrinsic::aarch64_neon_st2lane:
11449     case Intrinsic::aarch64_neon_st3lane:
11450     case Intrinsic::aarch64_neon_st4lane:
11451       return performNEONPostLDSTCombine(N, DCI, DAG);
11452     default:
11453       break;
11454     }
11455     break;
11456   case ISD::GlobalAddress:
11457     return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
11458   }
11459   return SDValue();
11460 }
11461 
11462 // Check if the return value is used as only a return value, as otherwise
11463 // we can't perform a tail-call. In particular, we need to check for
11464 // target ISD nodes that are returns and any other "odd" constructs
11465 // that the generic analysis code won't necessarily catch.
11466 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
11467                                                SDValue &Chain) const {
11468   if (N->getNumValues() != 1)
11469     return false;
11470   if (!N->hasNUsesOfValue(1, 0))
11471     return false;
11472 
11473   SDValue TCChain = Chain;
11474   SDNode *Copy = *N->use_begin();
11475   if (Copy->getOpcode() == ISD::CopyToReg) {
11476     // If the copy has a glue operand, we conservatively assume it isn't safe to
11477     // perform a tail call.
11478     if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
11479         MVT::Glue)
11480       return false;
11481     TCChain = Copy->getOperand(0);
11482   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
11483     return false;
11484 
11485   bool HasRet = false;
11486   for (SDNode *Node : Copy->uses()) {
11487     if (Node->getOpcode() != AArch64ISD::RET_FLAG)
11488       return false;
11489     HasRet = true;
11490   }
11491 
11492   if (!HasRet)
11493     return false;
11494 
11495   Chain = TCChain;
11496   return true;
11497 }
11498 
11499 // Return whether the an instruction can potentially be optimized to a tail
11500 // call. This will cause the optimizers to attempt to move, or duplicate,
11501 // return instructions to help enable tail call optimizations for this
11502 // instruction.
11503 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11504   return CI->isTailCall();
11505 }
11506 
11507 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
11508                                                    SDValue &Offset,
11509                                                    ISD::MemIndexedMode &AM,
11510                                                    bool &IsInc,
11511                                                    SelectionDAG &DAG) const {
11512   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
11513     return false;
11514 
11515   Base = Op->getOperand(0);
11516   // All of the indexed addressing mode instructions take a signed
11517   // 9 bit immediate offset.
11518   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
11519     int64_t RHSC = RHS->getSExtValue();
11520     if (Op->getOpcode() == ISD::SUB)
11521       RHSC = -(uint64_t)RHSC;
11522     if (!isInt<9>(RHSC))
11523       return false;
11524     IsInc = (Op->getOpcode() == ISD::ADD);
11525     Offset = Op->getOperand(1);
11526     return true;
11527   }
11528   return false;
11529 }
11530 
11531 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11532                                                       SDValue &Offset,
11533                                                       ISD::MemIndexedMode &AM,
11534                                                       SelectionDAG &DAG) const {
11535   EVT VT;
11536   SDValue Ptr;
11537   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11538     VT = LD->getMemoryVT();
11539     Ptr = LD->getBasePtr();
11540   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11541     VT = ST->getMemoryVT();
11542     Ptr = ST->getBasePtr();
11543   } else
11544     return false;
11545 
11546   bool IsInc;
11547   if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
11548     return false;
11549   AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
11550   return true;
11551 }
11552 
11553 bool AArch64TargetLowering::getPostIndexedAddressParts(
11554     SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
11555     ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
11556   EVT VT;
11557   SDValue Ptr;
11558   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11559     VT = LD->getMemoryVT();
11560     Ptr = LD->getBasePtr();
11561   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11562     VT = ST->getMemoryVT();
11563     Ptr = ST->getBasePtr();
11564   } else
11565     return false;
11566 
11567   bool IsInc;
11568   if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
11569     return false;
11570   // Post-indexing updates the base, so it's not a valid transform
11571   // if that's not the same as the load's pointer.
11572   if (Ptr != Base)
11573     return false;
11574   AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
11575   return true;
11576 }
11577 
11578 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
11579                                   SelectionDAG &DAG) {
11580   SDLoc DL(N);
11581   SDValue Op = N->getOperand(0);
11582 
11583   if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
11584     return;
11585 
11586   Op = SDValue(
11587       DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
11588                          DAG.getUNDEF(MVT::i32), Op,
11589                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
11590       0);
11591   Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
11592   Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
11593 }
11594 
11595 static void ReplaceReductionResults(SDNode *N,
11596                                     SmallVectorImpl<SDValue> &Results,
11597                                     SelectionDAG &DAG, unsigned InterOp,
11598                                     unsigned AcrossOp) {
11599   EVT LoVT, HiVT;
11600   SDValue Lo, Hi;
11601   SDLoc dl(N);
11602   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
11603   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
11604   SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
11605   SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
11606   Results.push_back(SplitVal);
11607 }
11608 
11609 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
11610   SDLoc DL(N);
11611   SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
11612   SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
11613                            DAG.getNode(ISD::SRL, DL, MVT::i128, N,
11614                                        DAG.getConstant(64, DL, MVT::i64)));
11615   return std::make_pair(Lo, Hi);
11616 }
11617 
11618 // Create an even/odd pair of X registers holding integer value V.
11619 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
11620   SDLoc dl(V.getNode());
11621   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
11622   SDValue VHi = DAG.getAnyExtOrTrunc(
11623       DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
11624       dl, MVT::i64);
11625   if (DAG.getDataLayout().isBigEndian())
11626     std::swap (VLo, VHi);
11627   SDValue RegClass =
11628       DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
11629   SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
11630   SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
11631   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
11632   return SDValue(
11633       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
11634 }
11635 
11636 static void ReplaceCMP_SWAP_128Results(SDNode *N,
11637                                        SmallVectorImpl<SDValue> &Results,
11638                                        SelectionDAG &DAG,
11639                                        const AArch64Subtarget *Subtarget) {
11640   assert(N->getValueType(0) == MVT::i128 &&
11641          "AtomicCmpSwap on types less than 128 should be legal");
11642 
11643   if (Subtarget->hasLSE()) {
11644     // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
11645     // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
11646     SDValue Ops[] = {
11647         createGPRPairNode(DAG, N->getOperand(2)), // Compare value
11648         createGPRPairNode(DAG, N->getOperand(3)), // Store value
11649         N->getOperand(1), // Ptr
11650         N->getOperand(0), // Chain in
11651     };
11652 
11653     MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
11654 
11655     unsigned Opcode;
11656     switch (MemOp->getOrdering()) {
11657     case AtomicOrdering::Monotonic:
11658       Opcode = AArch64::CASPX;
11659       break;
11660     case AtomicOrdering::Acquire:
11661       Opcode = AArch64::CASPAX;
11662       break;
11663     case AtomicOrdering::Release:
11664       Opcode = AArch64::CASPLX;
11665       break;
11666     case AtomicOrdering::AcquireRelease:
11667     case AtomicOrdering::SequentiallyConsistent:
11668       Opcode = AArch64::CASPALX;
11669       break;
11670     default:
11671       llvm_unreachable("Unexpected ordering!");
11672     }
11673 
11674     MachineSDNode *CmpSwap = DAG.getMachineNode(
11675         Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
11676     DAG.setNodeMemRefs(CmpSwap, {MemOp});
11677 
11678     unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
11679     if (DAG.getDataLayout().isBigEndian())
11680       std::swap(SubReg1, SubReg2);
11681     Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
11682                                                  SDValue(CmpSwap, 0)));
11683     Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
11684                                                  SDValue(CmpSwap, 0)));
11685     Results.push_back(SDValue(CmpSwap, 1)); // Chain out
11686     return;
11687   }
11688 
11689   auto Desired = splitInt128(N->getOperand(2), DAG);
11690   auto New = splitInt128(N->getOperand(3), DAG);
11691   SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
11692                    New.first,        New.second,    N->getOperand(0)};
11693   SDNode *CmpSwap = DAG.getMachineNode(
11694       AArch64::CMP_SWAP_128, SDLoc(N),
11695       DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
11696 
11697   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
11698   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
11699 
11700   Results.push_back(SDValue(CmpSwap, 0));
11701   Results.push_back(SDValue(CmpSwap, 1));
11702   Results.push_back(SDValue(CmpSwap, 3));
11703 }
11704 
11705 void AArch64TargetLowering::ReplaceNodeResults(
11706     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
11707   switch (N->getOpcode()) {
11708   default:
11709     llvm_unreachable("Don't know how to custom expand this");
11710   case ISD::BITCAST:
11711     ReplaceBITCASTResults(N, Results, DAG);
11712     return;
11713   case ISD::VECREDUCE_ADD:
11714   case ISD::VECREDUCE_SMAX:
11715   case ISD::VECREDUCE_SMIN:
11716   case ISD::VECREDUCE_UMAX:
11717   case ISD::VECREDUCE_UMIN:
11718     Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
11719     return;
11720 
11721   case AArch64ISD::SADDV:
11722     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
11723     return;
11724   case AArch64ISD::UADDV:
11725     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
11726     return;
11727   case AArch64ISD::SMINV:
11728     ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
11729     return;
11730   case AArch64ISD::UMINV:
11731     ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
11732     return;
11733   case AArch64ISD::SMAXV:
11734     ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
11735     return;
11736   case AArch64ISD::UMAXV:
11737     ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
11738     return;
11739   case ISD::FP_TO_UINT:
11740   case ISD::FP_TO_SINT:
11741     assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
11742     // Let normal code take care of it by not adding anything to Results.
11743     return;
11744   case ISD::ATOMIC_CMP_SWAP:
11745     ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
11746     return;
11747   }
11748 }
11749 
11750 bool AArch64TargetLowering::useLoadStackGuardNode() const {
11751   if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
11752     return TargetLowering::useLoadStackGuardNode();
11753   return true;
11754 }
11755 
11756 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
11757   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11758   // reciprocal if there are three or more FDIVs.
11759   return 3;
11760 }
11761 
11762 TargetLoweringBase::LegalizeTypeAction
11763 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
11764   // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
11765   // v4i16, v2i32 instead of to promote.
11766   if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
11767       VT == MVT::v1f32)
11768     return TypeWidenVector;
11769 
11770   return TargetLoweringBase::getPreferredVectorAction(VT);
11771 }
11772 
11773 // Loads and stores less than 128-bits are already atomic; ones above that
11774 // are doomed anyway, so defer to the default libcall and blame the OS when
11775 // things go wrong.
11776 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
11777   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
11778   return Size == 128;
11779 }
11780 
11781 // Loads and stores less than 128-bits are already atomic; ones above that
11782 // are doomed anyway, so defer to the default libcall and blame the OS when
11783 // things go wrong.
11784 TargetLowering::AtomicExpansionKind
11785 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
11786   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
11787   return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
11788 }
11789 
11790 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
11791 TargetLowering::AtomicExpansionKind
11792 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11793   if (AI->isFloatingPointOperation())
11794     return AtomicExpansionKind::CmpXChg;
11795 
11796   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11797   if (Size > 128) return AtomicExpansionKind::None;
11798   // Nand not supported in LSE.
11799   if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
11800   // Leave 128 bits to LLSC.
11801   return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
11802 }
11803 
11804 TargetLowering::AtomicExpansionKind
11805 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
11806     AtomicCmpXchgInst *AI) const {
11807   // If subtarget has LSE, leave cmpxchg intact for codegen.
11808   if (Subtarget->hasLSE())
11809     return AtomicExpansionKind::None;
11810   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
11811   // implement cmpxchg without spilling. If the address being exchanged is also
11812   // on the stack and close enough to the spill slot, this can lead to a
11813   // situation where the monitor always gets cleared and the atomic operation
11814   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
11815   if (getTargetMachine().getOptLevel() == 0)
11816     return AtomicExpansionKind::None;
11817   return AtomicExpansionKind::LLSC;
11818 }
11819 
11820 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
11821                                              AtomicOrdering Ord) const {
11822   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11823   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
11824   bool IsAcquire = isAcquireOrStronger(Ord);
11825 
11826   // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
11827   // intrinsic must return {i64, i64} and we have to recombine them into a
11828   // single i128 here.
11829   if (ValTy->getPrimitiveSizeInBits() == 128) {
11830     Intrinsic::ID Int =
11831         IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
11832     Function *Ldxr = Intrinsic::getDeclaration(M, Int);
11833 
11834     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11835     Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
11836 
11837     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
11838     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
11839     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
11840     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
11841     return Builder.CreateOr(
11842         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
11843   }
11844 
11845   Type *Tys[] = { Addr->getType() };
11846   Intrinsic::ID Int =
11847       IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
11848   Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
11849 
11850   Type *EltTy = cast<PointerType>(Addr->getType())->getElementType();
11851 
11852   const DataLayout &DL = M->getDataLayout();
11853   IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy));
11854   Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy);
11855 
11856   return Builder.CreateBitCast(Trunc, EltTy);
11857 }
11858 
11859 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
11860     IRBuilder<> &Builder) const {
11861   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11862   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
11863 }
11864 
11865 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
11866                                                    Value *Val, Value *Addr,
11867                                                    AtomicOrdering Ord) const {
11868   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11869   bool IsRelease = isReleaseOrStronger(Ord);
11870 
11871   // Since the intrinsics must have legal type, the i128 intrinsics take two
11872   // parameters: "i64, i64". We must marshal Val into the appropriate form
11873   // before the call.
11874   if (Val->getType()->getPrimitiveSizeInBits() == 128) {
11875     Intrinsic::ID Int =
11876         IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
11877     Function *Stxr = Intrinsic::getDeclaration(M, Int);
11878     Type *Int64Ty = Type::getInt64Ty(M->getContext());
11879 
11880     Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
11881     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
11882     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11883     return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
11884   }
11885 
11886   Intrinsic::ID Int =
11887       IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
11888   Type *Tys[] = { Addr->getType() };
11889   Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
11890 
11891   const DataLayout &DL = M->getDataLayout();
11892   IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
11893   Val = Builder.CreateBitCast(Val, IntValTy);
11894 
11895   return Builder.CreateCall(Stxr,
11896                             {Builder.CreateZExtOrBitCast(
11897                                  Val, Stxr->getFunctionType()->getParamType(0)),
11898                              Addr});
11899 }
11900 
11901 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
11902     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
11903   return Ty->isArrayTy();
11904 }
11905 
11906 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
11907                                                             EVT) const {
11908   return false;
11909 }
11910 
11911 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
11912   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
11913   Function *ThreadPointerFunc =
11914       Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
11915   return IRB.CreatePointerCast(
11916       IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
11917                              Offset),
11918       IRB.getInt8PtrTy()->getPointerTo(0));
11919 }
11920 
11921 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
11922   // Android provides a fixed TLS slot for the stack cookie. See the definition
11923   // of TLS_SLOT_STACK_GUARD in
11924   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
11925   if (Subtarget->isTargetAndroid())
11926     return UseTlsOffset(IRB, 0x28);
11927 
11928   // Fuchsia is similar.
11929   // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
11930   if (Subtarget->isTargetFuchsia())
11931     return UseTlsOffset(IRB, -0x10);
11932 
11933   return TargetLowering::getIRStackGuard(IRB);
11934 }
11935 
11936 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
11937   // MSVC CRT provides functionalities for stack protection.
11938   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
11939     // MSVC CRT has a global variable holding security cookie.
11940     M.getOrInsertGlobal("__security_cookie",
11941                         Type::getInt8PtrTy(M.getContext()));
11942 
11943     // MSVC CRT has a function to validate security cookie.
11944     FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
11945         "__security_check_cookie", Type::getVoidTy(M.getContext()),
11946         Type::getInt8PtrTy(M.getContext()));
11947     if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
11948       F->setCallingConv(CallingConv::Win64);
11949       F->addAttribute(1, Attribute::AttrKind::InReg);
11950     }
11951     return;
11952   }
11953   TargetLowering::insertSSPDeclarations(M);
11954 }
11955 
11956 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
11957   // MSVC CRT has a global variable holding security cookie.
11958   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
11959     return M.getGlobalVariable("__security_cookie");
11960   return TargetLowering::getSDagStackGuard(M);
11961 }
11962 
11963 Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
11964   // MSVC CRT has a function to validate security cookie.
11965   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
11966     return M.getFunction("__security_check_cookie");
11967   return TargetLowering::getSSPStackGuardCheck(M);
11968 }
11969 
11970 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
11971   // Android provides a fixed TLS slot for the SafeStack pointer. See the
11972   // definition of TLS_SLOT_SAFESTACK in
11973   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
11974   if (Subtarget->isTargetAndroid())
11975     return UseTlsOffset(IRB, 0x48);
11976 
11977   // Fuchsia is similar.
11978   // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
11979   if (Subtarget->isTargetFuchsia())
11980     return UseTlsOffset(IRB, -0x8);
11981 
11982   return TargetLowering::getSafeStackPointerLocation(IRB);
11983 }
11984 
11985 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
11986     const Instruction &AndI) const {
11987   // Only sink 'and' mask to cmp use block if it is masking a single bit, since
11988   // this is likely to be fold the and/cmp/br into a single tbz instruction.  It
11989   // may be beneficial to sink in other cases, but we would have to check that
11990   // the cmp would not get folded into the br to form a cbz for these to be
11991   // beneficial.
11992   ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
11993   if (!Mask)
11994     return false;
11995   return Mask->getValue().isPowerOf2();
11996 }
11997 
11998 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG,
11999                                               SDNode *N) const {
12000   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
12001       !Subtarget->isTargetWindows())
12002     return false;
12003   return true;
12004 }
12005 
12006 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12007   // Update IsSplitCSR in AArch64unctionInfo.
12008   AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
12009   AFI->setIsSplitCSR(true);
12010 }
12011 
12012 void AArch64TargetLowering::insertCopiesSplitCSR(
12013     MachineBasicBlock *Entry,
12014     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12015   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
12016   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12017   if (!IStart)
12018     return;
12019 
12020   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
12021   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12022   MachineBasicBlock::iterator MBBI = Entry->begin();
12023   for (const MCPhysReg *I = IStart; *I; ++I) {
12024     const TargetRegisterClass *RC = nullptr;
12025     if (AArch64::GPR64RegClass.contains(*I))
12026       RC = &AArch64::GPR64RegClass;
12027     else if (AArch64::FPR64RegClass.contains(*I))
12028       RC = &AArch64::FPR64RegClass;
12029     else
12030       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12031 
12032     unsigned NewVR = MRI->createVirtualRegister(RC);
12033     // Create copy from CSR to a virtual register.
12034     // FIXME: this currently does not emit CFI pseudo-instructions, it works
12035     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12036     // nounwind. If we want to generalize this later, we may need to emit
12037     // CFI pseudo-instructions.
12038     assert(Entry->getParent()->getFunction().hasFnAttribute(
12039                Attribute::NoUnwind) &&
12040            "Function should be nounwind in insertCopiesSplitCSR!");
12041     Entry->addLiveIn(*I);
12042     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12043         .addReg(*I);
12044 
12045     // Insert the copy-back instructions right before the terminator.
12046     for (auto *Exit : Exits)
12047       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12048               TII->get(TargetOpcode::COPY), *I)
12049           .addReg(NewVR);
12050   }
12051 }
12052 
12053 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
12054   // Integer division on AArch64 is expensive. However, when aggressively
12055   // optimizing for code size, we prefer to use a div instruction, as it is
12056   // usually smaller than the alternative sequence.
12057   // The exception to this is vector division. Since AArch64 doesn't have vector
12058   // integer division, leaving the division as-is is a loss even in terms of
12059   // size, because it will have to be scalarized, while the alternative code
12060   // sequence can be performed in vector form.
12061   bool OptSize =
12062       Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
12063   return OptSize && !VT.isVector();
12064 }
12065 
12066 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
12067   // We want inc-of-add for scalars and sub-of-not for vectors.
12068   return VT.isScalarInteger();
12069 }
12070 
12071 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
12072   return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
12073 }
12074 
12075 unsigned
12076 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
12077   if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
12078     return getPointerTy(DL).getSizeInBits();
12079 
12080   return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
12081 }
12082 
12083 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
12084   MF.getFrameInfo().computeMaxCallFrameSize(MF);
12085   TargetLoweringBase::finalizeLowering(MF);
12086 }
12087 
12088 // Unlike X86, we let frame lowering assign offsets to all catch objects.
12089 bool AArch64TargetLowering::needsFixedCatchObjects() const {
12090   return false;
12091 }
12092