1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AArch64TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64ISelLowering.h" 14 #include "AArch64CallingConvention.h" 15 #include "AArch64ExpandImm.h" 16 #include "AArch64MachineFunctionInfo.h" 17 #include "AArch64PerfectShuffle.h" 18 #include "AArch64RegisterInfo.h" 19 #include "AArch64Subtarget.h" 20 #include "MCTargetDesc/AArch64AddressingModes.h" 21 #include "Utils/AArch64BaseInfo.h" 22 #include "llvm/ADT/APFloat.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/StringSwitch.h" 31 #include "llvm/ADT/Triple.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/CodeGen/CallingConvLower.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/RuntimeLibcalls.h" 43 #include "llvm/CodeGen/SelectionDAG.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/TargetCallingConv.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/IntrinsicsAArch64.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/OperandTraits.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/MC/MCRegisterInfo.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CodeGen.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/KnownBits.h" 76 #include "llvm/Support/MachineValueType.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Target/TargetMachine.h" 80 #include "llvm/Target/TargetOptions.h" 81 #include <algorithm> 82 #include <bitset> 83 #include <cassert> 84 #include <cctype> 85 #include <cstdint> 86 #include <cstdlib> 87 #include <iterator> 88 #include <limits> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 using namespace llvm::PatternMatch; 95 96 #define DEBUG_TYPE "aarch64-lower" 97 98 STATISTIC(NumTailCalls, "Number of tail calls"); 99 STATISTIC(NumShiftInserts, "Number of vector shift inserts"); 100 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized"); 101 102 static cl::opt<bool> 103 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, 104 cl::desc("Allow AArch64 SLI/SRI formation"), 105 cl::init(false)); 106 107 // FIXME: The necessary dtprel relocations don't seem to be supported 108 // well in the GNU bfd and gold linkers at the moment. Therefore, by 109 // default, for now, fall back to GeneralDynamic code generation. 110 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration( 111 "aarch64-elf-ldtls-generation", cl::Hidden, 112 cl::desc("Allow AArch64 Local Dynamic TLS code generation"), 113 cl::init(false)); 114 115 static cl::opt<bool> 116 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden, 117 cl::desc("Enable AArch64 logical imm instruction " 118 "optimization"), 119 cl::init(true)); 120 121 /// Value type used for condition codes. 122 static const MVT MVT_CC = MVT::i32; 123 124 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, 125 const AArch64Subtarget &STI) 126 : TargetLowering(TM), Subtarget(&STI) { 127 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so 128 // we have to make something up. Arbitrarily, choose ZeroOrOne. 129 setBooleanContents(ZeroOrOneBooleanContent); 130 // When comparing vectors the result sets the different elements in the 131 // vector to all-one or all-zero. 132 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 133 134 // Set up the register classes. 135 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); 136 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); 137 138 if (Subtarget->hasFPARMv8()) { 139 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); 140 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); 141 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); 142 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); 143 } 144 145 if (Subtarget->hasNEON()) { 146 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); 147 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); 148 // Someone set us up the NEON. 149 addDRTypeForNEON(MVT::v2f32); 150 addDRTypeForNEON(MVT::v8i8); 151 addDRTypeForNEON(MVT::v4i16); 152 addDRTypeForNEON(MVT::v2i32); 153 addDRTypeForNEON(MVT::v1i64); 154 addDRTypeForNEON(MVT::v1f64); 155 addDRTypeForNEON(MVT::v4f16); 156 157 addQRTypeForNEON(MVT::v4f32); 158 addQRTypeForNEON(MVT::v2f64); 159 addQRTypeForNEON(MVT::v16i8); 160 addQRTypeForNEON(MVT::v8i16); 161 addQRTypeForNEON(MVT::v4i32); 162 addQRTypeForNEON(MVT::v2i64); 163 addQRTypeForNEON(MVT::v8f16); 164 } 165 166 if (Subtarget->hasSVE()) { 167 // Add legal sve predicate types 168 addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass); 169 addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass); 170 addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass); 171 addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass); 172 173 // Add legal sve data types 174 addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass); 175 addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass); 176 addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass); 177 addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass); 178 179 addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass); 180 addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass); 181 addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass); 182 addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass); 183 addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass); 184 addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass); 185 186 for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) { 187 setOperationAction(ISD::SADDSAT, VT, Legal); 188 setOperationAction(ISD::UADDSAT, VT, Legal); 189 setOperationAction(ISD::SSUBSAT, VT, Legal); 190 setOperationAction(ISD::USUBSAT, VT, Legal); 191 setOperationAction(ISD::SMAX, VT, Legal); 192 setOperationAction(ISD::UMAX, VT, Legal); 193 setOperationAction(ISD::SMIN, VT, Legal); 194 setOperationAction(ISD::UMIN, VT, Legal); 195 } 196 197 for (auto VT : 198 { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8, 199 MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 }) 200 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal); 201 } 202 203 // Compute derived properties from the register classes 204 computeRegisterProperties(Subtarget->getRegisterInfo()); 205 206 // Provide all sorts of operation actions 207 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 208 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 209 setOperationAction(ISD::SETCC, MVT::i32, Custom); 210 setOperationAction(ISD::SETCC, MVT::i64, Custom); 211 setOperationAction(ISD::SETCC, MVT::f16, Custom); 212 setOperationAction(ISD::SETCC, MVT::f32, Custom); 213 setOperationAction(ISD::SETCC, MVT::f64, Custom); 214 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom); 215 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom); 216 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom); 217 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom); 218 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom); 219 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom); 220 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 221 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 222 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 223 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 224 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 225 setOperationAction(ISD::BR_CC, MVT::f16, Custom); 226 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 227 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 228 setOperationAction(ISD::SELECT, MVT::i32, Custom); 229 setOperationAction(ISD::SELECT, MVT::i64, Custom); 230 setOperationAction(ISD::SELECT, MVT::f16, Custom); 231 setOperationAction(ISD::SELECT, MVT::f32, Custom); 232 setOperationAction(ISD::SELECT, MVT::f64, Custom); 233 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 234 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 235 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); 236 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 237 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 238 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 239 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 240 241 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 242 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 243 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 244 245 setOperationAction(ISD::FREM, MVT::f32, Expand); 246 setOperationAction(ISD::FREM, MVT::f64, Expand); 247 setOperationAction(ISD::FREM, MVT::f80, Expand); 248 249 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 250 251 // Custom lowering hooks are needed for XOR 252 // to fold it into CSINC/CSINV. 253 setOperationAction(ISD::XOR, MVT::i32, Custom); 254 setOperationAction(ISD::XOR, MVT::i64, Custom); 255 256 // Virtually no operation on f128 is legal, but LLVM can't expand them when 257 // there's a valid register class, so we need custom operations in most cases. 258 setOperationAction(ISD::FABS, MVT::f128, Expand); 259 setOperationAction(ISD::FADD, MVT::f128, Custom); 260 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 261 setOperationAction(ISD::FCOS, MVT::f128, Expand); 262 setOperationAction(ISD::FDIV, MVT::f128, Custom); 263 setOperationAction(ISD::FMA, MVT::f128, Expand); 264 setOperationAction(ISD::FMUL, MVT::f128, Custom); 265 setOperationAction(ISD::FNEG, MVT::f128, Expand); 266 setOperationAction(ISD::FPOW, MVT::f128, Expand); 267 setOperationAction(ISD::FREM, MVT::f128, Expand); 268 setOperationAction(ISD::FRINT, MVT::f128, Expand); 269 setOperationAction(ISD::FSIN, MVT::f128, Expand); 270 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 271 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 272 setOperationAction(ISD::FSUB, MVT::f128, Custom); 273 setOperationAction(ISD::FTRUNC, MVT::f128, Expand); 274 setOperationAction(ISD::SETCC, MVT::f128, Custom); 275 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 276 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 277 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 278 setOperationAction(ISD::SELECT, MVT::f128, Custom); 279 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 280 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 281 282 // Lowering for many of the conversions is actually specified by the non-f128 283 // type. The LowerXXX function will be trivial when f128 isn't involved. 284 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 285 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 286 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); 287 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 288 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 289 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom); 290 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 291 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 292 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); 293 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 294 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 295 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom); 296 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 297 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 298 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); 299 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 300 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 301 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom); 302 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 303 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 304 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); 305 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 306 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 307 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom); 308 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 309 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 310 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom); 311 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom); 312 313 // Variable arguments. 314 setOperationAction(ISD::VASTART, MVT::Other, Custom); 315 setOperationAction(ISD::VAARG, MVT::Other, Custom); 316 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 317 setOperationAction(ISD::VAEND, MVT::Other, Expand); 318 319 // Variable-sized objects. 320 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 321 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 322 323 if (Subtarget->isTargetWindows()) 324 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 325 else 326 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 327 328 // Constant pool entries 329 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 330 331 // BlockAddress 332 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 333 334 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. 335 setOperationAction(ISD::ADDC, MVT::i32, Custom); 336 setOperationAction(ISD::ADDE, MVT::i32, Custom); 337 setOperationAction(ISD::SUBC, MVT::i32, Custom); 338 setOperationAction(ISD::SUBE, MVT::i32, Custom); 339 setOperationAction(ISD::ADDC, MVT::i64, Custom); 340 setOperationAction(ISD::ADDE, MVT::i64, Custom); 341 setOperationAction(ISD::SUBC, MVT::i64, Custom); 342 setOperationAction(ISD::SUBE, MVT::i64, Custom); 343 344 // AArch64 lacks both left-rotate and popcount instructions. 345 setOperationAction(ISD::ROTL, MVT::i32, Expand); 346 setOperationAction(ISD::ROTL, MVT::i64, Expand); 347 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 348 setOperationAction(ISD::ROTL, VT, Expand); 349 setOperationAction(ISD::ROTR, VT, Expand); 350 } 351 352 // AArch64 doesn't have {U|S}MUL_LOHI. 353 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 354 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 355 356 setOperationAction(ISD::CTPOP, MVT::i32, Custom); 357 setOperationAction(ISD::CTPOP, MVT::i64, Custom); 358 359 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 360 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 361 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 362 setOperationAction(ISD::SDIVREM, VT, Expand); 363 setOperationAction(ISD::UDIVREM, VT, Expand); 364 } 365 setOperationAction(ISD::SREM, MVT::i32, Expand); 366 setOperationAction(ISD::SREM, MVT::i64, Expand); 367 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 368 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 369 setOperationAction(ISD::UREM, MVT::i32, Expand); 370 setOperationAction(ISD::UREM, MVT::i64, Expand); 371 372 // Custom lower Add/Sub/Mul with overflow. 373 setOperationAction(ISD::SADDO, MVT::i32, Custom); 374 setOperationAction(ISD::SADDO, MVT::i64, Custom); 375 setOperationAction(ISD::UADDO, MVT::i32, Custom); 376 setOperationAction(ISD::UADDO, MVT::i64, Custom); 377 setOperationAction(ISD::SSUBO, MVT::i32, Custom); 378 setOperationAction(ISD::SSUBO, MVT::i64, Custom); 379 setOperationAction(ISD::USUBO, MVT::i32, Custom); 380 setOperationAction(ISD::USUBO, MVT::i64, Custom); 381 setOperationAction(ISD::SMULO, MVT::i32, Custom); 382 setOperationAction(ISD::SMULO, MVT::i64, Custom); 383 setOperationAction(ISD::UMULO, MVT::i32, Custom); 384 setOperationAction(ISD::UMULO, MVT::i64, Custom); 385 386 setOperationAction(ISD::FSIN, MVT::f32, Expand); 387 setOperationAction(ISD::FSIN, MVT::f64, Expand); 388 setOperationAction(ISD::FCOS, MVT::f32, Expand); 389 setOperationAction(ISD::FCOS, MVT::f64, Expand); 390 setOperationAction(ISD::FPOW, MVT::f32, Expand); 391 setOperationAction(ISD::FPOW, MVT::f64, Expand); 392 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 393 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 394 if (Subtarget->hasFullFP16()) 395 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom); 396 else 397 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); 398 399 setOperationAction(ISD::FREM, MVT::f16, Promote); 400 setOperationAction(ISD::FREM, MVT::v4f16, Expand); 401 setOperationAction(ISD::FREM, MVT::v8f16, Expand); 402 setOperationAction(ISD::FPOW, MVT::f16, Promote); 403 setOperationAction(ISD::FPOW, MVT::v4f16, Expand); 404 setOperationAction(ISD::FPOW, MVT::v8f16, Expand); 405 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 406 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand); 407 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand); 408 setOperationAction(ISD::FCOS, MVT::f16, Promote); 409 setOperationAction(ISD::FCOS, MVT::v4f16, Expand); 410 setOperationAction(ISD::FCOS, MVT::v8f16, Expand); 411 setOperationAction(ISD::FSIN, MVT::f16, Promote); 412 setOperationAction(ISD::FSIN, MVT::v4f16, Expand); 413 setOperationAction(ISD::FSIN, MVT::v8f16, Expand); 414 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 415 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand); 416 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand); 417 setOperationAction(ISD::FEXP, MVT::f16, Promote); 418 setOperationAction(ISD::FEXP, MVT::v4f16, Expand); 419 setOperationAction(ISD::FEXP, MVT::v8f16, Expand); 420 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 421 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand); 422 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand); 423 setOperationAction(ISD::FLOG, MVT::f16, Promote); 424 setOperationAction(ISD::FLOG, MVT::v4f16, Expand); 425 setOperationAction(ISD::FLOG, MVT::v8f16, Expand); 426 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 427 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand); 428 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand); 429 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 430 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand); 431 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand); 432 433 if (!Subtarget->hasFullFP16()) { 434 setOperationAction(ISD::SELECT, MVT::f16, Promote); 435 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); 436 setOperationAction(ISD::SETCC, MVT::f16, Promote); 437 setOperationAction(ISD::BR_CC, MVT::f16, Promote); 438 setOperationAction(ISD::FADD, MVT::f16, Promote); 439 setOperationAction(ISD::FSUB, MVT::f16, Promote); 440 setOperationAction(ISD::FMUL, MVT::f16, Promote); 441 setOperationAction(ISD::FDIV, MVT::f16, Promote); 442 setOperationAction(ISD::FMA, MVT::f16, Promote); 443 setOperationAction(ISD::FNEG, MVT::f16, Promote); 444 setOperationAction(ISD::FABS, MVT::f16, Promote); 445 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 446 setOperationAction(ISD::FSQRT, MVT::f16, Promote); 447 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 448 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 449 setOperationAction(ISD::FRINT, MVT::f16, Promote); 450 setOperationAction(ISD::FROUND, MVT::f16, Promote); 451 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 452 setOperationAction(ISD::FMINNUM, MVT::f16, Promote); 453 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); 454 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); 455 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); 456 457 // promote v4f16 to v4f32 when that is known to be safe. 458 setOperationAction(ISD::FADD, MVT::v4f16, Promote); 459 setOperationAction(ISD::FSUB, MVT::v4f16, Promote); 460 setOperationAction(ISD::FMUL, MVT::v4f16, Promote); 461 setOperationAction(ISD::FDIV, MVT::v4f16, Promote); 462 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); 463 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); 464 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); 465 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); 466 467 setOperationAction(ISD::FABS, MVT::v4f16, Expand); 468 setOperationAction(ISD::FNEG, MVT::v4f16, Expand); 469 setOperationAction(ISD::FROUND, MVT::v4f16, Expand); 470 setOperationAction(ISD::FMA, MVT::v4f16, Expand); 471 setOperationAction(ISD::SETCC, MVT::v4f16, Expand); 472 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); 473 setOperationAction(ISD::SELECT, MVT::v4f16, Expand); 474 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); 475 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); 476 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); 477 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); 478 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); 479 setOperationAction(ISD::FRINT, MVT::v4f16, Expand); 480 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); 481 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); 482 483 setOperationAction(ISD::FABS, MVT::v8f16, Expand); 484 setOperationAction(ISD::FADD, MVT::v8f16, Expand); 485 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); 486 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); 487 setOperationAction(ISD::FDIV, MVT::v8f16, Expand); 488 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); 489 setOperationAction(ISD::FMA, MVT::v8f16, Expand); 490 setOperationAction(ISD::FMUL, MVT::v8f16, Expand); 491 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); 492 setOperationAction(ISD::FNEG, MVT::v8f16, Expand); 493 setOperationAction(ISD::FROUND, MVT::v8f16, Expand); 494 setOperationAction(ISD::FRINT, MVT::v8f16, Expand); 495 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); 496 setOperationAction(ISD::FSUB, MVT::v8f16, Expand); 497 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); 498 setOperationAction(ISD::SETCC, MVT::v8f16, Expand); 499 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); 500 setOperationAction(ISD::SELECT, MVT::v8f16, Expand); 501 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); 502 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); 503 } 504 505 // AArch64 has implementations of a lot of rounding-like FP operations. 506 for (MVT Ty : {MVT::f32, MVT::f64}) { 507 setOperationAction(ISD::FFLOOR, Ty, Legal); 508 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 509 setOperationAction(ISD::FCEIL, Ty, Legal); 510 setOperationAction(ISD::FRINT, Ty, Legal); 511 setOperationAction(ISD::FTRUNC, Ty, Legal); 512 setOperationAction(ISD::FROUND, Ty, Legal); 513 setOperationAction(ISD::FMINNUM, Ty, Legal); 514 setOperationAction(ISD::FMAXNUM, Ty, Legal); 515 setOperationAction(ISD::FMINIMUM, Ty, Legal); 516 setOperationAction(ISD::FMAXIMUM, Ty, Legal); 517 setOperationAction(ISD::LROUND, Ty, Legal); 518 setOperationAction(ISD::LLROUND, Ty, Legal); 519 setOperationAction(ISD::LRINT, Ty, Legal); 520 setOperationAction(ISD::LLRINT, Ty, Legal); 521 } 522 523 if (Subtarget->hasFullFP16()) { 524 setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal); 525 setOperationAction(ISD::FFLOOR, MVT::f16, Legal); 526 setOperationAction(ISD::FCEIL, MVT::f16, Legal); 527 setOperationAction(ISD::FRINT, MVT::f16, Legal); 528 setOperationAction(ISD::FTRUNC, MVT::f16, Legal); 529 setOperationAction(ISD::FROUND, MVT::f16, Legal); 530 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 531 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 532 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal); 533 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal); 534 } 535 536 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 537 538 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 539 540 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); 541 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 542 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); 543 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 544 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); 545 546 // 128-bit loads and stores can be done without expanding 547 setOperationAction(ISD::LOAD, MVT::i128, Custom); 548 setOperationAction(ISD::STORE, MVT::i128, Custom); 549 550 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0. 551 // This requires the Performance Monitors extension. 552 if (Subtarget->hasPerfMon()) 553 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 554 555 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && 556 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { 557 // Issue __sincos_stret if available. 558 setOperationAction(ISD::FSINCOS, MVT::f64, Custom); 559 setOperationAction(ISD::FSINCOS, MVT::f32, Custom); 560 } else { 561 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 562 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 563 } 564 565 if (Subtarget->getTargetTriple().isOSMSVCRT()) { 566 // MSVCRT doesn't have powi; fall back to pow 567 setLibcallName(RTLIB::POWI_F32, nullptr); 568 setLibcallName(RTLIB::POWI_F64, nullptr); 569 } 570 571 // Make floating-point constants legal for the large code model, so they don't 572 // become loads from the constant pool. 573 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { 574 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 575 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 576 } 577 578 // AArch64 does not have floating-point extending loads, i1 sign-extending 579 // load, floating-point truncating stores, or v2i32->v2i16 truncating store. 580 for (MVT VT : MVT::fp_valuetypes()) { 581 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 582 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 583 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 584 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 585 } 586 for (MVT VT : MVT::integer_valuetypes()) 587 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); 588 589 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 590 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 591 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 592 setTruncStoreAction(MVT::f128, MVT::f80, Expand); 593 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 594 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 595 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 596 597 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 598 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 599 600 // Indexed loads and stores are supported. 601 for (unsigned im = (unsigned)ISD::PRE_INC; 602 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 603 setIndexedLoadAction(im, MVT::i8, Legal); 604 setIndexedLoadAction(im, MVT::i16, Legal); 605 setIndexedLoadAction(im, MVT::i32, Legal); 606 setIndexedLoadAction(im, MVT::i64, Legal); 607 setIndexedLoadAction(im, MVT::f64, Legal); 608 setIndexedLoadAction(im, MVT::f32, Legal); 609 setIndexedLoadAction(im, MVT::f16, Legal); 610 setIndexedStoreAction(im, MVT::i8, Legal); 611 setIndexedStoreAction(im, MVT::i16, Legal); 612 setIndexedStoreAction(im, MVT::i32, Legal); 613 setIndexedStoreAction(im, MVT::i64, Legal); 614 setIndexedStoreAction(im, MVT::f64, Legal); 615 setIndexedStoreAction(im, MVT::f32, Legal); 616 setIndexedStoreAction(im, MVT::f16, Legal); 617 } 618 619 // Trap. 620 setOperationAction(ISD::TRAP, MVT::Other, Legal); 621 if (Subtarget->isTargetWindows()) 622 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 623 624 // We combine OR nodes for bitfield operations. 625 setTargetDAGCombine(ISD::OR); 626 // Try to create BICs for vector ANDs. 627 setTargetDAGCombine(ISD::AND); 628 629 // Vector add and sub nodes may conceal a high-half opportunity. 630 // Also, try to fold ADD into CSINC/CSINV.. 631 setTargetDAGCombine(ISD::ADD); 632 setTargetDAGCombine(ISD::SUB); 633 setTargetDAGCombine(ISD::SRL); 634 setTargetDAGCombine(ISD::XOR); 635 setTargetDAGCombine(ISD::SINT_TO_FP); 636 setTargetDAGCombine(ISD::UINT_TO_FP); 637 638 setTargetDAGCombine(ISD::FP_TO_SINT); 639 setTargetDAGCombine(ISD::FP_TO_UINT); 640 setTargetDAGCombine(ISD::FDIV); 641 642 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 643 644 setTargetDAGCombine(ISD::ANY_EXTEND); 645 setTargetDAGCombine(ISD::ZERO_EXTEND); 646 setTargetDAGCombine(ISD::SIGN_EXTEND); 647 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 648 setTargetDAGCombine(ISD::CONCAT_VECTORS); 649 setTargetDAGCombine(ISD::STORE); 650 if (Subtarget->supportsAddressTopByteIgnored()) 651 setTargetDAGCombine(ISD::LOAD); 652 653 setTargetDAGCombine(ISD::MUL); 654 655 setTargetDAGCombine(ISD::SELECT); 656 setTargetDAGCombine(ISD::VSELECT); 657 658 setTargetDAGCombine(ISD::INTRINSIC_VOID); 659 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 660 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 661 662 setTargetDAGCombine(ISD::GlobalAddress); 663 664 // In case of strict alignment, avoid an excessive number of byte wide stores. 665 MaxStoresPerMemsetOptSize = 8; 666 MaxStoresPerMemset = Subtarget->requiresStrictAlign() 667 ? MaxStoresPerMemsetOptSize : 32; 668 669 MaxGluedStoresPerMemcpy = 4; 670 MaxStoresPerMemcpyOptSize = 4; 671 MaxStoresPerMemcpy = Subtarget->requiresStrictAlign() 672 ? MaxStoresPerMemcpyOptSize : 16; 673 674 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4; 675 676 MaxLoadsPerMemcmpOptSize = 4; 677 MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign() 678 ? MaxLoadsPerMemcmpOptSize : 8; 679 680 setStackPointerRegisterToSaveRestore(AArch64::SP); 681 682 setSchedulingPreference(Sched::Hybrid); 683 684 EnableExtLdPromotion = true; 685 686 // Set required alignment. 687 setMinFunctionAlignment(Align(4)); 688 // Set preferred alignments. 689 setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment())); 690 setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment())); 691 692 // Only change the limit for entries in a jump table if specified by 693 // the sub target, but not at the command line. 694 unsigned MaxJT = STI.getMaximumJumpTableSize(); 695 if (MaxJT && getMaximumJumpTableSize() == UINT_MAX) 696 setMaximumJumpTableSize(MaxJT); 697 698 setHasExtractBitsInsn(true); 699 700 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 701 702 if (Subtarget->hasNEON()) { 703 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to 704 // silliness like this: 705 setOperationAction(ISD::FABS, MVT::v1f64, Expand); 706 setOperationAction(ISD::FADD, MVT::v1f64, Expand); 707 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); 708 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); 709 setOperationAction(ISD::FCOS, MVT::v1f64, Expand); 710 setOperationAction(ISD::FDIV, MVT::v1f64, Expand); 711 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); 712 setOperationAction(ISD::FMA, MVT::v1f64, Expand); 713 setOperationAction(ISD::FMUL, MVT::v1f64, Expand); 714 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); 715 setOperationAction(ISD::FNEG, MVT::v1f64, Expand); 716 setOperationAction(ISD::FPOW, MVT::v1f64, Expand); 717 setOperationAction(ISD::FREM, MVT::v1f64, Expand); 718 setOperationAction(ISD::FROUND, MVT::v1f64, Expand); 719 setOperationAction(ISD::FRINT, MVT::v1f64, Expand); 720 setOperationAction(ISD::FSIN, MVT::v1f64, Expand); 721 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); 722 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); 723 setOperationAction(ISD::FSUB, MVT::v1f64, Expand); 724 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); 725 setOperationAction(ISD::SETCC, MVT::v1f64, Expand); 726 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); 727 setOperationAction(ISD::SELECT, MVT::v1f64, Expand); 728 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); 729 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); 730 731 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); 732 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); 733 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); 734 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); 735 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); 736 737 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 738 739 // AArch64 doesn't have a direct vector ->f32 conversion instructions for 740 // elements smaller than i32, so promote the input to i32 first. 741 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32); 742 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32); 743 // i8 vector elements also need promotion to i32 for v8i8 744 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32); 745 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32); 746 // Similarly, there is no direct i32 -> f64 vector conversion instruction. 747 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); 748 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); 749 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); 750 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); 751 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the 752 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 753 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom); 754 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); 755 756 if (Subtarget->hasFullFP16()) { 757 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 758 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 759 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom); 760 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); 761 } else { 762 // when AArch64 doesn't have fullfp16 support, promote the input 763 // to i32 first. 764 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32); 765 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32); 766 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32); 767 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32); 768 } 769 770 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); 771 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); 772 773 // AArch64 doesn't have MUL.2d: 774 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 775 // Custom handling for some quad-vector types to detect MULL. 776 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 777 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 778 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 779 780 for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, 781 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { 782 // Vector reductions 783 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 784 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 785 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 786 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 787 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 788 789 // Saturates 790 setOperationAction(ISD::SADDSAT, VT, Legal); 791 setOperationAction(ISD::UADDSAT, VT, Legal); 792 setOperationAction(ISD::SSUBSAT, VT, Legal); 793 setOperationAction(ISD::USUBSAT, VT, Legal); 794 } 795 for (MVT VT : { MVT::v4f16, MVT::v2f32, 796 MVT::v8f16, MVT::v4f32, MVT::v2f64 }) { 797 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 798 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 799 } 800 801 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); 802 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 803 // Likewise, narrowing and extending vector loads/stores aren't handled 804 // directly. 805 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 806 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 807 808 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) { 809 setOperationAction(ISD::MULHS, VT, Legal); 810 setOperationAction(ISD::MULHU, VT, Legal); 811 } else { 812 setOperationAction(ISD::MULHS, VT, Expand); 813 setOperationAction(ISD::MULHU, VT, Expand); 814 } 815 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 816 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 817 818 setOperationAction(ISD::BSWAP, VT, Expand); 819 setOperationAction(ISD::CTTZ, VT, Expand); 820 821 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 822 setTruncStoreAction(VT, InnerVT, Expand); 823 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 824 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 825 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 826 } 827 } 828 829 // AArch64 has implementations of a lot of rounding-like FP operations. 830 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) { 831 setOperationAction(ISD::FFLOOR, Ty, Legal); 832 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 833 setOperationAction(ISD::FCEIL, Ty, Legal); 834 setOperationAction(ISD::FRINT, Ty, Legal); 835 setOperationAction(ISD::FTRUNC, Ty, Legal); 836 setOperationAction(ISD::FROUND, Ty, Legal); 837 } 838 839 if (Subtarget->hasFullFP16()) { 840 for (MVT Ty : {MVT::v4f16, MVT::v8f16}) { 841 setOperationAction(ISD::FFLOOR, Ty, Legal); 842 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 843 setOperationAction(ISD::FCEIL, Ty, Legal); 844 setOperationAction(ISD::FRINT, Ty, Legal); 845 setOperationAction(ISD::FTRUNC, Ty, Legal); 846 setOperationAction(ISD::FROUND, Ty, Legal); 847 } 848 } 849 850 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom); 851 } 852 853 if (Subtarget->hasSVE()) { 854 // FIXME: Add custom lowering of MLOAD to handle different passthrus (not a 855 // splat of 0 or undef) once vector selects supported in SVE codegen. See 856 // D68877 for more details. 857 for (MVT VT : MVT::integer_scalable_vector_valuetypes()) { 858 if (isTypeLegal(VT)) 859 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 860 } 861 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 862 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 863 } 864 865 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive(); 866 } 867 868 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) { 869 assert(VT.isVector() && "VT should be a vector type"); 870 871 if (VT.isFloatingPoint()) { 872 MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT(); 873 setOperationPromotedToType(ISD::LOAD, VT, PromoteTo); 874 setOperationPromotedToType(ISD::STORE, VT, PromoteTo); 875 } 876 877 // Mark vector float intrinsics as expand. 878 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { 879 setOperationAction(ISD::FSIN, VT, Expand); 880 setOperationAction(ISD::FCOS, VT, Expand); 881 setOperationAction(ISD::FPOW, VT, Expand); 882 setOperationAction(ISD::FLOG, VT, Expand); 883 setOperationAction(ISD::FLOG2, VT, Expand); 884 setOperationAction(ISD::FLOG10, VT, Expand); 885 setOperationAction(ISD::FEXP, VT, Expand); 886 setOperationAction(ISD::FEXP2, VT, Expand); 887 888 // But we do support custom-lowering for FCOPYSIGN. 889 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 890 } 891 892 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 893 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 894 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 895 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 896 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 897 setOperationAction(ISD::SRA, VT, Custom); 898 setOperationAction(ISD::SRL, VT, Custom); 899 setOperationAction(ISD::SHL, VT, Custom); 900 setOperationAction(ISD::OR, VT, Custom); 901 setOperationAction(ISD::SETCC, VT, Custom); 902 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); 903 904 setOperationAction(ISD::SELECT, VT, Expand); 905 setOperationAction(ISD::SELECT_CC, VT, Expand); 906 setOperationAction(ISD::VSELECT, VT, Expand); 907 for (MVT InnerVT : MVT::all_valuetypes()) 908 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); 909 910 // CNT supports only B element sizes, then use UADDLP to widen. 911 if (VT != MVT::v8i8 && VT != MVT::v16i8) 912 setOperationAction(ISD::CTPOP, VT, Custom); 913 914 setOperationAction(ISD::UDIV, VT, Expand); 915 setOperationAction(ISD::SDIV, VT, Expand); 916 setOperationAction(ISD::UREM, VT, Expand); 917 setOperationAction(ISD::SREM, VT, Expand); 918 setOperationAction(ISD::FREM, VT, Expand); 919 920 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 921 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 922 923 if (!VT.isFloatingPoint()) 924 setOperationAction(ISD::ABS, VT, Legal); 925 926 // [SU][MIN|MAX] are available for all NEON types apart from i64. 927 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) 928 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 929 setOperationAction(Opcode, VT, Legal); 930 931 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types. 932 if (VT.isFloatingPoint() && 933 (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16())) 934 for (unsigned Opcode : 935 {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM}) 936 setOperationAction(Opcode, VT, Legal); 937 938 if (Subtarget->isLittleEndian()) { 939 for (unsigned im = (unsigned)ISD::PRE_INC; 940 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 941 setIndexedLoadAction(im, VT, Legal); 942 setIndexedStoreAction(im, VT, Legal); 943 } 944 } 945 } 946 947 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { 948 addRegisterClass(VT, &AArch64::FPR64RegClass); 949 addTypeForNEON(VT, MVT::v2i32); 950 } 951 952 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { 953 addRegisterClass(VT, &AArch64::FPR128RegClass); 954 addTypeForNEON(VT, MVT::v4i32); 955 } 956 957 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 958 EVT VT) const { 959 if (!VT.isVector()) 960 return MVT::i32; 961 return VT.changeVectorElementTypeToInteger(); 962 } 963 964 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm, 965 const APInt &Demanded, 966 TargetLowering::TargetLoweringOpt &TLO, 967 unsigned NewOpc) { 968 uint64_t OldImm = Imm, NewImm, Enc; 969 uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask; 970 971 // Return if the immediate is already all zeros, all ones, a bimm32 or a 972 // bimm64. 973 if (Imm == 0 || Imm == Mask || 974 AArch64_AM::isLogicalImmediate(Imm & Mask, Size)) 975 return false; 976 977 unsigned EltSize = Size; 978 uint64_t DemandedBits = Demanded.getZExtValue(); 979 980 // Clear bits that are not demanded. 981 Imm &= DemandedBits; 982 983 while (true) { 984 // The goal here is to set the non-demanded bits in a way that minimizes 985 // the number of switching between 0 and 1. In order to achieve this goal, 986 // we set the non-demanded bits to the value of the preceding demanded bits. 987 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a 988 // non-demanded bit), we copy bit0 (1) to the least significant 'x', 989 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'. 990 // The final result is 0b11000011. 991 uint64_t NonDemandedBits = ~DemandedBits; 992 uint64_t InvertedImm = ~Imm & DemandedBits; 993 uint64_t RotatedImm = 994 ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) & 995 NonDemandedBits; 996 uint64_t Sum = RotatedImm + NonDemandedBits; 997 bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1)); 998 uint64_t Ones = (Sum + Carry) & NonDemandedBits; 999 NewImm = (Imm | Ones) & Mask; 1000 1001 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate 1002 // or all-ones or all-zeros, in which case we can stop searching. Otherwise, 1003 // we halve the element size and continue the search. 1004 if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask))) 1005 break; 1006 1007 // We cannot shrink the element size any further if it is 2-bits. 1008 if (EltSize == 2) 1009 return false; 1010 1011 EltSize /= 2; 1012 Mask >>= EltSize; 1013 uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize; 1014 1015 // Return if there is mismatch in any of the demanded bits of Imm and Hi. 1016 if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0) 1017 return false; 1018 1019 // Merge the upper and lower halves of Imm and DemandedBits. 1020 Imm |= Hi; 1021 DemandedBits |= DemandedBitsHi; 1022 } 1023 1024 ++NumOptimizedImms; 1025 1026 // Replicate the element across the register width. 1027 while (EltSize < Size) { 1028 NewImm |= NewImm << EltSize; 1029 EltSize *= 2; 1030 } 1031 1032 (void)OldImm; 1033 assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 && 1034 "demanded bits should never be altered"); 1035 assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm"); 1036 1037 // Create the new constant immediate node. 1038 EVT VT = Op.getValueType(); 1039 SDLoc DL(Op); 1040 SDValue New; 1041 1042 // If the new constant immediate is all-zeros or all-ones, let the target 1043 // independent DAG combine optimize this node. 1044 if (NewImm == 0 || NewImm == OrigMask) { 1045 New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0), 1046 TLO.DAG.getConstant(NewImm, DL, VT)); 1047 // Otherwise, create a machine node so that target independent DAG combine 1048 // doesn't undo this optimization. 1049 } else { 1050 Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size); 1051 SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT); 1052 New = SDValue( 1053 TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0); 1054 } 1055 1056 return TLO.CombineTo(Op, New); 1057 } 1058 1059 bool AArch64TargetLowering::targetShrinkDemandedConstant( 1060 SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const { 1061 // Delay this optimization to as late as possible. 1062 if (!TLO.LegalOps) 1063 return false; 1064 1065 if (!EnableOptimizeLogicalImm) 1066 return false; 1067 1068 EVT VT = Op.getValueType(); 1069 if (VT.isVector()) 1070 return false; 1071 1072 unsigned Size = VT.getSizeInBits(); 1073 assert((Size == 32 || Size == 64) && 1074 "i32 or i64 is expected after legalization."); 1075 1076 // Exit early if we demand all bits. 1077 if (Demanded.countPopulation() == Size) 1078 return false; 1079 1080 unsigned NewOpc; 1081 switch (Op.getOpcode()) { 1082 default: 1083 return false; 1084 case ISD::AND: 1085 NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri; 1086 break; 1087 case ISD::OR: 1088 NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri; 1089 break; 1090 case ISD::XOR: 1091 NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri; 1092 break; 1093 } 1094 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1095 if (!C) 1096 return false; 1097 uint64_t Imm = C->getZExtValue(); 1098 return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc); 1099 } 1100 1101 /// computeKnownBitsForTargetNode - Determine which of the bits specified in 1102 /// Mask are known to be either zero or one and return them Known. 1103 void AArch64TargetLowering::computeKnownBitsForTargetNode( 1104 const SDValue Op, KnownBits &Known, 1105 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 1106 switch (Op.getOpcode()) { 1107 default: 1108 break; 1109 case AArch64ISD::CSEL: { 1110 KnownBits Known2; 1111 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 1112 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 1113 Known.Zero &= Known2.Zero; 1114 Known.One &= Known2.One; 1115 break; 1116 } 1117 case AArch64ISD::LOADgot: 1118 case AArch64ISD::ADDlow: { 1119 if (!Subtarget->isTargetILP32()) 1120 break; 1121 // In ILP32 mode all valid pointers are in the low 4GB of the address-space. 1122 Known.Zero = APInt::getHighBitsSet(64, 32); 1123 break; 1124 } 1125 case ISD::INTRINSIC_W_CHAIN: { 1126 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); 1127 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 1128 switch (IntID) { 1129 default: return; 1130 case Intrinsic::aarch64_ldaxr: 1131 case Intrinsic::aarch64_ldxr: { 1132 unsigned BitWidth = Known.getBitWidth(); 1133 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); 1134 unsigned MemBits = VT.getScalarSizeInBits(); 1135 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 1136 return; 1137 } 1138 } 1139 break; 1140 } 1141 case ISD::INTRINSIC_WO_CHAIN: 1142 case ISD::INTRINSIC_VOID: { 1143 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1144 switch (IntNo) { 1145 default: 1146 break; 1147 case Intrinsic::aarch64_neon_umaxv: 1148 case Intrinsic::aarch64_neon_uminv: { 1149 // Figure out the datatype of the vector operand. The UMINV instruction 1150 // will zero extend the result, so we can mark as known zero all the 1151 // bits larger than the element datatype. 32-bit or larget doesn't need 1152 // this as those are legal types and will be handled by isel directly. 1153 MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); 1154 unsigned BitWidth = Known.getBitWidth(); 1155 if (VT == MVT::v8i8 || VT == MVT::v16i8) { 1156 assert(BitWidth >= 8 && "Unexpected width!"); 1157 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); 1158 Known.Zero |= Mask; 1159 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { 1160 assert(BitWidth >= 16 && "Unexpected width!"); 1161 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 1162 Known.Zero |= Mask; 1163 } 1164 break; 1165 } break; 1166 } 1167 } 1168 } 1169 } 1170 1171 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, 1172 EVT) const { 1173 return MVT::i64; 1174 } 1175 1176 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( 1177 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1178 bool *Fast) const { 1179 if (Subtarget->requiresStrictAlign()) 1180 return false; 1181 1182 if (Fast) { 1183 // Some CPUs are fine with unaligned stores except for 128-bit ones. 1184 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 || 1185 // See comments in performSTORECombine() for more details about 1186 // these conditions. 1187 1188 // Code that uses clang vector extensions can mark that it 1189 // wants unaligned accesses to be treated as fast by 1190 // underspecifying alignment to be 1 or 2. 1191 Align <= 2 || 1192 1193 // Disregard v2i64. Memcpy lowering produces those and splitting 1194 // them regresses performance on micro-benchmarks and olden/bh. 1195 VT == MVT::v2i64; 1196 } 1197 return true; 1198 } 1199 1200 // Same as above but handling LLTs instead. 1201 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( 1202 LLT Ty, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1203 bool *Fast) const { 1204 if (Subtarget->requiresStrictAlign()) 1205 return false; 1206 1207 if (Fast) { 1208 // Some CPUs are fine with unaligned stores except for 128-bit ones. 1209 *Fast = !Subtarget->isMisaligned128StoreSlow() || 1210 Ty.getSizeInBytes() != 16 || 1211 // See comments in performSTORECombine() for more details about 1212 // these conditions. 1213 1214 // Code that uses clang vector extensions can mark that it 1215 // wants unaligned accesses to be treated as fast by 1216 // underspecifying alignment to be 1 or 2. 1217 Align <= 2 || 1218 1219 // Disregard v2i64. Memcpy lowering produces those and splitting 1220 // them regresses performance on micro-benchmarks and olden/bh. 1221 Ty == LLT::vector(2, 64); 1222 } 1223 return true; 1224 } 1225 1226 FastISel * 1227 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 1228 const TargetLibraryInfo *libInfo) const { 1229 return AArch64::createFastISel(funcInfo, libInfo); 1230 } 1231 1232 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { 1233 switch ((AArch64ISD::NodeType)Opcode) { 1234 case AArch64ISD::FIRST_NUMBER: break; 1235 case AArch64ISD::CALL: return "AArch64ISD::CALL"; 1236 case AArch64ISD::ADRP: return "AArch64ISD::ADRP"; 1237 case AArch64ISD::ADR: return "AArch64ISD::ADR"; 1238 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow"; 1239 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot"; 1240 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG"; 1241 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND"; 1242 case AArch64ISD::CSEL: return "AArch64ISD::CSEL"; 1243 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL"; 1244 case AArch64ISD::CSINV: return "AArch64ISD::CSINV"; 1245 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG"; 1246 case AArch64ISD::CSINC: return "AArch64ISD::CSINC"; 1247 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; 1248 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ"; 1249 case AArch64ISD::ADC: return "AArch64ISD::ADC"; 1250 case AArch64ISD::SBC: return "AArch64ISD::SBC"; 1251 case AArch64ISD::ADDS: return "AArch64ISD::ADDS"; 1252 case AArch64ISD::SUBS: return "AArch64ISD::SUBS"; 1253 case AArch64ISD::ADCS: return "AArch64ISD::ADCS"; 1254 case AArch64ISD::SBCS: return "AArch64ISD::SBCS"; 1255 case AArch64ISD::ANDS: return "AArch64ISD::ANDS"; 1256 case AArch64ISD::CCMP: return "AArch64ISD::CCMP"; 1257 case AArch64ISD::CCMN: return "AArch64ISD::CCMN"; 1258 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP"; 1259 case AArch64ISD::FCMP: return "AArch64ISD::FCMP"; 1260 case AArch64ISD::STRICT_FCMP: return "AArch64ISD::STRICT_FCMP"; 1261 case AArch64ISD::STRICT_FCMPE: return "AArch64ISD::STRICT_FCMPE"; 1262 case AArch64ISD::DUP: return "AArch64ISD::DUP"; 1263 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8"; 1264 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16"; 1265 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32"; 1266 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64"; 1267 case AArch64ISD::MOVI: return "AArch64ISD::MOVI"; 1268 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift"; 1269 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit"; 1270 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl"; 1271 case AArch64ISD::FMOV: return "AArch64ISD::FMOV"; 1272 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift"; 1273 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl"; 1274 case AArch64ISD::BICi: return "AArch64ISD::BICi"; 1275 case AArch64ISD::ORRi: return "AArch64ISD::ORRi"; 1276 case AArch64ISD::BSL: return "AArch64ISD::BSL"; 1277 case AArch64ISD::NEG: return "AArch64ISD::NEG"; 1278 case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; 1279 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1"; 1280 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2"; 1281 case AArch64ISD::UZP1: return "AArch64ISD::UZP1"; 1282 case AArch64ISD::UZP2: return "AArch64ISD::UZP2"; 1283 case AArch64ISD::TRN1: return "AArch64ISD::TRN1"; 1284 case AArch64ISD::TRN2: return "AArch64ISD::TRN2"; 1285 case AArch64ISD::REV16: return "AArch64ISD::REV16"; 1286 case AArch64ISD::REV32: return "AArch64ISD::REV32"; 1287 case AArch64ISD::REV64: return "AArch64ISD::REV64"; 1288 case AArch64ISD::EXT: return "AArch64ISD::EXT"; 1289 case AArch64ISD::VSHL: return "AArch64ISD::VSHL"; 1290 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR"; 1291 case AArch64ISD::VASHR: return "AArch64ISD::VASHR"; 1292 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ"; 1293 case AArch64ISD::CMGE: return "AArch64ISD::CMGE"; 1294 case AArch64ISD::CMGT: return "AArch64ISD::CMGT"; 1295 case AArch64ISD::CMHI: return "AArch64ISD::CMHI"; 1296 case AArch64ISD::CMHS: return "AArch64ISD::CMHS"; 1297 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ"; 1298 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE"; 1299 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT"; 1300 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz"; 1301 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz"; 1302 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz"; 1303 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz"; 1304 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz"; 1305 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz"; 1306 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz"; 1307 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz"; 1308 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz"; 1309 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz"; 1310 case AArch64ISD::SADDV: return "AArch64ISD::SADDV"; 1311 case AArch64ISD::UADDV: return "AArch64ISD::UADDV"; 1312 case AArch64ISD::SMINV: return "AArch64ISD::SMINV"; 1313 case AArch64ISD::UMINV: return "AArch64ISD::UMINV"; 1314 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV"; 1315 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV"; 1316 case AArch64ISD::SMAXV_PRED: return "AArch64ISD::SMAXV_PRED"; 1317 case AArch64ISD::UMAXV_PRED: return "AArch64ISD::UMAXV_PRED"; 1318 case AArch64ISD::SMINV_PRED: return "AArch64ISD::SMINV_PRED"; 1319 case AArch64ISD::UMINV_PRED: return "AArch64ISD::UMINV_PRED"; 1320 case AArch64ISD::ORV_PRED: return "AArch64ISD::ORV_PRED"; 1321 case AArch64ISD::EORV_PRED: return "AArch64ISD::EORV_PRED"; 1322 case AArch64ISD::ANDV_PRED: return "AArch64ISD::ANDV_PRED"; 1323 case AArch64ISD::CLASTA_N: return "AArch64ISD::CLASTA_N"; 1324 case AArch64ISD::CLASTB_N: return "AArch64ISD::CLASTB_N"; 1325 case AArch64ISD::LASTA: return "AArch64ISD::LASTA"; 1326 case AArch64ISD::LASTB: return "AArch64ISD::LASTB"; 1327 case AArch64ISD::REV: return "AArch64ISD::REV"; 1328 case AArch64ISD::TBL: return "AArch64ISD::TBL"; 1329 case AArch64ISD::NOT: return "AArch64ISD::NOT"; 1330 case AArch64ISD::BIT: return "AArch64ISD::BIT"; 1331 case AArch64ISD::CBZ: return "AArch64ISD::CBZ"; 1332 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ"; 1333 case AArch64ISD::TBZ: return "AArch64ISD::TBZ"; 1334 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ"; 1335 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; 1336 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH"; 1337 case AArch64ISD::SITOF: return "AArch64ISD::SITOF"; 1338 case AArch64ISD::UITOF: return "AArch64ISD::UITOF"; 1339 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST"; 1340 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I"; 1341 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I"; 1342 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I"; 1343 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I"; 1344 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I"; 1345 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; 1346 case AArch64ISD::LD2post: return "AArch64ISD::LD2post"; 1347 case AArch64ISD::LD3post: return "AArch64ISD::LD3post"; 1348 case AArch64ISD::LD4post: return "AArch64ISD::LD4post"; 1349 case AArch64ISD::ST2post: return "AArch64ISD::ST2post"; 1350 case AArch64ISD::ST3post: return "AArch64ISD::ST3post"; 1351 case AArch64ISD::ST4post: return "AArch64ISD::ST4post"; 1352 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post"; 1353 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post"; 1354 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post"; 1355 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post"; 1356 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post"; 1357 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post"; 1358 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost"; 1359 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost"; 1360 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost"; 1361 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost"; 1362 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost"; 1363 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost"; 1364 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost"; 1365 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost"; 1366 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost"; 1367 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost"; 1368 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost"; 1369 case AArch64ISD::SMULL: return "AArch64ISD::SMULL"; 1370 case AArch64ISD::UMULL: return "AArch64ISD::UMULL"; 1371 case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE"; 1372 case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS"; 1373 case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE"; 1374 case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS"; 1375 case AArch64ISD::STG: return "AArch64ISD::STG"; 1376 case AArch64ISD::STZG: return "AArch64ISD::STZG"; 1377 case AArch64ISD::ST2G: return "AArch64ISD::ST2G"; 1378 case AArch64ISD::STZ2G: return "AArch64ISD::STZ2G"; 1379 case AArch64ISD::SUNPKHI: return "AArch64ISD::SUNPKHI"; 1380 case AArch64ISD::SUNPKLO: return "AArch64ISD::SUNPKLO"; 1381 case AArch64ISD::UUNPKHI: return "AArch64ISD::UUNPKHI"; 1382 case AArch64ISD::UUNPKLO: return "AArch64ISD::UUNPKLO"; 1383 case AArch64ISD::INSR: return "AArch64ISD::INSR"; 1384 case AArch64ISD::PTEST: return "AArch64ISD::PTEST"; 1385 case AArch64ISD::PTRUE: return "AArch64ISD::PTRUE"; 1386 case AArch64ISD::GLD1: return "AArch64ISD::GLD1"; 1387 case AArch64ISD::GLD1_SCALED: return "AArch64ISD::GLD1_SCALED"; 1388 case AArch64ISD::GLD1_SXTW: return "AArch64ISD::GLD1_SXTW"; 1389 case AArch64ISD::GLD1_UXTW: return "AArch64ISD::GLD1_UXTW"; 1390 case AArch64ISD::GLD1_SXTW_SCALED: return "AArch64ISD::GLD1_SXTW_SCALED"; 1391 case AArch64ISD::GLD1_UXTW_SCALED: return "AArch64ISD::GLD1_UXTW_SCALED"; 1392 case AArch64ISD::GLD1_IMM: return "AArch64ISD::GLD1_IMM"; 1393 case AArch64ISD::GLD1S: return "AArch64ISD::GLD1S"; 1394 case AArch64ISD::GLD1S_SCALED: return "AArch64ISD::GLD1S_SCALED"; 1395 case AArch64ISD::GLD1S_SXTW: return "AArch64ISD::GLD1S_SXTW"; 1396 case AArch64ISD::GLD1S_UXTW: return "AArch64ISD::GLD1S_UXTW"; 1397 case AArch64ISD::GLD1S_SXTW_SCALED: return "AArch64ISD::GLD1S_SXTW_SCALED"; 1398 case AArch64ISD::GLD1S_UXTW_SCALED: return "AArch64ISD::GLD1S_UXTW_SCALED"; 1399 case AArch64ISD::GLD1S_IMM: return "AArch64ISD::GLD1S_IMM"; 1400 case AArch64ISD::SST1: return "AArch64ISD::SST1"; 1401 case AArch64ISD::SST1_SCALED: return "AArch64ISD::SST1_SCALED"; 1402 case AArch64ISD::SST1_SXTW: return "AArch64ISD::SST1_SXTW"; 1403 case AArch64ISD::SST1_UXTW: return "AArch64ISD::SST1_UXTW"; 1404 case AArch64ISD::SST1_SXTW_SCALED: return "AArch64ISD::SST1_SXTW_SCALED"; 1405 case AArch64ISD::SST1_UXTW_SCALED: return "AArch64ISD::SST1_UXTW_SCALED"; 1406 case AArch64ISD::SST1_IMM: return "AArch64ISD::SST1_IMM"; 1407 case AArch64ISD::LDP: return "AArch64ISD::LDP"; 1408 case AArch64ISD::STP: return "AArch64ISD::STP"; 1409 } 1410 return nullptr; 1411 } 1412 1413 MachineBasicBlock * 1414 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI, 1415 MachineBasicBlock *MBB) const { 1416 // We materialise the F128CSEL pseudo-instruction as some control flow and a 1417 // phi node: 1418 1419 // OrigBB: 1420 // [... previous instrs leading to comparison ...] 1421 // b.ne TrueBB 1422 // b EndBB 1423 // TrueBB: 1424 // ; Fallthrough 1425 // EndBB: 1426 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] 1427 1428 MachineFunction *MF = MBB->getParent(); 1429 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1430 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 1431 DebugLoc DL = MI.getDebugLoc(); 1432 MachineFunction::iterator It = ++MBB->getIterator(); 1433 1434 Register DestReg = MI.getOperand(0).getReg(); 1435 Register IfTrueReg = MI.getOperand(1).getReg(); 1436 Register IfFalseReg = MI.getOperand(2).getReg(); 1437 unsigned CondCode = MI.getOperand(3).getImm(); 1438 bool NZCVKilled = MI.getOperand(4).isKill(); 1439 1440 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); 1441 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); 1442 MF->insert(It, TrueBB); 1443 MF->insert(It, EndBB); 1444 1445 // Transfer rest of current basic-block to EndBB 1446 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), 1447 MBB->end()); 1448 EndBB->transferSuccessorsAndUpdatePHIs(MBB); 1449 1450 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); 1451 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); 1452 MBB->addSuccessor(TrueBB); 1453 MBB->addSuccessor(EndBB); 1454 1455 // TrueBB falls through to the end. 1456 TrueBB->addSuccessor(EndBB); 1457 1458 if (!NZCVKilled) { 1459 TrueBB->addLiveIn(AArch64::NZCV); 1460 EndBB->addLiveIn(AArch64::NZCV); 1461 } 1462 1463 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) 1464 .addReg(IfTrueReg) 1465 .addMBB(TrueBB) 1466 .addReg(IfFalseReg) 1467 .addMBB(MBB); 1468 1469 MI.eraseFromParent(); 1470 return EndBB; 1471 } 1472 1473 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet( 1474 MachineInstr &MI, MachineBasicBlock *BB) const { 1475 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 1476 BB->getParent()->getFunction().getPersonalityFn())) && 1477 "SEH does not use catchret!"); 1478 return BB; 1479 } 1480 1481 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad( 1482 MachineInstr &MI, MachineBasicBlock *BB) const { 1483 MI.eraseFromParent(); 1484 return BB; 1485 } 1486 1487 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter( 1488 MachineInstr &MI, MachineBasicBlock *BB) const { 1489 switch (MI.getOpcode()) { 1490 default: 1491 #ifndef NDEBUG 1492 MI.dump(); 1493 #endif 1494 llvm_unreachable("Unexpected instruction for custom inserter!"); 1495 1496 case AArch64::F128CSEL: 1497 return EmitF128CSEL(MI, BB); 1498 1499 case TargetOpcode::STACKMAP: 1500 case TargetOpcode::PATCHPOINT: 1501 return emitPatchPoint(MI, BB); 1502 1503 case AArch64::CATCHRET: 1504 return EmitLoweredCatchRet(MI, BB); 1505 case AArch64::CATCHPAD: 1506 return EmitLoweredCatchPad(MI, BB); 1507 } 1508 } 1509 1510 //===----------------------------------------------------------------------===// 1511 // AArch64 Lowering private implementation. 1512 //===----------------------------------------------------------------------===// 1513 1514 //===----------------------------------------------------------------------===// 1515 // Lowering Code 1516 //===----------------------------------------------------------------------===// 1517 1518 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 1519 /// CC 1520 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { 1521 switch (CC) { 1522 default: 1523 llvm_unreachable("Unknown condition code!"); 1524 case ISD::SETNE: 1525 return AArch64CC::NE; 1526 case ISD::SETEQ: 1527 return AArch64CC::EQ; 1528 case ISD::SETGT: 1529 return AArch64CC::GT; 1530 case ISD::SETGE: 1531 return AArch64CC::GE; 1532 case ISD::SETLT: 1533 return AArch64CC::LT; 1534 case ISD::SETLE: 1535 return AArch64CC::LE; 1536 case ISD::SETUGT: 1537 return AArch64CC::HI; 1538 case ISD::SETUGE: 1539 return AArch64CC::HS; 1540 case ISD::SETULT: 1541 return AArch64CC::LO; 1542 case ISD::SETULE: 1543 return AArch64CC::LS; 1544 } 1545 } 1546 1547 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. 1548 static void changeFPCCToAArch64CC(ISD::CondCode CC, 1549 AArch64CC::CondCode &CondCode, 1550 AArch64CC::CondCode &CondCode2) { 1551 CondCode2 = AArch64CC::AL; 1552 switch (CC) { 1553 default: 1554 llvm_unreachable("Unknown FP condition!"); 1555 case ISD::SETEQ: 1556 case ISD::SETOEQ: 1557 CondCode = AArch64CC::EQ; 1558 break; 1559 case ISD::SETGT: 1560 case ISD::SETOGT: 1561 CondCode = AArch64CC::GT; 1562 break; 1563 case ISD::SETGE: 1564 case ISD::SETOGE: 1565 CondCode = AArch64CC::GE; 1566 break; 1567 case ISD::SETOLT: 1568 CondCode = AArch64CC::MI; 1569 break; 1570 case ISD::SETOLE: 1571 CondCode = AArch64CC::LS; 1572 break; 1573 case ISD::SETONE: 1574 CondCode = AArch64CC::MI; 1575 CondCode2 = AArch64CC::GT; 1576 break; 1577 case ISD::SETO: 1578 CondCode = AArch64CC::VC; 1579 break; 1580 case ISD::SETUO: 1581 CondCode = AArch64CC::VS; 1582 break; 1583 case ISD::SETUEQ: 1584 CondCode = AArch64CC::EQ; 1585 CondCode2 = AArch64CC::VS; 1586 break; 1587 case ISD::SETUGT: 1588 CondCode = AArch64CC::HI; 1589 break; 1590 case ISD::SETUGE: 1591 CondCode = AArch64CC::PL; 1592 break; 1593 case ISD::SETLT: 1594 case ISD::SETULT: 1595 CondCode = AArch64CC::LT; 1596 break; 1597 case ISD::SETLE: 1598 case ISD::SETULE: 1599 CondCode = AArch64CC::LE; 1600 break; 1601 case ISD::SETNE: 1602 case ISD::SETUNE: 1603 CondCode = AArch64CC::NE; 1604 break; 1605 } 1606 } 1607 1608 /// Convert a DAG fp condition code to an AArch64 CC. 1609 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that 1610 /// should be AND'ed instead of OR'ed. 1611 static void changeFPCCToANDAArch64CC(ISD::CondCode CC, 1612 AArch64CC::CondCode &CondCode, 1613 AArch64CC::CondCode &CondCode2) { 1614 CondCode2 = AArch64CC::AL; 1615 switch (CC) { 1616 default: 1617 changeFPCCToAArch64CC(CC, CondCode, CondCode2); 1618 assert(CondCode2 == AArch64CC::AL); 1619 break; 1620 case ISD::SETONE: 1621 // (a one b) 1622 // == ((a olt b) || (a ogt b)) 1623 // == ((a ord b) && (a une b)) 1624 CondCode = AArch64CC::VC; 1625 CondCode2 = AArch64CC::NE; 1626 break; 1627 case ISD::SETUEQ: 1628 // (a ueq b) 1629 // == ((a uno b) || (a oeq b)) 1630 // == ((a ule b) && (a uge b)) 1631 CondCode = AArch64CC::PL; 1632 CondCode2 = AArch64CC::LE; 1633 break; 1634 } 1635 } 1636 1637 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 1638 /// CC usable with the vector instructions. Fewer operations are available 1639 /// without a real NZCV register, so we have to use less efficient combinations 1640 /// to get the same effect. 1641 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, 1642 AArch64CC::CondCode &CondCode, 1643 AArch64CC::CondCode &CondCode2, 1644 bool &Invert) { 1645 Invert = false; 1646 switch (CC) { 1647 default: 1648 // Mostly the scalar mappings work fine. 1649 changeFPCCToAArch64CC(CC, CondCode, CondCode2); 1650 break; 1651 case ISD::SETUO: 1652 Invert = true; 1653 LLVM_FALLTHROUGH; 1654 case ISD::SETO: 1655 CondCode = AArch64CC::MI; 1656 CondCode2 = AArch64CC::GE; 1657 break; 1658 case ISD::SETUEQ: 1659 case ISD::SETULT: 1660 case ISD::SETULE: 1661 case ISD::SETUGT: 1662 case ISD::SETUGE: 1663 // All of the compare-mask comparisons are ordered, but we can switch 1664 // between the two by a double inversion. E.g. ULE == !OGT. 1665 Invert = true; 1666 changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32), 1667 CondCode, CondCode2); 1668 break; 1669 } 1670 } 1671 1672 static bool isLegalArithImmed(uint64_t C) { 1673 // Matches AArch64DAGToDAGISel::SelectArithImmed(). 1674 bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); 1675 LLVM_DEBUG(dbgs() << "Is imm " << C 1676 << " legal: " << (IsLegal ? "yes\n" : "no\n")); 1677 return IsLegal; 1678 } 1679 1680 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on 1681 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags 1682 // can be set differently by this operation. It comes down to whether 1683 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then 1684 // everything is fine. If not then the optimization is wrong. Thus general 1685 // comparisons are only valid if op2 != 0. 1686 // 1687 // So, finally, the only LLVM-native comparisons that don't mention C and V 1688 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in 1689 // the absence of information about op2. 1690 static bool isCMN(SDValue Op, ISD::CondCode CC) { 1691 return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) && 1692 (CC == ISD::SETEQ || CC == ISD::SETNE); 1693 } 1694 1695 static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl, 1696 SelectionDAG &DAG, SDValue Chain, 1697 bool IsSignaling) { 1698 EVT VT = LHS.getValueType(); 1699 assert(VT != MVT::f128); 1700 assert(VT != MVT::f16 && "Lowering of strict fp16 not yet implemented"); 1701 unsigned Opcode = 1702 IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP; 1703 return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS}); 1704 } 1705 1706 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, 1707 const SDLoc &dl, SelectionDAG &DAG) { 1708 EVT VT = LHS.getValueType(); 1709 const bool FullFP16 = 1710 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 1711 1712 if (VT.isFloatingPoint()) { 1713 assert(VT != MVT::f128); 1714 if (VT == MVT::f16 && !FullFP16) { 1715 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); 1716 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); 1717 VT = MVT::f32; 1718 } 1719 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); 1720 } 1721 1722 // The CMP instruction is just an alias for SUBS, and representing it as 1723 // SUBS means that it's possible to get CSE with subtract operations. 1724 // A later phase can perform the optimization of setting the destination 1725 // register to WZR/XZR if it ends up being unused. 1726 unsigned Opcode = AArch64ISD::SUBS; 1727 1728 if (isCMN(RHS, CC)) { 1729 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ? 1730 Opcode = AArch64ISD::ADDS; 1731 RHS = RHS.getOperand(1); 1732 } else if (isCMN(LHS, CC)) { 1733 // As we are looking for EQ/NE compares, the operands can be commuted ; can 1734 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ? 1735 Opcode = AArch64ISD::ADDS; 1736 LHS = LHS.getOperand(1); 1737 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) && 1738 !isUnsignedIntSetCC(CC)) { 1739 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST 1740 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one 1741 // of the signed comparisons. 1742 Opcode = AArch64ISD::ANDS; 1743 RHS = LHS.getOperand(1); 1744 LHS = LHS.getOperand(0); 1745 } 1746 1747 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) 1748 .getValue(1); 1749 } 1750 1751 /// \defgroup AArch64CCMP CMP;CCMP matching 1752 /// 1753 /// These functions deal with the formation of CMP;CCMP;... sequences. 1754 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of 1755 /// a comparison. They set the NZCV flags to a predefined value if their 1756 /// predicate is false. This allows to express arbitrary conjunctions, for 1757 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))" 1758 /// expressed as: 1759 /// cmp A 1760 /// ccmp B, inv(CB), CA 1761 /// check for CB flags 1762 /// 1763 /// This naturally lets us implement chains of AND operations with SETCC 1764 /// operands. And we can even implement some other situations by transforming 1765 /// them: 1766 /// - We can implement (NEG SETCC) i.e. negating a single comparison by 1767 /// negating the flags used in a CCMP/FCCMP operations. 1768 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations 1769 /// by negating the flags we test for afterwards. i.e. 1770 /// NEG (CMP CCMP CCCMP ...) can be implemented. 1771 /// - Note that we can only ever negate all previously processed results. 1772 /// What we can not implement by flipping the flags to test is a negation 1773 /// of two sub-trees (because the negation affects all sub-trees emitted so 1774 /// far, so the 2nd sub-tree we emit would also affect the first). 1775 /// With those tools we can implement some OR operations: 1776 /// - (OR (SETCC A) (SETCC B)) can be implemented via: 1777 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B))) 1778 /// - After transforming OR to NEG/AND combinations we may be able to use NEG 1779 /// elimination rules from earlier to implement the whole thing as a 1780 /// CCMP/FCCMP chain. 1781 /// 1782 /// As complete example: 1783 /// or (or (setCA (cmp A)) (setCB (cmp B))) 1784 /// (and (setCC (cmp C)) (setCD (cmp D)))" 1785 /// can be reassociated to: 1786 /// or (and (setCC (cmp C)) setCD (cmp D)) 1787 // (or (setCA (cmp A)) (setCB (cmp B))) 1788 /// can be transformed to: 1789 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D)))) 1790 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" 1791 /// which can be implemented as: 1792 /// cmp C 1793 /// ccmp D, inv(CD), CC 1794 /// ccmp A, CA, inv(CD) 1795 /// ccmp B, CB, inv(CA) 1796 /// check for CB flags 1797 /// 1798 /// A counterexample is "or (and A B) (and C D)" which translates to 1799 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we 1800 /// can only implement 1 of the inner (not) operations, but not both! 1801 /// @{ 1802 1803 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. 1804 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, 1805 ISD::CondCode CC, SDValue CCOp, 1806 AArch64CC::CondCode Predicate, 1807 AArch64CC::CondCode OutCC, 1808 const SDLoc &DL, SelectionDAG &DAG) { 1809 unsigned Opcode = 0; 1810 const bool FullFP16 = 1811 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 1812 1813 if (LHS.getValueType().isFloatingPoint()) { 1814 assert(LHS.getValueType() != MVT::f128); 1815 if (LHS.getValueType() == MVT::f16 && !FullFP16) { 1816 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS); 1817 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS); 1818 } 1819 Opcode = AArch64ISD::FCCMP; 1820 } else if (RHS.getOpcode() == ISD::SUB) { 1821 SDValue SubOp0 = RHS.getOperand(0); 1822 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1823 // See emitComparison() on why we can only do this for SETEQ and SETNE. 1824 Opcode = AArch64ISD::CCMN; 1825 RHS = RHS.getOperand(1); 1826 } 1827 } 1828 if (Opcode == 0) 1829 Opcode = AArch64ISD::CCMP; 1830 1831 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC); 1832 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); 1833 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); 1834 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); 1835 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); 1836 } 1837 1838 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be 1839 /// expressed as a conjunction. See \ref AArch64CCMP. 1840 /// \param CanNegate Set to true if we can negate the whole sub-tree just by 1841 /// changing the conditions on the SETCC tests. 1842 /// (this means we can call emitConjunctionRec() with 1843 /// Negate==true on this sub-tree) 1844 /// \param MustBeFirst Set to true if this subtree needs to be negated and we 1845 /// cannot do the negation naturally. We are required to 1846 /// emit the subtree first in this case. 1847 /// \param WillNegate Is true if are called when the result of this 1848 /// subexpression must be negated. This happens when the 1849 /// outer expression is an OR. We can use this fact to know 1850 /// that we have a double negation (or (or ...) ...) that 1851 /// can be implemented for free. 1852 static bool canEmitConjunction(const SDValue Val, bool &CanNegate, 1853 bool &MustBeFirst, bool WillNegate, 1854 unsigned Depth = 0) { 1855 if (!Val.hasOneUse()) 1856 return false; 1857 unsigned Opcode = Val->getOpcode(); 1858 if (Opcode == ISD::SETCC) { 1859 if (Val->getOperand(0).getValueType() == MVT::f128) 1860 return false; 1861 CanNegate = true; 1862 MustBeFirst = false; 1863 return true; 1864 } 1865 // Protect against exponential runtime and stack overflow. 1866 if (Depth > 6) 1867 return false; 1868 if (Opcode == ISD::AND || Opcode == ISD::OR) { 1869 bool IsOR = Opcode == ISD::OR; 1870 SDValue O0 = Val->getOperand(0); 1871 SDValue O1 = Val->getOperand(1); 1872 bool CanNegateL; 1873 bool MustBeFirstL; 1874 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1)) 1875 return false; 1876 bool CanNegateR; 1877 bool MustBeFirstR; 1878 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1)) 1879 return false; 1880 1881 if (MustBeFirstL && MustBeFirstR) 1882 return false; 1883 1884 if (IsOR) { 1885 // For an OR expression we need to be able to naturally negate at least 1886 // one side or we cannot do the transformation at all. 1887 if (!CanNegateL && !CanNegateR) 1888 return false; 1889 // If we the result of the OR will be negated and we can naturally negate 1890 // the leafs, then this sub-tree as a whole negates naturally. 1891 CanNegate = WillNegate && CanNegateL && CanNegateR; 1892 // If we cannot naturally negate the whole sub-tree, then this must be 1893 // emitted first. 1894 MustBeFirst = !CanNegate; 1895 } else { 1896 assert(Opcode == ISD::AND && "Must be OR or AND"); 1897 // We cannot naturally negate an AND operation. 1898 CanNegate = false; 1899 MustBeFirst = MustBeFirstL || MustBeFirstR; 1900 } 1901 return true; 1902 } 1903 return false; 1904 } 1905 1906 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain 1907 /// of CCMP/CFCMP ops. See @ref AArch64CCMP. 1908 /// Tries to transform the given i1 producing node @p Val to a series compare 1909 /// and conditional compare operations. @returns an NZCV flags producing node 1910 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if 1911 /// transformation was not possible. 1912 /// \p Negate is true if we want this sub-tree being negated just by changing 1913 /// SETCC conditions. 1914 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val, 1915 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp, 1916 AArch64CC::CondCode Predicate) { 1917 // We're at a tree leaf, produce a conditional comparison operation. 1918 unsigned Opcode = Val->getOpcode(); 1919 if (Opcode == ISD::SETCC) { 1920 SDValue LHS = Val->getOperand(0); 1921 SDValue RHS = Val->getOperand(1); 1922 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get(); 1923 bool isInteger = LHS.getValueType().isInteger(); 1924 if (Negate) 1925 CC = getSetCCInverse(CC, LHS.getValueType()); 1926 SDLoc DL(Val); 1927 // Determine OutCC and handle FP special case. 1928 if (isInteger) { 1929 OutCC = changeIntCCToAArch64CC(CC); 1930 } else { 1931 assert(LHS.getValueType().isFloatingPoint()); 1932 AArch64CC::CondCode ExtraCC; 1933 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC); 1934 // Some floating point conditions can't be tested with a single condition 1935 // code. Construct an additional comparison in this case. 1936 if (ExtraCC != AArch64CC::AL) { 1937 SDValue ExtraCmp; 1938 if (!CCOp.getNode()) 1939 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); 1940 else 1941 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, 1942 ExtraCC, DL, DAG); 1943 CCOp = ExtraCmp; 1944 Predicate = ExtraCC; 1945 } 1946 } 1947 1948 // Produce a normal comparison if we are first in the chain 1949 if (!CCOp) 1950 return emitComparison(LHS, RHS, CC, DL, DAG); 1951 // Otherwise produce a ccmp. 1952 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL, 1953 DAG); 1954 } 1955 assert(Val->hasOneUse() && "Valid conjunction/disjunction tree"); 1956 1957 bool IsOR = Opcode == ISD::OR; 1958 1959 SDValue LHS = Val->getOperand(0); 1960 bool CanNegateL; 1961 bool MustBeFirstL; 1962 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR); 1963 assert(ValidL && "Valid conjunction/disjunction tree"); 1964 (void)ValidL; 1965 1966 SDValue RHS = Val->getOperand(1); 1967 bool CanNegateR; 1968 bool MustBeFirstR; 1969 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR); 1970 assert(ValidR && "Valid conjunction/disjunction tree"); 1971 (void)ValidR; 1972 1973 // Swap sub-tree that must come first to the right side. 1974 if (MustBeFirstL) { 1975 assert(!MustBeFirstR && "Valid conjunction/disjunction tree"); 1976 std::swap(LHS, RHS); 1977 std::swap(CanNegateL, CanNegateR); 1978 std::swap(MustBeFirstL, MustBeFirstR); 1979 } 1980 1981 bool NegateR; 1982 bool NegateAfterR; 1983 bool NegateL; 1984 bool NegateAfterAll; 1985 if (Opcode == ISD::OR) { 1986 // Swap the sub-tree that we can negate naturally to the left. 1987 if (!CanNegateL) { 1988 assert(CanNegateR && "at least one side must be negatable"); 1989 assert(!MustBeFirstR && "invalid conjunction/disjunction tree"); 1990 assert(!Negate); 1991 std::swap(LHS, RHS); 1992 NegateR = false; 1993 NegateAfterR = true; 1994 } else { 1995 // Negate the left sub-tree if possible, otherwise negate the result. 1996 NegateR = CanNegateR; 1997 NegateAfterR = !CanNegateR; 1998 } 1999 NegateL = true; 2000 NegateAfterAll = !Negate; 2001 } else { 2002 assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree"); 2003 assert(!Negate && "Valid conjunction/disjunction tree"); 2004 2005 NegateL = false; 2006 NegateR = false; 2007 NegateAfterR = false; 2008 NegateAfterAll = false; 2009 } 2010 2011 // Emit sub-trees. 2012 AArch64CC::CondCode RHSCC; 2013 SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate); 2014 if (NegateAfterR) 2015 RHSCC = AArch64CC::getInvertedCondCode(RHSCC); 2016 SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC); 2017 if (NegateAfterAll) 2018 OutCC = AArch64CC::getInvertedCondCode(OutCC); 2019 return CmpL; 2020 } 2021 2022 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops). 2023 /// In some cases this is even possible with OR operations in the expression. 2024 /// See \ref AArch64CCMP. 2025 /// \see emitConjunctionRec(). 2026 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val, 2027 AArch64CC::CondCode &OutCC) { 2028 bool DummyCanNegate; 2029 bool DummyMustBeFirst; 2030 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false)) 2031 return SDValue(); 2032 2033 return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL); 2034 } 2035 2036 /// @} 2037 2038 /// Returns how profitable it is to fold a comparison's operand's shift and/or 2039 /// extension operations. 2040 static unsigned getCmpOperandFoldingProfit(SDValue Op) { 2041 auto isSupportedExtend = [&](SDValue V) { 2042 if (V.getOpcode() == ISD::SIGN_EXTEND_INREG) 2043 return true; 2044 2045 if (V.getOpcode() == ISD::AND) 2046 if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2047 uint64_t Mask = MaskCst->getZExtValue(); 2048 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF); 2049 } 2050 2051 return false; 2052 }; 2053 2054 if (!Op.hasOneUse()) 2055 return 0; 2056 2057 if (isSupportedExtend(Op)) 2058 return 1; 2059 2060 unsigned Opc = Op.getOpcode(); 2061 if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) 2062 if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2063 uint64_t Shift = ShiftCst->getZExtValue(); 2064 if (isSupportedExtend(Op.getOperand(0))) 2065 return (Shift <= 4) ? 2 : 1; 2066 EVT VT = Op.getValueType(); 2067 if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63)) 2068 return 1; 2069 } 2070 2071 return 0; 2072 } 2073 2074 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2075 SDValue &AArch64cc, SelectionDAG &DAG, 2076 const SDLoc &dl) { 2077 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 2078 EVT VT = RHS.getValueType(); 2079 uint64_t C = RHSC->getZExtValue(); 2080 if (!isLegalArithImmed(C)) { 2081 // Constant does not fit, try adjusting it by one? 2082 switch (CC) { 2083 default: 2084 break; 2085 case ISD::SETLT: 2086 case ISD::SETGE: 2087 if ((VT == MVT::i32 && C != 0x80000000 && 2088 isLegalArithImmed((uint32_t)(C - 1))) || 2089 (VT == MVT::i64 && C != 0x80000000ULL && 2090 isLegalArithImmed(C - 1ULL))) { 2091 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 2092 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; 2093 RHS = DAG.getConstant(C, dl, VT); 2094 } 2095 break; 2096 case ISD::SETULT: 2097 case ISD::SETUGE: 2098 if ((VT == MVT::i32 && C != 0 && 2099 isLegalArithImmed((uint32_t)(C - 1))) || 2100 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { 2101 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 2102 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; 2103 RHS = DAG.getConstant(C, dl, VT); 2104 } 2105 break; 2106 case ISD::SETLE: 2107 case ISD::SETGT: 2108 if ((VT == MVT::i32 && C != INT32_MAX && 2109 isLegalArithImmed((uint32_t)(C + 1))) || 2110 (VT == MVT::i64 && C != INT64_MAX && 2111 isLegalArithImmed(C + 1ULL))) { 2112 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 2113 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; 2114 RHS = DAG.getConstant(C, dl, VT); 2115 } 2116 break; 2117 case ISD::SETULE: 2118 case ISD::SETUGT: 2119 if ((VT == MVT::i32 && C != UINT32_MAX && 2120 isLegalArithImmed((uint32_t)(C + 1))) || 2121 (VT == MVT::i64 && C != UINT64_MAX && 2122 isLegalArithImmed(C + 1ULL))) { 2123 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2124 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; 2125 RHS = DAG.getConstant(C, dl, VT); 2126 } 2127 break; 2128 } 2129 } 2130 } 2131 2132 // Comparisons are canonicalized so that the RHS operand is simpler than the 2133 // LHS one, the extreme case being when RHS is an immediate. However, AArch64 2134 // can fold some shift+extend operations on the RHS operand, so swap the 2135 // operands if that can be done. 2136 // 2137 // For example: 2138 // lsl w13, w11, #1 2139 // cmp w13, w12 2140 // can be turned into: 2141 // cmp w12, w11, lsl #1 2142 if (!isa<ConstantSDNode>(RHS) || 2143 !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) { 2144 SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS; 2145 2146 if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) { 2147 std::swap(LHS, RHS); 2148 CC = ISD::getSetCCSwappedOperands(CC); 2149 } 2150 } 2151 2152 SDValue Cmp; 2153 AArch64CC::CondCode AArch64CC; 2154 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) { 2155 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS); 2156 2157 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. 2158 // For the i8 operand, the largest immediate is 255, so this can be easily 2159 // encoded in the compare instruction. For the i16 operand, however, the 2160 // largest immediate cannot be encoded in the compare. 2161 // Therefore, use a sign extending load and cmn to avoid materializing the 2162 // -1 constant. For example, 2163 // movz w1, #65535 2164 // ldrh w0, [x0, #0] 2165 // cmp w0, w1 2166 // > 2167 // ldrsh w0, [x0, #0] 2168 // cmn w0, #1 2169 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) 2170 // if and only if (sext LHS) == (sext RHS). The checks are in place to 2171 // ensure both the LHS and RHS are truly zero extended and to make sure the 2172 // transformation is profitable. 2173 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) && 2174 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD && 2175 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 && 2176 LHS.getNode()->hasNUsesOfValue(1, 0)) { 2177 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue(); 2178 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { 2179 SDValue SExt = 2180 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, 2181 DAG.getValueType(MVT::i16)); 2182 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, 2183 RHS.getValueType()), 2184 CC, dl, DAG); 2185 AArch64CC = changeIntCCToAArch64CC(CC); 2186 } 2187 } 2188 2189 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) { 2190 if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) { 2191 if ((CC == ISD::SETNE) ^ RHSC->isNullValue()) 2192 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); 2193 } 2194 } 2195 } 2196 2197 if (!Cmp) { 2198 Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 2199 AArch64CC = changeIntCCToAArch64CC(CC); 2200 } 2201 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); 2202 return Cmp; 2203 } 2204 2205 static std::pair<SDValue, SDValue> 2206 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { 2207 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && 2208 "Unsupported value type"); 2209 SDValue Value, Overflow; 2210 SDLoc DL(Op); 2211 SDValue LHS = Op.getOperand(0); 2212 SDValue RHS = Op.getOperand(1); 2213 unsigned Opc = 0; 2214 switch (Op.getOpcode()) { 2215 default: 2216 llvm_unreachable("Unknown overflow instruction!"); 2217 case ISD::SADDO: 2218 Opc = AArch64ISD::ADDS; 2219 CC = AArch64CC::VS; 2220 break; 2221 case ISD::UADDO: 2222 Opc = AArch64ISD::ADDS; 2223 CC = AArch64CC::HS; 2224 break; 2225 case ISD::SSUBO: 2226 Opc = AArch64ISD::SUBS; 2227 CC = AArch64CC::VS; 2228 break; 2229 case ISD::USUBO: 2230 Opc = AArch64ISD::SUBS; 2231 CC = AArch64CC::LO; 2232 break; 2233 // Multiply needs a little bit extra work. 2234 case ISD::SMULO: 2235 case ISD::UMULO: { 2236 CC = AArch64CC::NE; 2237 bool IsSigned = Op.getOpcode() == ISD::SMULO; 2238 if (Op.getValueType() == MVT::i32) { 2239 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2240 // For a 32 bit multiply with overflow check we want the instruction 2241 // selector to generate a widening multiply (SMADDL/UMADDL). For that we 2242 // need to generate the following pattern: 2243 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) 2244 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); 2245 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); 2246 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 2247 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, 2248 DAG.getConstant(0, DL, MVT::i64)); 2249 // On AArch64 the upper 32 bits are always zero extended for a 32 bit 2250 // operation. We need to clear out the upper 32 bits, because we used a 2251 // widening multiply that wrote all 64 bits. In the end this should be a 2252 // noop. 2253 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); 2254 if (IsSigned) { 2255 // The signed overflow check requires more than just a simple check for 2256 // any bit set in the upper 32 bits of the result. These bits could be 2257 // just the sign bits of a negative number. To perform the overflow 2258 // check we have to arithmetic shift right the 32nd bit of the result by 2259 // 31 bits. Then we compare the result to the upper 32 bits. 2260 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, 2261 DAG.getConstant(32, DL, MVT::i64)); 2262 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); 2263 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, 2264 DAG.getConstant(31, DL, MVT::i64)); 2265 // It is important that LowerBits is last, otherwise the arithmetic 2266 // shift will not be folded into the compare (SUBS). 2267 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); 2268 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) 2269 .getValue(1); 2270 } else { 2271 // The overflow check for unsigned multiply is easy. We only need to 2272 // check if any of the upper 32 bits are set. This can be done with a 2273 // CMP (shifted register). For that we need to generate the following 2274 // pattern: 2275 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) 2276 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2277 DAG.getConstant(32, DL, MVT::i64)); 2278 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2279 Overflow = 2280 DAG.getNode(AArch64ISD::SUBS, DL, VTs, 2281 DAG.getConstant(0, DL, MVT::i64), 2282 UpperBits).getValue(1); 2283 } 2284 break; 2285 } 2286 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); 2287 // For the 64 bit multiply 2288 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 2289 if (IsSigned) { 2290 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); 2291 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, 2292 DAG.getConstant(63, DL, MVT::i64)); 2293 // It is important that LowerBits is last, otherwise the arithmetic 2294 // shift will not be folded into the compare (SUBS). 2295 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2296 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) 2297 .getValue(1); 2298 } else { 2299 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); 2300 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2301 Overflow = 2302 DAG.getNode(AArch64ISD::SUBS, DL, VTs, 2303 DAG.getConstant(0, DL, MVT::i64), 2304 UpperBits).getValue(1); 2305 } 2306 break; 2307 } 2308 } // switch (...) 2309 2310 if (Opc) { 2311 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); 2312 2313 // Emit the AArch64 operation with overflow check. 2314 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); 2315 Overflow = Value.getValue(1); 2316 } 2317 return std::make_pair(Value, Overflow); 2318 } 2319 2320 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, 2321 RTLIB::Libcall Call) const { 2322 bool IsStrict = Op->isStrictFPOpcode(); 2323 unsigned Offset = IsStrict ? 1 : 0; 2324 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 2325 SmallVector<SDValue, 2> Ops(Op->op_begin() + Offset, Op->op_end()); 2326 MakeLibCallOptions CallOptions; 2327 SDValue Result; 2328 SDLoc dl(Op); 2329 std::tie(Result, Chain) = makeLibCall(DAG, Call, Op.getValueType(), Ops, 2330 CallOptions, dl, Chain); 2331 return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result; 2332 } 2333 2334 // Returns true if the given Op is the overflow flag result of an overflow 2335 // intrinsic operation. 2336 static bool isOverflowIntrOpRes(SDValue Op) { 2337 unsigned Opc = Op.getOpcode(); 2338 return (Op.getResNo() == 1 && 2339 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 2340 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)); 2341 } 2342 2343 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { 2344 SDValue Sel = Op.getOperand(0); 2345 SDValue Other = Op.getOperand(1); 2346 SDLoc dl(Sel); 2347 2348 // If the operand is an overflow checking operation, invert the condition 2349 // code and kill the Not operation. I.e., transform: 2350 // (xor (overflow_op_bool, 1)) 2351 // --> 2352 // (csel 1, 0, invert(cc), overflow_op_bool) 2353 // ... which later gets transformed to just a cset instruction with an 2354 // inverted condition code, rather than a cset + eor sequence. 2355 if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) { 2356 // Only lower legal XALUO ops. 2357 if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0))) 2358 return SDValue(); 2359 2360 SDValue TVal = DAG.getConstant(1, dl, MVT::i32); 2361 SDValue FVal = DAG.getConstant(0, dl, MVT::i32); 2362 AArch64CC::CondCode CC; 2363 SDValue Value, Overflow; 2364 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG); 2365 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); 2366 return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal, 2367 CCVal, Overflow); 2368 } 2369 // If neither operand is a SELECT_CC, give up. 2370 if (Sel.getOpcode() != ISD::SELECT_CC) 2371 std::swap(Sel, Other); 2372 if (Sel.getOpcode() != ISD::SELECT_CC) 2373 return Op; 2374 2375 // The folding we want to perform is: 2376 // (xor x, (select_cc a, b, cc, 0, -1) ) 2377 // --> 2378 // (csel x, (xor x, -1), cc ...) 2379 // 2380 // The latter will get matched to a CSINV instruction. 2381 2382 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); 2383 SDValue LHS = Sel.getOperand(0); 2384 SDValue RHS = Sel.getOperand(1); 2385 SDValue TVal = Sel.getOperand(2); 2386 SDValue FVal = Sel.getOperand(3); 2387 2388 // FIXME: This could be generalized to non-integer comparisons. 2389 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) 2390 return Op; 2391 2392 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); 2393 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); 2394 2395 // The values aren't constants, this isn't the pattern we're looking for. 2396 if (!CFVal || !CTVal) 2397 return Op; 2398 2399 // We can commute the SELECT_CC by inverting the condition. This 2400 // might be needed to make this fit into a CSINV pattern. 2401 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { 2402 std::swap(TVal, FVal); 2403 std::swap(CTVal, CFVal); 2404 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2405 } 2406 2407 // If the constants line up, perform the transform! 2408 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { 2409 SDValue CCVal; 2410 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 2411 2412 FVal = Other; 2413 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, 2414 DAG.getConstant(-1ULL, dl, Other.getValueType())); 2415 2416 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, 2417 CCVal, Cmp); 2418 } 2419 2420 return Op; 2421 } 2422 2423 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2424 EVT VT = Op.getValueType(); 2425 2426 // Let legalize expand this if it isn't a legal type yet. 2427 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 2428 return SDValue(); 2429 2430 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 2431 2432 unsigned Opc; 2433 bool ExtraOp = false; 2434 switch (Op.getOpcode()) { 2435 default: 2436 llvm_unreachable("Invalid code"); 2437 case ISD::ADDC: 2438 Opc = AArch64ISD::ADDS; 2439 break; 2440 case ISD::SUBC: 2441 Opc = AArch64ISD::SUBS; 2442 break; 2443 case ISD::ADDE: 2444 Opc = AArch64ISD::ADCS; 2445 ExtraOp = true; 2446 break; 2447 case ISD::SUBE: 2448 Opc = AArch64ISD::SBCS; 2449 ExtraOp = true; 2450 break; 2451 } 2452 2453 if (!ExtraOp) 2454 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); 2455 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), 2456 Op.getOperand(2)); 2457 } 2458 2459 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { 2460 // Let legalize expand this if it isn't a legal type yet. 2461 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) 2462 return SDValue(); 2463 2464 SDLoc dl(Op); 2465 AArch64CC::CondCode CC; 2466 // The actual operation that sets the overflow or carry flag. 2467 SDValue Value, Overflow; 2468 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); 2469 2470 // We use 0 and 1 as false and true values. 2471 SDValue TVal = DAG.getConstant(1, dl, MVT::i32); 2472 SDValue FVal = DAG.getConstant(0, dl, MVT::i32); 2473 2474 // We use an inverted condition, because the conditional select is inverted 2475 // too. This will allow it to be selected to a single instruction: 2476 // CSINC Wd, WZR, WZR, invert(cond). 2477 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); 2478 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, 2479 CCVal, Overflow); 2480 2481 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); 2482 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); 2483 } 2484 2485 // Prefetch operands are: 2486 // 1: Address to prefetch 2487 // 2: bool isWrite 2488 // 3: int locality (0 = no locality ... 3 = extreme locality) 2489 // 4: bool isDataCache 2490 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { 2491 SDLoc DL(Op); 2492 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2493 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 2494 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2495 2496 bool IsStream = !Locality; 2497 // When the locality number is set 2498 if (Locality) { 2499 // The front-end should have filtered out the out-of-range values 2500 assert(Locality <= 3 && "Prefetch locality out-of-range"); 2501 // The locality degree is the opposite of the cache speed. 2502 // Put the number the other way around. 2503 // The encoding starts at 0 for level 1 2504 Locality = 3 - Locality; 2505 } 2506 2507 // built the mask value encoding the expected behavior. 2508 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit 2509 (!IsData << 3) | // IsDataCache bit 2510 (Locality << 1) | // Cache level bits 2511 (unsigned)IsStream; // Stream bit 2512 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), 2513 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1)); 2514 } 2515 2516 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, 2517 SelectionDAG &DAG) const { 2518 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); 2519 2520 RTLIB::Libcall LC; 2521 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); 2522 2523 return LowerF128Call(Op, DAG, LC); 2524 } 2525 2526 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, 2527 SelectionDAG &DAG) const { 2528 bool IsStrict = Op->isStrictFPOpcode(); 2529 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 2530 if (SrcVal.getValueType() != MVT::f128) { 2531 // It's legal except when f128 is involved 2532 return Op; 2533 } 2534 2535 RTLIB::Libcall LC; 2536 LC = RTLIB::getFPROUND(SrcVal.getValueType(), Op.getValueType()); 2537 2538 // FP_ROUND node has a second operand indicating whether it is known to be 2539 // precise. That doesn't take part in the LibCall so we can't directly use 2540 // LowerF128Call. 2541 MakeLibCallOptions CallOptions; 2542 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 2543 SDValue Result; 2544 SDLoc dl(Op); 2545 std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal, 2546 CallOptions, dl, Chain); 2547 return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result; 2548 } 2549 2550 SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op, 2551 SelectionDAG &DAG) const { 2552 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. 2553 // Any additional optimization in this function should be recorded 2554 // in the cost tables. 2555 EVT InVT = Op.getOperand(0).getValueType(); 2556 EVT VT = Op.getValueType(); 2557 unsigned NumElts = InVT.getVectorNumElements(); 2558 2559 // f16 conversions are promoted to f32 when full fp16 is not supported. 2560 if (InVT.getVectorElementType() == MVT::f16 && 2561 !Subtarget->hasFullFP16()) { 2562 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); 2563 SDLoc dl(Op); 2564 return DAG.getNode( 2565 Op.getOpcode(), dl, Op.getValueType(), 2566 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); 2567 } 2568 2569 if (VT.getSizeInBits() < InVT.getSizeInBits()) { 2570 SDLoc dl(Op); 2571 SDValue Cv = 2572 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), 2573 Op.getOperand(0)); 2574 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); 2575 } 2576 2577 if (VT.getSizeInBits() > InVT.getSizeInBits()) { 2578 SDLoc dl(Op); 2579 MVT ExtVT = 2580 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), 2581 VT.getVectorNumElements()); 2582 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); 2583 return DAG.getNode(Op.getOpcode(), dl, VT, Ext); 2584 } 2585 2586 // Type changing conversions are illegal. 2587 return Op; 2588 } 2589 2590 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, 2591 SelectionDAG &DAG) const { 2592 bool IsStrict = Op->isStrictFPOpcode(); 2593 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 2594 2595 if (SrcVal.getValueType().isVector()) 2596 return LowerVectorFP_TO_INT(Op, DAG); 2597 2598 // f16 conversions are promoted to f32 when full fp16 is not supported. 2599 if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { 2600 assert(!IsStrict && "Lowering of strict fp16 not yet implemented"); 2601 SDLoc dl(Op); 2602 return DAG.getNode( 2603 Op.getOpcode(), dl, Op.getValueType(), 2604 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal)); 2605 } 2606 2607 if (SrcVal.getValueType() != MVT::f128) { 2608 // It's legal except when f128 is involved 2609 return Op; 2610 } 2611 2612 RTLIB::Libcall LC; 2613 if (Op.getOpcode() == ISD::FP_TO_SINT || 2614 Op.getOpcode() == ISD::STRICT_FP_TO_SINT) 2615 LC = RTLIB::getFPTOSINT(SrcVal.getValueType(), Op.getValueType()); 2616 else 2617 LC = RTLIB::getFPTOUINT(SrcVal.getValueType(), Op.getValueType()); 2618 2619 return LowerF128Call(Op, DAG, LC); 2620 } 2621 2622 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 2623 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. 2624 // Any additional optimization in this function should be recorded 2625 // in the cost tables. 2626 EVT VT = Op.getValueType(); 2627 SDLoc dl(Op); 2628 SDValue In = Op.getOperand(0); 2629 EVT InVT = In.getValueType(); 2630 2631 if (VT.getSizeInBits() < InVT.getSizeInBits()) { 2632 MVT CastVT = 2633 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), 2634 InVT.getVectorNumElements()); 2635 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); 2636 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl)); 2637 } 2638 2639 if (VT.getSizeInBits() > InVT.getSizeInBits()) { 2640 unsigned CastOpc = 2641 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2642 EVT CastVT = VT.changeVectorElementTypeToInteger(); 2643 In = DAG.getNode(CastOpc, dl, CastVT, In); 2644 return DAG.getNode(Op.getOpcode(), dl, VT, In); 2645 } 2646 2647 return Op; 2648 } 2649 2650 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, 2651 SelectionDAG &DAG) const { 2652 if (Op.getValueType().isVector()) 2653 return LowerVectorINT_TO_FP(Op, DAG); 2654 2655 bool IsStrict = Op->isStrictFPOpcode(); 2656 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 2657 2658 // f16 conversions are promoted to f32 when full fp16 is not supported. 2659 if (Op.getValueType() == MVT::f16 && 2660 !Subtarget->hasFullFP16()) { 2661 assert(!IsStrict && "Lowering of strict fp16 not yet implemented"); 2662 SDLoc dl(Op); 2663 return DAG.getNode( 2664 ISD::FP_ROUND, dl, MVT::f16, 2665 DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal), 2666 DAG.getIntPtrConstant(0, dl)); 2667 } 2668 2669 // i128 conversions are libcalls. 2670 if (SrcVal.getValueType() == MVT::i128) 2671 return SDValue(); 2672 2673 // Other conversions are legal, unless it's to the completely software-based 2674 // fp128. 2675 if (Op.getValueType() != MVT::f128) 2676 return Op; 2677 2678 RTLIB::Libcall LC; 2679 if (Op.getOpcode() == ISD::SINT_TO_FP || 2680 Op.getOpcode() == ISD::STRICT_SINT_TO_FP) 2681 LC = RTLIB::getSINTTOFP(SrcVal.getValueType(), Op.getValueType()); 2682 else 2683 LC = RTLIB::getUINTTOFP(SrcVal.getValueType(), Op.getValueType()); 2684 2685 return LowerF128Call(Op, DAG, LC); 2686 } 2687 2688 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, 2689 SelectionDAG &DAG) const { 2690 // For iOS, we want to call an alternative entry point: __sincos_stret, 2691 // which returns the values in two S / D registers. 2692 SDLoc dl(Op); 2693 SDValue Arg = Op.getOperand(0); 2694 EVT ArgVT = Arg.getValueType(); 2695 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2696 2697 ArgListTy Args; 2698 ArgListEntry Entry; 2699 2700 Entry.Node = Arg; 2701 Entry.Ty = ArgTy; 2702 Entry.IsSExt = false; 2703 Entry.IsZExt = false; 2704 Args.push_back(Entry); 2705 2706 RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64 2707 : RTLIB::SINCOS_STRET_F32; 2708 const char *LibcallName = getLibcallName(LC); 2709 SDValue Callee = 2710 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); 2711 2712 StructType *RetTy = StructType::get(ArgTy, ArgTy); 2713 TargetLowering::CallLoweringInfo CLI(DAG); 2714 CLI.setDebugLoc(dl) 2715 .setChain(DAG.getEntryNode()) 2716 .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args)); 2717 2718 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2719 return CallResult.first; 2720 } 2721 2722 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) { 2723 if (Op.getValueType() != MVT::f16) 2724 return SDValue(); 2725 2726 assert(Op.getOperand(0).getValueType() == MVT::i16); 2727 SDLoc DL(Op); 2728 2729 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); 2730 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); 2731 return SDValue( 2732 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op, 2733 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), 2734 0); 2735 } 2736 2737 static EVT getExtensionTo64Bits(const EVT &OrigVT) { 2738 if (OrigVT.getSizeInBits() >= 64) 2739 return OrigVT; 2740 2741 assert(OrigVT.isSimple() && "Expecting a simple value type"); 2742 2743 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; 2744 switch (OrigSimpleTy) { 2745 default: llvm_unreachable("Unexpected Vector Type"); 2746 case MVT::v2i8: 2747 case MVT::v2i16: 2748 return MVT::v2i32; 2749 case MVT::v4i8: 2750 return MVT::v4i16; 2751 } 2752 } 2753 2754 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, 2755 const EVT &OrigTy, 2756 const EVT &ExtTy, 2757 unsigned ExtOpcode) { 2758 // The vector originally had a size of OrigTy. It was then extended to ExtTy. 2759 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than 2760 // 64-bits we need to insert a new extension so that it will be 64-bits. 2761 assert(ExtTy.is128BitVector() && "Unexpected extension size"); 2762 if (OrigTy.getSizeInBits() >= 64) 2763 return N; 2764 2765 // Must extend size to at least 64 bits to be used as an operand for VMULL. 2766 EVT NewVT = getExtensionTo64Bits(OrigTy); 2767 2768 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); 2769 } 2770 2771 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, 2772 bool isSigned) { 2773 EVT VT = N->getValueType(0); 2774 2775 if (N->getOpcode() != ISD::BUILD_VECTOR) 2776 return false; 2777 2778 for (const SDValue &Elt : N->op_values()) { 2779 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { 2780 unsigned EltSize = VT.getScalarSizeInBits(); 2781 unsigned HalfSize = EltSize / 2; 2782 if (isSigned) { 2783 if (!isIntN(HalfSize, C->getSExtValue())) 2784 return false; 2785 } else { 2786 if (!isUIntN(HalfSize, C->getZExtValue())) 2787 return false; 2788 } 2789 continue; 2790 } 2791 return false; 2792 } 2793 2794 return true; 2795 } 2796 2797 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) { 2798 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) 2799 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG, 2800 N->getOperand(0)->getValueType(0), 2801 N->getValueType(0), 2802 N->getOpcode()); 2803 2804 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); 2805 EVT VT = N->getValueType(0); 2806 SDLoc dl(N); 2807 unsigned EltSize = VT.getScalarSizeInBits() / 2; 2808 unsigned NumElts = VT.getVectorNumElements(); 2809 MVT TruncVT = MVT::getIntegerVT(EltSize); 2810 SmallVector<SDValue, 8> Ops; 2811 for (unsigned i = 0; i != NumElts; ++i) { 2812 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); 2813 const APInt &CInt = C->getAPIntValue(); 2814 // Element types smaller than 32 bits are not legal, so use i32 elements. 2815 // The values are implicitly truncated so sext vs. zext doesn't matter. 2816 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); 2817 } 2818 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); 2819 } 2820 2821 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { 2822 return N->getOpcode() == ISD::SIGN_EXTEND || 2823 isExtendedBUILD_VECTOR(N, DAG, true); 2824 } 2825 2826 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { 2827 return N->getOpcode() == ISD::ZERO_EXTEND || 2828 isExtendedBUILD_VECTOR(N, DAG, false); 2829 } 2830 2831 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { 2832 unsigned Opcode = N->getOpcode(); 2833 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 2834 SDNode *N0 = N->getOperand(0).getNode(); 2835 SDNode *N1 = N->getOperand(1).getNode(); 2836 return N0->hasOneUse() && N1->hasOneUse() && 2837 isSignExtended(N0, DAG) && isSignExtended(N1, DAG); 2838 } 2839 return false; 2840 } 2841 2842 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { 2843 unsigned Opcode = N->getOpcode(); 2844 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 2845 SDNode *N0 = N->getOperand(0).getNode(); 2846 SDNode *N1 = N->getOperand(1).getNode(); 2847 return N0->hasOneUse() && N1->hasOneUse() && 2848 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); 2849 } 2850 return false; 2851 } 2852 2853 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op, 2854 SelectionDAG &DAG) const { 2855 // The rounding mode is in bits 23:22 of the FPSCR. 2856 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 2857 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) 2858 // so that the shift + and get folded into a bitfield extract. 2859 SDLoc dl(Op); 2860 2861 SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64, 2862 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, 2863 MVT::i64)); 2864 SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64); 2865 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32, 2866 DAG.getConstant(1U << 22, dl, MVT::i32)); 2867 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, 2868 DAG.getConstant(22, dl, MVT::i32)); 2869 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, 2870 DAG.getConstant(3, dl, MVT::i32)); 2871 } 2872 2873 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { 2874 // Multiplications are only custom-lowered for 128-bit vectors so that 2875 // VMULL can be detected. Otherwise v2i64 multiplications are not legal. 2876 EVT VT = Op.getValueType(); 2877 assert(VT.is128BitVector() && VT.isInteger() && 2878 "unexpected type for custom-lowering ISD::MUL"); 2879 SDNode *N0 = Op.getOperand(0).getNode(); 2880 SDNode *N1 = Op.getOperand(1).getNode(); 2881 unsigned NewOpc = 0; 2882 bool isMLA = false; 2883 bool isN0SExt = isSignExtended(N0, DAG); 2884 bool isN1SExt = isSignExtended(N1, DAG); 2885 if (isN0SExt && isN1SExt) 2886 NewOpc = AArch64ISD::SMULL; 2887 else { 2888 bool isN0ZExt = isZeroExtended(N0, DAG); 2889 bool isN1ZExt = isZeroExtended(N1, DAG); 2890 if (isN0ZExt && isN1ZExt) 2891 NewOpc = AArch64ISD::UMULL; 2892 else if (isN1SExt || isN1ZExt) { 2893 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these 2894 // into (s/zext A * s/zext C) + (s/zext B * s/zext C) 2895 if (isN1SExt && isAddSubSExt(N0, DAG)) { 2896 NewOpc = AArch64ISD::SMULL; 2897 isMLA = true; 2898 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { 2899 NewOpc = AArch64ISD::UMULL; 2900 isMLA = true; 2901 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { 2902 std::swap(N0, N1); 2903 NewOpc = AArch64ISD::UMULL; 2904 isMLA = true; 2905 } 2906 } 2907 2908 if (!NewOpc) { 2909 if (VT == MVT::v2i64) 2910 // Fall through to expand this. It is not legal. 2911 return SDValue(); 2912 else 2913 // Other vector multiplications are legal. 2914 return Op; 2915 } 2916 } 2917 2918 // Legalize to a S/UMULL instruction 2919 SDLoc DL(Op); 2920 SDValue Op0; 2921 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); 2922 if (!isMLA) { 2923 Op0 = skipExtensionForVectorMULL(N0, DAG); 2924 assert(Op0.getValueType().is64BitVector() && 2925 Op1.getValueType().is64BitVector() && 2926 "unexpected types for extended operands to VMULL"); 2927 return DAG.getNode(NewOpc, DL, VT, Op0, Op1); 2928 } 2929 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during 2930 // isel lowering to take advantage of no-stall back to back s/umul + s/umla. 2931 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 2932 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG); 2933 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG); 2934 EVT Op1VT = Op1.getValueType(); 2935 return DAG.getNode(N0->getOpcode(), DL, VT, 2936 DAG.getNode(NewOpc, DL, VT, 2937 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), 2938 DAG.getNode(NewOpc, DL, VT, 2939 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); 2940 } 2941 2942 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2943 SelectionDAG &DAG) const { 2944 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2945 SDLoc dl(Op); 2946 switch (IntNo) { 2947 default: return SDValue(); // Don't custom lower most intrinsics. 2948 case Intrinsic::thread_pointer: { 2949 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2950 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); 2951 } 2952 case Intrinsic::aarch64_neon_abs: { 2953 EVT Ty = Op.getValueType(); 2954 if (Ty == MVT::i64) { 2955 SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, 2956 Op.getOperand(1)); 2957 Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result); 2958 return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result); 2959 } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) { 2960 return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1)); 2961 } else { 2962 report_fatal_error("Unexpected type for AArch64 NEON intrinic"); 2963 } 2964 } 2965 case Intrinsic::aarch64_neon_smax: 2966 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), 2967 Op.getOperand(1), Op.getOperand(2)); 2968 case Intrinsic::aarch64_neon_umax: 2969 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), 2970 Op.getOperand(1), Op.getOperand(2)); 2971 case Intrinsic::aarch64_neon_smin: 2972 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), 2973 Op.getOperand(1), Op.getOperand(2)); 2974 case Intrinsic::aarch64_neon_umin: 2975 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), 2976 Op.getOperand(1), Op.getOperand(2)); 2977 2978 case Intrinsic::aarch64_sve_sunpkhi: 2979 return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(), 2980 Op.getOperand(1)); 2981 case Intrinsic::aarch64_sve_sunpklo: 2982 return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(), 2983 Op.getOperand(1)); 2984 case Intrinsic::aarch64_sve_uunpkhi: 2985 return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(), 2986 Op.getOperand(1)); 2987 case Intrinsic::aarch64_sve_uunpklo: 2988 return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(), 2989 Op.getOperand(1)); 2990 case Intrinsic::aarch64_sve_clasta_n: 2991 return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(), 2992 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 2993 case Intrinsic::aarch64_sve_clastb_n: 2994 return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(), 2995 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 2996 case Intrinsic::aarch64_sve_lasta: 2997 return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(), 2998 Op.getOperand(1), Op.getOperand(2)); 2999 case Intrinsic::aarch64_sve_lastb: 3000 return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(), 3001 Op.getOperand(1), Op.getOperand(2)); 3002 case Intrinsic::aarch64_sve_rev: 3003 return DAG.getNode(AArch64ISD::REV, dl, Op.getValueType(), 3004 Op.getOperand(1)); 3005 case Intrinsic::aarch64_sve_tbl: 3006 return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(), 3007 Op.getOperand(1), Op.getOperand(2)); 3008 case Intrinsic::aarch64_sve_trn1: 3009 return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(), 3010 Op.getOperand(1), Op.getOperand(2)); 3011 case Intrinsic::aarch64_sve_trn2: 3012 return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(), 3013 Op.getOperand(1), Op.getOperand(2)); 3014 case Intrinsic::aarch64_sve_uzp1: 3015 return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(), 3016 Op.getOperand(1), Op.getOperand(2)); 3017 case Intrinsic::aarch64_sve_uzp2: 3018 return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(), 3019 Op.getOperand(1), Op.getOperand(2)); 3020 case Intrinsic::aarch64_sve_zip1: 3021 return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(), 3022 Op.getOperand(1), Op.getOperand(2)); 3023 case Intrinsic::aarch64_sve_zip2: 3024 return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(), 3025 Op.getOperand(1), Op.getOperand(2)); 3026 case Intrinsic::aarch64_sve_ptrue: 3027 return DAG.getNode(AArch64ISD::PTRUE, dl, Op.getValueType(), 3028 Op.getOperand(1)); 3029 3030 case Intrinsic::aarch64_sve_insr: { 3031 SDValue Scalar = Op.getOperand(2); 3032 EVT ScalarTy = Scalar.getValueType(); 3033 if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) 3034 Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); 3035 3036 return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(), 3037 Op.getOperand(1), Scalar); 3038 } 3039 3040 case Intrinsic::localaddress: { 3041 const auto &MF = DAG.getMachineFunction(); 3042 const auto *RegInfo = Subtarget->getRegisterInfo(); 3043 unsigned Reg = RegInfo->getLocalAddressRegister(MF); 3044 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, 3045 Op.getSimpleValueType()); 3046 } 3047 3048 case Intrinsic::eh_recoverfp: { 3049 // FIXME: This needs to be implemented to correctly handle highly aligned 3050 // stack objects. For now we simply return the incoming FP. Refer D53541 3051 // for more details. 3052 SDValue FnOp = Op.getOperand(1); 3053 SDValue IncomingFPOp = Op.getOperand(2); 3054 GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); 3055 auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); 3056 if (!Fn) 3057 report_fatal_error( 3058 "llvm.eh.recoverfp must take a function as the first argument"); 3059 return IncomingFPOp; 3060 } 3061 } 3062 } 3063 3064 bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 3065 return ExtVal.getValueType().isScalableVector(); 3066 } 3067 3068 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16. 3069 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST, 3070 EVT VT, EVT MemVT, 3071 SelectionDAG &DAG) { 3072 assert(VT.isVector() && "VT should be a vector type"); 3073 assert(MemVT == MVT::v4i8 && VT == MVT::v4i16); 3074 3075 SDValue Value = ST->getValue(); 3076 3077 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract 3078 // the word lane which represent the v4i8 subvector. It optimizes the store 3079 // to: 3080 // 3081 // xtn v0.8b, v0.8h 3082 // str s0, [x0] 3083 3084 SDValue Undef = DAG.getUNDEF(MVT::i16); 3085 SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL, 3086 {Undef, Undef, Undef, Undef}); 3087 3088 SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, 3089 Value, UndefVec); 3090 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt); 3091 3092 Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc); 3093 SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 3094 Trunc, DAG.getConstant(0, DL, MVT::i64)); 3095 3096 return DAG.getStore(ST->getChain(), DL, ExtractTrunc, 3097 ST->getBasePtr(), ST->getMemOperand()); 3098 } 3099 3100 // Custom lowering for any store, vector or scalar and/or default or with 3101 // a truncate operations. Currently only custom lower truncate operation 3102 // from vector v4i16 to v4i8 or volatile stores of i128. 3103 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op, 3104 SelectionDAG &DAG) const { 3105 SDLoc Dl(Op); 3106 StoreSDNode *StoreNode = cast<StoreSDNode>(Op); 3107 assert (StoreNode && "Can only custom lower store nodes"); 3108 3109 SDValue Value = StoreNode->getValue(); 3110 3111 EVT VT = Value.getValueType(); 3112 EVT MemVT = StoreNode->getMemoryVT(); 3113 3114 if (VT.isVector()) { 3115 unsigned AS = StoreNode->getAddressSpace(); 3116 unsigned Align = StoreNode->getAlignment(); 3117 if (Align < MemVT.getStoreSize() && 3118 !allowsMisalignedMemoryAccesses(MemVT, AS, Align, 3119 StoreNode->getMemOperand()->getFlags(), 3120 nullptr)) { 3121 return scalarizeVectorStore(StoreNode, DAG); 3122 } 3123 3124 if (StoreNode->isTruncatingStore()) { 3125 return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG); 3126 } 3127 } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) { 3128 assert(StoreNode->getValue()->getValueType(0) == MVT::i128); 3129 SDValue Lo = 3130 DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(), 3131 DAG.getConstant(0, Dl, MVT::i64)); 3132 SDValue Hi = 3133 DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(), 3134 DAG.getConstant(1, Dl, MVT::i64)); 3135 SDValue Result = DAG.getMemIntrinsicNode( 3136 AArch64ISD::STP, Dl, DAG.getVTList(MVT::Other), 3137 {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, 3138 StoreNode->getMemoryVT(), StoreNode->getMemOperand()); 3139 return Result; 3140 } 3141 3142 return SDValue(); 3143 } 3144 3145 SDValue AArch64TargetLowering::LowerOperation(SDValue Op, 3146 SelectionDAG &DAG) const { 3147 LLVM_DEBUG(dbgs() << "Custom lowering: "); 3148 LLVM_DEBUG(Op.dump()); 3149 3150 switch (Op.getOpcode()) { 3151 default: 3152 llvm_unreachable("unimplemented operand"); 3153 return SDValue(); 3154 case ISD::BITCAST: 3155 return LowerBITCAST(Op, DAG); 3156 case ISD::GlobalAddress: 3157 return LowerGlobalAddress(Op, DAG); 3158 case ISD::GlobalTLSAddress: 3159 return LowerGlobalTLSAddress(Op, DAG); 3160 case ISD::SETCC: 3161 case ISD::STRICT_FSETCC: 3162 case ISD::STRICT_FSETCCS: 3163 return LowerSETCC(Op, DAG); 3164 case ISD::BR_CC: 3165 return LowerBR_CC(Op, DAG); 3166 case ISD::SELECT: 3167 return LowerSELECT(Op, DAG); 3168 case ISD::SELECT_CC: 3169 return LowerSELECT_CC(Op, DAG); 3170 case ISD::JumpTable: 3171 return LowerJumpTable(Op, DAG); 3172 case ISD::BR_JT: 3173 return LowerBR_JT(Op, DAG); 3174 case ISD::ConstantPool: 3175 return LowerConstantPool(Op, DAG); 3176 case ISD::BlockAddress: 3177 return LowerBlockAddress(Op, DAG); 3178 case ISD::VASTART: 3179 return LowerVASTART(Op, DAG); 3180 case ISD::VACOPY: 3181 return LowerVACOPY(Op, DAG); 3182 case ISD::VAARG: 3183 return LowerVAARG(Op, DAG); 3184 case ISD::ADDC: 3185 case ISD::ADDE: 3186 case ISD::SUBC: 3187 case ISD::SUBE: 3188 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3189 case ISD::SADDO: 3190 case ISD::UADDO: 3191 case ISD::SSUBO: 3192 case ISD::USUBO: 3193 case ISD::SMULO: 3194 case ISD::UMULO: 3195 return LowerXALUO(Op, DAG); 3196 case ISD::FADD: 3197 return LowerF128Call(Op, DAG, RTLIB::ADD_F128); 3198 case ISD::FSUB: 3199 return LowerF128Call(Op, DAG, RTLIB::SUB_F128); 3200 case ISD::FMUL: 3201 return LowerF128Call(Op, DAG, RTLIB::MUL_F128); 3202 case ISD::FDIV: 3203 return LowerF128Call(Op, DAG, RTLIB::DIV_F128); 3204 case ISD::FP_ROUND: 3205 case ISD::STRICT_FP_ROUND: 3206 return LowerFP_ROUND(Op, DAG); 3207 case ISD::FP_EXTEND: 3208 return LowerFP_EXTEND(Op, DAG); 3209 case ISD::FRAMEADDR: 3210 return LowerFRAMEADDR(Op, DAG); 3211 case ISD::SPONENTRY: 3212 return LowerSPONENTRY(Op, DAG); 3213 case ISD::RETURNADDR: 3214 return LowerRETURNADDR(Op, DAG); 3215 case ISD::ADDROFRETURNADDR: 3216 return LowerADDROFRETURNADDR(Op, DAG); 3217 case ISD::INSERT_VECTOR_ELT: 3218 return LowerINSERT_VECTOR_ELT(Op, DAG); 3219 case ISD::EXTRACT_VECTOR_ELT: 3220 return LowerEXTRACT_VECTOR_ELT(Op, DAG); 3221 case ISD::BUILD_VECTOR: 3222 return LowerBUILD_VECTOR(Op, DAG); 3223 case ISD::VECTOR_SHUFFLE: 3224 return LowerVECTOR_SHUFFLE(Op, DAG); 3225 case ISD::SPLAT_VECTOR: 3226 return LowerSPLAT_VECTOR(Op, DAG); 3227 case ISD::EXTRACT_SUBVECTOR: 3228 return LowerEXTRACT_SUBVECTOR(Op, DAG); 3229 case ISD::SRA: 3230 case ISD::SRL: 3231 case ISD::SHL: 3232 return LowerVectorSRA_SRL_SHL(Op, DAG); 3233 case ISD::SHL_PARTS: 3234 return LowerShiftLeftParts(Op, DAG); 3235 case ISD::SRL_PARTS: 3236 case ISD::SRA_PARTS: 3237 return LowerShiftRightParts(Op, DAG); 3238 case ISD::CTPOP: 3239 return LowerCTPOP(Op, DAG); 3240 case ISD::FCOPYSIGN: 3241 return LowerFCOPYSIGN(Op, DAG); 3242 case ISD::OR: 3243 return LowerVectorOR(Op, DAG); 3244 case ISD::XOR: 3245 return LowerXOR(Op, DAG); 3246 case ISD::PREFETCH: 3247 return LowerPREFETCH(Op, DAG); 3248 case ISD::SINT_TO_FP: 3249 case ISD::UINT_TO_FP: 3250 case ISD::STRICT_SINT_TO_FP: 3251 case ISD::STRICT_UINT_TO_FP: 3252 return LowerINT_TO_FP(Op, DAG); 3253 case ISD::FP_TO_SINT: 3254 case ISD::FP_TO_UINT: 3255 case ISD::STRICT_FP_TO_SINT: 3256 case ISD::STRICT_FP_TO_UINT: 3257 return LowerFP_TO_INT(Op, DAG); 3258 case ISD::FSINCOS: 3259 return LowerFSINCOS(Op, DAG); 3260 case ISD::FLT_ROUNDS_: 3261 return LowerFLT_ROUNDS_(Op, DAG); 3262 case ISD::MUL: 3263 return LowerMUL(Op, DAG); 3264 case ISD::INTRINSIC_WO_CHAIN: 3265 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3266 case ISD::STORE: 3267 return LowerSTORE(Op, DAG); 3268 case ISD::VECREDUCE_ADD: 3269 case ISD::VECREDUCE_SMAX: 3270 case ISD::VECREDUCE_SMIN: 3271 case ISD::VECREDUCE_UMAX: 3272 case ISD::VECREDUCE_UMIN: 3273 case ISD::VECREDUCE_FMAX: 3274 case ISD::VECREDUCE_FMIN: 3275 return LowerVECREDUCE(Op, DAG); 3276 case ISD::ATOMIC_LOAD_SUB: 3277 return LowerATOMIC_LOAD_SUB(Op, DAG); 3278 case ISD::ATOMIC_LOAD_AND: 3279 return LowerATOMIC_LOAD_AND(Op, DAG); 3280 case ISD::DYNAMIC_STACKALLOC: 3281 return LowerDYNAMIC_STACKALLOC(Op, DAG); 3282 } 3283 } 3284 3285 //===----------------------------------------------------------------------===// 3286 // Calling Convention Implementation 3287 //===----------------------------------------------------------------------===// 3288 3289 /// Selects the correct CCAssignFn for a given CallingConvention value. 3290 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, 3291 bool IsVarArg) const { 3292 switch (CC) { 3293 default: 3294 report_fatal_error("Unsupported calling convention."); 3295 case CallingConv::AArch64_SVE_VectorCall: 3296 // Calling SVE functions is currently not yet supported. 3297 report_fatal_error("Unsupported calling convention."); 3298 case CallingConv::WebKit_JS: 3299 return CC_AArch64_WebKit_JS; 3300 case CallingConv::GHC: 3301 return CC_AArch64_GHC; 3302 case CallingConv::C: 3303 case CallingConv::Fast: 3304 case CallingConv::PreserveMost: 3305 case CallingConv::CXX_FAST_TLS: 3306 case CallingConv::Swift: 3307 if (Subtarget->isTargetWindows() && IsVarArg) 3308 return CC_AArch64_Win64_VarArg; 3309 if (!Subtarget->isTargetDarwin()) 3310 return CC_AArch64_AAPCS; 3311 if (!IsVarArg) 3312 return CC_AArch64_DarwinPCS; 3313 return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg 3314 : CC_AArch64_DarwinPCS_VarArg; 3315 case CallingConv::Win64: 3316 return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS; 3317 case CallingConv::CFGuard_Check: 3318 return CC_AArch64_Win64_CFGuard_Check; 3319 case CallingConv::AArch64_VectorCall: 3320 return CC_AArch64_AAPCS; 3321 } 3322 } 3323 3324 CCAssignFn * 3325 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { 3326 return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS 3327 : RetCC_AArch64_AAPCS; 3328 } 3329 3330 SDValue AArch64TargetLowering::LowerFormalArguments( 3331 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3332 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3333 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3334 MachineFunction &MF = DAG.getMachineFunction(); 3335 MachineFrameInfo &MFI = MF.getFrameInfo(); 3336 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); 3337 3338 // Assign locations to all of the incoming arguments. 3339 SmallVector<CCValAssign, 16> ArgLocs; 3340 DenseMap<unsigned, SDValue> CopiedRegs; 3341 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3342 *DAG.getContext()); 3343 3344 // At this point, Ins[].VT may already be promoted to i32. To correctly 3345 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and 3346 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. 3347 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here 3348 // we use a special version of AnalyzeFormalArguments to pass in ValVT and 3349 // LocVT. 3350 unsigned NumArgs = Ins.size(); 3351 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin(); 3352 unsigned CurArgIdx = 0; 3353 for (unsigned i = 0; i != NumArgs; ++i) { 3354 MVT ValVT = Ins[i].VT; 3355 if (Ins[i].isOrigArg()) { 3356 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); 3357 CurArgIdx = Ins[i].getOrigArgIndex(); 3358 3359 // Get type of the original argument. 3360 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), 3361 /*AllowUnknown*/ true); 3362 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; 3363 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. 3364 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) 3365 ValVT = MVT::i8; 3366 else if (ActualMVT == MVT::i16) 3367 ValVT = MVT::i16; 3368 } 3369 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); 3370 bool Res = 3371 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); 3372 assert(!Res && "Call operand has unhandled type"); 3373 (void)Res; 3374 } 3375 assert(ArgLocs.size() == Ins.size()); 3376 SmallVector<SDValue, 16> ArgValues; 3377 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3378 CCValAssign &VA = ArgLocs[i]; 3379 3380 if (Ins[i].Flags.isByVal()) { 3381 // Byval is used for HFAs in the PCS, but the system should work in a 3382 // non-compliant manner for larger structs. 3383 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3384 int Size = Ins[i].Flags.getByValSize(); 3385 unsigned NumRegs = (Size + 7) / 8; 3386 3387 // FIXME: This works on big-endian for composite byvals, which are the common 3388 // case. It should also work for fundamental types too. 3389 unsigned FrameIdx = 3390 MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); 3391 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); 3392 InVals.push_back(FrameIdxN); 3393 3394 continue; 3395 } 3396 3397 SDValue ArgValue; 3398 if (VA.isRegLoc()) { 3399 // Arguments stored in registers. 3400 EVT RegVT = VA.getLocVT(); 3401 const TargetRegisterClass *RC; 3402 3403 if (RegVT == MVT::i32) 3404 RC = &AArch64::GPR32RegClass; 3405 else if (RegVT == MVT::i64) 3406 RC = &AArch64::GPR64RegClass; 3407 else if (RegVT == MVT::f16) 3408 RC = &AArch64::FPR16RegClass; 3409 else if (RegVT == MVT::f32) 3410 RC = &AArch64::FPR32RegClass; 3411 else if (RegVT == MVT::f64 || RegVT.is64BitVector()) 3412 RC = &AArch64::FPR64RegClass; 3413 else if (RegVT == MVT::f128 || RegVT.is128BitVector()) 3414 RC = &AArch64::FPR128RegClass; 3415 else if (RegVT.isScalableVector() && 3416 RegVT.getVectorElementType() == MVT::i1) 3417 RC = &AArch64::PPRRegClass; 3418 else if (RegVT.isScalableVector()) 3419 RC = &AArch64::ZPRRegClass; 3420 else 3421 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 3422 3423 // Transform the arguments in physical registers into virtual ones. 3424 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3425 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 3426 3427 // If this is an 8, 16 or 32-bit value, it is really passed promoted 3428 // to 64 bits. Insert an assert[sz]ext to capture this, then 3429 // truncate to the right size. 3430 switch (VA.getLocInfo()) { 3431 default: 3432 llvm_unreachable("Unknown loc info!"); 3433 case CCValAssign::Full: 3434 break; 3435 case CCValAssign::Indirect: 3436 assert(VA.getValVT().isScalableVector() && 3437 "Only scalable vectors can be passed indirectly"); 3438 llvm_unreachable("Spilling of SVE vectors not yet implemented"); 3439 case CCValAssign::BCvt: 3440 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); 3441 break; 3442 case CCValAssign::AExt: 3443 case CCValAssign::SExt: 3444 case CCValAssign::ZExt: 3445 break; 3446 case CCValAssign::AExtUpper: 3447 ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue, 3448 DAG.getConstant(32, DL, RegVT)); 3449 ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT()); 3450 break; 3451 } 3452 } else { // VA.isRegLoc() 3453 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); 3454 unsigned ArgOffset = VA.getLocMemOffset(); 3455 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8; 3456 3457 uint32_t BEAlign = 0; 3458 if (!Subtarget->isLittleEndian() && ArgSize < 8 && 3459 !Ins[i].Flags.isInConsecutiveRegs()) 3460 BEAlign = 8 - ArgSize; 3461 3462 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); 3463 3464 // Create load nodes to retrieve arguments from the stack. 3465 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3466 3467 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 3468 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 3469 MVT MemVT = VA.getValVT(); 3470 3471 switch (VA.getLocInfo()) { 3472 default: 3473 break; 3474 case CCValAssign::Trunc: 3475 case CCValAssign::BCvt: 3476 MemVT = VA.getLocVT(); 3477 break; 3478 case CCValAssign::Indirect: 3479 assert(VA.getValVT().isScalableVector() && 3480 "Only scalable vectors can be passed indirectly"); 3481 llvm_unreachable("Spilling of SVE vectors not yet implemented"); 3482 case CCValAssign::SExt: 3483 ExtType = ISD::SEXTLOAD; 3484 break; 3485 case CCValAssign::ZExt: 3486 ExtType = ISD::ZEXTLOAD; 3487 break; 3488 case CCValAssign::AExt: 3489 ExtType = ISD::EXTLOAD; 3490 break; 3491 } 3492 3493 ArgValue = DAG.getExtLoad( 3494 ExtType, DL, VA.getLocVT(), Chain, FIN, 3495 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 3496 MemVT); 3497 3498 } 3499 if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer()) 3500 ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(), 3501 ArgValue, DAG.getValueType(MVT::i32)); 3502 InVals.push_back(ArgValue); 3503 } 3504 3505 // varargs 3506 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3507 if (isVarArg) { 3508 if (!Subtarget->isTargetDarwin() || IsWin64) { 3509 // The AAPCS variadic function ABI is identical to the non-variadic 3510 // one. As a result there may be more arguments in registers and we should 3511 // save them for future reference. 3512 // Win64 variadic functions also pass arguments in registers, but all float 3513 // arguments are passed in integer registers. 3514 saveVarArgRegisters(CCInfo, DAG, DL, Chain); 3515 } 3516 3517 // This will point to the next argument passed via stack. 3518 unsigned StackOffset = CCInfo.getNextStackOffset(); 3519 // We currently pass all varargs at 8-byte alignment, or 4 for ILP32 3520 StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8); 3521 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); 3522 3523 if (MFI.hasMustTailInVarArgFunc()) { 3524 SmallVector<MVT, 2> RegParmTypes; 3525 RegParmTypes.push_back(MVT::i64); 3526 RegParmTypes.push_back(MVT::f128); 3527 // Compute the set of forwarded registers. The rest are scratch. 3528 SmallVectorImpl<ForwardedRegister> &Forwards = 3529 FuncInfo->getForwardedMustTailRegParms(); 3530 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, 3531 CC_AArch64_AAPCS); 3532 3533 // Conservatively forward X8, since it might be used for aggregate return. 3534 if (!CCInfo.isAllocated(AArch64::X8)) { 3535 unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); 3536 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); 3537 } 3538 } 3539 } 3540 3541 // On Windows, InReg pointers must be returned, so record the pointer in a 3542 // virtual register at the start of the function so it can be returned in the 3543 // epilogue. 3544 if (IsWin64) { 3545 for (unsigned I = 0, E = Ins.size(); I != E; ++I) { 3546 if (Ins[I].Flags.isInReg()) { 3547 assert(!FuncInfo->getSRetReturnReg()); 3548 3549 MVT PtrTy = getPointerTy(DAG.getDataLayout()); 3550 Register Reg = 3551 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); 3552 FuncInfo->setSRetReturnReg(Reg); 3553 3554 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]); 3555 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 3556 break; 3557 } 3558 } 3559 } 3560 3561 unsigned StackArgSize = CCInfo.getNextStackOffset(); 3562 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3563 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { 3564 // This is a non-standard ABI so by fiat I say we're allowed to make full 3565 // use of the stack area to be popped, which must be aligned to 16 bytes in 3566 // any case: 3567 StackArgSize = alignTo(StackArgSize, 16); 3568 3569 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding 3570 // a multiple of 16. 3571 FuncInfo->setArgumentStackToRestore(StackArgSize); 3572 3573 // This realignment carries over to the available bytes below. Our own 3574 // callers will guarantee the space is free by giving an aligned value to 3575 // CALLSEQ_START. 3576 } 3577 // Even if we're not expected to free up the space, it's useful to know how 3578 // much is there while considering tail calls (because we can reuse it). 3579 FuncInfo->setBytesInStackArgArea(StackArgSize); 3580 3581 if (Subtarget->hasCustomCallingConv()) 3582 Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); 3583 3584 return Chain; 3585 } 3586 3587 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, 3588 SelectionDAG &DAG, 3589 const SDLoc &DL, 3590 SDValue &Chain) const { 3591 MachineFunction &MF = DAG.getMachineFunction(); 3592 MachineFrameInfo &MFI = MF.getFrameInfo(); 3593 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3594 auto PtrVT = getPointerTy(DAG.getDataLayout()); 3595 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); 3596 3597 SmallVector<SDValue, 8> MemOps; 3598 3599 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, 3600 AArch64::X3, AArch64::X4, AArch64::X5, 3601 AArch64::X6, AArch64::X7 }; 3602 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); 3603 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); 3604 3605 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); 3606 int GPRIdx = 0; 3607 if (GPRSaveSize != 0) { 3608 if (IsWin64) { 3609 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false); 3610 if (GPRSaveSize & 15) 3611 // The extra size here, if triggered, will always be 8. 3612 MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false); 3613 } else 3614 GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false); 3615 3616 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT); 3617 3618 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { 3619 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); 3620 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 3621 SDValue Store = DAG.getStore( 3622 Val.getValue(1), DL, Val, FIN, 3623 IsWin64 3624 ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 3625 GPRIdx, 3626 (i - FirstVariadicGPR) * 8) 3627 : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8)); 3628 MemOps.push_back(Store); 3629 FIN = 3630 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); 3631 } 3632 } 3633 FuncInfo->setVarArgsGPRIndex(GPRIdx); 3634 FuncInfo->setVarArgsGPRSize(GPRSaveSize); 3635 3636 if (Subtarget->hasFPARMv8() && !IsWin64) { 3637 static const MCPhysReg FPRArgRegs[] = { 3638 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, 3639 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; 3640 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); 3641 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); 3642 3643 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); 3644 int FPRIdx = 0; 3645 if (FPRSaveSize != 0) { 3646 FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false); 3647 3648 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); 3649 3650 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { 3651 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); 3652 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); 3653 3654 SDValue Store = DAG.getStore( 3655 Val.getValue(1), DL, Val, FIN, 3656 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16)); 3657 MemOps.push_back(Store); 3658 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 3659 DAG.getConstant(16, DL, PtrVT)); 3660 } 3661 } 3662 FuncInfo->setVarArgsFPRIndex(FPRIdx); 3663 FuncInfo->setVarArgsFPRSize(FPRSaveSize); 3664 } 3665 3666 if (!MemOps.empty()) { 3667 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3668 } 3669 } 3670 3671 /// LowerCallResult - Lower the result values of a call into the 3672 /// appropriate copies out of appropriate physical registers. 3673 SDValue AArch64TargetLowering::LowerCallResult( 3674 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 3675 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3676 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, 3677 SDValue ThisVal) const { 3678 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 3679 ? RetCC_AArch64_WebKit_JS 3680 : RetCC_AArch64_AAPCS; 3681 // Assign locations to each value returned by this call. 3682 SmallVector<CCValAssign, 16> RVLocs; 3683 DenseMap<unsigned, SDValue> CopiedRegs; 3684 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 3685 *DAG.getContext()); 3686 CCInfo.AnalyzeCallResult(Ins, RetCC); 3687 3688 // Copy all of the result registers out of their specified physreg. 3689 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3690 CCValAssign VA = RVLocs[i]; 3691 3692 // Pass 'this' value directly from the argument to return value, to avoid 3693 // reg unit interference 3694 if (i == 0 && isThisReturn) { 3695 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && 3696 "unexpected return calling convention register assignment"); 3697 InVals.push_back(ThisVal); 3698 continue; 3699 } 3700 3701 // Avoid copying a physreg twice since RegAllocFast is incompetent and only 3702 // allows one use of a physreg per block. 3703 SDValue Val = CopiedRegs.lookup(VA.getLocReg()); 3704 if (!Val) { 3705 Val = 3706 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 3707 Chain = Val.getValue(1); 3708 InFlag = Val.getValue(2); 3709 CopiedRegs[VA.getLocReg()] = Val; 3710 } 3711 3712 switch (VA.getLocInfo()) { 3713 default: 3714 llvm_unreachable("Unknown loc info!"); 3715 case CCValAssign::Full: 3716 break; 3717 case CCValAssign::BCvt: 3718 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3719 break; 3720 case CCValAssign::AExtUpper: 3721 Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val, 3722 DAG.getConstant(32, DL, VA.getLocVT())); 3723 LLVM_FALLTHROUGH; 3724 case CCValAssign::AExt: 3725 LLVM_FALLTHROUGH; 3726 case CCValAssign::ZExt: 3727 Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT()); 3728 break; 3729 } 3730 3731 InVals.push_back(Val); 3732 } 3733 3734 return Chain; 3735 } 3736 3737 /// Return true if the calling convention is one that we can guarantee TCO for. 3738 static bool canGuaranteeTCO(CallingConv::ID CC) { 3739 return CC == CallingConv::Fast; 3740 } 3741 3742 /// Return true if we might ever do TCO for calls with this calling convention. 3743 static bool mayTailCallThisCC(CallingConv::ID CC) { 3744 switch (CC) { 3745 case CallingConv::C: 3746 case CallingConv::PreserveMost: 3747 case CallingConv::Swift: 3748 return true; 3749 default: 3750 return canGuaranteeTCO(CC); 3751 } 3752 } 3753 3754 bool AArch64TargetLowering::isEligibleForTailCallOptimization( 3755 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, 3756 const SmallVectorImpl<ISD::OutputArg> &Outs, 3757 const SmallVectorImpl<SDValue> &OutVals, 3758 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 3759 if (!mayTailCallThisCC(CalleeCC)) 3760 return false; 3761 3762 MachineFunction &MF = DAG.getMachineFunction(); 3763 const Function &CallerF = MF.getFunction(); 3764 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3765 bool CCMatch = CallerCC == CalleeCC; 3766 3767 // Byval parameters hand the function a pointer directly into the stack area 3768 // we want to reuse during a tail call. Working around this *is* possible (see 3769 // X86) but less efficient and uglier in LowerCall. 3770 for (Function::const_arg_iterator i = CallerF.arg_begin(), 3771 e = CallerF.arg_end(); 3772 i != e; ++i) { 3773 if (i->hasByValAttr()) 3774 return false; 3775 3776 // On Windows, "inreg" attributes signify non-aggregate indirect returns. 3777 // In this case, it is necessary to save/restore X0 in the callee. Tail 3778 // call opt interferes with this. So we disable tail call opt when the 3779 // caller has an argument with "inreg" attribute. 3780 3781 // FIXME: Check whether the callee also has an "inreg" argument. 3782 if (i->hasInRegAttr()) 3783 return false; 3784 } 3785 3786 if (getTargetMachine().Options.GuaranteedTailCallOpt) 3787 return canGuaranteeTCO(CalleeCC) && CCMatch; 3788 3789 // Externally-defined functions with weak linkage should not be 3790 // tail-called on AArch64 when the OS does not support dynamic 3791 // pre-emption of symbols, as the AAELF spec requires normal calls 3792 // to undefined weak functions to be replaced with a NOP or jump to the 3793 // next instruction. The behaviour of branch instructions in this 3794 // situation (as used for tail calls) is implementation-defined, so we 3795 // cannot rely on the linker replacing the tail call with a return. 3796 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3797 const GlobalValue *GV = G->getGlobal(); 3798 const Triple &TT = getTargetMachine().getTargetTriple(); 3799 if (GV->hasExternalWeakLinkage() && 3800 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) 3801 return false; 3802 } 3803 3804 // Now we search for cases where we can use a tail call without changing the 3805 // ABI. Sibcall is used in some places (particularly gcc) to refer to this 3806 // concept. 3807 3808 // I want anyone implementing a new calling convention to think long and hard 3809 // about this assert. 3810 assert((!isVarArg || CalleeCC == CallingConv::C) && 3811 "Unexpected variadic calling convention"); 3812 3813 LLVMContext &C = *DAG.getContext(); 3814 if (isVarArg && !Outs.empty()) { 3815 // At least two cases here: if caller is fastcc then we can't have any 3816 // memory arguments (we'd be expected to clean up the stack afterwards). If 3817 // caller is C then we could potentially use its argument area. 3818 3819 // FIXME: for now we take the most conservative of these in both cases: 3820 // disallow all variadic memory operands. 3821 SmallVector<CCValAssign, 16> ArgLocs; 3822 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); 3823 3824 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); 3825 for (const CCValAssign &ArgLoc : ArgLocs) 3826 if (!ArgLoc.isRegLoc()) 3827 return false; 3828 } 3829 3830 // Check that the call results are passed in the same way. 3831 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, 3832 CCAssignFnForCall(CalleeCC, isVarArg), 3833 CCAssignFnForCall(CallerCC, isVarArg))) 3834 return false; 3835 // The callee has to preserve all registers the caller needs to preserve. 3836 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 3837 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3838 if (!CCMatch) { 3839 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3840 if (Subtarget->hasCustomCallingConv()) { 3841 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); 3842 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); 3843 } 3844 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3845 return false; 3846 } 3847 3848 // Nothing more to check if the callee is taking no arguments 3849 if (Outs.empty()) 3850 return true; 3851 3852 SmallVector<CCValAssign, 16> ArgLocs; 3853 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); 3854 3855 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); 3856 3857 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3858 3859 // If the stack arguments for this call do not fit into our own save area then 3860 // the call cannot be made tail. 3861 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 3862 return false; 3863 3864 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3865 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) 3866 return false; 3867 3868 return true; 3869 } 3870 3871 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, 3872 SelectionDAG &DAG, 3873 MachineFrameInfo &MFI, 3874 int ClobberedFI) const { 3875 SmallVector<SDValue, 8> ArgChains; 3876 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 3877 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 3878 3879 // Include the original chain at the beginning of the list. When this is 3880 // used by target LowerCall hooks, this helps legalize find the 3881 // CALLSEQ_BEGIN node. 3882 ArgChains.push_back(Chain); 3883 3884 // Add a chain value for each stack argument corresponding 3885 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 3886 UE = DAG.getEntryNode().getNode()->use_end(); 3887 U != UE; ++U) 3888 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 3889 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 3890 if (FI->getIndex() < 0) { 3891 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 3892 int64_t InLastByte = InFirstByte; 3893 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 3894 3895 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 3896 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 3897 ArgChains.push_back(SDValue(L, 1)); 3898 } 3899 3900 // Build a tokenfactor for all the chains. 3901 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 3902 } 3903 3904 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, 3905 bool TailCallOpt) const { 3906 return CallCC == CallingConv::Fast && TailCallOpt; 3907 } 3908 3909 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, 3910 /// and add input and output parameter nodes. 3911 SDValue 3912 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, 3913 SmallVectorImpl<SDValue> &InVals) const { 3914 SelectionDAG &DAG = CLI.DAG; 3915 SDLoc &DL = CLI.DL; 3916 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3917 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3918 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3919 SDValue Chain = CLI.Chain; 3920 SDValue Callee = CLI.Callee; 3921 bool &IsTailCall = CLI.IsTailCall; 3922 CallingConv::ID CallConv = CLI.CallConv; 3923 bool IsVarArg = CLI.IsVarArg; 3924 3925 MachineFunction &MF = DAG.getMachineFunction(); 3926 MachineFunction::CallSiteInfo CSInfo; 3927 bool IsThisReturn = false; 3928 3929 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3930 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3931 bool IsSibCall = false; 3932 3933 if (IsTailCall) { 3934 // Check if it's really possible to do a tail call. 3935 IsTailCall = isEligibleForTailCallOptimization( 3936 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3937 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) 3938 report_fatal_error("failed to perform tail call elimination on a call " 3939 "site marked musttail"); 3940 3941 // A sibling call is one where we're under the usual C ABI and not planning 3942 // to change that but can still do a tail call: 3943 if (!TailCallOpt && IsTailCall) 3944 IsSibCall = true; 3945 3946 if (IsTailCall) 3947 ++NumTailCalls; 3948 } 3949 3950 // Analyze operands of the call, assigning locations to each operand. 3951 SmallVector<CCValAssign, 16> ArgLocs; 3952 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 3953 *DAG.getContext()); 3954 3955 if (IsVarArg) { 3956 // Handle fixed and variable vector arguments differently. 3957 // Variable vector arguments always go into memory. 3958 unsigned NumArgs = Outs.size(); 3959 3960 for (unsigned i = 0; i != NumArgs; ++i) { 3961 MVT ArgVT = Outs[i].VT; 3962 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3963 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, 3964 /*IsVarArg=*/ !Outs[i].IsFixed); 3965 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); 3966 assert(!Res && "Call operand has unhandled type"); 3967 (void)Res; 3968 } 3969 } else { 3970 // At this point, Outs[].VT may already be promoted to i32. To correctly 3971 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and 3972 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. 3973 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here 3974 // we use a special version of AnalyzeCallOperands to pass in ValVT and 3975 // LocVT. 3976 unsigned NumArgs = Outs.size(); 3977 for (unsigned i = 0; i != NumArgs; ++i) { 3978 MVT ValVT = Outs[i].VT; 3979 // Get type of the original argument. 3980 EVT ActualVT = getValueType(DAG.getDataLayout(), 3981 CLI.getArgs()[Outs[i].OrigArgIndex].Ty, 3982 /*AllowUnknown*/ true); 3983 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; 3984 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3985 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. 3986 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) 3987 ValVT = MVT::i8; 3988 else if (ActualMVT == MVT::i16) 3989 ValVT = MVT::i16; 3990 3991 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); 3992 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); 3993 assert(!Res && "Call operand has unhandled type"); 3994 (void)Res; 3995 } 3996 } 3997 3998 // Get a count of how many bytes are to be pushed on the stack. 3999 unsigned NumBytes = CCInfo.getNextStackOffset(); 4000 4001 if (IsSibCall) { 4002 // Since we're not changing the ABI to make this a tail call, the memory 4003 // operands are already available in the caller's incoming argument space. 4004 NumBytes = 0; 4005 } 4006 4007 // FPDiff is the byte offset of the call's argument area from the callee's. 4008 // Stores to callee stack arguments will be placed in FixedStackSlots offset 4009 // by this amount for a tail call. In a sibling call it must be 0 because the 4010 // caller will deallocate the entire stack and the callee still expects its 4011 // arguments to begin at SP+0. Completely unused for non-tail calls. 4012 int FPDiff = 0; 4013 4014 if (IsTailCall && !IsSibCall) { 4015 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 4016 4017 // Since callee will pop argument stack as a tail call, we must keep the 4018 // popped size 16-byte aligned. 4019 NumBytes = alignTo(NumBytes, 16); 4020 4021 // FPDiff will be negative if this tail call requires more space than we 4022 // would automatically have in our incoming argument space. Positive if we 4023 // can actually shrink the stack. 4024 FPDiff = NumReusableBytes - NumBytes; 4025 4026 // The stack pointer must be 16-byte aligned at all times it's used for a 4027 // memory operation, which in practice means at *all* times and in 4028 // particular across call boundaries. Therefore our own arguments started at 4029 // a 16-byte aligned SP and the delta applied for the tail call should 4030 // satisfy the same constraint. 4031 assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); 4032 } 4033 4034 // Adjust the stack pointer for the new arguments... 4035 // These operations are automatically eliminated by the prolog/epilog pass 4036 if (!IsSibCall) 4037 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 4038 4039 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, 4040 getPointerTy(DAG.getDataLayout())); 4041 4042 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4043 SmallSet<unsigned, 8> RegsUsed; 4044 SmallVector<SDValue, 8> MemOpChains; 4045 auto PtrVT = getPointerTy(DAG.getDataLayout()); 4046 4047 if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) { 4048 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); 4049 for (const auto &F : Forwards) { 4050 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT); 4051 RegsToPass.emplace_back(F.PReg, Val); 4052 } 4053 } 4054 4055 // Walk the register/memloc assignments, inserting copies/loads. 4056 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4057 CCValAssign &VA = ArgLocs[i]; 4058 SDValue Arg = OutVals[i]; 4059 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4060 4061 // Promote the value if needed. 4062 switch (VA.getLocInfo()) { 4063 default: 4064 llvm_unreachable("Unknown loc info!"); 4065 case CCValAssign::Full: 4066 break; 4067 case CCValAssign::SExt: 4068 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 4069 break; 4070 case CCValAssign::ZExt: 4071 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 4072 break; 4073 case CCValAssign::AExt: 4074 if (Outs[i].ArgVT == MVT::i1) { 4075 // AAPCS requires i1 to be zero-extended to 8-bits by the caller. 4076 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); 4077 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); 4078 } 4079 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 4080 break; 4081 case CCValAssign::AExtUpper: 4082 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); 4083 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 4084 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, 4085 DAG.getConstant(32, DL, VA.getLocVT())); 4086 break; 4087 case CCValAssign::BCvt: 4088 Arg = DAG.getBitcast(VA.getLocVT(), Arg); 4089 break; 4090 case CCValAssign::Trunc: 4091 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4092 break; 4093 case CCValAssign::FPExt: 4094 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 4095 break; 4096 case CCValAssign::Indirect: 4097 assert(VA.getValVT().isScalableVector() && 4098 "Only scalable vectors can be passed indirectly"); 4099 llvm_unreachable("Spilling of SVE vectors not yet implemented"); 4100 } 4101 4102 if (VA.isRegLoc()) { 4103 if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && 4104 Outs[0].VT == MVT::i64) { 4105 assert(VA.getLocVT() == MVT::i64 && 4106 "unexpected calling convention register assignment"); 4107 assert(!Ins.empty() && Ins[0].VT == MVT::i64 && 4108 "unexpected use of 'returned'"); 4109 IsThisReturn = true; 4110 } 4111 if (RegsUsed.count(VA.getLocReg())) { 4112 // If this register has already been used then we're trying to pack 4113 // parts of an [N x i32] into an X-register. The extension type will 4114 // take care of putting the two halves in the right place but we have to 4115 // combine them. 4116 SDValue &Bits = 4117 std::find_if(RegsToPass.begin(), RegsToPass.end(), 4118 [=](const std::pair<unsigned, SDValue> &Elt) { 4119 return Elt.first == VA.getLocReg(); 4120 }) 4121 ->second; 4122 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); 4123 // Call site info is used for function's parameter entry value 4124 // tracking. For now we track only simple cases when parameter 4125 // is transferred through whole register. 4126 CSInfo.erase(std::remove_if(CSInfo.begin(), CSInfo.end(), 4127 [&VA](MachineFunction::ArgRegPair ArgReg) { 4128 return ArgReg.Reg == VA.getLocReg(); 4129 }), 4130 CSInfo.end()); 4131 } else { 4132 RegsToPass.emplace_back(VA.getLocReg(), Arg); 4133 RegsUsed.insert(VA.getLocReg()); 4134 const TargetOptions &Options = DAG.getTarget().Options; 4135 if (Options.EnableDebugEntryValues) 4136 CSInfo.emplace_back(VA.getLocReg(), i); 4137 } 4138 } else { 4139 assert(VA.isMemLoc()); 4140 4141 SDValue DstAddr; 4142 MachinePointerInfo DstInfo; 4143 4144 // FIXME: This works on big-endian for composite byvals, which are the 4145 // common case. It should also work for fundamental types too. 4146 uint32_t BEAlign = 0; 4147 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 4148 : VA.getValVT().getSizeInBits(); 4149 OpSize = (OpSize + 7) / 8; 4150 if (!Subtarget->isLittleEndian() && !Flags.isByVal() && 4151 !Flags.isInConsecutiveRegs()) { 4152 if (OpSize < 8) 4153 BEAlign = 8 - OpSize; 4154 } 4155 unsigned LocMemOffset = VA.getLocMemOffset(); 4156 int32_t Offset = LocMemOffset + BEAlign; 4157 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); 4158 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 4159 4160 if (IsTailCall) { 4161 Offset = Offset + FPDiff; 4162 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4163 4164 DstAddr = DAG.getFrameIndex(FI, PtrVT); 4165 DstInfo = 4166 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 4167 4168 // Make sure any stack arguments overlapping with where we're storing 4169 // are loaded before this eventual operation. Otherwise they'll be 4170 // clobbered. 4171 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); 4172 } else { 4173 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); 4174 4175 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 4176 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(), 4177 LocMemOffset); 4178 } 4179 4180 if (Outs[i].Flags.isByVal()) { 4181 SDValue SizeNode = 4182 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); 4183 SDValue Cpy = DAG.getMemcpy( 4184 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), 4185 /*isVol = */ false, /*AlwaysInline = */ false, 4186 /*isTailCall = */ false, 4187 DstInfo, MachinePointerInfo()); 4188 4189 MemOpChains.push_back(Cpy); 4190 } else { 4191 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already 4192 // promoted to a legal register type i32, we should truncate Arg back to 4193 // i1/i8/i16. 4194 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || 4195 VA.getValVT() == MVT::i16) 4196 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 4197 4198 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); 4199 MemOpChains.push_back(Store); 4200 } 4201 } 4202 } 4203 4204 if (!MemOpChains.empty()) 4205 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 4206 4207 // Build a sequence of copy-to-reg nodes chained together with token chain 4208 // and flag operands which copy the outgoing args into the appropriate regs. 4209 SDValue InFlag; 4210 for (auto &RegToPass : RegsToPass) { 4211 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 4212 RegToPass.second, InFlag); 4213 InFlag = Chain.getValue(1); 4214 } 4215 4216 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 4217 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 4218 // node so that legalize doesn't hack it. 4219 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4220 auto GV = G->getGlobal(); 4221 unsigned OpFlags = 4222 Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()); 4223 if (OpFlags & AArch64II::MO_GOT) { 4224 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 4225 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); 4226 } else { 4227 const GlobalValue *GV = G->getGlobal(); 4228 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 4229 } 4230 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4231 if (getTargetMachine().getCodeModel() == CodeModel::Large && 4232 Subtarget->isTargetMachO()) { 4233 const char *Sym = S->getSymbol(); 4234 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); 4235 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); 4236 } else { 4237 const char *Sym = S->getSymbol(); 4238 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); 4239 } 4240 } 4241 4242 // We don't usually want to end the call-sequence here because we would tidy 4243 // the frame up *after* the call, however in the ABI-changing tail-call case 4244 // we've carefully laid out the parameters so that when sp is reset they'll be 4245 // in the correct location. 4246 if (IsTailCall && !IsSibCall) { 4247 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), 4248 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 4249 InFlag = Chain.getValue(1); 4250 } 4251 4252 std::vector<SDValue> Ops; 4253 Ops.push_back(Chain); 4254 Ops.push_back(Callee); 4255 4256 if (IsTailCall) { 4257 // Each tail call may have to adjust the stack by a different amount, so 4258 // this information must travel along with the operation for eventual 4259 // consumption by emitEpilogue. 4260 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 4261 } 4262 4263 // Add argument registers to the end of the list so that they are known live 4264 // into the call. 4265 for (auto &RegToPass : RegsToPass) 4266 Ops.push_back(DAG.getRegister(RegToPass.first, 4267 RegToPass.second.getValueType())); 4268 4269 // Check callee args/returns for SVE registers and set calling convention 4270 // accordingly. 4271 if (CallConv == CallingConv::C) { 4272 bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){ 4273 return Out.VT.isScalableVector(); 4274 }); 4275 bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){ 4276 return In.VT.isScalableVector(); 4277 }); 4278 4279 if (CalleeInSVE || CalleeOutSVE) 4280 CallConv = CallingConv::AArch64_SVE_VectorCall; 4281 } 4282 4283 // Add a register mask operand representing the call-preserved registers. 4284 const uint32_t *Mask; 4285 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4286 if (IsThisReturn) { 4287 // For 'this' returns, use the X0-preserving mask if applicable 4288 Mask = TRI->getThisReturnPreservedMask(MF, CallConv); 4289 if (!Mask) { 4290 IsThisReturn = false; 4291 Mask = TRI->getCallPreservedMask(MF, CallConv); 4292 } 4293 } else 4294 Mask = TRI->getCallPreservedMask(MF, CallConv); 4295 4296 if (Subtarget->hasCustomCallingConv()) 4297 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 4298 4299 if (TRI->isAnyArgRegReserved(MF)) 4300 TRI->emitReservedArgRegCallError(MF); 4301 4302 assert(Mask && "Missing call preserved mask for calling convention"); 4303 Ops.push_back(DAG.getRegisterMask(Mask)); 4304 4305 if (InFlag.getNode()) 4306 Ops.push_back(InFlag); 4307 4308 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 4309 4310 // If we're doing a tall call, use a TC_RETURN here rather than an 4311 // actual call instruction. 4312 if (IsTailCall) { 4313 MF.getFrameInfo().setHasTailCall(); 4314 SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); 4315 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); 4316 return Ret; 4317 } 4318 4319 // Returns a chain and a flag for retval copy to use. 4320 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); 4321 InFlag = Chain.getValue(1); 4322 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); 4323 4324 uint64_t CalleePopBytes = 4325 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0; 4326 4327 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), 4328 DAG.getIntPtrConstant(CalleePopBytes, DL, true), 4329 InFlag, DL); 4330 if (!Ins.empty()) 4331 InFlag = Chain.getValue(1); 4332 4333 // Handle result values, copying them out of physregs into vregs that we 4334 // return. 4335 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 4336 InVals, IsThisReturn, 4337 IsThisReturn ? OutVals[0] : SDValue()); 4338 } 4339 4340 bool AArch64TargetLowering::CanLowerReturn( 4341 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, 4342 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 4343 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 4344 ? RetCC_AArch64_WebKit_JS 4345 : RetCC_AArch64_AAPCS; 4346 SmallVector<CCValAssign, 16> RVLocs; 4347 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 4348 return CCInfo.CheckReturn(Outs, RetCC); 4349 } 4350 4351 SDValue 4352 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 4353 bool isVarArg, 4354 const SmallVectorImpl<ISD::OutputArg> &Outs, 4355 const SmallVectorImpl<SDValue> &OutVals, 4356 const SDLoc &DL, SelectionDAG &DAG) const { 4357 auto &MF = DAG.getMachineFunction(); 4358 auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 4359 4360 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 4361 ? RetCC_AArch64_WebKit_JS 4362 : RetCC_AArch64_AAPCS; 4363 SmallVector<CCValAssign, 16> RVLocs; 4364 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4365 *DAG.getContext()); 4366 CCInfo.AnalyzeReturn(Outs, RetCC); 4367 4368 // Copy the result values into the output registers. 4369 SDValue Flag; 4370 SmallVector<std::pair<unsigned, SDValue>, 4> RetVals; 4371 SmallSet<unsigned, 4> RegsUsed; 4372 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); 4373 ++i, ++realRVLocIdx) { 4374 CCValAssign &VA = RVLocs[i]; 4375 assert(VA.isRegLoc() && "Can only return in registers!"); 4376 SDValue Arg = OutVals[realRVLocIdx]; 4377 4378 switch (VA.getLocInfo()) { 4379 default: 4380 llvm_unreachable("Unknown loc info!"); 4381 case CCValAssign::Full: 4382 if (Outs[i].ArgVT == MVT::i1) { 4383 // AAPCS requires i1 to be zero-extended to i8 by the producer of the 4384 // value. This is strictly redundant on Darwin (which uses "zeroext 4385 // i1"), but will be optimised out before ISel. 4386 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); 4387 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 4388 } 4389 break; 4390 case CCValAssign::BCvt: 4391 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 4392 break; 4393 case CCValAssign::AExt: 4394 case CCValAssign::ZExt: 4395 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4396 break; 4397 case CCValAssign::AExtUpper: 4398 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); 4399 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4400 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, 4401 DAG.getConstant(32, DL, VA.getLocVT())); 4402 break; 4403 } 4404 4405 if (RegsUsed.count(VA.getLocReg())) { 4406 SDValue &Bits = 4407 std::find_if(RetVals.begin(), RetVals.end(), 4408 [=](const std::pair<unsigned, SDValue> &Elt) { 4409 return Elt.first == VA.getLocReg(); 4410 }) 4411 ->second; 4412 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); 4413 } else { 4414 RetVals.emplace_back(VA.getLocReg(), Arg); 4415 RegsUsed.insert(VA.getLocReg()); 4416 } 4417 } 4418 4419 SmallVector<SDValue, 4> RetOps(1, Chain); 4420 for (auto &RetVal : RetVals) { 4421 Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag); 4422 Flag = Chain.getValue(1); 4423 RetOps.push_back( 4424 DAG.getRegister(RetVal.first, RetVal.second.getValueType())); 4425 } 4426 4427 // Windows AArch64 ABIs require that for returning structs by value we copy 4428 // the sret argument into X0 for the return. 4429 // We saved the argument into a virtual register in the entry block, 4430 // so now we copy the value out and into X0. 4431 if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { 4432 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg, 4433 getPointerTy(MF.getDataLayout())); 4434 4435 unsigned RetValReg = AArch64::X0; 4436 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag); 4437 Flag = Chain.getValue(1); 4438 4439 RetOps.push_back( 4440 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); 4441 } 4442 4443 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4444 const MCPhysReg *I = 4445 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 4446 if (I) { 4447 for (; *I; ++I) { 4448 if (AArch64::GPR64RegClass.contains(*I)) 4449 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 4450 else if (AArch64::FPR64RegClass.contains(*I)) 4451 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 4452 else 4453 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 4454 } 4455 } 4456 4457 RetOps[0] = Chain; // Update chain. 4458 4459 // Add the flag if we have it. 4460 if (Flag.getNode()) 4461 RetOps.push_back(Flag); 4462 4463 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); 4464 } 4465 4466 //===----------------------------------------------------------------------===// 4467 // Other Lowering Code 4468 //===----------------------------------------------------------------------===// 4469 4470 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, 4471 SelectionDAG &DAG, 4472 unsigned Flag) const { 4473 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 4474 N->getOffset(), Flag); 4475 } 4476 4477 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, 4478 SelectionDAG &DAG, 4479 unsigned Flag) const { 4480 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); 4481 } 4482 4483 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, 4484 SelectionDAG &DAG, 4485 unsigned Flag) const { 4486 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 4487 N->getOffset(), Flag); 4488 } 4489 4490 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty, 4491 SelectionDAG &DAG, 4492 unsigned Flag) const { 4493 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); 4494 } 4495 4496 // (loadGOT sym) 4497 template <class NodeTy> 4498 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG, 4499 unsigned Flags) const { 4500 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n"); 4501 SDLoc DL(N); 4502 EVT Ty = getPointerTy(DAG.getDataLayout()); 4503 SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags); 4504 // FIXME: Once remat is capable of dealing with instructions with register 4505 // operands, expand this into two nodes instead of using a wrapper node. 4506 return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr); 4507 } 4508 4509 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym)) 4510 template <class NodeTy> 4511 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG, 4512 unsigned Flags) const { 4513 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n"); 4514 SDLoc DL(N); 4515 EVT Ty = getPointerTy(DAG.getDataLayout()); 4516 const unsigned char MO_NC = AArch64II::MO_NC; 4517 return DAG.getNode( 4518 AArch64ISD::WrapperLarge, DL, Ty, 4519 getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags), 4520 getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags), 4521 getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags), 4522 getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags)); 4523 } 4524 4525 // (addlow (adrp %hi(sym)) %lo(sym)) 4526 template <class NodeTy> 4527 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 4528 unsigned Flags) const { 4529 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n"); 4530 SDLoc DL(N); 4531 EVT Ty = getPointerTy(DAG.getDataLayout()); 4532 SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags); 4533 SDValue Lo = getTargetNode(N, Ty, DAG, 4534 AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags); 4535 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi); 4536 return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo); 4537 } 4538 4539 // (adr sym) 4540 template <class NodeTy> 4541 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG, 4542 unsigned Flags) const { 4543 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n"); 4544 SDLoc DL(N); 4545 EVT Ty = getPointerTy(DAG.getDataLayout()); 4546 SDValue Sym = getTargetNode(N, Ty, DAG, Flags); 4547 return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym); 4548 } 4549 4550 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, 4551 SelectionDAG &DAG) const { 4552 GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 4553 const GlobalValue *GV = GN->getGlobal(); 4554 unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); 4555 4556 if (OpFlags != AArch64II::MO_NO_FLAG) 4557 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && 4558 "unexpected offset in global node"); 4559 4560 // This also catches the large code model case for Darwin, and tiny code 4561 // model with got relocations. 4562 if ((OpFlags & AArch64II::MO_GOT) != 0) { 4563 return getGOT(GN, DAG, OpFlags); 4564 } 4565 4566 SDValue Result; 4567 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 4568 Result = getAddrLarge(GN, DAG, OpFlags); 4569 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 4570 Result = getAddrTiny(GN, DAG, OpFlags); 4571 } else { 4572 Result = getAddr(GN, DAG, OpFlags); 4573 } 4574 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4575 SDLoc DL(GN); 4576 if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB)) 4577 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 4578 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 4579 return Result; 4580 } 4581 4582 /// Convert a TLS address reference into the correct sequence of loads 4583 /// and calls to compute the variable's address (for Darwin, currently) and 4584 /// return an SDValue containing the final node. 4585 4586 /// Darwin only has one TLS scheme which must be capable of dealing with the 4587 /// fully general situation, in the worst case. This means: 4588 /// + "extern __thread" declaration. 4589 /// + Defined in a possibly unknown dynamic library. 4590 /// 4591 /// The general system is that each __thread variable has a [3 x i64] descriptor 4592 /// which contains information used by the runtime to calculate the address. The 4593 /// only part of this the compiler needs to know about is the first xword, which 4594 /// contains a function pointer that must be called with the address of the 4595 /// entire descriptor in "x0". 4596 /// 4597 /// Since this descriptor may be in a different unit, in general even the 4598 /// descriptor must be accessed via an indirect load. The "ideal" code sequence 4599 /// is: 4600 /// adrp x0, _var@TLVPPAGE 4601 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor 4602 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, 4603 /// ; the function pointer 4604 /// blr x1 ; Uses descriptor address in x0 4605 /// ; Address of _var is now in x0. 4606 /// 4607 /// If the address of _var's descriptor *is* known to the linker, then it can 4608 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for 4609 /// a slight efficiency gain. 4610 SDValue 4611 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, 4612 SelectionDAG &DAG) const { 4613 assert(Subtarget->isTargetDarwin() && 4614 "This function expects a Darwin target"); 4615 4616 SDLoc DL(Op); 4617 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 4618 MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout()); 4619 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 4620 4621 SDValue TLVPAddr = 4622 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 4623 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); 4624 4625 // The first entry in the descriptor is a function pointer that we must call 4626 // to obtain the address of the variable. 4627 SDValue Chain = DAG.getEntryNode(); 4628 SDValue FuncTLVGet = DAG.getLoad( 4629 PtrMemVT, DL, Chain, DescAddr, 4630 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 4631 /* Alignment = */ PtrMemVT.getSizeInBits() / 8, 4632 MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 4633 Chain = FuncTLVGet.getValue(1); 4634 4635 // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer. 4636 FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT); 4637 4638 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 4639 MFI.setAdjustsStack(true); 4640 4641 // TLS calls preserve all registers except those that absolutely must be 4642 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be 4643 // silly). 4644 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4645 const uint32_t *Mask = TRI->getTLSCallPreservedMask(); 4646 if (Subtarget->hasCustomCallingConv()) 4647 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); 4648 4649 // Finally, we can make the call. This is just a degenerate version of a 4650 // normal AArch64 call node: x0 takes the address of the descriptor, and 4651 // returns the address of the variable in this thread. 4652 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); 4653 Chain = 4654 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), 4655 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), 4656 DAG.getRegisterMask(Mask), Chain.getValue(1)); 4657 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); 4658 } 4659 4660 /// Convert a thread-local variable reference into a sequence of instructions to 4661 /// compute the variable's address for the local exec TLS model of ELF targets. 4662 /// The sequence depends on the maximum TLS area size. 4663 SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV, 4664 SDValue ThreadBase, 4665 const SDLoc &DL, 4666 SelectionDAG &DAG) const { 4667 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4668 SDValue TPOff, Addr; 4669 4670 switch (DAG.getTarget().Options.TLSSize) { 4671 default: 4672 llvm_unreachable("Unexpected TLS size"); 4673 4674 case 12: { 4675 // mrs x0, TPIDR_EL0 4676 // add x0, x0, :tprel_lo12:a 4677 SDValue Var = DAG.getTargetGlobalAddress( 4678 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF); 4679 return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, 4680 Var, 4681 DAG.getTargetConstant(0, DL, MVT::i32)), 4682 0); 4683 } 4684 4685 case 24: { 4686 // mrs x0, TPIDR_EL0 4687 // add x0, x0, :tprel_hi12:a 4688 // add x0, x0, :tprel_lo12_nc:a 4689 SDValue HiVar = DAG.getTargetGlobalAddress( 4690 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 4691 SDValue LoVar = DAG.getTargetGlobalAddress( 4692 GV, DL, PtrVT, 0, 4693 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 4694 Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, 4695 HiVar, 4696 DAG.getTargetConstant(0, DL, MVT::i32)), 4697 0); 4698 return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr, 4699 LoVar, 4700 DAG.getTargetConstant(0, DL, MVT::i32)), 4701 0); 4702 } 4703 4704 case 32: { 4705 // mrs x1, TPIDR_EL0 4706 // movz x0, #:tprel_g1:a 4707 // movk x0, #:tprel_g0_nc:a 4708 // add x0, x1, x0 4709 SDValue HiVar = DAG.getTargetGlobalAddress( 4710 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); 4711 SDValue LoVar = DAG.getTargetGlobalAddress( 4712 GV, DL, PtrVT, 0, 4713 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); 4714 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, 4715 DAG.getTargetConstant(16, DL, MVT::i32)), 4716 0); 4717 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, 4718 DAG.getTargetConstant(0, DL, MVT::i32)), 4719 0); 4720 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 4721 } 4722 4723 case 48: { 4724 // mrs x1, TPIDR_EL0 4725 // movz x0, #:tprel_g2:a 4726 // movk x0, #:tprel_g1_nc:a 4727 // movk x0, #:tprel_g0_nc:a 4728 // add x0, x1, x0 4729 SDValue HiVar = DAG.getTargetGlobalAddress( 4730 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2); 4731 SDValue MiVar = DAG.getTargetGlobalAddress( 4732 GV, DL, PtrVT, 0, 4733 AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC); 4734 SDValue LoVar = DAG.getTargetGlobalAddress( 4735 GV, DL, PtrVT, 0, 4736 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); 4737 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, 4738 DAG.getTargetConstant(32, DL, MVT::i32)), 4739 0); 4740 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar, 4741 DAG.getTargetConstant(16, DL, MVT::i32)), 4742 0); 4743 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, 4744 DAG.getTargetConstant(0, DL, MVT::i32)), 4745 0); 4746 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 4747 } 4748 } 4749 } 4750 4751 /// When accessing thread-local variables under either the general-dynamic or 4752 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will 4753 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry 4754 /// is a function pointer to carry out the resolution. 4755 /// 4756 /// The sequence is: 4757 /// adrp x0, :tlsdesc:var 4758 /// ldr x1, [x0, #:tlsdesc_lo12:var] 4759 /// add x0, x0, #:tlsdesc_lo12:var 4760 /// .tlsdesccall var 4761 /// blr x1 4762 /// (TPIDR_EL0 offset now in x0) 4763 /// 4764 /// The above sequence must be produced unscheduled, to enable the linker to 4765 /// optimize/relax this sequence. 4766 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the 4767 /// above sequence, and expanded really late in the compilation flow, to ensure 4768 /// the sequence is produced as per above. 4769 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, 4770 const SDLoc &DL, 4771 SelectionDAG &DAG) const { 4772 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4773 4774 SDValue Chain = DAG.getEntryNode(); 4775 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 4776 4777 Chain = 4778 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr}); 4779 SDValue Glue = Chain.getValue(1); 4780 4781 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); 4782 } 4783 4784 SDValue 4785 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, 4786 SelectionDAG &DAG) const { 4787 assert(Subtarget->isTargetELF() && "This function expects an ELF target"); 4788 4789 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4790 4791 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); 4792 4793 if (!EnableAArch64ELFLocalDynamicTLSGeneration) { 4794 if (Model == TLSModel::LocalDynamic) 4795 Model = TLSModel::GeneralDynamic; 4796 } 4797 4798 if (getTargetMachine().getCodeModel() == CodeModel::Large && 4799 Model != TLSModel::LocalExec) 4800 report_fatal_error("ELF TLS only supported in small memory model or " 4801 "in local exec TLS model"); 4802 // Different choices can be made for the maximum size of the TLS area for a 4803 // module. For the small address model, the default TLS size is 16MiB and the 4804 // maximum TLS size is 4GiB. 4805 // FIXME: add tiny and large code model support for TLS access models other 4806 // than local exec. We currently generate the same code as small for tiny, 4807 // which may be larger than needed. 4808 4809 SDValue TPOff; 4810 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4811 SDLoc DL(Op); 4812 const GlobalValue *GV = GA->getGlobal(); 4813 4814 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); 4815 4816 if (Model == TLSModel::LocalExec) { 4817 return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG); 4818 } else if (Model == TLSModel::InitialExec) { 4819 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 4820 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); 4821 } else if (Model == TLSModel::LocalDynamic) { 4822 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS 4823 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate 4824 // the beginning of the module's TLS region, followed by a DTPREL offset 4825 // calculation. 4826 4827 // These accesses will need deduplicating if there's more than one. 4828 AArch64FunctionInfo *MFI = 4829 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 4830 MFI->incNumLocalDynamicTLSAccesses(); 4831 4832 // The call needs a relocation too for linker relaxation. It doesn't make 4833 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of 4834 // the address. 4835 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, 4836 AArch64II::MO_TLS); 4837 4838 // Now we can calculate the offset from TPIDR_EL0 to this module's 4839 // thread-local area. 4840 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); 4841 4842 // Now use :dtprel_whatever: operations to calculate this variable's offset 4843 // in its thread-storage area. 4844 SDValue HiVar = DAG.getTargetGlobalAddress( 4845 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 4846 SDValue LoVar = DAG.getTargetGlobalAddress( 4847 GV, DL, MVT::i64, 0, 4848 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 4849 4850 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, 4851 DAG.getTargetConstant(0, DL, MVT::i32)), 4852 0); 4853 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, 4854 DAG.getTargetConstant(0, DL, MVT::i32)), 4855 0); 4856 } else if (Model == TLSModel::GeneralDynamic) { 4857 // The call needs a relocation too for linker relaxation. It doesn't make 4858 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of 4859 // the address. 4860 SDValue SymAddr = 4861 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 4862 4863 // Finally we can make a call to calculate the offset from tpidr_el0. 4864 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); 4865 } else 4866 llvm_unreachable("Unsupported ELF TLS access model"); 4867 4868 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 4869 } 4870 4871 SDValue 4872 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op, 4873 SelectionDAG &DAG) const { 4874 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); 4875 4876 SDValue Chain = DAG.getEntryNode(); 4877 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4878 SDLoc DL(Op); 4879 4880 SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64); 4881 4882 // Load the ThreadLocalStoragePointer from the TEB 4883 // A pointer to the TLS array is located at offset 0x58 from the TEB. 4884 SDValue TLSArray = 4885 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL)); 4886 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); 4887 Chain = TLSArray.getValue(1); 4888 4889 // Load the TLS index from the C runtime; 4890 // This does the same as getAddr(), but without having a GlobalAddressSDNode. 4891 // This also does the same as LOADgot, but using a generic i32 load, 4892 // while LOADgot only loads i64. 4893 SDValue TLSIndexHi = 4894 DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE); 4895 SDValue TLSIndexLo = DAG.getTargetExternalSymbol( 4896 "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 4897 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi); 4898 SDValue TLSIndex = 4899 DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo); 4900 TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo()); 4901 Chain = TLSIndex.getValue(1); 4902 4903 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8 4904 // offset into the TLSArray. 4905 TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex); 4906 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, 4907 DAG.getConstant(3, DL, PtrVT)); 4908 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, 4909 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), 4910 MachinePointerInfo()); 4911 Chain = TLS.getValue(1); 4912 4913 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4914 const GlobalValue *GV = GA->getGlobal(); 4915 SDValue TGAHi = DAG.getTargetGlobalAddress( 4916 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 4917 SDValue TGALo = DAG.getTargetGlobalAddress( 4918 GV, DL, PtrVT, 0, 4919 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 4920 4921 // Add the offset from the start of the .tls section (section base). 4922 SDValue Addr = 4923 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi, 4924 DAG.getTargetConstant(0, DL, MVT::i32)), 4925 0); 4926 Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo); 4927 return Addr; 4928 } 4929 4930 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, 4931 SelectionDAG &DAG) const { 4932 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4933 if (DAG.getTarget().useEmulatedTLS()) 4934 return LowerToTLSEmulatedModel(GA, DAG); 4935 4936 if (Subtarget->isTargetDarwin()) 4937 return LowerDarwinGlobalTLSAddress(Op, DAG); 4938 if (Subtarget->isTargetELF()) 4939 return LowerELFGlobalTLSAddress(Op, DAG); 4940 if (Subtarget->isTargetWindows()) 4941 return LowerWindowsGlobalTLSAddress(Op, DAG); 4942 4943 llvm_unreachable("Unexpected platform trying to use TLS"); 4944 } 4945 4946 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 4947 SDValue Chain = Op.getOperand(0); 4948 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 4949 SDValue LHS = Op.getOperand(2); 4950 SDValue RHS = Op.getOperand(3); 4951 SDValue Dest = Op.getOperand(4); 4952 SDLoc dl(Op); 4953 4954 MachineFunction &MF = DAG.getMachineFunction(); 4955 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions 4956 // will not be produced, as they are conditional branch instructions that do 4957 // not set flags. 4958 bool ProduceNonFlagSettingCondBr = 4959 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); 4960 4961 // Handle f128 first, since lowering it will result in comparing the return 4962 // value of a libcall against zero, which is just what the rest of LowerBR_CC 4963 // is expecting to deal with. 4964 if (LHS.getValueType() == MVT::f128) { 4965 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); 4966 4967 // If softenSetCCOperands returned a scalar, we need to compare the result 4968 // against zero to select between true and false values. 4969 if (!RHS.getNode()) { 4970 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 4971 CC = ISD::SETNE; 4972 } 4973 } 4974 4975 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch 4976 // instruction. 4977 if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) && 4978 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 4979 // Only lower legal XALUO ops. 4980 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) 4981 return SDValue(); 4982 4983 // The actual operation with overflow check. 4984 AArch64CC::CondCode OFCC; 4985 SDValue Value, Overflow; 4986 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); 4987 4988 if (CC == ISD::SETNE) 4989 OFCC = getInvertedCondCode(OFCC); 4990 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); 4991 4992 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, 4993 Overflow); 4994 } 4995 4996 if (LHS.getValueType().isInteger()) { 4997 assert((LHS.getValueType() == RHS.getValueType()) && 4998 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); 4999 5000 // If the RHS of the comparison is zero, we can potentially fold this 5001 // to a specialized branch. 5002 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); 5003 if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) { 5004 if (CC == ISD::SETEQ) { 5005 // See if we can use a TBZ to fold in an AND as well. 5006 // TBZ has a smaller branch displacement than CBZ. If the offset is 5007 // out of bounds, a late MI-layer pass rewrites branches. 5008 // 403.gcc is an example that hits this case. 5009 if (LHS.getOpcode() == ISD::AND && 5010 isa<ConstantSDNode>(LHS.getOperand(1)) && 5011 isPowerOf2_64(LHS.getConstantOperandVal(1))) { 5012 SDValue Test = LHS.getOperand(0); 5013 uint64_t Mask = LHS.getConstantOperandVal(1); 5014 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, 5015 DAG.getConstant(Log2_64(Mask), dl, MVT::i64), 5016 Dest); 5017 } 5018 5019 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); 5020 } else if (CC == ISD::SETNE) { 5021 // See if we can use a TBZ to fold in an AND as well. 5022 // TBZ has a smaller branch displacement than CBZ. If the offset is 5023 // out of bounds, a late MI-layer pass rewrites branches. 5024 // 403.gcc is an example that hits this case. 5025 if (LHS.getOpcode() == ISD::AND && 5026 isa<ConstantSDNode>(LHS.getOperand(1)) && 5027 isPowerOf2_64(LHS.getConstantOperandVal(1))) { 5028 SDValue Test = LHS.getOperand(0); 5029 uint64_t Mask = LHS.getConstantOperandVal(1); 5030 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, 5031 DAG.getConstant(Log2_64(Mask), dl, MVT::i64), 5032 Dest); 5033 } 5034 5035 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); 5036 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { 5037 // Don't combine AND since emitComparison converts the AND to an ANDS 5038 // (a.k.a. TST) and the test in the test bit and branch instruction 5039 // becomes redundant. This would also increase register pressure. 5040 uint64_t Mask = LHS.getValueSizeInBits() - 1; 5041 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, 5042 DAG.getConstant(Mask, dl, MVT::i64), Dest); 5043 } 5044 } 5045 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && 5046 LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) { 5047 // Don't combine AND since emitComparison converts the AND to an ANDS 5048 // (a.k.a. TST) and the test in the test bit and branch instruction 5049 // becomes redundant. This would also increase register pressure. 5050 uint64_t Mask = LHS.getValueSizeInBits() - 1; 5051 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, 5052 DAG.getConstant(Mask, dl, MVT::i64), Dest); 5053 } 5054 5055 SDValue CCVal; 5056 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 5057 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, 5058 Cmp); 5059 } 5060 5061 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || 5062 LHS.getValueType() == MVT::f64); 5063 5064 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 5065 // clean. Some of them require two branches to implement. 5066 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5067 AArch64CC::CondCode CC1, CC2; 5068 changeFPCCToAArch64CC(CC, CC1, CC2); 5069 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5070 SDValue BR1 = 5071 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); 5072 if (CC2 != AArch64CC::AL) { 5073 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5074 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, 5075 Cmp); 5076 } 5077 5078 return BR1; 5079 } 5080 5081 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, 5082 SelectionDAG &DAG) const { 5083 EVT VT = Op.getValueType(); 5084 SDLoc DL(Op); 5085 5086 SDValue In1 = Op.getOperand(0); 5087 SDValue In2 = Op.getOperand(1); 5088 EVT SrcVT = In2.getValueType(); 5089 5090 if (SrcVT.bitsLT(VT)) 5091 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); 5092 else if (SrcVT.bitsGT(VT)) 5093 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL)); 5094 5095 EVT VecVT; 5096 uint64_t EltMask; 5097 SDValue VecVal1, VecVal2; 5098 5099 auto setVecVal = [&] (int Idx) { 5100 if (!VT.isVector()) { 5101 VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, 5102 DAG.getUNDEF(VecVT), In1); 5103 VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, 5104 DAG.getUNDEF(VecVT), In2); 5105 } else { 5106 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); 5107 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); 5108 } 5109 }; 5110 5111 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { 5112 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32); 5113 EltMask = 0x80000000ULL; 5114 setVecVal(AArch64::ssub); 5115 } else if (VT == MVT::f64 || VT == MVT::v2f64) { 5116 VecVT = MVT::v2i64; 5117 5118 // We want to materialize a mask with the high bit set, but the AdvSIMD 5119 // immediate moves cannot materialize that in a single instruction for 5120 // 64-bit elements. Instead, materialize zero and then negate it. 5121 EltMask = 0; 5122 5123 setVecVal(AArch64::dsub); 5124 } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) { 5125 VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16); 5126 EltMask = 0x8000ULL; 5127 setVecVal(AArch64::hsub); 5128 } else { 5129 llvm_unreachable("Invalid type for copysign!"); 5130 } 5131 5132 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT); 5133 5134 // If we couldn't materialize the mask above, then the mask vector will be 5135 // the zero vector, and we need to negate it here. 5136 if (VT == MVT::f64 || VT == MVT::v2f64) { 5137 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); 5138 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); 5139 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); 5140 } 5141 5142 SDValue Sel = 5143 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); 5144 5145 if (VT == MVT::f16) 5146 return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel); 5147 if (VT == MVT::f32) 5148 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); 5149 else if (VT == MVT::f64) 5150 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); 5151 else 5152 return DAG.getNode(ISD::BITCAST, DL, VT, Sel); 5153 } 5154 5155 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { 5156 if (DAG.getMachineFunction().getFunction().hasFnAttribute( 5157 Attribute::NoImplicitFloat)) 5158 return SDValue(); 5159 5160 if (!Subtarget->hasNEON()) 5161 return SDValue(); 5162 5163 // While there is no integer popcount instruction, it can 5164 // be more efficiently lowered to the following sequence that uses 5165 // AdvSIMD registers/instructions as long as the copies to/from 5166 // the AdvSIMD registers are cheap. 5167 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd 5168 // CNT V0.8B, V0.8B // 8xbyte pop-counts 5169 // ADDV B0, V0.8B // sum 8xbyte pop-counts 5170 // UMOV X0, V0.B[0] // copy byte result back to integer reg 5171 SDValue Val = Op.getOperand(0); 5172 SDLoc DL(Op); 5173 EVT VT = Op.getValueType(); 5174 5175 if (VT == MVT::i32 || VT == MVT::i64) { 5176 if (VT == MVT::i32) 5177 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 5178 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); 5179 5180 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); 5181 SDValue UaddLV = DAG.getNode( 5182 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 5183 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); 5184 5185 if (VT == MVT::i64) 5186 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); 5187 return UaddLV; 5188 } 5189 5190 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || 5191 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && 5192 "Unexpected type for custom ctpop lowering"); 5193 5194 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; 5195 Val = DAG.getBitcast(VT8Bit, Val); 5196 Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val); 5197 5198 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds. 5199 unsigned EltSize = 8; 5200 unsigned NumElts = VT.is64BitVector() ? 8 : 16; 5201 while (EltSize != VT.getScalarSizeInBits()) { 5202 EltSize *= 2; 5203 NumElts /= 2; 5204 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); 5205 Val = DAG.getNode( 5206 ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, 5207 DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val); 5208 } 5209 5210 return Val; 5211 } 5212 5213 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 5214 5215 if (Op.getValueType().isVector()) 5216 return LowerVSETCC(Op, DAG); 5217 5218 bool IsStrict = Op->isStrictFPOpcode(); 5219 bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS; 5220 unsigned OpNo = IsStrict ? 1 : 0; 5221 SDValue Chain; 5222 if (IsStrict) 5223 Chain = Op.getOperand(0); 5224 SDValue LHS = Op.getOperand(OpNo + 0); 5225 SDValue RHS = Op.getOperand(OpNo + 1); 5226 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get(); 5227 SDLoc dl(Op); 5228 5229 // We chose ZeroOrOneBooleanContents, so use zero and one. 5230 EVT VT = Op.getValueType(); 5231 SDValue TVal = DAG.getConstant(1, dl, VT); 5232 SDValue FVal = DAG.getConstant(0, dl, VT); 5233 5234 // Handle f128 first, since one possible outcome is a normal integer 5235 // comparison which gets picked up by the next if statement. 5236 if (LHS.getValueType() == MVT::f128) { 5237 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain, 5238 IsSignaling); 5239 5240 // If softenSetCCOperands returned a scalar, use it. 5241 if (!RHS.getNode()) { 5242 assert(LHS.getValueType() == Op.getValueType() && 5243 "Unexpected setcc expansion!"); 5244 return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS; 5245 } 5246 } 5247 5248 if (LHS.getValueType().isInteger()) { 5249 SDValue CCVal; 5250 SDValue Cmp = getAArch64Cmp( 5251 LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl); 5252 5253 // Note that we inverted the condition above, so we reverse the order of 5254 // the true and false operands here. This will allow the setcc to be 5255 // matched to a single CSINC instruction. 5256 SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); 5257 return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res; 5258 } 5259 5260 // Now we know we're dealing with FP values. 5261 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || 5262 LHS.getValueType() == MVT::f64); 5263 5264 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead 5265 // and do the comparison. 5266 SDValue Cmp; 5267 if (IsStrict) 5268 Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling); 5269 else 5270 Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5271 5272 AArch64CC::CondCode CC1, CC2; 5273 changeFPCCToAArch64CC(CC, CC1, CC2); 5274 SDValue Res; 5275 if (CC2 == AArch64CC::AL) { 5276 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1, 5277 CC2); 5278 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5279 5280 // Note that we inverted the condition above, so we reverse the order of 5281 // the true and false operands here. This will allow the setcc to be 5282 // matched to a single CSINC instruction. 5283 Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); 5284 } else { 5285 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't 5286 // totally clean. Some of them require two CSELs to implement. As is in 5287 // this case, we emit the first CSEL and then emit a second using the output 5288 // of the first as the RHS. We're effectively OR'ing the two CC's together. 5289 5290 // FIXME: It would be nice if we could match the two CSELs to two CSINCs. 5291 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5292 SDValue CS1 = 5293 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); 5294 5295 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5296 Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); 5297 } 5298 return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res; 5299 } 5300 5301 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, 5302 SDValue RHS, SDValue TVal, 5303 SDValue FVal, const SDLoc &dl, 5304 SelectionDAG &DAG) const { 5305 // Handle f128 first, because it will result in a comparison of some RTLIB 5306 // call result against zero. 5307 if (LHS.getValueType() == MVT::f128) { 5308 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); 5309 5310 // If softenSetCCOperands returned a scalar, we need to compare the result 5311 // against zero to select between true and false values. 5312 if (!RHS.getNode()) { 5313 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 5314 CC = ISD::SETNE; 5315 } 5316 } 5317 5318 // Also handle f16, for which we need to do a f32 comparison. 5319 if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { 5320 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); 5321 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); 5322 } 5323 5324 // Next, handle integers. 5325 if (LHS.getValueType().isInteger()) { 5326 assert((LHS.getValueType() == RHS.getValueType()) && 5327 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); 5328 5329 unsigned Opcode = AArch64ISD::CSEL; 5330 5331 // If both the TVal and the FVal are constants, see if we can swap them in 5332 // order to for a CSINV or CSINC out of them. 5333 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); 5334 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); 5335 5336 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { 5337 std::swap(TVal, FVal); 5338 std::swap(CTVal, CFVal); 5339 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5340 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { 5341 std::swap(TVal, FVal); 5342 std::swap(CTVal, CFVal); 5343 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5344 } else if (TVal.getOpcode() == ISD::XOR) { 5345 // If TVal is a NOT we want to swap TVal and FVal so that we can match 5346 // with a CSINV rather than a CSEL. 5347 if (isAllOnesConstant(TVal.getOperand(1))) { 5348 std::swap(TVal, FVal); 5349 std::swap(CTVal, CFVal); 5350 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5351 } 5352 } else if (TVal.getOpcode() == ISD::SUB) { 5353 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so 5354 // that we can match with a CSNEG rather than a CSEL. 5355 if (isNullConstant(TVal.getOperand(0))) { 5356 std::swap(TVal, FVal); 5357 std::swap(CTVal, CFVal); 5358 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5359 } 5360 } else if (CTVal && CFVal) { 5361 const int64_t TrueVal = CTVal->getSExtValue(); 5362 const int64_t FalseVal = CFVal->getSExtValue(); 5363 bool Swap = false; 5364 5365 // If both TVal and FVal are constants, see if FVal is the 5366 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC 5367 // instead of a CSEL in that case. 5368 if (TrueVal == ~FalseVal) { 5369 Opcode = AArch64ISD::CSINV; 5370 } else if (TrueVal == -FalseVal) { 5371 Opcode = AArch64ISD::CSNEG; 5372 } else if (TVal.getValueType() == MVT::i32) { 5373 // If our operands are only 32-bit wide, make sure we use 32-bit 5374 // arithmetic for the check whether we can use CSINC. This ensures that 5375 // the addition in the check will wrap around properly in case there is 5376 // an overflow (which would not be the case if we do the check with 5377 // 64-bit arithmetic). 5378 const uint32_t TrueVal32 = CTVal->getZExtValue(); 5379 const uint32_t FalseVal32 = CFVal->getZExtValue(); 5380 5381 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { 5382 Opcode = AArch64ISD::CSINC; 5383 5384 if (TrueVal32 > FalseVal32) { 5385 Swap = true; 5386 } 5387 } 5388 // 64-bit check whether we can use CSINC. 5389 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { 5390 Opcode = AArch64ISD::CSINC; 5391 5392 if (TrueVal > FalseVal) { 5393 Swap = true; 5394 } 5395 } 5396 5397 // Swap TVal and FVal if necessary. 5398 if (Swap) { 5399 std::swap(TVal, FVal); 5400 std::swap(CTVal, CFVal); 5401 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5402 } 5403 5404 if (Opcode != AArch64ISD::CSEL) { 5405 // Drop FVal since we can get its value by simply inverting/negating 5406 // TVal. 5407 FVal = TVal; 5408 } 5409 } 5410 5411 // Avoid materializing a constant when possible by reusing a known value in 5412 // a register. However, don't perform this optimization if the known value 5413 // is one, zero or negative one in the case of a CSEL. We can always 5414 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the 5415 // FVal, respectively. 5416 ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS); 5417 if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() && 5418 !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) { 5419 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 5420 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to 5421 // "a != C ? x : a" to avoid materializing C. 5422 if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ) 5423 TVal = LHS; 5424 else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE) 5425 FVal = LHS; 5426 } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) { 5427 assert (CTVal && CFVal && "Expected constant operands for CSNEG."); 5428 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to 5429 // avoid materializing C. 5430 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 5431 if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) { 5432 Opcode = AArch64ISD::CSINV; 5433 TVal = LHS; 5434 FVal = DAG.getConstant(0, dl, FVal.getValueType()); 5435 } 5436 } 5437 5438 SDValue CCVal; 5439 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 5440 EVT VT = TVal.getValueType(); 5441 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); 5442 } 5443 5444 // Now we know we're dealing with FP values. 5445 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || 5446 LHS.getValueType() == MVT::f64); 5447 assert(LHS.getValueType() == RHS.getValueType()); 5448 EVT VT = TVal.getValueType(); 5449 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5450 5451 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 5452 // clean. Some of them require two CSELs to implement. 5453 AArch64CC::CondCode CC1, CC2; 5454 changeFPCCToAArch64CC(CC, CC1, CC2); 5455 5456 if (DAG.getTarget().Options.UnsafeFPMath) { 5457 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and 5458 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0. 5459 ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS); 5460 if (RHSVal && RHSVal->isZero()) { 5461 ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal); 5462 ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal); 5463 5464 if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) && 5465 CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType()) 5466 TVal = LHS; 5467 else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) && 5468 CFVal && CFVal->isZero() && 5469 FVal.getValueType() == LHS.getValueType()) 5470 FVal = LHS; 5471 } 5472 } 5473 5474 // Emit first, and possibly only, CSEL. 5475 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5476 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); 5477 5478 // If we need a second CSEL, emit it, using the output of the first as the 5479 // RHS. We're effectively OR'ing the two CC's together. 5480 if (CC2 != AArch64CC::AL) { 5481 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5482 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); 5483 } 5484 5485 // Otherwise, return the output of the first CSEL. 5486 return CS1; 5487 } 5488 5489 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, 5490 SelectionDAG &DAG) const { 5491 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5492 SDValue LHS = Op.getOperand(0); 5493 SDValue RHS = Op.getOperand(1); 5494 SDValue TVal = Op.getOperand(2); 5495 SDValue FVal = Op.getOperand(3); 5496 SDLoc DL(Op); 5497 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); 5498 } 5499 5500 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, 5501 SelectionDAG &DAG) const { 5502 SDValue CCVal = Op->getOperand(0); 5503 SDValue TVal = Op->getOperand(1); 5504 SDValue FVal = Op->getOperand(2); 5505 SDLoc DL(Op); 5506 5507 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select 5508 // instruction. 5509 if (isOverflowIntrOpRes(CCVal)) { 5510 // Only lower legal XALUO ops. 5511 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) 5512 return SDValue(); 5513 5514 AArch64CC::CondCode OFCC; 5515 SDValue Value, Overflow; 5516 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); 5517 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); 5518 5519 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, 5520 CCVal, Overflow); 5521 } 5522 5523 // Lower it the same way as we would lower a SELECT_CC node. 5524 ISD::CondCode CC; 5525 SDValue LHS, RHS; 5526 if (CCVal.getOpcode() == ISD::SETCC) { 5527 LHS = CCVal.getOperand(0); 5528 RHS = CCVal.getOperand(1); 5529 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get(); 5530 } else { 5531 LHS = CCVal; 5532 RHS = DAG.getConstant(0, DL, CCVal.getValueType()); 5533 CC = ISD::SETNE; 5534 } 5535 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); 5536 } 5537 5538 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, 5539 SelectionDAG &DAG) const { 5540 // Jump table entries as PC relative offsets. No additional tweaking 5541 // is necessary here. Just get the address of the jump table. 5542 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 5543 5544 if (getTargetMachine().getCodeModel() == CodeModel::Large && 5545 !Subtarget->isTargetMachO()) { 5546 return getAddrLarge(JT, DAG); 5547 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 5548 return getAddrTiny(JT, DAG); 5549 } 5550 return getAddr(JT, DAG); 5551 } 5552 5553 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op, 5554 SelectionDAG &DAG) const { 5555 // Jump table entries as PC relative offsets. No additional tweaking 5556 // is necessary here. Just get the address of the jump table. 5557 SDLoc DL(Op); 5558 SDValue JT = Op.getOperand(1); 5559 SDValue Entry = Op.getOperand(2); 5560 int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex(); 5561 5562 SDNode *Dest = 5563 DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT, 5564 Entry, DAG.getTargetJumpTable(JTI, MVT::i32)); 5565 return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0), 5566 SDValue(Dest, 0)); 5567 } 5568 5569 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, 5570 SelectionDAG &DAG) const { 5571 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 5572 5573 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 5574 // Use the GOT for the large code model on iOS. 5575 if (Subtarget->isTargetMachO()) { 5576 return getGOT(CP, DAG); 5577 } 5578 return getAddrLarge(CP, DAG); 5579 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 5580 return getAddrTiny(CP, DAG); 5581 } else { 5582 return getAddr(CP, DAG); 5583 } 5584 } 5585 5586 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, 5587 SelectionDAG &DAG) const { 5588 BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op); 5589 if (getTargetMachine().getCodeModel() == CodeModel::Large && 5590 !Subtarget->isTargetMachO()) { 5591 return getAddrLarge(BA, DAG); 5592 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 5593 return getAddrTiny(BA, DAG); 5594 } 5595 return getAddr(BA, DAG); 5596 } 5597 5598 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, 5599 SelectionDAG &DAG) const { 5600 AArch64FunctionInfo *FuncInfo = 5601 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 5602 5603 SDLoc DL(Op); 5604 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), 5605 getPointerTy(DAG.getDataLayout())); 5606 FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout())); 5607 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5608 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 5609 MachinePointerInfo(SV)); 5610 } 5611 5612 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op, 5613 SelectionDAG &DAG) const { 5614 AArch64FunctionInfo *FuncInfo = 5615 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 5616 5617 SDLoc DL(Op); 5618 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0 5619 ? FuncInfo->getVarArgsGPRIndex() 5620 : FuncInfo->getVarArgsStackIndex(), 5621 getPointerTy(DAG.getDataLayout())); 5622 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5623 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 5624 MachinePointerInfo(SV)); 5625 } 5626 5627 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, 5628 SelectionDAG &DAG) const { 5629 // The layout of the va_list struct is specified in the AArch64 Procedure Call 5630 // Standard, section B.3. 5631 MachineFunction &MF = DAG.getMachineFunction(); 5632 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 5633 auto PtrVT = getPointerTy(DAG.getDataLayout()); 5634 SDLoc DL(Op); 5635 5636 SDValue Chain = Op.getOperand(0); 5637 SDValue VAList = Op.getOperand(1); 5638 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5639 SmallVector<SDValue, 4> MemOps; 5640 5641 // void *__stack at offset 0 5642 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); 5643 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, 5644 MachinePointerInfo(SV), /* Alignment = */ 8)); 5645 5646 // void *__gr_top at offset 8 5647 int GPRSize = FuncInfo->getVarArgsGPRSize(); 5648 if (GPRSize > 0) { 5649 SDValue GRTop, GRTopAddr; 5650 5651 GRTopAddr = 5652 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT)); 5653 5654 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); 5655 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, 5656 DAG.getConstant(GPRSize, DL, PtrVT)); 5657 5658 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, 5659 MachinePointerInfo(SV, 8), 5660 /* Alignment = */ 8)); 5661 } 5662 5663 // void *__vr_top at offset 16 5664 int FPRSize = FuncInfo->getVarArgsFPRSize(); 5665 if (FPRSize > 0) { 5666 SDValue VRTop, VRTopAddr; 5667 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 5668 DAG.getConstant(16, DL, PtrVT)); 5669 5670 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); 5671 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, 5672 DAG.getConstant(FPRSize, DL, PtrVT)); 5673 5674 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, 5675 MachinePointerInfo(SV, 16), 5676 /* Alignment = */ 8)); 5677 } 5678 5679 // int __gr_offs at offset 24 5680 SDValue GROffsAddr = 5681 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT)); 5682 MemOps.push_back(DAG.getStore( 5683 Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr, 5684 MachinePointerInfo(SV, 24), /* Alignment = */ 4)); 5685 5686 // int __vr_offs at offset 28 5687 SDValue VROffsAddr = 5688 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT)); 5689 MemOps.push_back(DAG.getStore( 5690 Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr, 5691 MachinePointerInfo(SV, 28), /* Alignment = */ 4)); 5692 5693 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 5694 } 5695 5696 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, 5697 SelectionDAG &DAG) const { 5698 MachineFunction &MF = DAG.getMachineFunction(); 5699 5700 if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv())) 5701 return LowerWin64_VASTART(Op, DAG); 5702 else if (Subtarget->isTargetDarwin()) 5703 return LowerDarwin_VASTART(Op, DAG); 5704 else 5705 return LowerAAPCS_VASTART(Op, DAG); 5706 } 5707 5708 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, 5709 SelectionDAG &DAG) const { 5710 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single 5711 // pointer. 5712 SDLoc DL(Op); 5713 unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8; 5714 unsigned VaListSize = (Subtarget->isTargetDarwin() || 5715 Subtarget->isTargetWindows()) ? PtrSize : 32; 5716 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 5717 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5718 5719 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2), 5720 DAG.getConstant(VaListSize, DL, MVT::i32), PtrSize, 5721 false, false, false, MachinePointerInfo(DestSV), 5722 MachinePointerInfo(SrcSV)); 5723 } 5724 5725 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 5726 assert(Subtarget->isTargetDarwin() && 5727 "automatic va_arg instruction only works on Darwin"); 5728 5729 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5730 EVT VT = Op.getValueType(); 5731 SDLoc DL(Op); 5732 SDValue Chain = Op.getOperand(0); 5733 SDValue Addr = Op.getOperand(1); 5734 unsigned Align = Op.getConstantOperandVal(3); 5735 unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8; 5736 auto PtrVT = getPointerTy(DAG.getDataLayout()); 5737 auto PtrMemVT = getPointerMemTy(DAG.getDataLayout()); 5738 SDValue VAList = 5739 DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V)); 5740 Chain = VAList.getValue(1); 5741 VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT); 5742 5743 if (Align > MinSlotSize) { 5744 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); 5745 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 5746 DAG.getConstant(Align - 1, DL, PtrVT)); 5747 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 5748 DAG.getConstant(-(int64_t)Align, DL, PtrVT)); 5749 } 5750 5751 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5752 unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); 5753 5754 // Scalar integer and FP values smaller than 64 bits are implicitly extended 5755 // up to 64 bits. At the very least, we have to increase the striding of the 5756 // vaargs list to match this, and for FP values we need to introduce 5757 // FP_ROUND nodes as well. 5758 if (VT.isInteger() && !VT.isVector()) 5759 ArgSize = std::max(ArgSize, MinSlotSize); 5760 bool NeedFPTrunc = false; 5761 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { 5762 ArgSize = 8; 5763 NeedFPTrunc = true; 5764 } 5765 5766 // Increment the pointer, VAList, to the next vaarg 5767 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 5768 DAG.getConstant(ArgSize, DL, PtrVT)); 5769 VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT); 5770 5771 // Store the incremented VAList to the legalized pointer 5772 SDValue APStore = 5773 DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V)); 5774 5775 // Load the actual argument out of the pointer VAList 5776 if (NeedFPTrunc) { 5777 // Load the value as an f64. 5778 SDValue WideFP = 5779 DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo()); 5780 // Round the value down to an f32. 5781 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), 5782 DAG.getIntPtrConstant(1, DL)); 5783 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; 5784 // Merge the rounded value with the chain output of the load. 5785 return DAG.getMergeValues(Ops, DL); 5786 } 5787 5788 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo()); 5789 } 5790 5791 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, 5792 SelectionDAG &DAG) const { 5793 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5794 MFI.setFrameAddressIsTaken(true); 5795 5796 EVT VT = Op.getValueType(); 5797 SDLoc DL(Op); 5798 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5799 SDValue FrameAddr = 5800 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64); 5801 while (Depth--) 5802 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, 5803 MachinePointerInfo()); 5804 5805 if (Subtarget->isTargetILP32()) 5806 FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr, 5807 DAG.getValueType(VT)); 5808 5809 return FrameAddr; 5810 } 5811 5812 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op, 5813 SelectionDAG &DAG) const { 5814 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5815 5816 EVT VT = getPointerTy(DAG.getDataLayout()); 5817 SDLoc DL(Op); 5818 int FI = MFI.CreateFixedObject(4, 0, false); 5819 return DAG.getFrameIndex(FI, VT); 5820 } 5821 5822 #define GET_REGISTER_MATCHER 5823 #include "AArch64GenAsmMatcher.inc" 5824 5825 // FIXME? Maybe this could be a TableGen attribute on some registers and 5826 // this table could be generated automatically from RegInfo. 5827 Register AArch64TargetLowering:: 5828 getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { 5829 Register Reg = MatchRegisterName(RegName); 5830 if (AArch64::X1 <= Reg && Reg <= AArch64::X28) { 5831 const MCRegisterInfo *MRI = Subtarget->getRegisterInfo(); 5832 unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false); 5833 if (!Subtarget->isXRegisterReserved(DwarfRegNum)) 5834 Reg = 0; 5835 } 5836 if (Reg) 5837 return Reg; 5838 report_fatal_error(Twine("Invalid register name \"" 5839 + StringRef(RegName) + "\".")); 5840 } 5841 5842 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op, 5843 SelectionDAG &DAG) const { 5844 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 5845 5846 EVT VT = Op.getValueType(); 5847 SDLoc DL(Op); 5848 5849 SDValue FrameAddr = 5850 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); 5851 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); 5852 5853 return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset); 5854 } 5855 5856 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, 5857 SelectionDAG &DAG) const { 5858 MachineFunction &MF = DAG.getMachineFunction(); 5859 MachineFrameInfo &MFI = MF.getFrameInfo(); 5860 MFI.setReturnAddressIsTaken(true); 5861 5862 EVT VT = Op.getValueType(); 5863 SDLoc DL(Op); 5864 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5865 if (Depth) { 5866 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5867 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); 5868 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 5869 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 5870 MachinePointerInfo()); 5871 } 5872 5873 // Return LR, which contains the return address. Mark it an implicit live-in. 5874 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); 5875 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5876 } 5877 5878 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two 5879 /// i64 values and take a 2 x i64 value to shift plus a shift amount. 5880 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, 5881 SelectionDAG &DAG) const { 5882 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 5883 EVT VT = Op.getValueType(); 5884 unsigned VTBits = VT.getSizeInBits(); 5885 SDLoc dl(Op); 5886 SDValue ShOpLo = Op.getOperand(0); 5887 SDValue ShOpHi = Op.getOperand(1); 5888 SDValue ShAmt = Op.getOperand(2); 5889 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 5890 5891 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 5892 5893 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, 5894 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); 5895 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 5896 5897 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which 5898 // is "undef". We wanted 0, so CSEL it directly. 5899 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), 5900 ISD::SETEQ, dl, DAG); 5901 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); 5902 HiBitsForLo = 5903 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), 5904 HiBitsForLo, CCVal, Cmp); 5905 5906 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, 5907 DAG.getConstant(VTBits, dl, MVT::i64)); 5908 5909 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 5910 SDValue LoForNormalShift = 5911 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo); 5912 5913 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, 5914 dl, DAG); 5915 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); 5916 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 5917 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, 5918 LoForNormalShift, CCVal, Cmp); 5919 5920 // AArch64 shifts larger than the register width are wrapped rather than 5921 // clamped, so we can't just emit "hi >> x". 5922 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 5923 SDValue HiForBigShift = 5924 Opc == ISD::SRA 5925 ? DAG.getNode(Opc, dl, VT, ShOpHi, 5926 DAG.getConstant(VTBits - 1, dl, MVT::i64)) 5927 : DAG.getConstant(0, dl, VT); 5928 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, 5929 HiForNormalShift, CCVal, Cmp); 5930 5931 SDValue Ops[2] = { Lo, Hi }; 5932 return DAG.getMergeValues(Ops, dl); 5933 } 5934 5935 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 5936 /// i64 values and take a 2 x i64 value to shift plus a shift amount. 5937 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, 5938 SelectionDAG &DAG) const { 5939 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 5940 EVT VT = Op.getValueType(); 5941 unsigned VTBits = VT.getSizeInBits(); 5942 SDLoc dl(Op); 5943 SDValue ShOpLo = Op.getOperand(0); 5944 SDValue ShOpHi = Op.getOperand(1); 5945 SDValue ShAmt = Op.getOperand(2); 5946 5947 assert(Op.getOpcode() == ISD::SHL_PARTS); 5948 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, 5949 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); 5950 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 5951 5952 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which 5953 // is "undef". We wanted 0, so CSEL it directly. 5954 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), 5955 ISD::SETEQ, dl, DAG); 5956 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); 5957 LoBitsForHi = 5958 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), 5959 LoBitsForHi, CCVal, Cmp); 5960 5961 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, 5962 DAG.getConstant(VTBits, dl, MVT::i64)); 5963 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 5964 SDValue HiForNormalShift = 5965 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); 5966 5967 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 5968 5969 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, 5970 dl, DAG); 5971 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); 5972 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, 5973 HiForNormalShift, CCVal, Cmp); 5974 5975 // AArch64 shifts of larger than register sizes are wrapped rather than 5976 // clamped, so we can't just emit "lo << a" if a is too big. 5977 SDValue LoForBigShift = DAG.getConstant(0, dl, VT); 5978 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 5979 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, 5980 LoForNormalShift, CCVal, Cmp); 5981 5982 SDValue Ops[2] = { Lo, Hi }; 5983 return DAG.getMergeValues(Ops, dl); 5984 } 5985 5986 bool AArch64TargetLowering::isOffsetFoldingLegal( 5987 const GlobalAddressSDNode *GA) const { 5988 // Offsets are folded in the DAG combine rather than here so that we can 5989 // intelligently choose an offset based on the uses. 5990 return false; 5991 } 5992 5993 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 5994 bool OptForSize) const { 5995 bool IsLegal = false; 5996 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and 5997 // 16-bit case when target has full fp16 support. 5998 // FIXME: We should be able to handle f128 as well with a clever lowering. 5999 const APInt ImmInt = Imm.bitcastToAPInt(); 6000 if (VT == MVT::f64) 6001 IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero(); 6002 else if (VT == MVT::f32) 6003 IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero(); 6004 else if (VT == MVT::f16 && Subtarget->hasFullFP16()) 6005 IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero(); 6006 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to 6007 // generate that fmov. 6008 6009 // If we can not materialize in immediate field for fmov, check if the 6010 // value can be encoded as the immediate operand of a logical instruction. 6011 // The immediate value will be created with either MOVZ, MOVN, or ORR. 6012 if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) { 6013 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr; 6014 // however the mov+fmov sequence is always better because of the reduced 6015 // cache pressure. The timings are still the same if you consider 6016 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the 6017 // movw+movk is fused). So we limit up to 2 instrdduction at most. 6018 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 6019 AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(), 6020 Insn); 6021 unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2)); 6022 IsLegal = Insn.size() <= Limit; 6023 } 6024 6025 LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString() 6026 << " imm value: "; Imm.dump();); 6027 return IsLegal; 6028 } 6029 6030 //===----------------------------------------------------------------------===// 6031 // AArch64 Optimization Hooks 6032 //===----------------------------------------------------------------------===// 6033 6034 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode, 6035 SDValue Operand, SelectionDAG &DAG, 6036 int &ExtraSteps) { 6037 EVT VT = Operand.getValueType(); 6038 if (ST->hasNEON() && 6039 (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 || 6040 VT == MVT::f32 || VT == MVT::v1f32 || 6041 VT == MVT::v2f32 || VT == MVT::v4f32)) { 6042 if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) 6043 // For the reciprocal estimates, convergence is quadratic, so the number 6044 // of digits is doubled after each iteration. In ARMv8, the accuracy of 6045 // the initial estimate is 2^-8. Thus the number of extra steps to refine 6046 // the result for float (23 mantissa bits) is 2 and for double (52 6047 // mantissa bits) is 3. 6048 ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2; 6049 6050 return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand); 6051 } 6052 6053 return SDValue(); 6054 } 6055 6056 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand, 6057 SelectionDAG &DAG, int Enabled, 6058 int &ExtraSteps, 6059 bool &UseOneConst, 6060 bool Reciprocal) const { 6061 if (Enabled == ReciprocalEstimate::Enabled || 6062 (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt())) 6063 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand, 6064 DAG, ExtraSteps)) { 6065 SDLoc DL(Operand); 6066 EVT VT = Operand.getValueType(); 6067 6068 SDNodeFlags Flags; 6069 Flags.setAllowReassociation(true); 6070 6071 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2) 6072 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) 6073 for (int i = ExtraSteps; i > 0; --i) { 6074 SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate, 6075 Flags); 6076 Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags); 6077 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); 6078 } 6079 if (!Reciprocal) { 6080 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 6081 VT); 6082 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6083 SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ); 6084 6085 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags); 6086 // Correct the result if the operand is 0.0. 6087 Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, 6088 VT, Eq, Operand, Estimate); 6089 } 6090 6091 ExtraSteps = 0; 6092 return Estimate; 6093 } 6094 6095 return SDValue(); 6096 } 6097 6098 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand, 6099 SelectionDAG &DAG, int Enabled, 6100 int &ExtraSteps) const { 6101 if (Enabled == ReciprocalEstimate::Enabled) 6102 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand, 6103 DAG, ExtraSteps)) { 6104 SDLoc DL(Operand); 6105 EVT VT = Operand.getValueType(); 6106 6107 SDNodeFlags Flags; 6108 Flags.setAllowReassociation(true); 6109 6110 // Newton reciprocal iteration: E * (2 - X * E) 6111 // AArch64 reciprocal iteration instruction: (2 - M * N) 6112 for (int i = ExtraSteps; i > 0; --i) { 6113 SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand, 6114 Estimate, Flags); 6115 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); 6116 } 6117 6118 ExtraSteps = 0; 6119 return Estimate; 6120 } 6121 6122 return SDValue(); 6123 } 6124 6125 //===----------------------------------------------------------------------===// 6126 // AArch64 Inline Assembly Support 6127 //===----------------------------------------------------------------------===// 6128 6129 // Table of Constraints 6130 // TODO: This is the current set of constraints supported by ARM for the 6131 // compiler, not all of them may make sense. 6132 // 6133 // r - A general register 6134 // w - An FP/SIMD register of some size in the range v0-v31 6135 // x - An FP/SIMD register of some size in the range v0-v15 6136 // I - Constant that can be used with an ADD instruction 6137 // J - Constant that can be used with a SUB instruction 6138 // K - Constant that can be used with a 32-bit logical instruction 6139 // L - Constant that can be used with a 64-bit logical instruction 6140 // M - Constant that can be used as a 32-bit MOV immediate 6141 // N - Constant that can be used as a 64-bit MOV immediate 6142 // Q - A memory reference with base register and no offset 6143 // S - A symbolic address 6144 // Y - Floating point constant zero 6145 // Z - Integer constant zero 6146 // 6147 // Note that general register operands will be output using their 64-bit x 6148 // register name, whatever the size of the variable, unless the asm operand 6149 // is prefixed by the %w modifier. Floating-point and SIMD register operands 6150 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or 6151 // %q modifier. 6152 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 6153 // At this point, we have to lower this constraint to something else, so we 6154 // lower it to an "r" or "w". However, by doing this we will force the result 6155 // to be in register, while the X constraint is much more permissive. 6156 // 6157 // Although we are correct (we are free to emit anything, without 6158 // constraints), we might break use cases that would expect us to be more 6159 // efficient and emit something else. 6160 if (!Subtarget->hasFPARMv8()) 6161 return "r"; 6162 6163 if (ConstraintVT.isFloatingPoint()) 6164 return "w"; 6165 6166 if (ConstraintVT.isVector() && 6167 (ConstraintVT.getSizeInBits() == 64 || 6168 ConstraintVT.getSizeInBits() == 128)) 6169 return "w"; 6170 6171 return "r"; 6172 } 6173 6174 enum PredicateConstraint { 6175 Upl, 6176 Upa, 6177 Invalid 6178 }; 6179 6180 static PredicateConstraint parsePredicateConstraint(StringRef Constraint) { 6181 PredicateConstraint P = PredicateConstraint::Invalid; 6182 if (Constraint == "Upa") 6183 P = PredicateConstraint::Upa; 6184 if (Constraint == "Upl") 6185 P = PredicateConstraint::Upl; 6186 return P; 6187 } 6188 6189 /// getConstraintType - Given a constraint letter, return the type of 6190 /// constraint it is for this target. 6191 AArch64TargetLowering::ConstraintType 6192 AArch64TargetLowering::getConstraintType(StringRef Constraint) const { 6193 if (Constraint.size() == 1) { 6194 switch (Constraint[0]) { 6195 default: 6196 break; 6197 case 'x': 6198 case 'w': 6199 case 'y': 6200 return C_RegisterClass; 6201 // An address with a single base register. Due to the way we 6202 // currently handle addresses it is the same as 'r'. 6203 case 'Q': 6204 return C_Memory; 6205 case 'I': 6206 case 'J': 6207 case 'K': 6208 case 'L': 6209 case 'M': 6210 case 'N': 6211 case 'Y': 6212 case 'Z': 6213 return C_Immediate; 6214 case 'z': 6215 case 'S': // A symbolic address 6216 return C_Other; 6217 } 6218 } else if (parsePredicateConstraint(Constraint) != 6219 PredicateConstraint::Invalid) 6220 return C_RegisterClass; 6221 return TargetLowering::getConstraintType(Constraint); 6222 } 6223 6224 /// Examine constraint type and operand type and determine a weight value. 6225 /// This object must already have been set up with the operand type 6226 /// and the current alternative constraint selected. 6227 TargetLowering::ConstraintWeight 6228 AArch64TargetLowering::getSingleConstraintMatchWeight( 6229 AsmOperandInfo &info, const char *constraint) const { 6230 ConstraintWeight weight = CW_Invalid; 6231 Value *CallOperandVal = info.CallOperandVal; 6232 // If we don't have a value, we can't do a match, 6233 // but allow it at the lowest weight. 6234 if (!CallOperandVal) 6235 return CW_Default; 6236 Type *type = CallOperandVal->getType(); 6237 // Look at the constraint type. 6238 switch (*constraint) { 6239 default: 6240 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 6241 break; 6242 case 'x': 6243 case 'w': 6244 case 'y': 6245 if (type->isFloatingPointTy() || type->isVectorTy()) 6246 weight = CW_Register; 6247 break; 6248 case 'z': 6249 weight = CW_Constant; 6250 break; 6251 case 'U': 6252 if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid) 6253 weight = CW_Register; 6254 break; 6255 } 6256 return weight; 6257 } 6258 6259 std::pair<unsigned, const TargetRegisterClass *> 6260 AArch64TargetLowering::getRegForInlineAsmConstraint( 6261 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 6262 if (Constraint.size() == 1) { 6263 switch (Constraint[0]) { 6264 case 'r': 6265 if (VT.getSizeInBits() == 64) 6266 return std::make_pair(0U, &AArch64::GPR64commonRegClass); 6267 return std::make_pair(0U, &AArch64::GPR32commonRegClass); 6268 case 'w': 6269 if (!Subtarget->hasFPARMv8()) 6270 break; 6271 if (VT.isScalableVector()) 6272 return std::make_pair(0U, &AArch64::ZPRRegClass); 6273 if (VT.getSizeInBits() == 16) 6274 return std::make_pair(0U, &AArch64::FPR16RegClass); 6275 if (VT.getSizeInBits() == 32) 6276 return std::make_pair(0U, &AArch64::FPR32RegClass); 6277 if (VT.getSizeInBits() == 64) 6278 return std::make_pair(0U, &AArch64::FPR64RegClass); 6279 if (VT.getSizeInBits() == 128) 6280 return std::make_pair(0U, &AArch64::FPR128RegClass); 6281 break; 6282 // The instructions that this constraint is designed for can 6283 // only take 128-bit registers so just use that regclass. 6284 case 'x': 6285 if (!Subtarget->hasFPARMv8()) 6286 break; 6287 if (VT.isScalableVector()) 6288 return std::make_pair(0U, &AArch64::ZPR_4bRegClass); 6289 if (VT.getSizeInBits() == 128) 6290 return std::make_pair(0U, &AArch64::FPR128_loRegClass); 6291 break; 6292 case 'y': 6293 if (!Subtarget->hasFPARMv8()) 6294 break; 6295 if (VT.isScalableVector()) 6296 return std::make_pair(0U, &AArch64::ZPR_3bRegClass); 6297 break; 6298 } 6299 } else { 6300 PredicateConstraint PC = parsePredicateConstraint(Constraint); 6301 if (PC != PredicateConstraint::Invalid) { 6302 assert(VT.isScalableVector()); 6303 bool restricted = (PC == PredicateConstraint::Upl); 6304 return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass) 6305 : std::make_pair(0U, &AArch64::PPRRegClass); 6306 } 6307 } 6308 if (StringRef("{cc}").equals_lower(Constraint)) 6309 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); 6310 6311 // Use the default implementation in TargetLowering to convert the register 6312 // constraint into a member of a register class. 6313 std::pair<unsigned, const TargetRegisterClass *> Res; 6314 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 6315 6316 // Not found as a standard register? 6317 if (!Res.second) { 6318 unsigned Size = Constraint.size(); 6319 if ((Size == 4 || Size == 5) && Constraint[0] == '{' && 6320 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { 6321 int RegNo; 6322 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); 6323 if (!Failed && RegNo >= 0 && RegNo <= 31) { 6324 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size. 6325 // By default we'll emit v0-v31 for this unless there's a modifier where 6326 // we'll emit the correct register as well. 6327 if (VT != MVT::Other && VT.getSizeInBits() == 64) { 6328 Res.first = AArch64::FPR64RegClass.getRegister(RegNo); 6329 Res.second = &AArch64::FPR64RegClass; 6330 } else { 6331 Res.first = AArch64::FPR128RegClass.getRegister(RegNo); 6332 Res.second = &AArch64::FPR128RegClass; 6333 } 6334 } 6335 } 6336 } 6337 6338 if (Res.second && !Subtarget->hasFPARMv8() && 6339 !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) && 6340 !AArch64::GPR64allRegClass.hasSubClassEq(Res.second)) 6341 return std::make_pair(0U, nullptr); 6342 6343 return Res; 6344 } 6345 6346 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 6347 /// vector. If it is invalid, don't add anything to Ops. 6348 void AArch64TargetLowering::LowerAsmOperandForConstraint( 6349 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 6350 SelectionDAG &DAG) const { 6351 SDValue Result; 6352 6353 // Currently only support length 1 constraints. 6354 if (Constraint.length() != 1) 6355 return; 6356 6357 char ConstraintLetter = Constraint[0]; 6358 switch (ConstraintLetter) { 6359 default: 6360 break; 6361 6362 // This set of constraints deal with valid constants for various instructions. 6363 // Validate and return a target constant for them if we can. 6364 case 'z': { 6365 // 'z' maps to xzr or wzr so it needs an input of 0. 6366 if (!isNullConstant(Op)) 6367 return; 6368 6369 if (Op.getValueType() == MVT::i64) 6370 Result = DAG.getRegister(AArch64::XZR, MVT::i64); 6371 else 6372 Result = DAG.getRegister(AArch64::WZR, MVT::i32); 6373 break; 6374 } 6375 case 'S': { 6376 // An absolute symbolic address or label reference. 6377 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 6378 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 6379 GA->getValueType(0)); 6380 } else if (const BlockAddressSDNode *BA = 6381 dyn_cast<BlockAddressSDNode>(Op)) { 6382 Result = 6383 DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0)); 6384 } else if (const ExternalSymbolSDNode *ES = 6385 dyn_cast<ExternalSymbolSDNode>(Op)) { 6386 Result = 6387 DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0)); 6388 } else 6389 return; 6390 break; 6391 } 6392 6393 case 'I': 6394 case 'J': 6395 case 'K': 6396 case 'L': 6397 case 'M': 6398 case 'N': 6399 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 6400 if (!C) 6401 return; 6402 6403 // Grab the value and do some validation. 6404 uint64_t CVal = C->getZExtValue(); 6405 switch (ConstraintLetter) { 6406 // The I constraint applies only to simple ADD or SUB immediate operands: 6407 // i.e. 0 to 4095 with optional shift by 12 6408 // The J constraint applies only to ADD or SUB immediates that would be 6409 // valid when negated, i.e. if [an add pattern] were to be output as a SUB 6410 // instruction [or vice versa], in other words -1 to -4095 with optional 6411 // left shift by 12. 6412 case 'I': 6413 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) 6414 break; 6415 return; 6416 case 'J': { 6417 uint64_t NVal = -C->getSExtValue(); 6418 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { 6419 CVal = C->getSExtValue(); 6420 break; 6421 } 6422 return; 6423 } 6424 // The K and L constraints apply *only* to logical immediates, including 6425 // what used to be the MOVI alias for ORR (though the MOVI alias has now 6426 // been removed and MOV should be used). So these constraints have to 6427 // distinguish between bit patterns that are valid 32-bit or 64-bit 6428 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but 6429 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice 6430 // versa. 6431 case 'K': 6432 if (AArch64_AM::isLogicalImmediate(CVal, 32)) 6433 break; 6434 return; 6435 case 'L': 6436 if (AArch64_AM::isLogicalImmediate(CVal, 64)) 6437 break; 6438 return; 6439 // The M and N constraints are a superset of K and L respectively, for use 6440 // with the MOV (immediate) alias. As well as the logical immediates they 6441 // also match 32 or 64-bit immediates that can be loaded either using a 6442 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca 6443 // (M) or 64-bit 0x1234000000000000 (N) etc. 6444 // As a note some of this code is liberally stolen from the asm parser. 6445 case 'M': { 6446 if (!isUInt<32>(CVal)) 6447 return; 6448 if (AArch64_AM::isLogicalImmediate(CVal, 32)) 6449 break; 6450 if ((CVal & 0xFFFF) == CVal) 6451 break; 6452 if ((CVal & 0xFFFF0000ULL) == CVal) 6453 break; 6454 uint64_t NCVal = ~(uint32_t)CVal; 6455 if ((NCVal & 0xFFFFULL) == NCVal) 6456 break; 6457 if ((NCVal & 0xFFFF0000ULL) == NCVal) 6458 break; 6459 return; 6460 } 6461 case 'N': { 6462 if (AArch64_AM::isLogicalImmediate(CVal, 64)) 6463 break; 6464 if ((CVal & 0xFFFFULL) == CVal) 6465 break; 6466 if ((CVal & 0xFFFF0000ULL) == CVal) 6467 break; 6468 if ((CVal & 0xFFFF00000000ULL) == CVal) 6469 break; 6470 if ((CVal & 0xFFFF000000000000ULL) == CVal) 6471 break; 6472 uint64_t NCVal = ~CVal; 6473 if ((NCVal & 0xFFFFULL) == NCVal) 6474 break; 6475 if ((NCVal & 0xFFFF0000ULL) == NCVal) 6476 break; 6477 if ((NCVal & 0xFFFF00000000ULL) == NCVal) 6478 break; 6479 if ((NCVal & 0xFFFF000000000000ULL) == NCVal) 6480 break; 6481 return; 6482 } 6483 default: 6484 return; 6485 } 6486 6487 // All assembler immediates are 64-bit integers. 6488 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); 6489 break; 6490 } 6491 6492 if (Result.getNode()) { 6493 Ops.push_back(Result); 6494 return; 6495 } 6496 6497 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 6498 } 6499 6500 //===----------------------------------------------------------------------===// 6501 // AArch64 Advanced SIMD Support 6502 //===----------------------------------------------------------------------===// 6503 6504 /// WidenVector - Given a value in the V64 register class, produce the 6505 /// equivalent value in the V128 register class. 6506 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { 6507 EVT VT = V64Reg.getValueType(); 6508 unsigned NarrowSize = VT.getVectorNumElements(); 6509 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 6510 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); 6511 SDLoc DL(V64Reg); 6512 6513 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), 6514 V64Reg, DAG.getConstant(0, DL, MVT::i32)); 6515 } 6516 6517 /// getExtFactor - Determine the adjustment factor for the position when 6518 /// generating an "extract from vector registers" instruction. 6519 static unsigned getExtFactor(SDValue &V) { 6520 EVT EltType = V.getValueType().getVectorElementType(); 6521 return EltType.getSizeInBits() / 8; 6522 } 6523 6524 /// NarrowVector - Given a value in the V128 register class, produce the 6525 /// equivalent value in the V64 register class. 6526 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { 6527 EVT VT = V128Reg.getValueType(); 6528 unsigned WideSize = VT.getVectorNumElements(); 6529 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 6530 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); 6531 SDLoc DL(V128Reg); 6532 6533 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); 6534 } 6535 6536 // Gather data to see if the operation can be modelled as a 6537 // shuffle in combination with VEXTs. 6538 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, 6539 SelectionDAG &DAG) const { 6540 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 6541 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n"); 6542 SDLoc dl(Op); 6543 EVT VT = Op.getValueType(); 6544 unsigned NumElts = VT.getVectorNumElements(); 6545 6546 struct ShuffleSourceInfo { 6547 SDValue Vec; 6548 unsigned MinElt; 6549 unsigned MaxElt; 6550 6551 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to 6552 // be compatible with the shuffle we intend to construct. As a result 6553 // ShuffleVec will be some sliding window into the original Vec. 6554 SDValue ShuffleVec; 6555 6556 // Code should guarantee that element i in Vec starts at element "WindowBase 6557 // + i * WindowScale in ShuffleVec". 6558 int WindowBase; 6559 int WindowScale; 6560 6561 ShuffleSourceInfo(SDValue Vec) 6562 : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0), 6563 ShuffleVec(Vec), WindowBase(0), WindowScale(1) {} 6564 6565 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } 6566 }; 6567 6568 // First gather all vectors used as an immediate source for this BUILD_VECTOR 6569 // node. 6570 SmallVector<ShuffleSourceInfo, 2> Sources; 6571 for (unsigned i = 0; i < NumElts; ++i) { 6572 SDValue V = Op.getOperand(i); 6573 if (V.isUndef()) 6574 continue; 6575 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 6576 !isa<ConstantSDNode>(V.getOperand(1))) { 6577 LLVM_DEBUG( 6578 dbgs() << "Reshuffle failed: " 6579 "a shuffle can only come from building a vector from " 6580 "various elements of other vectors, provided their " 6581 "indices are constant\n"); 6582 return SDValue(); 6583 } 6584 6585 // Add this element source to the list if it's not already there. 6586 SDValue SourceVec = V.getOperand(0); 6587 auto Source = find(Sources, SourceVec); 6588 if (Source == Sources.end()) 6589 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); 6590 6591 // Update the minimum and maximum lane number seen. 6592 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); 6593 Source->MinElt = std::min(Source->MinElt, EltNo); 6594 Source->MaxElt = std::max(Source->MaxElt, EltNo); 6595 } 6596 6597 if (Sources.size() > 2) { 6598 LLVM_DEBUG( 6599 dbgs() << "Reshuffle failed: currently only do something sane when at " 6600 "most two source vectors are involved\n"); 6601 return SDValue(); 6602 } 6603 6604 // Find out the smallest element size among result and two sources, and use 6605 // it as element size to build the shuffle_vector. 6606 EVT SmallestEltTy = VT.getVectorElementType(); 6607 for (auto &Source : Sources) { 6608 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); 6609 if (SrcEltTy.bitsLT(SmallestEltTy)) { 6610 SmallestEltTy = SrcEltTy; 6611 } 6612 } 6613 unsigned ResMultiplier = 6614 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits(); 6615 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); 6616 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); 6617 6618 // If the source vector is too wide or too narrow, we may nevertheless be able 6619 // to construct a compatible shuffle either by concatenating it with UNDEF or 6620 // extracting a suitable range of elements. 6621 for (auto &Src : Sources) { 6622 EVT SrcVT = Src.ShuffleVec.getValueType(); 6623 6624 if (SrcVT.getSizeInBits() == VT.getSizeInBits()) 6625 continue; 6626 6627 // This stage of the search produces a source with the same element type as 6628 // the original, but with a total width matching the BUILD_VECTOR output. 6629 EVT EltVT = SrcVT.getVectorElementType(); 6630 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); 6631 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); 6632 6633 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { 6634 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits()); 6635 // We can pad out the smaller vector for free, so if it's part of a 6636 // shuffle... 6637 Src.ShuffleVec = 6638 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, 6639 DAG.getUNDEF(Src.ShuffleVec.getValueType())); 6640 continue; 6641 } 6642 6643 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits()); 6644 6645 if (Src.MaxElt - Src.MinElt >= NumSrcElts) { 6646 LLVM_DEBUG( 6647 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n"); 6648 return SDValue(); 6649 } 6650 6651 if (Src.MinElt >= NumSrcElts) { 6652 // The extraction can just take the second half 6653 Src.ShuffleVec = 6654 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 6655 DAG.getConstant(NumSrcElts, dl, MVT::i64)); 6656 Src.WindowBase = -NumSrcElts; 6657 } else if (Src.MaxElt < NumSrcElts) { 6658 // The extraction can just take the first half 6659 Src.ShuffleVec = 6660 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 6661 DAG.getConstant(0, dl, MVT::i64)); 6662 } else { 6663 // An actual VEXT is needed 6664 SDValue VEXTSrc1 = 6665 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 6666 DAG.getConstant(0, dl, MVT::i64)); 6667 SDValue VEXTSrc2 = 6668 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 6669 DAG.getConstant(NumSrcElts, dl, MVT::i64)); 6670 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); 6671 6672 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, 6673 VEXTSrc2, 6674 DAG.getConstant(Imm, dl, MVT::i32)); 6675 Src.WindowBase = -Src.MinElt; 6676 } 6677 } 6678 6679 // Another possible incompatibility occurs from the vector element types. We 6680 // can fix this by bitcasting the source vectors to the same type we intend 6681 // for the shuffle. 6682 for (auto &Src : Sources) { 6683 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); 6684 if (SrcEltTy == SmallestEltTy) 6685 continue; 6686 assert(ShuffleVT.getVectorElementType() == SmallestEltTy); 6687 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); 6688 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); 6689 Src.WindowBase *= Src.WindowScale; 6690 } 6691 6692 // Final sanity check before we try to actually produce a shuffle. 6693 LLVM_DEBUG(for (auto Src 6694 : Sources) 6695 assert(Src.ShuffleVec.getValueType() == ShuffleVT);); 6696 6697 // The stars all align, our next step is to produce the mask for the shuffle. 6698 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); 6699 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); 6700 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 6701 SDValue Entry = Op.getOperand(i); 6702 if (Entry.isUndef()) 6703 continue; 6704 6705 auto Src = find(Sources, Entry.getOperand(0)); 6706 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); 6707 6708 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit 6709 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this 6710 // segment. 6711 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); 6712 int BitsDefined = 6713 std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits()); 6714 int LanesDefined = BitsDefined / BitsPerShuffleLane; 6715 6716 // This source is expected to fill ResMultiplier lanes of the final shuffle, 6717 // starting at the appropriate offset. 6718 int *LaneMask = &Mask[i * ResMultiplier]; 6719 6720 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; 6721 ExtractBase += NumElts * (Src - Sources.begin()); 6722 for (int j = 0; j < LanesDefined; ++j) 6723 LaneMask[j] = ExtractBase + j; 6724 } 6725 6726 // Final check before we try to produce nonsense... 6727 if (!isShuffleMaskLegal(Mask, ShuffleVT)) { 6728 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n"); 6729 return SDValue(); 6730 } 6731 6732 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; 6733 for (unsigned i = 0; i < Sources.size(); ++i) 6734 ShuffleOps[i] = Sources[i].ShuffleVec; 6735 6736 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], 6737 ShuffleOps[1], Mask); 6738 SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); 6739 6740 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump(); 6741 dbgs() << "Reshuffle, creating node: "; V.dump();); 6742 6743 return V; 6744 } 6745 6746 // check if an EXT instruction can handle the shuffle mask when the 6747 // vector sources of the shuffle are the same. 6748 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { 6749 unsigned NumElts = VT.getVectorNumElements(); 6750 6751 // Assume that the first shuffle index is not UNDEF. Fail if it is. 6752 if (M[0] < 0) 6753 return false; 6754 6755 Imm = M[0]; 6756 6757 // If this is a VEXT shuffle, the immediate value is the index of the first 6758 // element. The other shuffle indices must be the successive elements after 6759 // the first one. 6760 unsigned ExpectedElt = Imm; 6761 for (unsigned i = 1; i < NumElts; ++i) { 6762 // Increment the expected index. If it wraps around, just follow it 6763 // back to index zero and keep going. 6764 ++ExpectedElt; 6765 if (ExpectedElt == NumElts) 6766 ExpectedElt = 0; 6767 6768 if (M[i] < 0) 6769 continue; // ignore UNDEF indices 6770 if (ExpectedElt != static_cast<unsigned>(M[i])) 6771 return false; 6772 } 6773 6774 return true; 6775 } 6776 6777 // check if an EXT instruction can handle the shuffle mask when the 6778 // vector sources of the shuffle are different. 6779 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, 6780 unsigned &Imm) { 6781 // Look for the first non-undef element. 6782 const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); 6783 6784 // Benefit form APInt to handle overflow when calculating expected element. 6785 unsigned NumElts = VT.getVectorNumElements(); 6786 unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); 6787 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); 6788 // The following shuffle indices must be the successive elements after the 6789 // first real element. 6790 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), 6791 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); 6792 if (FirstWrongElt != M.end()) 6793 return false; 6794 6795 // The index of an EXT is the first element if it is not UNDEF. 6796 // Watch out for the beginning UNDEFs. The EXT index should be the expected 6797 // value of the first element. E.g. 6798 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. 6799 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. 6800 // ExpectedElt is the last mask index plus 1. 6801 Imm = ExpectedElt.getZExtValue(); 6802 6803 // There are two difference cases requiring to reverse input vectors. 6804 // For example, for vector <4 x i32> we have the following cases, 6805 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) 6806 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) 6807 // For both cases, we finally use mask <5, 6, 7, 0>, which requires 6808 // to reverse two input vectors. 6809 if (Imm < NumElts) 6810 ReverseEXT = true; 6811 else 6812 Imm -= NumElts; 6813 6814 return true; 6815 } 6816 6817 /// isREVMask - Check if a vector shuffle corresponds to a REV 6818 /// instruction with the specified blocksize. (The order of the elements 6819 /// within each block of the vector is reversed.) 6820 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { 6821 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && 6822 "Only possible block sizes for REV are: 16, 32, 64"); 6823 6824 unsigned EltSz = VT.getScalarSizeInBits(); 6825 if (EltSz == 64) 6826 return false; 6827 6828 unsigned NumElts = VT.getVectorNumElements(); 6829 unsigned BlockElts = M[0] + 1; 6830 // If the first shuffle index is UNDEF, be optimistic. 6831 if (M[0] < 0) 6832 BlockElts = BlockSize / EltSz; 6833 6834 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) 6835 return false; 6836 6837 for (unsigned i = 0; i < NumElts; ++i) { 6838 if (M[i] < 0) 6839 continue; // ignore UNDEF indices 6840 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) 6841 return false; 6842 } 6843 6844 return true; 6845 } 6846 6847 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6848 unsigned NumElts = VT.getVectorNumElements(); 6849 if (NumElts % 2 != 0) 6850 return false; 6851 WhichResult = (M[0] == 0 ? 0 : 1); 6852 unsigned Idx = WhichResult * NumElts / 2; 6853 for (unsigned i = 0; i != NumElts; i += 2) { 6854 if ((M[i] >= 0 && (unsigned)M[i] != Idx) || 6855 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) 6856 return false; 6857 Idx += 1; 6858 } 6859 6860 return true; 6861 } 6862 6863 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6864 unsigned NumElts = VT.getVectorNumElements(); 6865 WhichResult = (M[0] == 0 ? 0 : 1); 6866 for (unsigned i = 0; i != NumElts; ++i) { 6867 if (M[i] < 0) 6868 continue; // ignore UNDEF indices 6869 if ((unsigned)M[i] != 2 * i + WhichResult) 6870 return false; 6871 } 6872 6873 return true; 6874 } 6875 6876 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6877 unsigned NumElts = VT.getVectorNumElements(); 6878 if (NumElts % 2 != 0) 6879 return false; 6880 WhichResult = (M[0] == 0 ? 0 : 1); 6881 for (unsigned i = 0; i < NumElts; i += 2) { 6882 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || 6883 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) 6884 return false; 6885 } 6886 return true; 6887 } 6888 6889 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of 6890 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 6891 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 6892 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6893 unsigned NumElts = VT.getVectorNumElements(); 6894 if (NumElts % 2 != 0) 6895 return false; 6896 WhichResult = (M[0] == 0 ? 0 : 1); 6897 unsigned Idx = WhichResult * NumElts / 2; 6898 for (unsigned i = 0; i != NumElts; i += 2) { 6899 if ((M[i] >= 0 && (unsigned)M[i] != Idx) || 6900 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) 6901 return false; 6902 Idx += 1; 6903 } 6904 6905 return true; 6906 } 6907 6908 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of 6909 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 6910 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 6911 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6912 unsigned Half = VT.getVectorNumElements() / 2; 6913 WhichResult = (M[0] == 0 ? 0 : 1); 6914 for (unsigned j = 0; j != 2; ++j) { 6915 unsigned Idx = WhichResult; 6916 for (unsigned i = 0; i != Half; ++i) { 6917 int MIdx = M[i + j * Half]; 6918 if (MIdx >= 0 && (unsigned)MIdx != Idx) 6919 return false; 6920 Idx += 2; 6921 } 6922 } 6923 6924 return true; 6925 } 6926 6927 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of 6928 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 6929 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 6930 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6931 unsigned NumElts = VT.getVectorNumElements(); 6932 if (NumElts % 2 != 0) 6933 return false; 6934 WhichResult = (M[0] == 0 ? 0 : 1); 6935 for (unsigned i = 0; i < NumElts; i += 2) { 6936 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || 6937 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) 6938 return false; 6939 } 6940 return true; 6941 } 6942 6943 static bool isINSMask(ArrayRef<int> M, int NumInputElements, 6944 bool &DstIsLeft, int &Anomaly) { 6945 if (M.size() != static_cast<size_t>(NumInputElements)) 6946 return false; 6947 6948 int NumLHSMatch = 0, NumRHSMatch = 0; 6949 int LastLHSMismatch = -1, LastRHSMismatch = -1; 6950 6951 for (int i = 0; i < NumInputElements; ++i) { 6952 if (M[i] == -1) { 6953 ++NumLHSMatch; 6954 ++NumRHSMatch; 6955 continue; 6956 } 6957 6958 if (M[i] == i) 6959 ++NumLHSMatch; 6960 else 6961 LastLHSMismatch = i; 6962 6963 if (M[i] == i + NumInputElements) 6964 ++NumRHSMatch; 6965 else 6966 LastRHSMismatch = i; 6967 } 6968 6969 if (NumLHSMatch == NumInputElements - 1) { 6970 DstIsLeft = true; 6971 Anomaly = LastLHSMismatch; 6972 return true; 6973 } else if (NumRHSMatch == NumInputElements - 1) { 6974 DstIsLeft = false; 6975 Anomaly = LastRHSMismatch; 6976 return true; 6977 } 6978 6979 return false; 6980 } 6981 6982 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { 6983 if (VT.getSizeInBits() != 128) 6984 return false; 6985 6986 unsigned NumElts = VT.getVectorNumElements(); 6987 6988 for (int I = 0, E = NumElts / 2; I != E; I++) { 6989 if (Mask[I] != I) 6990 return false; 6991 } 6992 6993 int Offset = NumElts / 2; 6994 for (int I = NumElts / 2, E = NumElts; I != E; I++) { 6995 if (Mask[I] != I + SplitLHS * Offset) 6996 return false; 6997 } 6998 6999 return true; 7000 } 7001 7002 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { 7003 SDLoc DL(Op); 7004 EVT VT = Op.getValueType(); 7005 SDValue V0 = Op.getOperand(0); 7006 SDValue V1 = Op.getOperand(1); 7007 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); 7008 7009 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || 7010 VT.getVectorElementType() != V1.getValueType().getVectorElementType()) 7011 return SDValue(); 7012 7013 bool SplitV0 = V0.getValueSizeInBits() == 128; 7014 7015 if (!isConcatMask(Mask, VT, SplitV0)) 7016 return SDValue(); 7017 7018 EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7019 if (SplitV0) { 7020 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, 7021 DAG.getConstant(0, DL, MVT::i64)); 7022 } 7023 if (V1.getValueSizeInBits() == 128) { 7024 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, 7025 DAG.getConstant(0, DL, MVT::i64)); 7026 } 7027 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); 7028 } 7029 7030 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7031 /// the specified operations to build the shuffle. 7032 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7033 SDValue RHS, SelectionDAG &DAG, 7034 const SDLoc &dl) { 7035 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7036 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); 7037 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); 7038 7039 enum { 7040 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7041 OP_VREV, 7042 OP_VDUP0, 7043 OP_VDUP1, 7044 OP_VDUP2, 7045 OP_VDUP3, 7046 OP_VEXT1, 7047 OP_VEXT2, 7048 OP_VEXT3, 7049 OP_VUZPL, // VUZP, left result 7050 OP_VUZPR, // VUZP, right result 7051 OP_VZIPL, // VZIP, left result 7052 OP_VZIPR, // VZIP, right result 7053 OP_VTRNL, // VTRN, left result 7054 OP_VTRNR // VTRN, right result 7055 }; 7056 7057 if (OpNum == OP_COPY) { 7058 if (LHSID == (1 * 9 + 2) * 9 + 3) 7059 return LHS; 7060 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); 7061 return RHS; 7062 } 7063 7064 SDValue OpLHS, OpRHS; 7065 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7066 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7067 EVT VT = OpLHS.getValueType(); 7068 7069 switch (OpNum) { 7070 default: 7071 llvm_unreachable("Unknown shuffle opcode!"); 7072 case OP_VREV: 7073 // VREV divides the vector in half and swaps within the half. 7074 if (VT.getVectorElementType() == MVT::i32 || 7075 VT.getVectorElementType() == MVT::f32) 7076 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); 7077 // vrev <4 x i16> -> REV32 7078 if (VT.getVectorElementType() == MVT::i16 || 7079 VT.getVectorElementType() == MVT::f16) 7080 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); 7081 // vrev <4 x i8> -> REV16 7082 assert(VT.getVectorElementType() == MVT::i8); 7083 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); 7084 case OP_VDUP0: 7085 case OP_VDUP1: 7086 case OP_VDUP2: 7087 case OP_VDUP3: { 7088 EVT EltTy = VT.getVectorElementType(); 7089 unsigned Opcode; 7090 if (EltTy == MVT::i8) 7091 Opcode = AArch64ISD::DUPLANE8; 7092 else if (EltTy == MVT::i16 || EltTy == MVT::f16) 7093 Opcode = AArch64ISD::DUPLANE16; 7094 else if (EltTy == MVT::i32 || EltTy == MVT::f32) 7095 Opcode = AArch64ISD::DUPLANE32; 7096 else if (EltTy == MVT::i64 || EltTy == MVT::f64) 7097 Opcode = AArch64ISD::DUPLANE64; 7098 else 7099 llvm_unreachable("Invalid vector element type?"); 7100 7101 if (VT.getSizeInBits() == 64) 7102 OpLHS = WidenVector(OpLHS, DAG); 7103 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); 7104 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); 7105 } 7106 case OP_VEXT1: 7107 case OP_VEXT2: 7108 case OP_VEXT3: { 7109 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); 7110 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, 7111 DAG.getConstant(Imm, dl, MVT::i32)); 7112 } 7113 case OP_VUZPL: 7114 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, 7115 OpRHS); 7116 case OP_VUZPR: 7117 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, 7118 OpRHS); 7119 case OP_VZIPL: 7120 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, 7121 OpRHS); 7122 case OP_VZIPR: 7123 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, 7124 OpRHS); 7125 case OP_VTRNL: 7126 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, 7127 OpRHS); 7128 case OP_VTRNR: 7129 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, 7130 OpRHS); 7131 } 7132 } 7133 7134 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, 7135 SelectionDAG &DAG) { 7136 // Check to see if we can use the TBL instruction. 7137 SDValue V1 = Op.getOperand(0); 7138 SDValue V2 = Op.getOperand(1); 7139 SDLoc DL(Op); 7140 7141 EVT EltVT = Op.getValueType().getVectorElementType(); 7142 unsigned BytesPerElt = EltVT.getSizeInBits() / 8; 7143 7144 SmallVector<SDValue, 8> TBLMask; 7145 for (int Val : ShuffleMask) { 7146 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { 7147 unsigned Offset = Byte + Val * BytesPerElt; 7148 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); 7149 } 7150 } 7151 7152 MVT IndexVT = MVT::v8i8; 7153 unsigned IndexLen = 8; 7154 if (Op.getValueSizeInBits() == 128) { 7155 IndexVT = MVT::v16i8; 7156 IndexLen = 16; 7157 } 7158 7159 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); 7160 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); 7161 7162 SDValue Shuffle; 7163 if (V2.getNode()->isUndef()) { 7164 if (IndexLen == 8) 7165 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); 7166 Shuffle = DAG.getNode( 7167 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7168 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, 7169 DAG.getBuildVector(IndexVT, DL, 7170 makeArrayRef(TBLMask.data(), IndexLen))); 7171 } else { 7172 if (IndexLen == 8) { 7173 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); 7174 Shuffle = DAG.getNode( 7175 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7176 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, 7177 DAG.getBuildVector(IndexVT, DL, 7178 makeArrayRef(TBLMask.data(), IndexLen))); 7179 } else { 7180 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we 7181 // cannot currently represent the register constraints on the input 7182 // table registers. 7183 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, 7184 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0], 7185 // IndexLen)); 7186 Shuffle = DAG.getNode( 7187 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7188 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst, 7189 V2Cst, DAG.getBuildVector(IndexVT, DL, 7190 makeArrayRef(TBLMask.data(), IndexLen))); 7191 } 7192 } 7193 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); 7194 } 7195 7196 static unsigned getDUPLANEOp(EVT EltType) { 7197 if (EltType == MVT::i8) 7198 return AArch64ISD::DUPLANE8; 7199 if (EltType == MVT::i16 || EltType == MVT::f16) 7200 return AArch64ISD::DUPLANE16; 7201 if (EltType == MVT::i32 || EltType == MVT::f32) 7202 return AArch64ISD::DUPLANE32; 7203 if (EltType == MVT::i64 || EltType == MVT::f64) 7204 return AArch64ISD::DUPLANE64; 7205 7206 llvm_unreachable("Invalid vector element type?"); 7207 } 7208 7209 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7210 SelectionDAG &DAG) const { 7211 SDLoc dl(Op); 7212 EVT VT = Op.getValueType(); 7213 7214 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 7215 7216 // Convert shuffles that are directly supported on NEON to target-specific 7217 // DAG nodes, instead of keeping them as shuffles and matching them again 7218 // during code selection. This is more efficient and avoids the possibility 7219 // of inconsistencies between legalization and selection. 7220 ArrayRef<int> ShuffleMask = SVN->getMask(); 7221 7222 SDValue V1 = Op.getOperand(0); 7223 SDValue V2 = Op.getOperand(1); 7224 7225 if (SVN->isSplat()) { 7226 int Lane = SVN->getSplatIndex(); 7227 // If this is undef splat, generate it via "just" vdup, if possible. 7228 if (Lane == -1) 7229 Lane = 0; 7230 7231 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) 7232 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), 7233 V1.getOperand(0)); 7234 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- 7235 // constant. If so, we can just reference the lane's definition directly. 7236 if (V1.getOpcode() == ISD::BUILD_VECTOR && 7237 !isa<ConstantSDNode>(V1.getOperand(Lane))) 7238 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); 7239 7240 // Otherwise, duplicate from the lane of the input vector. 7241 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); 7242 7243 // Try to eliminate a bitcasted extract subvector before a DUPLANE. 7244 auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) { 7245 // Match: dup (bitcast (extract_subv X, C)), LaneC 7246 if (BitCast.getOpcode() != ISD::BITCAST || 7247 BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR) 7248 return false; 7249 7250 // The extract index must align in the destination type. That may not 7251 // happen if the bitcast is from narrow to wide type. 7252 SDValue Extract = BitCast.getOperand(0); 7253 unsigned ExtIdx = Extract.getConstantOperandVal(1); 7254 unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits(); 7255 unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth; 7256 unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits(); 7257 if (ExtIdxInBits % CastedEltBitWidth != 0) 7258 return false; 7259 7260 // Update the lane value by offsetting with the scaled extract index. 7261 LaneC += ExtIdxInBits / CastedEltBitWidth; 7262 7263 // Determine the casted vector type of the wide vector input. 7264 // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC' 7265 // Examples: 7266 // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3 7267 // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5 7268 unsigned SrcVecNumElts = 7269 Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth; 7270 CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(), 7271 SrcVecNumElts); 7272 return true; 7273 }; 7274 MVT CastVT; 7275 if (getScaledOffsetDup(V1, Lane, CastVT)) { 7276 V1 = DAG.getBitcast(CastVT, V1.getOperand(0).getOperand(0)); 7277 } else if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 7278 // The lane is incremented by the index of the extract. 7279 // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3 7280 Lane += V1.getConstantOperandVal(1); 7281 V1 = V1.getOperand(0); 7282 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { 7283 // The lane is decremented if we are splatting from the 2nd operand. 7284 // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1 7285 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; 7286 Lane -= Idx * VT.getVectorNumElements() / 2; 7287 V1 = WidenVector(V1.getOperand(Idx), DAG); 7288 } else if (VT.getSizeInBits() == 64) { 7289 // Widen the operand to 128-bit register with undef. 7290 V1 = WidenVector(V1, DAG); 7291 } 7292 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64)); 7293 } 7294 7295 if (isREVMask(ShuffleMask, VT, 64)) 7296 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); 7297 if (isREVMask(ShuffleMask, VT, 32)) 7298 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); 7299 if (isREVMask(ShuffleMask, VT, 16)) 7300 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); 7301 7302 bool ReverseEXT = false; 7303 unsigned Imm; 7304 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { 7305 if (ReverseEXT) 7306 std::swap(V1, V2); 7307 Imm *= getExtFactor(V1); 7308 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, 7309 DAG.getConstant(Imm, dl, MVT::i32)); 7310 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) { 7311 Imm *= getExtFactor(V1); 7312 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, 7313 DAG.getConstant(Imm, dl, MVT::i32)); 7314 } 7315 7316 unsigned WhichResult; 7317 if (isZIPMask(ShuffleMask, VT, WhichResult)) { 7318 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; 7319 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7320 } 7321 if (isUZPMask(ShuffleMask, VT, WhichResult)) { 7322 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; 7323 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7324 } 7325 if (isTRNMask(ShuffleMask, VT, WhichResult)) { 7326 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; 7327 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7328 } 7329 7330 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7331 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; 7332 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7333 } 7334 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7335 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; 7336 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7337 } 7338 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7339 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; 7340 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7341 } 7342 7343 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG)) 7344 return Concat; 7345 7346 bool DstIsLeft; 7347 int Anomaly; 7348 int NumInputElements = V1.getValueType().getVectorNumElements(); 7349 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { 7350 SDValue DstVec = DstIsLeft ? V1 : V2; 7351 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); 7352 7353 SDValue SrcVec = V1; 7354 int SrcLane = ShuffleMask[Anomaly]; 7355 if (SrcLane >= NumInputElements) { 7356 SrcVec = V2; 7357 SrcLane -= VT.getVectorNumElements(); 7358 } 7359 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); 7360 7361 EVT ScalarVT = VT.getVectorElementType(); 7362 7363 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger()) 7364 ScalarVT = MVT::i32; 7365 7366 return DAG.getNode( 7367 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, 7368 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), 7369 DstLaneV); 7370 } 7371 7372 // If the shuffle is not directly supported and it has 4 elements, use 7373 // the PerfectShuffle-generated table to synthesize it from other shuffles. 7374 unsigned NumElts = VT.getVectorNumElements(); 7375 if (NumElts == 4) { 7376 unsigned PFIndexes[4]; 7377 for (unsigned i = 0; i != 4; ++i) { 7378 if (ShuffleMask[i] < 0) 7379 PFIndexes[i] = 8; 7380 else 7381 PFIndexes[i] = ShuffleMask[i]; 7382 } 7383 7384 // Compute the index in the perfect shuffle table. 7385 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 7386 PFIndexes[2] * 9 + PFIndexes[3]; 7387 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7388 unsigned Cost = (PFEntry >> 30); 7389 7390 if (Cost <= 4) 7391 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7392 } 7393 7394 return GenerateTBL(Op, ShuffleMask, DAG); 7395 } 7396 7397 SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op, 7398 SelectionDAG &DAG) const { 7399 SDLoc dl(Op); 7400 EVT VT = Op.getValueType(); 7401 EVT ElemVT = VT.getScalarType(); 7402 7403 SDValue SplatVal = Op.getOperand(0); 7404 7405 // Extend input splat value where needed to fit into a GPR (32b or 64b only) 7406 // FPRs don't have this restriction. 7407 switch (ElemVT.getSimpleVT().SimpleTy) { 7408 case MVT::i8: 7409 case MVT::i16: 7410 case MVT::i32: 7411 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32); 7412 return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal); 7413 case MVT::i64: 7414 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64); 7415 return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal); 7416 case MVT::i1: { 7417 // The general case of i1. There isn't any natural way to do this, 7418 // so we use some trickery with whilelo. 7419 // TODO: Add special cases for splat of constant true/false. 7420 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64); 7421 SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i64, SplatVal, 7422 DAG.getValueType(MVT::i1)); 7423 SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl, 7424 MVT::i64); 7425 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID, 7426 DAG.getConstant(0, dl, MVT::i64), SplatVal); 7427 } 7428 // TODO: we can support float types, but haven't added patterns yet. 7429 case MVT::f16: 7430 case MVT::f32: 7431 case MVT::f64: 7432 default: 7433 report_fatal_error("Unsupported SPLAT_VECTOR input operand type"); 7434 } 7435 } 7436 7437 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, 7438 APInt &UndefBits) { 7439 EVT VT = BVN->getValueType(0); 7440 APInt SplatBits, SplatUndef; 7441 unsigned SplatBitSize; 7442 bool HasAnyUndefs; 7443 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 7444 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; 7445 7446 for (unsigned i = 0; i < NumSplats; ++i) { 7447 CnstBits <<= SplatBitSize; 7448 UndefBits <<= SplatBitSize; 7449 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); 7450 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); 7451 } 7452 7453 return true; 7454 } 7455 7456 return false; 7457 } 7458 7459 // Try 64-bit splatted SIMD immediate. 7460 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7461 const APInt &Bits) { 7462 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7463 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7464 EVT VT = Op.getValueType(); 7465 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64; 7466 7467 if (AArch64_AM::isAdvSIMDModImmType10(Value)) { 7468 Value = AArch64_AM::encodeAdvSIMDModImmType10(Value); 7469 7470 SDLoc dl(Op); 7471 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7472 DAG.getConstant(Value, dl, MVT::i32)); 7473 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7474 } 7475 } 7476 7477 return SDValue(); 7478 } 7479 7480 // Try 32-bit splatted SIMD immediate. 7481 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7482 const APInt &Bits, 7483 const SDValue *LHS = nullptr) { 7484 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7485 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7486 EVT VT = Op.getValueType(); 7487 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 7488 bool isAdvSIMDModImm = false; 7489 uint64_t Shift; 7490 7491 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) { 7492 Value = AArch64_AM::encodeAdvSIMDModImmType1(Value); 7493 Shift = 0; 7494 } 7495 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) { 7496 Value = AArch64_AM::encodeAdvSIMDModImmType2(Value); 7497 Shift = 8; 7498 } 7499 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) { 7500 Value = AArch64_AM::encodeAdvSIMDModImmType3(Value); 7501 Shift = 16; 7502 } 7503 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) { 7504 Value = AArch64_AM::encodeAdvSIMDModImmType4(Value); 7505 Shift = 24; 7506 } 7507 7508 if (isAdvSIMDModImm) { 7509 SDLoc dl(Op); 7510 SDValue Mov; 7511 7512 if (LHS) 7513 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, 7514 DAG.getConstant(Value, dl, MVT::i32), 7515 DAG.getConstant(Shift, dl, MVT::i32)); 7516 else 7517 Mov = DAG.getNode(NewOp, dl, MovTy, 7518 DAG.getConstant(Value, dl, MVT::i32), 7519 DAG.getConstant(Shift, dl, MVT::i32)); 7520 7521 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7522 } 7523 } 7524 7525 return SDValue(); 7526 } 7527 7528 // Try 16-bit splatted SIMD immediate. 7529 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7530 const APInt &Bits, 7531 const SDValue *LHS = nullptr) { 7532 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7533 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7534 EVT VT = Op.getValueType(); 7535 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 7536 bool isAdvSIMDModImm = false; 7537 uint64_t Shift; 7538 7539 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) { 7540 Value = AArch64_AM::encodeAdvSIMDModImmType5(Value); 7541 Shift = 0; 7542 } 7543 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) { 7544 Value = AArch64_AM::encodeAdvSIMDModImmType6(Value); 7545 Shift = 8; 7546 } 7547 7548 if (isAdvSIMDModImm) { 7549 SDLoc dl(Op); 7550 SDValue Mov; 7551 7552 if (LHS) 7553 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, 7554 DAG.getConstant(Value, dl, MVT::i32), 7555 DAG.getConstant(Shift, dl, MVT::i32)); 7556 else 7557 Mov = DAG.getNode(NewOp, dl, MovTy, 7558 DAG.getConstant(Value, dl, MVT::i32), 7559 DAG.getConstant(Shift, dl, MVT::i32)); 7560 7561 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7562 } 7563 } 7564 7565 return SDValue(); 7566 } 7567 7568 // Try 32-bit splatted SIMD immediate with shifted ones. 7569 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op, 7570 SelectionDAG &DAG, const APInt &Bits) { 7571 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7572 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7573 EVT VT = Op.getValueType(); 7574 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 7575 bool isAdvSIMDModImm = false; 7576 uint64_t Shift; 7577 7578 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) { 7579 Value = AArch64_AM::encodeAdvSIMDModImmType7(Value); 7580 Shift = 264; 7581 } 7582 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) { 7583 Value = AArch64_AM::encodeAdvSIMDModImmType8(Value); 7584 Shift = 272; 7585 } 7586 7587 if (isAdvSIMDModImm) { 7588 SDLoc dl(Op); 7589 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7590 DAG.getConstant(Value, dl, MVT::i32), 7591 DAG.getConstant(Shift, dl, MVT::i32)); 7592 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7593 } 7594 } 7595 7596 return SDValue(); 7597 } 7598 7599 // Try 8-bit splatted SIMD immediate. 7600 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7601 const APInt &Bits) { 7602 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7603 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7604 EVT VT = Op.getValueType(); 7605 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; 7606 7607 if (AArch64_AM::isAdvSIMDModImmType9(Value)) { 7608 Value = AArch64_AM::encodeAdvSIMDModImmType9(Value); 7609 7610 SDLoc dl(Op); 7611 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7612 DAG.getConstant(Value, dl, MVT::i32)); 7613 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7614 } 7615 } 7616 7617 return SDValue(); 7618 } 7619 7620 // Try FP splatted SIMD immediate. 7621 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7622 const APInt &Bits) { 7623 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7624 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7625 EVT VT = Op.getValueType(); 7626 bool isWide = (VT.getSizeInBits() == 128); 7627 MVT MovTy; 7628 bool isAdvSIMDModImm = false; 7629 7630 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) { 7631 Value = AArch64_AM::encodeAdvSIMDModImmType11(Value); 7632 MovTy = isWide ? MVT::v4f32 : MVT::v2f32; 7633 } 7634 else if (isWide && 7635 (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) { 7636 Value = AArch64_AM::encodeAdvSIMDModImmType12(Value); 7637 MovTy = MVT::v2f64; 7638 } 7639 7640 if (isAdvSIMDModImm) { 7641 SDLoc dl(Op); 7642 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7643 DAG.getConstant(Value, dl, MVT::i32)); 7644 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7645 } 7646 } 7647 7648 return SDValue(); 7649 } 7650 7651 // Specialized code to quickly find if PotentialBVec is a BuildVector that 7652 // consists of only the same constant int value, returned in reference arg 7653 // ConstVal 7654 static bool isAllConstantBuildVector(const SDValue &PotentialBVec, 7655 uint64_t &ConstVal) { 7656 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); 7657 if (!Bvec) 7658 return false; 7659 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); 7660 if (!FirstElt) 7661 return false; 7662 EVT VT = Bvec->getValueType(0); 7663 unsigned NumElts = VT.getVectorNumElements(); 7664 for (unsigned i = 1; i < NumElts; ++i) 7665 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) 7666 return false; 7667 ConstVal = FirstElt->getZExtValue(); 7668 return true; 7669 } 7670 7671 static unsigned getIntrinsicID(const SDNode *N) { 7672 unsigned Opcode = N->getOpcode(); 7673 switch (Opcode) { 7674 default: 7675 return Intrinsic::not_intrinsic; 7676 case ISD::INTRINSIC_WO_CHAIN: { 7677 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7678 if (IID < Intrinsic::num_intrinsics) 7679 return IID; 7680 return Intrinsic::not_intrinsic; 7681 } 7682 } 7683 } 7684 7685 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), 7686 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a 7687 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. 7688 // Also, logical shift right -> sri, with the same structure. 7689 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { 7690 EVT VT = N->getValueType(0); 7691 7692 if (!VT.isVector()) 7693 return SDValue(); 7694 7695 SDLoc DL(N); 7696 7697 // Is the first op an AND? 7698 const SDValue And = N->getOperand(0); 7699 if (And.getOpcode() != ISD::AND) 7700 return SDValue(); 7701 7702 // Is the second op an shl or lshr? 7703 SDValue Shift = N->getOperand(1); 7704 // This will have been turned into: AArch64ISD::VSHL vector, #shift 7705 // or AArch64ISD::VLSHR vector, #shift 7706 unsigned ShiftOpc = Shift.getOpcode(); 7707 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR)) 7708 return SDValue(); 7709 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR; 7710 7711 // Is the shift amount constant? 7712 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 7713 if (!C2node) 7714 return SDValue(); 7715 7716 // Is the and mask vector all constant? 7717 uint64_t C1; 7718 if (!isAllConstantBuildVector(And.getOperand(1), C1)) 7719 return SDValue(); 7720 7721 // Is C1 == ~C2, taking into account how much one can shift elements of a 7722 // particular size? 7723 uint64_t C2 = C2node->getZExtValue(); 7724 unsigned ElemSizeInBits = VT.getScalarSizeInBits(); 7725 if (C2 > ElemSizeInBits) 7726 return SDValue(); 7727 unsigned ElemMask = (1 << ElemSizeInBits) - 1; 7728 if ((C1 & ElemMask) != (~C2 & ElemMask)) 7729 return SDValue(); 7730 7731 SDValue X = And.getOperand(0); 7732 SDValue Y = Shift.getOperand(0); 7733 7734 unsigned Intrin = 7735 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli; 7736 SDValue ResultSLI = 7737 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 7738 DAG.getConstant(Intrin, DL, MVT::i32), X, Y, 7739 Shift.getOperand(1)); 7740 7741 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n"); 7742 LLVM_DEBUG(N->dump(&DAG)); 7743 LLVM_DEBUG(dbgs() << "into: \n"); 7744 LLVM_DEBUG(ResultSLI->dump(&DAG)); 7745 7746 ++NumShiftInserts; 7747 return ResultSLI; 7748 } 7749 7750 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, 7751 SelectionDAG &DAG) const { 7752 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) 7753 if (EnableAArch64SlrGeneration) { 7754 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG)) 7755 return Res; 7756 } 7757 7758 EVT VT = Op.getValueType(); 7759 7760 SDValue LHS = Op.getOperand(0); 7761 BuildVectorSDNode *BVN = 7762 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); 7763 if (!BVN) { 7764 // OR commutes, so try swapping the operands. 7765 LHS = Op.getOperand(1); 7766 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); 7767 } 7768 if (!BVN) 7769 return Op; 7770 7771 APInt DefBits(VT.getSizeInBits(), 0); 7772 APInt UndefBits(VT.getSizeInBits(), 0); 7773 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 7774 SDValue NewOp; 7775 7776 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, 7777 DefBits, &LHS)) || 7778 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, 7779 DefBits, &LHS))) 7780 return NewOp; 7781 7782 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, 7783 UndefBits, &LHS)) || 7784 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, 7785 UndefBits, &LHS))) 7786 return NewOp; 7787 } 7788 7789 // We can always fall back to a non-immediate OR. 7790 return Op; 7791 } 7792 7793 // Normalize the operands of BUILD_VECTOR. The value of constant operands will 7794 // be truncated to fit element width. 7795 static SDValue NormalizeBuildVector(SDValue Op, 7796 SelectionDAG &DAG) { 7797 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 7798 SDLoc dl(Op); 7799 EVT VT = Op.getValueType(); 7800 EVT EltTy= VT.getVectorElementType(); 7801 7802 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) 7803 return Op; 7804 7805 SmallVector<SDValue, 16> Ops; 7806 for (SDValue Lane : Op->ops()) { 7807 // For integer vectors, type legalization would have promoted the 7808 // operands already. Otherwise, if Op is a floating-point splat 7809 // (with operands cast to integers), then the only possibilities 7810 // are constants and UNDEFs. 7811 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) { 7812 APInt LowBits(EltTy.getSizeInBits(), 7813 CstLane->getZExtValue()); 7814 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); 7815 } else if (Lane.getNode()->isUndef()) { 7816 Lane = DAG.getUNDEF(MVT::i32); 7817 } else { 7818 assert(Lane.getValueType() == MVT::i32 && 7819 "Unexpected BUILD_VECTOR operand type"); 7820 } 7821 Ops.push_back(Lane); 7822 } 7823 return DAG.getBuildVector(VT, dl, Ops); 7824 } 7825 7826 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) { 7827 EVT VT = Op.getValueType(); 7828 7829 APInt DefBits(VT.getSizeInBits(), 0); 7830 APInt UndefBits(VT.getSizeInBits(), 0); 7831 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 7832 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 7833 SDValue NewOp; 7834 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || 7835 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 7836 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || 7837 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 7838 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || 7839 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) 7840 return NewOp; 7841 7842 DefBits = ~DefBits; 7843 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || 7844 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || 7845 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) 7846 return NewOp; 7847 7848 DefBits = UndefBits; 7849 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || 7850 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 7851 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || 7852 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 7853 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || 7854 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) 7855 return NewOp; 7856 7857 DefBits = ~UndefBits; 7858 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || 7859 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || 7860 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) 7861 return NewOp; 7862 } 7863 7864 return SDValue(); 7865 } 7866 7867 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, 7868 SelectionDAG &DAG) const { 7869 EVT VT = Op.getValueType(); 7870 7871 // Try to build a simple constant vector. 7872 Op = NormalizeBuildVector(Op, DAG); 7873 if (VT.isInteger()) { 7874 // Certain vector constants, used to express things like logical NOT and 7875 // arithmetic NEG, are passed through unmodified. This allows special 7876 // patterns for these operations to match, which will lower these constants 7877 // to whatever is proven necessary. 7878 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 7879 if (BVN->isConstant()) 7880 if (ConstantSDNode *Const = BVN->getConstantSplatNode()) { 7881 unsigned BitSize = VT.getVectorElementType().getSizeInBits(); 7882 APInt Val(BitSize, 7883 Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue()); 7884 if (Val.isNullValue() || Val.isAllOnesValue()) 7885 return Op; 7886 } 7887 } 7888 7889 if (SDValue V = ConstantBuildVector(Op, DAG)) 7890 return V; 7891 7892 // Scan through the operands to find some interesting properties we can 7893 // exploit: 7894 // 1) If only one value is used, we can use a DUP, or 7895 // 2) if only the low element is not undef, we can just insert that, or 7896 // 3) if only one constant value is used (w/ some non-constant lanes), 7897 // we can splat the constant value into the whole vector then fill 7898 // in the non-constant lanes. 7899 // 4) FIXME: If different constant values are used, but we can intelligently 7900 // select the values we'll be overwriting for the non-constant 7901 // lanes such that we can directly materialize the vector 7902 // some other way (MOVI, e.g.), we can be sneaky. 7903 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP. 7904 SDLoc dl(Op); 7905 unsigned NumElts = VT.getVectorNumElements(); 7906 bool isOnlyLowElement = true; 7907 bool usesOnlyOneValue = true; 7908 bool usesOnlyOneConstantValue = true; 7909 bool isConstant = true; 7910 bool AllLanesExtractElt = true; 7911 unsigned NumConstantLanes = 0; 7912 SDValue Value; 7913 SDValue ConstantValue; 7914 for (unsigned i = 0; i < NumElts; ++i) { 7915 SDValue V = Op.getOperand(i); 7916 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 7917 AllLanesExtractElt = false; 7918 if (V.isUndef()) 7919 continue; 7920 if (i > 0) 7921 isOnlyLowElement = false; 7922 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 7923 isConstant = false; 7924 7925 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { 7926 ++NumConstantLanes; 7927 if (!ConstantValue.getNode()) 7928 ConstantValue = V; 7929 else if (ConstantValue != V) 7930 usesOnlyOneConstantValue = false; 7931 } 7932 7933 if (!Value.getNode()) 7934 Value = V; 7935 else if (V != Value) 7936 usesOnlyOneValue = false; 7937 } 7938 7939 if (!Value.getNode()) { 7940 LLVM_DEBUG( 7941 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n"); 7942 return DAG.getUNDEF(VT); 7943 } 7944 7945 // Convert BUILD_VECTOR where all elements but the lowest are undef into 7946 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector 7947 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR. 7948 if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) { 7949 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 " 7950 "SCALAR_TO_VECTOR node\n"); 7951 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 7952 } 7953 7954 if (AllLanesExtractElt) { 7955 SDNode *Vector = nullptr; 7956 bool Even = false; 7957 bool Odd = false; 7958 // Check whether the extract elements match the Even pattern <0,2,4,...> or 7959 // the Odd pattern <1,3,5,...>. 7960 for (unsigned i = 0; i < NumElts; ++i) { 7961 SDValue V = Op.getOperand(i); 7962 const SDNode *N = V.getNode(); 7963 if (!isa<ConstantSDNode>(N->getOperand(1))) 7964 break; 7965 SDValue N0 = N->getOperand(0); 7966 7967 // All elements are extracted from the same vector. 7968 if (!Vector) { 7969 Vector = N0.getNode(); 7970 // Check that the type of EXTRACT_VECTOR_ELT matches the type of 7971 // BUILD_VECTOR. 7972 if (VT.getVectorElementType() != 7973 N0.getValueType().getVectorElementType()) 7974 break; 7975 } else if (Vector != N0.getNode()) { 7976 Odd = false; 7977 Even = false; 7978 break; 7979 } 7980 7981 // Extracted values are either at Even indices <0,2,4,...> or at Odd 7982 // indices <1,3,5,...>. 7983 uint64_t Val = N->getConstantOperandVal(1); 7984 if (Val == 2 * i) { 7985 Even = true; 7986 continue; 7987 } 7988 if (Val - 1 == 2 * i) { 7989 Odd = true; 7990 continue; 7991 } 7992 7993 // Something does not match: abort. 7994 Odd = false; 7995 Even = false; 7996 break; 7997 } 7998 if (Even || Odd) { 7999 SDValue LHS = 8000 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), 8001 DAG.getConstant(0, dl, MVT::i64)); 8002 SDValue RHS = 8003 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), 8004 DAG.getConstant(NumElts, dl, MVT::i64)); 8005 8006 if (Even && !Odd) 8007 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS, 8008 RHS); 8009 if (Odd && !Even) 8010 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS, 8011 RHS); 8012 } 8013 } 8014 8015 // Use DUP for non-constant splats. For f32 constant splats, reduce to 8016 // i32 and try again. 8017 if (usesOnlyOneValue) { 8018 if (!isConstant) { 8019 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8020 Value.getValueType() != VT) { 8021 LLVM_DEBUG( 8022 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n"); 8023 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); 8024 } 8025 8026 // This is actually a DUPLANExx operation, which keeps everything vectory. 8027 8028 SDValue Lane = Value.getOperand(1); 8029 Value = Value.getOperand(0); 8030 if (Value.getValueSizeInBits() == 64) { 8031 LLVM_DEBUG( 8032 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " 8033 "widening it\n"); 8034 Value = WidenVector(Value, DAG); 8035 } 8036 8037 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); 8038 return DAG.getNode(Opcode, dl, VT, Value, Lane); 8039 } 8040 8041 if (VT.getVectorElementType().isFloatingPoint()) { 8042 SmallVector<SDValue, 8> Ops; 8043 EVT EltTy = VT.getVectorElementType(); 8044 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) && 8045 "Unsupported floating-point vector type"); 8046 LLVM_DEBUG( 8047 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " 8048 "BITCASTS, and try again\n"); 8049 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); 8050 for (unsigned i = 0; i < NumElts; ++i) 8051 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); 8052 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); 8053 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); 8054 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: "; 8055 Val.dump();); 8056 Val = LowerBUILD_VECTOR(Val, DAG); 8057 if (Val.getNode()) 8058 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 8059 } 8060 } 8061 8062 // If there was only one constant value used and for more than one lane, 8063 // start by splatting that value, then replace the non-constant lanes. This 8064 // is better than the default, which will perform a separate initialization 8065 // for each lane. 8066 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { 8067 // Firstly, try to materialize the splat constant. 8068 SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue), 8069 Val = ConstantBuildVector(Vec, DAG); 8070 if (!Val) { 8071 // Otherwise, materialize the constant and splat it. 8072 Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); 8073 DAG.ReplaceAllUsesWith(Vec.getNode(), &Val); 8074 } 8075 8076 // Now insert the non-constant lanes. 8077 for (unsigned i = 0; i < NumElts; ++i) { 8078 SDValue V = Op.getOperand(i); 8079 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); 8080 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) 8081 // Note that type legalization likely mucked about with the VT of the 8082 // source operand, so we may have to convert it here before inserting. 8083 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); 8084 } 8085 return Val; 8086 } 8087 8088 // This will generate a load from the constant pool. 8089 if (isConstant) { 8090 LLVM_DEBUG( 8091 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " 8092 "expansion\n"); 8093 return SDValue(); 8094 } 8095 8096 // Empirical tests suggest this is rarely worth it for vectors of length <= 2. 8097 if (NumElts >= 4) { 8098 if (SDValue shuffle = ReconstructShuffle(Op, DAG)) 8099 return shuffle; 8100 } 8101 8102 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we 8103 // know the default expansion would otherwise fall back on something even 8104 // worse. For a vector with one or two non-undef values, that's 8105 // scalar_to_vector for the elements followed by a shuffle (provided the 8106 // shuffle is valid for the target) and materialization element by element 8107 // on the stack followed by a load for everything else. 8108 if (!isConstant && !usesOnlyOneValue) { 8109 LLVM_DEBUG( 8110 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " 8111 "of INSERT_VECTOR_ELT\n"); 8112 8113 SDValue Vec = DAG.getUNDEF(VT); 8114 SDValue Op0 = Op.getOperand(0); 8115 unsigned i = 0; 8116 8117 // Use SCALAR_TO_VECTOR for lane zero to 8118 // a) Avoid a RMW dependency on the full vector register, and 8119 // b) Allow the register coalescer to fold away the copy if the 8120 // value is already in an S or D register, and we're forced to emit an 8121 // INSERT_SUBREG that we can't fold anywhere. 8122 // 8123 // We also allow types like i8 and i16 which are illegal scalar but legal 8124 // vector element types. After type-legalization the inserted value is 8125 // extended (i32) and it is safe to cast them to the vector type by ignoring 8126 // the upper bits of the lowest lane (e.g. v8i8, v4i16). 8127 if (!Op0.isUndef()) { 8128 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n"); 8129 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0); 8130 ++i; 8131 } 8132 LLVM_DEBUG(if (i < NumElts) dbgs() 8133 << "Creating nodes for the other vector elements:\n";); 8134 for (; i < NumElts; ++i) { 8135 SDValue V = Op.getOperand(i); 8136 if (V.isUndef()) 8137 continue; 8138 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); 8139 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); 8140 } 8141 return Vec; 8142 } 8143 8144 LLVM_DEBUG( 8145 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " 8146 "better alternative\n"); 8147 return SDValue(); 8148 } 8149 8150 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 8151 SelectionDAG &DAG) const { 8152 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 8153 8154 // Check for non-constant or out of range lane. 8155 EVT VT = Op.getOperand(0).getValueType(); 8156 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 8157 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) 8158 return SDValue(); 8159 8160 8161 // Insertion/extraction are legal for V128 types. 8162 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 8163 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || 8164 VT == MVT::v8f16) 8165 return Op; 8166 8167 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && 8168 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) 8169 return SDValue(); 8170 8171 // For V64 types, we perform insertion by expanding the value 8172 // to a V128 type and perform the insertion on that. 8173 SDLoc DL(Op); 8174 SDValue WideVec = WidenVector(Op.getOperand(0), DAG); 8175 EVT WideTy = WideVec.getValueType(); 8176 8177 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, 8178 Op.getOperand(1), Op.getOperand(2)); 8179 // Re-narrow the resultant vector. 8180 return NarrowVector(Node, DAG); 8181 } 8182 8183 SDValue 8184 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 8185 SelectionDAG &DAG) const { 8186 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 8187 8188 // Check for non-constant or out of range lane. 8189 EVT VT = Op.getOperand(0).getValueType(); 8190 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8191 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) 8192 return SDValue(); 8193 8194 8195 // Insertion/extraction are legal for V128 types. 8196 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 8197 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || 8198 VT == MVT::v8f16) 8199 return Op; 8200 8201 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && 8202 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) 8203 return SDValue(); 8204 8205 // For V64 types, we perform extraction by expanding the value 8206 // to a V128 type and perform the extraction on that. 8207 SDLoc DL(Op); 8208 SDValue WideVec = WidenVector(Op.getOperand(0), DAG); 8209 EVT WideTy = WideVec.getValueType(); 8210 8211 EVT ExtrTy = WideTy.getVectorElementType(); 8212 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) 8213 ExtrTy = MVT::i32; 8214 8215 // For extractions, we just return the result directly. 8216 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, 8217 Op.getOperand(1)); 8218 } 8219 8220 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 8221 SelectionDAG &DAG) const { 8222 EVT VT = Op.getOperand(0).getValueType(); 8223 SDLoc dl(Op); 8224 // Just in case... 8225 if (!VT.isVector()) 8226 return SDValue(); 8227 8228 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8229 if (!Cst) 8230 return SDValue(); 8231 unsigned Val = Cst->getZExtValue(); 8232 8233 unsigned Size = Op.getValueSizeInBits(); 8234 8235 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. 8236 if (Val == 0) 8237 return Op; 8238 8239 // If this is extracting the upper 64-bits of a 128-bit vector, we match 8240 // that directly. 8241 if (Size == 64 && Val * VT.getScalarSizeInBits() == 64) 8242 return Op; 8243 8244 return SDValue(); 8245 } 8246 8247 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 8248 if (VT.getVectorNumElements() == 4 && 8249 (VT.is128BitVector() || VT.is64BitVector())) { 8250 unsigned PFIndexes[4]; 8251 for (unsigned i = 0; i != 4; ++i) { 8252 if (M[i] < 0) 8253 PFIndexes[i] = 8; 8254 else 8255 PFIndexes[i] = M[i]; 8256 } 8257 8258 // Compute the index in the perfect shuffle table. 8259 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 8260 PFIndexes[2] * 9 + PFIndexes[3]; 8261 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8262 unsigned Cost = (PFEntry >> 30); 8263 8264 if (Cost <= 4) 8265 return true; 8266 } 8267 8268 bool DummyBool; 8269 int DummyInt; 8270 unsigned DummyUnsigned; 8271 8272 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || 8273 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || 8274 isEXTMask(M, VT, DummyBool, DummyUnsigned) || 8275 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. 8276 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || 8277 isZIPMask(M, VT, DummyUnsigned) || 8278 isTRN_v_undef_Mask(M, VT, DummyUnsigned) || 8279 isUZP_v_undef_Mask(M, VT, DummyUnsigned) || 8280 isZIP_v_undef_Mask(M, VT, DummyUnsigned) || 8281 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || 8282 isConcatMask(M, VT, VT.getSizeInBits() == 128)); 8283 } 8284 8285 /// getVShiftImm - Check if this is a valid build_vector for the immediate 8286 /// operand of a vector shift operation, where all the elements of the 8287 /// build_vector must have the same constant integer value. 8288 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 8289 // Ignore bit_converts. 8290 while (Op.getOpcode() == ISD::BITCAST) 8291 Op = Op.getOperand(0); 8292 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8293 APInt SplatBits, SplatUndef; 8294 unsigned SplatBitSize; 8295 bool HasAnyUndefs; 8296 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, 8297 HasAnyUndefs, ElementBits) || 8298 SplatBitSize > ElementBits) 8299 return false; 8300 Cnt = SplatBits.getSExtValue(); 8301 return true; 8302 } 8303 8304 /// isVShiftLImm - Check if this is a valid build_vector for the immediate 8305 /// operand of a vector shift left operation. That value must be in the range: 8306 /// 0 <= Value < ElementBits for a left shift; or 8307 /// 0 <= Value <= ElementBits for a long left shift. 8308 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 8309 assert(VT.isVector() && "vector shift count is not a vector type"); 8310 int64_t ElementBits = VT.getScalarSizeInBits(); 8311 if (!getVShiftImm(Op, ElementBits, Cnt)) 8312 return false; 8313 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); 8314 } 8315 8316 /// isVShiftRImm - Check if this is a valid build_vector for the immediate 8317 /// operand of a vector shift right operation. The value must be in the range: 8318 /// 1 <= Value <= ElementBits for a right shift; or 8319 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { 8320 assert(VT.isVector() && "vector shift count is not a vector type"); 8321 int64_t ElementBits = VT.getScalarSizeInBits(); 8322 if (!getVShiftImm(Op, ElementBits, Cnt)) 8323 return false; 8324 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); 8325 } 8326 8327 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, 8328 SelectionDAG &DAG) const { 8329 EVT VT = Op.getValueType(); 8330 SDLoc DL(Op); 8331 int64_t Cnt; 8332 8333 if (!Op.getOperand(1).getValueType().isVector()) 8334 return Op; 8335 unsigned EltSize = VT.getScalarSizeInBits(); 8336 8337 switch (Op.getOpcode()) { 8338 default: 8339 llvm_unreachable("unexpected shift opcode"); 8340 8341 case ISD::SHL: 8342 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) 8343 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), 8344 DAG.getConstant(Cnt, DL, MVT::i32)); 8345 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 8346 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, 8347 MVT::i32), 8348 Op.getOperand(0), Op.getOperand(1)); 8349 case ISD::SRA: 8350 case ISD::SRL: 8351 // Right shift immediate 8352 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { 8353 unsigned Opc = 8354 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; 8355 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), 8356 DAG.getConstant(Cnt, DL, MVT::i32)); 8357 } 8358 8359 // Right shift register. Note, there is not a shift right register 8360 // instruction, but the shift left register instruction takes a signed 8361 // value, where negative numbers specify a right shift. 8362 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl 8363 : Intrinsic::aarch64_neon_ushl; 8364 // negate the shift amount 8365 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); 8366 SDValue NegShiftLeft = 8367 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 8368 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), 8369 NegShift); 8370 return NegShiftLeft; 8371 } 8372 8373 return SDValue(); 8374 } 8375 8376 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, 8377 AArch64CC::CondCode CC, bool NoNans, EVT VT, 8378 const SDLoc &dl, SelectionDAG &DAG) { 8379 EVT SrcVT = LHS.getValueType(); 8380 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() && 8381 "function only supposed to emit natural comparisons"); 8382 8383 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 8384 APInt CnstBits(VT.getSizeInBits(), 0); 8385 APInt UndefBits(VT.getSizeInBits(), 0); 8386 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); 8387 bool IsZero = IsCnst && (CnstBits == 0); 8388 8389 if (SrcVT.getVectorElementType().isFloatingPoint()) { 8390 switch (CC) { 8391 default: 8392 return SDValue(); 8393 case AArch64CC::NE: { 8394 SDValue Fcmeq; 8395 if (IsZero) 8396 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); 8397 else 8398 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); 8399 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); 8400 } 8401 case AArch64CC::EQ: 8402 if (IsZero) 8403 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); 8404 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); 8405 case AArch64CC::GE: 8406 if (IsZero) 8407 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); 8408 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); 8409 case AArch64CC::GT: 8410 if (IsZero) 8411 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); 8412 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); 8413 case AArch64CC::LS: 8414 if (IsZero) 8415 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); 8416 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); 8417 case AArch64CC::LT: 8418 if (!NoNans) 8419 return SDValue(); 8420 // If we ignore NaNs then we can use to the MI implementation. 8421 LLVM_FALLTHROUGH; 8422 case AArch64CC::MI: 8423 if (IsZero) 8424 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); 8425 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); 8426 } 8427 } 8428 8429 switch (CC) { 8430 default: 8431 return SDValue(); 8432 case AArch64CC::NE: { 8433 SDValue Cmeq; 8434 if (IsZero) 8435 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); 8436 else 8437 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); 8438 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); 8439 } 8440 case AArch64CC::EQ: 8441 if (IsZero) 8442 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); 8443 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); 8444 case AArch64CC::GE: 8445 if (IsZero) 8446 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); 8447 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); 8448 case AArch64CC::GT: 8449 if (IsZero) 8450 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); 8451 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); 8452 case AArch64CC::LE: 8453 if (IsZero) 8454 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); 8455 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); 8456 case AArch64CC::LS: 8457 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); 8458 case AArch64CC::LO: 8459 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); 8460 case AArch64CC::LT: 8461 if (IsZero) 8462 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); 8463 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); 8464 case AArch64CC::HI: 8465 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); 8466 case AArch64CC::HS: 8467 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); 8468 } 8469 } 8470 8471 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, 8472 SelectionDAG &DAG) const { 8473 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8474 SDValue LHS = Op.getOperand(0); 8475 SDValue RHS = Op.getOperand(1); 8476 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); 8477 SDLoc dl(Op); 8478 8479 if (LHS.getValueType().getVectorElementType().isInteger()) { 8480 assert(LHS.getValueType() == RHS.getValueType()); 8481 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 8482 SDValue Cmp = 8483 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); 8484 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); 8485 } 8486 8487 const bool FullFP16 = 8488 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 8489 8490 // Make v4f16 (only) fcmp operations utilise vector instructions 8491 // v8f16 support will be a litle more complicated 8492 if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) { 8493 if (LHS.getValueType().getVectorNumElements() == 4) { 8494 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS); 8495 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS); 8496 SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC); 8497 DAG.ReplaceAllUsesWith(Op, NewSetcc); 8498 CmpVT = MVT::v4i32; 8499 } else 8500 return SDValue(); 8501 } 8502 8503 assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) || 8504 LHS.getValueType().getVectorElementType() != MVT::f128); 8505 8506 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 8507 // clean. Some of them require two branches to implement. 8508 AArch64CC::CondCode CC1, CC2; 8509 bool ShouldInvert; 8510 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); 8511 8512 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; 8513 SDValue Cmp = 8514 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); 8515 if (!Cmp.getNode()) 8516 return SDValue(); 8517 8518 if (CC2 != AArch64CC::AL) { 8519 SDValue Cmp2 = 8520 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); 8521 if (!Cmp2.getNode()) 8522 return SDValue(); 8523 8524 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); 8525 } 8526 8527 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); 8528 8529 if (ShouldInvert) 8530 Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); 8531 8532 return Cmp; 8533 } 8534 8535 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp, 8536 SelectionDAG &DAG) { 8537 SDValue VecOp = ScalarOp.getOperand(0); 8538 auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp); 8539 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx, 8540 DAG.getConstant(0, DL, MVT::i64)); 8541 } 8542 8543 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op, 8544 SelectionDAG &DAG) const { 8545 SDLoc dl(Op); 8546 switch (Op.getOpcode()) { 8547 case ISD::VECREDUCE_ADD: 8548 return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG); 8549 case ISD::VECREDUCE_SMAX: 8550 return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG); 8551 case ISD::VECREDUCE_SMIN: 8552 return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG); 8553 case ISD::VECREDUCE_UMAX: 8554 return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG); 8555 case ISD::VECREDUCE_UMIN: 8556 return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG); 8557 case ISD::VECREDUCE_FMAX: { 8558 assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag"); 8559 return DAG.getNode( 8560 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), 8561 DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32), 8562 Op.getOperand(0)); 8563 } 8564 case ISD::VECREDUCE_FMIN: { 8565 assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag"); 8566 return DAG.getNode( 8567 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), 8568 DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32), 8569 Op.getOperand(0)); 8570 } 8571 default: 8572 llvm_unreachable("Unhandled reduction"); 8573 } 8574 } 8575 8576 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op, 8577 SelectionDAG &DAG) const { 8578 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget()); 8579 if (!Subtarget.hasLSE()) 8580 return SDValue(); 8581 8582 // LSE has an atomic load-add instruction, but not a load-sub. 8583 SDLoc dl(Op); 8584 MVT VT = Op.getSimpleValueType(); 8585 SDValue RHS = Op.getOperand(2); 8586 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); 8587 RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS); 8588 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(), 8589 Op.getOperand(0), Op.getOperand(1), RHS, 8590 AN->getMemOperand()); 8591 } 8592 8593 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op, 8594 SelectionDAG &DAG) const { 8595 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget()); 8596 if (!Subtarget.hasLSE()) 8597 return SDValue(); 8598 8599 // LSE has an atomic load-clear instruction, but not a load-and. 8600 SDLoc dl(Op); 8601 MVT VT = Op.getSimpleValueType(); 8602 SDValue RHS = Op.getOperand(2); 8603 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); 8604 RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS); 8605 return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(), 8606 Op.getOperand(0), Op.getOperand(1), RHS, 8607 AN->getMemOperand()); 8608 } 8609 8610 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC( 8611 SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const { 8612 SDLoc dl(Op); 8613 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8614 SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0); 8615 8616 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 8617 const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask(); 8618 if (Subtarget->hasCustomCallingConv()) 8619 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); 8620 8621 Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size, 8622 DAG.getConstant(4, dl, MVT::i64)); 8623 Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue()); 8624 Chain = 8625 DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue), 8626 Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64), 8627 DAG.getRegisterMask(Mask), Chain.getValue(1)); 8628 // To match the actual intent better, we should read the output from X15 here 8629 // again (instead of potentially spilling it to the stack), but rereading Size 8630 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined 8631 // here. 8632 8633 Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size, 8634 DAG.getConstant(4, dl, MVT::i64)); 8635 return Chain; 8636 } 8637 8638 SDValue 8639 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 8640 SelectionDAG &DAG) const { 8641 assert(Subtarget->isTargetWindows() && 8642 "Only Windows alloca probing supported"); 8643 SDLoc dl(Op); 8644 // Get the inputs. 8645 SDNode *Node = Op.getNode(); 8646 SDValue Chain = Op.getOperand(0); 8647 SDValue Size = Op.getOperand(1); 8648 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 8649 EVT VT = Node->getValueType(0); 8650 8651 if (DAG.getMachineFunction().getFunction().hasFnAttribute( 8652 "no-stack-arg-probe")) { 8653 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); 8654 Chain = SP.getValue(1); 8655 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); 8656 if (Align) 8657 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), 8658 DAG.getConstant(-(uint64_t)Align, dl, VT)); 8659 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); 8660 SDValue Ops[2] = {SP, Chain}; 8661 return DAG.getMergeValues(Ops, dl); 8662 } 8663 8664 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 8665 8666 Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG); 8667 8668 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); 8669 Chain = SP.getValue(1); 8670 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); 8671 if (Align) 8672 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), 8673 DAG.getConstant(-(uint64_t)Align, dl, VT)); 8674 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); 8675 8676 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 8677 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 8678 8679 SDValue Ops[2] = {SP, Chain}; 8680 return DAG.getMergeValues(Ops, dl); 8681 } 8682 8683 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 8684 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 8685 /// specified in the intrinsic calls. 8686 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 8687 const CallInst &I, 8688 MachineFunction &MF, 8689 unsigned Intrinsic) const { 8690 auto &DL = I.getModule()->getDataLayout(); 8691 switch (Intrinsic) { 8692 case Intrinsic::aarch64_neon_ld2: 8693 case Intrinsic::aarch64_neon_ld3: 8694 case Intrinsic::aarch64_neon_ld4: 8695 case Intrinsic::aarch64_neon_ld1x2: 8696 case Intrinsic::aarch64_neon_ld1x3: 8697 case Intrinsic::aarch64_neon_ld1x4: 8698 case Intrinsic::aarch64_neon_ld2lane: 8699 case Intrinsic::aarch64_neon_ld3lane: 8700 case Intrinsic::aarch64_neon_ld4lane: 8701 case Intrinsic::aarch64_neon_ld2r: 8702 case Intrinsic::aarch64_neon_ld3r: 8703 case Intrinsic::aarch64_neon_ld4r: { 8704 Info.opc = ISD::INTRINSIC_W_CHAIN; 8705 // Conservatively set memVT to the entire set of vectors loaded. 8706 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; 8707 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 8708 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); 8709 Info.offset = 0; 8710 Info.align.reset(); 8711 // volatile loads with NEON intrinsics not supported 8712 Info.flags = MachineMemOperand::MOLoad; 8713 return true; 8714 } 8715 case Intrinsic::aarch64_neon_st2: 8716 case Intrinsic::aarch64_neon_st3: 8717 case Intrinsic::aarch64_neon_st4: 8718 case Intrinsic::aarch64_neon_st1x2: 8719 case Intrinsic::aarch64_neon_st1x3: 8720 case Intrinsic::aarch64_neon_st1x4: 8721 case Intrinsic::aarch64_neon_st2lane: 8722 case Intrinsic::aarch64_neon_st3lane: 8723 case Intrinsic::aarch64_neon_st4lane: { 8724 Info.opc = ISD::INTRINSIC_VOID; 8725 // Conservatively set memVT to the entire set of vectors stored. 8726 unsigned NumElts = 0; 8727 for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { 8728 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 8729 if (!ArgTy->isVectorTy()) 8730 break; 8731 NumElts += DL.getTypeSizeInBits(ArgTy) / 64; 8732 } 8733 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 8734 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); 8735 Info.offset = 0; 8736 Info.align.reset(); 8737 // volatile stores with NEON intrinsics not supported 8738 Info.flags = MachineMemOperand::MOStore; 8739 return true; 8740 } 8741 case Intrinsic::aarch64_ldaxr: 8742 case Intrinsic::aarch64_ldxr: { 8743 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 8744 Info.opc = ISD::INTRINSIC_W_CHAIN; 8745 Info.memVT = MVT::getVT(PtrTy->getElementType()); 8746 Info.ptrVal = I.getArgOperand(0); 8747 Info.offset = 0; 8748 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType())); 8749 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 8750 return true; 8751 } 8752 case Intrinsic::aarch64_stlxr: 8753 case Intrinsic::aarch64_stxr: { 8754 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 8755 Info.opc = ISD::INTRINSIC_W_CHAIN; 8756 Info.memVT = MVT::getVT(PtrTy->getElementType()); 8757 Info.ptrVal = I.getArgOperand(1); 8758 Info.offset = 0; 8759 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType())); 8760 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 8761 return true; 8762 } 8763 case Intrinsic::aarch64_ldaxp: 8764 case Intrinsic::aarch64_ldxp: 8765 Info.opc = ISD::INTRINSIC_W_CHAIN; 8766 Info.memVT = MVT::i128; 8767 Info.ptrVal = I.getArgOperand(0); 8768 Info.offset = 0; 8769 Info.align = Align(16); 8770 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 8771 return true; 8772 case Intrinsic::aarch64_stlxp: 8773 case Intrinsic::aarch64_stxp: 8774 Info.opc = ISD::INTRINSIC_W_CHAIN; 8775 Info.memVT = MVT::i128; 8776 Info.ptrVal = I.getArgOperand(2); 8777 Info.offset = 0; 8778 Info.align = Align(16); 8779 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 8780 return true; 8781 case Intrinsic::aarch64_sve_ldnt1: { 8782 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 8783 Info.opc = ISD::INTRINSIC_W_CHAIN; 8784 Info.memVT = MVT::getVT(PtrTy->getElementType()); 8785 Info.ptrVal = I.getArgOperand(1); 8786 Info.offset = 0; 8787 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType())); 8788 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal; 8789 return true; 8790 } 8791 case Intrinsic::aarch64_sve_stnt1: { 8792 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(2)->getType()); 8793 Info.opc = ISD::INTRINSIC_W_CHAIN; 8794 Info.memVT = MVT::getVT(PtrTy->getElementType()); 8795 Info.ptrVal = I.getArgOperand(2); 8796 Info.offset = 0; 8797 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType())); 8798 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal; 8799 return true; 8800 } 8801 default: 8802 break; 8803 } 8804 8805 return false; 8806 } 8807 8808 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load, 8809 ISD::LoadExtType ExtTy, 8810 EVT NewVT) const { 8811 // TODO: This may be worth removing. Check regression tests for diffs. 8812 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) 8813 return false; 8814 8815 // If we're reducing the load width in order to avoid having to use an extra 8816 // instruction to do extension then it's probably a good idea. 8817 if (ExtTy != ISD::NON_EXTLOAD) 8818 return true; 8819 // Don't reduce load width if it would prevent us from combining a shift into 8820 // the offset. 8821 MemSDNode *Mem = dyn_cast<MemSDNode>(Load); 8822 assert(Mem); 8823 const SDValue &Base = Mem->getBasePtr(); 8824 if (Base.getOpcode() == ISD::ADD && 8825 Base.getOperand(1).getOpcode() == ISD::SHL && 8826 Base.getOperand(1).hasOneUse() && 8827 Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) { 8828 // The shift can be combined if it matches the size of the value being 8829 // loaded (and so reducing the width would make it not match). 8830 uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1); 8831 uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8; 8832 if (ShiftAmount == Log2_32(LoadBytes)) 8833 return false; 8834 } 8835 // We have no reason to disallow reducing the load width, so allow it. 8836 return true; 8837 } 8838 8839 // Truncations from 64-bit GPR to 32-bit GPR is free. 8840 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 8841 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 8842 return false; 8843 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 8844 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 8845 return NumBits1 > NumBits2; 8846 } 8847 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 8848 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) 8849 return false; 8850 unsigned NumBits1 = VT1.getSizeInBits(); 8851 unsigned NumBits2 = VT2.getSizeInBits(); 8852 return NumBits1 > NumBits2; 8853 } 8854 8855 /// Check if it is profitable to hoist instruction in then/else to if. 8856 /// Not profitable if I and it's user can form a FMA instruction 8857 /// because we prefer FMSUB/FMADD. 8858 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { 8859 if (I->getOpcode() != Instruction::FMul) 8860 return true; 8861 8862 if (!I->hasOneUse()) 8863 return true; 8864 8865 Instruction *User = I->user_back(); 8866 8867 if (User && 8868 !(User->getOpcode() == Instruction::FSub || 8869 User->getOpcode() == Instruction::FAdd)) 8870 return true; 8871 8872 const TargetOptions &Options = getTargetMachine().Options; 8873 const Function *F = I->getFunction(); 8874 const DataLayout &DL = F->getParent()->getDataLayout(); 8875 Type *Ty = User->getOperand(0)->getType(); 8876 8877 return !(isFMAFasterThanFMulAndFAdd(*F, Ty) && 8878 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 8879 (Options.AllowFPOpFusion == FPOpFusion::Fast || 8880 Options.UnsafeFPMath)); 8881 } 8882 8883 // All 32-bit GPR operations implicitly zero the high-half of the corresponding 8884 // 64-bit GPR. 8885 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 8886 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 8887 return false; 8888 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 8889 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 8890 return NumBits1 == 32 && NumBits2 == 64; 8891 } 8892 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 8893 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) 8894 return false; 8895 unsigned NumBits1 = VT1.getSizeInBits(); 8896 unsigned NumBits2 = VT2.getSizeInBits(); 8897 return NumBits1 == 32 && NumBits2 == 64; 8898 } 8899 8900 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 8901 EVT VT1 = Val.getValueType(); 8902 if (isZExtFree(VT1, VT2)) { 8903 return true; 8904 } 8905 8906 if (Val.getOpcode() != ISD::LOAD) 8907 return false; 8908 8909 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. 8910 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && 8911 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && 8912 VT1.getSizeInBits() <= 32); 8913 } 8914 8915 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { 8916 if (isa<FPExtInst>(Ext)) 8917 return false; 8918 8919 // Vector types are not free. 8920 if (Ext->getType()->isVectorTy()) 8921 return false; 8922 8923 for (const Use &U : Ext->uses()) { 8924 // The extension is free if we can fold it with a left shift in an 8925 // addressing mode or an arithmetic operation: add, sub, and cmp. 8926 8927 // Is there a shift? 8928 const Instruction *Instr = cast<Instruction>(U.getUser()); 8929 8930 // Is this a constant shift? 8931 switch (Instr->getOpcode()) { 8932 case Instruction::Shl: 8933 if (!isa<ConstantInt>(Instr->getOperand(1))) 8934 return false; 8935 break; 8936 case Instruction::GetElementPtr: { 8937 gep_type_iterator GTI = gep_type_begin(Instr); 8938 auto &DL = Ext->getModule()->getDataLayout(); 8939 std::advance(GTI, U.getOperandNo()-1); 8940 Type *IdxTy = GTI.getIndexedType(); 8941 // This extension will end up with a shift because of the scaling factor. 8942 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. 8943 // Get the shift amount based on the scaling factor: 8944 // log2(sizeof(IdxTy)) - log2(8). 8945 uint64_t ShiftAmt = 8946 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3; 8947 // Is the constant foldable in the shift of the addressing mode? 8948 // I.e., shift amount is between 1 and 4 inclusive. 8949 if (ShiftAmt == 0 || ShiftAmt > 4) 8950 return false; 8951 break; 8952 } 8953 case Instruction::Trunc: 8954 // Check if this is a noop. 8955 // trunc(sext ty1 to ty2) to ty1. 8956 if (Instr->getType() == Ext->getOperand(0)->getType()) 8957 continue; 8958 LLVM_FALLTHROUGH; 8959 default: 8960 return false; 8961 } 8962 8963 // At this point we can use the bfm family, so this extension is free 8964 // for that use. 8965 } 8966 return true; 8967 } 8968 8969 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower 8970 /// or upper half of the vector elements. 8971 static bool areExtractShuffleVectors(Value *Op1, Value *Op2) { 8972 auto areTypesHalfed = [](Value *FullV, Value *HalfV) { 8973 auto *FullVT = cast<VectorType>(FullV->getType()); 8974 auto *HalfVT = cast<VectorType>(HalfV->getType()); 8975 return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth(); 8976 }; 8977 8978 auto extractHalf = [](Value *FullV, Value *HalfV) { 8979 auto *FullVT = cast<VectorType>(FullV->getType()); 8980 auto *HalfVT = cast<VectorType>(HalfV->getType()); 8981 return FullVT->getNumElements() == 2 * HalfVT->getNumElements(); 8982 }; 8983 8984 Constant *M1, *M2; 8985 Value *S1Op1, *S2Op1; 8986 if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) || 8987 !match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2)))) 8988 return false; 8989 8990 // Check that the operands are half as wide as the result and we extract 8991 // half of the elements of the input vectors. 8992 if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) || 8993 !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2)) 8994 return false; 8995 8996 // Check the mask extracts either the lower or upper half of vector 8997 // elements. 8998 int M1Start = -1; 8999 int M2Start = -1; 9000 int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2; 9001 if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) || 9002 !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) || 9003 M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2))) 9004 return false; 9005 9006 return true; 9007 } 9008 9009 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth 9010 /// of the vector elements. 9011 static bool areExtractExts(Value *Ext1, Value *Ext2) { 9012 auto areExtDoubled = [](Instruction *Ext) { 9013 return Ext->getType()->getScalarSizeInBits() == 9014 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); 9015 }; 9016 9017 if (!match(Ext1, m_ZExtOrSExt(m_Value())) || 9018 !match(Ext2, m_ZExtOrSExt(m_Value())) || 9019 !areExtDoubled(cast<Instruction>(Ext1)) || 9020 !areExtDoubled(cast<Instruction>(Ext2))) 9021 return false; 9022 9023 return true; 9024 } 9025 9026 /// Check if sinking \p I's operands to I's basic block is profitable, because 9027 /// the operands can be folded into a target instruction, e.g. 9028 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2). 9029 bool AArch64TargetLowering::shouldSinkOperands( 9030 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 9031 if (!I->getType()->isVectorTy()) 9032 return false; 9033 9034 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 9035 switch (II->getIntrinsicID()) { 9036 case Intrinsic::aarch64_neon_umull: 9037 if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1))) 9038 return false; 9039 Ops.push_back(&II->getOperandUse(0)); 9040 Ops.push_back(&II->getOperandUse(1)); 9041 return true; 9042 default: 9043 return false; 9044 } 9045 } 9046 9047 switch (I->getOpcode()) { 9048 case Instruction::Sub: 9049 case Instruction::Add: { 9050 if (!areExtractExts(I->getOperand(0), I->getOperand(1))) 9051 return false; 9052 9053 // If the exts' operands extract either the lower or upper elements, we 9054 // can sink them too. 9055 auto Ext1 = cast<Instruction>(I->getOperand(0)); 9056 auto Ext2 = cast<Instruction>(I->getOperand(1)); 9057 if (areExtractShuffleVectors(Ext1, Ext2)) { 9058 Ops.push_back(&Ext1->getOperandUse(0)); 9059 Ops.push_back(&Ext2->getOperandUse(0)); 9060 } 9061 9062 Ops.push_back(&I->getOperandUse(0)); 9063 Ops.push_back(&I->getOperandUse(1)); 9064 9065 return true; 9066 } 9067 default: 9068 return false; 9069 } 9070 return false; 9071 } 9072 9073 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, 9074 unsigned &RequiredAligment) const { 9075 if (!LoadedType.isSimple() || 9076 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) 9077 return false; 9078 // Cyclone supports unaligned accesses. 9079 RequiredAligment = 0; 9080 unsigned NumBits = LoadedType.getSizeInBits(); 9081 return NumBits == 32 || NumBits == 64; 9082 } 9083 9084 /// A helper function for determining the number of interleaved accesses we 9085 /// will generate when lowering accesses of the given type. 9086 unsigned 9087 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy, 9088 const DataLayout &DL) const { 9089 return (DL.getTypeSizeInBits(VecTy) + 127) / 128; 9090 } 9091 9092 MachineMemOperand::Flags 9093 AArch64TargetLowering::getMMOFlags(const Instruction &I) const { 9094 if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor && 9095 I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr) 9096 return MOStridedAccess; 9097 return MachineMemOperand::MONone; 9098 } 9099 9100 bool AArch64TargetLowering::isLegalInterleavedAccessType( 9101 VectorType *VecTy, const DataLayout &DL) const { 9102 9103 unsigned VecSize = DL.getTypeSizeInBits(VecTy); 9104 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); 9105 9106 // Ensure the number of vector elements is greater than 1. 9107 if (VecTy->getNumElements() < 2) 9108 return false; 9109 9110 // Ensure the element type is legal. 9111 if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64) 9112 return false; 9113 9114 // Ensure the total vector size is 64 or a multiple of 128. Types larger than 9115 // 128 will be split into multiple interleaved accesses. 9116 return VecSize == 64 || VecSize % 128 == 0; 9117 } 9118 9119 /// Lower an interleaved load into a ldN intrinsic. 9120 /// 9121 /// E.g. Lower an interleaved load (Factor = 2): 9122 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr 9123 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements 9124 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements 9125 /// 9126 /// Into: 9127 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) 9128 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 9129 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 9130 bool AArch64TargetLowering::lowerInterleavedLoad( 9131 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, 9132 ArrayRef<unsigned> Indices, unsigned Factor) const { 9133 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 9134 "Invalid interleave factor"); 9135 assert(!Shuffles.empty() && "Empty shufflevector input"); 9136 assert(Shuffles.size() == Indices.size() && 9137 "Unmatched number of shufflevectors and indices"); 9138 9139 const DataLayout &DL = LI->getModule()->getDataLayout(); 9140 9141 VectorType *VecTy = Shuffles[0]->getType(); 9142 9143 // Skip if we do not have NEON and skip illegal vector types. We can 9144 // "legalize" wide vector types into multiple interleaved accesses as long as 9145 // the vector types are divisible by 128. 9146 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL)) 9147 return false; 9148 9149 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL); 9150 9151 // A pointer vector can not be the return type of the ldN intrinsics. Need to 9152 // load integer vectors first and then convert to pointer vectors. 9153 Type *EltTy = VecTy->getVectorElementType(); 9154 if (EltTy->isPointerTy()) 9155 VecTy = 9156 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements()); 9157 9158 IRBuilder<> Builder(LI); 9159 9160 // The base address of the load. 9161 Value *BaseAddr = LI->getPointerOperand(); 9162 9163 if (NumLoads > 1) { 9164 // If we're going to generate more than one load, reset the sub-vector type 9165 // to something legal. 9166 VecTy = VectorType::get(VecTy->getVectorElementType(), 9167 VecTy->getVectorNumElements() / NumLoads); 9168 9169 // We will compute the pointer operand of each load from the original base 9170 // address using GEPs. Cast the base address to a pointer to the scalar 9171 // element type. 9172 BaseAddr = Builder.CreateBitCast( 9173 BaseAddr, VecTy->getVectorElementType()->getPointerTo( 9174 LI->getPointerAddressSpace())); 9175 } 9176 9177 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace()); 9178 Type *Tys[2] = {VecTy, PtrTy}; 9179 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2, 9180 Intrinsic::aarch64_neon_ld3, 9181 Intrinsic::aarch64_neon_ld4}; 9182 Function *LdNFunc = 9183 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); 9184 9185 // Holds sub-vectors extracted from the load intrinsic return values. The 9186 // sub-vectors are associated with the shufflevector instructions they will 9187 // replace. 9188 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs; 9189 9190 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { 9191 9192 // If we're generating more than one load, compute the base address of 9193 // subsequent loads as an offset from the previous. 9194 if (LoadCount > 0) 9195 BaseAddr = 9196 Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr, 9197 VecTy->getVectorNumElements() * Factor); 9198 9199 CallInst *LdN = Builder.CreateCall( 9200 LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN"); 9201 9202 // Extract and store the sub-vectors returned by the load intrinsic. 9203 for (unsigned i = 0; i < Shuffles.size(); i++) { 9204 ShuffleVectorInst *SVI = Shuffles[i]; 9205 unsigned Index = Indices[i]; 9206 9207 Value *SubVec = Builder.CreateExtractValue(LdN, Index); 9208 9209 // Convert the integer vector to pointer vector if the element is pointer. 9210 if (EltTy->isPointerTy()) 9211 SubVec = Builder.CreateIntToPtr( 9212 SubVec, VectorType::get(SVI->getType()->getVectorElementType(), 9213 VecTy->getVectorNumElements())); 9214 SubVecs[SVI].push_back(SubVec); 9215 } 9216 } 9217 9218 // Replace uses of the shufflevector instructions with the sub-vectors 9219 // returned by the load intrinsic. If a shufflevector instruction is 9220 // associated with more than one sub-vector, those sub-vectors will be 9221 // concatenated into a single wide vector. 9222 for (ShuffleVectorInst *SVI : Shuffles) { 9223 auto &SubVec = SubVecs[SVI]; 9224 auto *WideVec = 9225 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; 9226 SVI->replaceAllUsesWith(WideVec); 9227 } 9228 9229 return true; 9230 } 9231 9232 /// Lower an interleaved store into a stN intrinsic. 9233 /// 9234 /// E.g. Lower an interleaved store (Factor = 3): 9235 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 9236 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 9237 /// store <12 x i32> %i.vec, <12 x i32>* %ptr 9238 /// 9239 /// Into: 9240 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> 9241 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> 9242 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> 9243 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) 9244 /// 9245 /// Note that the new shufflevectors will be removed and we'll only generate one 9246 /// st3 instruction in CodeGen. 9247 /// 9248 /// Example for a more general valid mask (Factor 3). Lower: 9249 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, 9250 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 9251 /// store <12 x i32> %i.vec, <12 x i32>* %ptr 9252 /// 9253 /// Into: 9254 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> 9255 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> 9256 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> 9257 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) 9258 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, 9259 ShuffleVectorInst *SVI, 9260 unsigned Factor) const { 9261 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 9262 "Invalid interleave factor"); 9263 9264 VectorType *VecTy = SVI->getType(); 9265 assert(VecTy->getVectorNumElements() % Factor == 0 && 9266 "Invalid interleaved store"); 9267 9268 unsigned LaneLen = VecTy->getVectorNumElements() / Factor; 9269 Type *EltTy = VecTy->getVectorElementType(); 9270 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen); 9271 9272 const DataLayout &DL = SI->getModule()->getDataLayout(); 9273 9274 // Skip if we do not have NEON and skip illegal vector types. We can 9275 // "legalize" wide vector types into multiple interleaved accesses as long as 9276 // the vector types are divisible by 128. 9277 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL)) 9278 return false; 9279 9280 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL); 9281 9282 Value *Op0 = SVI->getOperand(0); 9283 Value *Op1 = SVI->getOperand(1); 9284 IRBuilder<> Builder(SI); 9285 9286 // StN intrinsics don't support pointer vectors as arguments. Convert pointer 9287 // vectors to integer vectors. 9288 if (EltTy->isPointerTy()) { 9289 Type *IntTy = DL.getIntPtrType(EltTy); 9290 unsigned NumOpElts = Op0->getType()->getVectorNumElements(); 9291 9292 // Convert to the corresponding integer vector. 9293 Type *IntVecTy = VectorType::get(IntTy, NumOpElts); 9294 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); 9295 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); 9296 9297 SubVecTy = VectorType::get(IntTy, LaneLen); 9298 } 9299 9300 // The base address of the store. 9301 Value *BaseAddr = SI->getPointerOperand(); 9302 9303 if (NumStores > 1) { 9304 // If we're going to generate more than one store, reset the lane length 9305 // and sub-vector type to something legal. 9306 LaneLen /= NumStores; 9307 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen); 9308 9309 // We will compute the pointer operand of each store from the original base 9310 // address using GEPs. Cast the base address to a pointer to the scalar 9311 // element type. 9312 BaseAddr = Builder.CreateBitCast( 9313 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo( 9314 SI->getPointerAddressSpace())); 9315 } 9316 9317 auto Mask = SVI->getShuffleMask(); 9318 9319 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace()); 9320 Type *Tys[2] = {SubVecTy, PtrTy}; 9321 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2, 9322 Intrinsic::aarch64_neon_st3, 9323 Intrinsic::aarch64_neon_st4}; 9324 Function *StNFunc = 9325 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys); 9326 9327 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { 9328 9329 SmallVector<Value *, 5> Ops; 9330 9331 // Split the shufflevector operands into sub vectors for the new stN call. 9332 for (unsigned i = 0; i < Factor; i++) { 9333 unsigned IdxI = StoreCount * LaneLen * Factor + i; 9334 if (Mask[IdxI] >= 0) { 9335 Ops.push_back(Builder.CreateShuffleVector( 9336 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0))); 9337 } else { 9338 unsigned StartMask = 0; 9339 for (unsigned j = 1; j < LaneLen; j++) { 9340 unsigned IdxJ = StoreCount * LaneLen * Factor + j; 9341 if (Mask[IdxJ * Factor + IdxI] >= 0) { 9342 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ; 9343 break; 9344 } 9345 } 9346 // Note: Filling undef gaps with random elements is ok, since 9347 // those elements were being written anyway (with undefs). 9348 // In the case of all undefs we're defaulting to using elems from 0 9349 // Note: StartMask cannot be negative, it's checked in 9350 // isReInterleaveMask 9351 Ops.push_back(Builder.CreateShuffleVector( 9352 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0))); 9353 } 9354 } 9355 9356 // If we generating more than one store, we compute the base address of 9357 // subsequent stores as an offset from the previous. 9358 if (StoreCount > 0) 9359 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(), 9360 BaseAddr, LaneLen * Factor); 9361 9362 Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy)); 9363 Builder.CreateCall(StNFunc, Ops); 9364 } 9365 return true; 9366 } 9367 9368 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, 9369 unsigned AlignCheck) { 9370 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && 9371 (DstAlign == 0 || DstAlign % AlignCheck == 0)); 9372 } 9373 9374 EVT AArch64TargetLowering::getOptimalMemOpType( 9375 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 9376 bool ZeroMemset, bool MemcpyStrSrc, 9377 const AttributeList &FuncAttributes) const { 9378 bool CanImplicitFloat = 9379 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat); 9380 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; 9381 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; 9382 // Only use AdvSIMD to implement memset of 32-byte and above. It would have 9383 // taken one instruction to materialize the v2i64 zero and one store (with 9384 // restrictive addressing mode). Just do i64 stores. 9385 bool IsSmallMemset = IsMemset && Size < 32; 9386 auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) { 9387 if (memOpAlign(SrcAlign, DstAlign, AlignCheck)) 9388 return true; 9389 bool Fast; 9390 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone, 9391 &Fast) && 9392 Fast; 9393 }; 9394 9395 if (CanUseNEON && IsMemset && !IsSmallMemset && 9396 AlignmentIsAcceptable(MVT::v2i64, 16)) 9397 return MVT::v2i64; 9398 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16)) 9399 return MVT::f128; 9400 if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8)) 9401 return MVT::i64; 9402 if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4)) 9403 return MVT::i32; 9404 return MVT::Other; 9405 } 9406 9407 LLT AArch64TargetLowering::getOptimalMemOpLLT( 9408 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 9409 bool ZeroMemset, bool MemcpyStrSrc, 9410 const AttributeList &FuncAttributes) const { 9411 bool CanImplicitFloat = 9412 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat); 9413 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; 9414 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; 9415 // Only use AdvSIMD to implement memset of 32-byte and above. It would have 9416 // taken one instruction to materialize the v2i64 zero and one store (with 9417 // restrictive addressing mode). Just do i64 stores. 9418 bool IsSmallMemset = IsMemset && Size < 32; 9419 auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) { 9420 if (memOpAlign(SrcAlign, DstAlign, AlignCheck)) 9421 return true; 9422 bool Fast; 9423 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone, 9424 &Fast) && 9425 Fast; 9426 }; 9427 9428 if (CanUseNEON && IsMemset && !IsSmallMemset && 9429 AlignmentIsAcceptable(MVT::v2i64, 16)) 9430 return LLT::vector(2, 64); 9431 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16)) 9432 return LLT::scalar(128); 9433 if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8)) 9434 return LLT::scalar(64); 9435 if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4)) 9436 return LLT::scalar(32); 9437 return LLT(); 9438 } 9439 9440 // 12-bit optionally shifted immediates are legal for adds. 9441 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { 9442 if (Immed == std::numeric_limits<int64_t>::min()) { 9443 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed 9444 << ": avoid UB for INT64_MIN\n"); 9445 return false; 9446 } 9447 // Same encoding for add/sub, just flip the sign. 9448 Immed = std::abs(Immed); 9449 bool IsLegal = ((Immed >> 12) == 0 || 9450 ((Immed & 0xfff) == 0 && Immed >> 24 == 0)); 9451 LLVM_DEBUG(dbgs() << "Is " << Immed 9452 << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n"); 9453 return IsLegal; 9454 } 9455 9456 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid 9457 // immediates is the same as for an add or a sub. 9458 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { 9459 return isLegalAddImmediate(Immed); 9460 } 9461 9462 /// isLegalAddressingMode - Return true if the addressing mode represented 9463 /// by AM is legal for this target, for a load/store of the specified type. 9464 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, 9465 const AddrMode &AM, Type *Ty, 9466 unsigned AS, Instruction *I) const { 9467 // AArch64 has five basic addressing modes: 9468 // reg 9469 // reg + 9-bit signed offset 9470 // reg + SIZE_IN_BYTES * 12-bit unsigned offset 9471 // reg1 + reg2 9472 // reg + SIZE_IN_BYTES * reg 9473 9474 // No global is ever allowed as a base. 9475 if (AM.BaseGV) 9476 return false; 9477 9478 // No reg+reg+imm addressing. 9479 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) 9480 return false; 9481 9482 // check reg + imm case: 9483 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 9484 uint64_t NumBytes = 0; 9485 if (Ty->isSized()) { 9486 uint64_t NumBits = DL.getTypeSizeInBits(Ty); 9487 NumBytes = NumBits / 8; 9488 if (!isPowerOf2_64(NumBits)) 9489 NumBytes = 0; 9490 } 9491 9492 if (!AM.Scale) { 9493 int64_t Offset = AM.BaseOffs; 9494 9495 // 9-bit signed offset 9496 if (isInt<9>(Offset)) 9497 return true; 9498 9499 // 12-bit unsigned offset 9500 unsigned shift = Log2_64(NumBytes); 9501 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && 9502 // Must be a multiple of NumBytes (NumBytes is a power of 2) 9503 (Offset >> shift) << shift == Offset) 9504 return true; 9505 return false; 9506 } 9507 9508 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 9509 9510 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes); 9511 } 9512 9513 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const { 9514 // Consider splitting large offset of struct or array. 9515 return true; 9516 } 9517 9518 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL, 9519 const AddrMode &AM, Type *Ty, 9520 unsigned AS) const { 9521 // Scaling factors are not free at all. 9522 // Operands | Rt Latency 9523 // ------------------------------------------- 9524 // Rt, [Xn, Xm] | 4 9525 // ------------------------------------------- 9526 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 9527 // Rt, [Xn, Wm, <extend> #imm] | 9528 if (isLegalAddressingMode(DL, AM, Ty, AS)) 9529 // Scale represents reg2 * scale, thus account for 1 if 9530 // it is not equal to 0 or 1. 9531 return AM.Scale != 0 && AM.Scale != 1; 9532 return -1; 9533 } 9534 9535 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd( 9536 const MachineFunction &MF, EVT VT) const { 9537 VT = VT.getScalarType(); 9538 9539 if (!VT.isSimple()) 9540 return false; 9541 9542 switch (VT.getSimpleVT().SimpleTy) { 9543 case MVT::f32: 9544 case MVT::f64: 9545 return true; 9546 default: 9547 break; 9548 } 9549 9550 return false; 9551 } 9552 9553 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 9554 Type *Ty) const { 9555 switch (Ty->getScalarType()->getTypeID()) { 9556 case Type::FloatTyID: 9557 case Type::DoubleTyID: 9558 return true; 9559 default: 9560 return false; 9561 } 9562 } 9563 9564 const MCPhysReg * 9565 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { 9566 // LR is a callee-save register, but we must treat it as clobbered by any call 9567 // site. Hence we include LR in the scratch registers, which are in turn added 9568 // as implicit-defs for stackmaps and patchpoints. 9569 static const MCPhysReg ScratchRegs[] = { 9570 AArch64::X16, AArch64::X17, AArch64::LR, 0 9571 }; 9572 return ScratchRegs; 9573 } 9574 9575 bool 9576 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N, 9577 CombineLevel Level) const { 9578 N = N->getOperand(0).getNode(); 9579 EVT VT = N->getValueType(0); 9580 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine 9581 // it with shift to let it be lowered to UBFX. 9582 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && 9583 isa<ConstantSDNode>(N->getOperand(1))) { 9584 uint64_t TruncMask = N->getConstantOperandVal(1); 9585 if (isMask_64(TruncMask) && 9586 N->getOperand(0).getOpcode() == ISD::SRL && 9587 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 9588 return false; 9589 } 9590 return true; 9591 } 9592 9593 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 9594 Type *Ty) const { 9595 assert(Ty->isIntegerTy()); 9596 9597 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 9598 if (BitSize == 0) 9599 return false; 9600 9601 int64_t Val = Imm.getSExtValue(); 9602 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) 9603 return true; 9604 9605 if ((int64_t)Val < 0) 9606 Val = ~Val; 9607 if (BitSize == 32) 9608 Val &= (1LL << 32) - 1; 9609 9610 unsigned LZ = countLeadingZeros((uint64_t)Val); 9611 unsigned Shift = (63 - LZ) / 16; 9612 // MOVZ is free so return true for one or fewer MOVK. 9613 return Shift < 3; 9614 } 9615 9616 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 9617 unsigned Index) const { 9618 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 9619 return false; 9620 9621 return (Index == 0 || Index == ResVT.getVectorNumElements()); 9622 } 9623 9624 /// Turn vector tests of the signbit in the form of: 9625 /// xor (sra X, elt_size(X)-1), -1 9626 /// into: 9627 /// cmge X, X, #0 9628 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, 9629 const AArch64Subtarget *Subtarget) { 9630 EVT VT = N->getValueType(0); 9631 if (!Subtarget->hasNEON() || !VT.isVector()) 9632 return SDValue(); 9633 9634 // There must be a shift right algebraic before the xor, and the xor must be a 9635 // 'not' operation. 9636 SDValue Shift = N->getOperand(0); 9637 SDValue Ones = N->getOperand(1); 9638 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() || 9639 !ISD::isBuildVectorAllOnes(Ones.getNode())) 9640 return SDValue(); 9641 9642 // The shift should be smearing the sign bit across each vector element. 9643 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 9644 EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); 9645 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) 9646 return SDValue(); 9647 9648 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0)); 9649 } 9650 9651 // Generate SUBS and CSEL for integer abs. 9652 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { 9653 EVT VT = N->getValueType(0); 9654 9655 SDValue N0 = N->getOperand(0); 9656 SDValue N1 = N->getOperand(1); 9657 SDLoc DL(N); 9658 9659 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) 9660 // and change it to SUB and CSEL. 9661 if (VT.isInteger() && N->getOpcode() == ISD::XOR && 9662 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && 9663 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) 9664 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) 9665 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { 9666 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 9667 N0.getOperand(0)); 9668 // Generate SUBS & CSEL. 9669 SDValue Cmp = 9670 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), 9671 N0.getOperand(0), DAG.getConstant(0, DL, VT)); 9672 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, 9673 DAG.getConstant(AArch64CC::PL, DL, MVT::i32), 9674 SDValue(Cmp.getNode(), 1)); 9675 } 9676 return SDValue(); 9677 } 9678 9679 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, 9680 TargetLowering::DAGCombinerInfo &DCI, 9681 const AArch64Subtarget *Subtarget) { 9682 if (DCI.isBeforeLegalizeOps()) 9683 return SDValue(); 9684 9685 if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget)) 9686 return Cmp; 9687 9688 return performIntegerAbsCombine(N, DAG); 9689 } 9690 9691 SDValue 9692 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 9693 SelectionDAG &DAG, 9694 SmallVectorImpl<SDNode *> &Created) const { 9695 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 9696 if (isIntDivCheap(N->getValueType(0), Attr)) 9697 return SDValue(N,0); // Lower SDIV as SDIV 9698 9699 // fold (sdiv X, pow2) 9700 EVT VT = N->getValueType(0); 9701 if ((VT != MVT::i32 && VT != MVT::i64) || 9702 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 9703 return SDValue(); 9704 9705 SDLoc DL(N); 9706 SDValue N0 = N->getOperand(0); 9707 unsigned Lg2 = Divisor.countTrailingZeros(); 9708 SDValue Zero = DAG.getConstant(0, DL, VT); 9709 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 9710 9711 // Add (N0 < 0) ? Pow2 - 1 : 0; 9712 SDValue CCVal; 9713 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); 9714 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 9715 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); 9716 9717 Created.push_back(Cmp.getNode()); 9718 Created.push_back(Add.getNode()); 9719 Created.push_back(CSel.getNode()); 9720 9721 // Divide by pow2. 9722 SDValue SRA = 9723 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64)); 9724 9725 // If we're dividing by a positive value, we're done. Otherwise, we must 9726 // negate the result. 9727 if (Divisor.isNonNegative()) 9728 return SRA; 9729 9730 Created.push_back(SRA.getNode()); 9731 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 9732 } 9733 9734 static bool IsSVECntIntrinsic(SDValue S) { 9735 switch(getIntrinsicID(S.getNode())) { 9736 default: 9737 break; 9738 case Intrinsic::aarch64_sve_cntb: 9739 case Intrinsic::aarch64_sve_cnth: 9740 case Intrinsic::aarch64_sve_cntw: 9741 case Intrinsic::aarch64_sve_cntd: 9742 return true; 9743 } 9744 return false; 9745 } 9746 9747 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, 9748 TargetLowering::DAGCombinerInfo &DCI, 9749 const AArch64Subtarget *Subtarget) { 9750 if (DCI.isBeforeLegalizeOps()) 9751 return SDValue(); 9752 9753 // The below optimizations require a constant RHS. 9754 if (!isa<ConstantSDNode>(N->getOperand(1))) 9755 return SDValue(); 9756 9757 SDValue N0 = N->getOperand(0); 9758 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1)); 9759 const APInt &ConstValue = C->getAPIntValue(); 9760 9761 // Allow the scaling to be folded into the `cnt` instruction by preventing 9762 // the scaling to be obscured here. This makes it easier to pattern match. 9763 if (IsSVECntIntrinsic(N0) || 9764 (N0->getOpcode() == ISD::TRUNCATE && 9765 (IsSVECntIntrinsic(N0->getOperand(0))))) 9766 if (ConstValue.sge(1) && ConstValue.sle(16)) 9767 return SDValue(); 9768 9769 // Multiplication of a power of two plus/minus one can be done more 9770 // cheaply as as shift+add/sub. For now, this is true unilaterally. If 9771 // future CPUs have a cheaper MADD instruction, this may need to be 9772 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and 9773 // 64-bit is 5 cycles, so this is always a win. 9774 // More aggressively, some multiplications N0 * C can be lowered to 9775 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M, 9776 // e.g. 6=3*2=(2+1)*2. 9777 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45 9778 // which equals to (1+2)*16-(1+2). 9779 // TrailingZeroes is used to test if the mul can be lowered to 9780 // shift+add+shift. 9781 unsigned TrailingZeroes = ConstValue.countTrailingZeros(); 9782 if (TrailingZeroes) { 9783 // Conservatively do not lower to shift+add+shift if the mul might be 9784 // folded into smul or umul. 9785 if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) || 9786 isZeroExtended(N0.getNode(), DAG))) 9787 return SDValue(); 9788 // Conservatively do not lower to shift+add+shift if the mul might be 9789 // folded into madd or msub. 9790 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD || 9791 N->use_begin()->getOpcode() == ISD::SUB)) 9792 return SDValue(); 9793 } 9794 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub 9795 // and shift+add+shift. 9796 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes); 9797 9798 unsigned ShiftAmt, AddSubOpc; 9799 // Is the shifted value the LHS operand of the add/sub? 9800 bool ShiftValUseIsN0 = true; 9801 // Do we need to negate the result? 9802 bool NegateResult = false; 9803 9804 if (ConstValue.isNonNegative()) { 9805 // (mul x, 2^N + 1) => (add (shl x, N), x) 9806 // (mul x, 2^N - 1) => (sub (shl x, N), x) 9807 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M) 9808 APInt SCVMinus1 = ShiftedConstValue - 1; 9809 APInt CVPlus1 = ConstValue + 1; 9810 if (SCVMinus1.isPowerOf2()) { 9811 ShiftAmt = SCVMinus1.logBase2(); 9812 AddSubOpc = ISD::ADD; 9813 } else if (CVPlus1.isPowerOf2()) { 9814 ShiftAmt = CVPlus1.logBase2(); 9815 AddSubOpc = ISD::SUB; 9816 } else 9817 return SDValue(); 9818 } else { 9819 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 9820 // (mul x, -(2^N + 1)) => - (add (shl x, N), x) 9821 APInt CVNegPlus1 = -ConstValue + 1; 9822 APInt CVNegMinus1 = -ConstValue - 1; 9823 if (CVNegPlus1.isPowerOf2()) { 9824 ShiftAmt = CVNegPlus1.logBase2(); 9825 AddSubOpc = ISD::SUB; 9826 ShiftValUseIsN0 = false; 9827 } else if (CVNegMinus1.isPowerOf2()) { 9828 ShiftAmt = CVNegMinus1.logBase2(); 9829 AddSubOpc = ISD::ADD; 9830 NegateResult = true; 9831 } else 9832 return SDValue(); 9833 } 9834 9835 SDLoc DL(N); 9836 EVT VT = N->getValueType(0); 9837 SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0, 9838 DAG.getConstant(ShiftAmt, DL, MVT::i64)); 9839 9840 SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0; 9841 SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal; 9842 SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1); 9843 assert(!(NegateResult && TrailingZeroes) && 9844 "NegateResult and TrailingZeroes cannot both be true for now."); 9845 // Negate the result. 9846 if (NegateResult) 9847 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 9848 // Shift the result. 9849 if (TrailingZeroes) 9850 return DAG.getNode(ISD::SHL, DL, VT, Res, 9851 DAG.getConstant(TrailingZeroes, DL, MVT::i64)); 9852 return Res; 9853 } 9854 9855 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, 9856 SelectionDAG &DAG) { 9857 // Take advantage of vector comparisons producing 0 or -1 in each lane to 9858 // optimize away operation when it's from a constant. 9859 // 9860 // The general transformation is: 9861 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> 9862 // AND(VECTOR_CMP(x,y), constant2) 9863 // constant2 = UNARYOP(constant) 9864 9865 // Early exit if this isn't a vector operation, the operand of the 9866 // unary operation isn't a bitwise AND, or if the sizes of the operations 9867 // aren't the same. 9868 EVT VT = N->getValueType(0); 9869 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || 9870 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || 9871 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) 9872 return SDValue(); 9873 9874 // Now check that the other operand of the AND is a constant. We could 9875 // make the transformation for non-constant splats as well, but it's unclear 9876 // that would be a benefit as it would not eliminate any operations, just 9877 // perform one more step in scalar code before moving to the vector unit. 9878 if (BuildVectorSDNode *BV = 9879 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { 9880 // Bail out if the vector isn't a constant. 9881 if (!BV->isConstant()) 9882 return SDValue(); 9883 9884 // Everything checks out. Build up the new and improved node. 9885 SDLoc DL(N); 9886 EVT IntVT = BV->getValueType(0); 9887 // Create a new constant of the appropriate type for the transformed 9888 // DAG. 9889 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); 9890 // The AND node needs bitcasts to/from an integer vector type around it. 9891 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); 9892 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, 9893 N->getOperand(0)->getOperand(0), MaskConst); 9894 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); 9895 return Res; 9896 } 9897 9898 return SDValue(); 9899 } 9900 9901 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, 9902 const AArch64Subtarget *Subtarget) { 9903 // First try to optimize away the conversion when it's conditionally from 9904 // a constant. Vectors only. 9905 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) 9906 return Res; 9907 9908 EVT VT = N->getValueType(0); 9909 if (VT != MVT::f32 && VT != MVT::f64) 9910 return SDValue(); 9911 9912 // Only optimize when the source and destination types have the same width. 9913 if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) 9914 return SDValue(); 9915 9916 // If the result of an integer load is only used by an integer-to-float 9917 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. 9918 // This eliminates an "integer-to-vector-move" UOP and improves throughput. 9919 SDValue N0 = N->getOperand(0); 9920 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 9921 // Do not change the width of a volatile load. 9922 !cast<LoadSDNode>(N0)->isVolatile()) { 9923 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9924 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 9925 LN0->getPointerInfo(), LN0->getAlignment(), 9926 LN0->getMemOperand()->getFlags()); 9927 9928 // Make sure successors of the original load stay after it by updating them 9929 // to use the new Chain. 9930 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); 9931 9932 unsigned Opcode = 9933 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; 9934 return DAG.getNode(Opcode, SDLoc(N), VT, Load); 9935 } 9936 9937 return SDValue(); 9938 } 9939 9940 /// Fold a floating-point multiply by power of two into floating-point to 9941 /// fixed-point conversion. 9942 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, 9943 TargetLowering::DAGCombinerInfo &DCI, 9944 const AArch64Subtarget *Subtarget) { 9945 if (!Subtarget->hasNEON()) 9946 return SDValue(); 9947 9948 if (!N->getValueType(0).isSimple()) 9949 return SDValue(); 9950 9951 SDValue Op = N->getOperand(0); 9952 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || 9953 Op.getOpcode() != ISD::FMUL) 9954 return SDValue(); 9955 9956 SDValue ConstVec = Op->getOperand(1); 9957 if (!isa<BuildVectorSDNode>(ConstVec)) 9958 return SDValue(); 9959 9960 MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); 9961 uint32_t FloatBits = FloatTy.getSizeInBits(); 9962 if (FloatBits != 32 && FloatBits != 64) 9963 return SDValue(); 9964 9965 MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); 9966 uint32_t IntBits = IntTy.getSizeInBits(); 9967 if (IntBits != 16 && IntBits != 32 && IntBits != 64) 9968 return SDValue(); 9969 9970 // Avoid conversions where iN is larger than the float (e.g., float -> i64). 9971 if (IntBits > FloatBits) 9972 return SDValue(); 9973 9974 BitVector UndefElements; 9975 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 9976 int32_t Bits = IntBits == 64 ? 64 : 32; 9977 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); 9978 if (C == -1 || C == 0 || C > Bits) 9979 return SDValue(); 9980 9981 MVT ResTy; 9982 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 9983 switch (NumLanes) { 9984 default: 9985 return SDValue(); 9986 case 2: 9987 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; 9988 break; 9989 case 4: 9990 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; 9991 break; 9992 } 9993 9994 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) 9995 return SDValue(); 9996 9997 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) && 9998 "Illegal vector type after legalization"); 9999 10000 SDLoc DL(N); 10001 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 10002 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs 10003 : Intrinsic::aarch64_neon_vcvtfp2fxu; 10004 SDValue FixConv = 10005 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, 10006 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), 10007 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); 10008 // We can handle smaller integers by generating an extra trunc. 10009 if (IntBits < FloatBits) 10010 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); 10011 10012 return FixConv; 10013 } 10014 10015 /// Fold a floating-point divide by power of two into fixed-point to 10016 /// floating-point conversion. 10017 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, 10018 TargetLowering::DAGCombinerInfo &DCI, 10019 const AArch64Subtarget *Subtarget) { 10020 if (!Subtarget->hasNEON()) 10021 return SDValue(); 10022 10023 SDValue Op = N->getOperand(0); 10024 unsigned Opc = Op->getOpcode(); 10025 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || 10026 !Op.getOperand(0).getValueType().isSimple() || 10027 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) 10028 return SDValue(); 10029 10030 SDValue ConstVec = N->getOperand(1); 10031 if (!isa<BuildVectorSDNode>(ConstVec)) 10032 return SDValue(); 10033 10034 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); 10035 int32_t IntBits = IntTy.getSizeInBits(); 10036 if (IntBits != 16 && IntBits != 32 && IntBits != 64) 10037 return SDValue(); 10038 10039 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); 10040 int32_t FloatBits = FloatTy.getSizeInBits(); 10041 if (FloatBits != 32 && FloatBits != 64) 10042 return SDValue(); 10043 10044 // Avoid conversions where iN is larger than the float (e.g., i64 -> float). 10045 if (IntBits > FloatBits) 10046 return SDValue(); 10047 10048 BitVector UndefElements; 10049 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 10050 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); 10051 if (C == -1 || C == 0 || C > FloatBits) 10052 return SDValue(); 10053 10054 MVT ResTy; 10055 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 10056 switch (NumLanes) { 10057 default: 10058 return SDValue(); 10059 case 2: 10060 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; 10061 break; 10062 case 4: 10063 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; 10064 break; 10065 } 10066 10067 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) 10068 return SDValue(); 10069 10070 SDLoc DL(N); 10071 SDValue ConvInput = Op.getOperand(0); 10072 bool IsSigned = Opc == ISD::SINT_TO_FP; 10073 if (IntBits < FloatBits) 10074 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, 10075 ResTy, ConvInput); 10076 10077 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp 10078 : Intrinsic::aarch64_neon_vcvtfxu2fp; 10079 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 10080 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, 10081 DAG.getConstant(C, DL, MVT::i32)); 10082 } 10083 10084 /// An EXTR instruction is made up of two shifts, ORed together. This helper 10085 /// searches for and classifies those shifts. 10086 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, 10087 bool &FromHi) { 10088 if (N.getOpcode() == ISD::SHL) 10089 FromHi = false; 10090 else if (N.getOpcode() == ISD::SRL) 10091 FromHi = true; 10092 else 10093 return false; 10094 10095 if (!isa<ConstantSDNode>(N.getOperand(1))) 10096 return false; 10097 10098 ShiftAmount = N->getConstantOperandVal(1); 10099 Src = N->getOperand(0); 10100 return true; 10101 } 10102 10103 /// EXTR instruction extracts a contiguous chunk of bits from two existing 10104 /// registers viewed as a high/low pair. This function looks for the pattern: 10105 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it 10106 /// with an EXTR. Can't quite be done in TableGen because the two immediates 10107 /// aren't independent. 10108 static SDValue tryCombineToEXTR(SDNode *N, 10109 TargetLowering::DAGCombinerInfo &DCI) { 10110 SelectionDAG &DAG = DCI.DAG; 10111 SDLoc DL(N); 10112 EVT VT = N->getValueType(0); 10113 10114 assert(N->getOpcode() == ISD::OR && "Unexpected root"); 10115 10116 if (VT != MVT::i32 && VT != MVT::i64) 10117 return SDValue(); 10118 10119 SDValue LHS; 10120 uint32_t ShiftLHS = 0; 10121 bool LHSFromHi = false; 10122 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) 10123 return SDValue(); 10124 10125 SDValue RHS; 10126 uint32_t ShiftRHS = 0; 10127 bool RHSFromHi = false; 10128 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) 10129 return SDValue(); 10130 10131 // If they're both trying to come from the high part of the register, they're 10132 // not really an EXTR. 10133 if (LHSFromHi == RHSFromHi) 10134 return SDValue(); 10135 10136 if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) 10137 return SDValue(); 10138 10139 if (LHSFromHi) { 10140 std::swap(LHS, RHS); 10141 std::swap(ShiftLHS, ShiftRHS); 10142 } 10143 10144 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, 10145 DAG.getConstant(ShiftRHS, DL, MVT::i64)); 10146 } 10147 10148 static SDValue tryCombineToBSL(SDNode *N, 10149 TargetLowering::DAGCombinerInfo &DCI) { 10150 EVT VT = N->getValueType(0); 10151 SelectionDAG &DAG = DCI.DAG; 10152 SDLoc DL(N); 10153 10154 if (!VT.isVector()) 10155 return SDValue(); 10156 10157 SDValue N0 = N->getOperand(0); 10158 if (N0.getOpcode() != ISD::AND) 10159 return SDValue(); 10160 10161 SDValue N1 = N->getOperand(1); 10162 if (N1.getOpcode() != ISD::AND) 10163 return SDValue(); 10164 10165 // We only have to look for constant vectors here since the general, variable 10166 // case can be handled in TableGen. 10167 unsigned Bits = VT.getScalarSizeInBits(); 10168 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); 10169 for (int i = 1; i >= 0; --i) 10170 for (int j = 1; j >= 0; --j) { 10171 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); 10172 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); 10173 if (!BVN0 || !BVN1) 10174 continue; 10175 10176 bool FoundMatch = true; 10177 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { 10178 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); 10179 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); 10180 if (!CN0 || !CN1 || 10181 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { 10182 FoundMatch = false; 10183 break; 10184 } 10185 } 10186 10187 if (FoundMatch) 10188 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0), 10189 N0->getOperand(1 - i), N1->getOperand(1 - j)); 10190 } 10191 10192 return SDValue(); 10193 } 10194 10195 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 10196 const AArch64Subtarget *Subtarget) { 10197 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) 10198 SelectionDAG &DAG = DCI.DAG; 10199 EVT VT = N->getValueType(0); 10200 10201 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 10202 return SDValue(); 10203 10204 if (SDValue Res = tryCombineToEXTR(N, DCI)) 10205 return Res; 10206 10207 if (SDValue Res = tryCombineToBSL(N, DCI)) 10208 return Res; 10209 10210 return SDValue(); 10211 } 10212 10213 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) { 10214 if (!MemVT.getVectorElementType().isSimple()) 10215 return false; 10216 10217 uint64_t MaskForTy = 0ull; 10218 switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) { 10219 case MVT::i8: 10220 MaskForTy = 0xffull; 10221 break; 10222 case MVT::i16: 10223 MaskForTy = 0xffffull; 10224 break; 10225 case MVT::i32: 10226 MaskForTy = 0xffffffffull; 10227 break; 10228 default: 10229 return false; 10230 break; 10231 } 10232 10233 if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR) 10234 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) 10235 return Op0->getAPIntValue().getLimitedValue() == MaskForTy; 10236 10237 return false; 10238 } 10239 10240 static SDValue performSVEAndCombine(SDNode *N, 10241 TargetLowering::DAGCombinerInfo &DCI) { 10242 if (DCI.isBeforeLegalizeOps()) 10243 return SDValue(); 10244 10245 SDValue Src = N->getOperand(0); 10246 SDValue Mask = N->getOperand(1); 10247 10248 if (!Src.hasOneUse()) 10249 return SDValue(); 10250 10251 // GLD1* instructions perform an implicit zero-extend, which makes them 10252 // perfect candidates for combining. 10253 switch (Src->getOpcode()) { 10254 case AArch64ISD::GLD1: 10255 case AArch64ISD::GLD1_SCALED: 10256 case AArch64ISD::GLD1_SXTW: 10257 case AArch64ISD::GLD1_SXTW_SCALED: 10258 case AArch64ISD::GLD1_UXTW: 10259 case AArch64ISD::GLD1_UXTW_SCALED: 10260 case AArch64ISD::GLD1_IMM: 10261 break; 10262 default: 10263 return SDValue(); 10264 } 10265 10266 EVT MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT(); 10267 10268 if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT)) 10269 return Src; 10270 10271 return SDValue(); 10272 } 10273 10274 static SDValue performANDCombine(SDNode *N, 10275 TargetLowering::DAGCombinerInfo &DCI) { 10276 SelectionDAG &DAG = DCI.DAG; 10277 SDValue LHS = N->getOperand(0); 10278 EVT VT = N->getValueType(0); 10279 if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT)) 10280 return SDValue(); 10281 10282 if (VT.isScalableVector()) 10283 return performSVEAndCombine(N, DCI); 10284 10285 BuildVectorSDNode *BVN = 10286 dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode()); 10287 if (!BVN) 10288 return SDValue(); 10289 10290 // AND does not accept an immediate, so check if we can use a BIC immediate 10291 // instruction instead. We do this here instead of using a (and x, (mvni imm)) 10292 // pattern in isel, because some immediates may be lowered to the preferred 10293 // (and x, (movi imm)) form, even though an mvni representation also exists. 10294 APInt DefBits(VT.getSizeInBits(), 0); 10295 APInt UndefBits(VT.getSizeInBits(), 0); 10296 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 10297 SDValue NewOp; 10298 10299 DefBits = ~DefBits; 10300 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, 10301 DefBits, &LHS)) || 10302 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, 10303 DefBits, &LHS))) 10304 return NewOp; 10305 10306 UndefBits = ~UndefBits; 10307 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, 10308 UndefBits, &LHS)) || 10309 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, 10310 UndefBits, &LHS))) 10311 return NewOp; 10312 } 10313 10314 return SDValue(); 10315 } 10316 10317 static SDValue performSRLCombine(SDNode *N, 10318 TargetLowering::DAGCombinerInfo &DCI) { 10319 SelectionDAG &DAG = DCI.DAG; 10320 EVT VT = N->getValueType(0); 10321 if (VT != MVT::i32 && VT != MVT::i64) 10322 return SDValue(); 10323 10324 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the 10325 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32) 10326 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero. 10327 SDValue N0 = N->getOperand(0); 10328 if (N0.getOpcode() == ISD::BSWAP) { 10329 SDLoc DL(N); 10330 SDValue N1 = N->getOperand(1); 10331 SDValue N00 = N0.getOperand(0); 10332 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 10333 uint64_t ShiftAmt = C->getZExtValue(); 10334 if (VT == MVT::i32 && ShiftAmt == 16 && 10335 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16))) 10336 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); 10337 if (VT == MVT::i64 && ShiftAmt == 32 && 10338 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32))) 10339 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); 10340 } 10341 } 10342 return SDValue(); 10343 } 10344 10345 static SDValue performConcatVectorsCombine(SDNode *N, 10346 TargetLowering::DAGCombinerInfo &DCI, 10347 SelectionDAG &DAG) { 10348 SDLoc dl(N); 10349 EVT VT = N->getValueType(0); 10350 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 10351 10352 // Optimize concat_vectors of truncated vectors, where the intermediate 10353 // type is illegal, to avoid said illegality, e.g., 10354 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), 10355 // (v2i16 (truncate (v2i64))))) 10356 // -> 10357 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), 10358 // (v4i32 (bitcast (v2i64))), 10359 // <0, 2, 4, 6>))) 10360 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed 10361 // on both input and result type, so we might generate worse code. 10362 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. 10363 if (N->getNumOperands() == 2 && 10364 N0->getOpcode() == ISD::TRUNCATE && 10365 N1->getOpcode() == ISD::TRUNCATE) { 10366 SDValue N00 = N0->getOperand(0); 10367 SDValue N10 = N1->getOperand(0); 10368 EVT N00VT = N00.getValueType(); 10369 10370 if (N00VT == N10.getValueType() && 10371 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && 10372 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { 10373 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); 10374 SmallVector<int, 8> Mask(MidVT.getVectorNumElements()); 10375 for (size_t i = 0; i < Mask.size(); ++i) 10376 Mask[i] = i * 2; 10377 return DAG.getNode(ISD::TRUNCATE, dl, VT, 10378 DAG.getVectorShuffle( 10379 MidVT, dl, 10380 DAG.getNode(ISD::BITCAST, dl, MidVT, N00), 10381 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); 10382 } 10383 } 10384 10385 // Wait 'til after everything is legalized to try this. That way we have 10386 // legal vector types and such. 10387 if (DCI.isBeforeLegalizeOps()) 10388 return SDValue(); 10389 10390 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector 10391 // splat. The indexed instructions are going to be expecting a DUPLANE64, so 10392 // canonicalise to that. 10393 if (N0 == N1 && VT.getVectorNumElements() == 2) { 10394 assert(VT.getScalarSizeInBits() == 64); 10395 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), 10396 DAG.getConstant(0, dl, MVT::i64)); 10397 } 10398 10399 // Canonicalise concat_vectors so that the right-hand vector has as few 10400 // bit-casts as possible before its real operation. The primary matching 10401 // destination for these operations will be the narrowing "2" instructions, 10402 // which depend on the operation being performed on this right-hand vector. 10403 // For example, 10404 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) 10405 // becomes 10406 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) 10407 10408 if (N1->getOpcode() != ISD::BITCAST) 10409 return SDValue(); 10410 SDValue RHS = N1->getOperand(0); 10411 MVT RHSTy = RHS.getValueType().getSimpleVT(); 10412 // If the RHS is not a vector, this is not the pattern we're looking for. 10413 if (!RHSTy.isVector()) 10414 return SDValue(); 10415 10416 LLVM_DEBUG( 10417 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); 10418 10419 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), 10420 RHSTy.getVectorNumElements() * 2); 10421 return DAG.getNode(ISD::BITCAST, dl, VT, 10422 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, 10423 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), 10424 RHS)); 10425 } 10426 10427 static SDValue tryCombineFixedPointConvert(SDNode *N, 10428 TargetLowering::DAGCombinerInfo &DCI, 10429 SelectionDAG &DAG) { 10430 // Wait until after everything is legalized to try this. That way we have 10431 // legal vector types and such. 10432 if (DCI.isBeforeLegalizeOps()) 10433 return SDValue(); 10434 // Transform a scalar conversion of a value from a lane extract into a 10435 // lane extract of a vector conversion. E.g., from foo1 to foo2: 10436 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } 10437 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } 10438 // 10439 // The second form interacts better with instruction selection and the 10440 // register allocator to avoid cross-class register copies that aren't 10441 // coalescable due to a lane reference. 10442 10443 // Check the operand and see if it originates from a lane extract. 10444 SDValue Op1 = N->getOperand(1); 10445 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 10446 // Yep, no additional predication needed. Perform the transform. 10447 SDValue IID = N->getOperand(0); 10448 SDValue Shift = N->getOperand(2); 10449 SDValue Vec = Op1.getOperand(0); 10450 SDValue Lane = Op1.getOperand(1); 10451 EVT ResTy = N->getValueType(0); 10452 EVT VecResTy; 10453 SDLoc DL(N); 10454 10455 // The vector width should be 128 bits by the time we get here, even 10456 // if it started as 64 bits (the extract_vector handling will have 10457 // done so). 10458 assert(Vec.getValueSizeInBits() == 128 && 10459 "unexpected vector size on extract_vector_elt!"); 10460 if (Vec.getValueType() == MVT::v4i32) 10461 VecResTy = MVT::v4f32; 10462 else if (Vec.getValueType() == MVT::v2i64) 10463 VecResTy = MVT::v2f64; 10464 else 10465 llvm_unreachable("unexpected vector type!"); 10466 10467 SDValue Convert = 10468 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); 10469 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); 10470 } 10471 return SDValue(); 10472 } 10473 10474 // AArch64 high-vector "long" operations are formed by performing the non-high 10475 // version on an extract_subvector of each operand which gets the high half: 10476 // 10477 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) 10478 // 10479 // However, there are cases which don't have an extract_high explicitly, but 10480 // have another operation that can be made compatible with one for free. For 10481 // example: 10482 // 10483 // (dupv64 scalar) --> (extract_high (dup128 scalar)) 10484 // 10485 // This routine does the actual conversion of such DUPs, once outer routines 10486 // have determined that everything else is in order. 10487 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold 10488 // similarly here. 10489 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { 10490 switch (N.getOpcode()) { 10491 case AArch64ISD::DUP: 10492 case AArch64ISD::DUPLANE8: 10493 case AArch64ISD::DUPLANE16: 10494 case AArch64ISD::DUPLANE32: 10495 case AArch64ISD::DUPLANE64: 10496 case AArch64ISD::MOVI: 10497 case AArch64ISD::MOVIshift: 10498 case AArch64ISD::MOVIedit: 10499 case AArch64ISD::MOVImsl: 10500 case AArch64ISD::MVNIshift: 10501 case AArch64ISD::MVNImsl: 10502 break; 10503 default: 10504 // FMOV could be supported, but isn't very useful, as it would only occur 10505 // if you passed a bitcast' floating point immediate to an eligible long 10506 // integer op (addl, smull, ...). 10507 return SDValue(); 10508 } 10509 10510 MVT NarrowTy = N.getSimpleValueType(); 10511 if (!NarrowTy.is64BitVector()) 10512 return SDValue(); 10513 10514 MVT ElementTy = NarrowTy.getVectorElementType(); 10515 unsigned NumElems = NarrowTy.getVectorNumElements(); 10516 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); 10517 10518 SDLoc dl(N); 10519 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy, 10520 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()), 10521 DAG.getConstant(NumElems, dl, MVT::i64)); 10522 } 10523 10524 static bool isEssentiallyExtractHighSubvector(SDValue N) { 10525 if (N.getOpcode() == ISD::BITCAST) 10526 N = N.getOperand(0); 10527 if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR) 10528 return false; 10529 return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() == 10530 N.getOperand(0).getValueType().getVectorNumElements() / 2; 10531 } 10532 10533 /// Helper structure to keep track of ISD::SET_CC operands. 10534 struct GenericSetCCInfo { 10535 const SDValue *Opnd0; 10536 const SDValue *Opnd1; 10537 ISD::CondCode CC; 10538 }; 10539 10540 /// Helper structure to keep track of a SET_CC lowered into AArch64 code. 10541 struct AArch64SetCCInfo { 10542 const SDValue *Cmp; 10543 AArch64CC::CondCode CC; 10544 }; 10545 10546 /// Helper structure to keep track of SetCC information. 10547 union SetCCInfo { 10548 GenericSetCCInfo Generic; 10549 AArch64SetCCInfo AArch64; 10550 }; 10551 10552 /// Helper structure to be able to read SetCC information. If set to 10553 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a 10554 /// GenericSetCCInfo. 10555 struct SetCCInfoAndKind { 10556 SetCCInfo Info; 10557 bool IsAArch64; 10558 }; 10559 10560 /// Check whether or not \p Op is a SET_CC operation, either a generic or 10561 /// an 10562 /// AArch64 lowered one. 10563 /// \p SetCCInfo is filled accordingly. 10564 /// \post SetCCInfo is meanginfull only when this function returns true. 10565 /// \return True when Op is a kind of SET_CC operation. 10566 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { 10567 // If this is a setcc, this is straight forward. 10568 if (Op.getOpcode() == ISD::SETCC) { 10569 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); 10570 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); 10571 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 10572 SetCCInfo.IsAArch64 = false; 10573 return true; 10574 } 10575 // Otherwise, check if this is a matching csel instruction. 10576 // In other words: 10577 // - csel 1, 0, cc 10578 // - csel 0, 1, !cc 10579 if (Op.getOpcode() != AArch64ISD::CSEL) 10580 return false; 10581 // Set the information about the operands. 10582 // TODO: we want the operands of the Cmp not the csel 10583 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); 10584 SetCCInfo.IsAArch64 = true; 10585 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( 10586 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 10587 10588 // Check that the operands matches the constraints: 10589 // (1) Both operands must be constants. 10590 // (2) One must be 1 and the other must be 0. 10591 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 10592 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 10593 10594 // Check (1). 10595 if (!TValue || !FValue) 10596 return false; 10597 10598 // Check (2). 10599 if (!TValue->isOne()) { 10600 // Update the comparison when we are interested in !cc. 10601 std::swap(TValue, FValue); 10602 SetCCInfo.Info.AArch64.CC = 10603 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); 10604 } 10605 return TValue->isOne() && FValue->isNullValue(); 10606 } 10607 10608 // Returns true if Op is setcc or zext of setcc. 10609 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { 10610 if (isSetCC(Op, Info)) 10611 return true; 10612 return ((Op.getOpcode() == ISD::ZERO_EXTEND) && 10613 isSetCC(Op->getOperand(0), Info)); 10614 } 10615 10616 // The folding we want to perform is: 10617 // (add x, [zext] (setcc cc ...) ) 10618 // --> 10619 // (csel x, (add x, 1), !cc ...) 10620 // 10621 // The latter will get matched to a CSINC instruction. 10622 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { 10623 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); 10624 SDValue LHS = Op->getOperand(0); 10625 SDValue RHS = Op->getOperand(1); 10626 SetCCInfoAndKind InfoAndKind; 10627 10628 // If neither operand is a SET_CC, give up. 10629 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { 10630 std::swap(LHS, RHS); 10631 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) 10632 return SDValue(); 10633 } 10634 10635 // FIXME: This could be generatized to work for FP comparisons. 10636 EVT CmpVT = InfoAndKind.IsAArch64 10637 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() 10638 : InfoAndKind.Info.Generic.Opnd0->getValueType(); 10639 if (CmpVT != MVT::i32 && CmpVT != MVT::i64) 10640 return SDValue(); 10641 10642 SDValue CCVal; 10643 SDValue Cmp; 10644 SDLoc dl(Op); 10645 if (InfoAndKind.IsAArch64) { 10646 CCVal = DAG.getConstant( 10647 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, 10648 MVT::i32); 10649 Cmp = *InfoAndKind.Info.AArch64.Cmp; 10650 } else 10651 Cmp = getAArch64Cmp( 10652 *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1, 10653 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG, 10654 dl); 10655 10656 EVT VT = Op->getValueType(0); 10657 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); 10658 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); 10659 } 10660 10661 // The basic add/sub long vector instructions have variants with "2" on the end 10662 // which act on the high-half of their inputs. They are normally matched by 10663 // patterns like: 10664 // 10665 // (add (zeroext (extract_high LHS)), 10666 // (zeroext (extract_high RHS))) 10667 // -> uaddl2 vD, vN, vM 10668 // 10669 // However, if one of the extracts is something like a duplicate, this 10670 // instruction can still be used profitably. This function puts the DAG into a 10671 // more appropriate form for those patterns to trigger. 10672 static SDValue performAddSubLongCombine(SDNode *N, 10673 TargetLowering::DAGCombinerInfo &DCI, 10674 SelectionDAG &DAG) { 10675 if (DCI.isBeforeLegalizeOps()) 10676 return SDValue(); 10677 10678 MVT VT = N->getSimpleValueType(0); 10679 if (!VT.is128BitVector()) { 10680 if (N->getOpcode() == ISD::ADD) 10681 return performSetccAddFolding(N, DAG); 10682 return SDValue(); 10683 } 10684 10685 // Make sure both branches are extended in the same way. 10686 SDValue LHS = N->getOperand(0); 10687 SDValue RHS = N->getOperand(1); 10688 if ((LHS.getOpcode() != ISD::ZERO_EXTEND && 10689 LHS.getOpcode() != ISD::SIGN_EXTEND) || 10690 LHS.getOpcode() != RHS.getOpcode()) 10691 return SDValue(); 10692 10693 unsigned ExtType = LHS.getOpcode(); 10694 10695 // It's not worth doing if at least one of the inputs isn't already an 10696 // extract, but we don't know which it'll be so we have to try both. 10697 if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) { 10698 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); 10699 if (!RHS.getNode()) 10700 return SDValue(); 10701 10702 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); 10703 } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) { 10704 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); 10705 if (!LHS.getNode()) 10706 return SDValue(); 10707 10708 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); 10709 } 10710 10711 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); 10712 } 10713 10714 // Massage DAGs which we can use the high-half "long" operations on into 10715 // something isel will recognize better. E.g. 10716 // 10717 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> 10718 // (aarch64_neon_umull (extract_high (v2i64 vec))) 10719 // (extract_high (v2i64 (dup128 scalar))))) 10720 // 10721 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, 10722 TargetLowering::DAGCombinerInfo &DCI, 10723 SelectionDAG &DAG) { 10724 if (DCI.isBeforeLegalizeOps()) 10725 return SDValue(); 10726 10727 SDValue LHS = N->getOperand(1); 10728 SDValue RHS = N->getOperand(2); 10729 assert(LHS.getValueType().is64BitVector() && 10730 RHS.getValueType().is64BitVector() && 10731 "unexpected shape for long operation"); 10732 10733 // Either node could be a DUP, but it's not worth doing both of them (you'd 10734 // just as well use the non-high version) so look for a corresponding extract 10735 // operation on the other "wing". 10736 if (isEssentiallyExtractHighSubvector(LHS)) { 10737 RHS = tryExtendDUPToExtractHigh(RHS, DAG); 10738 if (!RHS.getNode()) 10739 return SDValue(); 10740 } else if (isEssentiallyExtractHighSubvector(RHS)) { 10741 LHS = tryExtendDUPToExtractHigh(LHS, DAG); 10742 if (!LHS.getNode()) 10743 return SDValue(); 10744 } 10745 10746 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), 10747 N->getOperand(0), LHS, RHS); 10748 } 10749 10750 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { 10751 MVT ElemTy = N->getSimpleValueType(0).getScalarType(); 10752 unsigned ElemBits = ElemTy.getSizeInBits(); 10753 10754 int64_t ShiftAmount; 10755 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { 10756 APInt SplatValue, SplatUndef; 10757 unsigned SplatBitSize; 10758 bool HasAnyUndefs; 10759 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 10760 HasAnyUndefs, ElemBits) || 10761 SplatBitSize != ElemBits) 10762 return SDValue(); 10763 10764 ShiftAmount = SplatValue.getSExtValue(); 10765 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { 10766 ShiftAmount = CVN->getSExtValue(); 10767 } else 10768 return SDValue(); 10769 10770 unsigned Opcode; 10771 bool IsRightShift; 10772 switch (IID) { 10773 default: 10774 llvm_unreachable("Unknown shift intrinsic"); 10775 case Intrinsic::aarch64_neon_sqshl: 10776 Opcode = AArch64ISD::SQSHL_I; 10777 IsRightShift = false; 10778 break; 10779 case Intrinsic::aarch64_neon_uqshl: 10780 Opcode = AArch64ISD::UQSHL_I; 10781 IsRightShift = false; 10782 break; 10783 case Intrinsic::aarch64_neon_srshl: 10784 Opcode = AArch64ISD::SRSHR_I; 10785 IsRightShift = true; 10786 break; 10787 case Intrinsic::aarch64_neon_urshl: 10788 Opcode = AArch64ISD::URSHR_I; 10789 IsRightShift = true; 10790 break; 10791 case Intrinsic::aarch64_neon_sqshlu: 10792 Opcode = AArch64ISD::SQSHLU_I; 10793 IsRightShift = false; 10794 break; 10795 case Intrinsic::aarch64_neon_sshl: 10796 case Intrinsic::aarch64_neon_ushl: 10797 // For positive shift amounts we can use SHL, as ushl/sshl perform a regular 10798 // left shift for positive shift amounts. Below, we only replace the current 10799 // node with VSHL, if this condition is met. 10800 Opcode = AArch64ISD::VSHL; 10801 IsRightShift = false; 10802 break; 10803 } 10804 10805 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { 10806 SDLoc dl(N); 10807 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), 10808 DAG.getConstant(-ShiftAmount, dl, MVT::i32)); 10809 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { 10810 SDLoc dl(N); 10811 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), 10812 DAG.getConstant(ShiftAmount, dl, MVT::i32)); 10813 } 10814 10815 return SDValue(); 10816 } 10817 10818 // The CRC32[BH] instructions ignore the high bits of their data operand. Since 10819 // the intrinsics must be legal and take an i32, this means there's almost 10820 // certainly going to be a zext in the DAG which we can eliminate. 10821 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { 10822 SDValue AndN = N->getOperand(2); 10823 if (AndN.getOpcode() != ISD::AND) 10824 return SDValue(); 10825 10826 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); 10827 if (!CMask || CMask->getZExtValue() != Mask) 10828 return SDValue(); 10829 10830 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, 10831 N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); 10832 } 10833 10834 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, 10835 SelectionDAG &DAG) { 10836 SDLoc dl(N); 10837 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), 10838 DAG.getNode(Opc, dl, 10839 N->getOperand(1).getSimpleValueType(), 10840 N->getOperand(1)), 10841 DAG.getConstant(0, dl, MVT::i64)); 10842 } 10843 10844 static SDValue LowerSVEIntReduction(SDNode *N, unsigned Opc, 10845 SelectionDAG &DAG) { 10846 SDLoc dl(N); 10847 LLVMContext &Ctx = *DAG.getContext(); 10848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10849 10850 EVT VT = N->getValueType(0); 10851 SDValue Pred = N->getOperand(1); 10852 SDValue Data = N->getOperand(2); 10853 EVT DataVT = Data.getValueType(); 10854 10855 if (DataVT.getVectorElementType().isScalarInteger() && 10856 (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)) { 10857 if (!TLI.isTypeLegal(DataVT)) 10858 return SDValue(); 10859 10860 EVT OutputVT = EVT::getVectorVT(Ctx, VT, 10861 AArch64::NeonBitsPerVector / VT.getSizeInBits()); 10862 SDValue Reduce = DAG.getNode(Opc, dl, OutputVT, Pred, Data); 10863 SDValue Zero = DAG.getConstant(0, dl, MVT::i64); 10864 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Reduce, Zero); 10865 10866 return Result; 10867 } 10868 10869 return SDValue(); 10870 } 10871 10872 static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) { 10873 SDLoc dl(N); 10874 LLVMContext &Ctx = *DAG.getContext(); 10875 EVT VT = N->getValueType(0); 10876 10877 assert(VT.isScalableVector() && "Expected a scalable vector."); 10878 10879 // Current lowering only supports the SVE-ACLE types. 10880 if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock) 10881 return SDValue(); 10882 10883 unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8; 10884 unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8; 10885 EVT ByteVT = EVT::getVectorVT(Ctx, MVT::i8, { ByteSize, true }); 10886 10887 // Convert everything to the domain of EXT (i.e bytes). 10888 SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1)); 10889 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2)); 10890 SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3), 10891 DAG.getConstant(ElemSize, dl, MVT::i32)); 10892 10893 SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2); 10894 return DAG.getNode(ISD::BITCAST, dl, VT, EXT); 10895 } 10896 10897 static SDValue tryConvertSVEWideCompare(SDNode *N, unsigned ReplacementIID, 10898 bool Invert, 10899 TargetLowering::DAGCombinerInfo &DCI, 10900 SelectionDAG &DAG) { 10901 if (DCI.isBeforeLegalize()) 10902 return SDValue(); 10903 10904 SDValue Comparator = N->getOperand(3); 10905 if (Comparator.getOpcode() == AArch64ISD::DUP || 10906 Comparator.getOpcode() == ISD::SPLAT_VECTOR) { 10907 unsigned IID = getIntrinsicID(N); 10908 EVT VT = N->getValueType(0); 10909 EVT CmpVT = N->getOperand(2).getValueType(); 10910 SDValue Pred = N->getOperand(1); 10911 SDValue Imm; 10912 SDLoc DL(N); 10913 10914 switch (IID) { 10915 default: 10916 llvm_unreachable("Called with wrong intrinsic!"); 10917 break; 10918 10919 // Signed comparisons 10920 case Intrinsic::aarch64_sve_cmpeq_wide: 10921 case Intrinsic::aarch64_sve_cmpne_wide: 10922 case Intrinsic::aarch64_sve_cmpge_wide: 10923 case Intrinsic::aarch64_sve_cmpgt_wide: 10924 case Intrinsic::aarch64_sve_cmplt_wide: 10925 case Intrinsic::aarch64_sve_cmple_wide: { 10926 if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) { 10927 int64_t ImmVal = CN->getSExtValue(); 10928 if (ImmVal >= -16 && ImmVal <= 15) 10929 Imm = DAG.getConstant(ImmVal, DL, MVT::i32); 10930 else 10931 return SDValue(); 10932 } 10933 break; 10934 } 10935 // Unsigned comparisons 10936 case Intrinsic::aarch64_sve_cmphs_wide: 10937 case Intrinsic::aarch64_sve_cmphi_wide: 10938 case Intrinsic::aarch64_sve_cmplo_wide: 10939 case Intrinsic::aarch64_sve_cmpls_wide: { 10940 if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) { 10941 uint64_t ImmVal = CN->getZExtValue(); 10942 if (ImmVal <= 127) 10943 Imm = DAG.getConstant(ImmVal, DL, MVT::i32); 10944 else 10945 return SDValue(); 10946 } 10947 break; 10948 } 10949 } 10950 10951 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm); 10952 SDValue ID = DAG.getTargetConstant(ReplacementIID, DL, MVT::i64); 10953 SDValue Op0, Op1; 10954 if (Invert) { 10955 Op0 = Splat; 10956 Op1 = N->getOperand(2); 10957 } else { 10958 Op0 = N->getOperand(2); 10959 Op1 = Splat; 10960 } 10961 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 10962 ID, Pred, Op0, Op1); 10963 } 10964 10965 return SDValue(); 10966 } 10967 10968 static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op, 10969 AArch64CC::CondCode Cond) { 10970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10971 10972 SDLoc DL(Op); 10973 assert(Op.getValueType().isScalableVector() && 10974 TLI.isTypeLegal(Op.getValueType()) && 10975 "Expected legal scalable vector type!"); 10976 10977 // Ensure target specific opcodes are using legal type. 10978 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 10979 SDValue TVal = DAG.getConstant(1, DL, OutVT); 10980 SDValue FVal = DAG.getConstant(0, DL, OutVT); 10981 10982 // Set condition code (CC) flags. 10983 SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op); 10984 10985 // Convert CC to integer based on requested condition. 10986 // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare. 10987 SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32); 10988 SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test); 10989 return DAG.getZExtOrTrunc(Res, DL, VT); 10990 } 10991 10992 static SDValue performIntrinsicCombine(SDNode *N, 10993 TargetLowering::DAGCombinerInfo &DCI, 10994 const AArch64Subtarget *Subtarget) { 10995 SelectionDAG &DAG = DCI.DAG; 10996 unsigned IID = getIntrinsicID(N); 10997 switch (IID) { 10998 default: 10999 break; 11000 case Intrinsic::aarch64_neon_vcvtfxs2fp: 11001 case Intrinsic::aarch64_neon_vcvtfxu2fp: 11002 return tryCombineFixedPointConvert(N, DCI, DAG); 11003 case Intrinsic::aarch64_neon_saddv: 11004 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); 11005 case Intrinsic::aarch64_neon_uaddv: 11006 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); 11007 case Intrinsic::aarch64_neon_sminv: 11008 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); 11009 case Intrinsic::aarch64_neon_uminv: 11010 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); 11011 case Intrinsic::aarch64_neon_smaxv: 11012 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); 11013 case Intrinsic::aarch64_neon_umaxv: 11014 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); 11015 case Intrinsic::aarch64_neon_fmax: 11016 return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0), 11017 N->getOperand(1), N->getOperand(2)); 11018 case Intrinsic::aarch64_neon_fmin: 11019 return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0), 11020 N->getOperand(1), N->getOperand(2)); 11021 case Intrinsic::aarch64_neon_fmaxnm: 11022 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), 11023 N->getOperand(1), N->getOperand(2)); 11024 case Intrinsic::aarch64_neon_fminnm: 11025 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), 11026 N->getOperand(1), N->getOperand(2)); 11027 case Intrinsic::aarch64_neon_smull: 11028 case Intrinsic::aarch64_neon_umull: 11029 case Intrinsic::aarch64_neon_pmull: 11030 case Intrinsic::aarch64_neon_sqdmull: 11031 return tryCombineLongOpWithDup(IID, N, DCI, DAG); 11032 case Intrinsic::aarch64_neon_sqshl: 11033 case Intrinsic::aarch64_neon_uqshl: 11034 case Intrinsic::aarch64_neon_sqshlu: 11035 case Intrinsic::aarch64_neon_srshl: 11036 case Intrinsic::aarch64_neon_urshl: 11037 case Intrinsic::aarch64_neon_sshl: 11038 case Intrinsic::aarch64_neon_ushl: 11039 return tryCombineShiftImm(IID, N, DAG); 11040 case Intrinsic::aarch64_crc32b: 11041 case Intrinsic::aarch64_crc32cb: 11042 return tryCombineCRC32(0xff, N, DAG); 11043 case Intrinsic::aarch64_crc32h: 11044 case Intrinsic::aarch64_crc32ch: 11045 return tryCombineCRC32(0xffff, N, DAG); 11046 case Intrinsic::aarch64_sve_smaxv: 11047 return LowerSVEIntReduction(N, AArch64ISD::SMAXV_PRED, DAG); 11048 case Intrinsic::aarch64_sve_umaxv: 11049 return LowerSVEIntReduction(N, AArch64ISD::UMAXV_PRED, DAG); 11050 case Intrinsic::aarch64_sve_sminv: 11051 return LowerSVEIntReduction(N, AArch64ISD::SMINV_PRED, DAG); 11052 case Intrinsic::aarch64_sve_uminv: 11053 return LowerSVEIntReduction(N, AArch64ISD::UMINV_PRED, DAG); 11054 case Intrinsic::aarch64_sve_orv: 11055 return LowerSVEIntReduction(N, AArch64ISD::ORV_PRED, DAG); 11056 case Intrinsic::aarch64_sve_eorv: 11057 return LowerSVEIntReduction(N, AArch64ISD::EORV_PRED, DAG); 11058 case Intrinsic::aarch64_sve_andv: 11059 return LowerSVEIntReduction(N, AArch64ISD::ANDV_PRED, DAG); 11060 case Intrinsic::aarch64_sve_ext: 11061 return LowerSVEIntrinsicEXT(N, DAG); 11062 case Intrinsic::aarch64_sve_cmpeq_wide: 11063 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpeq, 11064 false, DCI, DAG); 11065 case Intrinsic::aarch64_sve_cmpne_wide: 11066 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpne, 11067 false, DCI, DAG); 11068 case Intrinsic::aarch64_sve_cmpge_wide: 11069 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge, 11070 false, DCI, DAG); 11071 case Intrinsic::aarch64_sve_cmpgt_wide: 11072 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt, 11073 false, DCI, DAG); 11074 case Intrinsic::aarch64_sve_cmplt_wide: 11075 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt, 11076 true, DCI, DAG); 11077 case Intrinsic::aarch64_sve_cmple_wide: 11078 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge, 11079 true, DCI, DAG); 11080 case Intrinsic::aarch64_sve_cmphs_wide: 11081 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs, 11082 false, DCI, DAG); 11083 case Intrinsic::aarch64_sve_cmphi_wide: 11084 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi, 11085 false, DCI, DAG); 11086 case Intrinsic::aarch64_sve_cmplo_wide: 11087 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi, true, 11088 DCI, DAG); 11089 case Intrinsic::aarch64_sve_cmpls_wide: 11090 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs, true, 11091 DCI, DAG); 11092 case Intrinsic::aarch64_sve_ptest_any: 11093 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 11094 AArch64CC::ANY_ACTIVE); 11095 case Intrinsic::aarch64_sve_ptest_first: 11096 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 11097 AArch64CC::FIRST_ACTIVE); 11098 case Intrinsic::aarch64_sve_ptest_last: 11099 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 11100 AArch64CC::LAST_ACTIVE); 11101 } 11102 return SDValue(); 11103 } 11104 11105 static SDValue performExtendCombine(SDNode *N, 11106 TargetLowering::DAGCombinerInfo &DCI, 11107 SelectionDAG &DAG) { 11108 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then 11109 // we can convert that DUP into another extract_high (of a bigger DUP), which 11110 // helps the backend to decide that an sabdl2 would be useful, saving a real 11111 // extract_high operation. 11112 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && 11113 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 11114 SDNode *ABDNode = N->getOperand(0).getNode(); 11115 unsigned IID = getIntrinsicID(ABDNode); 11116 if (IID == Intrinsic::aarch64_neon_sabd || 11117 IID == Intrinsic::aarch64_neon_uabd) { 11118 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); 11119 if (!NewABD.getNode()) 11120 return SDValue(); 11121 11122 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), 11123 NewABD); 11124 } 11125 } 11126 11127 // This is effectively a custom type legalization for AArch64. 11128 // 11129 // Type legalization will split an extend of a small, legal, type to a larger 11130 // illegal type by first splitting the destination type, often creating 11131 // illegal source types, which then get legalized in isel-confusing ways, 11132 // leading to really terrible codegen. E.g., 11133 // %result = v8i32 sext v8i8 %value 11134 // becomes 11135 // %losrc = extract_subreg %value, ... 11136 // %hisrc = extract_subreg %value, ... 11137 // %lo = v4i32 sext v4i8 %losrc 11138 // %hi = v4i32 sext v4i8 %hisrc 11139 // Things go rapidly downhill from there. 11140 // 11141 // For AArch64, the [sz]ext vector instructions can only go up one element 11142 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 11143 // take two instructions. 11144 // 11145 // This implies that the most efficient way to do the extend from v8i8 11146 // to two v4i32 values is to first extend the v8i8 to v8i16, then do 11147 // the normal splitting to happen for the v8i16->v8i32. 11148 11149 // This is pre-legalization to catch some cases where the default 11150 // type legalization will create ill-tempered code. 11151 if (!DCI.isBeforeLegalizeOps()) 11152 return SDValue(); 11153 11154 // We're only interested in cleaning things up for non-legal vector types 11155 // here. If both the source and destination are legal, things will just 11156 // work naturally without any fiddling. 11157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11158 EVT ResVT = N->getValueType(0); 11159 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) 11160 return SDValue(); 11161 // If the vector type isn't a simple VT, it's beyond the scope of what 11162 // we're worried about here. Let legalization do its thing and hope for 11163 // the best. 11164 SDValue Src = N->getOperand(0); 11165 EVT SrcVT = Src->getValueType(0); 11166 if (!ResVT.isSimple() || !SrcVT.isSimple()) 11167 return SDValue(); 11168 11169 // If the source VT is a 64-bit vector, we can play games and get the 11170 // better results we want. 11171 if (SrcVT.getSizeInBits() != 64) 11172 return SDValue(); 11173 11174 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 11175 unsigned ElementCount = SrcVT.getVectorNumElements(); 11176 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); 11177 SDLoc DL(N); 11178 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); 11179 11180 // Now split the rest of the operation into two halves, each with a 64 11181 // bit source. 11182 EVT LoVT, HiVT; 11183 SDValue Lo, Hi; 11184 unsigned NumElements = ResVT.getVectorNumElements(); 11185 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 11186 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), 11187 ResVT.getVectorElementType(), NumElements / 2); 11188 11189 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), 11190 LoVT.getVectorNumElements()); 11191 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, 11192 DAG.getConstant(0, DL, MVT::i64)); 11193 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, 11194 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64)); 11195 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); 11196 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); 11197 11198 // Now combine the parts back together so we still have a single result 11199 // like the combiner expects. 11200 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); 11201 } 11202 11203 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St, 11204 SDValue SplatVal, unsigned NumVecElts) { 11205 assert(!St.isTruncatingStore() && "cannot split truncating vector store"); 11206 unsigned OrigAlignment = St.getAlignment(); 11207 unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8; 11208 11209 // Create scalar stores. This is at least as good as the code sequence for a 11210 // split unaligned store which is a dup.s, ext.b, and two stores. 11211 // Most of the time the three stores should be replaced by store pair 11212 // instructions (stp). 11213 SDLoc DL(&St); 11214 SDValue BasePtr = St.getBasePtr(); 11215 uint64_t BaseOffset = 0; 11216 11217 const MachinePointerInfo &PtrInfo = St.getPointerInfo(); 11218 SDValue NewST1 = 11219 DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo, 11220 OrigAlignment, St.getMemOperand()->getFlags()); 11221 11222 // As this in ISel, we will not merge this add which may degrade results. 11223 if (BasePtr->getOpcode() == ISD::ADD && 11224 isa<ConstantSDNode>(BasePtr->getOperand(1))) { 11225 BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 11226 BasePtr = BasePtr->getOperand(0); 11227 } 11228 11229 unsigned Offset = EltOffset; 11230 while (--NumVecElts) { 11231 unsigned Alignment = MinAlign(OrigAlignment, Offset); 11232 SDValue OffsetPtr = 11233 DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, 11234 DAG.getConstant(BaseOffset + Offset, DL, MVT::i64)); 11235 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, 11236 PtrInfo.getWithOffset(Offset), Alignment, 11237 St.getMemOperand()->getFlags()); 11238 Offset += EltOffset; 11239 } 11240 return NewST1; 11241 } 11242 11243 static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) { 11244 SDLoc DL(N); 11245 EVT VT = N->getValueType(0); 11246 EVT PtrTy = N->getOperand(3).getValueType(); 11247 11248 EVT LoadVT = VT; 11249 if (VT.isFloatingPoint()) 11250 LoadVT = VT.changeTypeToInteger(); 11251 11252 auto *MINode = cast<MemIntrinsicSDNode>(N); 11253 SDValue PassThru = DAG.getConstant(0, DL, LoadVT); 11254 SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(), 11255 MINode->getOperand(3), DAG.getUNDEF(PtrTy), 11256 MINode->getOperand(2), PassThru, 11257 MINode->getMemoryVT(), MINode->getMemOperand(), 11258 ISD::UNINDEXED, ISD::NON_EXTLOAD, false); 11259 11260 if (VT.isFloatingPoint()) { 11261 SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) }; 11262 return DAG.getMergeValues(Ops, DL); 11263 } 11264 11265 return L; 11266 } 11267 11268 static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) { 11269 SDLoc DL(N); 11270 11271 SDValue Data = N->getOperand(2); 11272 EVT DataVT = Data.getValueType(); 11273 EVT PtrTy = N->getOperand(4).getValueType(); 11274 11275 if (DataVT.isFloatingPoint()) 11276 Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data); 11277 11278 auto *MINode = cast<MemIntrinsicSDNode>(N); 11279 return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4), 11280 DAG.getUNDEF(PtrTy), MINode->getOperand(3), 11281 MINode->getMemoryVT(), MINode->getMemOperand(), 11282 ISD::UNINDEXED, false, false); 11283 } 11284 11285 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The 11286 /// load store optimizer pass will merge them to store pair stores. This should 11287 /// be better than a movi to create the vector zero followed by a vector store 11288 /// if the zero constant is not re-used, since one instructions and one register 11289 /// live range will be removed. 11290 /// 11291 /// For example, the final generated code should be: 11292 /// 11293 /// stp xzr, xzr, [x0] 11294 /// 11295 /// instead of: 11296 /// 11297 /// movi v0.2d, #0 11298 /// str q0, [x0] 11299 /// 11300 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) { 11301 SDValue StVal = St.getValue(); 11302 EVT VT = StVal.getValueType(); 11303 11304 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or 11305 // 2, 3 or 4 i32 elements. 11306 int NumVecElts = VT.getVectorNumElements(); 11307 if (!(((NumVecElts == 2 || NumVecElts == 3) && 11308 VT.getVectorElementType().getSizeInBits() == 64) || 11309 ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) && 11310 VT.getVectorElementType().getSizeInBits() == 32))) 11311 return SDValue(); 11312 11313 if (StVal.getOpcode() != ISD::BUILD_VECTOR) 11314 return SDValue(); 11315 11316 // If the zero constant has more than one use then the vector store could be 11317 // better since the constant mov will be amortized and stp q instructions 11318 // should be able to be formed. 11319 if (!StVal.hasOneUse()) 11320 return SDValue(); 11321 11322 // If the store is truncating then it's going down to i16 or smaller, which 11323 // means it can be implemented in a single store anyway. 11324 if (St.isTruncatingStore()) 11325 return SDValue(); 11326 11327 // If the immediate offset of the address operand is too large for the stp 11328 // instruction, then bail out. 11329 if (DAG.isBaseWithConstantOffset(St.getBasePtr())) { 11330 int64_t Offset = St.getBasePtr()->getConstantOperandVal(1); 11331 if (Offset < -512 || Offset > 504) 11332 return SDValue(); 11333 } 11334 11335 for (int I = 0; I < NumVecElts; ++I) { 11336 SDValue EltVal = StVal.getOperand(I); 11337 if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal)) 11338 return SDValue(); 11339 } 11340 11341 // Use a CopyFromReg WZR/XZR here to prevent 11342 // DAGCombiner::MergeConsecutiveStores from undoing this transformation. 11343 SDLoc DL(&St); 11344 unsigned ZeroReg; 11345 EVT ZeroVT; 11346 if (VT.getVectorElementType().getSizeInBits() == 32) { 11347 ZeroReg = AArch64::WZR; 11348 ZeroVT = MVT::i32; 11349 } else { 11350 ZeroReg = AArch64::XZR; 11351 ZeroVT = MVT::i64; 11352 } 11353 SDValue SplatVal = 11354 DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT); 11355 return splitStoreSplat(DAG, St, SplatVal, NumVecElts); 11356 } 11357 11358 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar 11359 /// value. The load store optimizer pass will merge them to store pair stores. 11360 /// This has better performance than a splat of the scalar followed by a split 11361 /// vector store. Even if the stores are not merged it is four stores vs a dup, 11362 /// followed by an ext.b and two stores. 11363 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) { 11364 SDValue StVal = St.getValue(); 11365 EVT VT = StVal.getValueType(); 11366 11367 // Don't replace floating point stores, they possibly won't be transformed to 11368 // stp because of the store pair suppress pass. 11369 if (VT.isFloatingPoint()) 11370 return SDValue(); 11371 11372 // We can express a splat as store pair(s) for 2 or 4 elements. 11373 unsigned NumVecElts = VT.getVectorNumElements(); 11374 if (NumVecElts != 4 && NumVecElts != 2) 11375 return SDValue(); 11376 11377 // If the store is truncating then it's going down to i16 or smaller, which 11378 // means it can be implemented in a single store anyway. 11379 if (St.isTruncatingStore()) 11380 return SDValue(); 11381 11382 // Check that this is a splat. 11383 // Make sure that each of the relevant vector element locations are inserted 11384 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32. 11385 std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1); 11386 SDValue SplatVal; 11387 for (unsigned I = 0; I < NumVecElts; ++I) { 11388 // Check for insert vector elements. 11389 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) 11390 return SDValue(); 11391 11392 // Check that same value is inserted at each vector element. 11393 if (I == 0) 11394 SplatVal = StVal.getOperand(1); 11395 else if (StVal.getOperand(1) != SplatVal) 11396 return SDValue(); 11397 11398 // Check insert element index. 11399 ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2)); 11400 if (!CIndex) 11401 return SDValue(); 11402 uint64_t IndexVal = CIndex->getZExtValue(); 11403 if (IndexVal >= NumVecElts) 11404 return SDValue(); 11405 IndexNotInserted.reset(IndexVal); 11406 11407 StVal = StVal.getOperand(0); 11408 } 11409 // Check that all vector element locations were inserted to. 11410 if (IndexNotInserted.any()) 11411 return SDValue(); 11412 11413 return splitStoreSplat(DAG, St, SplatVal, NumVecElts); 11414 } 11415 11416 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 11417 SelectionDAG &DAG, 11418 const AArch64Subtarget *Subtarget) { 11419 11420 StoreSDNode *S = cast<StoreSDNode>(N); 11421 if (S->isVolatile() || S->isIndexed()) 11422 return SDValue(); 11423 11424 SDValue StVal = S->getValue(); 11425 EVT VT = StVal.getValueType(); 11426 if (!VT.isVector()) 11427 return SDValue(); 11428 11429 // If we get a splat of zeros, convert this vector store to a store of 11430 // scalars. They will be merged into store pairs of xzr thereby removing one 11431 // instruction and one register. 11432 if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S)) 11433 return ReplacedZeroSplat; 11434 11435 // FIXME: The logic for deciding if an unaligned store should be split should 11436 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be 11437 // a call to that function here. 11438 11439 if (!Subtarget->isMisaligned128StoreSlow()) 11440 return SDValue(); 11441 11442 // Don't split at -Oz. 11443 if (DAG.getMachineFunction().getFunction().hasMinSize()) 11444 return SDValue(); 11445 11446 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting 11447 // those up regresses performance on micro-benchmarks and olden/bh. 11448 if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64) 11449 return SDValue(); 11450 11451 // Split unaligned 16B stores. They are terrible for performance. 11452 // Don't split stores with alignment of 1 or 2. Code that uses clang vector 11453 // extensions can use this to mark that it does not want splitting to happen 11454 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of 11455 // eliminating alignment hazards is only 1 in 8 for alignment of 2. 11456 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || 11457 S->getAlignment() <= 2) 11458 return SDValue(); 11459 11460 // If we get a splat of a scalar convert this vector store to a store of 11461 // scalars. They will be merged into store pairs thereby removing two 11462 // instructions. 11463 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S)) 11464 return ReplacedSplat; 11465 11466 SDLoc DL(S); 11467 11468 // Split VT into two. 11469 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 11470 unsigned NumElts = HalfVT.getVectorNumElements(); 11471 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, 11472 DAG.getConstant(0, DL, MVT::i64)); 11473 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, 11474 DAG.getConstant(NumElts, DL, MVT::i64)); 11475 SDValue BasePtr = S->getBasePtr(); 11476 SDValue NewST1 = 11477 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), 11478 S->getAlignment(), S->getMemOperand()->getFlags()); 11479 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, 11480 DAG.getConstant(8, DL, MVT::i64)); 11481 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, 11482 S->getPointerInfo(), S->getAlignment(), 11483 S->getMemOperand()->getFlags()); 11484 } 11485 11486 /// Target-specific DAG combine function for post-increment LD1 (lane) and 11487 /// post-increment LD1R. 11488 static SDValue performPostLD1Combine(SDNode *N, 11489 TargetLowering::DAGCombinerInfo &DCI, 11490 bool IsLaneOp) { 11491 if (DCI.isBeforeLegalizeOps()) 11492 return SDValue(); 11493 11494 SelectionDAG &DAG = DCI.DAG; 11495 EVT VT = N->getValueType(0); 11496 11497 unsigned LoadIdx = IsLaneOp ? 1 : 0; 11498 SDNode *LD = N->getOperand(LoadIdx).getNode(); 11499 // If it is not LOAD, can not do such combine. 11500 if (LD->getOpcode() != ISD::LOAD) 11501 return SDValue(); 11502 11503 // The vector lane must be a constant in the LD1LANE opcode. 11504 SDValue Lane; 11505 if (IsLaneOp) { 11506 Lane = N->getOperand(2); 11507 auto *LaneC = dyn_cast<ConstantSDNode>(Lane); 11508 if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements()) 11509 return SDValue(); 11510 } 11511 11512 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); 11513 EVT MemVT = LoadSDN->getMemoryVT(); 11514 // Check if memory operand is the same type as the vector element. 11515 if (MemVT != VT.getVectorElementType()) 11516 return SDValue(); 11517 11518 // Check if there are other uses. If so, do not combine as it will introduce 11519 // an extra load. 11520 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; 11521 ++UI) { 11522 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. 11523 continue; 11524 if (*UI != N) 11525 return SDValue(); 11526 } 11527 11528 SDValue Addr = LD->getOperand(1); 11529 SDValue Vector = N->getOperand(0); 11530 // Search for a use of the address operand that is an increment. 11531 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = 11532 Addr.getNode()->use_end(); UI != UE; ++UI) { 11533 SDNode *User = *UI; 11534 if (User->getOpcode() != ISD::ADD 11535 || UI.getUse().getResNo() != Addr.getResNo()) 11536 continue; 11537 11538 // If the increment is a constant, it must match the memory ref size. 11539 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 11540 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 11541 uint32_t IncVal = CInc->getZExtValue(); 11542 unsigned NumBytes = VT.getScalarSizeInBits() / 8; 11543 if (IncVal != NumBytes) 11544 continue; 11545 Inc = DAG.getRegister(AArch64::XZR, MVT::i64); 11546 } 11547 11548 // To avoid cycle construction make sure that neither the load nor the add 11549 // are predecessors to each other or the Vector. 11550 SmallPtrSet<const SDNode *, 32> Visited; 11551 SmallVector<const SDNode *, 16> Worklist; 11552 Visited.insert(Addr.getNode()); 11553 Worklist.push_back(User); 11554 Worklist.push_back(LD); 11555 Worklist.push_back(Vector.getNode()); 11556 if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) || 11557 SDNode::hasPredecessorHelper(User, Visited, Worklist)) 11558 continue; 11559 11560 SmallVector<SDValue, 8> Ops; 11561 Ops.push_back(LD->getOperand(0)); // Chain 11562 if (IsLaneOp) { 11563 Ops.push_back(Vector); // The vector to be inserted 11564 Ops.push_back(Lane); // The lane to be inserted in the vector 11565 } 11566 Ops.push_back(Addr); 11567 Ops.push_back(Inc); 11568 11569 EVT Tys[3] = { VT, MVT::i64, MVT::Other }; 11570 SDVTList SDTys = DAG.getVTList(Tys); 11571 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; 11572 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, 11573 MemVT, 11574 LoadSDN->getMemOperand()); 11575 11576 // Update the uses. 11577 SDValue NewResults[] = { 11578 SDValue(LD, 0), // The result of load 11579 SDValue(UpdN.getNode(), 2) // Chain 11580 }; 11581 DCI.CombineTo(LD, NewResults); 11582 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result 11583 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register 11584 11585 break; 11586 } 11587 return SDValue(); 11588 } 11589 11590 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during 11591 /// address translation. 11592 static bool performTBISimplification(SDValue Addr, 11593 TargetLowering::DAGCombinerInfo &DCI, 11594 SelectionDAG &DAG) { 11595 APInt DemandedMask = APInt::getLowBitsSet(64, 56); 11596 KnownBits Known; 11597 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 11598 !DCI.isBeforeLegalizeOps()); 11599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11600 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) { 11601 DCI.CommitTargetLoweringOpt(TLO); 11602 return true; 11603 } 11604 return false; 11605 } 11606 11607 static SDValue performSTORECombine(SDNode *N, 11608 TargetLowering::DAGCombinerInfo &DCI, 11609 SelectionDAG &DAG, 11610 const AArch64Subtarget *Subtarget) { 11611 if (SDValue Split = splitStores(N, DCI, DAG, Subtarget)) 11612 return Split; 11613 11614 if (Subtarget->supportsAddressTopByteIgnored() && 11615 performTBISimplification(N->getOperand(2), DCI, DAG)) 11616 return SDValue(N, 0); 11617 11618 return SDValue(); 11619 } 11620 11621 11622 /// Target-specific DAG combine function for NEON load/store intrinsics 11623 /// to merge base address updates. 11624 static SDValue performNEONPostLDSTCombine(SDNode *N, 11625 TargetLowering::DAGCombinerInfo &DCI, 11626 SelectionDAG &DAG) { 11627 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 11628 return SDValue(); 11629 11630 unsigned AddrOpIdx = N->getNumOperands() - 1; 11631 SDValue Addr = N->getOperand(AddrOpIdx); 11632 11633 // Search for a use of the address operand that is an increment. 11634 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 11635 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 11636 SDNode *User = *UI; 11637 if (User->getOpcode() != ISD::ADD || 11638 UI.getUse().getResNo() != Addr.getResNo()) 11639 continue; 11640 11641 // Check that the add is independent of the load/store. Otherwise, folding 11642 // it would create a cycle. 11643 SmallPtrSet<const SDNode *, 32> Visited; 11644 SmallVector<const SDNode *, 16> Worklist; 11645 Visited.insert(Addr.getNode()); 11646 Worklist.push_back(N); 11647 Worklist.push_back(User); 11648 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || 11649 SDNode::hasPredecessorHelper(User, Visited, Worklist)) 11650 continue; 11651 11652 // Find the new opcode for the updating load/store. 11653 bool IsStore = false; 11654 bool IsLaneOp = false; 11655 bool IsDupOp = false; 11656 unsigned NewOpc = 0; 11657 unsigned NumVecs = 0; 11658 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 11659 switch (IntNo) { 11660 default: llvm_unreachable("unexpected intrinsic for Neon base update"); 11661 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; 11662 NumVecs = 2; break; 11663 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; 11664 NumVecs = 3; break; 11665 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; 11666 NumVecs = 4; break; 11667 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; 11668 NumVecs = 2; IsStore = true; break; 11669 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; 11670 NumVecs = 3; IsStore = true; break; 11671 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; 11672 NumVecs = 4; IsStore = true; break; 11673 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; 11674 NumVecs = 2; break; 11675 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; 11676 NumVecs = 3; break; 11677 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; 11678 NumVecs = 4; break; 11679 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; 11680 NumVecs = 2; IsStore = true; break; 11681 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; 11682 NumVecs = 3; IsStore = true; break; 11683 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; 11684 NumVecs = 4; IsStore = true; break; 11685 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; 11686 NumVecs = 2; IsDupOp = true; break; 11687 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; 11688 NumVecs = 3; IsDupOp = true; break; 11689 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; 11690 NumVecs = 4; IsDupOp = true; break; 11691 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; 11692 NumVecs = 2; IsLaneOp = true; break; 11693 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; 11694 NumVecs = 3; IsLaneOp = true; break; 11695 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; 11696 NumVecs = 4; IsLaneOp = true; break; 11697 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; 11698 NumVecs = 2; IsStore = true; IsLaneOp = true; break; 11699 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; 11700 NumVecs = 3; IsStore = true; IsLaneOp = true; break; 11701 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; 11702 NumVecs = 4; IsStore = true; IsLaneOp = true; break; 11703 } 11704 11705 EVT VecTy; 11706 if (IsStore) 11707 VecTy = N->getOperand(2).getValueType(); 11708 else 11709 VecTy = N->getValueType(0); 11710 11711 // If the increment is a constant, it must match the memory ref size. 11712 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 11713 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 11714 uint32_t IncVal = CInc->getZExtValue(); 11715 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 11716 if (IsLaneOp || IsDupOp) 11717 NumBytes /= VecTy.getVectorNumElements(); 11718 if (IncVal != NumBytes) 11719 continue; 11720 Inc = DAG.getRegister(AArch64::XZR, MVT::i64); 11721 } 11722 SmallVector<SDValue, 8> Ops; 11723 Ops.push_back(N->getOperand(0)); // Incoming chain 11724 // Load lane and store have vector list as input. 11725 if (IsLaneOp || IsStore) 11726 for (unsigned i = 2; i < AddrOpIdx; ++i) 11727 Ops.push_back(N->getOperand(i)); 11728 Ops.push_back(Addr); // Base register 11729 Ops.push_back(Inc); 11730 11731 // Return Types. 11732 EVT Tys[6]; 11733 unsigned NumResultVecs = (IsStore ? 0 : NumVecs); 11734 unsigned n; 11735 for (n = 0; n < NumResultVecs; ++n) 11736 Tys[n] = VecTy; 11737 Tys[n++] = MVT::i64; // Type of write back register 11738 Tys[n] = MVT::Other; // Type of the chain 11739 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); 11740 11741 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); 11742 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, 11743 MemInt->getMemoryVT(), 11744 MemInt->getMemOperand()); 11745 11746 // Update the uses. 11747 std::vector<SDValue> NewResults; 11748 for (unsigned i = 0; i < NumResultVecs; ++i) { 11749 NewResults.push_back(SDValue(UpdN.getNode(), i)); 11750 } 11751 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); 11752 DCI.CombineTo(N, NewResults); 11753 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 11754 11755 break; 11756 } 11757 return SDValue(); 11758 } 11759 11760 // Checks to see if the value is the prescribed width and returns information 11761 // about its extension mode. 11762 static 11763 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { 11764 ExtType = ISD::NON_EXTLOAD; 11765 switch(V.getNode()->getOpcode()) { 11766 default: 11767 return false; 11768 case ISD::LOAD: { 11769 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode()); 11770 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) 11771 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { 11772 ExtType = LoadNode->getExtensionType(); 11773 return true; 11774 } 11775 return false; 11776 } 11777 case ISD::AssertSext: { 11778 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); 11779 if ((TypeNode->getVT() == MVT::i8 && width == 8) 11780 || (TypeNode->getVT() == MVT::i16 && width == 16)) { 11781 ExtType = ISD::SEXTLOAD; 11782 return true; 11783 } 11784 return false; 11785 } 11786 case ISD::AssertZext: { 11787 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); 11788 if ((TypeNode->getVT() == MVT::i8 && width == 8) 11789 || (TypeNode->getVT() == MVT::i16 && width == 16)) { 11790 ExtType = ISD::ZEXTLOAD; 11791 return true; 11792 } 11793 return false; 11794 } 11795 case ISD::Constant: 11796 case ISD::TargetConstant: { 11797 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) < 11798 1LL << (width - 1); 11799 } 11800 } 11801 11802 return true; 11803 } 11804 11805 // This function does a whole lot of voodoo to determine if the tests are 11806 // equivalent without and with a mask. Essentially what happens is that given a 11807 // DAG resembling: 11808 // 11809 // +-------------+ +-------------+ +-------------+ +-------------+ 11810 // | Input | | AddConstant | | CompConstant| | CC | 11811 // +-------------+ +-------------+ +-------------+ +-------------+ 11812 // | | | | 11813 // V V | +----------+ 11814 // +-------------+ +----+ | | 11815 // | ADD | |0xff| | | 11816 // +-------------+ +----+ | | 11817 // | | | | 11818 // V V | | 11819 // +-------------+ | | 11820 // | AND | | | 11821 // +-------------+ | | 11822 // | | | 11823 // +-----+ | | 11824 // | | | 11825 // V V V 11826 // +-------------+ 11827 // | CMP | 11828 // +-------------+ 11829 // 11830 // The AND node may be safely removed for some combinations of inputs. In 11831 // particular we need to take into account the extension type of the Input, 11832 // the exact values of AddConstant, CompConstant, and CC, along with the nominal 11833 // width of the input (this can work for any width inputs, the above graph is 11834 // specific to 8 bits. 11835 // 11836 // The specific equations were worked out by generating output tables for each 11837 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The 11838 // problem was simplified by working with 4 bit inputs, which means we only 11839 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero 11840 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 11841 // patterns present in both extensions (0,7). For every distinct set of 11842 // AddConstant and CompConstants bit patterns we can consider the masked and 11843 // unmasked versions to be equivalent if the result of this function is true for 11844 // all 16 distinct bit patterns of for the current extension type of Input (w0). 11845 // 11846 // sub w8, w0, w1 11847 // and w10, w8, #0x0f 11848 // cmp w8, w2 11849 // cset w9, AArch64CC 11850 // cmp w10, w2 11851 // cset w11, AArch64CC 11852 // cmp w9, w11 11853 // cset w0, eq 11854 // ret 11855 // 11856 // Since the above function shows when the outputs are equivalent it defines 11857 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and 11858 // would be expensive to run during compiles. The equations below were written 11859 // in a test harness that confirmed they gave equivalent outputs to the above 11860 // for all inputs function, so they can be used determine if the removal is 11861 // legal instead. 11862 // 11863 // isEquivalentMaskless() is the code for testing if the AND can be removed 11864 // factored out of the DAG recognition as the DAG can take several forms. 11865 11866 static bool isEquivalentMaskless(unsigned CC, unsigned width, 11867 ISD::LoadExtType ExtType, int AddConstant, 11868 int CompConstant) { 11869 // By being careful about our equations and only writing the in term 11870 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can 11871 // make them generally applicable to all bit widths. 11872 int MaxUInt = (1 << width); 11873 11874 // For the purposes of these comparisons sign extending the type is 11875 // equivalent to zero extending the add and displacing it by half the integer 11876 // width. Provided we are careful and make sure our equations are valid over 11877 // the whole range we can just adjust the input and avoid writing equations 11878 // for sign extended inputs. 11879 if (ExtType == ISD::SEXTLOAD) 11880 AddConstant -= (1 << (width-1)); 11881 11882 switch(CC) { 11883 case AArch64CC::LE: 11884 case AArch64CC::GT: 11885 if ((AddConstant == 0) || 11886 (CompConstant == MaxUInt - 1 && AddConstant < 0) || 11887 (AddConstant >= 0 && CompConstant < 0) || 11888 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) 11889 return true; 11890 break; 11891 case AArch64CC::LT: 11892 case AArch64CC::GE: 11893 if ((AddConstant == 0) || 11894 (AddConstant >= 0 && CompConstant <= 0) || 11895 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) 11896 return true; 11897 break; 11898 case AArch64CC::HI: 11899 case AArch64CC::LS: 11900 if ((AddConstant >= 0 && CompConstant < 0) || 11901 (AddConstant <= 0 && CompConstant >= -1 && 11902 CompConstant < AddConstant + MaxUInt)) 11903 return true; 11904 break; 11905 case AArch64CC::PL: 11906 case AArch64CC::MI: 11907 if ((AddConstant == 0) || 11908 (AddConstant > 0 && CompConstant <= 0) || 11909 (AddConstant < 0 && CompConstant <= AddConstant)) 11910 return true; 11911 break; 11912 case AArch64CC::LO: 11913 case AArch64CC::HS: 11914 if ((AddConstant >= 0 && CompConstant <= 0) || 11915 (AddConstant <= 0 && CompConstant >= 0 && 11916 CompConstant <= AddConstant + MaxUInt)) 11917 return true; 11918 break; 11919 case AArch64CC::EQ: 11920 case AArch64CC::NE: 11921 if ((AddConstant > 0 && CompConstant < 0) || 11922 (AddConstant < 0 && CompConstant >= 0 && 11923 CompConstant < AddConstant + MaxUInt) || 11924 (AddConstant >= 0 && CompConstant >= 0 && 11925 CompConstant >= AddConstant) || 11926 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) 11927 return true; 11928 break; 11929 case AArch64CC::VS: 11930 case AArch64CC::VC: 11931 case AArch64CC::AL: 11932 case AArch64CC::NV: 11933 return true; 11934 case AArch64CC::Invalid: 11935 break; 11936 } 11937 11938 return false; 11939 } 11940 11941 static 11942 SDValue performCONDCombine(SDNode *N, 11943 TargetLowering::DAGCombinerInfo &DCI, 11944 SelectionDAG &DAG, unsigned CCIndex, 11945 unsigned CmpIndex) { 11946 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue(); 11947 SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); 11948 unsigned CondOpcode = SubsNode->getOpcode(); 11949 11950 if (CondOpcode != AArch64ISD::SUBS) 11951 return SDValue(); 11952 11953 // There is a SUBS feeding this condition. Is it fed by a mask we can 11954 // use? 11955 11956 SDNode *AndNode = SubsNode->getOperand(0).getNode(); 11957 unsigned MaskBits = 0; 11958 11959 if (AndNode->getOpcode() != ISD::AND) 11960 return SDValue(); 11961 11962 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) { 11963 uint32_t CNV = CN->getZExtValue(); 11964 if (CNV == 255) 11965 MaskBits = 8; 11966 else if (CNV == 65535) 11967 MaskBits = 16; 11968 } 11969 11970 if (!MaskBits) 11971 return SDValue(); 11972 11973 SDValue AddValue = AndNode->getOperand(0); 11974 11975 if (AddValue.getOpcode() != ISD::ADD) 11976 return SDValue(); 11977 11978 // The basic dag structure is correct, grab the inputs and validate them. 11979 11980 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); 11981 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); 11982 SDValue SubsInputValue = SubsNode->getOperand(1); 11983 11984 // The mask is present and the provenance of all the values is a smaller type, 11985 // lets see if the mask is superfluous. 11986 11987 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) || 11988 !isa<ConstantSDNode>(SubsInputValue.getNode())) 11989 return SDValue(); 11990 11991 ISD::LoadExtType ExtType; 11992 11993 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || 11994 !checkValueWidth(AddInputValue2, MaskBits, ExtType) || 11995 !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) 11996 return SDValue(); 11997 11998 if(!isEquivalentMaskless(CC, MaskBits, ExtType, 11999 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(), 12000 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue())) 12001 return SDValue(); 12002 12003 // The AND is not necessary, remove it. 12004 12005 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), 12006 SubsNode->getValueType(1)); 12007 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; 12008 12009 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); 12010 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); 12011 12012 return SDValue(N, 0); 12013 } 12014 12015 // Optimize compare with zero and branch. 12016 static SDValue performBRCONDCombine(SDNode *N, 12017 TargetLowering::DAGCombinerInfo &DCI, 12018 SelectionDAG &DAG) { 12019 MachineFunction &MF = DAG.getMachineFunction(); 12020 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions 12021 // will not be produced, as they are conditional branch instructions that do 12022 // not set flags. 12023 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) 12024 return SDValue(); 12025 12026 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3)) 12027 N = NV.getNode(); 12028 SDValue Chain = N->getOperand(0); 12029 SDValue Dest = N->getOperand(1); 12030 SDValue CCVal = N->getOperand(2); 12031 SDValue Cmp = N->getOperand(3); 12032 12033 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); 12034 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); 12035 if (CC != AArch64CC::EQ && CC != AArch64CC::NE) 12036 return SDValue(); 12037 12038 unsigned CmpOpc = Cmp.getOpcode(); 12039 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) 12040 return SDValue(); 12041 12042 // Only attempt folding if there is only one use of the flag and no use of the 12043 // value. 12044 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) 12045 return SDValue(); 12046 12047 SDValue LHS = Cmp.getOperand(0); 12048 SDValue RHS = Cmp.getOperand(1); 12049 12050 assert(LHS.getValueType() == RHS.getValueType() && 12051 "Expected the value type to be the same for both operands!"); 12052 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) 12053 return SDValue(); 12054 12055 if (isNullConstant(LHS)) 12056 std::swap(LHS, RHS); 12057 12058 if (!isNullConstant(RHS)) 12059 return SDValue(); 12060 12061 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || 12062 LHS.getOpcode() == ISD::SRL) 12063 return SDValue(); 12064 12065 // Fold the compare into the branch instruction. 12066 SDValue BR; 12067 if (CC == AArch64CC::EQ) 12068 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); 12069 else 12070 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); 12071 12072 // Do not add new nodes to DAG combiner worklist. 12073 DCI.CombineTo(N, BR, false); 12074 12075 return SDValue(); 12076 } 12077 12078 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test 12079 // as well as whether the test should be inverted. This code is required to 12080 // catch these cases (as opposed to standard dag combines) because 12081 // AArch64ISD::TBZ is matched during legalization. 12082 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert, 12083 SelectionDAG &DAG) { 12084 12085 if (!Op->hasOneUse()) 12086 return Op; 12087 12088 // We don't handle undef/constant-fold cases below, as they should have 12089 // already been taken care of (e.g. and of 0, test of undefined shifted bits, 12090 // etc.) 12091 12092 // (tbz (trunc x), b) -> (tbz x, b) 12093 // This case is just here to enable more of the below cases to be caught. 12094 if (Op->getOpcode() == ISD::TRUNCATE && 12095 Bit < Op->getValueType(0).getSizeInBits()) { 12096 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12097 } 12098 12099 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits. 12100 if (Op->getOpcode() == ISD::ANY_EXTEND && 12101 Bit < Op->getOperand(0).getValueSizeInBits()) { 12102 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12103 } 12104 12105 if (Op->getNumOperands() != 2) 12106 return Op; 12107 12108 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 12109 if (!C) 12110 return Op; 12111 12112 switch (Op->getOpcode()) { 12113 default: 12114 return Op; 12115 12116 // (tbz (and x, m), b) -> (tbz x, b) 12117 case ISD::AND: 12118 if ((C->getZExtValue() >> Bit) & 1) 12119 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12120 return Op; 12121 12122 // (tbz (shl x, c), b) -> (tbz x, b-c) 12123 case ISD::SHL: 12124 if (C->getZExtValue() <= Bit && 12125 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { 12126 Bit = Bit - C->getZExtValue(); 12127 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12128 } 12129 return Op; 12130 12131 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x 12132 case ISD::SRA: 12133 Bit = Bit + C->getZExtValue(); 12134 if (Bit >= Op->getValueType(0).getSizeInBits()) 12135 Bit = Op->getValueType(0).getSizeInBits() - 1; 12136 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12137 12138 // (tbz (srl x, c), b) -> (tbz x, b+c) 12139 case ISD::SRL: 12140 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { 12141 Bit = Bit + C->getZExtValue(); 12142 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12143 } 12144 return Op; 12145 12146 // (tbz (xor x, -1), b) -> (tbnz x, b) 12147 case ISD::XOR: 12148 if ((C->getZExtValue() >> Bit) & 1) 12149 Invert = !Invert; 12150 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12151 } 12152 } 12153 12154 // Optimize test single bit zero/non-zero and branch. 12155 static SDValue performTBZCombine(SDNode *N, 12156 TargetLowering::DAGCombinerInfo &DCI, 12157 SelectionDAG &DAG) { 12158 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); 12159 bool Invert = false; 12160 SDValue TestSrc = N->getOperand(1); 12161 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG); 12162 12163 if (TestSrc == NewTestSrc) 12164 return SDValue(); 12165 12166 unsigned NewOpc = N->getOpcode(); 12167 if (Invert) { 12168 if (NewOpc == AArch64ISD::TBZ) 12169 NewOpc = AArch64ISD::TBNZ; 12170 else { 12171 assert(NewOpc == AArch64ISD::TBNZ); 12172 NewOpc = AArch64ISD::TBZ; 12173 } 12174 } 12175 12176 SDLoc DL(N); 12177 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc, 12178 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3)); 12179 } 12180 12181 // vselect (v1i1 setcc) -> 12182 // vselect (v1iXX setcc) (XX is the size of the compared operand type) 12183 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as 12184 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine 12185 // such VSELECT. 12186 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { 12187 SDValue N0 = N->getOperand(0); 12188 EVT CCVT = N0.getValueType(); 12189 12190 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || 12191 CCVT.getVectorElementType() != MVT::i1) 12192 return SDValue(); 12193 12194 EVT ResVT = N->getValueType(0); 12195 EVT CmpVT = N0.getOperand(0).getValueType(); 12196 // Only combine when the result type is of the same size as the compared 12197 // operands. 12198 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) 12199 return SDValue(); 12200 12201 SDValue IfTrue = N->getOperand(1); 12202 SDValue IfFalse = N->getOperand(2); 12203 SDValue SetCC = 12204 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), 12205 N0.getOperand(0), N0.getOperand(1), 12206 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 12207 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, 12208 IfTrue, IfFalse); 12209 } 12210 12211 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with 12212 /// the compare-mask instructions rather than going via NZCV, even if LHS and 12213 /// RHS are really scalar. This replaces any scalar setcc in the above pattern 12214 /// with a vector one followed by a DUP shuffle on the result. 12215 static SDValue performSelectCombine(SDNode *N, 12216 TargetLowering::DAGCombinerInfo &DCI) { 12217 SelectionDAG &DAG = DCI.DAG; 12218 SDValue N0 = N->getOperand(0); 12219 EVT ResVT = N->getValueType(0); 12220 12221 if (N0.getOpcode() != ISD::SETCC) 12222 return SDValue(); 12223 12224 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered 12225 // scalar SetCCResultType. We also don't expect vectors, because we assume 12226 // that selects fed by vector SETCCs are canonicalized to VSELECT. 12227 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && 12228 "Scalar-SETCC feeding SELECT has unexpected result type!"); 12229 12230 // If NumMaskElts == 0, the comparison is larger than select result. The 12231 // largest real NEON comparison is 64-bits per lane, which means the result is 12232 // at most 32-bits and an illegal vector. Just bail out for now. 12233 EVT SrcVT = N0.getOperand(0).getValueType(); 12234 12235 // Don't try to do this optimization when the setcc itself has i1 operands. 12236 // There are no legal vectors of i1, so this would be pointless. 12237 if (SrcVT == MVT::i1) 12238 return SDValue(); 12239 12240 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); 12241 if (!ResVT.isVector() || NumMaskElts == 0) 12242 return SDValue(); 12243 12244 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); 12245 EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); 12246 12247 // Also bail out if the vector CCVT isn't the same size as ResVT. 12248 // This can happen if the SETCC operand size doesn't divide the ResVT size 12249 // (e.g., f64 vs v3f32). 12250 if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) 12251 return SDValue(); 12252 12253 // Make sure we didn't create illegal types, if we're not supposed to. 12254 assert(DCI.isBeforeLegalize() || 12255 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)); 12256 12257 // First perform a vector comparison, where lane 0 is the one we're interested 12258 // in. 12259 SDLoc DL(N0); 12260 SDValue LHS = 12261 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); 12262 SDValue RHS = 12263 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); 12264 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); 12265 12266 // Now duplicate the comparison mask we want across all other lanes. 12267 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); 12268 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask); 12269 Mask = DAG.getNode(ISD::BITCAST, DL, 12270 ResVT.changeVectorElementTypeToInteger(), Mask); 12271 12272 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); 12273 } 12274 12275 /// Get rid of unnecessary NVCASTs (that don't change the type). 12276 static SDValue performNVCASTCombine(SDNode *N) { 12277 if (N->getValueType(0) == N->getOperand(0).getValueType()) 12278 return N->getOperand(0); 12279 12280 return SDValue(); 12281 } 12282 12283 // If all users of the globaladdr are of the form (globaladdr + constant), find 12284 // the smallest constant, fold it into the globaladdr's offset and rewrite the 12285 // globaladdr as (globaladdr + constant) - constant. 12286 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG, 12287 const AArch64Subtarget *Subtarget, 12288 const TargetMachine &TM) { 12289 auto *GN = cast<GlobalAddressSDNode>(N); 12290 if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) != 12291 AArch64II::MO_NO_FLAG) 12292 return SDValue(); 12293 12294 uint64_t MinOffset = -1ull; 12295 for (SDNode *N : GN->uses()) { 12296 if (N->getOpcode() != ISD::ADD) 12297 return SDValue(); 12298 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0)); 12299 if (!C) 12300 C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12301 if (!C) 12302 return SDValue(); 12303 MinOffset = std::min(MinOffset, C->getZExtValue()); 12304 } 12305 uint64_t Offset = MinOffset + GN->getOffset(); 12306 12307 // Require that the new offset is larger than the existing one. Otherwise, we 12308 // can end up oscillating between two possible DAGs, for example, 12309 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1). 12310 if (Offset <= uint64_t(GN->getOffset())) 12311 return SDValue(); 12312 12313 // Check whether folding this offset is legal. It must not go out of bounds of 12314 // the referenced object to avoid violating the code model, and must be 12315 // smaller than 2^21 because this is the largest offset expressible in all 12316 // object formats. 12317 // 12318 // This check also prevents us from folding negative offsets, which will end 12319 // up being treated in the same way as large positive ones. They could also 12320 // cause code model violations, and aren't really common enough to matter. 12321 if (Offset >= (1 << 21)) 12322 return SDValue(); 12323 12324 const GlobalValue *GV = GN->getGlobal(); 12325 Type *T = GV->getValueType(); 12326 if (!T->isSized() || 12327 Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) 12328 return SDValue(); 12329 12330 SDLoc DL(GN); 12331 SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset); 12332 return DAG.getNode(ISD::SUB, DL, MVT::i64, Result, 12333 DAG.getConstant(MinOffset, DL, MVT::i64)); 12334 } 12335 12336 // Returns an SVE type that ContentTy can be trivially sign or zero extended 12337 // into. 12338 static MVT getSVEContainerType(EVT ContentTy) { 12339 assert(ContentTy.isSimple() && "No SVE containers for extended types"); 12340 12341 switch (ContentTy.getSimpleVT().SimpleTy) { 12342 default: 12343 llvm_unreachable("No known SVE container for this MVT type"); 12344 case MVT::nxv2i8: 12345 case MVT::nxv2i16: 12346 case MVT::nxv2i32: 12347 case MVT::nxv2i64: 12348 case MVT::nxv2f32: 12349 case MVT::nxv2f64: 12350 return MVT::nxv2i64; 12351 case MVT::nxv4i8: 12352 case MVT::nxv4i16: 12353 case MVT::nxv4i32: 12354 case MVT::nxv4f32: 12355 return MVT::nxv4i32; 12356 } 12357 } 12358 12359 static SDValue performST1ScatterCombine(SDNode *N, SelectionDAG &DAG, 12360 unsigned Opcode, 12361 bool OnlyPackedOffsets = true) { 12362 const SDValue Src = N->getOperand(2); 12363 const EVT SrcVT = Src->getValueType(0); 12364 assert(SrcVT.isScalableVector() && 12365 "Scatter stores are only possible for SVE vectors"); 12366 12367 SDLoc DL(N); 12368 MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT(); 12369 12370 // Make sure that source data will fit into an SVE register 12371 if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) 12372 return SDValue(); 12373 12374 // For FPs, ACLE only supports _packed_ single and double precision types. 12375 if (SrcElVT.isFloatingPoint()) 12376 if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64)) 12377 return SDValue(); 12378 12379 // Depending on the addressing mode, this is either a pointer or a vector of 12380 // pointers (that fits into one register) 12381 const SDValue Base = N->getOperand(4); 12382 // Depending on the addressing mode, this is either a single offset or a 12383 // vector of offsets (that fits into one register) 12384 SDValue Offset = N->getOperand(5); 12385 12386 auto &TLI = DAG.getTargetLoweringInfo(); 12387 if (!TLI.isTypeLegal(Base.getValueType())) 12388 return SDValue(); 12389 12390 // Some scatter store variants allow unpacked offsets, but only as nxv2i32 12391 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to 12392 // nxv2i64. Legalize accordingly. 12393 if (!OnlyPackedOffsets && 12394 Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) 12395 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); 12396 12397 if (!TLI.isTypeLegal(Offset.getValueType())) 12398 return SDValue(); 12399 12400 // Source value type that is representable in hardware 12401 EVT HwSrcVt = getSVEContainerType(SrcVT); 12402 12403 // Keep the original type of the input data to store - this is needed to 12404 // differentiate between ST1B, ST1H, ST1W and ST1D. For FP values we want the 12405 // integer equivalent, so just use HwSrcVt. 12406 SDValue InputVT = DAG.getValueType(SrcVT); 12407 if (SrcVT.isFloatingPoint()) 12408 InputVT = DAG.getValueType(HwSrcVt); 12409 12410 SDVTList VTs = DAG.getVTList(MVT::Other); 12411 SDValue SrcNew; 12412 12413 if (Src.getValueType().isFloatingPoint()) 12414 SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src); 12415 else 12416 SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src); 12417 12418 SDValue Ops[] = {N->getOperand(0), // Chain 12419 SrcNew, 12420 N->getOperand(3), // Pg 12421 Base, 12422 Offset, 12423 InputVT}; 12424 12425 return DAG.getNode(Opcode, DL, VTs, Ops); 12426 } 12427 12428 static SDValue performLD1GatherCombine(SDNode *N, SelectionDAG &DAG, 12429 unsigned Opcode, 12430 bool OnlyPackedOffsets = true) { 12431 EVT RetVT = N->getValueType(0); 12432 assert(RetVT.isScalableVector() && 12433 "Gather loads are only possible for SVE vectors"); 12434 SDLoc DL(N); 12435 12436 if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) 12437 return SDValue(); 12438 12439 // Depending on the addressing mode, this is either a pointer or a vector of 12440 // pointers (that fits into one register) 12441 const SDValue Base = N->getOperand(3); 12442 // Depending on the addressing mode, this is either a single offset or a 12443 // vector of offsets (that fits into one register) 12444 SDValue Offset = N->getOperand(4); 12445 12446 auto &TLI = DAG.getTargetLoweringInfo(); 12447 if (!TLI.isTypeLegal(Base.getValueType())) 12448 return SDValue(); 12449 12450 // Some gather load variants allow unpacked offsets, but only as nxv2i32 12451 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to 12452 // nxv2i64. Legalize accordingly. 12453 if (!OnlyPackedOffsets && 12454 Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) 12455 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); 12456 12457 // Return value type that is representable in hardware 12458 EVT HwRetVt = getSVEContainerType(RetVT); 12459 12460 // Keep the original output value type around - this will better inform 12461 // optimisations (e.g. instruction folding when load is followed by 12462 // zext/sext). This will only be used for ints, so the value for FPs 12463 // doesn't matter. 12464 SDValue OutVT = DAG.getValueType(RetVT); 12465 if (RetVT.isFloatingPoint()) 12466 OutVT = DAG.getValueType(HwRetVt); 12467 12468 SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other); 12469 SDValue Ops[] = {N->getOperand(0), // Chain 12470 N->getOperand(2), // Pg 12471 Base, Offset, OutVT}; 12472 12473 SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops); 12474 SDValue LoadChain = SDValue(Load.getNode(), 1); 12475 12476 if (RetVT.isInteger() && (RetVT != HwRetVt)) 12477 Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0)); 12478 12479 // If the original return value was FP, bitcast accordingly. Doing it here 12480 // means that we can avoid adding TableGen patterns for FPs. 12481 if (RetVT.isFloatingPoint()) 12482 Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0)); 12483 12484 return DAG.getMergeValues({Load, LoadChain}, DL); 12485 } 12486 12487 12488 static SDValue 12489 performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 12490 SelectionDAG &DAG) { 12491 if (DCI.isBeforeLegalizeOps()) 12492 return SDValue(); 12493 12494 SDValue Src = N->getOperand(0); 12495 unsigned Opc = Src->getOpcode(); 12496 12497 // Gather load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates 12498 // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes. 12499 unsigned NewOpc; 12500 switch (Opc) { 12501 case AArch64ISD::GLD1: 12502 NewOpc = AArch64ISD::GLD1S; 12503 break; 12504 case AArch64ISD::GLD1_SCALED: 12505 NewOpc = AArch64ISD::GLD1S_SCALED; 12506 break; 12507 case AArch64ISD::GLD1_SXTW: 12508 NewOpc = AArch64ISD::GLD1S_SXTW; 12509 break; 12510 case AArch64ISD::GLD1_SXTW_SCALED: 12511 NewOpc = AArch64ISD::GLD1S_SXTW_SCALED; 12512 break; 12513 case AArch64ISD::GLD1_UXTW: 12514 NewOpc = AArch64ISD::GLD1S_UXTW; 12515 break; 12516 case AArch64ISD::GLD1_UXTW_SCALED: 12517 NewOpc = AArch64ISD::GLD1S_UXTW_SCALED; 12518 break; 12519 case AArch64ISD::GLD1_IMM: 12520 NewOpc = AArch64ISD::GLD1S_IMM; 12521 break; 12522 default: 12523 return SDValue(); 12524 } 12525 12526 EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 12527 EVT GLD1SrcMemVT = cast<VTSDNode>(Src->getOperand(4))->getVT(); 12528 12529 if ((SignExtSrcVT != GLD1SrcMemVT) || !Src.hasOneUse()) 12530 return SDValue(); 12531 12532 EVT DstVT = N->getValueType(0); 12533 SDVTList VTs = DAG.getVTList(DstVT, MVT::Other); 12534 SDValue Ops[] = {Src->getOperand(0), Src->getOperand(1), Src->getOperand(2), 12535 Src->getOperand(3), Src->getOperand(4)}; 12536 12537 SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops); 12538 DCI.CombineTo(N, ExtLoad); 12539 DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1)); 12540 12541 // Return N so it doesn't get rechecked 12542 return SDValue(N, 0); 12543 } 12544 12545 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, 12546 DAGCombinerInfo &DCI) const { 12547 SelectionDAG &DAG = DCI.DAG; 12548 switch (N->getOpcode()) { 12549 default: 12550 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n"); 12551 break; 12552 case ISD::ADD: 12553 case ISD::SUB: 12554 return performAddSubLongCombine(N, DCI, DAG); 12555 case ISD::XOR: 12556 return performXorCombine(N, DAG, DCI, Subtarget); 12557 case ISD::MUL: 12558 return performMulCombine(N, DAG, DCI, Subtarget); 12559 case ISD::SINT_TO_FP: 12560 case ISD::UINT_TO_FP: 12561 return performIntToFpCombine(N, DAG, Subtarget); 12562 case ISD::FP_TO_SINT: 12563 case ISD::FP_TO_UINT: 12564 return performFpToIntCombine(N, DAG, DCI, Subtarget); 12565 case ISD::FDIV: 12566 return performFDivCombine(N, DAG, DCI, Subtarget); 12567 case ISD::OR: 12568 return performORCombine(N, DCI, Subtarget); 12569 case ISD::AND: 12570 return performANDCombine(N, DCI); 12571 case ISD::SRL: 12572 return performSRLCombine(N, DCI); 12573 case ISD::INTRINSIC_WO_CHAIN: 12574 return performIntrinsicCombine(N, DCI, Subtarget); 12575 case ISD::ANY_EXTEND: 12576 case ISD::ZERO_EXTEND: 12577 case ISD::SIGN_EXTEND: 12578 return performExtendCombine(N, DCI, DAG); 12579 case ISD::SIGN_EXTEND_INREG: 12580 return performSignExtendInRegCombine(N, DCI, DAG); 12581 case ISD::CONCAT_VECTORS: 12582 return performConcatVectorsCombine(N, DCI, DAG); 12583 case ISD::SELECT: 12584 return performSelectCombine(N, DCI); 12585 case ISD::VSELECT: 12586 return performVSelectCombine(N, DCI.DAG); 12587 case ISD::LOAD: 12588 if (performTBISimplification(N->getOperand(1), DCI, DAG)) 12589 return SDValue(N, 0); 12590 break; 12591 case ISD::STORE: 12592 return performSTORECombine(N, DCI, DAG, Subtarget); 12593 case AArch64ISD::BRCOND: 12594 return performBRCONDCombine(N, DCI, DAG); 12595 case AArch64ISD::TBNZ: 12596 case AArch64ISD::TBZ: 12597 return performTBZCombine(N, DCI, DAG); 12598 case AArch64ISD::CSEL: 12599 return performCONDCombine(N, DCI, DAG, 2, 3); 12600 case AArch64ISD::DUP: 12601 return performPostLD1Combine(N, DCI, false); 12602 case AArch64ISD::NVCAST: 12603 return performNVCASTCombine(N); 12604 case ISD::INSERT_VECTOR_ELT: 12605 return performPostLD1Combine(N, DCI, true); 12606 case ISD::INTRINSIC_VOID: 12607 case ISD::INTRINSIC_W_CHAIN: 12608 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12609 case Intrinsic::aarch64_neon_ld2: 12610 case Intrinsic::aarch64_neon_ld3: 12611 case Intrinsic::aarch64_neon_ld4: 12612 case Intrinsic::aarch64_neon_ld1x2: 12613 case Intrinsic::aarch64_neon_ld1x3: 12614 case Intrinsic::aarch64_neon_ld1x4: 12615 case Intrinsic::aarch64_neon_ld2lane: 12616 case Intrinsic::aarch64_neon_ld3lane: 12617 case Intrinsic::aarch64_neon_ld4lane: 12618 case Intrinsic::aarch64_neon_ld2r: 12619 case Intrinsic::aarch64_neon_ld3r: 12620 case Intrinsic::aarch64_neon_ld4r: 12621 case Intrinsic::aarch64_neon_st2: 12622 case Intrinsic::aarch64_neon_st3: 12623 case Intrinsic::aarch64_neon_st4: 12624 case Intrinsic::aarch64_neon_st1x2: 12625 case Intrinsic::aarch64_neon_st1x3: 12626 case Intrinsic::aarch64_neon_st1x4: 12627 case Intrinsic::aarch64_neon_st2lane: 12628 case Intrinsic::aarch64_neon_st3lane: 12629 case Intrinsic::aarch64_neon_st4lane: 12630 return performNEONPostLDSTCombine(N, DCI, DAG); 12631 case Intrinsic::aarch64_sve_ldnt1: 12632 return performLDNT1Combine(N, DAG); 12633 case Intrinsic::aarch64_sve_stnt1: 12634 return performSTNT1Combine(N, DAG); 12635 case Intrinsic::aarch64_sve_ld1_gather: 12636 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1); 12637 case Intrinsic::aarch64_sve_ld1_gather_index: 12638 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SCALED); 12639 case Intrinsic::aarch64_sve_ld1_gather_sxtw: 12640 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW, 12641 /*OnlyPackedOffsets=*/false); 12642 case Intrinsic::aarch64_sve_ld1_gather_uxtw: 12643 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW, 12644 /*OnlyPackedOffsets=*/false); 12645 case Intrinsic::aarch64_sve_ld1_gather_sxtw_index: 12646 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW_SCALED, 12647 /*OnlyPackedOffsets=*/false); 12648 case Intrinsic::aarch64_sve_ld1_gather_uxtw_index: 12649 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW_SCALED, 12650 /*OnlyPackedOffsets=*/false); 12651 case Intrinsic::aarch64_sve_ld1_gather_imm: 12652 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_IMM); 12653 case Intrinsic::aarch64_sve_st1_scatter: 12654 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1); 12655 case Intrinsic::aarch64_sve_st1_scatter_index: 12656 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SCALED); 12657 case Intrinsic::aarch64_sve_st1_scatter_sxtw: 12658 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW, 12659 /*OnlyPackedOffsets=*/false); 12660 case Intrinsic::aarch64_sve_st1_scatter_uxtw: 12661 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW, 12662 /*OnlyPackedOffsets=*/false); 12663 case Intrinsic::aarch64_sve_st1_scatter_sxtw_index: 12664 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW_SCALED, 12665 /*OnlyPackedOffsets=*/false); 12666 case Intrinsic::aarch64_sve_st1_scatter_uxtw_index: 12667 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW_SCALED, 12668 /*OnlyPackedOffsets=*/false); 12669 case Intrinsic::aarch64_sve_st1_scatter_imm: 12670 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_IMM); 12671 default: 12672 break; 12673 } 12674 break; 12675 case ISD::GlobalAddress: 12676 return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine()); 12677 } 12678 return SDValue(); 12679 } 12680 12681 // Check if the return value is used as only a return value, as otherwise 12682 // we can't perform a tail-call. In particular, we need to check for 12683 // target ISD nodes that are returns and any other "odd" constructs 12684 // that the generic analysis code won't necessarily catch. 12685 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, 12686 SDValue &Chain) const { 12687 if (N->getNumValues() != 1) 12688 return false; 12689 if (!N->hasNUsesOfValue(1, 0)) 12690 return false; 12691 12692 SDValue TCChain = Chain; 12693 SDNode *Copy = *N->use_begin(); 12694 if (Copy->getOpcode() == ISD::CopyToReg) { 12695 // If the copy has a glue operand, we conservatively assume it isn't safe to 12696 // perform a tail call. 12697 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == 12698 MVT::Glue) 12699 return false; 12700 TCChain = Copy->getOperand(0); 12701 } else if (Copy->getOpcode() != ISD::FP_EXTEND) 12702 return false; 12703 12704 bool HasRet = false; 12705 for (SDNode *Node : Copy->uses()) { 12706 if (Node->getOpcode() != AArch64ISD::RET_FLAG) 12707 return false; 12708 HasRet = true; 12709 } 12710 12711 if (!HasRet) 12712 return false; 12713 12714 Chain = TCChain; 12715 return true; 12716 } 12717 12718 // Return whether the an instruction can potentially be optimized to a tail 12719 // call. This will cause the optimizers to attempt to move, or duplicate, 12720 // return instructions to help enable tail call optimizations for this 12721 // instruction. 12722 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 12723 return CI->isTailCall(); 12724 } 12725 12726 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, 12727 SDValue &Offset, 12728 ISD::MemIndexedMode &AM, 12729 bool &IsInc, 12730 SelectionDAG &DAG) const { 12731 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) 12732 return false; 12733 12734 Base = Op->getOperand(0); 12735 // All of the indexed addressing mode instructions take a signed 12736 // 9 bit immediate offset. 12737 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 12738 int64_t RHSC = RHS->getSExtValue(); 12739 if (Op->getOpcode() == ISD::SUB) 12740 RHSC = -(uint64_t)RHSC; 12741 if (!isInt<9>(RHSC)) 12742 return false; 12743 IsInc = (Op->getOpcode() == ISD::ADD); 12744 Offset = Op->getOperand(1); 12745 return true; 12746 } 12747 return false; 12748 } 12749 12750 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 12751 SDValue &Offset, 12752 ISD::MemIndexedMode &AM, 12753 SelectionDAG &DAG) const { 12754 EVT VT; 12755 SDValue Ptr; 12756 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 12757 VT = LD->getMemoryVT(); 12758 Ptr = LD->getBasePtr(); 12759 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 12760 VT = ST->getMemoryVT(); 12761 Ptr = ST->getBasePtr(); 12762 } else 12763 return false; 12764 12765 bool IsInc; 12766 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) 12767 return false; 12768 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; 12769 return true; 12770 } 12771 12772 bool AArch64TargetLowering::getPostIndexedAddressParts( 12773 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, 12774 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { 12775 EVT VT; 12776 SDValue Ptr; 12777 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 12778 VT = LD->getMemoryVT(); 12779 Ptr = LD->getBasePtr(); 12780 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 12781 VT = ST->getMemoryVT(); 12782 Ptr = ST->getBasePtr(); 12783 } else 12784 return false; 12785 12786 bool IsInc; 12787 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) 12788 return false; 12789 // Post-indexing updates the base, so it's not a valid transform 12790 // if that's not the same as the load's pointer. 12791 if (Ptr != Base) 12792 return false; 12793 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; 12794 return true; 12795 } 12796 12797 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results, 12798 SelectionDAG &DAG) { 12799 SDLoc DL(N); 12800 SDValue Op = N->getOperand(0); 12801 12802 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16) 12803 return; 12804 12805 Op = SDValue( 12806 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, 12807 DAG.getUNDEF(MVT::i32), Op, 12808 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), 12809 0); 12810 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); 12811 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); 12812 } 12813 12814 static void ReplaceReductionResults(SDNode *N, 12815 SmallVectorImpl<SDValue> &Results, 12816 SelectionDAG &DAG, unsigned InterOp, 12817 unsigned AcrossOp) { 12818 EVT LoVT, HiVT; 12819 SDValue Lo, Hi; 12820 SDLoc dl(N); 12821 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 12822 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); 12823 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); 12824 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); 12825 Results.push_back(SplitVal); 12826 } 12827 12828 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) { 12829 SDLoc DL(N); 12830 SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N); 12831 SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, 12832 DAG.getNode(ISD::SRL, DL, MVT::i128, N, 12833 DAG.getConstant(64, DL, MVT::i64))); 12834 return std::make_pair(Lo, Hi); 12835 } 12836 12837 // Create an even/odd pair of X registers holding integer value V. 12838 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { 12839 SDLoc dl(V.getNode()); 12840 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64); 12841 SDValue VHi = DAG.getAnyExtOrTrunc( 12842 DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)), 12843 dl, MVT::i64); 12844 if (DAG.getDataLayout().isBigEndian()) 12845 std::swap (VLo, VHi); 12846 SDValue RegClass = 12847 DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32); 12848 SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32); 12849 SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32); 12850 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; 12851 return SDValue( 12852 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); 12853 } 12854 12855 static void ReplaceCMP_SWAP_128Results(SDNode *N, 12856 SmallVectorImpl<SDValue> &Results, 12857 SelectionDAG &DAG, 12858 const AArch64Subtarget *Subtarget) { 12859 assert(N->getValueType(0) == MVT::i128 && 12860 "AtomicCmpSwap on types less than 128 should be legal"); 12861 12862 if (Subtarget->hasLSE()) { 12863 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type, 12864 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG. 12865 SDValue Ops[] = { 12866 createGPRPairNode(DAG, N->getOperand(2)), // Compare value 12867 createGPRPairNode(DAG, N->getOperand(3)), // Store value 12868 N->getOperand(1), // Ptr 12869 N->getOperand(0), // Chain in 12870 }; 12871 12872 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 12873 12874 unsigned Opcode; 12875 switch (MemOp->getOrdering()) { 12876 case AtomicOrdering::Monotonic: 12877 Opcode = AArch64::CASPX; 12878 break; 12879 case AtomicOrdering::Acquire: 12880 Opcode = AArch64::CASPAX; 12881 break; 12882 case AtomicOrdering::Release: 12883 Opcode = AArch64::CASPLX; 12884 break; 12885 case AtomicOrdering::AcquireRelease: 12886 case AtomicOrdering::SequentiallyConsistent: 12887 Opcode = AArch64::CASPALX; 12888 break; 12889 default: 12890 llvm_unreachable("Unexpected ordering!"); 12891 } 12892 12893 MachineSDNode *CmpSwap = DAG.getMachineNode( 12894 Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops); 12895 DAG.setNodeMemRefs(CmpSwap, {MemOp}); 12896 12897 unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64; 12898 if (DAG.getDataLayout().isBigEndian()) 12899 std::swap(SubReg1, SubReg2); 12900 Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64, 12901 SDValue(CmpSwap, 0))); 12902 Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64, 12903 SDValue(CmpSwap, 0))); 12904 Results.push_back(SDValue(CmpSwap, 1)); // Chain out 12905 return; 12906 } 12907 12908 auto Desired = splitInt128(N->getOperand(2), DAG); 12909 auto New = splitInt128(N->getOperand(3), DAG); 12910 SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second, 12911 New.first, New.second, N->getOperand(0)}; 12912 SDNode *CmpSwap = DAG.getMachineNode( 12913 AArch64::CMP_SWAP_128, SDLoc(N), 12914 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops); 12915 12916 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 12917 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp}); 12918 12919 Results.push_back(SDValue(CmpSwap, 0)); 12920 Results.push_back(SDValue(CmpSwap, 1)); 12921 Results.push_back(SDValue(CmpSwap, 3)); 12922 } 12923 12924 void AArch64TargetLowering::ReplaceNodeResults( 12925 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 12926 switch (N->getOpcode()) { 12927 default: 12928 llvm_unreachable("Don't know how to custom expand this"); 12929 case ISD::BITCAST: 12930 ReplaceBITCASTResults(N, Results, DAG); 12931 return; 12932 case ISD::VECREDUCE_ADD: 12933 case ISD::VECREDUCE_SMAX: 12934 case ISD::VECREDUCE_SMIN: 12935 case ISD::VECREDUCE_UMAX: 12936 case ISD::VECREDUCE_UMIN: 12937 Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG)); 12938 return; 12939 12940 case AArch64ISD::SADDV: 12941 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); 12942 return; 12943 case AArch64ISD::UADDV: 12944 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); 12945 return; 12946 case AArch64ISD::SMINV: 12947 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); 12948 return; 12949 case AArch64ISD::UMINV: 12950 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); 12951 return; 12952 case AArch64ISD::SMAXV: 12953 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); 12954 return; 12955 case AArch64ISD::UMAXV: 12956 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); 12957 return; 12958 case ISD::FP_TO_UINT: 12959 case ISD::FP_TO_SINT: 12960 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); 12961 // Let normal code take care of it by not adding anything to Results. 12962 return; 12963 case ISD::ATOMIC_CMP_SWAP: 12964 ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget); 12965 return; 12966 case ISD::LOAD: { 12967 assert(SDValue(N, 0).getValueType() == MVT::i128 && 12968 "unexpected load's value type"); 12969 LoadSDNode *LoadNode = cast<LoadSDNode>(N); 12970 if (!LoadNode->isVolatile() || LoadNode->getMemoryVT() != MVT::i128) { 12971 // Non-volatile loads are optimized later in AArch64's load/store 12972 // optimizer. 12973 return; 12974 } 12975 12976 SDValue Result = DAG.getMemIntrinsicNode( 12977 AArch64ISD::LDP, SDLoc(N), 12978 DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}), 12979 {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(), 12980 LoadNode->getMemOperand()); 12981 12982 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, 12983 Result.getValue(0), Result.getValue(1)); 12984 Results.append({Pair, Result.getValue(2) /* Chain */}); 12985 return; 12986 } 12987 case ISD::INTRINSIC_WO_CHAIN: { 12988 EVT VT = N->getValueType(0); 12989 assert((VT == MVT::i8 || VT == MVT::i16) && 12990 "custom lowering for unexpected type"); 12991 12992 ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0)); 12993 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 12994 switch (IntID) { 12995 default: 12996 return; 12997 case Intrinsic::aarch64_sve_clasta_n: { 12998 SDLoc DL(N); 12999 auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); 13000 auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32, 13001 N->getOperand(1), Op2, N->getOperand(3)); 13002 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 13003 return; 13004 } 13005 case Intrinsic::aarch64_sve_clastb_n: { 13006 SDLoc DL(N); 13007 auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); 13008 auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32, 13009 N->getOperand(1), Op2, N->getOperand(3)); 13010 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 13011 return; 13012 } 13013 case Intrinsic::aarch64_sve_lasta: { 13014 SDLoc DL(N); 13015 auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32, 13016 N->getOperand(1), N->getOperand(2)); 13017 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 13018 return; 13019 } 13020 case Intrinsic::aarch64_sve_lastb: { 13021 SDLoc DL(N); 13022 auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32, 13023 N->getOperand(1), N->getOperand(2)); 13024 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 13025 return; 13026 } 13027 } 13028 } 13029 } 13030 } 13031 13032 bool AArch64TargetLowering::useLoadStackGuardNode() const { 13033 if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia()) 13034 return TargetLowering::useLoadStackGuardNode(); 13035 return true; 13036 } 13037 13038 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { 13039 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 13040 // reciprocal if there are three or more FDIVs. 13041 return 3; 13042 } 13043 13044 TargetLoweringBase::LegalizeTypeAction 13045 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const { 13046 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, 13047 // v4i16, v2i32 instead of to promote. 13048 if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 || 13049 VT == MVT::v1f32) 13050 return TypeWidenVector; 13051 13052 return TargetLoweringBase::getPreferredVectorAction(VT); 13053 } 13054 13055 // Loads and stores less than 128-bits are already atomic; ones above that 13056 // are doomed anyway, so defer to the default libcall and blame the OS when 13057 // things go wrong. 13058 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 13059 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); 13060 return Size == 128; 13061 } 13062 13063 // Loads and stores less than 128-bits are already atomic; ones above that 13064 // are doomed anyway, so defer to the default libcall and blame the OS when 13065 // things go wrong. 13066 TargetLowering::AtomicExpansionKind 13067 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 13068 unsigned Size = LI->getType()->getPrimitiveSizeInBits(); 13069 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; 13070 } 13071 13072 // For the real atomic operations, we have ldxr/stxr up to 128 bits, 13073 TargetLowering::AtomicExpansionKind 13074 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 13075 if (AI->isFloatingPointOperation()) 13076 return AtomicExpansionKind::CmpXChg; 13077 13078 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 13079 if (Size > 128) return AtomicExpansionKind::None; 13080 // Nand not supported in LSE. 13081 if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC; 13082 // Leave 128 bits to LLSC. 13083 return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC; 13084 } 13085 13086 TargetLowering::AtomicExpansionKind 13087 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( 13088 AtomicCmpXchgInst *AI) const { 13089 // If subtarget has LSE, leave cmpxchg intact for codegen. 13090 if (Subtarget->hasLSE()) 13091 return AtomicExpansionKind::None; 13092 // At -O0, fast-regalloc cannot cope with the live vregs necessary to 13093 // implement cmpxchg without spilling. If the address being exchanged is also 13094 // on the stack and close enough to the spill slot, this can lead to a 13095 // situation where the monitor always gets cleared and the atomic operation 13096 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. 13097 if (getTargetMachine().getOptLevel() == 0) 13098 return AtomicExpansionKind::None; 13099 return AtomicExpansionKind::LLSC; 13100 } 13101 13102 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 13103 AtomicOrdering Ord) const { 13104 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 13105 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); 13106 bool IsAcquire = isAcquireOrStronger(Ord); 13107 13108 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd 13109 // intrinsic must return {i64, i64} and we have to recombine them into a 13110 // single i128 here. 13111 if (ValTy->getPrimitiveSizeInBits() == 128) { 13112 Intrinsic::ID Int = 13113 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; 13114 Function *Ldxr = Intrinsic::getDeclaration(M, Int); 13115 13116 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 13117 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); 13118 13119 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 13120 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 13121 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 13122 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 13123 return Builder.CreateOr( 13124 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 13125 } 13126 13127 Type *Tys[] = { Addr->getType() }; 13128 Intrinsic::ID Int = 13129 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; 13130 Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys); 13131 13132 Type *EltTy = cast<PointerType>(Addr->getType())->getElementType(); 13133 13134 const DataLayout &DL = M->getDataLayout(); 13135 IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy)); 13136 Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy); 13137 13138 return Builder.CreateBitCast(Trunc, EltTy); 13139 } 13140 13141 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( 13142 IRBuilder<> &Builder) const { 13143 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 13144 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); 13145 } 13146 13147 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, 13148 Value *Val, Value *Addr, 13149 AtomicOrdering Ord) const { 13150 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 13151 bool IsRelease = isReleaseOrStronger(Ord); 13152 13153 // Since the intrinsics must have legal type, the i128 intrinsics take two 13154 // parameters: "i64, i64". We must marshal Val into the appropriate form 13155 // before the call. 13156 if (Val->getType()->getPrimitiveSizeInBits() == 128) { 13157 Intrinsic::ID Int = 13158 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; 13159 Function *Stxr = Intrinsic::getDeclaration(M, Int); 13160 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 13161 13162 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); 13163 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); 13164 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 13165 return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); 13166 } 13167 13168 Intrinsic::ID Int = 13169 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; 13170 Type *Tys[] = { Addr->getType() }; 13171 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); 13172 13173 const DataLayout &DL = M->getDataLayout(); 13174 IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType())); 13175 Val = Builder.CreateBitCast(Val, IntValTy); 13176 13177 return Builder.CreateCall(Stxr, 13178 {Builder.CreateZExtOrBitCast( 13179 Val, Stxr->getFunctionType()->getParamType(0)), 13180 Addr}); 13181 } 13182 13183 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( 13184 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { 13185 return Ty->isArrayTy(); 13186 } 13187 13188 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, 13189 EVT) const { 13190 return false; 13191 } 13192 13193 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) { 13194 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 13195 Function *ThreadPointerFunc = 13196 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); 13197 return IRB.CreatePointerCast( 13198 IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc), 13199 Offset), 13200 IRB.getInt8PtrTy()->getPointerTo(0)); 13201 } 13202 13203 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const { 13204 // Android provides a fixed TLS slot for the stack cookie. See the definition 13205 // of TLS_SLOT_STACK_GUARD in 13206 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h 13207 if (Subtarget->isTargetAndroid()) 13208 return UseTlsOffset(IRB, 0x28); 13209 13210 // Fuchsia is similar. 13211 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. 13212 if (Subtarget->isTargetFuchsia()) 13213 return UseTlsOffset(IRB, -0x10); 13214 13215 return TargetLowering::getIRStackGuard(IRB); 13216 } 13217 13218 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const { 13219 // MSVC CRT provides functionalities for stack protection. 13220 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) { 13221 // MSVC CRT has a global variable holding security cookie. 13222 M.getOrInsertGlobal("__security_cookie", 13223 Type::getInt8PtrTy(M.getContext())); 13224 13225 // MSVC CRT has a function to validate security cookie. 13226 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction( 13227 "__security_check_cookie", Type::getVoidTy(M.getContext()), 13228 Type::getInt8PtrTy(M.getContext())); 13229 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) { 13230 F->setCallingConv(CallingConv::Win64); 13231 F->addAttribute(1, Attribute::AttrKind::InReg); 13232 } 13233 return; 13234 } 13235 TargetLowering::insertSSPDeclarations(M); 13236 } 13237 13238 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const { 13239 // MSVC CRT has a global variable holding security cookie. 13240 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 13241 return M.getGlobalVariable("__security_cookie"); 13242 return TargetLowering::getSDagStackGuard(M); 13243 } 13244 13245 Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const { 13246 // MSVC CRT has a function to validate security cookie. 13247 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 13248 return M.getFunction("__security_check_cookie"); 13249 return TargetLowering::getSSPStackGuardCheck(M); 13250 } 13251 13252 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 13253 // Android provides a fixed TLS slot for the SafeStack pointer. See the 13254 // definition of TLS_SLOT_SAFESTACK in 13255 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h 13256 if (Subtarget->isTargetAndroid()) 13257 return UseTlsOffset(IRB, 0x48); 13258 13259 // Fuchsia is similar. 13260 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value. 13261 if (Subtarget->isTargetFuchsia()) 13262 return UseTlsOffset(IRB, -0x8); 13263 13264 return TargetLowering::getSafeStackPointerLocation(IRB); 13265 } 13266 13267 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial( 13268 const Instruction &AndI) const { 13269 // Only sink 'and' mask to cmp use block if it is masking a single bit, since 13270 // this is likely to be fold the and/cmp/br into a single tbz instruction. It 13271 // may be beneficial to sink in other cases, but we would have to check that 13272 // the cmp would not get folded into the br to form a cbz for these to be 13273 // beneficial. 13274 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1)); 13275 if (!Mask) 13276 return false; 13277 return Mask->getValue().isPowerOf2(); 13278 } 13279 13280 bool AArch64TargetLowering:: 13281 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 13282 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 13283 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 13284 SelectionDAG &DAG) const { 13285 // Does baseline recommend not to perform the fold by default? 13286 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 13287 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG)) 13288 return false; 13289 // Else, if this is a vector shift, prefer 'shl'. 13290 return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL; 13291 } 13292 13293 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG, 13294 SDNode *N) const { 13295 if (DAG.getMachineFunction().getFunction().hasMinSize() && 13296 !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin()) 13297 return false; 13298 return true; 13299 } 13300 13301 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 13302 // Update IsSplitCSR in AArch64unctionInfo. 13303 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>(); 13304 AFI->setIsSplitCSR(true); 13305 } 13306 13307 void AArch64TargetLowering::insertCopiesSplitCSR( 13308 MachineBasicBlock *Entry, 13309 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 13310 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 13311 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 13312 if (!IStart) 13313 return; 13314 13315 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 13316 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 13317 MachineBasicBlock::iterator MBBI = Entry->begin(); 13318 for (const MCPhysReg *I = IStart; *I; ++I) { 13319 const TargetRegisterClass *RC = nullptr; 13320 if (AArch64::GPR64RegClass.contains(*I)) 13321 RC = &AArch64::GPR64RegClass; 13322 else if (AArch64::FPR64RegClass.contains(*I)) 13323 RC = &AArch64::FPR64RegClass; 13324 else 13325 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 13326 13327 Register NewVR = MRI->createVirtualRegister(RC); 13328 // Create copy from CSR to a virtual register. 13329 // FIXME: this currently does not emit CFI pseudo-instructions, it works 13330 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 13331 // nounwind. If we want to generalize this later, we may need to emit 13332 // CFI pseudo-instructions. 13333 assert(Entry->getParent()->getFunction().hasFnAttribute( 13334 Attribute::NoUnwind) && 13335 "Function should be nounwind in insertCopiesSplitCSR!"); 13336 Entry->addLiveIn(*I); 13337 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 13338 .addReg(*I); 13339 13340 // Insert the copy-back instructions right before the terminator. 13341 for (auto *Exit : Exits) 13342 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 13343 TII->get(TargetOpcode::COPY), *I) 13344 .addReg(NewVR); 13345 } 13346 } 13347 13348 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { 13349 // Integer division on AArch64 is expensive. However, when aggressively 13350 // optimizing for code size, we prefer to use a div instruction, as it is 13351 // usually smaller than the alternative sequence. 13352 // The exception to this is vector division. Since AArch64 doesn't have vector 13353 // integer division, leaving the division as-is is a loss even in terms of 13354 // size, because it will have to be scalarized, while the alternative code 13355 // sequence can be performed in vector form. 13356 bool OptSize = 13357 Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize); 13358 return OptSize && !VT.isVector(); 13359 } 13360 13361 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 13362 // We want inc-of-add for scalars and sub-of-not for vectors. 13363 return VT.isScalarInteger(); 13364 } 13365 13366 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const { 13367 return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint(); 13368 } 13369 13370 unsigned 13371 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const { 13372 if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) 13373 return getPointerTy(DL).getSizeInBits(); 13374 13375 return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32; 13376 } 13377 13378 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const { 13379 MF.getFrameInfo().computeMaxCallFrameSize(MF); 13380 TargetLoweringBase::finalizeLowering(MF); 13381 } 13382 13383 // Unlike X86, we let frame lowering assign offsets to all catch objects. 13384 bool AArch64TargetLowering::needsFixedCatchObjects() const { 13385 return false; 13386 } 13387