xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AArch64ISelLowering.h"
14 #include "AArch64CallingConvention.h"
15 #include "AArch64ExpandImm.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/RuntimeLibcalls.h"
43 #include "llvm/CodeGen/SelectionDAG.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/TargetCallingConv.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/IntrinsicsAArch64.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/OperandTraits.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/MC/MCRegisterInfo.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CodeGen.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Target/TargetMachine.h"
80 #include "llvm/Target/TargetOptions.h"
81 #include <algorithm>
82 #include <bitset>
83 #include <cassert>
84 #include <cctype>
85 #include <cstdint>
86 #include <cstdlib>
87 #include <iterator>
88 #include <limits>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 using namespace llvm::PatternMatch;
95 
96 #define DEBUG_TYPE "aarch64-lower"
97 
98 STATISTIC(NumTailCalls, "Number of tail calls");
99 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
100 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
101 
102 static cl::opt<bool>
103 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
104                            cl::desc("Allow AArch64 SLI/SRI formation"),
105                            cl::init(false));
106 
107 // FIXME: The necessary dtprel relocations don't seem to be supported
108 // well in the GNU bfd and gold linkers at the moment. Therefore, by
109 // default, for now, fall back to GeneralDynamic code generation.
110 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
111     "aarch64-elf-ldtls-generation", cl::Hidden,
112     cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
113     cl::init(false));
114 
115 static cl::opt<bool>
116 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
117                          cl::desc("Enable AArch64 logical imm instruction "
118                                   "optimization"),
119                          cl::init(true));
120 
121 /// Value type used for condition codes.
122 static const MVT MVT_CC = MVT::i32;
123 
124 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
125                                              const AArch64Subtarget &STI)
126     : TargetLowering(TM), Subtarget(&STI) {
127   // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
128   // we have to make something up. Arbitrarily, choose ZeroOrOne.
129   setBooleanContents(ZeroOrOneBooleanContent);
130   // When comparing vectors the result sets the different elements in the
131   // vector to all-one or all-zero.
132   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
133 
134   // Set up the register classes.
135   addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
136   addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
137 
138   if (Subtarget->hasFPARMv8()) {
139     addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
140     addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
141     addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
142     addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
143   }
144 
145   if (Subtarget->hasNEON()) {
146     addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
147     addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
148     // Someone set us up the NEON.
149     addDRTypeForNEON(MVT::v2f32);
150     addDRTypeForNEON(MVT::v8i8);
151     addDRTypeForNEON(MVT::v4i16);
152     addDRTypeForNEON(MVT::v2i32);
153     addDRTypeForNEON(MVT::v1i64);
154     addDRTypeForNEON(MVT::v1f64);
155     addDRTypeForNEON(MVT::v4f16);
156 
157     addQRTypeForNEON(MVT::v4f32);
158     addQRTypeForNEON(MVT::v2f64);
159     addQRTypeForNEON(MVT::v16i8);
160     addQRTypeForNEON(MVT::v8i16);
161     addQRTypeForNEON(MVT::v4i32);
162     addQRTypeForNEON(MVT::v2i64);
163     addQRTypeForNEON(MVT::v8f16);
164   }
165 
166   if (Subtarget->hasSVE()) {
167     // Add legal sve predicate types
168     addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass);
169     addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass);
170     addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass);
171     addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass);
172 
173     // Add legal sve data types
174     addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass);
175     addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass);
176     addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass);
177     addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass);
178 
179     addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass);
180     addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass);
181     addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass);
182     addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass);
183     addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass);
184     addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass);
185 
186     for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) {
187       setOperationAction(ISD::SADDSAT, VT, Legal);
188       setOperationAction(ISD::UADDSAT, VT, Legal);
189       setOperationAction(ISD::SSUBSAT, VT, Legal);
190       setOperationAction(ISD::USUBSAT, VT, Legal);
191       setOperationAction(ISD::SMAX, VT, Legal);
192       setOperationAction(ISD::UMAX, VT, Legal);
193       setOperationAction(ISD::SMIN, VT, Legal);
194       setOperationAction(ISD::UMIN, VT, Legal);
195     }
196 
197     for (auto VT :
198          { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8,
199            MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 })
200       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal);
201   }
202 
203   // Compute derived properties from the register classes
204   computeRegisterProperties(Subtarget->getRegisterInfo());
205 
206   // Provide all sorts of operation actions
207   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
208   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
209   setOperationAction(ISD::SETCC, MVT::i32, Custom);
210   setOperationAction(ISD::SETCC, MVT::i64, Custom);
211   setOperationAction(ISD::SETCC, MVT::f16, Custom);
212   setOperationAction(ISD::SETCC, MVT::f32, Custom);
213   setOperationAction(ISD::SETCC, MVT::f64, Custom);
214   setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
215   setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
216   setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
217   setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
218   setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
219   setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
220   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
221   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
222   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
223   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
224   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
225   setOperationAction(ISD::BR_CC, MVT::f16, Custom);
226   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
227   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
228   setOperationAction(ISD::SELECT, MVT::i32, Custom);
229   setOperationAction(ISD::SELECT, MVT::i64, Custom);
230   setOperationAction(ISD::SELECT, MVT::f16, Custom);
231   setOperationAction(ISD::SELECT, MVT::f32, Custom);
232   setOperationAction(ISD::SELECT, MVT::f64, Custom);
233   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
234   setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
235   setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
236   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
237   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
238   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
239   setOperationAction(ISD::JumpTable, MVT::i64, Custom);
240 
241   setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
242   setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
243   setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
244 
245   setOperationAction(ISD::FREM, MVT::f32, Expand);
246   setOperationAction(ISD::FREM, MVT::f64, Expand);
247   setOperationAction(ISD::FREM, MVT::f80, Expand);
248 
249   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
250 
251   // Custom lowering hooks are needed for XOR
252   // to fold it into CSINC/CSINV.
253   setOperationAction(ISD::XOR, MVT::i32, Custom);
254   setOperationAction(ISD::XOR, MVT::i64, Custom);
255 
256   // Virtually no operation on f128 is legal, but LLVM can't expand them when
257   // there's a valid register class, so we need custom operations in most cases.
258   setOperationAction(ISD::FABS, MVT::f128, Expand);
259   setOperationAction(ISD::FADD, MVT::f128, Custom);
260   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
261   setOperationAction(ISD::FCOS, MVT::f128, Expand);
262   setOperationAction(ISD::FDIV, MVT::f128, Custom);
263   setOperationAction(ISD::FMA, MVT::f128, Expand);
264   setOperationAction(ISD::FMUL, MVT::f128, Custom);
265   setOperationAction(ISD::FNEG, MVT::f128, Expand);
266   setOperationAction(ISD::FPOW, MVT::f128, Expand);
267   setOperationAction(ISD::FREM, MVT::f128, Expand);
268   setOperationAction(ISD::FRINT, MVT::f128, Expand);
269   setOperationAction(ISD::FSIN, MVT::f128, Expand);
270   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
271   setOperationAction(ISD::FSQRT, MVT::f128, Expand);
272   setOperationAction(ISD::FSUB, MVT::f128, Custom);
273   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
274   setOperationAction(ISD::SETCC, MVT::f128, Custom);
275   setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
276   setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
277   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
278   setOperationAction(ISD::SELECT, MVT::f128, Custom);
279   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
280   setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
281 
282   // Lowering for many of the conversions is actually specified by the non-f128
283   // type. The LowerXXX function will be trivial when f128 isn't involved.
284   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
285   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
286   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
287   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
288   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
289   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom);
290   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
291   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
292   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
293   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
294   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
295   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom);
296   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
297   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
298   setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
299   setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
300   setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
301   setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom);
302   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
303   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
304   setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
305   setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
306   setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
307   setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom);
308   setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
309   setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
310   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
311   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);
312 
313   // Variable arguments.
314   setOperationAction(ISD::VASTART, MVT::Other, Custom);
315   setOperationAction(ISD::VAARG, MVT::Other, Custom);
316   setOperationAction(ISD::VACOPY, MVT::Other, Custom);
317   setOperationAction(ISD::VAEND, MVT::Other, Expand);
318 
319   // Variable-sized objects.
320   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
321   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
322 
323   if (Subtarget->isTargetWindows())
324     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
325   else
326     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
327 
328   // Constant pool entries
329   setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
330 
331   // BlockAddress
332   setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
333 
334   // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
335   setOperationAction(ISD::ADDC, MVT::i32, Custom);
336   setOperationAction(ISD::ADDE, MVT::i32, Custom);
337   setOperationAction(ISD::SUBC, MVT::i32, Custom);
338   setOperationAction(ISD::SUBE, MVT::i32, Custom);
339   setOperationAction(ISD::ADDC, MVT::i64, Custom);
340   setOperationAction(ISD::ADDE, MVT::i64, Custom);
341   setOperationAction(ISD::SUBC, MVT::i64, Custom);
342   setOperationAction(ISD::SUBE, MVT::i64, Custom);
343 
344   // AArch64 lacks both left-rotate and popcount instructions.
345   setOperationAction(ISD::ROTL, MVT::i32, Expand);
346   setOperationAction(ISD::ROTL, MVT::i64, Expand);
347   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
348     setOperationAction(ISD::ROTL, VT, Expand);
349     setOperationAction(ISD::ROTR, VT, Expand);
350   }
351 
352   // AArch64 doesn't have {U|S}MUL_LOHI.
353   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
354   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
355 
356   setOperationAction(ISD::CTPOP, MVT::i32, Custom);
357   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
358 
359   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
360   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
361   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
362     setOperationAction(ISD::SDIVREM, VT, Expand);
363     setOperationAction(ISD::UDIVREM, VT, Expand);
364   }
365   setOperationAction(ISD::SREM, MVT::i32, Expand);
366   setOperationAction(ISD::SREM, MVT::i64, Expand);
367   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
368   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
369   setOperationAction(ISD::UREM, MVT::i32, Expand);
370   setOperationAction(ISD::UREM, MVT::i64, Expand);
371 
372   // Custom lower Add/Sub/Mul with overflow.
373   setOperationAction(ISD::SADDO, MVT::i32, Custom);
374   setOperationAction(ISD::SADDO, MVT::i64, Custom);
375   setOperationAction(ISD::UADDO, MVT::i32, Custom);
376   setOperationAction(ISD::UADDO, MVT::i64, Custom);
377   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
378   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
379   setOperationAction(ISD::USUBO, MVT::i32, Custom);
380   setOperationAction(ISD::USUBO, MVT::i64, Custom);
381   setOperationAction(ISD::SMULO, MVT::i32, Custom);
382   setOperationAction(ISD::SMULO, MVT::i64, Custom);
383   setOperationAction(ISD::UMULO, MVT::i32, Custom);
384   setOperationAction(ISD::UMULO, MVT::i64, Custom);
385 
386   setOperationAction(ISD::FSIN, MVT::f32, Expand);
387   setOperationAction(ISD::FSIN, MVT::f64, Expand);
388   setOperationAction(ISD::FCOS, MVT::f32, Expand);
389   setOperationAction(ISD::FCOS, MVT::f64, Expand);
390   setOperationAction(ISD::FPOW, MVT::f32, Expand);
391   setOperationAction(ISD::FPOW, MVT::f64, Expand);
392   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
393   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
394   if (Subtarget->hasFullFP16())
395     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
396   else
397     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
398 
399   setOperationAction(ISD::FREM,    MVT::f16,   Promote);
400   setOperationAction(ISD::FREM,    MVT::v4f16, Expand);
401   setOperationAction(ISD::FREM,    MVT::v8f16, Expand);
402   setOperationAction(ISD::FPOW,    MVT::f16,   Promote);
403   setOperationAction(ISD::FPOW,    MVT::v4f16, Expand);
404   setOperationAction(ISD::FPOW,    MVT::v8f16, Expand);
405   setOperationAction(ISD::FPOWI,   MVT::f16,   Promote);
406   setOperationAction(ISD::FPOWI,   MVT::v4f16, Expand);
407   setOperationAction(ISD::FPOWI,   MVT::v8f16, Expand);
408   setOperationAction(ISD::FCOS,    MVT::f16,   Promote);
409   setOperationAction(ISD::FCOS,    MVT::v4f16, Expand);
410   setOperationAction(ISD::FCOS,    MVT::v8f16, Expand);
411   setOperationAction(ISD::FSIN,    MVT::f16,   Promote);
412   setOperationAction(ISD::FSIN,    MVT::v4f16, Expand);
413   setOperationAction(ISD::FSIN,    MVT::v8f16, Expand);
414   setOperationAction(ISD::FSINCOS, MVT::f16,   Promote);
415   setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
416   setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
417   setOperationAction(ISD::FEXP,    MVT::f16,   Promote);
418   setOperationAction(ISD::FEXP,    MVT::v4f16, Expand);
419   setOperationAction(ISD::FEXP,    MVT::v8f16, Expand);
420   setOperationAction(ISD::FEXP2,   MVT::f16,   Promote);
421   setOperationAction(ISD::FEXP2,   MVT::v4f16, Expand);
422   setOperationAction(ISD::FEXP2,   MVT::v8f16, Expand);
423   setOperationAction(ISD::FLOG,    MVT::f16,   Promote);
424   setOperationAction(ISD::FLOG,    MVT::v4f16, Expand);
425   setOperationAction(ISD::FLOG,    MVT::v8f16, Expand);
426   setOperationAction(ISD::FLOG2,   MVT::f16,   Promote);
427   setOperationAction(ISD::FLOG2,   MVT::v4f16, Expand);
428   setOperationAction(ISD::FLOG2,   MVT::v8f16, Expand);
429   setOperationAction(ISD::FLOG10,  MVT::f16,   Promote);
430   setOperationAction(ISD::FLOG10,  MVT::v4f16, Expand);
431   setOperationAction(ISD::FLOG10,  MVT::v8f16, Expand);
432 
433   if (!Subtarget->hasFullFP16()) {
434     setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
435     setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
436     setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
437     setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
438     setOperationAction(ISD::FADD,        MVT::f16,  Promote);
439     setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
440     setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
441     setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
442     setOperationAction(ISD::FMA,         MVT::f16,  Promote);
443     setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
444     setOperationAction(ISD::FABS,        MVT::f16,  Promote);
445     setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
446     setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
447     setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
448     setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
449     setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
450     setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
451     setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
452     setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
453     setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
454     setOperationAction(ISD::FMINIMUM,    MVT::f16,  Promote);
455     setOperationAction(ISD::FMAXIMUM,    MVT::f16,  Promote);
456 
457     // promote v4f16 to v4f32 when that is known to be safe.
458     setOperationAction(ISD::FADD,        MVT::v4f16, Promote);
459     setOperationAction(ISD::FSUB,        MVT::v4f16, Promote);
460     setOperationAction(ISD::FMUL,        MVT::v4f16, Promote);
461     setOperationAction(ISD::FDIV,        MVT::v4f16, Promote);
462     AddPromotedToType(ISD::FADD,         MVT::v4f16, MVT::v4f32);
463     AddPromotedToType(ISD::FSUB,         MVT::v4f16, MVT::v4f32);
464     AddPromotedToType(ISD::FMUL,         MVT::v4f16, MVT::v4f32);
465     AddPromotedToType(ISD::FDIV,         MVT::v4f16, MVT::v4f32);
466 
467     setOperationAction(ISD::FABS,        MVT::v4f16, Expand);
468     setOperationAction(ISD::FNEG,        MVT::v4f16, Expand);
469     setOperationAction(ISD::FROUND,      MVT::v4f16, Expand);
470     setOperationAction(ISD::FMA,         MVT::v4f16, Expand);
471     setOperationAction(ISD::SETCC,       MVT::v4f16, Expand);
472     setOperationAction(ISD::BR_CC,       MVT::v4f16, Expand);
473     setOperationAction(ISD::SELECT,      MVT::v4f16, Expand);
474     setOperationAction(ISD::SELECT_CC,   MVT::v4f16, Expand);
475     setOperationAction(ISD::FTRUNC,      MVT::v4f16, Expand);
476     setOperationAction(ISD::FCOPYSIGN,   MVT::v4f16, Expand);
477     setOperationAction(ISD::FFLOOR,      MVT::v4f16, Expand);
478     setOperationAction(ISD::FCEIL,       MVT::v4f16, Expand);
479     setOperationAction(ISD::FRINT,       MVT::v4f16, Expand);
480     setOperationAction(ISD::FNEARBYINT,  MVT::v4f16, Expand);
481     setOperationAction(ISD::FSQRT,       MVT::v4f16, Expand);
482 
483     setOperationAction(ISD::FABS,        MVT::v8f16, Expand);
484     setOperationAction(ISD::FADD,        MVT::v8f16, Expand);
485     setOperationAction(ISD::FCEIL,       MVT::v8f16, Expand);
486     setOperationAction(ISD::FCOPYSIGN,   MVT::v8f16, Expand);
487     setOperationAction(ISD::FDIV,        MVT::v8f16, Expand);
488     setOperationAction(ISD::FFLOOR,      MVT::v8f16, Expand);
489     setOperationAction(ISD::FMA,         MVT::v8f16, Expand);
490     setOperationAction(ISD::FMUL,        MVT::v8f16, Expand);
491     setOperationAction(ISD::FNEARBYINT,  MVT::v8f16, Expand);
492     setOperationAction(ISD::FNEG,        MVT::v8f16, Expand);
493     setOperationAction(ISD::FROUND,      MVT::v8f16, Expand);
494     setOperationAction(ISD::FRINT,       MVT::v8f16, Expand);
495     setOperationAction(ISD::FSQRT,       MVT::v8f16, Expand);
496     setOperationAction(ISD::FSUB,        MVT::v8f16, Expand);
497     setOperationAction(ISD::FTRUNC,      MVT::v8f16, Expand);
498     setOperationAction(ISD::SETCC,       MVT::v8f16, Expand);
499     setOperationAction(ISD::BR_CC,       MVT::v8f16, Expand);
500     setOperationAction(ISD::SELECT,      MVT::v8f16, Expand);
501     setOperationAction(ISD::SELECT_CC,   MVT::v8f16, Expand);
502     setOperationAction(ISD::FP_EXTEND,   MVT::v8f16, Expand);
503   }
504 
505   // AArch64 has implementations of a lot of rounding-like FP operations.
506   for (MVT Ty : {MVT::f32, MVT::f64}) {
507     setOperationAction(ISD::FFLOOR, Ty, Legal);
508     setOperationAction(ISD::FNEARBYINT, Ty, Legal);
509     setOperationAction(ISD::FCEIL, Ty, Legal);
510     setOperationAction(ISD::FRINT, Ty, Legal);
511     setOperationAction(ISD::FTRUNC, Ty, Legal);
512     setOperationAction(ISD::FROUND, Ty, Legal);
513     setOperationAction(ISD::FMINNUM, Ty, Legal);
514     setOperationAction(ISD::FMAXNUM, Ty, Legal);
515     setOperationAction(ISD::FMINIMUM, Ty, Legal);
516     setOperationAction(ISD::FMAXIMUM, Ty, Legal);
517     setOperationAction(ISD::LROUND, Ty, Legal);
518     setOperationAction(ISD::LLROUND, Ty, Legal);
519     setOperationAction(ISD::LRINT, Ty, Legal);
520     setOperationAction(ISD::LLRINT, Ty, Legal);
521   }
522 
523   if (Subtarget->hasFullFP16()) {
524     setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
525     setOperationAction(ISD::FFLOOR,  MVT::f16, Legal);
526     setOperationAction(ISD::FCEIL,   MVT::f16, Legal);
527     setOperationAction(ISD::FRINT,   MVT::f16, Legal);
528     setOperationAction(ISD::FTRUNC,  MVT::f16, Legal);
529     setOperationAction(ISD::FROUND,  MVT::f16, Legal);
530     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
531     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
532     setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
533     setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
534   }
535 
536   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
537 
538   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
539 
540   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
541   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
542   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
543   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
544   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
545 
546   // 128-bit loads and stores can be done without expanding
547   setOperationAction(ISD::LOAD, MVT::i128, Custom);
548   setOperationAction(ISD::STORE, MVT::i128, Custom);
549 
550   // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
551   // This requires the Performance Monitors extension.
552   if (Subtarget->hasPerfMon())
553     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
554 
555   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
556       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
557     // Issue __sincos_stret if available.
558     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
559     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
560   } else {
561     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
562     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
563   }
564 
565   if (Subtarget->getTargetTriple().isOSMSVCRT()) {
566     // MSVCRT doesn't have powi; fall back to pow
567     setLibcallName(RTLIB::POWI_F32, nullptr);
568     setLibcallName(RTLIB::POWI_F64, nullptr);
569   }
570 
571   // Make floating-point constants legal for the large code model, so they don't
572   // become loads from the constant pool.
573   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
574     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
575     setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
576   }
577 
578   // AArch64 does not have floating-point extending loads, i1 sign-extending
579   // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
580   for (MVT VT : MVT::fp_valuetypes()) {
581     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
582     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
583     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
584     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
585   }
586   for (MVT VT : MVT::integer_valuetypes())
587     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
588 
589   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
590   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
591   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
592   setTruncStoreAction(MVT::f128, MVT::f80, Expand);
593   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
594   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
595   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
596 
597   setOperationAction(ISD::BITCAST, MVT::i16, Custom);
598   setOperationAction(ISD::BITCAST, MVT::f16, Custom);
599 
600   // Indexed loads and stores are supported.
601   for (unsigned im = (unsigned)ISD::PRE_INC;
602        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
603     setIndexedLoadAction(im, MVT::i8, Legal);
604     setIndexedLoadAction(im, MVT::i16, Legal);
605     setIndexedLoadAction(im, MVT::i32, Legal);
606     setIndexedLoadAction(im, MVT::i64, Legal);
607     setIndexedLoadAction(im, MVT::f64, Legal);
608     setIndexedLoadAction(im, MVT::f32, Legal);
609     setIndexedLoadAction(im, MVT::f16, Legal);
610     setIndexedStoreAction(im, MVT::i8, Legal);
611     setIndexedStoreAction(im, MVT::i16, Legal);
612     setIndexedStoreAction(im, MVT::i32, Legal);
613     setIndexedStoreAction(im, MVT::i64, Legal);
614     setIndexedStoreAction(im, MVT::f64, Legal);
615     setIndexedStoreAction(im, MVT::f32, Legal);
616     setIndexedStoreAction(im, MVT::f16, Legal);
617   }
618 
619   // Trap.
620   setOperationAction(ISD::TRAP, MVT::Other, Legal);
621   if (Subtarget->isTargetWindows())
622     setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
623 
624   // We combine OR nodes for bitfield operations.
625   setTargetDAGCombine(ISD::OR);
626   // Try to create BICs for vector ANDs.
627   setTargetDAGCombine(ISD::AND);
628 
629   // Vector add and sub nodes may conceal a high-half opportunity.
630   // Also, try to fold ADD into CSINC/CSINV..
631   setTargetDAGCombine(ISD::ADD);
632   setTargetDAGCombine(ISD::SUB);
633   setTargetDAGCombine(ISD::SRL);
634   setTargetDAGCombine(ISD::XOR);
635   setTargetDAGCombine(ISD::SINT_TO_FP);
636   setTargetDAGCombine(ISD::UINT_TO_FP);
637 
638   setTargetDAGCombine(ISD::FP_TO_SINT);
639   setTargetDAGCombine(ISD::FP_TO_UINT);
640   setTargetDAGCombine(ISD::FDIV);
641 
642   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
643 
644   setTargetDAGCombine(ISD::ANY_EXTEND);
645   setTargetDAGCombine(ISD::ZERO_EXTEND);
646   setTargetDAGCombine(ISD::SIGN_EXTEND);
647   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
648   setTargetDAGCombine(ISD::CONCAT_VECTORS);
649   setTargetDAGCombine(ISD::STORE);
650   if (Subtarget->supportsAddressTopByteIgnored())
651     setTargetDAGCombine(ISD::LOAD);
652 
653   setTargetDAGCombine(ISD::MUL);
654 
655   setTargetDAGCombine(ISD::SELECT);
656   setTargetDAGCombine(ISD::VSELECT);
657 
658   setTargetDAGCombine(ISD::INTRINSIC_VOID);
659   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
660   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
661 
662   setTargetDAGCombine(ISD::GlobalAddress);
663 
664   // In case of strict alignment, avoid an excessive number of byte wide stores.
665   MaxStoresPerMemsetOptSize = 8;
666   MaxStoresPerMemset = Subtarget->requiresStrictAlign()
667                        ? MaxStoresPerMemsetOptSize : 32;
668 
669   MaxGluedStoresPerMemcpy = 4;
670   MaxStoresPerMemcpyOptSize = 4;
671   MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
672                        ? MaxStoresPerMemcpyOptSize : 16;
673 
674   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
675 
676   MaxLoadsPerMemcmpOptSize = 4;
677   MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign()
678                       ? MaxLoadsPerMemcmpOptSize : 8;
679 
680   setStackPointerRegisterToSaveRestore(AArch64::SP);
681 
682   setSchedulingPreference(Sched::Hybrid);
683 
684   EnableExtLdPromotion = true;
685 
686   // Set required alignment.
687   setMinFunctionAlignment(Align(4));
688   // Set preferred alignments.
689   setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment()));
690   setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment()));
691 
692   // Only change the limit for entries in a jump table if specified by
693   // the sub target, but not at the command line.
694   unsigned MaxJT = STI.getMaximumJumpTableSize();
695   if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
696     setMaximumJumpTableSize(MaxJT);
697 
698   setHasExtractBitsInsn(true);
699 
700   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
701 
702   if (Subtarget->hasNEON()) {
703     // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
704     // silliness like this:
705     setOperationAction(ISD::FABS, MVT::v1f64, Expand);
706     setOperationAction(ISD::FADD, MVT::v1f64, Expand);
707     setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
708     setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
709     setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
710     setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
711     setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
712     setOperationAction(ISD::FMA, MVT::v1f64, Expand);
713     setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
714     setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
715     setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
716     setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
717     setOperationAction(ISD::FREM, MVT::v1f64, Expand);
718     setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
719     setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
720     setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
721     setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
722     setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
723     setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
724     setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
725     setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
726     setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
727     setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
728     setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
729     setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
730 
731     setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
732     setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
733     setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
734     setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
735     setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
736 
737     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
738 
739     // AArch64 doesn't have a direct vector ->f32 conversion instructions for
740     // elements smaller than i32, so promote the input to i32 first.
741     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
742     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
743     // i8 vector elements also need promotion to i32 for v8i8
744     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
745     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
746     // Similarly, there is no direct i32 -> f64 vector conversion instruction.
747     setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
748     setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
749     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
750     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
751     // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
752     // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
753     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
754     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
755 
756     if (Subtarget->hasFullFP16()) {
757       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
758       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
759       setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
760       setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
761     } else {
762       // when AArch64 doesn't have fullfp16 support, promote the input
763       // to i32 first.
764       setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
765       setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
766       setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
767       setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
768     }
769 
770     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
771     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
772 
773     // AArch64 doesn't have MUL.2d:
774     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
775     // Custom handling for some quad-vector types to detect MULL.
776     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
777     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
778     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
779 
780     for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
781                     MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
782       // Vector reductions
783       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
784       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
785       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
786       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
787       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
788 
789       // Saturates
790       setOperationAction(ISD::SADDSAT, VT, Legal);
791       setOperationAction(ISD::UADDSAT, VT, Legal);
792       setOperationAction(ISD::SSUBSAT, VT, Legal);
793       setOperationAction(ISD::USUBSAT, VT, Legal);
794     }
795     for (MVT VT : { MVT::v4f16, MVT::v2f32,
796                     MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
797       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
798       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
799     }
800 
801     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
802     setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
803     // Likewise, narrowing and extending vector loads/stores aren't handled
804     // directly.
805     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
806       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
807 
808       if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
809         setOperationAction(ISD::MULHS, VT, Legal);
810         setOperationAction(ISD::MULHU, VT, Legal);
811       } else {
812         setOperationAction(ISD::MULHS, VT, Expand);
813         setOperationAction(ISD::MULHU, VT, Expand);
814       }
815       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
816       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
817 
818       setOperationAction(ISD::BSWAP, VT, Expand);
819       setOperationAction(ISD::CTTZ, VT, Expand);
820 
821       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
822         setTruncStoreAction(VT, InnerVT, Expand);
823         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
824         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
825         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
826       }
827     }
828 
829     // AArch64 has implementations of a lot of rounding-like FP operations.
830     for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
831       setOperationAction(ISD::FFLOOR, Ty, Legal);
832       setOperationAction(ISD::FNEARBYINT, Ty, Legal);
833       setOperationAction(ISD::FCEIL, Ty, Legal);
834       setOperationAction(ISD::FRINT, Ty, Legal);
835       setOperationAction(ISD::FTRUNC, Ty, Legal);
836       setOperationAction(ISD::FROUND, Ty, Legal);
837     }
838 
839     if (Subtarget->hasFullFP16()) {
840       for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
841         setOperationAction(ISD::FFLOOR, Ty, Legal);
842         setOperationAction(ISD::FNEARBYINT, Ty, Legal);
843         setOperationAction(ISD::FCEIL, Ty, Legal);
844         setOperationAction(ISD::FRINT, Ty, Legal);
845         setOperationAction(ISD::FTRUNC, Ty, Legal);
846         setOperationAction(ISD::FROUND, Ty, Legal);
847       }
848     }
849 
850     setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
851   }
852 
853   if (Subtarget->hasSVE()) {
854     // FIXME: Add custom lowering of MLOAD to handle different passthrus (not a
855     // splat of 0 or undef) once vector selects supported in SVE codegen. See
856     // D68877 for more details.
857     for (MVT VT : MVT::integer_scalable_vector_valuetypes()) {
858       if (isTypeLegal(VT))
859         setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
860     }
861     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
862     setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
863   }
864 
865   PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
866 }
867 
868 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
869   assert(VT.isVector() && "VT should be a vector type");
870 
871   if (VT.isFloatingPoint()) {
872     MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
873     setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
874     setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
875   }
876 
877   // Mark vector float intrinsics as expand.
878   if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
879     setOperationAction(ISD::FSIN, VT, Expand);
880     setOperationAction(ISD::FCOS, VT, Expand);
881     setOperationAction(ISD::FPOW, VT, Expand);
882     setOperationAction(ISD::FLOG, VT, Expand);
883     setOperationAction(ISD::FLOG2, VT, Expand);
884     setOperationAction(ISD::FLOG10, VT, Expand);
885     setOperationAction(ISD::FEXP, VT, Expand);
886     setOperationAction(ISD::FEXP2, VT, Expand);
887 
888     // But we do support custom-lowering for FCOPYSIGN.
889     setOperationAction(ISD::FCOPYSIGN, VT, Custom);
890   }
891 
892   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
893   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
894   setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
895   setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
896   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
897   setOperationAction(ISD::SRA, VT, Custom);
898   setOperationAction(ISD::SRL, VT, Custom);
899   setOperationAction(ISD::SHL, VT, Custom);
900   setOperationAction(ISD::OR, VT, Custom);
901   setOperationAction(ISD::SETCC, VT, Custom);
902   setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
903 
904   setOperationAction(ISD::SELECT, VT, Expand);
905   setOperationAction(ISD::SELECT_CC, VT, Expand);
906   setOperationAction(ISD::VSELECT, VT, Expand);
907   for (MVT InnerVT : MVT::all_valuetypes())
908     setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
909 
910   // CNT supports only B element sizes, then use UADDLP to widen.
911   if (VT != MVT::v8i8 && VT != MVT::v16i8)
912     setOperationAction(ISD::CTPOP, VT, Custom);
913 
914   setOperationAction(ISD::UDIV, VT, Expand);
915   setOperationAction(ISD::SDIV, VT, Expand);
916   setOperationAction(ISD::UREM, VT, Expand);
917   setOperationAction(ISD::SREM, VT, Expand);
918   setOperationAction(ISD::FREM, VT, Expand);
919 
920   setOperationAction(ISD::FP_TO_SINT, VT, Custom);
921   setOperationAction(ISD::FP_TO_UINT, VT, Custom);
922 
923   if (!VT.isFloatingPoint())
924     setOperationAction(ISD::ABS, VT, Legal);
925 
926   // [SU][MIN|MAX] are available for all NEON types apart from i64.
927   if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
928     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
929       setOperationAction(Opcode, VT, Legal);
930 
931   // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
932   if (VT.isFloatingPoint() &&
933       (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
934     for (unsigned Opcode :
935          {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
936       setOperationAction(Opcode, VT, Legal);
937 
938   if (Subtarget->isLittleEndian()) {
939     for (unsigned im = (unsigned)ISD::PRE_INC;
940          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
941       setIndexedLoadAction(im, VT, Legal);
942       setIndexedStoreAction(im, VT, Legal);
943     }
944   }
945 }
946 
947 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
948   addRegisterClass(VT, &AArch64::FPR64RegClass);
949   addTypeForNEON(VT, MVT::v2i32);
950 }
951 
952 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
953   addRegisterClass(VT, &AArch64::FPR128RegClass);
954   addTypeForNEON(VT, MVT::v4i32);
955 }
956 
957 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
958                                               EVT VT) const {
959   if (!VT.isVector())
960     return MVT::i32;
961   return VT.changeVectorElementTypeToInteger();
962 }
963 
964 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
965                                const APInt &Demanded,
966                                TargetLowering::TargetLoweringOpt &TLO,
967                                unsigned NewOpc) {
968   uint64_t OldImm = Imm, NewImm, Enc;
969   uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
970 
971   // Return if the immediate is already all zeros, all ones, a bimm32 or a
972   // bimm64.
973   if (Imm == 0 || Imm == Mask ||
974       AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
975     return false;
976 
977   unsigned EltSize = Size;
978   uint64_t DemandedBits = Demanded.getZExtValue();
979 
980   // Clear bits that are not demanded.
981   Imm &= DemandedBits;
982 
983   while (true) {
984     // The goal here is to set the non-demanded bits in a way that minimizes
985     // the number of switching between 0 and 1. In order to achieve this goal,
986     // we set the non-demanded bits to the value of the preceding demanded bits.
987     // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
988     // non-demanded bit), we copy bit0 (1) to the least significant 'x',
989     // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
990     // The final result is 0b11000011.
991     uint64_t NonDemandedBits = ~DemandedBits;
992     uint64_t InvertedImm = ~Imm & DemandedBits;
993     uint64_t RotatedImm =
994         ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
995         NonDemandedBits;
996     uint64_t Sum = RotatedImm + NonDemandedBits;
997     bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
998     uint64_t Ones = (Sum + Carry) & NonDemandedBits;
999     NewImm = (Imm | Ones) & Mask;
1000 
1001     // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
1002     // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
1003     // we halve the element size and continue the search.
1004     if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
1005       break;
1006 
1007     // We cannot shrink the element size any further if it is 2-bits.
1008     if (EltSize == 2)
1009       return false;
1010 
1011     EltSize /= 2;
1012     Mask >>= EltSize;
1013     uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
1014 
1015     // Return if there is mismatch in any of the demanded bits of Imm and Hi.
1016     if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
1017       return false;
1018 
1019     // Merge the upper and lower halves of Imm and DemandedBits.
1020     Imm |= Hi;
1021     DemandedBits |= DemandedBitsHi;
1022   }
1023 
1024   ++NumOptimizedImms;
1025 
1026   // Replicate the element across the register width.
1027   while (EltSize < Size) {
1028     NewImm |= NewImm << EltSize;
1029     EltSize *= 2;
1030   }
1031 
1032   (void)OldImm;
1033   assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
1034          "demanded bits should never be altered");
1035   assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
1036 
1037   // Create the new constant immediate node.
1038   EVT VT = Op.getValueType();
1039   SDLoc DL(Op);
1040   SDValue New;
1041 
1042   // If the new constant immediate is all-zeros or all-ones, let the target
1043   // independent DAG combine optimize this node.
1044   if (NewImm == 0 || NewImm == OrigMask) {
1045     New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
1046                           TLO.DAG.getConstant(NewImm, DL, VT));
1047   // Otherwise, create a machine node so that target independent DAG combine
1048   // doesn't undo this optimization.
1049   } else {
1050     Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
1051     SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
1052     New = SDValue(
1053         TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
1054   }
1055 
1056   return TLO.CombineTo(Op, New);
1057 }
1058 
1059 bool AArch64TargetLowering::targetShrinkDemandedConstant(
1060     SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
1061   // Delay this optimization to as late as possible.
1062   if (!TLO.LegalOps)
1063     return false;
1064 
1065   if (!EnableOptimizeLogicalImm)
1066     return false;
1067 
1068   EVT VT = Op.getValueType();
1069   if (VT.isVector())
1070     return false;
1071 
1072   unsigned Size = VT.getSizeInBits();
1073   assert((Size == 32 || Size == 64) &&
1074          "i32 or i64 is expected after legalization.");
1075 
1076   // Exit early if we demand all bits.
1077   if (Demanded.countPopulation() == Size)
1078     return false;
1079 
1080   unsigned NewOpc;
1081   switch (Op.getOpcode()) {
1082   default:
1083     return false;
1084   case ISD::AND:
1085     NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
1086     break;
1087   case ISD::OR:
1088     NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
1089     break;
1090   case ISD::XOR:
1091     NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
1092     break;
1093   }
1094   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1095   if (!C)
1096     return false;
1097   uint64_t Imm = C->getZExtValue();
1098   return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
1099 }
1100 
1101 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
1102 /// Mask are known to be either zero or one and return them Known.
1103 void AArch64TargetLowering::computeKnownBitsForTargetNode(
1104     const SDValue Op, KnownBits &Known,
1105     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
1106   switch (Op.getOpcode()) {
1107   default:
1108     break;
1109   case AArch64ISD::CSEL: {
1110     KnownBits Known2;
1111     Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1112     Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1113     Known.Zero &= Known2.Zero;
1114     Known.One &= Known2.One;
1115     break;
1116   }
1117   case AArch64ISD::LOADgot:
1118   case AArch64ISD::ADDlow: {
1119     if (!Subtarget->isTargetILP32())
1120       break;
1121     // In ILP32 mode all valid pointers are in the low 4GB of the address-space.
1122     Known.Zero = APInt::getHighBitsSet(64, 32);
1123     break;
1124   }
1125   case ISD::INTRINSIC_W_CHAIN: {
1126     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
1127     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
1128     switch (IntID) {
1129     default: return;
1130     case Intrinsic::aarch64_ldaxr:
1131     case Intrinsic::aarch64_ldxr: {
1132       unsigned BitWidth = Known.getBitWidth();
1133       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
1134       unsigned MemBits = VT.getScalarSizeInBits();
1135       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1136       return;
1137     }
1138     }
1139     break;
1140   }
1141   case ISD::INTRINSIC_WO_CHAIN:
1142   case ISD::INTRINSIC_VOID: {
1143     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1144     switch (IntNo) {
1145     default:
1146       break;
1147     case Intrinsic::aarch64_neon_umaxv:
1148     case Intrinsic::aarch64_neon_uminv: {
1149       // Figure out the datatype of the vector operand. The UMINV instruction
1150       // will zero extend the result, so we can mark as known zero all the
1151       // bits larger than the element datatype. 32-bit or larget doesn't need
1152       // this as those are legal types and will be handled by isel directly.
1153       MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
1154       unsigned BitWidth = Known.getBitWidth();
1155       if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1156         assert(BitWidth >= 8 && "Unexpected width!");
1157         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
1158         Known.Zero |= Mask;
1159       } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1160         assert(BitWidth >= 16 && "Unexpected width!");
1161         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
1162         Known.Zero |= Mask;
1163       }
1164       break;
1165     } break;
1166     }
1167   }
1168   }
1169 }
1170 
1171 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
1172                                                   EVT) const {
1173   return MVT::i64;
1174 }
1175 
1176 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1177     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1178     bool *Fast) const {
1179   if (Subtarget->requiresStrictAlign())
1180     return false;
1181 
1182   if (Fast) {
1183     // Some CPUs are fine with unaligned stores except for 128-bit ones.
1184     *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
1185             // See comments in performSTORECombine() for more details about
1186             // these conditions.
1187 
1188             // Code that uses clang vector extensions can mark that it
1189             // wants unaligned accesses to be treated as fast by
1190             // underspecifying alignment to be 1 or 2.
1191             Align <= 2 ||
1192 
1193             // Disregard v2i64. Memcpy lowering produces those and splitting
1194             // them regresses performance on micro-benchmarks and olden/bh.
1195             VT == MVT::v2i64;
1196   }
1197   return true;
1198 }
1199 
1200 // Same as above but handling LLTs instead.
1201 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1202     LLT Ty, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1203     bool *Fast) const {
1204   if (Subtarget->requiresStrictAlign())
1205     return false;
1206 
1207   if (Fast) {
1208     // Some CPUs are fine with unaligned stores except for 128-bit ones.
1209     *Fast = !Subtarget->isMisaligned128StoreSlow() ||
1210             Ty.getSizeInBytes() != 16 ||
1211             // See comments in performSTORECombine() for more details about
1212             // these conditions.
1213 
1214             // Code that uses clang vector extensions can mark that it
1215             // wants unaligned accesses to be treated as fast by
1216             // underspecifying alignment to be 1 or 2.
1217             Align <= 2 ||
1218 
1219             // Disregard v2i64. Memcpy lowering produces those and splitting
1220             // them regresses performance on micro-benchmarks and olden/bh.
1221             Ty == LLT::vector(2, 64);
1222   }
1223   return true;
1224 }
1225 
1226 FastISel *
1227 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1228                                       const TargetLibraryInfo *libInfo) const {
1229   return AArch64::createFastISel(funcInfo, libInfo);
1230 }
1231 
1232 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
1233   switch ((AArch64ISD::NodeType)Opcode) {
1234   case AArch64ISD::FIRST_NUMBER:      break;
1235   case AArch64ISD::CALL:              return "AArch64ISD::CALL";
1236   case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
1237   case AArch64ISD::ADR:               return "AArch64ISD::ADR";
1238   case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
1239   case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
1240   case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
1241   case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
1242   case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
1243   case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
1244   case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
1245   case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
1246   case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
1247   case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
1248   case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
1249   case AArch64ISD::ADC:               return "AArch64ISD::ADC";
1250   case AArch64ISD::SBC:               return "AArch64ISD::SBC";
1251   case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
1252   case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
1253   case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
1254   case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
1255   case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
1256   case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
1257   case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
1258   case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
1259   case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
1260   case AArch64ISD::STRICT_FCMP:       return "AArch64ISD::STRICT_FCMP";
1261   case AArch64ISD::STRICT_FCMPE:      return "AArch64ISD::STRICT_FCMPE";
1262   case AArch64ISD::DUP:               return "AArch64ISD::DUP";
1263   case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
1264   case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
1265   case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
1266   case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
1267   case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
1268   case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
1269   case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
1270   case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
1271   case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
1272   case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
1273   case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
1274   case AArch64ISD::BICi:              return "AArch64ISD::BICi";
1275   case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
1276   case AArch64ISD::BSL:               return "AArch64ISD::BSL";
1277   case AArch64ISD::NEG:               return "AArch64ISD::NEG";
1278   case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
1279   case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
1280   case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
1281   case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
1282   case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
1283   case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
1284   case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
1285   case AArch64ISD::REV16:             return "AArch64ISD::REV16";
1286   case AArch64ISD::REV32:             return "AArch64ISD::REV32";
1287   case AArch64ISD::REV64:             return "AArch64ISD::REV64";
1288   case AArch64ISD::EXT:               return "AArch64ISD::EXT";
1289   case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
1290   case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
1291   case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
1292   case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
1293   case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
1294   case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
1295   case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
1296   case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
1297   case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
1298   case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
1299   case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
1300   case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
1301   case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
1302   case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
1303   case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
1304   case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
1305   case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
1306   case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
1307   case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
1308   case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
1309   case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
1310   case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
1311   case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
1312   case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
1313   case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
1314   case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
1315   case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
1316   case AArch64ISD::SMAXV_PRED:        return "AArch64ISD::SMAXV_PRED";
1317   case AArch64ISD::UMAXV_PRED:        return "AArch64ISD::UMAXV_PRED";
1318   case AArch64ISD::SMINV_PRED:        return "AArch64ISD::SMINV_PRED";
1319   case AArch64ISD::UMINV_PRED:        return "AArch64ISD::UMINV_PRED";
1320   case AArch64ISD::ORV_PRED:          return "AArch64ISD::ORV_PRED";
1321   case AArch64ISD::EORV_PRED:         return "AArch64ISD::EORV_PRED";
1322   case AArch64ISD::ANDV_PRED:         return "AArch64ISD::ANDV_PRED";
1323   case AArch64ISD::CLASTA_N:          return "AArch64ISD::CLASTA_N";
1324   case AArch64ISD::CLASTB_N:          return "AArch64ISD::CLASTB_N";
1325   case AArch64ISD::LASTA:             return "AArch64ISD::LASTA";
1326   case AArch64ISD::LASTB:             return "AArch64ISD::LASTB";
1327   case AArch64ISD::REV:               return "AArch64ISD::REV";
1328   case AArch64ISD::TBL:               return "AArch64ISD::TBL";
1329   case AArch64ISD::NOT:               return "AArch64ISD::NOT";
1330   case AArch64ISD::BIT:               return "AArch64ISD::BIT";
1331   case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
1332   case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
1333   case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
1334   case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
1335   case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
1336   case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
1337   case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
1338   case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
1339   case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
1340   case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
1341   case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
1342   case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
1343   case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
1344   case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
1345   case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
1346   case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
1347   case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
1348   case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
1349   case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
1350   case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
1351   case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
1352   case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
1353   case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
1354   case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
1355   case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
1356   case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
1357   case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
1358   case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
1359   case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
1360   case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
1361   case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
1362   case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
1363   case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
1364   case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
1365   case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
1366   case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
1367   case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
1368   case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
1369   case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
1370   case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
1371   case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
1372   case AArch64ISD::FRECPS:            return "AArch64ISD::FRECPS";
1373   case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
1374   case AArch64ISD::FRSQRTS:           return "AArch64ISD::FRSQRTS";
1375   case AArch64ISD::STG:               return "AArch64ISD::STG";
1376   case AArch64ISD::STZG:              return "AArch64ISD::STZG";
1377   case AArch64ISD::ST2G:              return "AArch64ISD::ST2G";
1378   case AArch64ISD::STZ2G:             return "AArch64ISD::STZ2G";
1379   case AArch64ISD::SUNPKHI:           return "AArch64ISD::SUNPKHI";
1380   case AArch64ISD::SUNPKLO:           return "AArch64ISD::SUNPKLO";
1381   case AArch64ISD::UUNPKHI:           return "AArch64ISD::UUNPKHI";
1382   case AArch64ISD::UUNPKLO:           return "AArch64ISD::UUNPKLO";
1383   case AArch64ISD::INSR:              return "AArch64ISD::INSR";
1384   case AArch64ISD::PTEST:             return "AArch64ISD::PTEST";
1385   case AArch64ISD::PTRUE:             return "AArch64ISD::PTRUE";
1386   case AArch64ISD::GLD1:              return "AArch64ISD::GLD1";
1387   case AArch64ISD::GLD1_SCALED:       return "AArch64ISD::GLD1_SCALED";
1388   case AArch64ISD::GLD1_SXTW:         return "AArch64ISD::GLD1_SXTW";
1389   case AArch64ISD::GLD1_UXTW:         return "AArch64ISD::GLD1_UXTW";
1390   case AArch64ISD::GLD1_SXTW_SCALED:  return "AArch64ISD::GLD1_SXTW_SCALED";
1391   case AArch64ISD::GLD1_UXTW_SCALED:  return "AArch64ISD::GLD1_UXTW_SCALED";
1392   case AArch64ISD::GLD1_IMM:          return "AArch64ISD::GLD1_IMM";
1393   case AArch64ISD::GLD1S:             return "AArch64ISD::GLD1S";
1394   case AArch64ISD::GLD1S_SCALED:      return "AArch64ISD::GLD1S_SCALED";
1395   case AArch64ISD::GLD1S_SXTW:        return "AArch64ISD::GLD1S_SXTW";
1396   case AArch64ISD::GLD1S_UXTW:        return "AArch64ISD::GLD1S_UXTW";
1397   case AArch64ISD::GLD1S_SXTW_SCALED: return "AArch64ISD::GLD1S_SXTW_SCALED";
1398   case AArch64ISD::GLD1S_UXTW_SCALED: return "AArch64ISD::GLD1S_UXTW_SCALED";
1399   case AArch64ISD::GLD1S_IMM:         return "AArch64ISD::GLD1S_IMM";
1400   case AArch64ISD::SST1:              return "AArch64ISD::SST1";
1401   case AArch64ISD::SST1_SCALED:       return "AArch64ISD::SST1_SCALED";
1402   case AArch64ISD::SST1_SXTW:         return "AArch64ISD::SST1_SXTW";
1403   case AArch64ISD::SST1_UXTW:         return "AArch64ISD::SST1_UXTW";
1404   case AArch64ISD::SST1_SXTW_SCALED:  return "AArch64ISD::SST1_SXTW_SCALED";
1405   case AArch64ISD::SST1_UXTW_SCALED:  return "AArch64ISD::SST1_UXTW_SCALED";
1406   case AArch64ISD::SST1_IMM:          return "AArch64ISD::SST1_IMM";
1407   case AArch64ISD::LDP:               return "AArch64ISD::LDP";
1408   case AArch64ISD::STP:               return "AArch64ISD::STP";
1409   }
1410   return nullptr;
1411 }
1412 
1413 MachineBasicBlock *
1414 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
1415                                     MachineBasicBlock *MBB) const {
1416   // We materialise the F128CSEL pseudo-instruction as some control flow and a
1417   // phi node:
1418 
1419   // OrigBB:
1420   //     [... previous instrs leading to comparison ...]
1421   //     b.ne TrueBB
1422   //     b EndBB
1423   // TrueBB:
1424   //     ; Fallthrough
1425   // EndBB:
1426   //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1427 
1428   MachineFunction *MF = MBB->getParent();
1429   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1430   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1431   DebugLoc DL = MI.getDebugLoc();
1432   MachineFunction::iterator It = ++MBB->getIterator();
1433 
1434   Register DestReg = MI.getOperand(0).getReg();
1435   Register IfTrueReg = MI.getOperand(1).getReg();
1436   Register IfFalseReg = MI.getOperand(2).getReg();
1437   unsigned CondCode = MI.getOperand(3).getImm();
1438   bool NZCVKilled = MI.getOperand(4).isKill();
1439 
1440   MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
1441   MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
1442   MF->insert(It, TrueBB);
1443   MF->insert(It, EndBB);
1444 
1445   // Transfer rest of current basic-block to EndBB
1446   EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
1447                 MBB->end());
1448   EndBB->transferSuccessorsAndUpdatePHIs(MBB);
1449 
1450   BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1451   BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1452   MBB->addSuccessor(TrueBB);
1453   MBB->addSuccessor(EndBB);
1454 
1455   // TrueBB falls through to the end.
1456   TrueBB->addSuccessor(EndBB);
1457 
1458   if (!NZCVKilled) {
1459     TrueBB->addLiveIn(AArch64::NZCV);
1460     EndBB->addLiveIn(AArch64::NZCV);
1461   }
1462 
1463   BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1464       .addReg(IfTrueReg)
1465       .addMBB(TrueBB)
1466       .addReg(IfFalseReg)
1467       .addMBB(MBB);
1468 
1469   MI.eraseFromParent();
1470   return EndBB;
1471 }
1472 
1473 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
1474        MachineInstr &MI, MachineBasicBlock *BB) const {
1475   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
1476              BB->getParent()->getFunction().getPersonalityFn())) &&
1477          "SEH does not use catchret!");
1478   return BB;
1479 }
1480 
1481 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad(
1482      MachineInstr &MI, MachineBasicBlock *BB) const {
1483   MI.eraseFromParent();
1484   return BB;
1485 }
1486 
1487 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1488     MachineInstr &MI, MachineBasicBlock *BB) const {
1489   switch (MI.getOpcode()) {
1490   default:
1491 #ifndef NDEBUG
1492     MI.dump();
1493 #endif
1494     llvm_unreachable("Unexpected instruction for custom inserter!");
1495 
1496   case AArch64::F128CSEL:
1497     return EmitF128CSEL(MI, BB);
1498 
1499   case TargetOpcode::STACKMAP:
1500   case TargetOpcode::PATCHPOINT:
1501     return emitPatchPoint(MI, BB);
1502 
1503   case AArch64::CATCHRET:
1504     return EmitLoweredCatchRet(MI, BB);
1505   case AArch64::CATCHPAD:
1506     return EmitLoweredCatchPad(MI, BB);
1507   }
1508 }
1509 
1510 //===----------------------------------------------------------------------===//
1511 // AArch64 Lowering private implementation.
1512 //===----------------------------------------------------------------------===//
1513 
1514 //===----------------------------------------------------------------------===//
1515 // Lowering Code
1516 //===----------------------------------------------------------------------===//
1517 
1518 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1519 /// CC
1520 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1521   switch (CC) {
1522   default:
1523     llvm_unreachable("Unknown condition code!");
1524   case ISD::SETNE:
1525     return AArch64CC::NE;
1526   case ISD::SETEQ:
1527     return AArch64CC::EQ;
1528   case ISD::SETGT:
1529     return AArch64CC::GT;
1530   case ISD::SETGE:
1531     return AArch64CC::GE;
1532   case ISD::SETLT:
1533     return AArch64CC::LT;
1534   case ISD::SETLE:
1535     return AArch64CC::LE;
1536   case ISD::SETUGT:
1537     return AArch64CC::HI;
1538   case ISD::SETUGE:
1539     return AArch64CC::HS;
1540   case ISD::SETULT:
1541     return AArch64CC::LO;
1542   case ISD::SETULE:
1543     return AArch64CC::LS;
1544   }
1545 }
1546 
1547 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1548 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1549                                   AArch64CC::CondCode &CondCode,
1550                                   AArch64CC::CondCode &CondCode2) {
1551   CondCode2 = AArch64CC::AL;
1552   switch (CC) {
1553   default:
1554     llvm_unreachable("Unknown FP condition!");
1555   case ISD::SETEQ:
1556   case ISD::SETOEQ:
1557     CondCode = AArch64CC::EQ;
1558     break;
1559   case ISD::SETGT:
1560   case ISD::SETOGT:
1561     CondCode = AArch64CC::GT;
1562     break;
1563   case ISD::SETGE:
1564   case ISD::SETOGE:
1565     CondCode = AArch64CC::GE;
1566     break;
1567   case ISD::SETOLT:
1568     CondCode = AArch64CC::MI;
1569     break;
1570   case ISD::SETOLE:
1571     CondCode = AArch64CC::LS;
1572     break;
1573   case ISD::SETONE:
1574     CondCode = AArch64CC::MI;
1575     CondCode2 = AArch64CC::GT;
1576     break;
1577   case ISD::SETO:
1578     CondCode = AArch64CC::VC;
1579     break;
1580   case ISD::SETUO:
1581     CondCode = AArch64CC::VS;
1582     break;
1583   case ISD::SETUEQ:
1584     CondCode = AArch64CC::EQ;
1585     CondCode2 = AArch64CC::VS;
1586     break;
1587   case ISD::SETUGT:
1588     CondCode = AArch64CC::HI;
1589     break;
1590   case ISD::SETUGE:
1591     CondCode = AArch64CC::PL;
1592     break;
1593   case ISD::SETLT:
1594   case ISD::SETULT:
1595     CondCode = AArch64CC::LT;
1596     break;
1597   case ISD::SETLE:
1598   case ISD::SETULE:
1599     CondCode = AArch64CC::LE;
1600     break;
1601   case ISD::SETNE:
1602   case ISD::SETUNE:
1603     CondCode = AArch64CC::NE;
1604     break;
1605   }
1606 }
1607 
1608 /// Convert a DAG fp condition code to an AArch64 CC.
1609 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1610 /// should be AND'ed instead of OR'ed.
1611 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1612                                      AArch64CC::CondCode &CondCode,
1613                                      AArch64CC::CondCode &CondCode2) {
1614   CondCode2 = AArch64CC::AL;
1615   switch (CC) {
1616   default:
1617     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1618     assert(CondCode2 == AArch64CC::AL);
1619     break;
1620   case ISD::SETONE:
1621     // (a one b)
1622     // == ((a olt b) || (a ogt b))
1623     // == ((a ord b) && (a une b))
1624     CondCode = AArch64CC::VC;
1625     CondCode2 = AArch64CC::NE;
1626     break;
1627   case ISD::SETUEQ:
1628     // (a ueq b)
1629     // == ((a uno b) || (a oeq b))
1630     // == ((a ule b) && (a uge b))
1631     CondCode = AArch64CC::PL;
1632     CondCode2 = AArch64CC::LE;
1633     break;
1634   }
1635 }
1636 
1637 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1638 /// CC usable with the vector instructions. Fewer operations are available
1639 /// without a real NZCV register, so we have to use less efficient combinations
1640 /// to get the same effect.
1641 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1642                                         AArch64CC::CondCode &CondCode,
1643                                         AArch64CC::CondCode &CondCode2,
1644                                         bool &Invert) {
1645   Invert = false;
1646   switch (CC) {
1647   default:
1648     // Mostly the scalar mappings work fine.
1649     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1650     break;
1651   case ISD::SETUO:
1652     Invert = true;
1653     LLVM_FALLTHROUGH;
1654   case ISD::SETO:
1655     CondCode = AArch64CC::MI;
1656     CondCode2 = AArch64CC::GE;
1657     break;
1658   case ISD::SETUEQ:
1659   case ISD::SETULT:
1660   case ISD::SETULE:
1661   case ISD::SETUGT:
1662   case ISD::SETUGE:
1663     // All of the compare-mask comparisons are ordered, but we can switch
1664     // between the two by a double inversion. E.g. ULE == !OGT.
1665     Invert = true;
1666     changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32),
1667                           CondCode, CondCode2);
1668     break;
1669   }
1670 }
1671 
1672 static bool isLegalArithImmed(uint64_t C) {
1673   // Matches AArch64DAGToDAGISel::SelectArithImmed().
1674   bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1675   LLVM_DEBUG(dbgs() << "Is imm " << C
1676                     << " legal: " << (IsLegal ? "yes\n" : "no\n"));
1677   return IsLegal;
1678 }
1679 
1680 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
1681 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
1682 // can be set differently by this operation. It comes down to whether
1683 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1684 // everything is fine. If not then the optimization is wrong. Thus general
1685 // comparisons are only valid if op2 != 0.
1686 //
1687 // So, finally, the only LLVM-native comparisons that don't mention C and V
1688 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1689 // the absence of information about op2.
1690 static bool isCMN(SDValue Op, ISD::CondCode CC) {
1691   return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
1692          (CC == ISD::SETEQ || CC == ISD::SETNE);
1693 }
1694 
1695 static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl,
1696                                       SelectionDAG &DAG, SDValue Chain,
1697                                       bool IsSignaling) {
1698   EVT VT = LHS.getValueType();
1699   assert(VT != MVT::f128);
1700   assert(VT != MVT::f16 && "Lowering of strict fp16 not yet implemented");
1701   unsigned Opcode =
1702       IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP;
1703   return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS});
1704 }
1705 
1706 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1707                               const SDLoc &dl, SelectionDAG &DAG) {
1708   EVT VT = LHS.getValueType();
1709   const bool FullFP16 =
1710     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1711 
1712   if (VT.isFloatingPoint()) {
1713     assert(VT != MVT::f128);
1714     if (VT == MVT::f16 && !FullFP16) {
1715       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1716       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1717       VT = MVT::f32;
1718     }
1719     return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1720   }
1721 
1722   // The CMP instruction is just an alias for SUBS, and representing it as
1723   // SUBS means that it's possible to get CSE with subtract operations.
1724   // A later phase can perform the optimization of setting the destination
1725   // register to WZR/XZR if it ends up being unused.
1726   unsigned Opcode = AArch64ISD::SUBS;
1727 
1728   if (isCMN(RHS, CC)) {
1729     // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
1730     Opcode = AArch64ISD::ADDS;
1731     RHS = RHS.getOperand(1);
1732   } else if (isCMN(LHS, CC)) {
1733     // As we are looking for EQ/NE compares, the operands can be commuted ; can
1734     // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
1735     Opcode = AArch64ISD::ADDS;
1736     LHS = LHS.getOperand(1);
1737   } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1738              !isUnsignedIntSetCC(CC)) {
1739     // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1740     // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1741     // of the signed comparisons.
1742     Opcode = AArch64ISD::ANDS;
1743     RHS = LHS.getOperand(1);
1744     LHS = LHS.getOperand(0);
1745   }
1746 
1747   return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1748       .getValue(1);
1749 }
1750 
1751 /// \defgroup AArch64CCMP CMP;CCMP matching
1752 ///
1753 /// These functions deal with the formation of CMP;CCMP;... sequences.
1754 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1755 /// a comparison. They set the NZCV flags to a predefined value if their
1756 /// predicate is false. This allows to express arbitrary conjunctions, for
1757 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1758 /// expressed as:
1759 ///   cmp A
1760 ///   ccmp B, inv(CB), CA
1761 ///   check for CB flags
1762 ///
1763 /// This naturally lets us implement chains of AND operations with SETCC
1764 /// operands. And we can even implement some other situations by transforming
1765 /// them:
1766 ///   - We can implement (NEG SETCC) i.e. negating a single comparison by
1767 ///     negating the flags used in a CCMP/FCCMP operations.
1768 ///   - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1769 ///     by negating the flags we test for afterwards. i.e.
1770 ///     NEG (CMP CCMP CCCMP ...) can be implemented.
1771 ///   - Note that we can only ever negate all previously processed results.
1772 ///     What we can not implement by flipping the flags to test is a negation
1773 ///     of two sub-trees (because the negation affects all sub-trees emitted so
1774 ///     far, so the 2nd sub-tree we emit would also affect the first).
1775 /// With those tools we can implement some OR operations:
1776 ///   - (OR (SETCC A) (SETCC B)) can be implemented via:
1777 ///     NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1778 ///   - After transforming OR to NEG/AND combinations we may be able to use NEG
1779 ///     elimination rules from earlier to implement the whole thing as a
1780 ///     CCMP/FCCMP chain.
1781 ///
1782 /// As complete example:
1783 ///     or (or (setCA (cmp A)) (setCB (cmp B)))
1784 ///        (and (setCC (cmp C)) (setCD (cmp D)))"
1785 /// can be reassociated to:
1786 ///     or (and (setCC (cmp C)) setCD (cmp D))
1787 //         (or (setCA (cmp A)) (setCB (cmp B)))
1788 /// can be transformed to:
1789 ///     not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1790 ///              (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1791 /// which can be implemented as:
1792 ///   cmp C
1793 ///   ccmp D, inv(CD), CC
1794 ///   ccmp A, CA, inv(CD)
1795 ///   ccmp B, CB, inv(CA)
1796 ///   check for CB flags
1797 ///
1798 /// A counterexample is "or (and A B) (and C D)" which translates to
1799 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1800 /// can only implement 1 of the inner (not) operations, but not both!
1801 /// @{
1802 
1803 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
1804 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1805                                          ISD::CondCode CC, SDValue CCOp,
1806                                          AArch64CC::CondCode Predicate,
1807                                          AArch64CC::CondCode OutCC,
1808                                          const SDLoc &DL, SelectionDAG &DAG) {
1809   unsigned Opcode = 0;
1810   const bool FullFP16 =
1811     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1812 
1813   if (LHS.getValueType().isFloatingPoint()) {
1814     assert(LHS.getValueType() != MVT::f128);
1815     if (LHS.getValueType() == MVT::f16 && !FullFP16) {
1816       LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1817       RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1818     }
1819     Opcode = AArch64ISD::FCCMP;
1820   } else if (RHS.getOpcode() == ISD::SUB) {
1821     SDValue SubOp0 = RHS.getOperand(0);
1822     if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1823       // See emitComparison() on why we can only do this for SETEQ and SETNE.
1824       Opcode = AArch64ISD::CCMN;
1825       RHS = RHS.getOperand(1);
1826     }
1827   }
1828   if (Opcode == 0)
1829     Opcode = AArch64ISD::CCMP;
1830 
1831   SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1832   AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1833   unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1834   SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1835   return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1836 }
1837 
1838 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1839 /// expressed as a conjunction. See \ref AArch64CCMP.
1840 /// \param CanNegate    Set to true if we can negate the whole sub-tree just by
1841 ///                     changing the conditions on the SETCC tests.
1842 ///                     (this means we can call emitConjunctionRec() with
1843 ///                      Negate==true on this sub-tree)
1844 /// \param MustBeFirst  Set to true if this subtree needs to be negated and we
1845 ///                     cannot do the negation naturally. We are required to
1846 ///                     emit the subtree first in this case.
1847 /// \param WillNegate   Is true if are called when the result of this
1848 ///                     subexpression must be negated. This happens when the
1849 ///                     outer expression is an OR. We can use this fact to know
1850 ///                     that we have a double negation (or (or ...) ...) that
1851 ///                     can be implemented for free.
1852 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
1853                                bool &MustBeFirst, bool WillNegate,
1854                                unsigned Depth = 0) {
1855   if (!Val.hasOneUse())
1856     return false;
1857   unsigned Opcode = Val->getOpcode();
1858   if (Opcode == ISD::SETCC) {
1859     if (Val->getOperand(0).getValueType() == MVT::f128)
1860       return false;
1861     CanNegate = true;
1862     MustBeFirst = false;
1863     return true;
1864   }
1865   // Protect against exponential runtime and stack overflow.
1866   if (Depth > 6)
1867     return false;
1868   if (Opcode == ISD::AND || Opcode == ISD::OR) {
1869     bool IsOR = Opcode == ISD::OR;
1870     SDValue O0 = Val->getOperand(0);
1871     SDValue O1 = Val->getOperand(1);
1872     bool CanNegateL;
1873     bool MustBeFirstL;
1874     if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
1875       return false;
1876     bool CanNegateR;
1877     bool MustBeFirstR;
1878     if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
1879       return false;
1880 
1881     if (MustBeFirstL && MustBeFirstR)
1882       return false;
1883 
1884     if (IsOR) {
1885       // For an OR expression we need to be able to naturally negate at least
1886       // one side or we cannot do the transformation at all.
1887       if (!CanNegateL && !CanNegateR)
1888         return false;
1889       // If we the result of the OR will be negated and we can naturally negate
1890       // the leafs, then this sub-tree as a whole negates naturally.
1891       CanNegate = WillNegate && CanNegateL && CanNegateR;
1892       // If we cannot naturally negate the whole sub-tree, then this must be
1893       // emitted first.
1894       MustBeFirst = !CanNegate;
1895     } else {
1896       assert(Opcode == ISD::AND && "Must be OR or AND");
1897       // We cannot naturally negate an AND operation.
1898       CanNegate = false;
1899       MustBeFirst = MustBeFirstL || MustBeFirstR;
1900     }
1901     return true;
1902   }
1903   return false;
1904 }
1905 
1906 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1907 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1908 /// Tries to transform the given i1 producing node @p Val to a series compare
1909 /// and conditional compare operations. @returns an NZCV flags producing node
1910 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1911 /// transformation was not possible.
1912 /// \p Negate is true if we want this sub-tree being negated just by changing
1913 /// SETCC conditions.
1914 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
1915     AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1916     AArch64CC::CondCode Predicate) {
1917   // We're at a tree leaf, produce a conditional comparison operation.
1918   unsigned Opcode = Val->getOpcode();
1919   if (Opcode == ISD::SETCC) {
1920     SDValue LHS = Val->getOperand(0);
1921     SDValue RHS = Val->getOperand(1);
1922     ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1923     bool isInteger = LHS.getValueType().isInteger();
1924     if (Negate)
1925       CC = getSetCCInverse(CC, LHS.getValueType());
1926     SDLoc DL(Val);
1927     // Determine OutCC and handle FP special case.
1928     if (isInteger) {
1929       OutCC = changeIntCCToAArch64CC(CC);
1930     } else {
1931       assert(LHS.getValueType().isFloatingPoint());
1932       AArch64CC::CondCode ExtraCC;
1933       changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1934       // Some floating point conditions can't be tested with a single condition
1935       // code. Construct an additional comparison in this case.
1936       if (ExtraCC != AArch64CC::AL) {
1937         SDValue ExtraCmp;
1938         if (!CCOp.getNode())
1939           ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1940         else
1941           ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1942                                                ExtraCC, DL, DAG);
1943         CCOp = ExtraCmp;
1944         Predicate = ExtraCC;
1945       }
1946     }
1947 
1948     // Produce a normal comparison if we are first in the chain
1949     if (!CCOp)
1950       return emitComparison(LHS, RHS, CC, DL, DAG);
1951     // Otherwise produce a ccmp.
1952     return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1953                                      DAG);
1954   }
1955   assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
1956 
1957   bool IsOR = Opcode == ISD::OR;
1958 
1959   SDValue LHS = Val->getOperand(0);
1960   bool CanNegateL;
1961   bool MustBeFirstL;
1962   bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
1963   assert(ValidL && "Valid conjunction/disjunction tree");
1964   (void)ValidL;
1965 
1966   SDValue RHS = Val->getOperand(1);
1967   bool CanNegateR;
1968   bool MustBeFirstR;
1969   bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
1970   assert(ValidR && "Valid conjunction/disjunction tree");
1971   (void)ValidR;
1972 
1973   // Swap sub-tree that must come first to the right side.
1974   if (MustBeFirstL) {
1975     assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
1976     std::swap(LHS, RHS);
1977     std::swap(CanNegateL, CanNegateR);
1978     std::swap(MustBeFirstL, MustBeFirstR);
1979   }
1980 
1981   bool NegateR;
1982   bool NegateAfterR;
1983   bool NegateL;
1984   bool NegateAfterAll;
1985   if (Opcode == ISD::OR) {
1986     // Swap the sub-tree that we can negate naturally to the left.
1987     if (!CanNegateL) {
1988       assert(CanNegateR && "at least one side must be negatable");
1989       assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
1990       assert(!Negate);
1991       std::swap(LHS, RHS);
1992       NegateR = false;
1993       NegateAfterR = true;
1994     } else {
1995       // Negate the left sub-tree if possible, otherwise negate the result.
1996       NegateR = CanNegateR;
1997       NegateAfterR = !CanNegateR;
1998     }
1999     NegateL = true;
2000     NegateAfterAll = !Negate;
2001   } else {
2002     assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
2003     assert(!Negate && "Valid conjunction/disjunction tree");
2004 
2005     NegateL = false;
2006     NegateR = false;
2007     NegateAfterR = false;
2008     NegateAfterAll = false;
2009   }
2010 
2011   // Emit sub-trees.
2012   AArch64CC::CondCode RHSCC;
2013   SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
2014   if (NegateAfterR)
2015     RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
2016   SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
2017   if (NegateAfterAll)
2018     OutCC = AArch64CC::getInvertedCondCode(OutCC);
2019   return CmpL;
2020 }
2021 
2022 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
2023 /// In some cases this is even possible with OR operations in the expression.
2024 /// See \ref AArch64CCMP.
2025 /// \see emitConjunctionRec().
2026 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
2027                                AArch64CC::CondCode &OutCC) {
2028   bool DummyCanNegate;
2029   bool DummyMustBeFirst;
2030   if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
2031     return SDValue();
2032 
2033   return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
2034 }
2035 
2036 /// @}
2037 
2038 /// Returns how profitable it is to fold a comparison's operand's shift and/or
2039 /// extension operations.
2040 static unsigned getCmpOperandFoldingProfit(SDValue Op) {
2041   auto isSupportedExtend = [&](SDValue V) {
2042     if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
2043       return true;
2044 
2045     if (V.getOpcode() == ISD::AND)
2046       if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2047         uint64_t Mask = MaskCst->getZExtValue();
2048         return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
2049       }
2050 
2051     return false;
2052   };
2053 
2054   if (!Op.hasOneUse())
2055     return 0;
2056 
2057   if (isSupportedExtend(Op))
2058     return 1;
2059 
2060   unsigned Opc = Op.getOpcode();
2061   if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
2062     if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2063       uint64_t Shift = ShiftCst->getZExtValue();
2064       if (isSupportedExtend(Op.getOperand(0)))
2065         return (Shift <= 4) ? 2 : 1;
2066       EVT VT = Op.getValueType();
2067       if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
2068         return 1;
2069     }
2070 
2071   return 0;
2072 }
2073 
2074 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2075                              SDValue &AArch64cc, SelectionDAG &DAG,
2076                              const SDLoc &dl) {
2077   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2078     EVT VT = RHS.getValueType();
2079     uint64_t C = RHSC->getZExtValue();
2080     if (!isLegalArithImmed(C)) {
2081       // Constant does not fit, try adjusting it by one?
2082       switch (CC) {
2083       default:
2084         break;
2085       case ISD::SETLT:
2086       case ISD::SETGE:
2087         if ((VT == MVT::i32 && C != 0x80000000 &&
2088              isLegalArithImmed((uint32_t)(C - 1))) ||
2089             (VT == MVT::i64 && C != 0x80000000ULL &&
2090              isLegalArithImmed(C - 1ULL))) {
2091           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2092           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
2093           RHS = DAG.getConstant(C, dl, VT);
2094         }
2095         break;
2096       case ISD::SETULT:
2097       case ISD::SETUGE:
2098         if ((VT == MVT::i32 && C != 0 &&
2099              isLegalArithImmed((uint32_t)(C - 1))) ||
2100             (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
2101           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2102           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
2103           RHS = DAG.getConstant(C, dl, VT);
2104         }
2105         break;
2106       case ISD::SETLE:
2107       case ISD::SETGT:
2108         if ((VT == MVT::i32 && C != INT32_MAX &&
2109              isLegalArithImmed((uint32_t)(C + 1))) ||
2110             (VT == MVT::i64 && C != INT64_MAX &&
2111              isLegalArithImmed(C + 1ULL))) {
2112           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2113           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
2114           RHS = DAG.getConstant(C, dl, VT);
2115         }
2116         break;
2117       case ISD::SETULE:
2118       case ISD::SETUGT:
2119         if ((VT == MVT::i32 && C != UINT32_MAX &&
2120              isLegalArithImmed((uint32_t)(C + 1))) ||
2121             (VT == MVT::i64 && C != UINT64_MAX &&
2122              isLegalArithImmed(C + 1ULL))) {
2123           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2124           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
2125           RHS = DAG.getConstant(C, dl, VT);
2126         }
2127         break;
2128       }
2129     }
2130   }
2131 
2132   // Comparisons are canonicalized so that the RHS operand is simpler than the
2133   // LHS one, the extreme case being when RHS is an immediate. However, AArch64
2134   // can fold some shift+extend operations on the RHS operand, so swap the
2135   // operands if that can be done.
2136   //
2137   // For example:
2138   //    lsl     w13, w11, #1
2139   //    cmp     w13, w12
2140   // can be turned into:
2141   //    cmp     w12, w11, lsl #1
2142   if (!isa<ConstantSDNode>(RHS) ||
2143       !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
2144     SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;
2145 
2146     if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
2147       std::swap(LHS, RHS);
2148       CC = ISD::getSetCCSwappedOperands(CC);
2149     }
2150   }
2151 
2152   SDValue Cmp;
2153   AArch64CC::CondCode AArch64CC;
2154   if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
2155     const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
2156 
2157     // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
2158     // For the i8 operand, the largest immediate is 255, so this can be easily
2159     // encoded in the compare instruction. For the i16 operand, however, the
2160     // largest immediate cannot be encoded in the compare.
2161     // Therefore, use a sign extending load and cmn to avoid materializing the
2162     // -1 constant. For example,
2163     // movz w1, #65535
2164     // ldrh w0, [x0, #0]
2165     // cmp w0, w1
2166     // >
2167     // ldrsh w0, [x0, #0]
2168     // cmn w0, #1
2169     // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
2170     // if and only if (sext LHS) == (sext RHS). The checks are in place to
2171     // ensure both the LHS and RHS are truly zero extended and to make sure the
2172     // transformation is profitable.
2173     if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
2174         cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
2175         cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
2176         LHS.getNode()->hasNUsesOfValue(1, 0)) {
2177       int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
2178       if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
2179         SDValue SExt =
2180             DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
2181                         DAG.getValueType(MVT::i16));
2182         Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
2183                                                    RHS.getValueType()),
2184                              CC, dl, DAG);
2185         AArch64CC = changeIntCCToAArch64CC(CC);
2186       }
2187     }
2188 
2189     if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
2190       if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
2191         if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
2192           AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
2193       }
2194     }
2195   }
2196 
2197   if (!Cmp) {
2198     Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
2199     AArch64CC = changeIntCCToAArch64CC(CC);
2200   }
2201   AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
2202   return Cmp;
2203 }
2204 
2205 static std::pair<SDValue, SDValue>
2206 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
2207   assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
2208          "Unsupported value type");
2209   SDValue Value, Overflow;
2210   SDLoc DL(Op);
2211   SDValue LHS = Op.getOperand(0);
2212   SDValue RHS = Op.getOperand(1);
2213   unsigned Opc = 0;
2214   switch (Op.getOpcode()) {
2215   default:
2216     llvm_unreachable("Unknown overflow instruction!");
2217   case ISD::SADDO:
2218     Opc = AArch64ISD::ADDS;
2219     CC = AArch64CC::VS;
2220     break;
2221   case ISD::UADDO:
2222     Opc = AArch64ISD::ADDS;
2223     CC = AArch64CC::HS;
2224     break;
2225   case ISD::SSUBO:
2226     Opc = AArch64ISD::SUBS;
2227     CC = AArch64CC::VS;
2228     break;
2229   case ISD::USUBO:
2230     Opc = AArch64ISD::SUBS;
2231     CC = AArch64CC::LO;
2232     break;
2233   // Multiply needs a little bit extra work.
2234   case ISD::SMULO:
2235   case ISD::UMULO: {
2236     CC = AArch64CC::NE;
2237     bool IsSigned = Op.getOpcode() == ISD::SMULO;
2238     if (Op.getValueType() == MVT::i32) {
2239       unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2240       // For a 32 bit multiply with overflow check we want the instruction
2241       // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2242       // need to generate the following pattern:
2243       // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2244       LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
2245       RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
2246       SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2247       SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
2248                                 DAG.getConstant(0, DL, MVT::i64));
2249       // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2250       // operation. We need to clear out the upper 32 bits, because we used a
2251       // widening multiply that wrote all 64 bits. In the end this should be a
2252       // noop.
2253       Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
2254       if (IsSigned) {
2255         // The signed overflow check requires more than just a simple check for
2256         // any bit set in the upper 32 bits of the result. These bits could be
2257         // just the sign bits of a negative number. To perform the overflow
2258         // check we have to arithmetic shift right the 32nd bit of the result by
2259         // 31 bits. Then we compare the result to the upper 32 bits.
2260         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
2261                                         DAG.getConstant(32, DL, MVT::i64));
2262         UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
2263         SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
2264                                         DAG.getConstant(31, DL, MVT::i64));
2265         // It is important that LowerBits is last, otherwise the arithmetic
2266         // shift will not be folded into the compare (SUBS).
2267         SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
2268         Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2269                        .getValue(1);
2270       } else {
2271         // The overflow check for unsigned multiply is easy. We only need to
2272         // check if any of the upper 32 bits are set. This can be done with a
2273         // CMP (shifted register). For that we need to generate the following
2274         // pattern:
2275         // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2276         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2277                                         DAG.getConstant(32, DL, MVT::i64));
2278         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2279         Overflow =
2280             DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2281                         DAG.getConstant(0, DL, MVT::i64),
2282                         UpperBits).getValue(1);
2283       }
2284       break;
2285     }
2286     assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
2287     // For the 64 bit multiply
2288     Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
2289     if (IsSigned) {
2290       SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
2291       SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
2292                                       DAG.getConstant(63, DL, MVT::i64));
2293       // It is important that LowerBits is last, otherwise the arithmetic
2294       // shift will not be folded into the compare (SUBS).
2295       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2296       Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2297                      .getValue(1);
2298     } else {
2299       SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
2300       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2301       Overflow =
2302           DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2303                       DAG.getConstant(0, DL, MVT::i64),
2304                       UpperBits).getValue(1);
2305     }
2306     break;
2307   }
2308   } // switch (...)
2309 
2310   if (Opc) {
2311     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
2312 
2313     // Emit the AArch64 operation with overflow check.
2314     Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
2315     Overflow = Value.getValue(1);
2316   }
2317   return std::make_pair(Value, Overflow);
2318 }
2319 
2320 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
2321                                              RTLIB::Libcall Call) const {
2322   bool IsStrict = Op->isStrictFPOpcode();
2323   unsigned Offset = IsStrict ? 1 : 0;
2324   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
2325   SmallVector<SDValue, 2> Ops(Op->op_begin() + Offset, Op->op_end());
2326   MakeLibCallOptions CallOptions;
2327   SDValue Result;
2328   SDLoc dl(Op);
2329   std::tie(Result, Chain) = makeLibCall(DAG, Call, Op.getValueType(), Ops,
2330                                         CallOptions, dl, Chain);
2331   return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result;
2332 }
2333 
2334 // Returns true if the given Op is the overflow flag result of an overflow
2335 // intrinsic operation.
2336 static bool isOverflowIntrOpRes(SDValue Op) {
2337   unsigned Opc = Op.getOpcode();
2338   return (Op.getResNo() == 1 &&
2339           (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2340            Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2341 }
2342 
2343 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
2344   SDValue Sel = Op.getOperand(0);
2345   SDValue Other = Op.getOperand(1);
2346   SDLoc dl(Sel);
2347 
2348   // If the operand is an overflow checking operation, invert the condition
2349   // code and kill the Not operation. I.e., transform:
2350   // (xor (overflow_op_bool, 1))
2351   //   -->
2352   // (csel 1, 0, invert(cc), overflow_op_bool)
2353   // ... which later gets transformed to just a cset instruction with an
2354   // inverted condition code, rather than a cset + eor sequence.
2355   if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
2356     // Only lower legal XALUO ops.
2357     if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
2358       return SDValue();
2359 
2360     SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2361     SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2362     AArch64CC::CondCode CC;
2363     SDValue Value, Overflow;
2364     std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
2365     SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2366     return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
2367                        CCVal, Overflow);
2368   }
2369   // If neither operand is a SELECT_CC, give up.
2370   if (Sel.getOpcode() != ISD::SELECT_CC)
2371     std::swap(Sel, Other);
2372   if (Sel.getOpcode() != ISD::SELECT_CC)
2373     return Op;
2374 
2375   // The folding we want to perform is:
2376   // (xor x, (select_cc a, b, cc, 0, -1) )
2377   //   -->
2378   // (csel x, (xor x, -1), cc ...)
2379   //
2380   // The latter will get matched to a CSINV instruction.
2381 
2382   ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
2383   SDValue LHS = Sel.getOperand(0);
2384   SDValue RHS = Sel.getOperand(1);
2385   SDValue TVal = Sel.getOperand(2);
2386   SDValue FVal = Sel.getOperand(3);
2387 
2388   // FIXME: This could be generalized to non-integer comparisons.
2389   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
2390     return Op;
2391 
2392   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
2393   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
2394 
2395   // The values aren't constants, this isn't the pattern we're looking for.
2396   if (!CFVal || !CTVal)
2397     return Op;
2398 
2399   // We can commute the SELECT_CC by inverting the condition.  This
2400   // might be needed to make this fit into a CSINV pattern.
2401   if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
2402     std::swap(TVal, FVal);
2403     std::swap(CTVal, CFVal);
2404     CC = ISD::getSetCCInverse(CC, LHS.getValueType());
2405   }
2406 
2407   // If the constants line up, perform the transform!
2408   if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
2409     SDValue CCVal;
2410     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2411 
2412     FVal = Other;
2413     TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
2414                        DAG.getConstant(-1ULL, dl, Other.getValueType()));
2415 
2416     return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
2417                        CCVal, Cmp);
2418   }
2419 
2420   return Op;
2421 }
2422 
2423 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2424   EVT VT = Op.getValueType();
2425 
2426   // Let legalize expand this if it isn't a legal type yet.
2427   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2428     return SDValue();
2429 
2430   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
2431 
2432   unsigned Opc;
2433   bool ExtraOp = false;
2434   switch (Op.getOpcode()) {
2435   default:
2436     llvm_unreachable("Invalid code");
2437   case ISD::ADDC:
2438     Opc = AArch64ISD::ADDS;
2439     break;
2440   case ISD::SUBC:
2441     Opc = AArch64ISD::SUBS;
2442     break;
2443   case ISD::ADDE:
2444     Opc = AArch64ISD::ADCS;
2445     ExtraOp = true;
2446     break;
2447   case ISD::SUBE:
2448     Opc = AArch64ISD::SBCS;
2449     ExtraOp = true;
2450     break;
2451   }
2452 
2453   if (!ExtraOp)
2454     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2455   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2456                      Op.getOperand(2));
2457 }
2458 
2459 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
2460   // Let legalize expand this if it isn't a legal type yet.
2461   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
2462     return SDValue();
2463 
2464   SDLoc dl(Op);
2465   AArch64CC::CondCode CC;
2466   // The actual operation that sets the overflow or carry flag.
2467   SDValue Value, Overflow;
2468   std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
2469 
2470   // We use 0 and 1 as false and true values.
2471   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2472   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2473 
2474   // We use an inverted condition, because the conditional select is inverted
2475   // too. This will allow it to be selected to a single instruction:
2476   // CSINC Wd, WZR, WZR, invert(cond).
2477   SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2478   Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
2479                          CCVal, Overflow);
2480 
2481   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
2482   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
2483 }
2484 
2485 // Prefetch operands are:
2486 // 1: Address to prefetch
2487 // 2: bool isWrite
2488 // 3: int locality (0 = no locality ... 3 = extreme locality)
2489 // 4: bool isDataCache
2490 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
2491   SDLoc DL(Op);
2492   unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2493   unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
2494   unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2495 
2496   bool IsStream = !Locality;
2497   // When the locality number is set
2498   if (Locality) {
2499     // The front-end should have filtered out the out-of-range values
2500     assert(Locality <= 3 && "Prefetch locality out-of-range");
2501     // The locality degree is the opposite of the cache speed.
2502     // Put the number the other way around.
2503     // The encoding starts at 0 for level 1
2504     Locality = 3 - Locality;
2505   }
2506 
2507   // built the mask value encoding the expected behavior.
2508   unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
2509                    (!IsData << 3) |     // IsDataCache bit
2510                    (Locality << 1) |    // Cache level bits
2511                    (unsigned)IsStream;  // Stream bit
2512   return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
2513                      DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
2514 }
2515 
2516 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
2517                                               SelectionDAG &DAG) const {
2518   assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2519 
2520   RTLIB::Libcall LC;
2521   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2522 
2523   return LowerF128Call(Op, DAG, LC);
2524 }
2525 
2526 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
2527                                              SelectionDAG &DAG) const {
2528   bool IsStrict = Op->isStrictFPOpcode();
2529   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
2530   if (SrcVal.getValueType() != MVT::f128) {
2531     // It's legal except when f128 is involved
2532     return Op;
2533   }
2534 
2535   RTLIB::Libcall LC;
2536   LC = RTLIB::getFPROUND(SrcVal.getValueType(), Op.getValueType());
2537 
2538   // FP_ROUND node has a second operand indicating whether it is known to be
2539   // precise. That doesn't take part in the LibCall so we can't directly use
2540   // LowerF128Call.
2541   MakeLibCallOptions CallOptions;
2542   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
2543   SDValue Result;
2544   SDLoc dl(Op);
2545   std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
2546                                         CallOptions, dl, Chain);
2547   return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result;
2548 }
2549 
2550 SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
2551                                                     SelectionDAG &DAG) const {
2552   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2553   // Any additional optimization in this function should be recorded
2554   // in the cost tables.
2555   EVT InVT = Op.getOperand(0).getValueType();
2556   EVT VT = Op.getValueType();
2557   unsigned NumElts = InVT.getVectorNumElements();
2558 
2559   // f16 conversions are promoted to f32 when full fp16 is not supported.
2560   if (InVT.getVectorElementType() == MVT::f16 &&
2561       !Subtarget->hasFullFP16()) {
2562     MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
2563     SDLoc dl(Op);
2564     return DAG.getNode(
2565         Op.getOpcode(), dl, Op.getValueType(),
2566         DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
2567   }
2568 
2569   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2570     SDLoc dl(Op);
2571     SDValue Cv =
2572         DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
2573                     Op.getOperand(0));
2574     return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
2575   }
2576 
2577   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2578     SDLoc dl(Op);
2579     MVT ExtVT =
2580         MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
2581                          VT.getVectorNumElements());
2582     SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
2583     return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
2584   }
2585 
2586   // Type changing conversions are illegal.
2587   return Op;
2588 }
2589 
2590 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
2591                                               SelectionDAG &DAG) const {
2592   bool IsStrict = Op->isStrictFPOpcode();
2593   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
2594 
2595   if (SrcVal.getValueType().isVector())
2596     return LowerVectorFP_TO_INT(Op, DAG);
2597 
2598   // f16 conversions are promoted to f32 when full fp16 is not supported.
2599   if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
2600     assert(!IsStrict && "Lowering of strict fp16 not yet implemented");
2601     SDLoc dl(Op);
2602     return DAG.getNode(
2603         Op.getOpcode(), dl, Op.getValueType(),
2604         DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal));
2605   }
2606 
2607   if (SrcVal.getValueType() != MVT::f128) {
2608     // It's legal except when f128 is involved
2609     return Op;
2610   }
2611 
2612   RTLIB::Libcall LC;
2613   if (Op.getOpcode() == ISD::FP_TO_SINT ||
2614       Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
2615     LC = RTLIB::getFPTOSINT(SrcVal.getValueType(), Op.getValueType());
2616   else
2617     LC = RTLIB::getFPTOUINT(SrcVal.getValueType(), Op.getValueType());
2618 
2619   return LowerF128Call(Op, DAG, LC);
2620 }
2621 
2622 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2623   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2624   // Any additional optimization in this function should be recorded
2625   // in the cost tables.
2626   EVT VT = Op.getValueType();
2627   SDLoc dl(Op);
2628   SDValue In = Op.getOperand(0);
2629   EVT InVT = In.getValueType();
2630 
2631   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2632     MVT CastVT =
2633         MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
2634                          InVT.getVectorNumElements());
2635     In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
2636     return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
2637   }
2638 
2639   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2640     unsigned CastOpc =
2641         Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2642     EVT CastVT = VT.changeVectorElementTypeToInteger();
2643     In = DAG.getNode(CastOpc, dl, CastVT, In);
2644     return DAG.getNode(Op.getOpcode(), dl, VT, In);
2645   }
2646 
2647   return Op;
2648 }
2649 
2650 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2651                                             SelectionDAG &DAG) const {
2652   if (Op.getValueType().isVector())
2653     return LowerVectorINT_TO_FP(Op, DAG);
2654 
2655   bool IsStrict = Op->isStrictFPOpcode();
2656   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
2657 
2658   // f16 conversions are promoted to f32 when full fp16 is not supported.
2659   if (Op.getValueType() == MVT::f16 &&
2660       !Subtarget->hasFullFP16()) {
2661     assert(!IsStrict && "Lowering of strict fp16 not yet implemented");
2662     SDLoc dl(Op);
2663     return DAG.getNode(
2664         ISD::FP_ROUND, dl, MVT::f16,
2665         DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal),
2666         DAG.getIntPtrConstant(0, dl));
2667   }
2668 
2669   // i128 conversions are libcalls.
2670   if (SrcVal.getValueType() == MVT::i128)
2671     return SDValue();
2672 
2673   // Other conversions are legal, unless it's to the completely software-based
2674   // fp128.
2675   if (Op.getValueType() != MVT::f128)
2676     return Op;
2677 
2678   RTLIB::Libcall LC;
2679   if (Op.getOpcode() == ISD::SINT_TO_FP ||
2680       Op.getOpcode() == ISD::STRICT_SINT_TO_FP)
2681     LC = RTLIB::getSINTTOFP(SrcVal.getValueType(), Op.getValueType());
2682   else
2683     LC = RTLIB::getUINTTOFP(SrcVal.getValueType(), Op.getValueType());
2684 
2685   return LowerF128Call(Op, DAG, LC);
2686 }
2687 
2688 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2689                                             SelectionDAG &DAG) const {
2690   // For iOS, we want to call an alternative entry point: __sincos_stret,
2691   // which returns the values in two S / D registers.
2692   SDLoc dl(Op);
2693   SDValue Arg = Op.getOperand(0);
2694   EVT ArgVT = Arg.getValueType();
2695   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2696 
2697   ArgListTy Args;
2698   ArgListEntry Entry;
2699 
2700   Entry.Node = Arg;
2701   Entry.Ty = ArgTy;
2702   Entry.IsSExt = false;
2703   Entry.IsZExt = false;
2704   Args.push_back(Entry);
2705 
2706   RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
2707                                         : RTLIB::SINCOS_STRET_F32;
2708   const char *LibcallName = getLibcallName(LC);
2709   SDValue Callee =
2710       DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2711 
2712   StructType *RetTy = StructType::get(ArgTy, ArgTy);
2713   TargetLowering::CallLoweringInfo CLI(DAG);
2714   CLI.setDebugLoc(dl)
2715       .setChain(DAG.getEntryNode())
2716       .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2717 
2718   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2719   return CallResult.first;
2720 }
2721 
2722 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2723   if (Op.getValueType() != MVT::f16)
2724     return SDValue();
2725 
2726   assert(Op.getOperand(0).getValueType() == MVT::i16);
2727   SDLoc DL(Op);
2728 
2729   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2730   Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2731   return SDValue(
2732       DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2733                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2734       0);
2735 }
2736 
2737 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2738   if (OrigVT.getSizeInBits() >= 64)
2739     return OrigVT;
2740 
2741   assert(OrigVT.isSimple() && "Expecting a simple value type");
2742 
2743   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2744   switch (OrigSimpleTy) {
2745   default: llvm_unreachable("Unexpected Vector Type");
2746   case MVT::v2i8:
2747   case MVT::v2i16:
2748      return MVT::v2i32;
2749   case MVT::v4i8:
2750     return  MVT::v4i16;
2751   }
2752 }
2753 
2754 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2755                                                  const EVT &OrigTy,
2756                                                  const EVT &ExtTy,
2757                                                  unsigned ExtOpcode) {
2758   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2759   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2760   // 64-bits we need to insert a new extension so that it will be 64-bits.
2761   assert(ExtTy.is128BitVector() && "Unexpected extension size");
2762   if (OrigTy.getSizeInBits() >= 64)
2763     return N;
2764 
2765   // Must extend size to at least 64 bits to be used as an operand for VMULL.
2766   EVT NewVT = getExtensionTo64Bits(OrigTy);
2767 
2768   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2769 }
2770 
2771 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2772                                    bool isSigned) {
2773   EVT VT = N->getValueType(0);
2774 
2775   if (N->getOpcode() != ISD::BUILD_VECTOR)
2776     return false;
2777 
2778   for (const SDValue &Elt : N->op_values()) {
2779     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2780       unsigned EltSize = VT.getScalarSizeInBits();
2781       unsigned HalfSize = EltSize / 2;
2782       if (isSigned) {
2783         if (!isIntN(HalfSize, C->getSExtValue()))
2784           return false;
2785       } else {
2786         if (!isUIntN(HalfSize, C->getZExtValue()))
2787           return false;
2788       }
2789       continue;
2790     }
2791     return false;
2792   }
2793 
2794   return true;
2795 }
2796 
2797 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2798   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2799     return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2800                                              N->getOperand(0)->getValueType(0),
2801                                              N->getValueType(0),
2802                                              N->getOpcode());
2803 
2804   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2805   EVT VT = N->getValueType(0);
2806   SDLoc dl(N);
2807   unsigned EltSize = VT.getScalarSizeInBits() / 2;
2808   unsigned NumElts = VT.getVectorNumElements();
2809   MVT TruncVT = MVT::getIntegerVT(EltSize);
2810   SmallVector<SDValue, 8> Ops;
2811   for (unsigned i = 0; i != NumElts; ++i) {
2812     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2813     const APInt &CInt = C->getAPIntValue();
2814     // Element types smaller than 32 bits are not legal, so use i32 elements.
2815     // The values are implicitly truncated so sext vs. zext doesn't matter.
2816     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2817   }
2818   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2819 }
2820 
2821 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2822   return N->getOpcode() == ISD::SIGN_EXTEND ||
2823          isExtendedBUILD_VECTOR(N, DAG, true);
2824 }
2825 
2826 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2827   return N->getOpcode() == ISD::ZERO_EXTEND ||
2828          isExtendedBUILD_VECTOR(N, DAG, false);
2829 }
2830 
2831 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2832   unsigned Opcode = N->getOpcode();
2833   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2834     SDNode *N0 = N->getOperand(0).getNode();
2835     SDNode *N1 = N->getOperand(1).getNode();
2836     return N0->hasOneUse() && N1->hasOneUse() &&
2837       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2838   }
2839   return false;
2840 }
2841 
2842 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2843   unsigned Opcode = N->getOpcode();
2844   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2845     SDNode *N0 = N->getOperand(0).getNode();
2846     SDNode *N1 = N->getOperand(1).getNode();
2847     return N0->hasOneUse() && N1->hasOneUse() &&
2848       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2849   }
2850   return false;
2851 }
2852 
2853 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2854                                                 SelectionDAG &DAG) const {
2855   // The rounding mode is in bits 23:22 of the FPSCR.
2856   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2857   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2858   // so that the shift + and get folded into a bitfield extract.
2859   SDLoc dl(Op);
2860 
2861   SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
2862                                 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
2863                                                 MVT::i64));
2864   SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
2865   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
2866                                   DAG.getConstant(1U << 22, dl, MVT::i32));
2867   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2868                               DAG.getConstant(22, dl, MVT::i32));
2869   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2870                      DAG.getConstant(3, dl, MVT::i32));
2871 }
2872 
2873 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2874   // Multiplications are only custom-lowered for 128-bit vectors so that
2875   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
2876   EVT VT = Op.getValueType();
2877   assert(VT.is128BitVector() && VT.isInteger() &&
2878          "unexpected type for custom-lowering ISD::MUL");
2879   SDNode *N0 = Op.getOperand(0).getNode();
2880   SDNode *N1 = Op.getOperand(1).getNode();
2881   unsigned NewOpc = 0;
2882   bool isMLA = false;
2883   bool isN0SExt = isSignExtended(N0, DAG);
2884   bool isN1SExt = isSignExtended(N1, DAG);
2885   if (isN0SExt && isN1SExt)
2886     NewOpc = AArch64ISD::SMULL;
2887   else {
2888     bool isN0ZExt = isZeroExtended(N0, DAG);
2889     bool isN1ZExt = isZeroExtended(N1, DAG);
2890     if (isN0ZExt && isN1ZExt)
2891       NewOpc = AArch64ISD::UMULL;
2892     else if (isN1SExt || isN1ZExt) {
2893       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2894       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2895       if (isN1SExt && isAddSubSExt(N0, DAG)) {
2896         NewOpc = AArch64ISD::SMULL;
2897         isMLA = true;
2898       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2899         NewOpc =  AArch64ISD::UMULL;
2900         isMLA = true;
2901       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2902         std::swap(N0, N1);
2903         NewOpc =  AArch64ISD::UMULL;
2904         isMLA = true;
2905       }
2906     }
2907 
2908     if (!NewOpc) {
2909       if (VT == MVT::v2i64)
2910         // Fall through to expand this.  It is not legal.
2911         return SDValue();
2912       else
2913         // Other vector multiplications are legal.
2914         return Op;
2915     }
2916   }
2917 
2918   // Legalize to a S/UMULL instruction
2919   SDLoc DL(Op);
2920   SDValue Op0;
2921   SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2922   if (!isMLA) {
2923     Op0 = skipExtensionForVectorMULL(N0, DAG);
2924     assert(Op0.getValueType().is64BitVector() &&
2925            Op1.getValueType().is64BitVector() &&
2926            "unexpected types for extended operands to VMULL");
2927     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2928   }
2929   // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2930   // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2931   // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2932   SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2933   SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2934   EVT Op1VT = Op1.getValueType();
2935   return DAG.getNode(N0->getOpcode(), DL, VT,
2936                      DAG.getNode(NewOpc, DL, VT,
2937                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2938                      DAG.getNode(NewOpc, DL, VT,
2939                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2940 }
2941 
2942 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2943                                                      SelectionDAG &DAG) const {
2944   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2945   SDLoc dl(Op);
2946   switch (IntNo) {
2947   default: return SDValue();    // Don't custom lower most intrinsics.
2948   case Intrinsic::thread_pointer: {
2949     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2950     return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2951   }
2952   case Intrinsic::aarch64_neon_abs: {
2953     EVT Ty = Op.getValueType();
2954     if (Ty == MVT::i64) {
2955       SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
2956                                    Op.getOperand(1));
2957       Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
2958       return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
2959     } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
2960       return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
2961     } else {
2962       report_fatal_error("Unexpected type for AArch64 NEON intrinic");
2963     }
2964   }
2965   case Intrinsic::aarch64_neon_smax:
2966     return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2967                        Op.getOperand(1), Op.getOperand(2));
2968   case Intrinsic::aarch64_neon_umax:
2969     return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2970                        Op.getOperand(1), Op.getOperand(2));
2971   case Intrinsic::aarch64_neon_smin:
2972     return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2973                        Op.getOperand(1), Op.getOperand(2));
2974   case Intrinsic::aarch64_neon_umin:
2975     return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2976                        Op.getOperand(1), Op.getOperand(2));
2977 
2978   case Intrinsic::aarch64_sve_sunpkhi:
2979     return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(),
2980                        Op.getOperand(1));
2981   case Intrinsic::aarch64_sve_sunpklo:
2982     return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(),
2983                        Op.getOperand(1));
2984   case Intrinsic::aarch64_sve_uunpkhi:
2985     return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(),
2986                        Op.getOperand(1));
2987   case Intrinsic::aarch64_sve_uunpklo:
2988     return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(),
2989                        Op.getOperand(1));
2990   case Intrinsic::aarch64_sve_clasta_n:
2991     return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(),
2992                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
2993   case Intrinsic::aarch64_sve_clastb_n:
2994     return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(),
2995                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
2996   case Intrinsic::aarch64_sve_lasta:
2997     return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(),
2998                        Op.getOperand(1), Op.getOperand(2));
2999   case Intrinsic::aarch64_sve_lastb:
3000     return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(),
3001                        Op.getOperand(1), Op.getOperand(2));
3002   case Intrinsic::aarch64_sve_rev:
3003     return DAG.getNode(AArch64ISD::REV, dl, Op.getValueType(),
3004                        Op.getOperand(1));
3005   case Intrinsic::aarch64_sve_tbl:
3006     return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(),
3007                        Op.getOperand(1), Op.getOperand(2));
3008   case Intrinsic::aarch64_sve_trn1:
3009     return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(),
3010                        Op.getOperand(1), Op.getOperand(2));
3011   case Intrinsic::aarch64_sve_trn2:
3012     return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(),
3013                        Op.getOperand(1), Op.getOperand(2));
3014   case Intrinsic::aarch64_sve_uzp1:
3015     return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(),
3016                        Op.getOperand(1), Op.getOperand(2));
3017   case Intrinsic::aarch64_sve_uzp2:
3018     return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(),
3019                        Op.getOperand(1), Op.getOperand(2));
3020   case Intrinsic::aarch64_sve_zip1:
3021     return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(),
3022                        Op.getOperand(1), Op.getOperand(2));
3023   case Intrinsic::aarch64_sve_zip2:
3024     return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(),
3025                        Op.getOperand(1), Op.getOperand(2));
3026   case Intrinsic::aarch64_sve_ptrue:
3027     return DAG.getNode(AArch64ISD::PTRUE, dl, Op.getValueType(),
3028                        Op.getOperand(1));
3029 
3030   case Intrinsic::aarch64_sve_insr: {
3031     SDValue Scalar = Op.getOperand(2);
3032     EVT ScalarTy = Scalar.getValueType();
3033     if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16))
3034       Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar);
3035 
3036     return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(),
3037                        Op.getOperand(1), Scalar);
3038   }
3039 
3040   case Intrinsic::localaddress: {
3041     const auto &MF = DAG.getMachineFunction();
3042     const auto *RegInfo = Subtarget->getRegisterInfo();
3043     unsigned Reg = RegInfo->getLocalAddressRegister(MF);
3044     return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
3045                               Op.getSimpleValueType());
3046   }
3047 
3048   case Intrinsic::eh_recoverfp: {
3049     // FIXME: This needs to be implemented to correctly handle highly aligned
3050     // stack objects. For now we simply return the incoming FP. Refer D53541
3051     // for more details.
3052     SDValue FnOp = Op.getOperand(1);
3053     SDValue IncomingFPOp = Op.getOperand(2);
3054     GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
3055     auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
3056     if (!Fn)
3057       report_fatal_error(
3058           "llvm.eh.recoverfp must take a function as the first argument");
3059     return IncomingFPOp;
3060   }
3061   }
3062 }
3063 
3064 bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
3065   return ExtVal.getValueType().isScalableVector();
3066 }
3067 
3068 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
3069 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
3070                                         EVT VT, EVT MemVT,
3071                                         SelectionDAG &DAG) {
3072   assert(VT.isVector() && "VT should be a vector type");
3073   assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
3074 
3075   SDValue Value = ST->getValue();
3076 
3077   // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
3078   // the word lane which represent the v4i8 subvector.  It optimizes the store
3079   // to:
3080   //
3081   //   xtn  v0.8b, v0.8h
3082   //   str  s0, [x0]
3083 
3084   SDValue Undef = DAG.getUNDEF(MVT::i16);
3085   SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
3086                                         {Undef, Undef, Undef, Undef});
3087 
3088   SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
3089                                  Value, UndefVec);
3090   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
3091 
3092   Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
3093   SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
3094                                      Trunc, DAG.getConstant(0, DL, MVT::i64));
3095 
3096   return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
3097                       ST->getBasePtr(), ST->getMemOperand());
3098 }
3099 
3100 // Custom lowering for any store, vector or scalar and/or default or with
3101 // a truncate operations.  Currently only custom lower truncate operation
3102 // from vector v4i16 to v4i8 or volatile stores of i128.
3103 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
3104                                           SelectionDAG &DAG) const {
3105   SDLoc Dl(Op);
3106   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
3107   assert (StoreNode && "Can only custom lower store nodes");
3108 
3109   SDValue Value = StoreNode->getValue();
3110 
3111   EVT VT = Value.getValueType();
3112   EVT MemVT = StoreNode->getMemoryVT();
3113 
3114   if (VT.isVector()) {
3115     unsigned AS = StoreNode->getAddressSpace();
3116     unsigned Align = StoreNode->getAlignment();
3117     if (Align < MemVT.getStoreSize() &&
3118         !allowsMisalignedMemoryAccesses(MemVT, AS, Align,
3119                                         StoreNode->getMemOperand()->getFlags(),
3120                                         nullptr)) {
3121       return scalarizeVectorStore(StoreNode, DAG);
3122     }
3123 
3124     if (StoreNode->isTruncatingStore()) {
3125       return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
3126     }
3127   } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) {
3128     assert(StoreNode->getValue()->getValueType(0) == MVT::i128);
3129     SDValue Lo =
3130         DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(),
3131                     DAG.getConstant(0, Dl, MVT::i64));
3132     SDValue Hi =
3133         DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(),
3134                     DAG.getConstant(1, Dl, MVT::i64));
3135     SDValue Result = DAG.getMemIntrinsicNode(
3136         AArch64ISD::STP, Dl, DAG.getVTList(MVT::Other),
3137         {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()},
3138         StoreNode->getMemoryVT(), StoreNode->getMemOperand());
3139     return Result;
3140   }
3141 
3142   return SDValue();
3143 }
3144 
3145 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
3146                                               SelectionDAG &DAG) const {
3147   LLVM_DEBUG(dbgs() << "Custom lowering: ");
3148   LLVM_DEBUG(Op.dump());
3149 
3150   switch (Op.getOpcode()) {
3151   default:
3152     llvm_unreachable("unimplemented operand");
3153     return SDValue();
3154   case ISD::BITCAST:
3155     return LowerBITCAST(Op, DAG);
3156   case ISD::GlobalAddress:
3157     return LowerGlobalAddress(Op, DAG);
3158   case ISD::GlobalTLSAddress:
3159     return LowerGlobalTLSAddress(Op, DAG);
3160   case ISD::SETCC:
3161   case ISD::STRICT_FSETCC:
3162   case ISD::STRICT_FSETCCS:
3163     return LowerSETCC(Op, DAG);
3164   case ISD::BR_CC:
3165     return LowerBR_CC(Op, DAG);
3166   case ISD::SELECT:
3167     return LowerSELECT(Op, DAG);
3168   case ISD::SELECT_CC:
3169     return LowerSELECT_CC(Op, DAG);
3170   case ISD::JumpTable:
3171     return LowerJumpTable(Op, DAG);
3172   case ISD::BR_JT:
3173     return LowerBR_JT(Op, DAG);
3174   case ISD::ConstantPool:
3175     return LowerConstantPool(Op, DAG);
3176   case ISD::BlockAddress:
3177     return LowerBlockAddress(Op, DAG);
3178   case ISD::VASTART:
3179     return LowerVASTART(Op, DAG);
3180   case ISD::VACOPY:
3181     return LowerVACOPY(Op, DAG);
3182   case ISD::VAARG:
3183     return LowerVAARG(Op, DAG);
3184   case ISD::ADDC:
3185   case ISD::ADDE:
3186   case ISD::SUBC:
3187   case ISD::SUBE:
3188     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
3189   case ISD::SADDO:
3190   case ISD::UADDO:
3191   case ISD::SSUBO:
3192   case ISD::USUBO:
3193   case ISD::SMULO:
3194   case ISD::UMULO:
3195     return LowerXALUO(Op, DAG);
3196   case ISD::FADD:
3197     return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
3198   case ISD::FSUB:
3199     return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
3200   case ISD::FMUL:
3201     return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
3202   case ISD::FDIV:
3203     return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
3204   case ISD::FP_ROUND:
3205   case ISD::STRICT_FP_ROUND:
3206     return LowerFP_ROUND(Op, DAG);
3207   case ISD::FP_EXTEND:
3208     return LowerFP_EXTEND(Op, DAG);
3209   case ISD::FRAMEADDR:
3210     return LowerFRAMEADDR(Op, DAG);
3211   case ISD::SPONENTRY:
3212     return LowerSPONENTRY(Op, DAG);
3213   case ISD::RETURNADDR:
3214     return LowerRETURNADDR(Op, DAG);
3215   case ISD::ADDROFRETURNADDR:
3216     return LowerADDROFRETURNADDR(Op, DAG);
3217   case ISD::INSERT_VECTOR_ELT:
3218     return LowerINSERT_VECTOR_ELT(Op, DAG);
3219   case ISD::EXTRACT_VECTOR_ELT:
3220     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3221   case ISD::BUILD_VECTOR:
3222     return LowerBUILD_VECTOR(Op, DAG);
3223   case ISD::VECTOR_SHUFFLE:
3224     return LowerVECTOR_SHUFFLE(Op, DAG);
3225   case ISD::SPLAT_VECTOR:
3226     return LowerSPLAT_VECTOR(Op, DAG);
3227   case ISD::EXTRACT_SUBVECTOR:
3228     return LowerEXTRACT_SUBVECTOR(Op, DAG);
3229   case ISD::SRA:
3230   case ISD::SRL:
3231   case ISD::SHL:
3232     return LowerVectorSRA_SRL_SHL(Op, DAG);
3233   case ISD::SHL_PARTS:
3234     return LowerShiftLeftParts(Op, DAG);
3235   case ISD::SRL_PARTS:
3236   case ISD::SRA_PARTS:
3237     return LowerShiftRightParts(Op, DAG);
3238   case ISD::CTPOP:
3239     return LowerCTPOP(Op, DAG);
3240   case ISD::FCOPYSIGN:
3241     return LowerFCOPYSIGN(Op, DAG);
3242   case ISD::OR:
3243     return LowerVectorOR(Op, DAG);
3244   case ISD::XOR:
3245     return LowerXOR(Op, DAG);
3246   case ISD::PREFETCH:
3247     return LowerPREFETCH(Op, DAG);
3248   case ISD::SINT_TO_FP:
3249   case ISD::UINT_TO_FP:
3250   case ISD::STRICT_SINT_TO_FP:
3251   case ISD::STRICT_UINT_TO_FP:
3252     return LowerINT_TO_FP(Op, DAG);
3253   case ISD::FP_TO_SINT:
3254   case ISD::FP_TO_UINT:
3255   case ISD::STRICT_FP_TO_SINT:
3256   case ISD::STRICT_FP_TO_UINT:
3257     return LowerFP_TO_INT(Op, DAG);
3258   case ISD::FSINCOS:
3259     return LowerFSINCOS(Op, DAG);
3260   case ISD::FLT_ROUNDS_:
3261     return LowerFLT_ROUNDS_(Op, DAG);
3262   case ISD::MUL:
3263     return LowerMUL(Op, DAG);
3264   case ISD::INTRINSIC_WO_CHAIN:
3265     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3266   case ISD::STORE:
3267     return LowerSTORE(Op, DAG);
3268   case ISD::VECREDUCE_ADD:
3269   case ISD::VECREDUCE_SMAX:
3270   case ISD::VECREDUCE_SMIN:
3271   case ISD::VECREDUCE_UMAX:
3272   case ISD::VECREDUCE_UMIN:
3273   case ISD::VECREDUCE_FMAX:
3274   case ISD::VECREDUCE_FMIN:
3275     return LowerVECREDUCE(Op, DAG);
3276   case ISD::ATOMIC_LOAD_SUB:
3277     return LowerATOMIC_LOAD_SUB(Op, DAG);
3278   case ISD::ATOMIC_LOAD_AND:
3279     return LowerATOMIC_LOAD_AND(Op, DAG);
3280   case ISD::DYNAMIC_STACKALLOC:
3281     return LowerDYNAMIC_STACKALLOC(Op, DAG);
3282   }
3283 }
3284 
3285 //===----------------------------------------------------------------------===//
3286 //                      Calling Convention Implementation
3287 //===----------------------------------------------------------------------===//
3288 
3289 /// Selects the correct CCAssignFn for a given CallingConvention value.
3290 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
3291                                                      bool IsVarArg) const {
3292   switch (CC) {
3293   default:
3294     report_fatal_error("Unsupported calling convention.");
3295   case CallingConv::AArch64_SVE_VectorCall:
3296     // Calling SVE functions is currently not yet supported.
3297     report_fatal_error("Unsupported calling convention.");
3298   case CallingConv::WebKit_JS:
3299     return CC_AArch64_WebKit_JS;
3300   case CallingConv::GHC:
3301     return CC_AArch64_GHC;
3302   case CallingConv::C:
3303   case CallingConv::Fast:
3304   case CallingConv::PreserveMost:
3305   case CallingConv::CXX_FAST_TLS:
3306   case CallingConv::Swift:
3307     if (Subtarget->isTargetWindows() && IsVarArg)
3308       return CC_AArch64_Win64_VarArg;
3309     if (!Subtarget->isTargetDarwin())
3310       return CC_AArch64_AAPCS;
3311     if (!IsVarArg)
3312       return CC_AArch64_DarwinPCS;
3313     return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
3314                                       : CC_AArch64_DarwinPCS_VarArg;
3315    case CallingConv::Win64:
3316     return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
3317    case CallingConv::CFGuard_Check:
3318      return CC_AArch64_Win64_CFGuard_Check;
3319    case CallingConv::AArch64_VectorCall:
3320      return CC_AArch64_AAPCS;
3321   }
3322 }
3323 
3324 CCAssignFn *
3325 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
3326   return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
3327                                       : RetCC_AArch64_AAPCS;
3328 }
3329 
3330 SDValue AArch64TargetLowering::LowerFormalArguments(
3331     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3332     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3333     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3334   MachineFunction &MF = DAG.getMachineFunction();
3335   MachineFrameInfo &MFI = MF.getFrameInfo();
3336   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3337 
3338   // Assign locations to all of the incoming arguments.
3339   SmallVector<CCValAssign, 16> ArgLocs;
3340   DenseMap<unsigned, SDValue> CopiedRegs;
3341   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3342                  *DAG.getContext());
3343 
3344   // At this point, Ins[].VT may already be promoted to i32. To correctly
3345   // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3346   // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3347   // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
3348   // we use a special version of AnalyzeFormalArguments to pass in ValVT and
3349   // LocVT.
3350   unsigned NumArgs = Ins.size();
3351   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3352   unsigned CurArgIdx = 0;
3353   for (unsigned i = 0; i != NumArgs; ++i) {
3354     MVT ValVT = Ins[i].VT;
3355     if (Ins[i].isOrigArg()) {
3356       std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3357       CurArgIdx = Ins[i].getOrigArgIndex();
3358 
3359       // Get type of the original argument.
3360       EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
3361                                   /*AllowUnknown*/ true);
3362       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
3363       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3364       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3365         ValVT = MVT::i8;
3366       else if (ActualMVT == MVT::i16)
3367         ValVT = MVT::i16;
3368     }
3369     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3370     bool Res =
3371         AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
3372     assert(!Res && "Call operand has unhandled type");
3373     (void)Res;
3374   }
3375   assert(ArgLocs.size() == Ins.size());
3376   SmallVector<SDValue, 16> ArgValues;
3377   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3378     CCValAssign &VA = ArgLocs[i];
3379 
3380     if (Ins[i].Flags.isByVal()) {
3381       // Byval is used for HFAs in the PCS, but the system should work in a
3382       // non-compliant manner for larger structs.
3383       EVT PtrVT = getPointerTy(DAG.getDataLayout());
3384       int Size = Ins[i].Flags.getByValSize();
3385       unsigned NumRegs = (Size + 7) / 8;
3386 
3387       // FIXME: This works on big-endian for composite byvals, which are the common
3388       // case. It should also work for fundamental types too.
3389       unsigned FrameIdx =
3390         MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
3391       SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
3392       InVals.push_back(FrameIdxN);
3393 
3394       continue;
3395     }
3396 
3397     SDValue ArgValue;
3398     if (VA.isRegLoc()) {
3399       // Arguments stored in registers.
3400       EVT RegVT = VA.getLocVT();
3401       const TargetRegisterClass *RC;
3402 
3403       if (RegVT == MVT::i32)
3404         RC = &AArch64::GPR32RegClass;
3405       else if (RegVT == MVT::i64)
3406         RC = &AArch64::GPR64RegClass;
3407       else if (RegVT == MVT::f16)
3408         RC = &AArch64::FPR16RegClass;
3409       else if (RegVT == MVT::f32)
3410         RC = &AArch64::FPR32RegClass;
3411       else if (RegVT == MVT::f64 || RegVT.is64BitVector())
3412         RC = &AArch64::FPR64RegClass;
3413       else if (RegVT == MVT::f128 || RegVT.is128BitVector())
3414         RC = &AArch64::FPR128RegClass;
3415       else if (RegVT.isScalableVector() &&
3416                RegVT.getVectorElementType() == MVT::i1)
3417         RC = &AArch64::PPRRegClass;
3418       else if (RegVT.isScalableVector())
3419         RC = &AArch64::ZPRRegClass;
3420       else
3421         llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3422 
3423       // Transform the arguments in physical registers into virtual ones.
3424       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3425       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3426 
3427       // If this is an 8, 16 or 32-bit value, it is really passed promoted
3428       // to 64 bits.  Insert an assert[sz]ext to capture this, then
3429       // truncate to the right size.
3430       switch (VA.getLocInfo()) {
3431       default:
3432         llvm_unreachable("Unknown loc info!");
3433       case CCValAssign::Full:
3434         break;
3435       case CCValAssign::Indirect:
3436         assert(VA.getValVT().isScalableVector() &&
3437                "Only scalable vectors can be passed indirectly");
3438         llvm_unreachable("Spilling of SVE vectors not yet implemented");
3439       case CCValAssign::BCvt:
3440         ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
3441         break;
3442       case CCValAssign::AExt:
3443       case CCValAssign::SExt:
3444       case CCValAssign::ZExt:
3445         break;
3446       case CCValAssign::AExtUpper:
3447         ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue,
3448                                DAG.getConstant(32, DL, RegVT));
3449         ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT());
3450         break;
3451       }
3452     } else { // VA.isRegLoc()
3453       assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
3454       unsigned ArgOffset = VA.getLocMemOffset();
3455       unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
3456 
3457       uint32_t BEAlign = 0;
3458       if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
3459           !Ins[i].Flags.isInConsecutiveRegs())
3460         BEAlign = 8 - ArgSize;
3461 
3462       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
3463 
3464       // Create load nodes to retrieve arguments from the stack.
3465       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3466 
3467       // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3468       ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3469       MVT MemVT = VA.getValVT();
3470 
3471       switch (VA.getLocInfo()) {
3472       default:
3473         break;
3474       case CCValAssign::Trunc:
3475       case CCValAssign::BCvt:
3476         MemVT = VA.getLocVT();
3477         break;
3478       case CCValAssign::Indirect:
3479         assert(VA.getValVT().isScalableVector() &&
3480                "Only scalable vectors can be passed indirectly");
3481         llvm_unreachable("Spilling of SVE vectors not yet implemented");
3482       case CCValAssign::SExt:
3483         ExtType = ISD::SEXTLOAD;
3484         break;
3485       case CCValAssign::ZExt:
3486         ExtType = ISD::ZEXTLOAD;
3487         break;
3488       case CCValAssign::AExt:
3489         ExtType = ISD::EXTLOAD;
3490         break;
3491       }
3492 
3493       ArgValue = DAG.getExtLoad(
3494           ExtType, DL, VA.getLocVT(), Chain, FIN,
3495           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3496           MemVT);
3497 
3498     }
3499     if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer())
3500       ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(),
3501                              ArgValue, DAG.getValueType(MVT::i32));
3502     InVals.push_back(ArgValue);
3503   }
3504 
3505   // varargs
3506   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3507   if (isVarArg) {
3508     if (!Subtarget->isTargetDarwin() || IsWin64) {
3509       // The AAPCS variadic function ABI is identical to the non-variadic
3510       // one. As a result there may be more arguments in registers and we should
3511       // save them for future reference.
3512       // Win64 variadic functions also pass arguments in registers, but all float
3513       // arguments are passed in integer registers.
3514       saveVarArgRegisters(CCInfo, DAG, DL, Chain);
3515     }
3516 
3517     // This will point to the next argument passed via stack.
3518     unsigned StackOffset = CCInfo.getNextStackOffset();
3519     // We currently pass all varargs at 8-byte alignment, or 4 for ILP32
3520     StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8);
3521     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
3522 
3523     if (MFI.hasMustTailInVarArgFunc()) {
3524       SmallVector<MVT, 2> RegParmTypes;
3525       RegParmTypes.push_back(MVT::i64);
3526       RegParmTypes.push_back(MVT::f128);
3527       // Compute the set of forwarded registers. The rest are scratch.
3528       SmallVectorImpl<ForwardedRegister> &Forwards =
3529                                        FuncInfo->getForwardedMustTailRegParms();
3530       CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
3531                                                CC_AArch64_AAPCS);
3532 
3533       // Conservatively forward X8, since it might be used for aggregate return.
3534       if (!CCInfo.isAllocated(AArch64::X8)) {
3535         unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
3536         Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
3537       }
3538     }
3539   }
3540 
3541   // On Windows, InReg pointers must be returned, so record the pointer in a
3542   // virtual register at the start of the function so it can be returned in the
3543   // epilogue.
3544   if (IsWin64) {
3545     for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
3546       if (Ins[I].Flags.isInReg()) {
3547         assert(!FuncInfo->getSRetReturnReg());
3548 
3549         MVT PtrTy = getPointerTy(DAG.getDataLayout());
3550         Register Reg =
3551             MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
3552         FuncInfo->setSRetReturnReg(Reg);
3553 
3554         SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
3555         Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3556         break;
3557       }
3558     }
3559   }
3560 
3561   unsigned StackArgSize = CCInfo.getNextStackOffset();
3562   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3563   if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
3564     // This is a non-standard ABI so by fiat I say we're allowed to make full
3565     // use of the stack area to be popped, which must be aligned to 16 bytes in
3566     // any case:
3567     StackArgSize = alignTo(StackArgSize, 16);
3568 
3569     // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3570     // a multiple of 16.
3571     FuncInfo->setArgumentStackToRestore(StackArgSize);
3572 
3573     // This realignment carries over to the available bytes below. Our own
3574     // callers will guarantee the space is free by giving an aligned value to
3575     // CALLSEQ_START.
3576   }
3577   // Even if we're not expected to free up the space, it's useful to know how
3578   // much is there while considering tail calls (because we can reuse it).
3579   FuncInfo->setBytesInStackArgArea(StackArgSize);
3580 
3581   if (Subtarget->hasCustomCallingConv())
3582     Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
3583 
3584   return Chain;
3585 }
3586 
3587 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
3588                                                 SelectionDAG &DAG,
3589                                                 const SDLoc &DL,
3590                                                 SDValue &Chain) const {
3591   MachineFunction &MF = DAG.getMachineFunction();
3592   MachineFrameInfo &MFI = MF.getFrameInfo();
3593   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3594   auto PtrVT = getPointerTy(DAG.getDataLayout());
3595   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3596 
3597   SmallVector<SDValue, 8> MemOps;
3598 
3599   static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
3600                                           AArch64::X3, AArch64::X4, AArch64::X5,
3601                                           AArch64::X6, AArch64::X7 };
3602   static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
3603   unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
3604 
3605   unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
3606   int GPRIdx = 0;
3607   if (GPRSaveSize != 0) {
3608     if (IsWin64) {
3609       GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
3610       if (GPRSaveSize & 15)
3611         // The extra size here, if triggered, will always be 8.
3612         MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
3613     } else
3614       GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
3615 
3616     SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
3617 
3618     for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
3619       unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
3620       SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
3621       SDValue Store = DAG.getStore(
3622           Val.getValue(1), DL, Val, FIN,
3623           IsWin64
3624               ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
3625                                                   GPRIdx,
3626                                                   (i - FirstVariadicGPR) * 8)
3627               : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
3628       MemOps.push_back(Store);
3629       FIN =
3630           DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
3631     }
3632   }
3633   FuncInfo->setVarArgsGPRIndex(GPRIdx);
3634   FuncInfo->setVarArgsGPRSize(GPRSaveSize);
3635 
3636   if (Subtarget->hasFPARMv8() && !IsWin64) {
3637     static const MCPhysReg FPRArgRegs[] = {
3638         AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
3639         AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
3640     static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
3641     unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
3642 
3643     unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
3644     int FPRIdx = 0;
3645     if (FPRSaveSize != 0) {
3646       FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
3647 
3648       SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
3649 
3650       for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
3651         unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
3652         SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
3653 
3654         SDValue Store = DAG.getStore(
3655             Val.getValue(1), DL, Val, FIN,
3656             MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
3657         MemOps.push_back(Store);
3658         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
3659                           DAG.getConstant(16, DL, PtrVT));
3660       }
3661     }
3662     FuncInfo->setVarArgsFPRIndex(FPRIdx);
3663     FuncInfo->setVarArgsFPRSize(FPRSaveSize);
3664   }
3665 
3666   if (!MemOps.empty()) {
3667     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3668   }
3669 }
3670 
3671 /// LowerCallResult - Lower the result values of a call into the
3672 /// appropriate copies out of appropriate physical registers.
3673 SDValue AArch64TargetLowering::LowerCallResult(
3674     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
3675     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3676     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
3677     SDValue ThisVal) const {
3678   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3679                           ? RetCC_AArch64_WebKit_JS
3680                           : RetCC_AArch64_AAPCS;
3681   // Assign locations to each value returned by this call.
3682   SmallVector<CCValAssign, 16> RVLocs;
3683   DenseMap<unsigned, SDValue> CopiedRegs;
3684   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3685                  *DAG.getContext());
3686   CCInfo.AnalyzeCallResult(Ins, RetCC);
3687 
3688   // Copy all of the result registers out of their specified physreg.
3689   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3690     CCValAssign VA = RVLocs[i];
3691 
3692     // Pass 'this' value directly from the argument to return value, to avoid
3693     // reg unit interference
3694     if (i == 0 && isThisReturn) {
3695       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
3696              "unexpected return calling convention register assignment");
3697       InVals.push_back(ThisVal);
3698       continue;
3699     }
3700 
3701     // Avoid copying a physreg twice since RegAllocFast is incompetent and only
3702     // allows one use of a physreg per block.
3703     SDValue Val = CopiedRegs.lookup(VA.getLocReg());
3704     if (!Val) {
3705       Val =
3706           DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
3707       Chain = Val.getValue(1);
3708       InFlag = Val.getValue(2);
3709       CopiedRegs[VA.getLocReg()] = Val;
3710     }
3711 
3712     switch (VA.getLocInfo()) {
3713     default:
3714       llvm_unreachable("Unknown loc info!");
3715     case CCValAssign::Full:
3716       break;
3717     case CCValAssign::BCvt:
3718       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3719       break;
3720     case CCValAssign::AExtUpper:
3721       Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val,
3722                         DAG.getConstant(32, DL, VA.getLocVT()));
3723       LLVM_FALLTHROUGH;
3724     case CCValAssign::AExt:
3725       LLVM_FALLTHROUGH;
3726     case CCValAssign::ZExt:
3727       Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT());
3728       break;
3729     }
3730 
3731     InVals.push_back(Val);
3732   }
3733 
3734   return Chain;
3735 }
3736 
3737 /// Return true if the calling convention is one that we can guarantee TCO for.
3738 static bool canGuaranteeTCO(CallingConv::ID CC) {
3739   return CC == CallingConv::Fast;
3740 }
3741 
3742 /// Return true if we might ever do TCO for calls with this calling convention.
3743 static bool mayTailCallThisCC(CallingConv::ID CC) {
3744   switch (CC) {
3745   case CallingConv::C:
3746   case CallingConv::PreserveMost:
3747   case CallingConv::Swift:
3748     return true;
3749   default:
3750     return canGuaranteeTCO(CC);
3751   }
3752 }
3753 
3754 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3755     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
3756     const SmallVectorImpl<ISD::OutputArg> &Outs,
3757     const SmallVectorImpl<SDValue> &OutVals,
3758     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3759   if (!mayTailCallThisCC(CalleeCC))
3760     return false;
3761 
3762   MachineFunction &MF = DAG.getMachineFunction();
3763   const Function &CallerF = MF.getFunction();
3764   CallingConv::ID CallerCC = CallerF.getCallingConv();
3765   bool CCMatch = CallerCC == CalleeCC;
3766 
3767   // Byval parameters hand the function a pointer directly into the stack area
3768   // we want to reuse during a tail call. Working around this *is* possible (see
3769   // X86) but less efficient and uglier in LowerCall.
3770   for (Function::const_arg_iterator i = CallerF.arg_begin(),
3771                                     e = CallerF.arg_end();
3772        i != e; ++i) {
3773     if (i->hasByValAttr())
3774       return false;
3775 
3776     // On Windows, "inreg" attributes signify non-aggregate indirect returns.
3777     // In this case, it is necessary to save/restore X0 in the callee. Tail
3778     // call opt interferes with this. So we disable tail call opt when the
3779     // caller has an argument with "inreg" attribute.
3780 
3781     // FIXME: Check whether the callee also has an "inreg" argument.
3782     if (i->hasInRegAttr())
3783       return false;
3784   }
3785 
3786   if (getTargetMachine().Options.GuaranteedTailCallOpt)
3787     return canGuaranteeTCO(CalleeCC) && CCMatch;
3788 
3789   // Externally-defined functions with weak linkage should not be
3790   // tail-called on AArch64 when the OS does not support dynamic
3791   // pre-emption of symbols, as the AAELF spec requires normal calls
3792   // to undefined weak functions to be replaced with a NOP or jump to the
3793   // next instruction. The behaviour of branch instructions in this
3794   // situation (as used for tail calls) is implementation-defined, so we
3795   // cannot rely on the linker replacing the tail call with a return.
3796   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3797     const GlobalValue *GV = G->getGlobal();
3798     const Triple &TT = getTargetMachine().getTargetTriple();
3799     if (GV->hasExternalWeakLinkage() &&
3800         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3801       return false;
3802   }
3803 
3804   // Now we search for cases where we can use a tail call without changing the
3805   // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3806   // concept.
3807 
3808   // I want anyone implementing a new calling convention to think long and hard
3809   // about this assert.
3810   assert((!isVarArg || CalleeCC == CallingConv::C) &&
3811          "Unexpected variadic calling convention");
3812 
3813   LLVMContext &C = *DAG.getContext();
3814   if (isVarArg && !Outs.empty()) {
3815     // At least two cases here: if caller is fastcc then we can't have any
3816     // memory arguments (we'd be expected to clean up the stack afterwards). If
3817     // caller is C then we could potentially use its argument area.
3818 
3819     // FIXME: for now we take the most conservative of these in both cases:
3820     // disallow all variadic memory operands.
3821     SmallVector<CCValAssign, 16> ArgLocs;
3822     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3823 
3824     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
3825     for (const CCValAssign &ArgLoc : ArgLocs)
3826       if (!ArgLoc.isRegLoc())
3827         return false;
3828   }
3829 
3830   // Check that the call results are passed in the same way.
3831   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
3832                                   CCAssignFnForCall(CalleeCC, isVarArg),
3833                                   CCAssignFnForCall(CallerCC, isVarArg)))
3834     return false;
3835   // The callee has to preserve all registers the caller needs to preserve.
3836   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3837   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3838   if (!CCMatch) {
3839     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3840     if (Subtarget->hasCustomCallingConv()) {
3841       TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
3842       TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
3843     }
3844     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3845       return false;
3846   }
3847 
3848   // Nothing more to check if the callee is taking no arguments
3849   if (Outs.empty())
3850     return true;
3851 
3852   SmallVector<CCValAssign, 16> ArgLocs;
3853   CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3854 
3855   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3856 
3857   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3858 
3859   // If the stack arguments for this call do not fit into our own save area then
3860   // the call cannot be made tail.
3861   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3862     return false;
3863 
3864   const MachineRegisterInfo &MRI = MF.getRegInfo();
3865   if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3866     return false;
3867 
3868   return true;
3869 }
3870 
3871 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
3872                                                    SelectionDAG &DAG,
3873                                                    MachineFrameInfo &MFI,
3874                                                    int ClobberedFI) const {
3875   SmallVector<SDValue, 8> ArgChains;
3876   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
3877   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
3878 
3879   // Include the original chain at the beginning of the list. When this is
3880   // used by target LowerCall hooks, this helps legalize find the
3881   // CALLSEQ_BEGIN node.
3882   ArgChains.push_back(Chain);
3883 
3884   // Add a chain value for each stack argument corresponding
3885   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
3886                             UE = DAG.getEntryNode().getNode()->use_end();
3887        U != UE; ++U)
3888     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3889       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3890         if (FI->getIndex() < 0) {
3891           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
3892           int64_t InLastByte = InFirstByte;
3893           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
3894 
3895           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
3896               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
3897             ArgChains.push_back(SDValue(L, 1));
3898         }
3899 
3900   // Build a tokenfactor for all the chains.
3901   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
3902 }
3903 
3904 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
3905                                                    bool TailCallOpt) const {
3906   return CallCC == CallingConv::Fast && TailCallOpt;
3907 }
3908 
3909 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3910 /// and add input and output parameter nodes.
3911 SDValue
3912 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
3913                                  SmallVectorImpl<SDValue> &InVals) const {
3914   SelectionDAG &DAG = CLI.DAG;
3915   SDLoc &DL = CLI.DL;
3916   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3917   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3918   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3919   SDValue Chain = CLI.Chain;
3920   SDValue Callee = CLI.Callee;
3921   bool &IsTailCall = CLI.IsTailCall;
3922   CallingConv::ID CallConv = CLI.CallConv;
3923   bool IsVarArg = CLI.IsVarArg;
3924 
3925   MachineFunction &MF = DAG.getMachineFunction();
3926   MachineFunction::CallSiteInfo CSInfo;
3927   bool IsThisReturn = false;
3928 
3929   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3930   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3931   bool IsSibCall = false;
3932 
3933   if (IsTailCall) {
3934     // Check if it's really possible to do a tail call.
3935     IsTailCall = isEligibleForTailCallOptimization(
3936         Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3937     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3938       report_fatal_error("failed to perform tail call elimination on a call "
3939                          "site marked musttail");
3940 
3941     // A sibling call is one where we're under the usual C ABI and not planning
3942     // to change that but can still do a tail call:
3943     if (!TailCallOpt && IsTailCall)
3944       IsSibCall = true;
3945 
3946     if (IsTailCall)
3947       ++NumTailCalls;
3948   }
3949 
3950   // Analyze operands of the call, assigning locations to each operand.
3951   SmallVector<CCValAssign, 16> ArgLocs;
3952   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3953                  *DAG.getContext());
3954 
3955   if (IsVarArg) {
3956     // Handle fixed and variable vector arguments differently.
3957     // Variable vector arguments always go into memory.
3958     unsigned NumArgs = Outs.size();
3959 
3960     for (unsigned i = 0; i != NumArgs; ++i) {
3961       MVT ArgVT = Outs[i].VT;
3962       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3963       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
3964                                                /*IsVarArg=*/ !Outs[i].IsFixed);
3965       bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3966       assert(!Res && "Call operand has unhandled type");
3967       (void)Res;
3968     }
3969   } else {
3970     // At this point, Outs[].VT may already be promoted to i32. To correctly
3971     // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3972     // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3973     // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3974     // we use a special version of AnalyzeCallOperands to pass in ValVT and
3975     // LocVT.
3976     unsigned NumArgs = Outs.size();
3977     for (unsigned i = 0; i != NumArgs; ++i) {
3978       MVT ValVT = Outs[i].VT;
3979       // Get type of the original argument.
3980       EVT ActualVT = getValueType(DAG.getDataLayout(),
3981                                   CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
3982                                   /*AllowUnknown*/ true);
3983       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
3984       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3985       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3986       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3987         ValVT = MVT::i8;
3988       else if (ActualMVT == MVT::i16)
3989         ValVT = MVT::i16;
3990 
3991       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3992       bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
3993       assert(!Res && "Call operand has unhandled type");
3994       (void)Res;
3995     }
3996   }
3997 
3998   // Get a count of how many bytes are to be pushed on the stack.
3999   unsigned NumBytes = CCInfo.getNextStackOffset();
4000 
4001   if (IsSibCall) {
4002     // Since we're not changing the ABI to make this a tail call, the memory
4003     // operands are already available in the caller's incoming argument space.
4004     NumBytes = 0;
4005   }
4006 
4007   // FPDiff is the byte offset of the call's argument area from the callee's.
4008   // Stores to callee stack arguments will be placed in FixedStackSlots offset
4009   // by this amount for a tail call. In a sibling call it must be 0 because the
4010   // caller will deallocate the entire stack and the callee still expects its
4011   // arguments to begin at SP+0. Completely unused for non-tail calls.
4012   int FPDiff = 0;
4013 
4014   if (IsTailCall && !IsSibCall) {
4015     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
4016 
4017     // Since callee will pop argument stack as a tail call, we must keep the
4018     // popped size 16-byte aligned.
4019     NumBytes = alignTo(NumBytes, 16);
4020 
4021     // FPDiff will be negative if this tail call requires more space than we
4022     // would automatically have in our incoming argument space. Positive if we
4023     // can actually shrink the stack.
4024     FPDiff = NumReusableBytes - NumBytes;
4025 
4026     // The stack pointer must be 16-byte aligned at all times it's used for a
4027     // memory operation, which in practice means at *all* times and in
4028     // particular across call boundaries. Therefore our own arguments started at
4029     // a 16-byte aligned SP and the delta applied for the tail call should
4030     // satisfy the same constraint.
4031     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
4032   }
4033 
4034   // Adjust the stack pointer for the new arguments...
4035   // These operations are automatically eliminated by the prolog/epilog pass
4036   if (!IsSibCall)
4037     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
4038 
4039   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
4040                                         getPointerTy(DAG.getDataLayout()));
4041 
4042   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4043   SmallSet<unsigned, 8> RegsUsed;
4044   SmallVector<SDValue, 8> MemOpChains;
4045   auto PtrVT = getPointerTy(DAG.getDataLayout());
4046 
4047   if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) {
4048     const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
4049     for (const auto &F : Forwards) {
4050       SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
4051        RegsToPass.emplace_back(F.PReg, Val);
4052     }
4053   }
4054 
4055   // Walk the register/memloc assignments, inserting copies/loads.
4056   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4057     CCValAssign &VA = ArgLocs[i];
4058     SDValue Arg = OutVals[i];
4059     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4060 
4061     // Promote the value if needed.
4062     switch (VA.getLocInfo()) {
4063     default:
4064       llvm_unreachable("Unknown loc info!");
4065     case CCValAssign::Full:
4066       break;
4067     case CCValAssign::SExt:
4068       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
4069       break;
4070     case CCValAssign::ZExt:
4071       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
4072       break;
4073     case CCValAssign::AExt:
4074       if (Outs[i].ArgVT == MVT::i1) {
4075         // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
4076         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
4077         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
4078       }
4079       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
4080       break;
4081     case CCValAssign::AExtUpper:
4082       assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
4083       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
4084       Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
4085                         DAG.getConstant(32, DL, VA.getLocVT()));
4086       break;
4087     case CCValAssign::BCvt:
4088       Arg = DAG.getBitcast(VA.getLocVT(), Arg);
4089       break;
4090     case CCValAssign::Trunc:
4091       Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
4092       break;
4093     case CCValAssign::FPExt:
4094       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
4095       break;
4096     case CCValAssign::Indirect:
4097       assert(VA.getValVT().isScalableVector() &&
4098              "Only scalable vectors can be passed indirectly");
4099       llvm_unreachable("Spilling of SVE vectors not yet implemented");
4100     }
4101 
4102     if (VA.isRegLoc()) {
4103       if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
4104           Outs[0].VT == MVT::i64) {
4105         assert(VA.getLocVT() == MVT::i64 &&
4106                "unexpected calling convention register assignment");
4107         assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
4108                "unexpected use of 'returned'");
4109         IsThisReturn = true;
4110       }
4111       if (RegsUsed.count(VA.getLocReg())) {
4112         // If this register has already been used then we're trying to pack
4113         // parts of an [N x i32] into an X-register. The extension type will
4114         // take care of putting the two halves in the right place but we have to
4115         // combine them.
4116         SDValue &Bits =
4117             std::find_if(RegsToPass.begin(), RegsToPass.end(),
4118                          [=](const std::pair<unsigned, SDValue> &Elt) {
4119                            return Elt.first == VA.getLocReg();
4120                          })
4121                 ->second;
4122         Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
4123         // Call site info is used for function's parameter entry value
4124         // tracking. For now we track only simple cases when parameter
4125         // is transferred through whole register.
4126         CSInfo.erase(std::remove_if(CSInfo.begin(), CSInfo.end(),
4127                                     [&VA](MachineFunction::ArgRegPair ArgReg) {
4128                                       return ArgReg.Reg == VA.getLocReg();
4129                                     }),
4130                      CSInfo.end());
4131       } else {
4132         RegsToPass.emplace_back(VA.getLocReg(), Arg);
4133         RegsUsed.insert(VA.getLocReg());
4134         const TargetOptions &Options = DAG.getTarget().Options;
4135         if (Options.EnableDebugEntryValues)
4136           CSInfo.emplace_back(VA.getLocReg(), i);
4137       }
4138     } else {
4139       assert(VA.isMemLoc());
4140 
4141       SDValue DstAddr;
4142       MachinePointerInfo DstInfo;
4143 
4144       // FIXME: This works on big-endian for composite byvals, which are the
4145       // common case. It should also work for fundamental types too.
4146       uint32_t BEAlign = 0;
4147       unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
4148                                         : VA.getValVT().getSizeInBits();
4149       OpSize = (OpSize + 7) / 8;
4150       if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
4151           !Flags.isInConsecutiveRegs()) {
4152         if (OpSize < 8)
4153           BEAlign = 8 - OpSize;
4154       }
4155       unsigned LocMemOffset = VA.getLocMemOffset();
4156       int32_t Offset = LocMemOffset + BEAlign;
4157       SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
4158       PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
4159 
4160       if (IsTailCall) {
4161         Offset = Offset + FPDiff;
4162         int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4163 
4164         DstAddr = DAG.getFrameIndex(FI, PtrVT);
4165         DstInfo =
4166             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
4167 
4168         // Make sure any stack arguments overlapping with where we're storing
4169         // are loaded before this eventual operation. Otherwise they'll be
4170         // clobbered.
4171         Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
4172       } else {
4173         SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
4174 
4175         DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
4176         DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
4177                                                LocMemOffset);
4178       }
4179 
4180       if (Outs[i].Flags.isByVal()) {
4181         SDValue SizeNode =
4182             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
4183         SDValue Cpy = DAG.getMemcpy(
4184             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
4185             /*isVol = */ false, /*AlwaysInline = */ false,
4186             /*isTailCall = */ false,
4187             DstInfo, MachinePointerInfo());
4188 
4189         MemOpChains.push_back(Cpy);
4190       } else {
4191         // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
4192         // promoted to a legal register type i32, we should truncate Arg back to
4193         // i1/i8/i16.
4194         if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
4195             VA.getValVT() == MVT::i16)
4196           Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
4197 
4198         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
4199         MemOpChains.push_back(Store);
4200       }
4201     }
4202   }
4203 
4204   if (!MemOpChains.empty())
4205     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
4206 
4207   // Build a sequence of copy-to-reg nodes chained together with token chain
4208   // and flag operands which copy the outgoing args into the appropriate regs.
4209   SDValue InFlag;
4210   for (auto &RegToPass : RegsToPass) {
4211     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
4212                              RegToPass.second, InFlag);
4213     InFlag = Chain.getValue(1);
4214   }
4215 
4216   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
4217   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
4218   // node so that legalize doesn't hack it.
4219   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4220     auto GV = G->getGlobal();
4221     unsigned OpFlags =
4222         Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine());
4223     if (OpFlags & AArch64II::MO_GOT) {
4224       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
4225       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
4226     } else {
4227       const GlobalValue *GV = G->getGlobal();
4228       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
4229     }
4230   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4231     if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4232         Subtarget->isTargetMachO()) {
4233       const char *Sym = S->getSymbol();
4234       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
4235       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
4236     } else {
4237       const char *Sym = S->getSymbol();
4238       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
4239     }
4240   }
4241 
4242   // We don't usually want to end the call-sequence here because we would tidy
4243   // the frame up *after* the call, however in the ABI-changing tail-call case
4244   // we've carefully laid out the parameters so that when sp is reset they'll be
4245   // in the correct location.
4246   if (IsTailCall && !IsSibCall) {
4247     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
4248                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
4249     InFlag = Chain.getValue(1);
4250   }
4251 
4252   std::vector<SDValue> Ops;
4253   Ops.push_back(Chain);
4254   Ops.push_back(Callee);
4255 
4256   if (IsTailCall) {
4257     // Each tail call may have to adjust the stack by a different amount, so
4258     // this information must travel along with the operation for eventual
4259     // consumption by emitEpilogue.
4260     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
4261   }
4262 
4263   // Add argument registers to the end of the list so that they are known live
4264   // into the call.
4265   for (auto &RegToPass : RegsToPass)
4266     Ops.push_back(DAG.getRegister(RegToPass.first,
4267                                   RegToPass.second.getValueType()));
4268 
4269   // Check callee args/returns for SVE registers and set calling convention
4270   // accordingly.
4271   if (CallConv == CallingConv::C) {
4272     bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){
4273       return Out.VT.isScalableVector();
4274     });
4275     bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){
4276       return In.VT.isScalableVector();
4277     });
4278 
4279     if (CalleeInSVE || CalleeOutSVE)
4280       CallConv = CallingConv::AArch64_SVE_VectorCall;
4281   }
4282 
4283   // Add a register mask operand representing the call-preserved registers.
4284   const uint32_t *Mask;
4285   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4286   if (IsThisReturn) {
4287     // For 'this' returns, use the X0-preserving mask if applicable
4288     Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
4289     if (!Mask) {
4290       IsThisReturn = false;
4291       Mask = TRI->getCallPreservedMask(MF, CallConv);
4292     }
4293   } else
4294     Mask = TRI->getCallPreservedMask(MF, CallConv);
4295 
4296   if (Subtarget->hasCustomCallingConv())
4297     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
4298 
4299   if (TRI->isAnyArgRegReserved(MF))
4300     TRI->emitReservedArgRegCallError(MF);
4301 
4302   assert(Mask && "Missing call preserved mask for calling convention");
4303   Ops.push_back(DAG.getRegisterMask(Mask));
4304 
4305   if (InFlag.getNode())
4306     Ops.push_back(InFlag);
4307 
4308   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4309 
4310   // If we're doing a tall call, use a TC_RETURN here rather than an
4311   // actual call instruction.
4312   if (IsTailCall) {
4313     MF.getFrameInfo().setHasTailCall();
4314     SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
4315     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
4316     return Ret;
4317   }
4318 
4319   // Returns a chain and a flag for retval copy to use.
4320   Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
4321   InFlag = Chain.getValue(1);
4322   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
4323 
4324   uint64_t CalleePopBytes =
4325       DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
4326 
4327   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
4328                              DAG.getIntPtrConstant(CalleePopBytes, DL, true),
4329                              InFlag, DL);
4330   if (!Ins.empty())
4331     InFlag = Chain.getValue(1);
4332 
4333   // Handle result values, copying them out of physregs into vregs that we
4334   // return.
4335   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
4336                          InVals, IsThisReturn,
4337                          IsThisReturn ? OutVals[0] : SDValue());
4338 }
4339 
4340 bool AArch64TargetLowering::CanLowerReturn(
4341     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
4342     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
4343   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
4344                           ? RetCC_AArch64_WebKit_JS
4345                           : RetCC_AArch64_AAPCS;
4346   SmallVector<CCValAssign, 16> RVLocs;
4347   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
4348   return CCInfo.CheckReturn(Outs, RetCC);
4349 }
4350 
4351 SDValue
4352 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
4353                                    bool isVarArg,
4354                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4355                                    const SmallVectorImpl<SDValue> &OutVals,
4356                                    const SDLoc &DL, SelectionDAG &DAG) const {
4357   auto &MF = DAG.getMachineFunction();
4358   auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4359 
4360   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
4361                           ? RetCC_AArch64_WebKit_JS
4362                           : RetCC_AArch64_AAPCS;
4363   SmallVector<CCValAssign, 16> RVLocs;
4364   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4365                  *DAG.getContext());
4366   CCInfo.AnalyzeReturn(Outs, RetCC);
4367 
4368   // Copy the result values into the output registers.
4369   SDValue Flag;
4370   SmallVector<std::pair<unsigned, SDValue>, 4> RetVals;
4371   SmallSet<unsigned, 4> RegsUsed;
4372   for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
4373        ++i, ++realRVLocIdx) {
4374     CCValAssign &VA = RVLocs[i];
4375     assert(VA.isRegLoc() && "Can only return in registers!");
4376     SDValue Arg = OutVals[realRVLocIdx];
4377 
4378     switch (VA.getLocInfo()) {
4379     default:
4380       llvm_unreachable("Unknown loc info!");
4381     case CCValAssign::Full:
4382       if (Outs[i].ArgVT == MVT::i1) {
4383         // AAPCS requires i1 to be zero-extended to i8 by the producer of the
4384         // value. This is strictly redundant on Darwin (which uses "zeroext
4385         // i1"), but will be optimised out before ISel.
4386         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
4387         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
4388       }
4389       break;
4390     case CCValAssign::BCvt:
4391       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
4392       break;
4393     case CCValAssign::AExt:
4394     case CCValAssign::ZExt:
4395       Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
4396       break;
4397     case CCValAssign::AExtUpper:
4398       assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits");
4399       Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT());
4400       Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg,
4401                         DAG.getConstant(32, DL, VA.getLocVT()));
4402       break;
4403     }
4404 
4405     if (RegsUsed.count(VA.getLocReg())) {
4406       SDValue &Bits =
4407           std::find_if(RetVals.begin(), RetVals.end(),
4408                        [=](const std::pair<unsigned, SDValue> &Elt) {
4409                          return Elt.first == VA.getLocReg();
4410                        })
4411               ->second;
4412       Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg);
4413     } else {
4414       RetVals.emplace_back(VA.getLocReg(), Arg);
4415       RegsUsed.insert(VA.getLocReg());
4416     }
4417   }
4418 
4419   SmallVector<SDValue, 4> RetOps(1, Chain);
4420   for (auto &RetVal : RetVals) {
4421     Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag);
4422     Flag = Chain.getValue(1);
4423     RetOps.push_back(
4424         DAG.getRegister(RetVal.first, RetVal.second.getValueType()));
4425   }
4426 
4427   // Windows AArch64 ABIs require that for returning structs by value we copy
4428   // the sret argument into X0 for the return.
4429   // We saved the argument into a virtual register in the entry block,
4430   // so now we copy the value out and into X0.
4431   if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
4432     SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
4433                                      getPointerTy(MF.getDataLayout()));
4434 
4435     unsigned RetValReg = AArch64::X0;
4436     Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
4437     Flag = Chain.getValue(1);
4438 
4439     RetOps.push_back(
4440       DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
4441   }
4442 
4443   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4444   const MCPhysReg *I =
4445       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
4446   if (I) {
4447     for (; *I; ++I) {
4448       if (AArch64::GPR64RegClass.contains(*I))
4449         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
4450       else if (AArch64::FPR64RegClass.contains(*I))
4451         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
4452       else
4453         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
4454     }
4455   }
4456 
4457   RetOps[0] = Chain; // Update chain.
4458 
4459   // Add the flag if we have it.
4460   if (Flag.getNode())
4461     RetOps.push_back(Flag);
4462 
4463   return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
4464 }
4465 
4466 //===----------------------------------------------------------------------===//
4467 //  Other Lowering Code
4468 //===----------------------------------------------------------------------===//
4469 
4470 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
4471                                              SelectionDAG &DAG,
4472                                              unsigned Flag) const {
4473   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
4474                                     N->getOffset(), Flag);
4475 }
4476 
4477 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
4478                                              SelectionDAG &DAG,
4479                                              unsigned Flag) const {
4480   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
4481 }
4482 
4483 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
4484                                              SelectionDAG &DAG,
4485                                              unsigned Flag) const {
4486   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
4487                                    N->getOffset(), Flag);
4488 }
4489 
4490 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
4491                                              SelectionDAG &DAG,
4492                                              unsigned Flag) const {
4493   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
4494 }
4495 
4496 // (loadGOT sym)
4497 template <class NodeTy>
4498 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
4499                                       unsigned Flags) const {
4500   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
4501   SDLoc DL(N);
4502   EVT Ty = getPointerTy(DAG.getDataLayout());
4503   SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
4504   // FIXME: Once remat is capable of dealing with instructions with register
4505   // operands, expand this into two nodes instead of using a wrapper node.
4506   return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
4507 }
4508 
4509 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
4510 template <class NodeTy>
4511 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
4512                                             unsigned Flags) const {
4513   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
4514   SDLoc DL(N);
4515   EVT Ty = getPointerTy(DAG.getDataLayout());
4516   const unsigned char MO_NC = AArch64II::MO_NC;
4517   return DAG.getNode(
4518       AArch64ISD::WrapperLarge, DL, Ty,
4519       getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
4520       getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
4521       getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
4522       getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
4523 }
4524 
4525 // (addlow (adrp %hi(sym)) %lo(sym))
4526 template <class NodeTy>
4527 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
4528                                        unsigned Flags) const {
4529   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
4530   SDLoc DL(N);
4531   EVT Ty = getPointerTy(DAG.getDataLayout());
4532   SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
4533   SDValue Lo = getTargetNode(N, Ty, DAG,
4534                              AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
4535   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
4536   return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
4537 }
4538 
4539 // (adr sym)
4540 template <class NodeTy>
4541 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
4542                                            unsigned Flags) const {
4543   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
4544   SDLoc DL(N);
4545   EVT Ty = getPointerTy(DAG.getDataLayout());
4546   SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
4547   return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
4548 }
4549 
4550 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
4551                                                   SelectionDAG &DAG) const {
4552   GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
4553   const GlobalValue *GV = GN->getGlobal();
4554   unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4555 
4556   if (OpFlags != AArch64II::MO_NO_FLAG)
4557     assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
4558            "unexpected offset in global node");
4559 
4560   // This also catches the large code model case for Darwin, and tiny code
4561   // model with got relocations.
4562   if ((OpFlags & AArch64II::MO_GOT) != 0) {
4563     return getGOT(GN, DAG, OpFlags);
4564   }
4565 
4566   SDValue Result;
4567   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4568     Result = getAddrLarge(GN, DAG, OpFlags);
4569   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
4570     Result = getAddrTiny(GN, DAG, OpFlags);
4571   } else {
4572     Result = getAddr(GN, DAG, OpFlags);
4573   }
4574   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4575   SDLoc DL(GN);
4576   if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
4577     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4578                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4579   return Result;
4580 }
4581 
4582 /// Convert a TLS address reference into the correct sequence of loads
4583 /// and calls to compute the variable's address (for Darwin, currently) and
4584 /// return an SDValue containing the final node.
4585 
4586 /// Darwin only has one TLS scheme which must be capable of dealing with the
4587 /// fully general situation, in the worst case. This means:
4588 ///     + "extern __thread" declaration.
4589 ///     + Defined in a possibly unknown dynamic library.
4590 ///
4591 /// The general system is that each __thread variable has a [3 x i64] descriptor
4592 /// which contains information used by the runtime to calculate the address. The
4593 /// only part of this the compiler needs to know about is the first xword, which
4594 /// contains a function pointer that must be called with the address of the
4595 /// entire descriptor in "x0".
4596 ///
4597 /// Since this descriptor may be in a different unit, in general even the
4598 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
4599 /// is:
4600 ///     adrp x0, _var@TLVPPAGE
4601 ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
4602 ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
4603 ///                                      ; the function pointer
4604 ///     blr x1                           ; Uses descriptor address in x0
4605 ///     ; Address of _var is now in x0.
4606 ///
4607 /// If the address of _var's descriptor *is* known to the linker, then it can
4608 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4609 /// a slight efficiency gain.
4610 SDValue
4611 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
4612                                                    SelectionDAG &DAG) const {
4613   assert(Subtarget->isTargetDarwin() &&
4614          "This function expects a Darwin target");
4615 
4616   SDLoc DL(Op);
4617   MVT PtrVT = getPointerTy(DAG.getDataLayout());
4618   MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout());
4619   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4620 
4621   SDValue TLVPAddr =
4622       DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4623   SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
4624 
4625   // The first entry in the descriptor is a function pointer that we must call
4626   // to obtain the address of the variable.
4627   SDValue Chain = DAG.getEntryNode();
4628   SDValue FuncTLVGet = DAG.getLoad(
4629       PtrMemVT, DL, Chain, DescAddr,
4630       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
4631       /* Alignment = */ PtrMemVT.getSizeInBits() / 8,
4632       MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
4633   Chain = FuncTLVGet.getValue(1);
4634 
4635   // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
4636   FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT);
4637 
4638   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4639   MFI.setAdjustsStack(true);
4640 
4641   // TLS calls preserve all registers except those that absolutely must be
4642   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4643   // silly).
4644   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
4645   const uint32_t *Mask = TRI->getTLSCallPreservedMask();
4646   if (Subtarget->hasCustomCallingConv())
4647     TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
4648 
4649   // Finally, we can make the call. This is just a degenerate version of a
4650   // normal AArch64 call node: x0 takes the address of the descriptor, and
4651   // returns the address of the variable in this thread.
4652   Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
4653   Chain =
4654       DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
4655                   Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
4656                   DAG.getRegisterMask(Mask), Chain.getValue(1));
4657   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
4658 }
4659 
4660 /// Convert a thread-local variable reference into a sequence of instructions to
4661 /// compute the variable's address for the local exec TLS model of ELF targets.
4662 /// The sequence depends on the maximum TLS area size.
4663 SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV,
4664                                                     SDValue ThreadBase,
4665                                                     const SDLoc &DL,
4666                                                     SelectionDAG &DAG) const {
4667   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4668   SDValue TPOff, Addr;
4669 
4670   switch (DAG.getTarget().Options.TLSSize) {
4671   default:
4672     llvm_unreachable("Unexpected TLS size");
4673 
4674   case 12: {
4675     // mrs   x0, TPIDR_EL0
4676     // add   x0, x0, :tprel_lo12:a
4677     SDValue Var = DAG.getTargetGlobalAddress(
4678         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF);
4679     return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
4680                                       Var,
4681                                       DAG.getTargetConstant(0, DL, MVT::i32)),
4682                    0);
4683   }
4684 
4685   case 24: {
4686     // mrs   x0, TPIDR_EL0
4687     // add   x0, x0, :tprel_hi12:a
4688     // add   x0, x0, :tprel_lo12_nc:a
4689     SDValue HiVar = DAG.getTargetGlobalAddress(
4690         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4691     SDValue LoVar = DAG.getTargetGlobalAddress(
4692         GV, DL, PtrVT, 0,
4693         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4694     Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
4695                                       HiVar,
4696                                       DAG.getTargetConstant(0, DL, MVT::i32)),
4697                    0);
4698     return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr,
4699                                       LoVar,
4700                                       DAG.getTargetConstant(0, DL, MVT::i32)),
4701                    0);
4702   }
4703 
4704   case 32: {
4705     // mrs   x1, TPIDR_EL0
4706     // movz  x0, #:tprel_g1:a
4707     // movk  x0, #:tprel_g0_nc:a
4708     // add   x0, x1, x0
4709     SDValue HiVar = DAG.getTargetGlobalAddress(
4710         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
4711     SDValue LoVar = DAG.getTargetGlobalAddress(
4712         GV, DL, PtrVT, 0,
4713         AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
4714     TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
4715                                        DAG.getTargetConstant(16, DL, MVT::i32)),
4716                     0);
4717     TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
4718                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4719                     0);
4720     return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4721   }
4722 
4723   case 48: {
4724     // mrs   x1, TPIDR_EL0
4725     // movz  x0, #:tprel_g2:a
4726     // movk  x0, #:tprel_g1_nc:a
4727     // movk  x0, #:tprel_g0_nc:a
4728     // add   x0, x1, x0
4729     SDValue HiVar = DAG.getTargetGlobalAddress(
4730         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2);
4731     SDValue MiVar = DAG.getTargetGlobalAddress(
4732         GV, DL, PtrVT, 0,
4733         AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC);
4734     SDValue LoVar = DAG.getTargetGlobalAddress(
4735         GV, DL, PtrVT, 0,
4736         AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
4737     TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
4738                                        DAG.getTargetConstant(32, DL, MVT::i32)),
4739                     0);
4740     TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar,
4741                                        DAG.getTargetConstant(16, DL, MVT::i32)),
4742                     0);
4743     TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
4744                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4745                     0);
4746     return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4747   }
4748   }
4749 }
4750 
4751 /// When accessing thread-local variables under either the general-dynamic or
4752 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4753 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4754 /// is a function pointer to carry out the resolution.
4755 ///
4756 /// The sequence is:
4757 ///    adrp  x0, :tlsdesc:var
4758 ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
4759 ///    add   x0, x0, #:tlsdesc_lo12:var
4760 ///    .tlsdesccall var
4761 ///    blr   x1
4762 ///    (TPIDR_EL0 offset now in x0)
4763 ///
4764 ///  The above sequence must be produced unscheduled, to enable the linker to
4765 ///  optimize/relax this sequence.
4766 ///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4767 ///  above sequence, and expanded really late in the compilation flow, to ensure
4768 ///  the sequence is produced as per above.
4769 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
4770                                                       const SDLoc &DL,
4771                                                       SelectionDAG &DAG) const {
4772   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4773 
4774   SDValue Chain = DAG.getEntryNode();
4775   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4776 
4777   Chain =
4778       DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
4779   SDValue Glue = Chain.getValue(1);
4780 
4781   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
4782 }
4783 
4784 SDValue
4785 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
4786                                                 SelectionDAG &DAG) const {
4787   assert(Subtarget->isTargetELF() && "This function expects an ELF target");
4788 
4789   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4790 
4791   TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
4792 
4793   if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
4794     if (Model == TLSModel::LocalDynamic)
4795       Model = TLSModel::GeneralDynamic;
4796   }
4797 
4798   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4799       Model != TLSModel::LocalExec)
4800     report_fatal_error("ELF TLS only supported in small memory model or "
4801                        "in local exec TLS model");
4802   // Different choices can be made for the maximum size of the TLS area for a
4803   // module. For the small address model, the default TLS size is 16MiB and the
4804   // maximum TLS size is 4GiB.
4805   // FIXME: add tiny and large code model support for TLS access models other
4806   // than local exec. We currently generate the same code as small for tiny,
4807   // which may be larger than needed.
4808 
4809   SDValue TPOff;
4810   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4811   SDLoc DL(Op);
4812   const GlobalValue *GV = GA->getGlobal();
4813 
4814   SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
4815 
4816   if (Model == TLSModel::LocalExec) {
4817     return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG);
4818   } else if (Model == TLSModel::InitialExec) {
4819     TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4820     TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
4821   } else if (Model == TLSModel::LocalDynamic) {
4822     // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4823     // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4824     // the beginning of the module's TLS region, followed by a DTPREL offset
4825     // calculation.
4826 
4827     // These accesses will need deduplicating if there's more than one.
4828     AArch64FunctionInfo *MFI =
4829         DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4830     MFI->incNumLocalDynamicTLSAccesses();
4831 
4832     // The call needs a relocation too for linker relaxation. It doesn't make
4833     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4834     // the address.
4835     SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
4836                                                   AArch64II::MO_TLS);
4837 
4838     // Now we can calculate the offset from TPIDR_EL0 to this module's
4839     // thread-local area.
4840     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4841 
4842     // Now use :dtprel_whatever: operations to calculate this variable's offset
4843     // in its thread-storage area.
4844     SDValue HiVar = DAG.getTargetGlobalAddress(
4845         GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4846     SDValue LoVar = DAG.getTargetGlobalAddress(
4847         GV, DL, MVT::i64, 0,
4848         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4849 
4850     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
4851                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4852                     0);
4853     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
4854                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4855                     0);
4856   } else if (Model == TLSModel::GeneralDynamic) {
4857     // The call needs a relocation too for linker relaxation. It doesn't make
4858     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4859     // the address.
4860     SDValue SymAddr =
4861         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4862 
4863     // Finally we can make a call to calculate the offset from tpidr_el0.
4864     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4865   } else
4866     llvm_unreachable("Unsupported ELF TLS access model");
4867 
4868   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4869 }
4870 
4871 SDValue
4872 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
4873                                                     SelectionDAG &DAG) const {
4874   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
4875 
4876   SDValue Chain = DAG.getEntryNode();
4877   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4878   SDLoc DL(Op);
4879 
4880   SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
4881 
4882   // Load the ThreadLocalStoragePointer from the TEB
4883   // A pointer to the TLS array is located at offset 0x58 from the TEB.
4884   SDValue TLSArray =
4885       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
4886   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
4887   Chain = TLSArray.getValue(1);
4888 
4889   // Load the TLS index from the C runtime;
4890   // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4891   // This also does the same as LOADgot, but using a generic i32 load,
4892   // while LOADgot only loads i64.
4893   SDValue TLSIndexHi =
4894       DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
4895   SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
4896       "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4897   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
4898   SDValue TLSIndex =
4899       DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
4900   TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
4901   Chain = TLSIndex.getValue(1);
4902 
4903   // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4904   // offset into the TLSArray.
4905   TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
4906   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
4907                              DAG.getConstant(3, DL, PtrVT));
4908   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
4909                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
4910                             MachinePointerInfo());
4911   Chain = TLS.getValue(1);
4912 
4913   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4914   const GlobalValue *GV = GA->getGlobal();
4915   SDValue TGAHi = DAG.getTargetGlobalAddress(
4916       GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4917   SDValue TGALo = DAG.getTargetGlobalAddress(
4918       GV, DL, PtrVT, 0,
4919       AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4920 
4921   // Add the offset from the start of the .tls section (section base).
4922   SDValue Addr =
4923       SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
4924                                  DAG.getTargetConstant(0, DL, MVT::i32)),
4925               0);
4926   Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
4927   return Addr;
4928 }
4929 
4930 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
4931                                                      SelectionDAG &DAG) const {
4932   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4933   if (DAG.getTarget().useEmulatedTLS())
4934     return LowerToTLSEmulatedModel(GA, DAG);
4935 
4936   if (Subtarget->isTargetDarwin())
4937     return LowerDarwinGlobalTLSAddress(Op, DAG);
4938   if (Subtarget->isTargetELF())
4939     return LowerELFGlobalTLSAddress(Op, DAG);
4940   if (Subtarget->isTargetWindows())
4941     return LowerWindowsGlobalTLSAddress(Op, DAG);
4942 
4943   llvm_unreachable("Unexpected platform trying to use TLS");
4944 }
4945 
4946 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4947   SDValue Chain = Op.getOperand(0);
4948   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4949   SDValue LHS = Op.getOperand(2);
4950   SDValue RHS = Op.getOperand(3);
4951   SDValue Dest = Op.getOperand(4);
4952   SDLoc dl(Op);
4953 
4954   MachineFunction &MF = DAG.getMachineFunction();
4955   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
4956   // will not be produced, as they are conditional branch instructions that do
4957   // not set flags.
4958   bool ProduceNonFlagSettingCondBr =
4959       !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
4960 
4961   // Handle f128 first, since lowering it will result in comparing the return
4962   // value of a libcall against zero, which is just what the rest of LowerBR_CC
4963   // is expecting to deal with.
4964   if (LHS.getValueType() == MVT::f128) {
4965     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
4966 
4967     // If softenSetCCOperands returned a scalar, we need to compare the result
4968     // against zero to select between true and false values.
4969     if (!RHS.getNode()) {
4970       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4971       CC = ISD::SETNE;
4972     }
4973   }
4974 
4975   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4976   // instruction.
4977   if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
4978       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4979     // Only lower legal XALUO ops.
4980     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4981       return SDValue();
4982 
4983     // The actual operation with overflow check.
4984     AArch64CC::CondCode OFCC;
4985     SDValue Value, Overflow;
4986     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
4987 
4988     if (CC == ISD::SETNE)
4989       OFCC = getInvertedCondCode(OFCC);
4990     SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
4991 
4992     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4993                        Overflow);
4994   }
4995 
4996   if (LHS.getValueType().isInteger()) {
4997     assert((LHS.getValueType() == RHS.getValueType()) &&
4998            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4999 
5000     // If the RHS of the comparison is zero, we can potentially fold this
5001     // to a specialized branch.
5002     const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
5003     if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
5004       if (CC == ISD::SETEQ) {
5005         // See if we can use a TBZ to fold in an AND as well.
5006         // TBZ has a smaller branch displacement than CBZ.  If the offset is
5007         // out of bounds, a late MI-layer pass rewrites branches.
5008         // 403.gcc is an example that hits this case.
5009         if (LHS.getOpcode() == ISD::AND &&
5010             isa<ConstantSDNode>(LHS.getOperand(1)) &&
5011             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
5012           SDValue Test = LHS.getOperand(0);
5013           uint64_t Mask = LHS.getConstantOperandVal(1);
5014           return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
5015                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
5016                              Dest);
5017         }
5018 
5019         return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
5020       } else if (CC == ISD::SETNE) {
5021         // See if we can use a TBZ to fold in an AND as well.
5022         // TBZ has a smaller branch displacement than CBZ.  If the offset is
5023         // out of bounds, a late MI-layer pass rewrites branches.
5024         // 403.gcc is an example that hits this case.
5025         if (LHS.getOpcode() == ISD::AND &&
5026             isa<ConstantSDNode>(LHS.getOperand(1)) &&
5027             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
5028           SDValue Test = LHS.getOperand(0);
5029           uint64_t Mask = LHS.getConstantOperandVal(1);
5030           return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
5031                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
5032                              Dest);
5033         }
5034 
5035         return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
5036       } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
5037         // Don't combine AND since emitComparison converts the AND to an ANDS
5038         // (a.k.a. TST) and the test in the test bit and branch instruction
5039         // becomes redundant.  This would also increase register pressure.
5040         uint64_t Mask = LHS.getValueSizeInBits() - 1;
5041         return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
5042                            DAG.getConstant(Mask, dl, MVT::i64), Dest);
5043       }
5044     }
5045     if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
5046         LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
5047       // Don't combine AND since emitComparison converts the AND to an ANDS
5048       // (a.k.a. TST) and the test in the test bit and branch instruction
5049       // becomes redundant.  This would also increase register pressure.
5050       uint64_t Mask = LHS.getValueSizeInBits() - 1;
5051       return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
5052                          DAG.getConstant(Mask, dl, MVT::i64), Dest);
5053     }
5054 
5055     SDValue CCVal;
5056     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
5057     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
5058                        Cmp);
5059   }
5060 
5061   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
5062          LHS.getValueType() == MVT::f64);
5063 
5064   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5065   // clean.  Some of them require two branches to implement.
5066   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
5067   AArch64CC::CondCode CC1, CC2;
5068   changeFPCCToAArch64CC(CC, CC1, CC2);
5069   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
5070   SDValue BR1 =
5071       DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
5072   if (CC2 != AArch64CC::AL) {
5073     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
5074     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
5075                        Cmp);
5076   }
5077 
5078   return BR1;
5079 }
5080 
5081 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
5082                                               SelectionDAG &DAG) const {
5083   EVT VT = Op.getValueType();
5084   SDLoc DL(Op);
5085 
5086   SDValue In1 = Op.getOperand(0);
5087   SDValue In2 = Op.getOperand(1);
5088   EVT SrcVT = In2.getValueType();
5089 
5090   if (SrcVT.bitsLT(VT))
5091     In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
5092   else if (SrcVT.bitsGT(VT))
5093     In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
5094 
5095   EVT VecVT;
5096   uint64_t EltMask;
5097   SDValue VecVal1, VecVal2;
5098 
5099   auto setVecVal = [&] (int Idx) {
5100     if (!VT.isVector()) {
5101       VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
5102                                           DAG.getUNDEF(VecVT), In1);
5103       VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
5104                                           DAG.getUNDEF(VecVT), In2);
5105     } else {
5106       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
5107       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
5108     }
5109   };
5110 
5111   if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
5112     VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
5113     EltMask = 0x80000000ULL;
5114     setVecVal(AArch64::ssub);
5115   } else if (VT == MVT::f64 || VT == MVT::v2f64) {
5116     VecVT = MVT::v2i64;
5117 
5118     // We want to materialize a mask with the high bit set, but the AdvSIMD
5119     // immediate moves cannot materialize that in a single instruction for
5120     // 64-bit elements. Instead, materialize zero and then negate it.
5121     EltMask = 0;
5122 
5123     setVecVal(AArch64::dsub);
5124   } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
5125     VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
5126     EltMask = 0x8000ULL;
5127     setVecVal(AArch64::hsub);
5128   } else {
5129     llvm_unreachable("Invalid type for copysign!");
5130   }
5131 
5132   SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
5133 
5134   // If we couldn't materialize the mask above, then the mask vector will be
5135   // the zero vector, and we need to negate it here.
5136   if (VT == MVT::f64 || VT == MVT::v2f64) {
5137     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
5138     BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
5139     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
5140   }
5141 
5142   SDValue Sel =
5143       DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
5144 
5145   if (VT == MVT::f16)
5146     return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
5147   if (VT == MVT::f32)
5148     return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
5149   else if (VT == MVT::f64)
5150     return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
5151   else
5152     return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
5153 }
5154 
5155 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
5156   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
5157           Attribute::NoImplicitFloat))
5158     return SDValue();
5159 
5160   if (!Subtarget->hasNEON())
5161     return SDValue();
5162 
5163   // While there is no integer popcount instruction, it can
5164   // be more efficiently lowered to the following sequence that uses
5165   // AdvSIMD registers/instructions as long as the copies to/from
5166   // the AdvSIMD registers are cheap.
5167   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
5168   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
5169   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
5170   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
5171   SDValue Val = Op.getOperand(0);
5172   SDLoc DL(Op);
5173   EVT VT = Op.getValueType();
5174 
5175   if (VT == MVT::i32 || VT == MVT::i64) {
5176     if (VT == MVT::i32)
5177       Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
5178     Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
5179 
5180     SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
5181     SDValue UaddLV = DAG.getNode(
5182         ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
5183         DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
5184 
5185     if (VT == MVT::i64)
5186       UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
5187     return UaddLV;
5188   }
5189 
5190   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
5191           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
5192          "Unexpected type for custom ctpop lowering");
5193 
5194   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5195   Val = DAG.getBitcast(VT8Bit, Val);
5196   Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
5197 
5198   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5199   unsigned EltSize = 8;
5200   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
5201   while (EltSize != VT.getScalarSizeInBits()) {
5202     EltSize *= 2;
5203     NumElts /= 2;
5204     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
5205     Val = DAG.getNode(
5206         ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
5207         DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
5208   }
5209 
5210   return Val;
5211 }
5212 
5213 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
5214 
5215   if (Op.getValueType().isVector())
5216     return LowerVSETCC(Op, DAG);
5217 
5218   bool IsStrict = Op->isStrictFPOpcode();
5219   bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
5220   unsigned OpNo = IsStrict ? 1 : 0;
5221   SDValue Chain;
5222   if (IsStrict)
5223     Chain = Op.getOperand(0);
5224   SDValue LHS = Op.getOperand(OpNo + 0);
5225   SDValue RHS = Op.getOperand(OpNo + 1);
5226   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get();
5227   SDLoc dl(Op);
5228 
5229   // We chose ZeroOrOneBooleanContents, so use zero and one.
5230   EVT VT = Op.getValueType();
5231   SDValue TVal = DAG.getConstant(1, dl, VT);
5232   SDValue FVal = DAG.getConstant(0, dl, VT);
5233 
5234   // Handle f128 first, since one possible outcome is a normal integer
5235   // comparison which gets picked up by the next if statement.
5236   if (LHS.getValueType() == MVT::f128) {
5237     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain,
5238                         IsSignaling);
5239 
5240     // If softenSetCCOperands returned a scalar, use it.
5241     if (!RHS.getNode()) {
5242       assert(LHS.getValueType() == Op.getValueType() &&
5243              "Unexpected setcc expansion!");
5244       return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS;
5245     }
5246   }
5247 
5248   if (LHS.getValueType().isInteger()) {
5249     SDValue CCVal;
5250     SDValue Cmp = getAArch64Cmp(
5251         LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl);
5252 
5253     // Note that we inverted the condition above, so we reverse the order of
5254     // the true and false operands here.  This will allow the setcc to be
5255     // matched to a single CSINC instruction.
5256     SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
5257     return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res;
5258   }
5259 
5260   // Now we know we're dealing with FP values.
5261   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
5262          LHS.getValueType() == MVT::f64);
5263 
5264   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
5265   // and do the comparison.
5266   SDValue Cmp;
5267   if (IsStrict)
5268     Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling);
5269   else
5270     Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
5271 
5272   AArch64CC::CondCode CC1, CC2;
5273   changeFPCCToAArch64CC(CC, CC1, CC2);
5274   SDValue Res;
5275   if (CC2 == AArch64CC::AL) {
5276     changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1,
5277                           CC2);
5278     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
5279 
5280     // Note that we inverted the condition above, so we reverse the order of
5281     // the true and false operands here.  This will allow the setcc to be
5282     // matched to a single CSINC instruction.
5283     Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
5284   } else {
5285     // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
5286     // totally clean.  Some of them require two CSELs to implement.  As is in
5287     // this case, we emit the first CSEL and then emit a second using the output
5288     // of the first as the RHS.  We're effectively OR'ing the two CC's together.
5289 
5290     // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
5291     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
5292     SDValue CS1 =
5293         DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
5294 
5295     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
5296     Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
5297   }
5298   return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res;
5299 }
5300 
5301 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
5302                                               SDValue RHS, SDValue TVal,
5303                                               SDValue FVal, const SDLoc &dl,
5304                                               SelectionDAG &DAG) const {
5305   // Handle f128 first, because it will result in a comparison of some RTLIB
5306   // call result against zero.
5307   if (LHS.getValueType() == MVT::f128) {
5308     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS);
5309 
5310     // If softenSetCCOperands returned a scalar, we need to compare the result
5311     // against zero to select between true and false values.
5312     if (!RHS.getNode()) {
5313       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5314       CC = ISD::SETNE;
5315     }
5316   }
5317 
5318   // Also handle f16, for which we need to do a f32 comparison.
5319   if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
5320     LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
5321     RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
5322   }
5323 
5324   // Next, handle integers.
5325   if (LHS.getValueType().isInteger()) {
5326     assert((LHS.getValueType() == RHS.getValueType()) &&
5327            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
5328 
5329     unsigned Opcode = AArch64ISD::CSEL;
5330 
5331     // If both the TVal and the FVal are constants, see if we can swap them in
5332     // order to for a CSINV or CSINC out of them.
5333     ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
5334     ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
5335 
5336     if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
5337       std::swap(TVal, FVal);
5338       std::swap(CTVal, CFVal);
5339       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5340     } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
5341       std::swap(TVal, FVal);
5342       std::swap(CTVal, CFVal);
5343       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5344     } else if (TVal.getOpcode() == ISD::XOR) {
5345       // If TVal is a NOT we want to swap TVal and FVal so that we can match
5346       // with a CSINV rather than a CSEL.
5347       if (isAllOnesConstant(TVal.getOperand(1))) {
5348         std::swap(TVal, FVal);
5349         std::swap(CTVal, CFVal);
5350         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5351       }
5352     } else if (TVal.getOpcode() == ISD::SUB) {
5353       // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
5354       // that we can match with a CSNEG rather than a CSEL.
5355       if (isNullConstant(TVal.getOperand(0))) {
5356         std::swap(TVal, FVal);
5357         std::swap(CTVal, CFVal);
5358         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5359       }
5360     } else if (CTVal && CFVal) {
5361       const int64_t TrueVal = CTVal->getSExtValue();
5362       const int64_t FalseVal = CFVal->getSExtValue();
5363       bool Swap = false;
5364 
5365       // If both TVal and FVal are constants, see if FVal is the
5366       // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
5367       // instead of a CSEL in that case.
5368       if (TrueVal == ~FalseVal) {
5369         Opcode = AArch64ISD::CSINV;
5370       } else if (TrueVal == -FalseVal) {
5371         Opcode = AArch64ISD::CSNEG;
5372       } else if (TVal.getValueType() == MVT::i32) {
5373         // If our operands are only 32-bit wide, make sure we use 32-bit
5374         // arithmetic for the check whether we can use CSINC. This ensures that
5375         // the addition in the check will wrap around properly in case there is
5376         // an overflow (which would not be the case if we do the check with
5377         // 64-bit arithmetic).
5378         const uint32_t TrueVal32 = CTVal->getZExtValue();
5379         const uint32_t FalseVal32 = CFVal->getZExtValue();
5380 
5381         if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
5382           Opcode = AArch64ISD::CSINC;
5383 
5384           if (TrueVal32 > FalseVal32) {
5385             Swap = true;
5386           }
5387         }
5388         // 64-bit check whether we can use CSINC.
5389       } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
5390         Opcode = AArch64ISD::CSINC;
5391 
5392         if (TrueVal > FalseVal) {
5393           Swap = true;
5394         }
5395       }
5396 
5397       // Swap TVal and FVal if necessary.
5398       if (Swap) {
5399         std::swap(TVal, FVal);
5400         std::swap(CTVal, CFVal);
5401         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5402       }
5403 
5404       if (Opcode != AArch64ISD::CSEL) {
5405         // Drop FVal since we can get its value by simply inverting/negating
5406         // TVal.
5407         FVal = TVal;
5408       }
5409     }
5410 
5411     // Avoid materializing a constant when possible by reusing a known value in
5412     // a register.  However, don't perform this optimization if the known value
5413     // is one, zero or negative one in the case of a CSEL.  We can always
5414     // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
5415     // FVal, respectively.
5416     ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
5417     if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
5418         !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
5419       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
5420       // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
5421       // "a != C ? x : a" to avoid materializing C.
5422       if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
5423         TVal = LHS;
5424       else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
5425         FVal = LHS;
5426     } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
5427       assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
5428       // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
5429       // avoid materializing C.
5430       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
5431       if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
5432         Opcode = AArch64ISD::CSINV;
5433         TVal = LHS;
5434         FVal = DAG.getConstant(0, dl, FVal.getValueType());
5435       }
5436     }
5437 
5438     SDValue CCVal;
5439     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
5440     EVT VT = TVal.getValueType();
5441     return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
5442   }
5443 
5444   // Now we know we're dealing with FP values.
5445   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
5446          LHS.getValueType() == MVT::f64);
5447   assert(LHS.getValueType() == RHS.getValueType());
5448   EVT VT = TVal.getValueType();
5449   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
5450 
5451   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5452   // clean.  Some of them require two CSELs to implement.
5453   AArch64CC::CondCode CC1, CC2;
5454   changeFPCCToAArch64CC(CC, CC1, CC2);
5455 
5456   if (DAG.getTarget().Options.UnsafeFPMath) {
5457     // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
5458     // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
5459     ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
5460     if (RHSVal && RHSVal->isZero()) {
5461       ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
5462       ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
5463 
5464       if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
5465           CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
5466         TVal = LHS;
5467       else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
5468                CFVal && CFVal->isZero() &&
5469                FVal.getValueType() == LHS.getValueType())
5470         FVal = LHS;
5471     }
5472   }
5473 
5474   // Emit first, and possibly only, CSEL.
5475   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
5476   SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
5477 
5478   // If we need a second CSEL, emit it, using the output of the first as the
5479   // RHS.  We're effectively OR'ing the two CC's together.
5480   if (CC2 != AArch64CC::AL) {
5481     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
5482     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
5483   }
5484 
5485   // Otherwise, return the output of the first CSEL.
5486   return CS1;
5487 }
5488 
5489 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
5490                                               SelectionDAG &DAG) const {
5491   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5492   SDValue LHS = Op.getOperand(0);
5493   SDValue RHS = Op.getOperand(1);
5494   SDValue TVal = Op.getOperand(2);
5495   SDValue FVal = Op.getOperand(3);
5496   SDLoc DL(Op);
5497   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
5498 }
5499 
5500 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
5501                                            SelectionDAG &DAG) const {
5502   SDValue CCVal = Op->getOperand(0);
5503   SDValue TVal = Op->getOperand(1);
5504   SDValue FVal = Op->getOperand(2);
5505   SDLoc DL(Op);
5506 
5507   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
5508   // instruction.
5509   if (isOverflowIntrOpRes(CCVal)) {
5510     // Only lower legal XALUO ops.
5511     if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
5512       return SDValue();
5513 
5514     AArch64CC::CondCode OFCC;
5515     SDValue Value, Overflow;
5516     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
5517     SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
5518 
5519     return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
5520                        CCVal, Overflow);
5521   }
5522 
5523   // Lower it the same way as we would lower a SELECT_CC node.
5524   ISD::CondCode CC;
5525   SDValue LHS, RHS;
5526   if (CCVal.getOpcode() == ISD::SETCC) {
5527     LHS = CCVal.getOperand(0);
5528     RHS = CCVal.getOperand(1);
5529     CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
5530   } else {
5531     LHS = CCVal;
5532     RHS = DAG.getConstant(0, DL, CCVal.getValueType());
5533     CC = ISD::SETNE;
5534   }
5535   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
5536 }
5537 
5538 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
5539                                               SelectionDAG &DAG) const {
5540   // Jump table entries as PC relative offsets. No additional tweaking
5541   // is necessary here. Just get the address of the jump table.
5542   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5543 
5544   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5545       !Subtarget->isTargetMachO()) {
5546     return getAddrLarge(JT, DAG);
5547   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5548     return getAddrTiny(JT, DAG);
5549   }
5550   return getAddr(JT, DAG);
5551 }
5552 
5553 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
5554                                           SelectionDAG &DAG) const {
5555   // Jump table entries as PC relative offsets. No additional tweaking
5556   // is necessary here. Just get the address of the jump table.
5557   SDLoc DL(Op);
5558   SDValue JT = Op.getOperand(1);
5559   SDValue Entry = Op.getOperand(2);
5560   int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
5561 
5562   SDNode *Dest =
5563       DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
5564                          Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
5565   return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
5566                      SDValue(Dest, 0));
5567 }
5568 
5569 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
5570                                                  SelectionDAG &DAG) const {
5571   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5572 
5573   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
5574     // Use the GOT for the large code model on iOS.
5575     if (Subtarget->isTargetMachO()) {
5576       return getGOT(CP, DAG);
5577     }
5578     return getAddrLarge(CP, DAG);
5579   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5580     return getAddrTiny(CP, DAG);
5581   } else {
5582     return getAddr(CP, DAG);
5583   }
5584 }
5585 
5586 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
5587                                                SelectionDAG &DAG) const {
5588   BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
5589   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
5590       !Subtarget->isTargetMachO()) {
5591     return getAddrLarge(BA, DAG);
5592   } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
5593     return getAddrTiny(BA, DAG);
5594   }
5595   return getAddr(BA, DAG);
5596 }
5597 
5598 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
5599                                                  SelectionDAG &DAG) const {
5600   AArch64FunctionInfo *FuncInfo =
5601       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5602 
5603   SDLoc DL(Op);
5604   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
5605                                  getPointerTy(DAG.getDataLayout()));
5606   FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout()));
5607   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5608   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5609                       MachinePointerInfo(SV));
5610 }
5611 
5612 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
5613                                                   SelectionDAG &DAG) const {
5614   AArch64FunctionInfo *FuncInfo =
5615       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
5616 
5617   SDLoc DL(Op);
5618   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
5619                                      ? FuncInfo->getVarArgsGPRIndex()
5620                                      : FuncInfo->getVarArgsStackIndex(),
5621                                  getPointerTy(DAG.getDataLayout()));
5622   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5623   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
5624                       MachinePointerInfo(SV));
5625 }
5626 
5627 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
5628                                                 SelectionDAG &DAG) const {
5629   // The layout of the va_list struct is specified in the AArch64 Procedure Call
5630   // Standard, section B.3.
5631   MachineFunction &MF = DAG.getMachineFunction();
5632   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
5633   auto PtrVT = getPointerTy(DAG.getDataLayout());
5634   SDLoc DL(Op);
5635 
5636   SDValue Chain = Op.getOperand(0);
5637   SDValue VAList = Op.getOperand(1);
5638   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5639   SmallVector<SDValue, 4> MemOps;
5640 
5641   // void *__stack at offset 0
5642   SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
5643   MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
5644                                 MachinePointerInfo(SV), /* Alignment = */ 8));
5645 
5646   // void *__gr_top at offset 8
5647   int GPRSize = FuncInfo->getVarArgsGPRSize();
5648   if (GPRSize > 0) {
5649     SDValue GRTop, GRTopAddr;
5650 
5651     GRTopAddr =
5652         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
5653 
5654     GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
5655     GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
5656                         DAG.getConstant(GPRSize, DL, PtrVT));
5657 
5658     MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
5659                                   MachinePointerInfo(SV, 8),
5660                                   /* Alignment = */ 8));
5661   }
5662 
5663   // void *__vr_top at offset 16
5664   int FPRSize = FuncInfo->getVarArgsFPRSize();
5665   if (FPRSize > 0) {
5666     SDValue VRTop, VRTopAddr;
5667     VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5668                             DAG.getConstant(16, DL, PtrVT));
5669 
5670     VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
5671     VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
5672                         DAG.getConstant(FPRSize, DL, PtrVT));
5673 
5674     MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
5675                                   MachinePointerInfo(SV, 16),
5676                                   /* Alignment = */ 8));
5677   }
5678 
5679   // int __gr_offs at offset 24
5680   SDValue GROffsAddr =
5681       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
5682   MemOps.push_back(DAG.getStore(
5683       Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
5684       MachinePointerInfo(SV, 24), /* Alignment = */ 4));
5685 
5686   // int __vr_offs at offset 28
5687   SDValue VROffsAddr =
5688       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
5689   MemOps.push_back(DAG.getStore(
5690       Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
5691       MachinePointerInfo(SV, 28), /* Alignment = */ 4));
5692 
5693   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
5694 }
5695 
5696 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
5697                                             SelectionDAG &DAG) const {
5698   MachineFunction &MF = DAG.getMachineFunction();
5699 
5700   if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
5701     return LowerWin64_VASTART(Op, DAG);
5702   else if (Subtarget->isTargetDarwin())
5703     return LowerDarwin_VASTART(Op, DAG);
5704   else
5705     return LowerAAPCS_VASTART(Op, DAG);
5706 }
5707 
5708 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
5709                                            SelectionDAG &DAG) const {
5710   // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
5711   // pointer.
5712   SDLoc DL(Op);
5713   unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8;
5714   unsigned VaListSize = (Subtarget->isTargetDarwin() ||
5715                          Subtarget->isTargetWindows()) ? PtrSize : 32;
5716   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5717   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5718 
5719   return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2),
5720                        DAG.getConstant(VaListSize, DL, MVT::i32), PtrSize,
5721                        false, false, false, MachinePointerInfo(DestSV),
5722                        MachinePointerInfo(SrcSV));
5723 }
5724 
5725 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
5726   assert(Subtarget->isTargetDarwin() &&
5727          "automatic va_arg instruction only works on Darwin");
5728 
5729   const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5730   EVT VT = Op.getValueType();
5731   SDLoc DL(Op);
5732   SDValue Chain = Op.getOperand(0);
5733   SDValue Addr = Op.getOperand(1);
5734   unsigned Align = Op.getConstantOperandVal(3);
5735   unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8;
5736   auto PtrVT = getPointerTy(DAG.getDataLayout());
5737   auto PtrMemVT = getPointerMemTy(DAG.getDataLayout());
5738   SDValue VAList =
5739       DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V));
5740   Chain = VAList.getValue(1);
5741   VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT);
5742 
5743   if (Align > MinSlotSize) {
5744     assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
5745     VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5746                          DAG.getConstant(Align - 1, DL, PtrVT));
5747     VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
5748                          DAG.getConstant(-(int64_t)Align, DL, PtrVT));
5749   }
5750 
5751   Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5752   unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
5753 
5754   // Scalar integer and FP values smaller than 64 bits are implicitly extended
5755   // up to 64 bits.  At the very least, we have to increase the striding of the
5756   // vaargs list to match this, and for FP values we need to introduce
5757   // FP_ROUND nodes as well.
5758   if (VT.isInteger() && !VT.isVector())
5759     ArgSize = std::max(ArgSize, MinSlotSize);
5760   bool NeedFPTrunc = false;
5761   if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
5762     ArgSize = 8;
5763     NeedFPTrunc = true;
5764   }
5765 
5766   // Increment the pointer, VAList, to the next vaarg
5767   SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5768                                DAG.getConstant(ArgSize, DL, PtrVT));
5769   VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT);
5770 
5771   // Store the incremented VAList to the legalized pointer
5772   SDValue APStore =
5773       DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
5774 
5775   // Load the actual argument out of the pointer VAList
5776   if (NeedFPTrunc) {
5777     // Load the value as an f64.
5778     SDValue WideFP =
5779         DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
5780     // Round the value down to an f32.
5781     SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
5782                                    DAG.getIntPtrConstant(1, DL));
5783     SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
5784     // Merge the rounded value with the chain output of the load.
5785     return DAG.getMergeValues(Ops, DL);
5786   }
5787 
5788   return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
5789 }
5790 
5791 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
5792                                               SelectionDAG &DAG) const {
5793   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5794   MFI.setFrameAddressIsTaken(true);
5795 
5796   EVT VT = Op.getValueType();
5797   SDLoc DL(Op);
5798   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5799   SDValue FrameAddr =
5800       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64);
5801   while (Depth--)
5802     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
5803                             MachinePointerInfo());
5804 
5805   if (Subtarget->isTargetILP32())
5806     FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr,
5807                             DAG.getValueType(VT));
5808 
5809   return FrameAddr;
5810 }
5811 
5812 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
5813                                               SelectionDAG &DAG) const {
5814   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5815 
5816   EVT VT = getPointerTy(DAG.getDataLayout());
5817   SDLoc DL(Op);
5818   int FI = MFI.CreateFixedObject(4, 0, false);
5819   return DAG.getFrameIndex(FI, VT);
5820 }
5821 
5822 #define GET_REGISTER_MATCHER
5823 #include "AArch64GenAsmMatcher.inc"
5824 
5825 // FIXME? Maybe this could be a TableGen attribute on some registers and
5826 // this table could be generated automatically from RegInfo.
5827 Register AArch64TargetLowering::
5828 getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const {
5829   Register Reg = MatchRegisterName(RegName);
5830   if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
5831     const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
5832     unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
5833     if (!Subtarget->isXRegisterReserved(DwarfRegNum))
5834       Reg = 0;
5835   }
5836   if (Reg)
5837     return Reg;
5838   report_fatal_error(Twine("Invalid register name \""
5839                               + StringRef(RegName)  + "\"."));
5840 }
5841 
5842 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
5843                                                      SelectionDAG &DAG) const {
5844   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
5845 
5846   EVT VT = Op.getValueType();
5847   SDLoc DL(Op);
5848 
5849   SDValue FrameAddr =
5850       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5851   SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5852 
5853   return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
5854 }
5855 
5856 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
5857                                                SelectionDAG &DAG) const {
5858   MachineFunction &MF = DAG.getMachineFunction();
5859   MachineFrameInfo &MFI = MF.getFrameInfo();
5860   MFI.setReturnAddressIsTaken(true);
5861 
5862   EVT VT = Op.getValueType();
5863   SDLoc DL(Op);
5864   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5865   if (Depth) {
5866     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5867     SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5868     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
5869                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
5870                        MachinePointerInfo());
5871   }
5872 
5873   // Return LR, which contains the return address. Mark it an implicit live-in.
5874   unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
5875   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5876 }
5877 
5878 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5879 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5880 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
5881                                                     SelectionDAG &DAG) const {
5882   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5883   EVT VT = Op.getValueType();
5884   unsigned VTBits = VT.getSizeInBits();
5885   SDLoc dl(Op);
5886   SDValue ShOpLo = Op.getOperand(0);
5887   SDValue ShOpHi = Op.getOperand(1);
5888   SDValue ShAmt = Op.getOperand(2);
5889   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5890 
5891   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5892 
5893   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5894                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5895   SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5896 
5897   // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5898   // is "undef". We wanted 0, so CSEL it directly.
5899   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5900                                ISD::SETEQ, dl, DAG);
5901   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5902   HiBitsForLo =
5903       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5904                   HiBitsForLo, CCVal, Cmp);
5905 
5906   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5907                                    DAG.getConstant(VTBits, dl, MVT::i64));
5908 
5909   SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5910   SDValue LoForNormalShift =
5911       DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
5912 
5913   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5914                        dl, DAG);
5915   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5916   SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5917   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5918                            LoForNormalShift, CCVal, Cmp);
5919 
5920   // AArch64 shifts larger than the register width are wrapped rather than
5921   // clamped, so we can't just emit "hi >> x".
5922   SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5923   SDValue HiForBigShift =
5924       Opc == ISD::SRA
5925           ? DAG.getNode(Opc, dl, VT, ShOpHi,
5926                         DAG.getConstant(VTBits - 1, dl, MVT::i64))
5927           : DAG.getConstant(0, dl, VT);
5928   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5929                            HiForNormalShift, CCVal, Cmp);
5930 
5931   SDValue Ops[2] = { Lo, Hi };
5932   return DAG.getMergeValues(Ops, dl);
5933 }
5934 
5935 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5936 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5937 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
5938                                                    SelectionDAG &DAG) const {
5939   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5940   EVT VT = Op.getValueType();
5941   unsigned VTBits = VT.getSizeInBits();
5942   SDLoc dl(Op);
5943   SDValue ShOpLo = Op.getOperand(0);
5944   SDValue ShOpHi = Op.getOperand(1);
5945   SDValue ShAmt = Op.getOperand(2);
5946 
5947   assert(Op.getOpcode() == ISD::SHL_PARTS);
5948   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5949                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5950   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5951 
5952   // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5953   // is "undef". We wanted 0, so CSEL it directly.
5954   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5955                                ISD::SETEQ, dl, DAG);
5956   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5957   LoBitsForHi =
5958       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5959                   LoBitsForHi, CCVal, Cmp);
5960 
5961   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5962                                    DAG.getConstant(VTBits, dl, MVT::i64));
5963   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5964   SDValue HiForNormalShift =
5965       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
5966 
5967   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5968 
5969   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5970                        dl, DAG);
5971   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5972   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5973                            HiForNormalShift, CCVal, Cmp);
5974 
5975   // AArch64 shifts of larger than register sizes are wrapped rather than
5976   // clamped, so we can't just emit "lo << a" if a is too big.
5977   SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
5978   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5979   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5980                            LoForNormalShift, CCVal, Cmp);
5981 
5982   SDValue Ops[2] = { Lo, Hi };
5983   return DAG.getMergeValues(Ops, dl);
5984 }
5985 
5986 bool AArch64TargetLowering::isOffsetFoldingLegal(
5987     const GlobalAddressSDNode *GA) const {
5988   // Offsets are folded in the DAG combine rather than here so that we can
5989   // intelligently choose an offset based on the uses.
5990   return false;
5991 }
5992 
5993 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
5994                                          bool OptForSize) const {
5995   bool IsLegal = false;
5996   // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
5997   // 16-bit case when target has full fp16 support.
5998   // FIXME: We should be able to handle f128 as well with a clever lowering.
5999   const APInt ImmInt = Imm.bitcastToAPInt();
6000   if (VT == MVT::f64)
6001     IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
6002   else if (VT == MVT::f32)
6003     IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
6004   else if (VT == MVT::f16 && Subtarget->hasFullFP16())
6005     IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
6006   // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
6007   //       generate that fmov.
6008 
6009   // If we can not materialize in immediate field for fmov, check if the
6010   // value can be encoded as the immediate operand of a logical instruction.
6011   // The immediate value will be created with either MOVZ, MOVN, or ORR.
6012   if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
6013     // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
6014     // however the mov+fmov sequence is always better because of the reduced
6015     // cache pressure. The timings are still the same if you consider
6016     // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
6017     // movw+movk is fused). So we limit up to 2 instrdduction at most.
6018     SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
6019     AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
6020 			      Insn);
6021     unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
6022     IsLegal = Insn.size() <= Limit;
6023   }
6024 
6025   LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
6026                     << " imm value: "; Imm.dump(););
6027   return IsLegal;
6028 }
6029 
6030 //===----------------------------------------------------------------------===//
6031 //                          AArch64 Optimization Hooks
6032 //===----------------------------------------------------------------------===//
6033 
6034 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
6035                            SDValue Operand, SelectionDAG &DAG,
6036                            int &ExtraSteps) {
6037   EVT VT = Operand.getValueType();
6038   if (ST->hasNEON() &&
6039       (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
6040        VT == MVT::f32 || VT == MVT::v1f32 ||
6041        VT == MVT::v2f32 || VT == MVT::v4f32)) {
6042     if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
6043       // For the reciprocal estimates, convergence is quadratic, so the number
6044       // of digits is doubled after each iteration.  In ARMv8, the accuracy of
6045       // the initial estimate is 2^-8.  Thus the number of extra steps to refine
6046       // the result for float (23 mantissa bits) is 2 and for double (52
6047       // mantissa bits) is 3.
6048       ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
6049 
6050     return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
6051   }
6052 
6053   return SDValue();
6054 }
6055 
6056 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
6057                                                SelectionDAG &DAG, int Enabled,
6058                                                int &ExtraSteps,
6059                                                bool &UseOneConst,
6060                                                bool Reciprocal) const {
6061   if (Enabled == ReciprocalEstimate::Enabled ||
6062       (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
6063     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
6064                                        DAG, ExtraSteps)) {
6065       SDLoc DL(Operand);
6066       EVT VT = Operand.getValueType();
6067 
6068       SDNodeFlags Flags;
6069       Flags.setAllowReassociation(true);
6070 
6071       // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
6072       // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
6073       for (int i = ExtraSteps; i > 0; --i) {
6074         SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
6075                                    Flags);
6076         Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
6077         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
6078       }
6079       if (!Reciprocal) {
6080         EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
6081                                       VT);
6082         SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6083         SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
6084 
6085         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
6086         // Correct the result if the operand is 0.0.
6087         Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
6088                                VT, Eq, Operand, Estimate);
6089       }
6090 
6091       ExtraSteps = 0;
6092       return Estimate;
6093     }
6094 
6095   return SDValue();
6096 }
6097 
6098 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
6099                                                 SelectionDAG &DAG, int Enabled,
6100                                                 int &ExtraSteps) const {
6101   if (Enabled == ReciprocalEstimate::Enabled)
6102     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
6103                                        DAG, ExtraSteps)) {
6104       SDLoc DL(Operand);
6105       EVT VT = Operand.getValueType();
6106 
6107       SDNodeFlags Flags;
6108       Flags.setAllowReassociation(true);
6109 
6110       // Newton reciprocal iteration: E * (2 - X * E)
6111       // AArch64 reciprocal iteration instruction: (2 - M * N)
6112       for (int i = ExtraSteps; i > 0; --i) {
6113         SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
6114                                    Estimate, Flags);
6115         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
6116       }
6117 
6118       ExtraSteps = 0;
6119       return Estimate;
6120     }
6121 
6122   return SDValue();
6123 }
6124 
6125 //===----------------------------------------------------------------------===//
6126 //                          AArch64 Inline Assembly Support
6127 //===----------------------------------------------------------------------===//
6128 
6129 // Table of Constraints
6130 // TODO: This is the current set of constraints supported by ARM for the
6131 // compiler, not all of them may make sense.
6132 //
6133 // r - A general register
6134 // w - An FP/SIMD register of some size in the range v0-v31
6135 // x - An FP/SIMD register of some size in the range v0-v15
6136 // I - Constant that can be used with an ADD instruction
6137 // J - Constant that can be used with a SUB instruction
6138 // K - Constant that can be used with a 32-bit logical instruction
6139 // L - Constant that can be used with a 64-bit logical instruction
6140 // M - Constant that can be used as a 32-bit MOV immediate
6141 // N - Constant that can be used as a 64-bit MOV immediate
6142 // Q - A memory reference with base register and no offset
6143 // S - A symbolic address
6144 // Y - Floating point constant zero
6145 // Z - Integer constant zero
6146 //
6147 //   Note that general register operands will be output using their 64-bit x
6148 // register name, whatever the size of the variable, unless the asm operand
6149 // is prefixed by the %w modifier. Floating-point and SIMD register operands
6150 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
6151 // %q modifier.
6152 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
6153   // At this point, we have to lower this constraint to something else, so we
6154   // lower it to an "r" or "w". However, by doing this we will force the result
6155   // to be in register, while the X constraint is much more permissive.
6156   //
6157   // Although we are correct (we are free to emit anything, without
6158   // constraints), we might break use cases that would expect us to be more
6159   // efficient and emit something else.
6160   if (!Subtarget->hasFPARMv8())
6161     return "r";
6162 
6163   if (ConstraintVT.isFloatingPoint())
6164     return "w";
6165 
6166   if (ConstraintVT.isVector() &&
6167      (ConstraintVT.getSizeInBits() == 64 ||
6168       ConstraintVT.getSizeInBits() == 128))
6169     return "w";
6170 
6171   return "r";
6172 }
6173 
6174 enum PredicateConstraint {
6175   Upl,
6176   Upa,
6177   Invalid
6178 };
6179 
6180 static PredicateConstraint parsePredicateConstraint(StringRef Constraint) {
6181   PredicateConstraint P = PredicateConstraint::Invalid;
6182   if (Constraint == "Upa")
6183     P = PredicateConstraint::Upa;
6184   if (Constraint == "Upl")
6185     P = PredicateConstraint::Upl;
6186   return P;
6187 }
6188 
6189 /// getConstraintType - Given a constraint letter, return the type of
6190 /// constraint it is for this target.
6191 AArch64TargetLowering::ConstraintType
6192 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
6193   if (Constraint.size() == 1) {
6194     switch (Constraint[0]) {
6195     default:
6196       break;
6197     case 'x':
6198     case 'w':
6199     case 'y':
6200       return C_RegisterClass;
6201     // An address with a single base register. Due to the way we
6202     // currently handle addresses it is the same as 'r'.
6203     case 'Q':
6204       return C_Memory;
6205     case 'I':
6206     case 'J':
6207     case 'K':
6208     case 'L':
6209     case 'M':
6210     case 'N':
6211     case 'Y':
6212     case 'Z':
6213       return C_Immediate;
6214     case 'z':
6215     case 'S': // A symbolic address
6216       return C_Other;
6217     }
6218   } else if (parsePredicateConstraint(Constraint) !=
6219              PredicateConstraint::Invalid)
6220       return C_RegisterClass;
6221   return TargetLowering::getConstraintType(Constraint);
6222 }
6223 
6224 /// Examine constraint type and operand type and determine a weight value.
6225 /// This object must already have been set up with the operand type
6226 /// and the current alternative constraint selected.
6227 TargetLowering::ConstraintWeight
6228 AArch64TargetLowering::getSingleConstraintMatchWeight(
6229     AsmOperandInfo &info, const char *constraint) const {
6230   ConstraintWeight weight = CW_Invalid;
6231   Value *CallOperandVal = info.CallOperandVal;
6232   // If we don't have a value, we can't do a match,
6233   // but allow it at the lowest weight.
6234   if (!CallOperandVal)
6235     return CW_Default;
6236   Type *type = CallOperandVal->getType();
6237   // Look at the constraint type.
6238   switch (*constraint) {
6239   default:
6240     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6241     break;
6242   case 'x':
6243   case 'w':
6244   case 'y':
6245     if (type->isFloatingPointTy() || type->isVectorTy())
6246       weight = CW_Register;
6247     break;
6248   case 'z':
6249     weight = CW_Constant;
6250     break;
6251   case 'U':
6252     if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid)
6253       weight = CW_Register;
6254     break;
6255   }
6256   return weight;
6257 }
6258 
6259 std::pair<unsigned, const TargetRegisterClass *>
6260 AArch64TargetLowering::getRegForInlineAsmConstraint(
6261     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
6262   if (Constraint.size() == 1) {
6263     switch (Constraint[0]) {
6264     case 'r':
6265       if (VT.getSizeInBits() == 64)
6266         return std::make_pair(0U, &AArch64::GPR64commonRegClass);
6267       return std::make_pair(0U, &AArch64::GPR32commonRegClass);
6268     case 'w':
6269       if (!Subtarget->hasFPARMv8())
6270         break;
6271       if (VT.isScalableVector())
6272         return std::make_pair(0U, &AArch64::ZPRRegClass);
6273       if (VT.getSizeInBits() == 16)
6274         return std::make_pair(0U, &AArch64::FPR16RegClass);
6275       if (VT.getSizeInBits() == 32)
6276         return std::make_pair(0U, &AArch64::FPR32RegClass);
6277       if (VT.getSizeInBits() == 64)
6278         return std::make_pair(0U, &AArch64::FPR64RegClass);
6279       if (VT.getSizeInBits() == 128)
6280         return std::make_pair(0U, &AArch64::FPR128RegClass);
6281       break;
6282     // The instructions that this constraint is designed for can
6283     // only take 128-bit registers so just use that regclass.
6284     case 'x':
6285       if (!Subtarget->hasFPARMv8())
6286         break;
6287       if (VT.isScalableVector())
6288         return std::make_pair(0U, &AArch64::ZPR_4bRegClass);
6289       if (VT.getSizeInBits() == 128)
6290         return std::make_pair(0U, &AArch64::FPR128_loRegClass);
6291       break;
6292     case 'y':
6293       if (!Subtarget->hasFPARMv8())
6294         break;
6295       if (VT.isScalableVector())
6296         return std::make_pair(0U, &AArch64::ZPR_3bRegClass);
6297       break;
6298     }
6299   } else {
6300     PredicateConstraint PC = parsePredicateConstraint(Constraint);
6301     if (PC != PredicateConstraint::Invalid) {
6302       assert(VT.isScalableVector());
6303       bool restricted = (PC == PredicateConstraint::Upl);
6304       return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass)
6305                           : std::make_pair(0U, &AArch64::PPRRegClass);
6306     }
6307   }
6308   if (StringRef("{cc}").equals_lower(Constraint))
6309     return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
6310 
6311   // Use the default implementation in TargetLowering to convert the register
6312   // constraint into a member of a register class.
6313   std::pair<unsigned, const TargetRegisterClass *> Res;
6314   Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
6315 
6316   // Not found as a standard register?
6317   if (!Res.second) {
6318     unsigned Size = Constraint.size();
6319     if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
6320         tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
6321       int RegNo;
6322       bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
6323       if (!Failed && RegNo >= 0 && RegNo <= 31) {
6324         // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
6325         // By default we'll emit v0-v31 for this unless there's a modifier where
6326         // we'll emit the correct register as well.
6327         if (VT != MVT::Other && VT.getSizeInBits() == 64) {
6328           Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
6329           Res.second = &AArch64::FPR64RegClass;
6330         } else {
6331           Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
6332           Res.second = &AArch64::FPR128RegClass;
6333         }
6334       }
6335     }
6336   }
6337 
6338   if (Res.second && !Subtarget->hasFPARMv8() &&
6339       !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
6340       !AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
6341     return std::make_pair(0U, nullptr);
6342 
6343   return Res;
6344 }
6345 
6346 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6347 /// vector.  If it is invalid, don't add anything to Ops.
6348 void AArch64TargetLowering::LowerAsmOperandForConstraint(
6349     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
6350     SelectionDAG &DAG) const {
6351   SDValue Result;
6352 
6353   // Currently only support length 1 constraints.
6354   if (Constraint.length() != 1)
6355     return;
6356 
6357   char ConstraintLetter = Constraint[0];
6358   switch (ConstraintLetter) {
6359   default:
6360     break;
6361 
6362   // This set of constraints deal with valid constants for various instructions.
6363   // Validate and return a target constant for them if we can.
6364   case 'z': {
6365     // 'z' maps to xzr or wzr so it needs an input of 0.
6366     if (!isNullConstant(Op))
6367       return;
6368 
6369     if (Op.getValueType() == MVT::i64)
6370       Result = DAG.getRegister(AArch64::XZR, MVT::i64);
6371     else
6372       Result = DAG.getRegister(AArch64::WZR, MVT::i32);
6373     break;
6374   }
6375   case 'S': {
6376     // An absolute symbolic address or label reference.
6377     if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
6378       Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
6379                                           GA->getValueType(0));
6380     } else if (const BlockAddressSDNode *BA =
6381                    dyn_cast<BlockAddressSDNode>(Op)) {
6382       Result =
6383           DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
6384     } else if (const ExternalSymbolSDNode *ES =
6385                    dyn_cast<ExternalSymbolSDNode>(Op)) {
6386       Result =
6387           DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
6388     } else
6389       return;
6390     break;
6391   }
6392 
6393   case 'I':
6394   case 'J':
6395   case 'K':
6396   case 'L':
6397   case 'M':
6398   case 'N':
6399     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
6400     if (!C)
6401       return;
6402 
6403     // Grab the value and do some validation.
6404     uint64_t CVal = C->getZExtValue();
6405     switch (ConstraintLetter) {
6406     // The I constraint applies only to simple ADD or SUB immediate operands:
6407     // i.e. 0 to 4095 with optional shift by 12
6408     // The J constraint applies only to ADD or SUB immediates that would be
6409     // valid when negated, i.e. if [an add pattern] were to be output as a SUB
6410     // instruction [or vice versa], in other words -1 to -4095 with optional
6411     // left shift by 12.
6412     case 'I':
6413       if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
6414         break;
6415       return;
6416     case 'J': {
6417       uint64_t NVal = -C->getSExtValue();
6418       if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
6419         CVal = C->getSExtValue();
6420         break;
6421       }
6422       return;
6423     }
6424     // The K and L constraints apply *only* to logical immediates, including
6425     // what used to be the MOVI alias for ORR (though the MOVI alias has now
6426     // been removed and MOV should be used). So these constraints have to
6427     // distinguish between bit patterns that are valid 32-bit or 64-bit
6428     // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
6429     // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
6430     // versa.
6431     case 'K':
6432       if (AArch64_AM::isLogicalImmediate(CVal, 32))
6433         break;
6434       return;
6435     case 'L':
6436       if (AArch64_AM::isLogicalImmediate(CVal, 64))
6437         break;
6438       return;
6439     // The M and N constraints are a superset of K and L respectively, for use
6440     // with the MOV (immediate) alias. As well as the logical immediates they
6441     // also match 32 or 64-bit immediates that can be loaded either using a
6442     // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
6443     // (M) or 64-bit 0x1234000000000000 (N) etc.
6444     // As a note some of this code is liberally stolen from the asm parser.
6445     case 'M': {
6446       if (!isUInt<32>(CVal))
6447         return;
6448       if (AArch64_AM::isLogicalImmediate(CVal, 32))
6449         break;
6450       if ((CVal & 0xFFFF) == CVal)
6451         break;
6452       if ((CVal & 0xFFFF0000ULL) == CVal)
6453         break;
6454       uint64_t NCVal = ~(uint32_t)CVal;
6455       if ((NCVal & 0xFFFFULL) == NCVal)
6456         break;
6457       if ((NCVal & 0xFFFF0000ULL) == NCVal)
6458         break;
6459       return;
6460     }
6461     case 'N': {
6462       if (AArch64_AM::isLogicalImmediate(CVal, 64))
6463         break;
6464       if ((CVal & 0xFFFFULL) == CVal)
6465         break;
6466       if ((CVal & 0xFFFF0000ULL) == CVal)
6467         break;
6468       if ((CVal & 0xFFFF00000000ULL) == CVal)
6469         break;
6470       if ((CVal & 0xFFFF000000000000ULL) == CVal)
6471         break;
6472       uint64_t NCVal = ~CVal;
6473       if ((NCVal & 0xFFFFULL) == NCVal)
6474         break;
6475       if ((NCVal & 0xFFFF0000ULL) == NCVal)
6476         break;
6477       if ((NCVal & 0xFFFF00000000ULL) == NCVal)
6478         break;
6479       if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
6480         break;
6481       return;
6482     }
6483     default:
6484       return;
6485     }
6486 
6487     // All assembler immediates are 64-bit integers.
6488     Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
6489     break;
6490   }
6491 
6492   if (Result.getNode()) {
6493     Ops.push_back(Result);
6494     return;
6495   }
6496 
6497   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6498 }
6499 
6500 //===----------------------------------------------------------------------===//
6501 //                     AArch64 Advanced SIMD Support
6502 //===----------------------------------------------------------------------===//
6503 
6504 /// WidenVector - Given a value in the V64 register class, produce the
6505 /// equivalent value in the V128 register class.
6506 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
6507   EVT VT = V64Reg.getValueType();
6508   unsigned NarrowSize = VT.getVectorNumElements();
6509   MVT EltTy = VT.getVectorElementType().getSimpleVT();
6510   MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
6511   SDLoc DL(V64Reg);
6512 
6513   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
6514                      V64Reg, DAG.getConstant(0, DL, MVT::i32));
6515 }
6516 
6517 /// getExtFactor - Determine the adjustment factor for the position when
6518 /// generating an "extract from vector registers" instruction.
6519 static unsigned getExtFactor(SDValue &V) {
6520   EVT EltType = V.getValueType().getVectorElementType();
6521   return EltType.getSizeInBits() / 8;
6522 }
6523 
6524 /// NarrowVector - Given a value in the V128 register class, produce the
6525 /// equivalent value in the V64 register class.
6526 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
6527   EVT VT = V128Reg.getValueType();
6528   unsigned WideSize = VT.getVectorNumElements();
6529   MVT EltTy = VT.getVectorElementType().getSimpleVT();
6530   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
6531   SDLoc DL(V128Reg);
6532 
6533   return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
6534 }
6535 
6536 // Gather data to see if the operation can be modelled as a
6537 // shuffle in combination with VEXTs.
6538 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
6539                                                   SelectionDAG &DAG) const {
6540   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6541   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
6542   SDLoc dl(Op);
6543   EVT VT = Op.getValueType();
6544   unsigned NumElts = VT.getVectorNumElements();
6545 
6546   struct ShuffleSourceInfo {
6547     SDValue Vec;
6548     unsigned MinElt;
6549     unsigned MaxElt;
6550 
6551     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6552     // be compatible with the shuffle we intend to construct. As a result
6553     // ShuffleVec will be some sliding window into the original Vec.
6554     SDValue ShuffleVec;
6555 
6556     // Code should guarantee that element i in Vec starts at element "WindowBase
6557     // + i * WindowScale in ShuffleVec".
6558     int WindowBase;
6559     int WindowScale;
6560 
6561     ShuffleSourceInfo(SDValue Vec)
6562       : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
6563           ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
6564 
6565     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6566   };
6567 
6568   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6569   // node.
6570   SmallVector<ShuffleSourceInfo, 2> Sources;
6571   for (unsigned i = 0; i < NumElts; ++i) {
6572     SDValue V = Op.getOperand(i);
6573     if (V.isUndef())
6574       continue;
6575     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6576              !isa<ConstantSDNode>(V.getOperand(1))) {
6577       LLVM_DEBUG(
6578           dbgs() << "Reshuffle failed: "
6579                     "a shuffle can only come from building a vector from "
6580                     "various elements of other vectors, provided their "
6581                     "indices are constant\n");
6582       return SDValue();
6583     }
6584 
6585     // Add this element source to the list if it's not already there.
6586     SDValue SourceVec = V.getOperand(0);
6587     auto Source = find(Sources, SourceVec);
6588     if (Source == Sources.end())
6589       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6590 
6591     // Update the minimum and maximum lane number seen.
6592     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6593     Source->MinElt = std::min(Source->MinElt, EltNo);
6594     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6595   }
6596 
6597   if (Sources.size() > 2) {
6598     LLVM_DEBUG(
6599         dbgs() << "Reshuffle failed: currently only do something sane when at "
6600                   "most two source vectors are involved\n");
6601     return SDValue();
6602   }
6603 
6604   // Find out the smallest element size among result and two sources, and use
6605   // it as element size to build the shuffle_vector.
6606   EVT SmallestEltTy = VT.getVectorElementType();
6607   for (auto &Source : Sources) {
6608     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6609     if (SrcEltTy.bitsLT(SmallestEltTy)) {
6610       SmallestEltTy = SrcEltTy;
6611     }
6612   }
6613   unsigned ResMultiplier =
6614       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6615   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6616   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6617 
6618   // If the source vector is too wide or too narrow, we may nevertheless be able
6619   // to construct a compatible shuffle either by concatenating it with UNDEF or
6620   // extracting a suitable range of elements.
6621   for (auto &Src : Sources) {
6622     EVT SrcVT = Src.ShuffleVec.getValueType();
6623 
6624     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6625       continue;
6626 
6627     // This stage of the search produces a source with the same element type as
6628     // the original, but with a total width matching the BUILD_VECTOR output.
6629     EVT EltVT = SrcVT.getVectorElementType();
6630     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6631     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6632 
6633     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6634       assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
6635       // We can pad out the smaller vector for free, so if it's part of a
6636       // shuffle...
6637       Src.ShuffleVec =
6638           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6639                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6640       continue;
6641     }
6642 
6643     assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
6644 
6645     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6646       LLVM_DEBUG(
6647           dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
6648       return SDValue();
6649     }
6650 
6651     if (Src.MinElt >= NumSrcElts) {
6652       // The extraction can just take the second half
6653       Src.ShuffleVec =
6654           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6655                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
6656       Src.WindowBase = -NumSrcElts;
6657     } else if (Src.MaxElt < NumSrcElts) {
6658       // The extraction can just take the first half
6659       Src.ShuffleVec =
6660           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6661                       DAG.getConstant(0, dl, MVT::i64));
6662     } else {
6663       // An actual VEXT is needed
6664       SDValue VEXTSrc1 =
6665           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6666                       DAG.getConstant(0, dl, MVT::i64));
6667       SDValue VEXTSrc2 =
6668           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6669                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
6670       unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
6671 
6672       Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
6673                                    VEXTSrc2,
6674                                    DAG.getConstant(Imm, dl, MVT::i32));
6675       Src.WindowBase = -Src.MinElt;
6676     }
6677   }
6678 
6679   // Another possible incompatibility occurs from the vector element types. We
6680   // can fix this by bitcasting the source vectors to the same type we intend
6681   // for the shuffle.
6682   for (auto &Src : Sources) {
6683     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6684     if (SrcEltTy == SmallestEltTy)
6685       continue;
6686     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6687     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6688     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6689     Src.WindowBase *= Src.WindowScale;
6690   }
6691 
6692   // Final sanity check before we try to actually produce a shuffle.
6693   LLVM_DEBUG(for (auto Src
6694                   : Sources)
6695                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6696 
6697   // The stars all align, our next step is to produce the mask for the shuffle.
6698   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6699   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6700   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6701     SDValue Entry = Op.getOperand(i);
6702     if (Entry.isUndef())
6703       continue;
6704 
6705     auto Src = find(Sources, Entry.getOperand(0));
6706     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6707 
6708     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6709     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6710     // segment.
6711     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6712     int BitsDefined =
6713         std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
6714     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6715 
6716     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6717     // starting at the appropriate offset.
6718     int *LaneMask = &Mask[i * ResMultiplier];
6719 
6720     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6721     ExtractBase += NumElts * (Src - Sources.begin());
6722     for (int j = 0; j < LanesDefined; ++j)
6723       LaneMask[j] = ExtractBase + j;
6724   }
6725 
6726   // Final check before we try to produce nonsense...
6727   if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
6728     LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
6729     return SDValue();
6730   }
6731 
6732   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6733   for (unsigned i = 0; i < Sources.size(); ++i)
6734     ShuffleOps[i] = Sources[i].ShuffleVec;
6735 
6736   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6737                                          ShuffleOps[1], Mask);
6738   SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6739 
6740   LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
6741              dbgs() << "Reshuffle, creating node: "; V.dump(););
6742 
6743   return V;
6744 }
6745 
6746 // check if an EXT instruction can handle the shuffle mask when the
6747 // vector sources of the shuffle are the same.
6748 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6749   unsigned NumElts = VT.getVectorNumElements();
6750 
6751   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6752   if (M[0] < 0)
6753     return false;
6754 
6755   Imm = M[0];
6756 
6757   // If this is a VEXT shuffle, the immediate value is the index of the first
6758   // element.  The other shuffle indices must be the successive elements after
6759   // the first one.
6760   unsigned ExpectedElt = Imm;
6761   for (unsigned i = 1; i < NumElts; ++i) {
6762     // Increment the expected index.  If it wraps around, just follow it
6763     // back to index zero and keep going.
6764     ++ExpectedElt;
6765     if (ExpectedElt == NumElts)
6766       ExpectedElt = 0;
6767 
6768     if (M[i] < 0)
6769       continue; // ignore UNDEF indices
6770     if (ExpectedElt != static_cast<unsigned>(M[i]))
6771       return false;
6772   }
6773 
6774   return true;
6775 }
6776 
6777 // check if an EXT instruction can handle the shuffle mask when the
6778 // vector sources of the shuffle are different.
6779 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
6780                       unsigned &Imm) {
6781   // Look for the first non-undef element.
6782   const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
6783 
6784   // Benefit form APInt to handle overflow when calculating expected element.
6785   unsigned NumElts = VT.getVectorNumElements();
6786   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
6787   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
6788   // The following shuffle indices must be the successive elements after the
6789   // first real element.
6790   const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
6791       [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
6792   if (FirstWrongElt != M.end())
6793     return false;
6794 
6795   // The index of an EXT is the first element if it is not UNDEF.
6796   // Watch out for the beginning UNDEFs. The EXT index should be the expected
6797   // value of the first element.  E.g.
6798   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
6799   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
6800   // ExpectedElt is the last mask index plus 1.
6801   Imm = ExpectedElt.getZExtValue();
6802 
6803   // There are two difference cases requiring to reverse input vectors.
6804   // For example, for vector <4 x i32> we have the following cases,
6805   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
6806   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
6807   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
6808   // to reverse two input vectors.
6809   if (Imm < NumElts)
6810     ReverseEXT = true;
6811   else
6812     Imm -= NumElts;
6813 
6814   return true;
6815 }
6816 
6817 /// isREVMask - Check if a vector shuffle corresponds to a REV
6818 /// instruction with the specified blocksize.  (The order of the elements
6819 /// within each block of the vector is reversed.)
6820 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6821   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
6822          "Only possible block sizes for REV are: 16, 32, 64");
6823 
6824   unsigned EltSz = VT.getScalarSizeInBits();
6825   if (EltSz == 64)
6826     return false;
6827 
6828   unsigned NumElts = VT.getVectorNumElements();
6829   unsigned BlockElts = M[0] + 1;
6830   // If the first shuffle index is UNDEF, be optimistic.
6831   if (M[0] < 0)
6832     BlockElts = BlockSize / EltSz;
6833 
6834   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6835     return false;
6836 
6837   for (unsigned i = 0; i < NumElts; ++i) {
6838     if (M[i] < 0)
6839       continue; // ignore UNDEF indices
6840     if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
6841       return false;
6842   }
6843 
6844   return true;
6845 }
6846 
6847 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6848   unsigned NumElts = VT.getVectorNumElements();
6849   if (NumElts % 2 != 0)
6850     return false;
6851   WhichResult = (M[0] == 0 ? 0 : 1);
6852   unsigned Idx = WhichResult * NumElts / 2;
6853   for (unsigned i = 0; i != NumElts; i += 2) {
6854     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6855         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
6856       return false;
6857     Idx += 1;
6858   }
6859 
6860   return true;
6861 }
6862 
6863 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6864   unsigned NumElts = VT.getVectorNumElements();
6865   WhichResult = (M[0] == 0 ? 0 : 1);
6866   for (unsigned i = 0; i != NumElts; ++i) {
6867     if (M[i] < 0)
6868       continue; // ignore UNDEF indices
6869     if ((unsigned)M[i] != 2 * i + WhichResult)
6870       return false;
6871   }
6872 
6873   return true;
6874 }
6875 
6876 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6877   unsigned NumElts = VT.getVectorNumElements();
6878   if (NumElts % 2 != 0)
6879     return false;
6880   WhichResult = (M[0] == 0 ? 0 : 1);
6881   for (unsigned i = 0; i < NumElts; i += 2) {
6882     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6883         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
6884       return false;
6885   }
6886   return true;
6887 }
6888 
6889 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6890 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6891 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6892 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6893   unsigned NumElts = VT.getVectorNumElements();
6894   if (NumElts % 2 != 0)
6895     return false;
6896   WhichResult = (M[0] == 0 ? 0 : 1);
6897   unsigned Idx = WhichResult * NumElts / 2;
6898   for (unsigned i = 0; i != NumElts; i += 2) {
6899     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6900         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
6901       return false;
6902     Idx += 1;
6903   }
6904 
6905   return true;
6906 }
6907 
6908 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6909 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6910 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6911 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6912   unsigned Half = VT.getVectorNumElements() / 2;
6913   WhichResult = (M[0] == 0 ? 0 : 1);
6914   for (unsigned j = 0; j != 2; ++j) {
6915     unsigned Idx = WhichResult;
6916     for (unsigned i = 0; i != Half; ++i) {
6917       int MIdx = M[i + j * Half];
6918       if (MIdx >= 0 && (unsigned)MIdx != Idx)
6919         return false;
6920       Idx += 2;
6921     }
6922   }
6923 
6924   return true;
6925 }
6926 
6927 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6928 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6929 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6930 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6931   unsigned NumElts = VT.getVectorNumElements();
6932   if (NumElts % 2 != 0)
6933     return false;
6934   WhichResult = (M[0] == 0 ? 0 : 1);
6935   for (unsigned i = 0; i < NumElts; i += 2) {
6936     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6937         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
6938       return false;
6939   }
6940   return true;
6941 }
6942 
6943 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
6944                       bool &DstIsLeft, int &Anomaly) {
6945   if (M.size() != static_cast<size_t>(NumInputElements))
6946     return false;
6947 
6948   int NumLHSMatch = 0, NumRHSMatch = 0;
6949   int LastLHSMismatch = -1, LastRHSMismatch = -1;
6950 
6951   for (int i = 0; i < NumInputElements; ++i) {
6952     if (M[i] == -1) {
6953       ++NumLHSMatch;
6954       ++NumRHSMatch;
6955       continue;
6956     }
6957 
6958     if (M[i] == i)
6959       ++NumLHSMatch;
6960     else
6961       LastLHSMismatch = i;
6962 
6963     if (M[i] == i + NumInputElements)
6964       ++NumRHSMatch;
6965     else
6966       LastRHSMismatch = i;
6967   }
6968 
6969   if (NumLHSMatch == NumInputElements - 1) {
6970     DstIsLeft = true;
6971     Anomaly = LastLHSMismatch;
6972     return true;
6973   } else if (NumRHSMatch == NumInputElements - 1) {
6974     DstIsLeft = false;
6975     Anomaly = LastRHSMismatch;
6976     return true;
6977   }
6978 
6979   return false;
6980 }
6981 
6982 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
6983   if (VT.getSizeInBits() != 128)
6984     return false;
6985 
6986   unsigned NumElts = VT.getVectorNumElements();
6987 
6988   for (int I = 0, E = NumElts / 2; I != E; I++) {
6989     if (Mask[I] != I)
6990       return false;
6991   }
6992 
6993   int Offset = NumElts / 2;
6994   for (int I = NumElts / 2, E = NumElts; I != E; I++) {
6995     if (Mask[I] != I + SplitLHS * Offset)
6996       return false;
6997   }
6998 
6999   return true;
7000 }
7001 
7002 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
7003   SDLoc DL(Op);
7004   EVT VT = Op.getValueType();
7005   SDValue V0 = Op.getOperand(0);
7006   SDValue V1 = Op.getOperand(1);
7007   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
7008 
7009   if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
7010       VT.getVectorElementType() != V1.getValueType().getVectorElementType())
7011     return SDValue();
7012 
7013   bool SplitV0 = V0.getValueSizeInBits() == 128;
7014 
7015   if (!isConcatMask(Mask, VT, SplitV0))
7016     return SDValue();
7017 
7018   EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7019   if (SplitV0) {
7020     V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
7021                      DAG.getConstant(0, DL, MVT::i64));
7022   }
7023   if (V1.getValueSizeInBits() == 128) {
7024     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
7025                      DAG.getConstant(0, DL, MVT::i64));
7026   }
7027   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
7028 }
7029 
7030 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7031 /// the specified operations to build the shuffle.
7032 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7033                                       SDValue RHS, SelectionDAG &DAG,
7034                                       const SDLoc &dl) {
7035   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7036   unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
7037   unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
7038 
7039   enum {
7040     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7041     OP_VREV,
7042     OP_VDUP0,
7043     OP_VDUP1,
7044     OP_VDUP2,
7045     OP_VDUP3,
7046     OP_VEXT1,
7047     OP_VEXT2,
7048     OP_VEXT3,
7049     OP_VUZPL, // VUZP, left result
7050     OP_VUZPR, // VUZP, right result
7051     OP_VZIPL, // VZIP, left result
7052     OP_VZIPR, // VZIP, right result
7053     OP_VTRNL, // VTRN, left result
7054     OP_VTRNR  // VTRN, right result
7055   };
7056 
7057   if (OpNum == OP_COPY) {
7058     if (LHSID == (1 * 9 + 2) * 9 + 3)
7059       return LHS;
7060     assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
7061     return RHS;
7062   }
7063 
7064   SDValue OpLHS, OpRHS;
7065   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7066   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7067   EVT VT = OpLHS.getValueType();
7068 
7069   switch (OpNum) {
7070   default:
7071     llvm_unreachable("Unknown shuffle opcode!");
7072   case OP_VREV:
7073     // VREV divides the vector in half and swaps within the half.
7074     if (VT.getVectorElementType() == MVT::i32 ||
7075         VT.getVectorElementType() == MVT::f32)
7076       return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
7077     // vrev <4 x i16> -> REV32
7078     if (VT.getVectorElementType() == MVT::i16 ||
7079         VT.getVectorElementType() == MVT::f16)
7080       return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
7081     // vrev <4 x i8> -> REV16
7082     assert(VT.getVectorElementType() == MVT::i8);
7083     return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
7084   case OP_VDUP0:
7085   case OP_VDUP1:
7086   case OP_VDUP2:
7087   case OP_VDUP3: {
7088     EVT EltTy = VT.getVectorElementType();
7089     unsigned Opcode;
7090     if (EltTy == MVT::i8)
7091       Opcode = AArch64ISD::DUPLANE8;
7092     else if (EltTy == MVT::i16 || EltTy == MVT::f16)
7093       Opcode = AArch64ISD::DUPLANE16;
7094     else if (EltTy == MVT::i32 || EltTy == MVT::f32)
7095       Opcode = AArch64ISD::DUPLANE32;
7096     else if (EltTy == MVT::i64 || EltTy == MVT::f64)
7097       Opcode = AArch64ISD::DUPLANE64;
7098     else
7099       llvm_unreachable("Invalid vector element type?");
7100 
7101     if (VT.getSizeInBits() == 64)
7102       OpLHS = WidenVector(OpLHS, DAG);
7103     SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
7104     return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
7105   }
7106   case OP_VEXT1:
7107   case OP_VEXT2:
7108   case OP_VEXT3: {
7109     unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
7110     return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
7111                        DAG.getConstant(Imm, dl, MVT::i32));
7112   }
7113   case OP_VUZPL:
7114     return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
7115                        OpRHS);
7116   case OP_VUZPR:
7117     return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
7118                        OpRHS);
7119   case OP_VZIPL:
7120     return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
7121                        OpRHS);
7122   case OP_VZIPR:
7123     return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
7124                        OpRHS);
7125   case OP_VTRNL:
7126     return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
7127                        OpRHS);
7128   case OP_VTRNR:
7129     return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
7130                        OpRHS);
7131   }
7132 }
7133 
7134 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
7135                            SelectionDAG &DAG) {
7136   // Check to see if we can use the TBL instruction.
7137   SDValue V1 = Op.getOperand(0);
7138   SDValue V2 = Op.getOperand(1);
7139   SDLoc DL(Op);
7140 
7141   EVT EltVT = Op.getValueType().getVectorElementType();
7142   unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
7143 
7144   SmallVector<SDValue, 8> TBLMask;
7145   for (int Val : ShuffleMask) {
7146     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
7147       unsigned Offset = Byte + Val * BytesPerElt;
7148       TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
7149     }
7150   }
7151 
7152   MVT IndexVT = MVT::v8i8;
7153   unsigned IndexLen = 8;
7154   if (Op.getValueSizeInBits() == 128) {
7155     IndexVT = MVT::v16i8;
7156     IndexLen = 16;
7157   }
7158 
7159   SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
7160   SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
7161 
7162   SDValue Shuffle;
7163   if (V2.getNode()->isUndef()) {
7164     if (IndexLen == 8)
7165       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
7166     Shuffle = DAG.getNode(
7167         ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
7168         DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
7169         DAG.getBuildVector(IndexVT, DL,
7170                            makeArrayRef(TBLMask.data(), IndexLen)));
7171   } else {
7172     if (IndexLen == 8) {
7173       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
7174       Shuffle = DAG.getNode(
7175           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
7176           DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
7177           DAG.getBuildVector(IndexVT, DL,
7178                              makeArrayRef(TBLMask.data(), IndexLen)));
7179     } else {
7180       // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
7181       // cannot currently represent the register constraints on the input
7182       // table registers.
7183       //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
7184       //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
7185       //                   IndexLen));
7186       Shuffle = DAG.getNode(
7187           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
7188           DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
7189           V2Cst, DAG.getBuildVector(IndexVT, DL,
7190                                     makeArrayRef(TBLMask.data(), IndexLen)));
7191     }
7192   }
7193   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
7194 }
7195 
7196 static unsigned getDUPLANEOp(EVT EltType) {
7197   if (EltType == MVT::i8)
7198     return AArch64ISD::DUPLANE8;
7199   if (EltType == MVT::i16 || EltType == MVT::f16)
7200     return AArch64ISD::DUPLANE16;
7201   if (EltType == MVT::i32 || EltType == MVT::f32)
7202     return AArch64ISD::DUPLANE32;
7203   if (EltType == MVT::i64 || EltType == MVT::f64)
7204     return AArch64ISD::DUPLANE64;
7205 
7206   llvm_unreachable("Invalid vector element type?");
7207 }
7208 
7209 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7210                                                    SelectionDAG &DAG) const {
7211   SDLoc dl(Op);
7212   EVT VT = Op.getValueType();
7213 
7214   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7215 
7216   // Convert shuffles that are directly supported on NEON to target-specific
7217   // DAG nodes, instead of keeping them as shuffles and matching them again
7218   // during code selection.  This is more efficient and avoids the possibility
7219   // of inconsistencies between legalization and selection.
7220   ArrayRef<int> ShuffleMask = SVN->getMask();
7221 
7222   SDValue V1 = Op.getOperand(0);
7223   SDValue V2 = Op.getOperand(1);
7224 
7225   if (SVN->isSplat()) {
7226     int Lane = SVN->getSplatIndex();
7227     // If this is undef splat, generate it via "just" vdup, if possible.
7228     if (Lane == -1)
7229       Lane = 0;
7230 
7231     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
7232       return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
7233                          V1.getOperand(0));
7234     // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
7235     // constant. If so, we can just reference the lane's definition directly.
7236     if (V1.getOpcode() == ISD::BUILD_VECTOR &&
7237         !isa<ConstantSDNode>(V1.getOperand(Lane)))
7238       return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
7239 
7240     // Otherwise, duplicate from the lane of the input vector.
7241     unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
7242 
7243     // Try to eliminate a bitcasted extract subvector before a DUPLANE.
7244     auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) {
7245       // Match: dup (bitcast (extract_subv X, C)), LaneC
7246       if (BitCast.getOpcode() != ISD::BITCAST ||
7247           BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR)
7248         return false;
7249 
7250       // The extract index must align in the destination type. That may not
7251       // happen if the bitcast is from narrow to wide type.
7252       SDValue Extract = BitCast.getOperand(0);
7253       unsigned ExtIdx = Extract.getConstantOperandVal(1);
7254       unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits();
7255       unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth;
7256       unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits();
7257       if (ExtIdxInBits % CastedEltBitWidth != 0)
7258         return false;
7259 
7260       // Update the lane value by offsetting with the scaled extract index.
7261       LaneC += ExtIdxInBits / CastedEltBitWidth;
7262 
7263       // Determine the casted vector type of the wide vector input.
7264       // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC'
7265       // Examples:
7266       // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3
7267       // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5
7268       unsigned SrcVecNumElts =
7269           Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth;
7270       CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(),
7271                                 SrcVecNumElts);
7272       return true;
7273     };
7274     MVT CastVT;
7275     if (getScaledOffsetDup(V1, Lane, CastVT)) {
7276       V1 = DAG.getBitcast(CastVT, V1.getOperand(0).getOperand(0));
7277     } else if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7278       // The lane is incremented by the index of the extract.
7279       // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3
7280       Lane += V1.getConstantOperandVal(1);
7281       V1 = V1.getOperand(0);
7282     } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
7283       // The lane is decremented if we are splatting from the 2nd operand.
7284       // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1
7285       unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
7286       Lane -= Idx * VT.getVectorNumElements() / 2;
7287       V1 = WidenVector(V1.getOperand(Idx), DAG);
7288     } else if (VT.getSizeInBits() == 64) {
7289       // Widen the operand to 128-bit register with undef.
7290       V1 = WidenVector(V1, DAG);
7291     }
7292     return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
7293   }
7294 
7295   if (isREVMask(ShuffleMask, VT, 64))
7296     return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
7297   if (isREVMask(ShuffleMask, VT, 32))
7298     return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
7299   if (isREVMask(ShuffleMask, VT, 16))
7300     return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
7301 
7302   bool ReverseEXT = false;
7303   unsigned Imm;
7304   if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
7305     if (ReverseEXT)
7306       std::swap(V1, V2);
7307     Imm *= getExtFactor(V1);
7308     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
7309                        DAG.getConstant(Imm, dl, MVT::i32));
7310   } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
7311     Imm *= getExtFactor(V1);
7312     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
7313                        DAG.getConstant(Imm, dl, MVT::i32));
7314   }
7315 
7316   unsigned WhichResult;
7317   if (isZIPMask(ShuffleMask, VT, WhichResult)) {
7318     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
7319     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
7320   }
7321   if (isUZPMask(ShuffleMask, VT, WhichResult)) {
7322     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
7323     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
7324   }
7325   if (isTRNMask(ShuffleMask, VT, WhichResult)) {
7326     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
7327     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
7328   }
7329 
7330   if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
7331     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
7332     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
7333   }
7334   if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
7335     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
7336     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
7337   }
7338   if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
7339     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
7340     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
7341   }
7342 
7343   if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
7344     return Concat;
7345 
7346   bool DstIsLeft;
7347   int Anomaly;
7348   int NumInputElements = V1.getValueType().getVectorNumElements();
7349   if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
7350     SDValue DstVec = DstIsLeft ? V1 : V2;
7351     SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
7352 
7353     SDValue SrcVec = V1;
7354     int SrcLane = ShuffleMask[Anomaly];
7355     if (SrcLane >= NumInputElements) {
7356       SrcVec = V2;
7357       SrcLane -= VT.getVectorNumElements();
7358     }
7359     SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
7360 
7361     EVT ScalarVT = VT.getVectorElementType();
7362 
7363     if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
7364       ScalarVT = MVT::i32;
7365 
7366     return DAG.getNode(
7367         ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
7368         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
7369         DstLaneV);
7370   }
7371 
7372   // If the shuffle is not directly supported and it has 4 elements, use
7373   // the PerfectShuffle-generated table to synthesize it from other shuffles.
7374   unsigned NumElts = VT.getVectorNumElements();
7375   if (NumElts == 4) {
7376     unsigned PFIndexes[4];
7377     for (unsigned i = 0; i != 4; ++i) {
7378       if (ShuffleMask[i] < 0)
7379         PFIndexes[i] = 8;
7380       else
7381         PFIndexes[i] = ShuffleMask[i];
7382     }
7383 
7384     // Compute the index in the perfect shuffle table.
7385     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
7386                             PFIndexes[2] * 9 + PFIndexes[3];
7387     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7388     unsigned Cost = (PFEntry >> 30);
7389 
7390     if (Cost <= 4)
7391       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7392   }
7393 
7394   return GenerateTBL(Op, ShuffleMask, DAG);
7395 }
7396 
7397 SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op,
7398                                                  SelectionDAG &DAG) const {
7399   SDLoc dl(Op);
7400   EVT VT = Op.getValueType();
7401   EVT ElemVT = VT.getScalarType();
7402 
7403   SDValue SplatVal = Op.getOperand(0);
7404 
7405   // Extend input splat value where needed to fit into a GPR (32b or 64b only)
7406   // FPRs don't have this restriction.
7407   switch (ElemVT.getSimpleVT().SimpleTy) {
7408   case MVT::i8:
7409   case MVT::i16:
7410   case MVT::i32:
7411     SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32);
7412     return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal);
7413   case MVT::i64:
7414     SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
7415     return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal);
7416   case MVT::i1: {
7417     // The general case of i1.  There isn't any natural way to do this,
7418     // so we use some trickery with whilelo.
7419     // TODO: Add special cases for splat of constant true/false.
7420     SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64);
7421     SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i64, SplatVal,
7422                            DAG.getValueType(MVT::i1));
7423     SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl,
7424                                        MVT::i64);
7425     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID,
7426                        DAG.getConstant(0, dl, MVT::i64), SplatVal);
7427   }
7428   // TODO: we can support float types, but haven't added patterns yet.
7429   case MVT::f16:
7430   case MVT::f32:
7431   case MVT::f64:
7432   default:
7433     report_fatal_error("Unsupported SPLAT_VECTOR input operand type");
7434   }
7435 }
7436 
7437 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
7438                                APInt &UndefBits) {
7439   EVT VT = BVN->getValueType(0);
7440   APInt SplatBits, SplatUndef;
7441   unsigned SplatBitSize;
7442   bool HasAnyUndefs;
7443   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7444     unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
7445 
7446     for (unsigned i = 0; i < NumSplats; ++i) {
7447       CnstBits <<= SplatBitSize;
7448       UndefBits <<= SplatBitSize;
7449       CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
7450       UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
7451     }
7452 
7453     return true;
7454   }
7455 
7456   return false;
7457 }
7458 
7459 // Try 64-bit splatted SIMD immediate.
7460 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7461                                  const APInt &Bits) {
7462   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7463     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7464     EVT VT = Op.getValueType();
7465     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
7466 
7467     if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
7468       Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
7469 
7470       SDLoc dl(Op);
7471       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7472                                 DAG.getConstant(Value, dl, MVT::i32));
7473       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7474     }
7475   }
7476 
7477   return SDValue();
7478 }
7479 
7480 // Try 32-bit splatted SIMD immediate.
7481 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7482                                   const APInt &Bits,
7483                                   const SDValue *LHS = nullptr) {
7484   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7485     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7486     EVT VT = Op.getValueType();
7487     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
7488     bool isAdvSIMDModImm = false;
7489     uint64_t Shift;
7490 
7491     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
7492       Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
7493       Shift = 0;
7494     }
7495     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
7496       Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
7497       Shift = 8;
7498     }
7499     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
7500       Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
7501       Shift = 16;
7502     }
7503     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
7504       Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
7505       Shift = 24;
7506     }
7507 
7508     if (isAdvSIMDModImm) {
7509       SDLoc dl(Op);
7510       SDValue Mov;
7511 
7512       if (LHS)
7513         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
7514                           DAG.getConstant(Value, dl, MVT::i32),
7515                           DAG.getConstant(Shift, dl, MVT::i32));
7516       else
7517         Mov = DAG.getNode(NewOp, dl, MovTy,
7518                           DAG.getConstant(Value, dl, MVT::i32),
7519                           DAG.getConstant(Shift, dl, MVT::i32));
7520 
7521       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7522     }
7523   }
7524 
7525   return SDValue();
7526 }
7527 
7528 // Try 16-bit splatted SIMD immediate.
7529 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7530                                   const APInt &Bits,
7531                                   const SDValue *LHS = nullptr) {
7532   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7533     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7534     EVT VT = Op.getValueType();
7535     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
7536     bool isAdvSIMDModImm = false;
7537     uint64_t Shift;
7538 
7539     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
7540       Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
7541       Shift = 0;
7542     }
7543     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
7544       Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
7545       Shift = 8;
7546     }
7547 
7548     if (isAdvSIMDModImm) {
7549       SDLoc dl(Op);
7550       SDValue Mov;
7551 
7552       if (LHS)
7553         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
7554                           DAG.getConstant(Value, dl, MVT::i32),
7555                           DAG.getConstant(Shift, dl, MVT::i32));
7556       else
7557         Mov = DAG.getNode(NewOp, dl, MovTy,
7558                           DAG.getConstant(Value, dl, MVT::i32),
7559                           DAG.getConstant(Shift, dl, MVT::i32));
7560 
7561       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7562     }
7563   }
7564 
7565   return SDValue();
7566 }
7567 
7568 // Try 32-bit splatted SIMD immediate with shifted ones.
7569 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
7570                                     SelectionDAG &DAG, const APInt &Bits) {
7571   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7572     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7573     EVT VT = Op.getValueType();
7574     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
7575     bool isAdvSIMDModImm = false;
7576     uint64_t Shift;
7577 
7578     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
7579       Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
7580       Shift = 264;
7581     }
7582     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
7583       Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
7584       Shift = 272;
7585     }
7586 
7587     if (isAdvSIMDModImm) {
7588       SDLoc dl(Op);
7589       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7590                                 DAG.getConstant(Value, dl, MVT::i32),
7591                                 DAG.getConstant(Shift, dl, MVT::i32));
7592       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7593     }
7594   }
7595 
7596   return SDValue();
7597 }
7598 
7599 // Try 8-bit splatted SIMD immediate.
7600 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7601                                  const APInt &Bits) {
7602   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7603     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7604     EVT VT = Op.getValueType();
7605     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
7606 
7607     if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
7608       Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
7609 
7610       SDLoc dl(Op);
7611       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7612                                 DAG.getConstant(Value, dl, MVT::i32));
7613       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7614     }
7615   }
7616 
7617   return SDValue();
7618 }
7619 
7620 // Try FP splatted SIMD immediate.
7621 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
7622                                   const APInt &Bits) {
7623   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
7624     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
7625     EVT VT = Op.getValueType();
7626     bool isWide = (VT.getSizeInBits() == 128);
7627     MVT MovTy;
7628     bool isAdvSIMDModImm = false;
7629 
7630     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
7631       Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
7632       MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
7633     }
7634     else if (isWide &&
7635              (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
7636       Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
7637       MovTy = MVT::v2f64;
7638     }
7639 
7640     if (isAdvSIMDModImm) {
7641       SDLoc dl(Op);
7642       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
7643                                 DAG.getConstant(Value, dl, MVT::i32));
7644       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
7645     }
7646   }
7647 
7648   return SDValue();
7649 }
7650 
7651 // Specialized code to quickly find if PotentialBVec is a BuildVector that
7652 // consists of only the same constant int value, returned in reference arg
7653 // ConstVal
7654 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
7655                                      uint64_t &ConstVal) {
7656   BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
7657   if (!Bvec)
7658     return false;
7659   ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
7660   if (!FirstElt)
7661     return false;
7662   EVT VT = Bvec->getValueType(0);
7663   unsigned NumElts = VT.getVectorNumElements();
7664   for (unsigned i = 1; i < NumElts; ++i)
7665     if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
7666       return false;
7667   ConstVal = FirstElt->getZExtValue();
7668   return true;
7669 }
7670 
7671 static unsigned getIntrinsicID(const SDNode *N) {
7672   unsigned Opcode = N->getOpcode();
7673   switch (Opcode) {
7674   default:
7675     return Intrinsic::not_intrinsic;
7676   case ISD::INTRINSIC_WO_CHAIN: {
7677     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7678     if (IID < Intrinsic::num_intrinsics)
7679       return IID;
7680     return Intrinsic::not_intrinsic;
7681   }
7682   }
7683 }
7684 
7685 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
7686 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
7687 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
7688 // Also, logical shift right -> sri, with the same structure.
7689 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
7690   EVT VT = N->getValueType(0);
7691 
7692   if (!VT.isVector())
7693     return SDValue();
7694 
7695   SDLoc DL(N);
7696 
7697   // Is the first op an AND?
7698   const SDValue And = N->getOperand(0);
7699   if (And.getOpcode() != ISD::AND)
7700     return SDValue();
7701 
7702   // Is the second op an shl or lshr?
7703   SDValue Shift = N->getOperand(1);
7704   // This will have been turned into: AArch64ISD::VSHL vector, #shift
7705   // or AArch64ISD::VLSHR vector, #shift
7706   unsigned ShiftOpc = Shift.getOpcode();
7707   if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
7708     return SDValue();
7709   bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
7710 
7711   // Is the shift amount constant?
7712   ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7713   if (!C2node)
7714     return SDValue();
7715 
7716   // Is the and mask vector all constant?
7717   uint64_t C1;
7718   if (!isAllConstantBuildVector(And.getOperand(1), C1))
7719     return SDValue();
7720 
7721   // Is C1 == ~C2, taking into account how much one can shift elements of a
7722   // particular size?
7723   uint64_t C2 = C2node->getZExtValue();
7724   unsigned ElemSizeInBits = VT.getScalarSizeInBits();
7725   if (C2 > ElemSizeInBits)
7726     return SDValue();
7727   unsigned ElemMask = (1 << ElemSizeInBits) - 1;
7728   if ((C1 & ElemMask) != (~C2 & ElemMask))
7729     return SDValue();
7730 
7731   SDValue X = And.getOperand(0);
7732   SDValue Y = Shift.getOperand(0);
7733 
7734   unsigned Intrin =
7735       IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
7736   SDValue ResultSLI =
7737       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7738                   DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
7739                   Shift.getOperand(1));
7740 
7741   LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
7742   LLVM_DEBUG(N->dump(&DAG));
7743   LLVM_DEBUG(dbgs() << "into: \n");
7744   LLVM_DEBUG(ResultSLI->dump(&DAG));
7745 
7746   ++NumShiftInserts;
7747   return ResultSLI;
7748 }
7749 
7750 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
7751                                              SelectionDAG &DAG) const {
7752   // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
7753   if (EnableAArch64SlrGeneration) {
7754     if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
7755       return Res;
7756   }
7757 
7758   EVT VT = Op.getValueType();
7759 
7760   SDValue LHS = Op.getOperand(0);
7761   BuildVectorSDNode *BVN =
7762       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
7763   if (!BVN) {
7764     // OR commutes, so try swapping the operands.
7765     LHS = Op.getOperand(1);
7766     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
7767   }
7768   if (!BVN)
7769     return Op;
7770 
7771   APInt DefBits(VT.getSizeInBits(), 0);
7772   APInt UndefBits(VT.getSizeInBits(), 0);
7773   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7774     SDValue NewOp;
7775 
7776     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7777                                     DefBits, &LHS)) ||
7778         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7779                                     DefBits, &LHS)))
7780       return NewOp;
7781 
7782     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
7783                                     UndefBits, &LHS)) ||
7784         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
7785                                     UndefBits, &LHS)))
7786       return NewOp;
7787   }
7788 
7789   // We can always fall back to a non-immediate OR.
7790   return Op;
7791 }
7792 
7793 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
7794 // be truncated to fit element width.
7795 static SDValue NormalizeBuildVector(SDValue Op,
7796                                     SelectionDAG &DAG) {
7797   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7798   SDLoc dl(Op);
7799   EVT VT = Op.getValueType();
7800   EVT EltTy= VT.getVectorElementType();
7801 
7802   if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
7803     return Op;
7804 
7805   SmallVector<SDValue, 16> Ops;
7806   for (SDValue Lane : Op->ops()) {
7807     // For integer vectors, type legalization would have promoted the
7808     // operands already. Otherwise, if Op is a floating-point splat
7809     // (with operands cast to integers), then the only possibilities
7810     // are constants and UNDEFs.
7811     if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
7812       APInt LowBits(EltTy.getSizeInBits(),
7813                     CstLane->getZExtValue());
7814       Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
7815     } else if (Lane.getNode()->isUndef()) {
7816       Lane = DAG.getUNDEF(MVT::i32);
7817     } else {
7818       assert(Lane.getValueType() == MVT::i32 &&
7819              "Unexpected BUILD_VECTOR operand type");
7820     }
7821     Ops.push_back(Lane);
7822   }
7823   return DAG.getBuildVector(VT, dl, Ops);
7824 }
7825 
7826 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
7827   EVT VT = Op.getValueType();
7828 
7829   APInt DefBits(VT.getSizeInBits(), 0);
7830   APInt UndefBits(VT.getSizeInBits(), 0);
7831   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7832   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
7833     SDValue NewOp;
7834     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7835         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7836         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7837         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7838         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7839         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7840       return NewOp;
7841 
7842     DefBits = ~DefBits;
7843     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7844         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7845         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7846       return NewOp;
7847 
7848     DefBits = UndefBits;
7849     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
7850         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7851         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
7852         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
7853         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
7854         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
7855       return NewOp;
7856 
7857     DefBits = ~UndefBits;
7858     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
7859         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
7860         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
7861       return NewOp;
7862   }
7863 
7864   return SDValue();
7865 }
7866 
7867 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
7868                                                  SelectionDAG &DAG) const {
7869   EVT VT = Op.getValueType();
7870 
7871   // Try to build a simple constant vector.
7872   Op = NormalizeBuildVector(Op, DAG);
7873   if (VT.isInteger()) {
7874     // Certain vector constants, used to express things like logical NOT and
7875     // arithmetic NEG, are passed through unmodified.  This allows special
7876     // patterns for these operations to match, which will lower these constants
7877     // to whatever is proven necessary.
7878     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7879     if (BVN->isConstant())
7880       if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
7881         unsigned BitSize = VT.getVectorElementType().getSizeInBits();
7882         APInt Val(BitSize,
7883                   Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
7884         if (Val.isNullValue() || Val.isAllOnesValue())
7885           return Op;
7886       }
7887   }
7888 
7889   if (SDValue V = ConstantBuildVector(Op, DAG))
7890     return V;
7891 
7892   // Scan through the operands to find some interesting properties we can
7893   // exploit:
7894   //   1) If only one value is used, we can use a DUP, or
7895   //   2) if only the low element is not undef, we can just insert that, or
7896   //   3) if only one constant value is used (w/ some non-constant lanes),
7897   //      we can splat the constant value into the whole vector then fill
7898   //      in the non-constant lanes.
7899   //   4) FIXME: If different constant values are used, but we can intelligently
7900   //             select the values we'll be overwriting for the non-constant
7901   //             lanes such that we can directly materialize the vector
7902   //             some other way (MOVI, e.g.), we can be sneaky.
7903   //   5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7904   SDLoc dl(Op);
7905   unsigned NumElts = VT.getVectorNumElements();
7906   bool isOnlyLowElement = true;
7907   bool usesOnlyOneValue = true;
7908   bool usesOnlyOneConstantValue = true;
7909   bool isConstant = true;
7910   bool AllLanesExtractElt = true;
7911   unsigned NumConstantLanes = 0;
7912   SDValue Value;
7913   SDValue ConstantValue;
7914   for (unsigned i = 0; i < NumElts; ++i) {
7915     SDValue V = Op.getOperand(i);
7916     if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7917       AllLanesExtractElt = false;
7918     if (V.isUndef())
7919       continue;
7920     if (i > 0)
7921       isOnlyLowElement = false;
7922     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7923       isConstant = false;
7924 
7925     if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
7926       ++NumConstantLanes;
7927       if (!ConstantValue.getNode())
7928         ConstantValue = V;
7929       else if (ConstantValue != V)
7930         usesOnlyOneConstantValue = false;
7931     }
7932 
7933     if (!Value.getNode())
7934       Value = V;
7935     else if (V != Value)
7936       usesOnlyOneValue = false;
7937   }
7938 
7939   if (!Value.getNode()) {
7940     LLVM_DEBUG(
7941         dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7942     return DAG.getUNDEF(VT);
7943   }
7944 
7945   // Convert BUILD_VECTOR where all elements but the lowest are undef into
7946   // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
7947   // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
7948   if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) {
7949     LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7950                          "SCALAR_TO_VECTOR node\n");
7951     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7952   }
7953 
7954   if (AllLanesExtractElt) {
7955     SDNode *Vector = nullptr;
7956     bool Even = false;
7957     bool Odd = false;
7958     // Check whether the extract elements match the Even pattern <0,2,4,...> or
7959     // the Odd pattern <1,3,5,...>.
7960     for (unsigned i = 0; i < NumElts; ++i) {
7961       SDValue V = Op.getOperand(i);
7962       const SDNode *N = V.getNode();
7963       if (!isa<ConstantSDNode>(N->getOperand(1)))
7964         break;
7965       SDValue N0 = N->getOperand(0);
7966 
7967       // All elements are extracted from the same vector.
7968       if (!Vector) {
7969         Vector = N0.getNode();
7970         // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7971         // BUILD_VECTOR.
7972         if (VT.getVectorElementType() !=
7973             N0.getValueType().getVectorElementType())
7974           break;
7975       } else if (Vector != N0.getNode()) {
7976         Odd = false;
7977         Even = false;
7978         break;
7979       }
7980 
7981       // Extracted values are either at Even indices <0,2,4,...> or at Odd
7982       // indices <1,3,5,...>.
7983       uint64_t Val = N->getConstantOperandVal(1);
7984       if (Val == 2 * i) {
7985         Even = true;
7986         continue;
7987       }
7988       if (Val - 1 == 2 * i) {
7989         Odd = true;
7990         continue;
7991       }
7992 
7993       // Something does not match: abort.
7994       Odd = false;
7995       Even = false;
7996       break;
7997     }
7998     if (Even || Odd) {
7999       SDValue LHS =
8000           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
8001                       DAG.getConstant(0, dl, MVT::i64));
8002       SDValue RHS =
8003           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
8004                       DAG.getConstant(NumElts, dl, MVT::i64));
8005 
8006       if (Even && !Odd)
8007         return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
8008                            RHS);
8009       if (Odd && !Even)
8010         return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
8011                            RHS);
8012     }
8013   }
8014 
8015   // Use DUP for non-constant splats. For f32 constant splats, reduce to
8016   // i32 and try again.
8017   if (usesOnlyOneValue) {
8018     if (!isConstant) {
8019       if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8020           Value.getValueType() != VT) {
8021         LLVM_DEBUG(
8022             dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
8023         return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
8024       }
8025 
8026       // This is actually a DUPLANExx operation, which keeps everything vectory.
8027 
8028       SDValue Lane = Value.getOperand(1);
8029       Value = Value.getOperand(0);
8030       if (Value.getValueSizeInBits() == 64) {
8031         LLVM_DEBUG(
8032             dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
8033                       "widening it\n");
8034         Value = WidenVector(Value, DAG);
8035       }
8036 
8037       unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
8038       return DAG.getNode(Opcode, dl, VT, Value, Lane);
8039     }
8040 
8041     if (VT.getVectorElementType().isFloatingPoint()) {
8042       SmallVector<SDValue, 8> Ops;
8043       EVT EltTy = VT.getVectorElementType();
8044       assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
8045               "Unsupported floating-point vector type");
8046       LLVM_DEBUG(
8047           dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
8048                     "BITCASTS, and try again\n");
8049       MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
8050       for (unsigned i = 0; i < NumElts; ++i)
8051         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
8052       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
8053       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
8054       LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
8055                  Val.dump(););
8056       Val = LowerBUILD_VECTOR(Val, DAG);
8057       if (Val.getNode())
8058         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8059     }
8060   }
8061 
8062   // If there was only one constant value used and for more than one lane,
8063   // start by splatting that value, then replace the non-constant lanes. This
8064   // is better than the default, which will perform a separate initialization
8065   // for each lane.
8066   if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
8067     // Firstly, try to materialize the splat constant.
8068     SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
8069             Val = ConstantBuildVector(Vec, DAG);
8070     if (!Val) {
8071       // Otherwise, materialize the constant and splat it.
8072       Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
8073       DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
8074     }
8075 
8076     // Now insert the non-constant lanes.
8077     for (unsigned i = 0; i < NumElts; ++i) {
8078       SDValue V = Op.getOperand(i);
8079       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
8080       if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
8081         // Note that type legalization likely mucked about with the VT of the
8082         // source operand, so we may have to convert it here before inserting.
8083         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
8084     }
8085     return Val;
8086   }
8087 
8088   // This will generate a load from the constant pool.
8089   if (isConstant) {
8090     LLVM_DEBUG(
8091         dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
8092                   "expansion\n");
8093     return SDValue();
8094   }
8095 
8096   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
8097   if (NumElts >= 4) {
8098     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
8099       return shuffle;
8100   }
8101 
8102   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
8103   // know the default expansion would otherwise fall back on something even
8104   // worse. For a vector with one or two non-undef values, that's
8105   // scalar_to_vector for the elements followed by a shuffle (provided the
8106   // shuffle is valid for the target) and materialization element by element
8107   // on the stack followed by a load for everything else.
8108   if (!isConstant && !usesOnlyOneValue) {
8109     LLVM_DEBUG(
8110         dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
8111                   "of INSERT_VECTOR_ELT\n");
8112 
8113     SDValue Vec = DAG.getUNDEF(VT);
8114     SDValue Op0 = Op.getOperand(0);
8115     unsigned i = 0;
8116 
8117     // Use SCALAR_TO_VECTOR for lane zero to
8118     // a) Avoid a RMW dependency on the full vector register, and
8119     // b) Allow the register coalescer to fold away the copy if the
8120     //    value is already in an S or D register, and we're forced to emit an
8121     //    INSERT_SUBREG that we can't fold anywhere.
8122     //
8123     // We also allow types like i8 and i16 which are illegal scalar but legal
8124     // vector element types. After type-legalization the inserted value is
8125     // extended (i32) and it is safe to cast them to the vector type by ignoring
8126     // the upper bits of the lowest lane (e.g. v8i8, v4i16).
8127     if (!Op0.isUndef()) {
8128       LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
8129       Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
8130       ++i;
8131     }
8132     LLVM_DEBUG(if (i < NumElts) dbgs()
8133                    << "Creating nodes for the other vector elements:\n";);
8134     for (; i < NumElts; ++i) {
8135       SDValue V = Op.getOperand(i);
8136       if (V.isUndef())
8137         continue;
8138       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
8139       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
8140     }
8141     return Vec;
8142   }
8143 
8144   LLVM_DEBUG(
8145       dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
8146                 "better alternative\n");
8147   return SDValue();
8148 }
8149 
8150 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8151                                                       SelectionDAG &DAG) const {
8152   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
8153 
8154   // Check for non-constant or out of range lane.
8155   EVT VT = Op.getOperand(0).getValueType();
8156   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
8157   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
8158     return SDValue();
8159 
8160 
8161   // Insertion/extraction are legal for V128 types.
8162   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
8163       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
8164       VT == MVT::v8f16)
8165     return Op;
8166 
8167   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
8168       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
8169     return SDValue();
8170 
8171   // For V64 types, we perform insertion by expanding the value
8172   // to a V128 type and perform the insertion on that.
8173   SDLoc DL(Op);
8174   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
8175   EVT WideTy = WideVec.getValueType();
8176 
8177   SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
8178                              Op.getOperand(1), Op.getOperand(2));
8179   // Re-narrow the resultant vector.
8180   return NarrowVector(Node, DAG);
8181 }
8182 
8183 SDValue
8184 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
8185                                                SelectionDAG &DAG) const {
8186   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
8187 
8188   // Check for non-constant or out of range lane.
8189   EVT VT = Op.getOperand(0).getValueType();
8190   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8191   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
8192     return SDValue();
8193 
8194 
8195   // Insertion/extraction are legal for V128 types.
8196   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
8197       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
8198       VT == MVT::v8f16)
8199     return Op;
8200 
8201   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
8202       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
8203     return SDValue();
8204 
8205   // For V64 types, we perform extraction by expanding the value
8206   // to a V128 type and perform the extraction on that.
8207   SDLoc DL(Op);
8208   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
8209   EVT WideTy = WideVec.getValueType();
8210 
8211   EVT ExtrTy = WideTy.getVectorElementType();
8212   if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
8213     ExtrTy = MVT::i32;
8214 
8215   // For extractions, we just return the result directly.
8216   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
8217                      Op.getOperand(1));
8218 }
8219 
8220 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
8221                                                       SelectionDAG &DAG) const {
8222   EVT VT = Op.getOperand(0).getValueType();
8223   SDLoc dl(Op);
8224   // Just in case...
8225   if (!VT.isVector())
8226     return SDValue();
8227 
8228   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8229   if (!Cst)
8230     return SDValue();
8231   unsigned Val = Cst->getZExtValue();
8232 
8233   unsigned Size = Op.getValueSizeInBits();
8234 
8235   // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
8236   if (Val == 0)
8237     return Op;
8238 
8239   // If this is extracting the upper 64-bits of a 128-bit vector, we match
8240   // that directly.
8241   if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
8242     return Op;
8243 
8244   return SDValue();
8245 }
8246 
8247 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
8248   if (VT.getVectorNumElements() == 4 &&
8249       (VT.is128BitVector() || VT.is64BitVector())) {
8250     unsigned PFIndexes[4];
8251     for (unsigned i = 0; i != 4; ++i) {
8252       if (M[i] < 0)
8253         PFIndexes[i] = 8;
8254       else
8255         PFIndexes[i] = M[i];
8256     }
8257 
8258     // Compute the index in the perfect shuffle table.
8259     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
8260                             PFIndexes[2] * 9 + PFIndexes[3];
8261     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8262     unsigned Cost = (PFEntry >> 30);
8263 
8264     if (Cost <= 4)
8265       return true;
8266   }
8267 
8268   bool DummyBool;
8269   int DummyInt;
8270   unsigned DummyUnsigned;
8271 
8272   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
8273           isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
8274           isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
8275           // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
8276           isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
8277           isZIPMask(M, VT, DummyUnsigned) ||
8278           isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
8279           isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
8280           isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
8281           isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
8282           isConcatMask(M, VT, VT.getSizeInBits() == 128));
8283 }
8284 
8285 /// getVShiftImm - Check if this is a valid build_vector for the immediate
8286 /// operand of a vector shift operation, where all the elements of the
8287 /// build_vector must have the same constant integer value.
8288 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
8289   // Ignore bit_converts.
8290   while (Op.getOpcode() == ISD::BITCAST)
8291     Op = Op.getOperand(0);
8292   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8293   APInt SplatBits, SplatUndef;
8294   unsigned SplatBitSize;
8295   bool HasAnyUndefs;
8296   if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
8297                                     HasAnyUndefs, ElementBits) ||
8298       SplatBitSize > ElementBits)
8299     return false;
8300   Cnt = SplatBits.getSExtValue();
8301   return true;
8302 }
8303 
8304 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
8305 /// operand of a vector shift left operation.  That value must be in the range:
8306 ///   0 <= Value < ElementBits for a left shift; or
8307 ///   0 <= Value <= ElementBits for a long left shift.
8308 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8309   assert(VT.isVector() && "vector shift count is not a vector type");
8310   int64_t ElementBits = VT.getScalarSizeInBits();
8311   if (!getVShiftImm(Op, ElementBits, Cnt))
8312     return false;
8313   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
8314 }
8315 
8316 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
8317 /// operand of a vector shift right operation. The value must be in the range:
8318 ///   1 <= Value <= ElementBits for a right shift; or
8319 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
8320   assert(VT.isVector() && "vector shift count is not a vector type");
8321   int64_t ElementBits = VT.getScalarSizeInBits();
8322   if (!getVShiftImm(Op, ElementBits, Cnt))
8323     return false;
8324   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
8325 }
8326 
8327 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
8328                                                       SelectionDAG &DAG) const {
8329   EVT VT = Op.getValueType();
8330   SDLoc DL(Op);
8331   int64_t Cnt;
8332 
8333   if (!Op.getOperand(1).getValueType().isVector())
8334     return Op;
8335   unsigned EltSize = VT.getScalarSizeInBits();
8336 
8337   switch (Op.getOpcode()) {
8338   default:
8339     llvm_unreachable("unexpected shift opcode");
8340 
8341   case ISD::SHL:
8342     if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
8343       return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
8344                          DAG.getConstant(Cnt, DL, MVT::i32));
8345     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8346                        DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
8347                                        MVT::i32),
8348                        Op.getOperand(0), Op.getOperand(1));
8349   case ISD::SRA:
8350   case ISD::SRL:
8351     // Right shift immediate
8352     if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
8353       unsigned Opc =
8354           (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
8355       return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
8356                          DAG.getConstant(Cnt, DL, MVT::i32));
8357     }
8358 
8359     // Right shift register.  Note, there is not a shift right register
8360     // instruction, but the shift left register instruction takes a signed
8361     // value, where negative numbers specify a right shift.
8362     unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
8363                                                 : Intrinsic::aarch64_neon_ushl;
8364     // negate the shift amount
8365     SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
8366     SDValue NegShiftLeft =
8367         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8368                     DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
8369                     NegShift);
8370     return NegShiftLeft;
8371   }
8372 
8373   return SDValue();
8374 }
8375 
8376 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
8377                                     AArch64CC::CondCode CC, bool NoNans, EVT VT,
8378                                     const SDLoc &dl, SelectionDAG &DAG) {
8379   EVT SrcVT = LHS.getValueType();
8380   assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
8381          "function only supposed to emit natural comparisons");
8382 
8383   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
8384   APInt CnstBits(VT.getSizeInBits(), 0);
8385   APInt UndefBits(VT.getSizeInBits(), 0);
8386   bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
8387   bool IsZero = IsCnst && (CnstBits == 0);
8388 
8389   if (SrcVT.getVectorElementType().isFloatingPoint()) {
8390     switch (CC) {
8391     default:
8392       return SDValue();
8393     case AArch64CC::NE: {
8394       SDValue Fcmeq;
8395       if (IsZero)
8396         Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
8397       else
8398         Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
8399       return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
8400     }
8401     case AArch64CC::EQ:
8402       if (IsZero)
8403         return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
8404       return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
8405     case AArch64CC::GE:
8406       if (IsZero)
8407         return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
8408       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
8409     case AArch64CC::GT:
8410       if (IsZero)
8411         return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
8412       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
8413     case AArch64CC::LS:
8414       if (IsZero)
8415         return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
8416       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
8417     case AArch64CC::LT:
8418       if (!NoNans)
8419         return SDValue();
8420       // If we ignore NaNs then we can use to the MI implementation.
8421       LLVM_FALLTHROUGH;
8422     case AArch64CC::MI:
8423       if (IsZero)
8424         return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
8425       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
8426     }
8427   }
8428 
8429   switch (CC) {
8430   default:
8431     return SDValue();
8432   case AArch64CC::NE: {
8433     SDValue Cmeq;
8434     if (IsZero)
8435       Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
8436     else
8437       Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
8438     return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
8439   }
8440   case AArch64CC::EQ:
8441     if (IsZero)
8442       return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
8443     return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
8444   case AArch64CC::GE:
8445     if (IsZero)
8446       return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
8447     return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
8448   case AArch64CC::GT:
8449     if (IsZero)
8450       return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
8451     return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
8452   case AArch64CC::LE:
8453     if (IsZero)
8454       return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
8455     return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
8456   case AArch64CC::LS:
8457     return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
8458   case AArch64CC::LO:
8459     return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
8460   case AArch64CC::LT:
8461     if (IsZero)
8462       return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
8463     return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
8464   case AArch64CC::HI:
8465     return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
8466   case AArch64CC::HS:
8467     return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
8468   }
8469 }
8470 
8471 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
8472                                            SelectionDAG &DAG) const {
8473   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8474   SDValue LHS = Op.getOperand(0);
8475   SDValue RHS = Op.getOperand(1);
8476   EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
8477   SDLoc dl(Op);
8478 
8479   if (LHS.getValueType().getVectorElementType().isInteger()) {
8480     assert(LHS.getValueType() == RHS.getValueType());
8481     AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
8482     SDValue Cmp =
8483         EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
8484     return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
8485   }
8486 
8487   const bool FullFP16 =
8488     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
8489 
8490   // Make v4f16 (only) fcmp operations utilise vector instructions
8491   // v8f16 support will be a litle more complicated
8492   if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
8493     if (LHS.getValueType().getVectorNumElements() == 4) {
8494       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
8495       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
8496       SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
8497       DAG.ReplaceAllUsesWith(Op, NewSetcc);
8498       CmpVT = MVT::v4i32;
8499     } else
8500       return SDValue();
8501   }
8502 
8503   assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
8504           LHS.getValueType().getVectorElementType() != MVT::f128);
8505 
8506   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
8507   // clean.  Some of them require two branches to implement.
8508   AArch64CC::CondCode CC1, CC2;
8509   bool ShouldInvert;
8510   changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
8511 
8512   bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
8513   SDValue Cmp =
8514       EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
8515   if (!Cmp.getNode())
8516     return SDValue();
8517 
8518   if (CC2 != AArch64CC::AL) {
8519     SDValue Cmp2 =
8520         EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
8521     if (!Cmp2.getNode())
8522       return SDValue();
8523 
8524     Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
8525   }
8526 
8527   Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
8528 
8529   if (ShouldInvert)
8530     Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
8531 
8532   return Cmp;
8533 }
8534 
8535 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
8536                                   SelectionDAG &DAG) {
8537   SDValue VecOp = ScalarOp.getOperand(0);
8538   auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
8539   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
8540                      DAG.getConstant(0, DL, MVT::i64));
8541 }
8542 
8543 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
8544                                               SelectionDAG &DAG) const {
8545   SDLoc dl(Op);
8546   switch (Op.getOpcode()) {
8547   case ISD::VECREDUCE_ADD:
8548     return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
8549   case ISD::VECREDUCE_SMAX:
8550     return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
8551   case ISD::VECREDUCE_SMIN:
8552     return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
8553   case ISD::VECREDUCE_UMAX:
8554     return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
8555   case ISD::VECREDUCE_UMIN:
8556     return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
8557   case ISD::VECREDUCE_FMAX: {
8558     assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
8559     return DAG.getNode(
8560         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
8561         DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
8562         Op.getOperand(0));
8563   }
8564   case ISD::VECREDUCE_FMIN: {
8565     assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
8566     return DAG.getNode(
8567         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
8568         DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
8569         Op.getOperand(0));
8570   }
8571   default:
8572     llvm_unreachable("Unhandled reduction");
8573   }
8574 }
8575 
8576 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
8577                                                     SelectionDAG &DAG) const {
8578   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
8579   if (!Subtarget.hasLSE())
8580     return SDValue();
8581 
8582   // LSE has an atomic load-add instruction, but not a load-sub.
8583   SDLoc dl(Op);
8584   MVT VT = Op.getSimpleValueType();
8585   SDValue RHS = Op.getOperand(2);
8586   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
8587   RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
8588   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
8589                        Op.getOperand(0), Op.getOperand(1), RHS,
8590                        AN->getMemOperand());
8591 }
8592 
8593 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
8594                                                     SelectionDAG &DAG) const {
8595   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
8596   if (!Subtarget.hasLSE())
8597     return SDValue();
8598 
8599   // LSE has an atomic load-clear instruction, but not a load-and.
8600   SDLoc dl(Op);
8601   MVT VT = Op.getSimpleValueType();
8602   SDValue RHS = Op.getOperand(2);
8603   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
8604   RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
8605   return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
8606                        Op.getOperand(0), Op.getOperand(1), RHS,
8607                        AN->getMemOperand());
8608 }
8609 
8610 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
8611     SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
8612   SDLoc dl(Op);
8613   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8614   SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
8615 
8616   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
8617   const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
8618   if (Subtarget->hasCustomCallingConv())
8619     TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
8620 
8621   Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
8622                      DAG.getConstant(4, dl, MVT::i64));
8623   Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
8624   Chain =
8625       DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
8626                   Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
8627                   DAG.getRegisterMask(Mask), Chain.getValue(1));
8628   // To match the actual intent better, we should read the output from X15 here
8629   // again (instead of potentially spilling it to the stack), but rereading Size
8630   // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
8631   // here.
8632 
8633   Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
8634                      DAG.getConstant(4, dl, MVT::i64));
8635   return Chain;
8636 }
8637 
8638 SDValue
8639 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8640                                                SelectionDAG &DAG) const {
8641   assert(Subtarget->isTargetWindows() &&
8642          "Only Windows alloca probing supported");
8643   SDLoc dl(Op);
8644   // Get the inputs.
8645   SDNode *Node = Op.getNode();
8646   SDValue Chain = Op.getOperand(0);
8647   SDValue Size = Op.getOperand(1);
8648   unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8649   EVT VT = Node->getValueType(0);
8650 
8651   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
8652           "no-stack-arg-probe")) {
8653     SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8654     Chain = SP.getValue(1);
8655     SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8656     if (Align)
8657       SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8658                        DAG.getConstant(-(uint64_t)Align, dl, VT));
8659     Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8660     SDValue Ops[2] = {SP, Chain};
8661     return DAG.getMergeValues(Ops, dl);
8662   }
8663 
8664   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
8665 
8666   Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
8667 
8668   SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
8669   Chain = SP.getValue(1);
8670   SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
8671   if (Align)
8672     SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
8673                      DAG.getConstant(-(uint64_t)Align, dl, VT));
8674   Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
8675 
8676   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
8677                              DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
8678 
8679   SDValue Ops[2] = {SP, Chain};
8680   return DAG.getMergeValues(Ops, dl);
8681 }
8682 
8683 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8684 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8685 /// specified in the intrinsic calls.
8686 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8687                                                const CallInst &I,
8688                                                MachineFunction &MF,
8689                                                unsigned Intrinsic) const {
8690   auto &DL = I.getModule()->getDataLayout();
8691   switch (Intrinsic) {
8692   case Intrinsic::aarch64_neon_ld2:
8693   case Intrinsic::aarch64_neon_ld3:
8694   case Intrinsic::aarch64_neon_ld4:
8695   case Intrinsic::aarch64_neon_ld1x2:
8696   case Intrinsic::aarch64_neon_ld1x3:
8697   case Intrinsic::aarch64_neon_ld1x4:
8698   case Intrinsic::aarch64_neon_ld2lane:
8699   case Intrinsic::aarch64_neon_ld3lane:
8700   case Intrinsic::aarch64_neon_ld4lane:
8701   case Intrinsic::aarch64_neon_ld2r:
8702   case Intrinsic::aarch64_neon_ld3r:
8703   case Intrinsic::aarch64_neon_ld4r: {
8704     Info.opc = ISD::INTRINSIC_W_CHAIN;
8705     // Conservatively set memVT to the entire set of vectors loaded.
8706     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
8707     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8708     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8709     Info.offset = 0;
8710     Info.align.reset();
8711     // volatile loads with NEON intrinsics not supported
8712     Info.flags = MachineMemOperand::MOLoad;
8713     return true;
8714   }
8715   case Intrinsic::aarch64_neon_st2:
8716   case Intrinsic::aarch64_neon_st3:
8717   case Intrinsic::aarch64_neon_st4:
8718   case Intrinsic::aarch64_neon_st1x2:
8719   case Intrinsic::aarch64_neon_st1x3:
8720   case Intrinsic::aarch64_neon_st1x4:
8721   case Intrinsic::aarch64_neon_st2lane:
8722   case Intrinsic::aarch64_neon_st3lane:
8723   case Intrinsic::aarch64_neon_st4lane: {
8724     Info.opc = ISD::INTRINSIC_VOID;
8725     // Conservatively set memVT to the entire set of vectors stored.
8726     unsigned NumElts = 0;
8727     for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8728       Type *ArgTy = I.getArgOperand(ArgI)->getType();
8729       if (!ArgTy->isVectorTy())
8730         break;
8731       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
8732     }
8733     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8734     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
8735     Info.offset = 0;
8736     Info.align.reset();
8737     // volatile stores with NEON intrinsics not supported
8738     Info.flags = MachineMemOperand::MOStore;
8739     return true;
8740   }
8741   case Intrinsic::aarch64_ldaxr:
8742   case Intrinsic::aarch64_ldxr: {
8743     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
8744     Info.opc = ISD::INTRINSIC_W_CHAIN;
8745     Info.memVT = MVT::getVT(PtrTy->getElementType());
8746     Info.ptrVal = I.getArgOperand(0);
8747     Info.offset = 0;
8748     Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
8749     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8750     return true;
8751   }
8752   case Intrinsic::aarch64_stlxr:
8753   case Intrinsic::aarch64_stxr: {
8754     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
8755     Info.opc = ISD::INTRINSIC_W_CHAIN;
8756     Info.memVT = MVT::getVT(PtrTy->getElementType());
8757     Info.ptrVal = I.getArgOperand(1);
8758     Info.offset = 0;
8759     Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
8760     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8761     return true;
8762   }
8763   case Intrinsic::aarch64_ldaxp:
8764   case Intrinsic::aarch64_ldxp:
8765     Info.opc = ISD::INTRINSIC_W_CHAIN;
8766     Info.memVT = MVT::i128;
8767     Info.ptrVal = I.getArgOperand(0);
8768     Info.offset = 0;
8769     Info.align = Align(16);
8770     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
8771     return true;
8772   case Intrinsic::aarch64_stlxp:
8773   case Intrinsic::aarch64_stxp:
8774     Info.opc = ISD::INTRINSIC_W_CHAIN;
8775     Info.memVT = MVT::i128;
8776     Info.ptrVal = I.getArgOperand(2);
8777     Info.offset = 0;
8778     Info.align = Align(16);
8779     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
8780     return true;
8781   case Intrinsic::aarch64_sve_ldnt1: {
8782     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
8783     Info.opc = ISD::INTRINSIC_W_CHAIN;
8784     Info.memVT = MVT::getVT(PtrTy->getElementType());
8785     Info.ptrVal = I.getArgOperand(1);
8786     Info.offset = 0;
8787     Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
8788     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal;
8789     return true;
8790   }
8791   case Intrinsic::aarch64_sve_stnt1: {
8792     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(2)->getType());
8793     Info.opc = ISD::INTRINSIC_W_CHAIN;
8794     Info.memVT = MVT::getVT(PtrTy->getElementType());
8795     Info.ptrVal = I.getArgOperand(2);
8796     Info.offset = 0;
8797     Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
8798     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal;
8799     return true;
8800   }
8801   default:
8802     break;
8803   }
8804 
8805   return false;
8806 }
8807 
8808 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
8809                                                   ISD::LoadExtType ExtTy,
8810                                                   EVT NewVT) const {
8811   // TODO: This may be worth removing. Check regression tests for diffs.
8812   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
8813     return false;
8814 
8815   // If we're reducing the load width in order to avoid having to use an extra
8816   // instruction to do extension then it's probably a good idea.
8817   if (ExtTy != ISD::NON_EXTLOAD)
8818     return true;
8819   // Don't reduce load width if it would prevent us from combining a shift into
8820   // the offset.
8821   MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
8822   assert(Mem);
8823   const SDValue &Base = Mem->getBasePtr();
8824   if (Base.getOpcode() == ISD::ADD &&
8825       Base.getOperand(1).getOpcode() == ISD::SHL &&
8826       Base.getOperand(1).hasOneUse() &&
8827       Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
8828     // The shift can be combined if it matches the size of the value being
8829     // loaded (and so reducing the width would make it not match).
8830     uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
8831     uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
8832     if (ShiftAmount == Log2_32(LoadBytes))
8833       return false;
8834   }
8835   // We have no reason to disallow reducing the load width, so allow it.
8836   return true;
8837 }
8838 
8839 // Truncations from 64-bit GPR to 32-bit GPR is free.
8840 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
8841   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8842     return false;
8843   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8844   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8845   return NumBits1 > NumBits2;
8846 }
8847 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8848   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8849     return false;
8850   unsigned NumBits1 = VT1.getSizeInBits();
8851   unsigned NumBits2 = VT2.getSizeInBits();
8852   return NumBits1 > NumBits2;
8853 }
8854 
8855 /// Check if it is profitable to hoist instruction in then/else to if.
8856 /// Not profitable if I and it's user can form a FMA instruction
8857 /// because we prefer FMSUB/FMADD.
8858 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
8859   if (I->getOpcode() != Instruction::FMul)
8860     return true;
8861 
8862   if (!I->hasOneUse())
8863     return true;
8864 
8865   Instruction *User = I->user_back();
8866 
8867   if (User &&
8868       !(User->getOpcode() == Instruction::FSub ||
8869         User->getOpcode() == Instruction::FAdd))
8870     return true;
8871 
8872   const TargetOptions &Options = getTargetMachine().Options;
8873   const Function *F = I->getFunction();
8874   const DataLayout &DL = F->getParent()->getDataLayout();
8875   Type *Ty = User->getOperand(0)->getType();
8876 
8877   return !(isFMAFasterThanFMulAndFAdd(*F, Ty) &&
8878            isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
8879            (Options.AllowFPOpFusion == FPOpFusion::Fast ||
8880             Options.UnsafeFPMath));
8881 }
8882 
8883 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
8884 // 64-bit GPR.
8885 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
8886   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8887     return false;
8888   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8889   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8890   return NumBits1 == 32 && NumBits2 == 64;
8891 }
8892 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8893   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
8894     return false;
8895   unsigned NumBits1 = VT1.getSizeInBits();
8896   unsigned NumBits2 = VT2.getSizeInBits();
8897   return NumBits1 == 32 && NumBits2 == 64;
8898 }
8899 
8900 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
8901   EVT VT1 = Val.getValueType();
8902   if (isZExtFree(VT1, VT2)) {
8903     return true;
8904   }
8905 
8906   if (Val.getOpcode() != ISD::LOAD)
8907     return false;
8908 
8909   // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
8910   return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
8911           VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
8912           VT1.getSizeInBits() <= 32);
8913 }
8914 
8915 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
8916   if (isa<FPExtInst>(Ext))
8917     return false;
8918 
8919   // Vector types are not free.
8920   if (Ext->getType()->isVectorTy())
8921     return false;
8922 
8923   for (const Use &U : Ext->uses()) {
8924     // The extension is free if we can fold it with a left shift in an
8925     // addressing mode or an arithmetic operation: add, sub, and cmp.
8926 
8927     // Is there a shift?
8928     const Instruction *Instr = cast<Instruction>(U.getUser());
8929 
8930     // Is this a constant shift?
8931     switch (Instr->getOpcode()) {
8932     case Instruction::Shl:
8933       if (!isa<ConstantInt>(Instr->getOperand(1)))
8934         return false;
8935       break;
8936     case Instruction::GetElementPtr: {
8937       gep_type_iterator GTI = gep_type_begin(Instr);
8938       auto &DL = Ext->getModule()->getDataLayout();
8939       std::advance(GTI, U.getOperandNo()-1);
8940       Type *IdxTy = GTI.getIndexedType();
8941       // This extension will end up with a shift because of the scaling factor.
8942       // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8943       // Get the shift amount based on the scaling factor:
8944       // log2(sizeof(IdxTy)) - log2(8).
8945       uint64_t ShiftAmt =
8946         countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3;
8947       // Is the constant foldable in the shift of the addressing mode?
8948       // I.e., shift amount is between 1 and 4 inclusive.
8949       if (ShiftAmt == 0 || ShiftAmt > 4)
8950         return false;
8951       break;
8952     }
8953     case Instruction::Trunc:
8954       // Check if this is a noop.
8955       // trunc(sext ty1 to ty2) to ty1.
8956       if (Instr->getType() == Ext->getOperand(0)->getType())
8957         continue;
8958       LLVM_FALLTHROUGH;
8959     default:
8960       return false;
8961     }
8962 
8963     // At this point we can use the bfm family, so this extension is free
8964     // for that use.
8965   }
8966   return true;
8967 }
8968 
8969 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower
8970 /// or upper half of the vector elements.
8971 static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
8972   auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
8973     auto *FullVT = cast<VectorType>(FullV->getType());
8974     auto *HalfVT = cast<VectorType>(HalfV->getType());
8975     return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth();
8976   };
8977 
8978   auto extractHalf = [](Value *FullV, Value *HalfV) {
8979     auto *FullVT = cast<VectorType>(FullV->getType());
8980     auto *HalfVT = cast<VectorType>(HalfV->getType());
8981     return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
8982   };
8983 
8984   Constant *M1, *M2;
8985   Value *S1Op1, *S2Op1;
8986   if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) ||
8987       !match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2))))
8988     return false;
8989 
8990   // Check that the operands are half as wide as the result and we extract
8991   // half of the elements of the input vectors.
8992   if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
8993       !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
8994     return false;
8995 
8996   // Check the mask extracts either the lower or upper half of vector
8997   // elements.
8998   int M1Start = -1;
8999   int M2Start = -1;
9000   int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2;
9001   if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
9002       !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
9003       M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
9004     return false;
9005 
9006   return true;
9007 }
9008 
9009 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
9010 /// of the vector elements.
9011 static bool areExtractExts(Value *Ext1, Value *Ext2) {
9012   auto areExtDoubled = [](Instruction *Ext) {
9013     return Ext->getType()->getScalarSizeInBits() ==
9014            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
9015   };
9016 
9017   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
9018       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
9019       !areExtDoubled(cast<Instruction>(Ext1)) ||
9020       !areExtDoubled(cast<Instruction>(Ext2)))
9021     return false;
9022 
9023   return true;
9024 }
9025 
9026 /// Check if sinking \p I's operands to I's basic block is profitable, because
9027 /// the operands can be folded into a target instruction, e.g.
9028 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
9029 bool AArch64TargetLowering::shouldSinkOperands(
9030     Instruction *I, SmallVectorImpl<Use *> &Ops) const {
9031   if (!I->getType()->isVectorTy())
9032     return false;
9033 
9034   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
9035     switch (II->getIntrinsicID()) {
9036     case Intrinsic::aarch64_neon_umull:
9037       if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
9038         return false;
9039       Ops.push_back(&II->getOperandUse(0));
9040       Ops.push_back(&II->getOperandUse(1));
9041       return true;
9042     default:
9043       return false;
9044     }
9045   }
9046 
9047   switch (I->getOpcode()) {
9048   case Instruction::Sub:
9049   case Instruction::Add: {
9050     if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
9051       return false;
9052 
9053     // If the exts' operands extract either the lower or upper elements, we
9054     // can sink them too.
9055     auto Ext1 = cast<Instruction>(I->getOperand(0));
9056     auto Ext2 = cast<Instruction>(I->getOperand(1));
9057     if (areExtractShuffleVectors(Ext1, Ext2)) {
9058       Ops.push_back(&Ext1->getOperandUse(0));
9059       Ops.push_back(&Ext2->getOperandUse(0));
9060     }
9061 
9062     Ops.push_back(&I->getOperandUse(0));
9063     Ops.push_back(&I->getOperandUse(1));
9064 
9065     return true;
9066   }
9067   default:
9068     return false;
9069   }
9070   return false;
9071 }
9072 
9073 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
9074                                           unsigned &RequiredAligment) const {
9075   if (!LoadedType.isSimple() ||
9076       (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
9077     return false;
9078   // Cyclone supports unaligned accesses.
9079   RequiredAligment = 0;
9080   unsigned NumBits = LoadedType.getSizeInBits();
9081   return NumBits == 32 || NumBits == 64;
9082 }
9083 
9084 /// A helper function for determining the number of interleaved accesses we
9085 /// will generate when lowering accesses of the given type.
9086 unsigned
9087 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
9088                                                  const DataLayout &DL) const {
9089   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
9090 }
9091 
9092 MachineMemOperand::Flags
9093 AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
9094   if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
9095       I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
9096     return MOStridedAccess;
9097   return MachineMemOperand::MONone;
9098 }
9099 
9100 bool AArch64TargetLowering::isLegalInterleavedAccessType(
9101     VectorType *VecTy, const DataLayout &DL) const {
9102 
9103   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
9104   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
9105 
9106   // Ensure the number of vector elements is greater than 1.
9107   if (VecTy->getNumElements() < 2)
9108     return false;
9109 
9110   // Ensure the element type is legal.
9111   if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
9112     return false;
9113 
9114   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
9115   // 128 will be split into multiple interleaved accesses.
9116   return VecSize == 64 || VecSize % 128 == 0;
9117 }
9118 
9119 /// Lower an interleaved load into a ldN intrinsic.
9120 ///
9121 /// E.g. Lower an interleaved load (Factor = 2):
9122 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
9123 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
9124 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
9125 ///
9126 ///      Into:
9127 ///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
9128 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
9129 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
9130 bool AArch64TargetLowering::lowerInterleavedLoad(
9131     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
9132     ArrayRef<unsigned> Indices, unsigned Factor) const {
9133   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
9134          "Invalid interleave factor");
9135   assert(!Shuffles.empty() && "Empty shufflevector input");
9136   assert(Shuffles.size() == Indices.size() &&
9137          "Unmatched number of shufflevectors and indices");
9138 
9139   const DataLayout &DL = LI->getModule()->getDataLayout();
9140 
9141   VectorType *VecTy = Shuffles[0]->getType();
9142 
9143   // Skip if we do not have NEON and skip illegal vector types. We can
9144   // "legalize" wide vector types into multiple interleaved accesses as long as
9145   // the vector types are divisible by 128.
9146   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
9147     return false;
9148 
9149   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
9150 
9151   // A pointer vector can not be the return type of the ldN intrinsics. Need to
9152   // load integer vectors first and then convert to pointer vectors.
9153   Type *EltTy = VecTy->getVectorElementType();
9154   if (EltTy->isPointerTy())
9155     VecTy =
9156         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
9157 
9158   IRBuilder<> Builder(LI);
9159 
9160   // The base address of the load.
9161   Value *BaseAddr = LI->getPointerOperand();
9162 
9163   if (NumLoads > 1) {
9164     // If we're going to generate more than one load, reset the sub-vector type
9165     // to something legal.
9166     VecTy = VectorType::get(VecTy->getVectorElementType(),
9167                             VecTy->getVectorNumElements() / NumLoads);
9168 
9169     // We will compute the pointer operand of each load from the original base
9170     // address using GEPs. Cast the base address to a pointer to the scalar
9171     // element type.
9172     BaseAddr = Builder.CreateBitCast(
9173         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
9174                       LI->getPointerAddressSpace()));
9175   }
9176 
9177   Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
9178   Type *Tys[2] = {VecTy, PtrTy};
9179   static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
9180                                             Intrinsic::aarch64_neon_ld3,
9181                                             Intrinsic::aarch64_neon_ld4};
9182   Function *LdNFunc =
9183       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
9184 
9185   // Holds sub-vectors extracted from the load intrinsic return values. The
9186   // sub-vectors are associated with the shufflevector instructions they will
9187   // replace.
9188   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
9189 
9190   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
9191 
9192     // If we're generating more than one load, compute the base address of
9193     // subsequent loads as an offset from the previous.
9194     if (LoadCount > 0)
9195       BaseAddr =
9196           Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
9197                                      VecTy->getVectorNumElements() * Factor);
9198 
9199     CallInst *LdN = Builder.CreateCall(
9200         LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
9201 
9202     // Extract and store the sub-vectors returned by the load intrinsic.
9203     for (unsigned i = 0; i < Shuffles.size(); i++) {
9204       ShuffleVectorInst *SVI = Shuffles[i];
9205       unsigned Index = Indices[i];
9206 
9207       Value *SubVec = Builder.CreateExtractValue(LdN, Index);
9208 
9209       // Convert the integer vector to pointer vector if the element is pointer.
9210       if (EltTy->isPointerTy())
9211         SubVec = Builder.CreateIntToPtr(
9212             SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
9213                                     VecTy->getVectorNumElements()));
9214       SubVecs[SVI].push_back(SubVec);
9215     }
9216   }
9217 
9218   // Replace uses of the shufflevector instructions with the sub-vectors
9219   // returned by the load intrinsic. If a shufflevector instruction is
9220   // associated with more than one sub-vector, those sub-vectors will be
9221   // concatenated into a single wide vector.
9222   for (ShuffleVectorInst *SVI : Shuffles) {
9223     auto &SubVec = SubVecs[SVI];
9224     auto *WideVec =
9225         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
9226     SVI->replaceAllUsesWith(WideVec);
9227   }
9228 
9229   return true;
9230 }
9231 
9232 /// Lower an interleaved store into a stN intrinsic.
9233 ///
9234 /// E.g. Lower an interleaved store (Factor = 3):
9235 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
9236 ///                 <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
9237 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
9238 ///
9239 ///      Into:
9240 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
9241 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
9242 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
9243 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
9244 ///
9245 /// Note that the new shufflevectors will be removed and we'll only generate one
9246 /// st3 instruction in CodeGen.
9247 ///
9248 /// Example for a more general valid mask (Factor 3). Lower:
9249 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
9250 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
9251 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
9252 ///
9253 ///      Into:
9254 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
9255 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
9256 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
9257 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
9258 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
9259                                                   ShuffleVectorInst *SVI,
9260                                                   unsigned Factor) const {
9261   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
9262          "Invalid interleave factor");
9263 
9264   VectorType *VecTy = SVI->getType();
9265   assert(VecTy->getVectorNumElements() % Factor == 0 &&
9266          "Invalid interleaved store");
9267 
9268   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
9269   Type *EltTy = VecTy->getVectorElementType();
9270   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
9271 
9272   const DataLayout &DL = SI->getModule()->getDataLayout();
9273 
9274   // Skip if we do not have NEON and skip illegal vector types. We can
9275   // "legalize" wide vector types into multiple interleaved accesses as long as
9276   // the vector types are divisible by 128.
9277   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
9278     return false;
9279 
9280   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
9281 
9282   Value *Op0 = SVI->getOperand(0);
9283   Value *Op1 = SVI->getOperand(1);
9284   IRBuilder<> Builder(SI);
9285 
9286   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
9287   // vectors to integer vectors.
9288   if (EltTy->isPointerTy()) {
9289     Type *IntTy = DL.getIntPtrType(EltTy);
9290     unsigned NumOpElts = Op0->getType()->getVectorNumElements();
9291 
9292     // Convert to the corresponding integer vector.
9293     Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
9294     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
9295     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
9296 
9297     SubVecTy = VectorType::get(IntTy, LaneLen);
9298   }
9299 
9300   // The base address of the store.
9301   Value *BaseAddr = SI->getPointerOperand();
9302 
9303   if (NumStores > 1) {
9304     // If we're going to generate more than one store, reset the lane length
9305     // and sub-vector type to something legal.
9306     LaneLen /= NumStores;
9307     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
9308 
9309     // We will compute the pointer operand of each store from the original base
9310     // address using GEPs. Cast the base address to a pointer to the scalar
9311     // element type.
9312     BaseAddr = Builder.CreateBitCast(
9313         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
9314                       SI->getPointerAddressSpace()));
9315   }
9316 
9317   auto Mask = SVI->getShuffleMask();
9318 
9319   Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
9320   Type *Tys[2] = {SubVecTy, PtrTy};
9321   static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
9322                                              Intrinsic::aarch64_neon_st3,
9323                                              Intrinsic::aarch64_neon_st4};
9324   Function *StNFunc =
9325       Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
9326 
9327   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
9328 
9329     SmallVector<Value *, 5> Ops;
9330 
9331     // Split the shufflevector operands into sub vectors for the new stN call.
9332     for (unsigned i = 0; i < Factor; i++) {
9333       unsigned IdxI = StoreCount * LaneLen * Factor + i;
9334       if (Mask[IdxI] >= 0) {
9335         Ops.push_back(Builder.CreateShuffleVector(
9336             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
9337       } else {
9338         unsigned StartMask = 0;
9339         for (unsigned j = 1; j < LaneLen; j++) {
9340           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
9341           if (Mask[IdxJ * Factor + IdxI] >= 0) {
9342             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
9343             break;
9344           }
9345         }
9346         // Note: Filling undef gaps with random elements is ok, since
9347         // those elements were being written anyway (with undefs).
9348         // In the case of all undefs we're defaulting to using elems from 0
9349         // Note: StartMask cannot be negative, it's checked in
9350         // isReInterleaveMask
9351         Ops.push_back(Builder.CreateShuffleVector(
9352             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
9353       }
9354     }
9355 
9356     // If we generating more than one store, we compute the base address of
9357     // subsequent stores as an offset from the previous.
9358     if (StoreCount > 0)
9359       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
9360                                             BaseAddr, LaneLen * Factor);
9361 
9362     Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
9363     Builder.CreateCall(StNFunc, Ops);
9364   }
9365   return true;
9366 }
9367 
9368 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9369                        unsigned AlignCheck) {
9370   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9371           (DstAlign == 0 || DstAlign % AlignCheck == 0));
9372 }
9373 
9374 EVT AArch64TargetLowering::getOptimalMemOpType(
9375     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
9376     bool ZeroMemset, bool MemcpyStrSrc,
9377     const AttributeList &FuncAttributes) const {
9378   bool CanImplicitFloat =
9379       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
9380   bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
9381   bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
9382   // Only use AdvSIMD to implement memset of 32-byte and above. It would have
9383   // taken one instruction to materialize the v2i64 zero and one store (with
9384   // restrictive addressing mode). Just do i64 stores.
9385   bool IsSmallMemset = IsMemset && Size < 32;
9386   auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
9387     if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
9388       return true;
9389     bool Fast;
9390     return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
9391                                           &Fast) &&
9392            Fast;
9393   };
9394 
9395   if (CanUseNEON && IsMemset && !IsSmallMemset &&
9396       AlignmentIsAcceptable(MVT::v2i64, 16))
9397     return MVT::v2i64;
9398   if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
9399     return MVT::f128;
9400   if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
9401     return MVT::i64;
9402   if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
9403     return MVT::i32;
9404   return MVT::Other;
9405 }
9406 
9407 LLT AArch64TargetLowering::getOptimalMemOpLLT(
9408     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
9409     bool ZeroMemset, bool MemcpyStrSrc,
9410     const AttributeList &FuncAttributes) const {
9411   bool CanImplicitFloat =
9412       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
9413   bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
9414   bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
9415   // Only use AdvSIMD to implement memset of 32-byte and above. It would have
9416   // taken one instruction to materialize the v2i64 zero and one store (with
9417   // restrictive addressing mode). Just do i64 stores.
9418   bool IsSmallMemset = IsMemset && Size < 32;
9419   auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
9420     if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
9421       return true;
9422     bool Fast;
9423     return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone,
9424                                           &Fast) &&
9425            Fast;
9426   };
9427 
9428   if (CanUseNEON && IsMemset && !IsSmallMemset &&
9429       AlignmentIsAcceptable(MVT::v2i64, 16))
9430     return LLT::vector(2, 64);
9431   if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
9432     return LLT::scalar(128);
9433   if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
9434     return LLT::scalar(64);
9435   if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
9436     return LLT::scalar(32);
9437   return LLT();
9438 }
9439 
9440 // 12-bit optionally shifted immediates are legal for adds.
9441 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
9442   if (Immed == std::numeric_limits<int64_t>::min()) {
9443     LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
9444                       << ": avoid UB for INT64_MIN\n");
9445     return false;
9446   }
9447   // Same encoding for add/sub, just flip the sign.
9448   Immed = std::abs(Immed);
9449   bool IsLegal = ((Immed >> 12) == 0 ||
9450                   ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
9451   LLVM_DEBUG(dbgs() << "Is " << Immed
9452                     << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
9453   return IsLegal;
9454 }
9455 
9456 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
9457 // immediates is the same as for an add or a sub.
9458 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
9459   return isLegalAddImmediate(Immed);
9460 }
9461 
9462 /// isLegalAddressingMode - Return true if the addressing mode represented
9463 /// by AM is legal for this target, for a load/store of the specified type.
9464 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
9465                                                   const AddrMode &AM, Type *Ty,
9466                                                   unsigned AS, Instruction *I) const {
9467   // AArch64 has five basic addressing modes:
9468   //  reg
9469   //  reg + 9-bit signed offset
9470   //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
9471   //  reg1 + reg2
9472   //  reg + SIZE_IN_BYTES * reg
9473 
9474   // No global is ever allowed as a base.
9475   if (AM.BaseGV)
9476     return false;
9477 
9478   // No reg+reg+imm addressing.
9479   if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
9480     return false;
9481 
9482   // check reg + imm case:
9483   // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
9484   uint64_t NumBytes = 0;
9485   if (Ty->isSized()) {
9486     uint64_t NumBits = DL.getTypeSizeInBits(Ty);
9487     NumBytes = NumBits / 8;
9488     if (!isPowerOf2_64(NumBits))
9489       NumBytes = 0;
9490   }
9491 
9492   if (!AM.Scale) {
9493     int64_t Offset = AM.BaseOffs;
9494 
9495     // 9-bit signed offset
9496     if (isInt<9>(Offset))
9497       return true;
9498 
9499     // 12-bit unsigned offset
9500     unsigned shift = Log2_64(NumBytes);
9501     if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
9502         // Must be a multiple of NumBytes (NumBytes is a power of 2)
9503         (Offset >> shift) << shift == Offset)
9504       return true;
9505     return false;
9506   }
9507 
9508   // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
9509 
9510   return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
9511 }
9512 
9513 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
9514   // Consider splitting large offset of struct or array.
9515   return true;
9516 }
9517 
9518 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
9519                                                 const AddrMode &AM, Type *Ty,
9520                                                 unsigned AS) const {
9521   // Scaling factors are not free at all.
9522   // Operands                     | Rt Latency
9523   // -------------------------------------------
9524   // Rt, [Xn, Xm]                 | 4
9525   // -------------------------------------------
9526   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
9527   // Rt, [Xn, Wm, <extend> #imm]  |
9528   if (isLegalAddressingMode(DL, AM, Ty, AS))
9529     // Scale represents reg2 * scale, thus account for 1 if
9530     // it is not equal to 0 or 1.
9531     return AM.Scale != 0 && AM.Scale != 1;
9532   return -1;
9533 }
9534 
9535 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(
9536     const MachineFunction &MF, EVT VT) const {
9537   VT = VT.getScalarType();
9538 
9539   if (!VT.isSimple())
9540     return false;
9541 
9542   switch (VT.getSimpleVT().SimpleTy) {
9543   case MVT::f32:
9544   case MVT::f64:
9545     return true;
9546   default:
9547     break;
9548   }
9549 
9550   return false;
9551 }
9552 
9553 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
9554                                                        Type *Ty) const {
9555   switch (Ty->getScalarType()->getTypeID()) {
9556   case Type::FloatTyID:
9557   case Type::DoubleTyID:
9558     return true;
9559   default:
9560     return false;
9561   }
9562 }
9563 
9564 const MCPhysReg *
9565 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
9566   // LR is a callee-save register, but we must treat it as clobbered by any call
9567   // site. Hence we include LR in the scratch registers, which are in turn added
9568   // as implicit-defs for stackmaps and patchpoints.
9569   static const MCPhysReg ScratchRegs[] = {
9570     AArch64::X16, AArch64::X17, AArch64::LR, 0
9571   };
9572   return ScratchRegs;
9573 }
9574 
9575 bool
9576 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
9577                                                      CombineLevel Level) const {
9578   N = N->getOperand(0).getNode();
9579   EVT VT = N->getValueType(0);
9580     // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
9581     // it with shift to let it be lowered to UBFX.
9582   if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
9583       isa<ConstantSDNode>(N->getOperand(1))) {
9584     uint64_t TruncMask = N->getConstantOperandVal(1);
9585     if (isMask_64(TruncMask) &&
9586       N->getOperand(0).getOpcode() == ISD::SRL &&
9587       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
9588       return false;
9589   }
9590   return true;
9591 }
9592 
9593 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
9594                                                               Type *Ty) const {
9595   assert(Ty->isIntegerTy());
9596 
9597   unsigned BitSize = Ty->getPrimitiveSizeInBits();
9598   if (BitSize == 0)
9599     return false;
9600 
9601   int64_t Val = Imm.getSExtValue();
9602   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
9603     return true;
9604 
9605   if ((int64_t)Val < 0)
9606     Val = ~Val;
9607   if (BitSize == 32)
9608     Val &= (1LL << 32) - 1;
9609 
9610   unsigned LZ = countLeadingZeros((uint64_t)Val);
9611   unsigned Shift = (63 - LZ) / 16;
9612   // MOVZ is free so return true for one or fewer MOVK.
9613   return Shift < 3;
9614 }
9615 
9616 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
9617                                                     unsigned Index) const {
9618   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
9619     return false;
9620 
9621   return (Index == 0 || Index == ResVT.getVectorNumElements());
9622 }
9623 
9624 /// Turn vector tests of the signbit in the form of:
9625 ///   xor (sra X, elt_size(X)-1), -1
9626 /// into:
9627 ///   cmge X, X, #0
9628 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
9629                                          const AArch64Subtarget *Subtarget) {
9630   EVT VT = N->getValueType(0);
9631   if (!Subtarget->hasNEON() || !VT.isVector())
9632     return SDValue();
9633 
9634   // There must be a shift right algebraic before the xor, and the xor must be a
9635   // 'not' operation.
9636   SDValue Shift = N->getOperand(0);
9637   SDValue Ones = N->getOperand(1);
9638   if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
9639       !ISD::isBuildVectorAllOnes(Ones.getNode()))
9640     return SDValue();
9641 
9642   // The shift should be smearing the sign bit across each vector element.
9643   auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
9644   EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
9645   if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
9646     return SDValue();
9647 
9648   return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
9649 }
9650 
9651 // Generate SUBS and CSEL for integer abs.
9652 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
9653   EVT VT = N->getValueType(0);
9654 
9655   SDValue N0 = N->getOperand(0);
9656   SDValue N1 = N->getOperand(1);
9657   SDLoc DL(N);
9658 
9659   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
9660   // and change it to SUB and CSEL.
9661   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
9662       N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
9663       N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
9664     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
9665       if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
9666         SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
9667                                   N0.getOperand(0));
9668         // Generate SUBS & CSEL.
9669         SDValue Cmp =
9670             DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
9671                         N0.getOperand(0), DAG.getConstant(0, DL, VT));
9672         return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
9673                            DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
9674                            SDValue(Cmp.getNode(), 1));
9675       }
9676   return SDValue();
9677 }
9678 
9679 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
9680                                  TargetLowering::DAGCombinerInfo &DCI,
9681                                  const AArch64Subtarget *Subtarget) {
9682   if (DCI.isBeforeLegalizeOps())
9683     return SDValue();
9684 
9685   if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
9686     return Cmp;
9687 
9688   return performIntegerAbsCombine(N, DAG);
9689 }
9690 
9691 SDValue
9692 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
9693                                      SelectionDAG &DAG,
9694                                      SmallVectorImpl<SDNode *> &Created) const {
9695   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
9696   if (isIntDivCheap(N->getValueType(0), Attr))
9697     return SDValue(N,0); // Lower SDIV as SDIV
9698 
9699   // fold (sdiv X, pow2)
9700   EVT VT = N->getValueType(0);
9701   if ((VT != MVT::i32 && VT != MVT::i64) ||
9702       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
9703     return SDValue();
9704 
9705   SDLoc DL(N);
9706   SDValue N0 = N->getOperand(0);
9707   unsigned Lg2 = Divisor.countTrailingZeros();
9708   SDValue Zero = DAG.getConstant(0, DL, VT);
9709   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
9710 
9711   // Add (N0 < 0) ? Pow2 - 1 : 0;
9712   SDValue CCVal;
9713   SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
9714   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
9715   SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
9716 
9717   Created.push_back(Cmp.getNode());
9718   Created.push_back(Add.getNode());
9719   Created.push_back(CSel.getNode());
9720 
9721   // Divide by pow2.
9722   SDValue SRA =
9723       DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
9724 
9725   // If we're dividing by a positive value, we're done.  Otherwise, we must
9726   // negate the result.
9727   if (Divisor.isNonNegative())
9728     return SRA;
9729 
9730   Created.push_back(SRA.getNode());
9731   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
9732 }
9733 
9734 static bool IsSVECntIntrinsic(SDValue S) {
9735   switch(getIntrinsicID(S.getNode())) {
9736   default:
9737     break;
9738   case Intrinsic::aarch64_sve_cntb:
9739   case Intrinsic::aarch64_sve_cnth:
9740   case Intrinsic::aarch64_sve_cntw:
9741   case Intrinsic::aarch64_sve_cntd:
9742     return true;
9743   }
9744   return false;
9745 }
9746 
9747 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
9748                                  TargetLowering::DAGCombinerInfo &DCI,
9749                                  const AArch64Subtarget *Subtarget) {
9750   if (DCI.isBeforeLegalizeOps())
9751     return SDValue();
9752 
9753   // The below optimizations require a constant RHS.
9754   if (!isa<ConstantSDNode>(N->getOperand(1)))
9755     return SDValue();
9756 
9757   SDValue N0 = N->getOperand(0);
9758   ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
9759   const APInt &ConstValue = C->getAPIntValue();
9760 
9761   // Allow the scaling to be folded into the `cnt` instruction by preventing
9762   // the scaling to be obscured here. This makes it easier to pattern match.
9763   if (IsSVECntIntrinsic(N0) ||
9764      (N0->getOpcode() == ISD::TRUNCATE &&
9765       (IsSVECntIntrinsic(N0->getOperand(0)))))
9766        if (ConstValue.sge(1) && ConstValue.sle(16))
9767          return SDValue();
9768 
9769   // Multiplication of a power of two plus/minus one can be done more
9770   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
9771   // future CPUs have a cheaper MADD instruction, this may need to be
9772   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
9773   // 64-bit is 5 cycles, so this is always a win.
9774   // More aggressively, some multiplications N0 * C can be lowered to
9775   // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
9776   // e.g. 6=3*2=(2+1)*2.
9777   // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
9778   // which equals to (1+2)*16-(1+2).
9779   // TrailingZeroes is used to test if the mul can be lowered to
9780   // shift+add+shift.
9781   unsigned TrailingZeroes = ConstValue.countTrailingZeros();
9782   if (TrailingZeroes) {
9783     // Conservatively do not lower to shift+add+shift if the mul might be
9784     // folded into smul or umul.
9785     if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
9786                             isZeroExtended(N0.getNode(), DAG)))
9787       return SDValue();
9788     // Conservatively do not lower to shift+add+shift if the mul might be
9789     // folded into madd or msub.
9790     if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
9791                            N->use_begin()->getOpcode() == ISD::SUB))
9792       return SDValue();
9793   }
9794   // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
9795   // and shift+add+shift.
9796   APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
9797 
9798   unsigned ShiftAmt, AddSubOpc;
9799   // Is the shifted value the LHS operand of the add/sub?
9800   bool ShiftValUseIsN0 = true;
9801   // Do we need to negate the result?
9802   bool NegateResult = false;
9803 
9804   if (ConstValue.isNonNegative()) {
9805     // (mul x, 2^N + 1) => (add (shl x, N), x)
9806     // (mul x, 2^N - 1) => (sub (shl x, N), x)
9807     // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
9808     APInt SCVMinus1 = ShiftedConstValue - 1;
9809     APInt CVPlus1 = ConstValue + 1;
9810     if (SCVMinus1.isPowerOf2()) {
9811       ShiftAmt = SCVMinus1.logBase2();
9812       AddSubOpc = ISD::ADD;
9813     } else if (CVPlus1.isPowerOf2()) {
9814       ShiftAmt = CVPlus1.logBase2();
9815       AddSubOpc = ISD::SUB;
9816     } else
9817       return SDValue();
9818   } else {
9819     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9820     // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9821     APInt CVNegPlus1 = -ConstValue + 1;
9822     APInt CVNegMinus1 = -ConstValue - 1;
9823     if (CVNegPlus1.isPowerOf2()) {
9824       ShiftAmt = CVNegPlus1.logBase2();
9825       AddSubOpc = ISD::SUB;
9826       ShiftValUseIsN0 = false;
9827     } else if (CVNegMinus1.isPowerOf2()) {
9828       ShiftAmt = CVNegMinus1.logBase2();
9829       AddSubOpc = ISD::ADD;
9830       NegateResult = true;
9831     } else
9832       return SDValue();
9833   }
9834 
9835   SDLoc DL(N);
9836   EVT VT = N->getValueType(0);
9837   SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
9838                                    DAG.getConstant(ShiftAmt, DL, MVT::i64));
9839 
9840   SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
9841   SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
9842   SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
9843   assert(!(NegateResult && TrailingZeroes) &&
9844          "NegateResult and TrailingZeroes cannot both be true for now.");
9845   // Negate the result.
9846   if (NegateResult)
9847     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
9848   // Shift the result.
9849   if (TrailingZeroes)
9850     return DAG.getNode(ISD::SHL, DL, VT, Res,
9851                        DAG.getConstant(TrailingZeroes, DL, MVT::i64));
9852   return Res;
9853 }
9854 
9855 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
9856                                                          SelectionDAG &DAG) {
9857   // Take advantage of vector comparisons producing 0 or -1 in each lane to
9858   // optimize away operation when it's from a constant.
9859   //
9860   // The general transformation is:
9861   //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
9862   //       AND(VECTOR_CMP(x,y), constant2)
9863   //    constant2 = UNARYOP(constant)
9864 
9865   // Early exit if this isn't a vector operation, the operand of the
9866   // unary operation isn't a bitwise AND, or if the sizes of the operations
9867   // aren't the same.
9868   EVT VT = N->getValueType(0);
9869   if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
9870       N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
9871       VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
9872     return SDValue();
9873 
9874   // Now check that the other operand of the AND is a constant. We could
9875   // make the transformation for non-constant splats as well, but it's unclear
9876   // that would be a benefit as it would not eliminate any operations, just
9877   // perform one more step in scalar code before moving to the vector unit.
9878   if (BuildVectorSDNode *BV =
9879           dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
9880     // Bail out if the vector isn't a constant.
9881     if (!BV->isConstant())
9882       return SDValue();
9883 
9884     // Everything checks out. Build up the new and improved node.
9885     SDLoc DL(N);
9886     EVT IntVT = BV->getValueType(0);
9887     // Create a new constant of the appropriate type for the transformed
9888     // DAG.
9889     SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
9890     // The AND node needs bitcasts to/from an integer vector type around it.
9891     SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
9892     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
9893                                  N->getOperand(0)->getOperand(0), MaskConst);
9894     SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
9895     return Res;
9896   }
9897 
9898   return SDValue();
9899 }
9900 
9901 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
9902                                      const AArch64Subtarget *Subtarget) {
9903   // First try to optimize away the conversion when it's conditionally from
9904   // a constant. Vectors only.
9905   if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
9906     return Res;
9907 
9908   EVT VT = N->getValueType(0);
9909   if (VT != MVT::f32 && VT != MVT::f64)
9910     return SDValue();
9911 
9912   // Only optimize when the source and destination types have the same width.
9913   if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
9914     return SDValue();
9915 
9916   // If the result of an integer load is only used by an integer-to-float
9917   // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
9918   // This eliminates an "integer-to-vector-move" UOP and improves throughput.
9919   SDValue N0 = N->getOperand(0);
9920   if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
9921       // Do not change the width of a volatile load.
9922       !cast<LoadSDNode>(N0)->isVolatile()) {
9923     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9924     SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
9925                                LN0->getPointerInfo(), LN0->getAlignment(),
9926                                LN0->getMemOperand()->getFlags());
9927 
9928     // Make sure successors of the original load stay after it by updating them
9929     // to use the new Chain.
9930     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
9931 
9932     unsigned Opcode =
9933         (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
9934     return DAG.getNode(Opcode, SDLoc(N), VT, Load);
9935   }
9936 
9937   return SDValue();
9938 }
9939 
9940 /// Fold a floating-point multiply by power of two into floating-point to
9941 /// fixed-point conversion.
9942 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
9943                                      TargetLowering::DAGCombinerInfo &DCI,
9944                                      const AArch64Subtarget *Subtarget) {
9945   if (!Subtarget->hasNEON())
9946     return SDValue();
9947 
9948   if (!N->getValueType(0).isSimple())
9949     return SDValue();
9950 
9951   SDValue Op = N->getOperand(0);
9952   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
9953       Op.getOpcode() != ISD::FMUL)
9954     return SDValue();
9955 
9956   SDValue ConstVec = Op->getOperand(1);
9957   if (!isa<BuildVectorSDNode>(ConstVec))
9958     return SDValue();
9959 
9960   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9961   uint32_t FloatBits = FloatTy.getSizeInBits();
9962   if (FloatBits != 32 && FloatBits != 64)
9963     return SDValue();
9964 
9965   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9966   uint32_t IntBits = IntTy.getSizeInBits();
9967   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
9968     return SDValue();
9969 
9970   // Avoid conversions where iN is larger than the float (e.g., float -> i64).
9971   if (IntBits > FloatBits)
9972     return SDValue();
9973 
9974   BitVector UndefElements;
9975   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
9976   int32_t Bits = IntBits == 64 ? 64 : 32;
9977   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
9978   if (C == -1 || C == 0 || C > Bits)
9979     return SDValue();
9980 
9981   MVT ResTy;
9982   unsigned NumLanes = Op.getValueType().getVectorNumElements();
9983   switch (NumLanes) {
9984   default:
9985     return SDValue();
9986   case 2:
9987     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
9988     break;
9989   case 4:
9990     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
9991     break;
9992   }
9993 
9994   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
9995     return SDValue();
9996 
9997   assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
9998          "Illegal vector type after legalization");
9999 
10000   SDLoc DL(N);
10001   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10002   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
10003                                       : Intrinsic::aarch64_neon_vcvtfp2fxu;
10004   SDValue FixConv =
10005       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
10006                   DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
10007                   Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
10008   // We can handle smaller integers by generating an extra trunc.
10009   if (IntBits < FloatBits)
10010     FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
10011 
10012   return FixConv;
10013 }
10014 
10015 /// Fold a floating-point divide by power of two into fixed-point to
10016 /// floating-point conversion.
10017 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
10018                                   TargetLowering::DAGCombinerInfo &DCI,
10019                                   const AArch64Subtarget *Subtarget) {
10020   if (!Subtarget->hasNEON())
10021     return SDValue();
10022 
10023   SDValue Op = N->getOperand(0);
10024   unsigned Opc = Op->getOpcode();
10025   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
10026       !Op.getOperand(0).getValueType().isSimple() ||
10027       (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
10028     return SDValue();
10029 
10030   SDValue ConstVec = N->getOperand(1);
10031   if (!isa<BuildVectorSDNode>(ConstVec))
10032     return SDValue();
10033 
10034   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
10035   int32_t IntBits = IntTy.getSizeInBits();
10036   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
10037     return SDValue();
10038 
10039   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
10040   int32_t FloatBits = FloatTy.getSizeInBits();
10041   if (FloatBits != 32 && FloatBits != 64)
10042     return SDValue();
10043 
10044   // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
10045   if (IntBits > FloatBits)
10046     return SDValue();
10047 
10048   BitVector UndefElements;
10049   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10050   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
10051   if (C == -1 || C == 0 || C > FloatBits)
10052     return SDValue();
10053 
10054   MVT ResTy;
10055   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10056   switch (NumLanes) {
10057   default:
10058     return SDValue();
10059   case 2:
10060     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
10061     break;
10062   case 4:
10063     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
10064     break;
10065   }
10066 
10067   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
10068     return SDValue();
10069 
10070   SDLoc DL(N);
10071   SDValue ConvInput = Op.getOperand(0);
10072   bool IsSigned = Opc == ISD::SINT_TO_FP;
10073   if (IntBits < FloatBits)
10074     ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
10075                             ResTy, ConvInput);
10076 
10077   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
10078                                       : Intrinsic::aarch64_neon_vcvtfxu2fp;
10079   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
10080                      DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
10081                      DAG.getConstant(C, DL, MVT::i32));
10082 }
10083 
10084 /// An EXTR instruction is made up of two shifts, ORed together. This helper
10085 /// searches for and classifies those shifts.
10086 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
10087                          bool &FromHi) {
10088   if (N.getOpcode() == ISD::SHL)
10089     FromHi = false;
10090   else if (N.getOpcode() == ISD::SRL)
10091     FromHi = true;
10092   else
10093     return false;
10094 
10095   if (!isa<ConstantSDNode>(N.getOperand(1)))
10096     return false;
10097 
10098   ShiftAmount = N->getConstantOperandVal(1);
10099   Src = N->getOperand(0);
10100   return true;
10101 }
10102 
10103 /// EXTR instruction extracts a contiguous chunk of bits from two existing
10104 /// registers viewed as a high/low pair. This function looks for the pattern:
10105 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
10106 /// with an EXTR. Can't quite be done in TableGen because the two immediates
10107 /// aren't independent.
10108 static SDValue tryCombineToEXTR(SDNode *N,
10109                                 TargetLowering::DAGCombinerInfo &DCI) {
10110   SelectionDAG &DAG = DCI.DAG;
10111   SDLoc DL(N);
10112   EVT VT = N->getValueType(0);
10113 
10114   assert(N->getOpcode() == ISD::OR && "Unexpected root");
10115 
10116   if (VT != MVT::i32 && VT != MVT::i64)
10117     return SDValue();
10118 
10119   SDValue LHS;
10120   uint32_t ShiftLHS = 0;
10121   bool LHSFromHi = false;
10122   if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
10123     return SDValue();
10124 
10125   SDValue RHS;
10126   uint32_t ShiftRHS = 0;
10127   bool RHSFromHi = false;
10128   if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
10129     return SDValue();
10130 
10131   // If they're both trying to come from the high part of the register, they're
10132   // not really an EXTR.
10133   if (LHSFromHi == RHSFromHi)
10134     return SDValue();
10135 
10136   if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
10137     return SDValue();
10138 
10139   if (LHSFromHi) {
10140     std::swap(LHS, RHS);
10141     std::swap(ShiftLHS, ShiftRHS);
10142   }
10143 
10144   return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
10145                      DAG.getConstant(ShiftRHS, DL, MVT::i64));
10146 }
10147 
10148 static SDValue tryCombineToBSL(SDNode *N,
10149                                 TargetLowering::DAGCombinerInfo &DCI) {
10150   EVT VT = N->getValueType(0);
10151   SelectionDAG &DAG = DCI.DAG;
10152   SDLoc DL(N);
10153 
10154   if (!VT.isVector())
10155     return SDValue();
10156 
10157   SDValue N0 = N->getOperand(0);
10158   if (N0.getOpcode() != ISD::AND)
10159     return SDValue();
10160 
10161   SDValue N1 = N->getOperand(1);
10162   if (N1.getOpcode() != ISD::AND)
10163     return SDValue();
10164 
10165   // We only have to look for constant vectors here since the general, variable
10166   // case can be handled in TableGen.
10167   unsigned Bits = VT.getScalarSizeInBits();
10168   uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
10169   for (int i = 1; i >= 0; --i)
10170     for (int j = 1; j >= 0; --j) {
10171       BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
10172       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
10173       if (!BVN0 || !BVN1)
10174         continue;
10175 
10176       bool FoundMatch = true;
10177       for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
10178         ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
10179         ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
10180         if (!CN0 || !CN1 ||
10181             CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
10182           FoundMatch = false;
10183           break;
10184         }
10185       }
10186 
10187       if (FoundMatch)
10188         return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
10189                            N0->getOperand(1 - i), N1->getOperand(1 - j));
10190     }
10191 
10192   return SDValue();
10193 }
10194 
10195 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
10196                                 const AArch64Subtarget *Subtarget) {
10197   // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
10198   SelectionDAG &DAG = DCI.DAG;
10199   EVT VT = N->getValueType(0);
10200 
10201   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10202     return SDValue();
10203 
10204   if (SDValue Res = tryCombineToEXTR(N, DCI))
10205     return Res;
10206 
10207   if (SDValue Res = tryCombineToBSL(N, DCI))
10208     return Res;
10209 
10210   return SDValue();
10211 }
10212 
10213 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) {
10214   if (!MemVT.getVectorElementType().isSimple())
10215     return false;
10216 
10217   uint64_t MaskForTy = 0ull;
10218   switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) {
10219   case MVT::i8:
10220     MaskForTy = 0xffull;
10221     break;
10222   case MVT::i16:
10223     MaskForTy = 0xffffull;
10224     break;
10225   case MVT::i32:
10226     MaskForTy = 0xffffffffull;
10227     break;
10228   default:
10229     return false;
10230     break;
10231   }
10232 
10233   if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR)
10234     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0)))
10235       return Op0->getAPIntValue().getLimitedValue() == MaskForTy;
10236 
10237   return false;
10238 }
10239 
10240 static SDValue performSVEAndCombine(SDNode *N,
10241                                     TargetLowering::DAGCombinerInfo &DCI) {
10242   if (DCI.isBeforeLegalizeOps())
10243     return SDValue();
10244 
10245   SDValue Src = N->getOperand(0);
10246   SDValue Mask = N->getOperand(1);
10247 
10248   if (!Src.hasOneUse())
10249     return SDValue();
10250 
10251   // GLD1* instructions perform an implicit zero-extend, which makes them
10252   // perfect candidates for combining.
10253   switch (Src->getOpcode()) {
10254   case AArch64ISD::GLD1:
10255   case AArch64ISD::GLD1_SCALED:
10256   case AArch64ISD::GLD1_SXTW:
10257   case AArch64ISD::GLD1_SXTW_SCALED:
10258   case AArch64ISD::GLD1_UXTW:
10259   case AArch64ISD::GLD1_UXTW_SCALED:
10260   case AArch64ISD::GLD1_IMM:
10261     break;
10262   default:
10263     return SDValue();
10264   }
10265 
10266   EVT MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();
10267 
10268   if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT))
10269     return Src;
10270 
10271   return SDValue();
10272 }
10273 
10274 static SDValue performANDCombine(SDNode *N,
10275                                  TargetLowering::DAGCombinerInfo &DCI) {
10276   SelectionDAG &DAG = DCI.DAG;
10277   SDValue LHS = N->getOperand(0);
10278   EVT VT = N->getValueType(0);
10279   if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
10280     return SDValue();
10281 
10282   if (VT.isScalableVector())
10283     return performSVEAndCombine(N, DCI);
10284 
10285   BuildVectorSDNode *BVN =
10286       dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode());
10287   if (!BVN)
10288     return SDValue();
10289 
10290   // AND does not accept an immediate, so check if we can use a BIC immediate
10291   // instruction instead. We do this here instead of using a (and x, (mvni imm))
10292   // pattern in isel, because some immediates may be lowered to the preferred
10293   // (and x, (movi imm)) form, even though an mvni representation also exists.
10294   APInt DefBits(VT.getSizeInBits(), 0);
10295   APInt UndefBits(VT.getSizeInBits(), 0);
10296   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
10297     SDValue NewOp;
10298 
10299     DefBits = ~DefBits;
10300     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
10301                                     DefBits, &LHS)) ||
10302         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
10303                                     DefBits, &LHS)))
10304       return NewOp;
10305 
10306     UndefBits = ~UndefBits;
10307     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
10308                                     UndefBits, &LHS)) ||
10309         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
10310                                     UndefBits, &LHS)))
10311       return NewOp;
10312   }
10313 
10314   return SDValue();
10315 }
10316 
10317 static SDValue performSRLCombine(SDNode *N,
10318                                  TargetLowering::DAGCombinerInfo &DCI) {
10319   SelectionDAG &DAG = DCI.DAG;
10320   EVT VT = N->getValueType(0);
10321   if (VT != MVT::i32 && VT != MVT::i64)
10322     return SDValue();
10323 
10324   // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
10325   // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
10326   // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
10327   SDValue N0 = N->getOperand(0);
10328   if (N0.getOpcode() == ISD::BSWAP) {
10329     SDLoc DL(N);
10330     SDValue N1 = N->getOperand(1);
10331     SDValue N00 = N0.getOperand(0);
10332     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
10333       uint64_t ShiftAmt = C->getZExtValue();
10334       if (VT == MVT::i32 && ShiftAmt == 16 &&
10335           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
10336         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
10337       if (VT == MVT::i64 && ShiftAmt == 32 &&
10338           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
10339         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
10340     }
10341   }
10342   return SDValue();
10343 }
10344 
10345 static SDValue performConcatVectorsCombine(SDNode *N,
10346                                            TargetLowering::DAGCombinerInfo &DCI,
10347                                            SelectionDAG &DAG) {
10348   SDLoc dl(N);
10349   EVT VT = N->getValueType(0);
10350   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
10351 
10352   // Optimize concat_vectors of truncated vectors, where the intermediate
10353   // type is illegal, to avoid said illegality,  e.g.,
10354   //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
10355   //                          (v2i16 (truncate (v2i64)))))
10356   // ->
10357   //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
10358   //                                    (v4i32 (bitcast (v2i64))),
10359   //                                    <0, 2, 4, 6>)))
10360   // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
10361   // on both input and result type, so we might generate worse code.
10362   // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
10363   if (N->getNumOperands() == 2 &&
10364       N0->getOpcode() == ISD::TRUNCATE &&
10365       N1->getOpcode() == ISD::TRUNCATE) {
10366     SDValue N00 = N0->getOperand(0);
10367     SDValue N10 = N1->getOperand(0);
10368     EVT N00VT = N00.getValueType();
10369 
10370     if (N00VT == N10.getValueType() &&
10371         (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
10372         N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
10373       MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
10374       SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
10375       for (size_t i = 0; i < Mask.size(); ++i)
10376         Mask[i] = i * 2;
10377       return DAG.getNode(ISD::TRUNCATE, dl, VT,
10378                          DAG.getVectorShuffle(
10379                              MidVT, dl,
10380                              DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
10381                              DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
10382     }
10383   }
10384 
10385   // Wait 'til after everything is legalized to try this. That way we have
10386   // legal vector types and such.
10387   if (DCI.isBeforeLegalizeOps())
10388     return SDValue();
10389 
10390   // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
10391   // splat. The indexed instructions are going to be expecting a DUPLANE64, so
10392   // canonicalise to that.
10393   if (N0 == N1 && VT.getVectorNumElements() == 2) {
10394     assert(VT.getScalarSizeInBits() == 64);
10395     return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
10396                        DAG.getConstant(0, dl, MVT::i64));
10397   }
10398 
10399   // Canonicalise concat_vectors so that the right-hand vector has as few
10400   // bit-casts as possible before its real operation. The primary matching
10401   // destination for these operations will be the narrowing "2" instructions,
10402   // which depend on the operation being performed on this right-hand vector.
10403   // For example,
10404   //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
10405   // becomes
10406   //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
10407 
10408   if (N1->getOpcode() != ISD::BITCAST)
10409     return SDValue();
10410   SDValue RHS = N1->getOperand(0);
10411   MVT RHSTy = RHS.getValueType().getSimpleVT();
10412   // If the RHS is not a vector, this is not the pattern we're looking for.
10413   if (!RHSTy.isVector())
10414     return SDValue();
10415 
10416   LLVM_DEBUG(
10417       dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
10418 
10419   MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
10420                                   RHSTy.getVectorNumElements() * 2);
10421   return DAG.getNode(ISD::BITCAST, dl, VT,
10422                      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
10423                                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
10424                                  RHS));
10425 }
10426 
10427 static SDValue tryCombineFixedPointConvert(SDNode *N,
10428                                            TargetLowering::DAGCombinerInfo &DCI,
10429                                            SelectionDAG &DAG) {
10430   // Wait until after everything is legalized to try this. That way we have
10431   // legal vector types and such.
10432   if (DCI.isBeforeLegalizeOps())
10433     return SDValue();
10434   // Transform a scalar conversion of a value from a lane extract into a
10435   // lane extract of a vector conversion. E.g., from foo1 to foo2:
10436   // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
10437   // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
10438   //
10439   // The second form interacts better with instruction selection and the
10440   // register allocator to avoid cross-class register copies that aren't
10441   // coalescable due to a lane reference.
10442 
10443   // Check the operand and see if it originates from a lane extract.
10444   SDValue Op1 = N->getOperand(1);
10445   if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10446     // Yep, no additional predication needed. Perform the transform.
10447     SDValue IID = N->getOperand(0);
10448     SDValue Shift = N->getOperand(2);
10449     SDValue Vec = Op1.getOperand(0);
10450     SDValue Lane = Op1.getOperand(1);
10451     EVT ResTy = N->getValueType(0);
10452     EVT VecResTy;
10453     SDLoc DL(N);
10454 
10455     // The vector width should be 128 bits by the time we get here, even
10456     // if it started as 64 bits (the extract_vector handling will have
10457     // done so).
10458     assert(Vec.getValueSizeInBits() == 128 &&
10459            "unexpected vector size on extract_vector_elt!");
10460     if (Vec.getValueType() == MVT::v4i32)
10461       VecResTy = MVT::v4f32;
10462     else if (Vec.getValueType() == MVT::v2i64)
10463       VecResTy = MVT::v2f64;
10464     else
10465       llvm_unreachable("unexpected vector type!");
10466 
10467     SDValue Convert =
10468         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
10469     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
10470   }
10471   return SDValue();
10472 }
10473 
10474 // AArch64 high-vector "long" operations are formed by performing the non-high
10475 // version on an extract_subvector of each operand which gets the high half:
10476 //
10477 //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
10478 //
10479 // However, there are cases which don't have an extract_high explicitly, but
10480 // have another operation that can be made compatible with one for free. For
10481 // example:
10482 //
10483 //  (dupv64 scalar) --> (extract_high (dup128 scalar))
10484 //
10485 // This routine does the actual conversion of such DUPs, once outer routines
10486 // have determined that everything else is in order.
10487 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
10488 // similarly here.
10489 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
10490   switch (N.getOpcode()) {
10491   case AArch64ISD::DUP:
10492   case AArch64ISD::DUPLANE8:
10493   case AArch64ISD::DUPLANE16:
10494   case AArch64ISD::DUPLANE32:
10495   case AArch64ISD::DUPLANE64:
10496   case AArch64ISD::MOVI:
10497   case AArch64ISD::MOVIshift:
10498   case AArch64ISD::MOVIedit:
10499   case AArch64ISD::MOVImsl:
10500   case AArch64ISD::MVNIshift:
10501   case AArch64ISD::MVNImsl:
10502     break;
10503   default:
10504     // FMOV could be supported, but isn't very useful, as it would only occur
10505     // if you passed a bitcast' floating point immediate to an eligible long
10506     // integer op (addl, smull, ...).
10507     return SDValue();
10508   }
10509 
10510   MVT NarrowTy = N.getSimpleValueType();
10511   if (!NarrowTy.is64BitVector())
10512     return SDValue();
10513 
10514   MVT ElementTy = NarrowTy.getVectorElementType();
10515   unsigned NumElems = NarrowTy.getVectorNumElements();
10516   MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
10517 
10518   SDLoc dl(N);
10519   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
10520                      DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
10521                      DAG.getConstant(NumElems, dl, MVT::i64));
10522 }
10523 
10524 static bool isEssentiallyExtractHighSubvector(SDValue N) {
10525   if (N.getOpcode() == ISD::BITCAST)
10526     N = N.getOperand(0);
10527   if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
10528     return false;
10529   return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
10530          N.getOperand(0).getValueType().getVectorNumElements() / 2;
10531 }
10532 
10533 /// Helper structure to keep track of ISD::SET_CC operands.
10534 struct GenericSetCCInfo {
10535   const SDValue *Opnd0;
10536   const SDValue *Opnd1;
10537   ISD::CondCode CC;
10538 };
10539 
10540 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
10541 struct AArch64SetCCInfo {
10542   const SDValue *Cmp;
10543   AArch64CC::CondCode CC;
10544 };
10545 
10546 /// Helper structure to keep track of SetCC information.
10547 union SetCCInfo {
10548   GenericSetCCInfo Generic;
10549   AArch64SetCCInfo AArch64;
10550 };
10551 
10552 /// Helper structure to be able to read SetCC information.  If set to
10553 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
10554 /// GenericSetCCInfo.
10555 struct SetCCInfoAndKind {
10556   SetCCInfo Info;
10557   bool IsAArch64;
10558 };
10559 
10560 /// Check whether or not \p Op is a SET_CC operation, either a generic or
10561 /// an
10562 /// AArch64 lowered one.
10563 /// \p SetCCInfo is filled accordingly.
10564 /// \post SetCCInfo is meanginfull only when this function returns true.
10565 /// \return True when Op is a kind of SET_CC operation.
10566 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
10567   // If this is a setcc, this is straight forward.
10568   if (Op.getOpcode() == ISD::SETCC) {
10569     SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
10570     SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
10571     SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10572     SetCCInfo.IsAArch64 = false;
10573     return true;
10574   }
10575   // Otherwise, check if this is a matching csel instruction.
10576   // In other words:
10577   // - csel 1, 0, cc
10578   // - csel 0, 1, !cc
10579   if (Op.getOpcode() != AArch64ISD::CSEL)
10580     return false;
10581   // Set the information about the operands.
10582   // TODO: we want the operands of the Cmp not the csel
10583   SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
10584   SetCCInfo.IsAArch64 = true;
10585   SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
10586       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10587 
10588   // Check that the operands matches the constraints:
10589   // (1) Both operands must be constants.
10590   // (2) One must be 1 and the other must be 0.
10591   ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
10592   ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10593 
10594   // Check (1).
10595   if (!TValue || !FValue)
10596     return false;
10597 
10598   // Check (2).
10599   if (!TValue->isOne()) {
10600     // Update the comparison when we are interested in !cc.
10601     std::swap(TValue, FValue);
10602     SetCCInfo.Info.AArch64.CC =
10603         AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
10604   }
10605   return TValue->isOne() && FValue->isNullValue();
10606 }
10607 
10608 // Returns true if Op is setcc or zext of setcc.
10609 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
10610   if (isSetCC(Op, Info))
10611     return true;
10612   return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
10613     isSetCC(Op->getOperand(0), Info));
10614 }
10615 
10616 // The folding we want to perform is:
10617 // (add x, [zext] (setcc cc ...) )
10618 //   -->
10619 // (csel x, (add x, 1), !cc ...)
10620 //
10621 // The latter will get matched to a CSINC instruction.
10622 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
10623   assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
10624   SDValue LHS = Op->getOperand(0);
10625   SDValue RHS = Op->getOperand(1);
10626   SetCCInfoAndKind InfoAndKind;
10627 
10628   // If neither operand is a SET_CC, give up.
10629   if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
10630     std::swap(LHS, RHS);
10631     if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
10632       return SDValue();
10633   }
10634 
10635   // FIXME: This could be generatized to work for FP comparisons.
10636   EVT CmpVT = InfoAndKind.IsAArch64
10637                   ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
10638                   : InfoAndKind.Info.Generic.Opnd0->getValueType();
10639   if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
10640     return SDValue();
10641 
10642   SDValue CCVal;
10643   SDValue Cmp;
10644   SDLoc dl(Op);
10645   if (InfoAndKind.IsAArch64) {
10646     CCVal = DAG.getConstant(
10647         AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
10648         MVT::i32);
10649     Cmp = *InfoAndKind.Info.AArch64.Cmp;
10650   } else
10651     Cmp = getAArch64Cmp(
10652         *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1,
10653         ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG,
10654         dl);
10655 
10656   EVT VT = Op->getValueType(0);
10657   LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
10658   return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
10659 }
10660 
10661 // The basic add/sub long vector instructions have variants with "2" on the end
10662 // which act on the high-half of their inputs. They are normally matched by
10663 // patterns like:
10664 //
10665 // (add (zeroext (extract_high LHS)),
10666 //      (zeroext (extract_high RHS)))
10667 // -> uaddl2 vD, vN, vM
10668 //
10669 // However, if one of the extracts is something like a duplicate, this
10670 // instruction can still be used profitably. This function puts the DAG into a
10671 // more appropriate form for those patterns to trigger.
10672 static SDValue performAddSubLongCombine(SDNode *N,
10673                                         TargetLowering::DAGCombinerInfo &DCI,
10674                                         SelectionDAG &DAG) {
10675   if (DCI.isBeforeLegalizeOps())
10676     return SDValue();
10677 
10678   MVT VT = N->getSimpleValueType(0);
10679   if (!VT.is128BitVector()) {
10680     if (N->getOpcode() == ISD::ADD)
10681       return performSetccAddFolding(N, DAG);
10682     return SDValue();
10683   }
10684 
10685   // Make sure both branches are extended in the same way.
10686   SDValue LHS = N->getOperand(0);
10687   SDValue RHS = N->getOperand(1);
10688   if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
10689        LHS.getOpcode() != ISD::SIGN_EXTEND) ||
10690       LHS.getOpcode() != RHS.getOpcode())
10691     return SDValue();
10692 
10693   unsigned ExtType = LHS.getOpcode();
10694 
10695   // It's not worth doing if at least one of the inputs isn't already an
10696   // extract, but we don't know which it'll be so we have to try both.
10697   if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
10698     RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
10699     if (!RHS.getNode())
10700       return SDValue();
10701 
10702     RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
10703   } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
10704     LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
10705     if (!LHS.getNode())
10706       return SDValue();
10707 
10708     LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
10709   }
10710 
10711   return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
10712 }
10713 
10714 // Massage DAGs which we can use the high-half "long" operations on into
10715 // something isel will recognize better. E.g.
10716 //
10717 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
10718 //   (aarch64_neon_umull (extract_high (v2i64 vec)))
10719 //                     (extract_high (v2i64 (dup128 scalar)))))
10720 //
10721 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
10722                                        TargetLowering::DAGCombinerInfo &DCI,
10723                                        SelectionDAG &DAG) {
10724   if (DCI.isBeforeLegalizeOps())
10725     return SDValue();
10726 
10727   SDValue LHS = N->getOperand(1);
10728   SDValue RHS = N->getOperand(2);
10729   assert(LHS.getValueType().is64BitVector() &&
10730          RHS.getValueType().is64BitVector() &&
10731          "unexpected shape for long operation");
10732 
10733   // Either node could be a DUP, but it's not worth doing both of them (you'd
10734   // just as well use the non-high version) so look for a corresponding extract
10735   // operation on the other "wing".
10736   if (isEssentiallyExtractHighSubvector(LHS)) {
10737     RHS = tryExtendDUPToExtractHigh(RHS, DAG);
10738     if (!RHS.getNode())
10739       return SDValue();
10740   } else if (isEssentiallyExtractHighSubvector(RHS)) {
10741     LHS = tryExtendDUPToExtractHigh(LHS, DAG);
10742     if (!LHS.getNode())
10743       return SDValue();
10744   }
10745 
10746   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
10747                      N->getOperand(0), LHS, RHS);
10748 }
10749 
10750 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
10751   MVT ElemTy = N->getSimpleValueType(0).getScalarType();
10752   unsigned ElemBits = ElemTy.getSizeInBits();
10753 
10754   int64_t ShiftAmount;
10755   if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
10756     APInt SplatValue, SplatUndef;
10757     unsigned SplatBitSize;
10758     bool HasAnyUndefs;
10759     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
10760                               HasAnyUndefs, ElemBits) ||
10761         SplatBitSize != ElemBits)
10762       return SDValue();
10763 
10764     ShiftAmount = SplatValue.getSExtValue();
10765   } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
10766     ShiftAmount = CVN->getSExtValue();
10767   } else
10768     return SDValue();
10769 
10770   unsigned Opcode;
10771   bool IsRightShift;
10772   switch (IID) {
10773   default:
10774     llvm_unreachable("Unknown shift intrinsic");
10775   case Intrinsic::aarch64_neon_sqshl:
10776     Opcode = AArch64ISD::SQSHL_I;
10777     IsRightShift = false;
10778     break;
10779   case Intrinsic::aarch64_neon_uqshl:
10780     Opcode = AArch64ISD::UQSHL_I;
10781     IsRightShift = false;
10782     break;
10783   case Intrinsic::aarch64_neon_srshl:
10784     Opcode = AArch64ISD::SRSHR_I;
10785     IsRightShift = true;
10786     break;
10787   case Intrinsic::aarch64_neon_urshl:
10788     Opcode = AArch64ISD::URSHR_I;
10789     IsRightShift = true;
10790     break;
10791   case Intrinsic::aarch64_neon_sqshlu:
10792     Opcode = AArch64ISD::SQSHLU_I;
10793     IsRightShift = false;
10794     break;
10795   case Intrinsic::aarch64_neon_sshl:
10796   case Intrinsic::aarch64_neon_ushl:
10797     // For positive shift amounts we can use SHL, as ushl/sshl perform a regular
10798     // left shift for positive shift amounts. Below, we only replace the current
10799     // node with VSHL, if this condition is met.
10800     Opcode = AArch64ISD::VSHL;
10801     IsRightShift = false;
10802     break;
10803   }
10804 
10805   if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
10806     SDLoc dl(N);
10807     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
10808                        DAG.getConstant(-ShiftAmount, dl, MVT::i32));
10809   } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
10810     SDLoc dl(N);
10811     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
10812                        DAG.getConstant(ShiftAmount, dl, MVT::i32));
10813   }
10814 
10815   return SDValue();
10816 }
10817 
10818 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
10819 // the intrinsics must be legal and take an i32, this means there's almost
10820 // certainly going to be a zext in the DAG which we can eliminate.
10821 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
10822   SDValue AndN = N->getOperand(2);
10823   if (AndN.getOpcode() != ISD::AND)
10824     return SDValue();
10825 
10826   ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
10827   if (!CMask || CMask->getZExtValue() != Mask)
10828     return SDValue();
10829 
10830   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
10831                      N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
10832 }
10833 
10834 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
10835                                            SelectionDAG &DAG) {
10836   SDLoc dl(N);
10837   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
10838                      DAG.getNode(Opc, dl,
10839                                  N->getOperand(1).getSimpleValueType(),
10840                                  N->getOperand(1)),
10841                      DAG.getConstant(0, dl, MVT::i64));
10842 }
10843 
10844 static SDValue LowerSVEIntReduction(SDNode *N, unsigned Opc,
10845                                     SelectionDAG &DAG) {
10846   SDLoc dl(N);
10847   LLVMContext &Ctx = *DAG.getContext();
10848   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10849 
10850   EVT VT = N->getValueType(0);
10851   SDValue Pred = N->getOperand(1);
10852   SDValue Data = N->getOperand(2);
10853   EVT DataVT = Data.getValueType();
10854 
10855   if (DataVT.getVectorElementType().isScalarInteger() &&
10856       (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)) {
10857     if (!TLI.isTypeLegal(DataVT))
10858       return SDValue();
10859 
10860     EVT OutputVT = EVT::getVectorVT(Ctx, VT,
10861       AArch64::NeonBitsPerVector / VT.getSizeInBits());
10862     SDValue Reduce = DAG.getNode(Opc, dl, OutputVT, Pred, Data);
10863     SDValue Zero = DAG.getConstant(0, dl, MVT::i64);
10864     SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Reduce, Zero);
10865 
10866     return Result;
10867   }
10868 
10869   return SDValue();
10870 }
10871 
10872 static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) {
10873   SDLoc dl(N);
10874   LLVMContext &Ctx = *DAG.getContext();
10875   EVT VT = N->getValueType(0);
10876 
10877   assert(VT.isScalableVector() && "Expected a scalable vector.");
10878 
10879   // Current lowering only supports the SVE-ACLE types.
10880   if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock)
10881     return SDValue();
10882 
10883   unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8;
10884   unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8;
10885   EVT ByteVT = EVT::getVectorVT(Ctx, MVT::i8, { ByteSize, true });
10886 
10887   // Convert everything to the domain of EXT (i.e bytes).
10888   SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1));
10889   SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2));
10890   SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3),
10891                             DAG.getConstant(ElemSize, dl, MVT::i32));
10892 
10893   SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2);
10894   return DAG.getNode(ISD::BITCAST, dl, VT, EXT);
10895 }
10896 
10897 static SDValue tryConvertSVEWideCompare(SDNode *N, unsigned ReplacementIID,
10898                                         bool Invert,
10899                                         TargetLowering::DAGCombinerInfo &DCI,
10900                                         SelectionDAG &DAG) {
10901   if (DCI.isBeforeLegalize())
10902     return SDValue();
10903 
10904   SDValue Comparator = N->getOperand(3);
10905   if (Comparator.getOpcode() == AArch64ISD::DUP ||
10906       Comparator.getOpcode() == ISD::SPLAT_VECTOR) {
10907     unsigned IID = getIntrinsicID(N);
10908     EVT VT = N->getValueType(0);
10909     EVT CmpVT = N->getOperand(2).getValueType();
10910     SDValue Pred = N->getOperand(1);
10911     SDValue Imm;
10912     SDLoc DL(N);
10913 
10914     switch (IID) {
10915     default:
10916       llvm_unreachable("Called with wrong intrinsic!");
10917       break;
10918 
10919     // Signed comparisons
10920     case Intrinsic::aarch64_sve_cmpeq_wide:
10921     case Intrinsic::aarch64_sve_cmpne_wide:
10922     case Intrinsic::aarch64_sve_cmpge_wide:
10923     case Intrinsic::aarch64_sve_cmpgt_wide:
10924     case Intrinsic::aarch64_sve_cmplt_wide:
10925     case Intrinsic::aarch64_sve_cmple_wide: {
10926       if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
10927         int64_t ImmVal = CN->getSExtValue();
10928         if (ImmVal >= -16 && ImmVal <= 15)
10929           Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
10930         else
10931           return SDValue();
10932       }
10933       break;
10934     }
10935     // Unsigned comparisons
10936     case Intrinsic::aarch64_sve_cmphs_wide:
10937     case Intrinsic::aarch64_sve_cmphi_wide:
10938     case Intrinsic::aarch64_sve_cmplo_wide:
10939     case Intrinsic::aarch64_sve_cmpls_wide:  {
10940       if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) {
10941         uint64_t ImmVal = CN->getZExtValue();
10942         if (ImmVal <= 127)
10943           Imm = DAG.getConstant(ImmVal, DL, MVT::i32);
10944         else
10945           return SDValue();
10946       }
10947       break;
10948     }
10949     }
10950 
10951     SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm);
10952     SDValue ID = DAG.getTargetConstant(ReplacementIID, DL, MVT::i64);
10953     SDValue Op0, Op1;
10954     if (Invert) {
10955       Op0 = Splat;
10956       Op1 = N->getOperand(2);
10957     } else {
10958       Op0 = N->getOperand(2);
10959       Op1 = Splat;
10960     }
10961     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10962                        ID, Pred, Op0, Op1);
10963   }
10964 
10965   return SDValue();
10966 }
10967 
10968 static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op,
10969                         AArch64CC::CondCode Cond) {
10970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10971 
10972   SDLoc DL(Op);
10973   assert(Op.getValueType().isScalableVector() &&
10974          TLI.isTypeLegal(Op.getValueType()) &&
10975          "Expected legal scalable vector type!");
10976 
10977   // Ensure target specific opcodes are using legal type.
10978   EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
10979   SDValue TVal = DAG.getConstant(1, DL, OutVT);
10980   SDValue FVal = DAG.getConstant(0, DL, OutVT);
10981 
10982   // Set condition code (CC) flags.
10983   SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op);
10984 
10985   // Convert CC to integer based on requested condition.
10986   // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare.
10987   SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32);
10988   SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test);
10989   return DAG.getZExtOrTrunc(Res, DL, VT);
10990 }
10991 
10992 static SDValue performIntrinsicCombine(SDNode *N,
10993                                        TargetLowering::DAGCombinerInfo &DCI,
10994                                        const AArch64Subtarget *Subtarget) {
10995   SelectionDAG &DAG = DCI.DAG;
10996   unsigned IID = getIntrinsicID(N);
10997   switch (IID) {
10998   default:
10999     break;
11000   case Intrinsic::aarch64_neon_vcvtfxs2fp:
11001   case Intrinsic::aarch64_neon_vcvtfxu2fp:
11002     return tryCombineFixedPointConvert(N, DCI, DAG);
11003   case Intrinsic::aarch64_neon_saddv:
11004     return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
11005   case Intrinsic::aarch64_neon_uaddv:
11006     return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
11007   case Intrinsic::aarch64_neon_sminv:
11008     return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
11009   case Intrinsic::aarch64_neon_uminv:
11010     return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
11011   case Intrinsic::aarch64_neon_smaxv:
11012     return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
11013   case Intrinsic::aarch64_neon_umaxv:
11014     return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
11015   case Intrinsic::aarch64_neon_fmax:
11016     return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
11017                        N->getOperand(1), N->getOperand(2));
11018   case Intrinsic::aarch64_neon_fmin:
11019     return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
11020                        N->getOperand(1), N->getOperand(2));
11021   case Intrinsic::aarch64_neon_fmaxnm:
11022     return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
11023                        N->getOperand(1), N->getOperand(2));
11024   case Intrinsic::aarch64_neon_fminnm:
11025     return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
11026                        N->getOperand(1), N->getOperand(2));
11027   case Intrinsic::aarch64_neon_smull:
11028   case Intrinsic::aarch64_neon_umull:
11029   case Intrinsic::aarch64_neon_pmull:
11030   case Intrinsic::aarch64_neon_sqdmull:
11031     return tryCombineLongOpWithDup(IID, N, DCI, DAG);
11032   case Intrinsic::aarch64_neon_sqshl:
11033   case Intrinsic::aarch64_neon_uqshl:
11034   case Intrinsic::aarch64_neon_sqshlu:
11035   case Intrinsic::aarch64_neon_srshl:
11036   case Intrinsic::aarch64_neon_urshl:
11037   case Intrinsic::aarch64_neon_sshl:
11038   case Intrinsic::aarch64_neon_ushl:
11039     return tryCombineShiftImm(IID, N, DAG);
11040   case Intrinsic::aarch64_crc32b:
11041   case Intrinsic::aarch64_crc32cb:
11042     return tryCombineCRC32(0xff, N, DAG);
11043   case Intrinsic::aarch64_crc32h:
11044   case Intrinsic::aarch64_crc32ch:
11045     return tryCombineCRC32(0xffff, N, DAG);
11046   case Intrinsic::aarch64_sve_smaxv:
11047     return LowerSVEIntReduction(N, AArch64ISD::SMAXV_PRED, DAG);
11048   case Intrinsic::aarch64_sve_umaxv:
11049     return LowerSVEIntReduction(N, AArch64ISD::UMAXV_PRED, DAG);
11050   case Intrinsic::aarch64_sve_sminv:
11051     return LowerSVEIntReduction(N, AArch64ISD::SMINV_PRED, DAG);
11052   case Intrinsic::aarch64_sve_uminv:
11053     return LowerSVEIntReduction(N, AArch64ISD::UMINV_PRED, DAG);
11054   case Intrinsic::aarch64_sve_orv:
11055     return LowerSVEIntReduction(N, AArch64ISD::ORV_PRED, DAG);
11056   case Intrinsic::aarch64_sve_eorv:
11057     return LowerSVEIntReduction(N, AArch64ISD::EORV_PRED, DAG);
11058   case Intrinsic::aarch64_sve_andv:
11059     return LowerSVEIntReduction(N, AArch64ISD::ANDV_PRED, DAG);
11060   case Intrinsic::aarch64_sve_ext:
11061     return LowerSVEIntrinsicEXT(N, DAG);
11062   case Intrinsic::aarch64_sve_cmpeq_wide:
11063     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpeq,
11064                                     false, DCI, DAG);
11065   case Intrinsic::aarch64_sve_cmpne_wide:
11066     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpne,
11067                                     false, DCI, DAG);
11068   case Intrinsic::aarch64_sve_cmpge_wide:
11069     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge,
11070                                     false, DCI, DAG);
11071   case Intrinsic::aarch64_sve_cmpgt_wide:
11072     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt,
11073                                     false, DCI, DAG);
11074   case Intrinsic::aarch64_sve_cmplt_wide:
11075     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt,
11076                                     true, DCI, DAG);
11077   case Intrinsic::aarch64_sve_cmple_wide:
11078     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge,
11079                                     true, DCI, DAG);
11080   case Intrinsic::aarch64_sve_cmphs_wide:
11081     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs,
11082                                     false, DCI, DAG);
11083   case Intrinsic::aarch64_sve_cmphi_wide:
11084     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi,
11085                                     false, DCI, DAG);
11086   case Intrinsic::aarch64_sve_cmplo_wide:
11087     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi, true,
11088                                     DCI, DAG);
11089   case Intrinsic::aarch64_sve_cmpls_wide:
11090     return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs, true,
11091                                     DCI, DAG);
11092   case Intrinsic::aarch64_sve_ptest_any:
11093     return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
11094                     AArch64CC::ANY_ACTIVE);
11095   case Intrinsic::aarch64_sve_ptest_first:
11096     return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
11097                     AArch64CC::FIRST_ACTIVE);
11098   case Intrinsic::aarch64_sve_ptest_last:
11099     return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2),
11100                     AArch64CC::LAST_ACTIVE);
11101   }
11102   return SDValue();
11103 }
11104 
11105 static SDValue performExtendCombine(SDNode *N,
11106                                     TargetLowering::DAGCombinerInfo &DCI,
11107                                     SelectionDAG &DAG) {
11108   // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
11109   // we can convert that DUP into another extract_high (of a bigger DUP), which
11110   // helps the backend to decide that an sabdl2 would be useful, saving a real
11111   // extract_high operation.
11112   if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
11113       N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
11114     SDNode *ABDNode = N->getOperand(0).getNode();
11115     unsigned IID = getIntrinsicID(ABDNode);
11116     if (IID == Intrinsic::aarch64_neon_sabd ||
11117         IID == Intrinsic::aarch64_neon_uabd) {
11118       SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
11119       if (!NewABD.getNode())
11120         return SDValue();
11121 
11122       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
11123                          NewABD);
11124     }
11125   }
11126 
11127   // This is effectively a custom type legalization for AArch64.
11128   //
11129   // Type legalization will split an extend of a small, legal, type to a larger
11130   // illegal type by first splitting the destination type, often creating
11131   // illegal source types, which then get legalized in isel-confusing ways,
11132   // leading to really terrible codegen. E.g.,
11133   //   %result = v8i32 sext v8i8 %value
11134   // becomes
11135   //   %losrc = extract_subreg %value, ...
11136   //   %hisrc = extract_subreg %value, ...
11137   //   %lo = v4i32 sext v4i8 %losrc
11138   //   %hi = v4i32 sext v4i8 %hisrc
11139   // Things go rapidly downhill from there.
11140   //
11141   // For AArch64, the [sz]ext vector instructions can only go up one element
11142   // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
11143   // take two instructions.
11144   //
11145   // This implies that the most efficient way to do the extend from v8i8
11146   // to two v4i32 values is to first extend the v8i8 to v8i16, then do
11147   // the normal splitting to happen for the v8i16->v8i32.
11148 
11149   // This is pre-legalization to catch some cases where the default
11150   // type legalization will create ill-tempered code.
11151   if (!DCI.isBeforeLegalizeOps())
11152     return SDValue();
11153 
11154   // We're only interested in cleaning things up for non-legal vector types
11155   // here. If both the source and destination are legal, things will just
11156   // work naturally without any fiddling.
11157   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11158   EVT ResVT = N->getValueType(0);
11159   if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
11160     return SDValue();
11161   // If the vector type isn't a simple VT, it's beyond the scope of what
11162   // we're  worried about here. Let legalization do its thing and hope for
11163   // the best.
11164   SDValue Src = N->getOperand(0);
11165   EVT SrcVT = Src->getValueType(0);
11166   if (!ResVT.isSimple() || !SrcVT.isSimple())
11167     return SDValue();
11168 
11169   // If the source VT is a 64-bit vector, we can play games and get the
11170   // better results we want.
11171   if (SrcVT.getSizeInBits() != 64)
11172     return SDValue();
11173 
11174   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
11175   unsigned ElementCount = SrcVT.getVectorNumElements();
11176   SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
11177   SDLoc DL(N);
11178   Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
11179 
11180   // Now split the rest of the operation into two halves, each with a 64
11181   // bit source.
11182   EVT LoVT, HiVT;
11183   SDValue Lo, Hi;
11184   unsigned NumElements = ResVT.getVectorNumElements();
11185   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
11186   LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
11187                                  ResVT.getVectorElementType(), NumElements / 2);
11188 
11189   EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
11190                                LoVT.getVectorNumElements());
11191   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
11192                    DAG.getConstant(0, DL, MVT::i64));
11193   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
11194                    DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
11195   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
11196   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
11197 
11198   // Now combine the parts back together so we still have a single result
11199   // like the combiner expects.
11200   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
11201 }
11202 
11203 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
11204                                SDValue SplatVal, unsigned NumVecElts) {
11205   assert(!St.isTruncatingStore() && "cannot split truncating vector store");
11206   unsigned OrigAlignment = St.getAlignment();
11207   unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
11208 
11209   // Create scalar stores. This is at least as good as the code sequence for a
11210   // split unaligned store which is a dup.s, ext.b, and two stores.
11211   // Most of the time the three stores should be replaced by store pair
11212   // instructions (stp).
11213   SDLoc DL(&St);
11214   SDValue BasePtr = St.getBasePtr();
11215   uint64_t BaseOffset = 0;
11216 
11217   const MachinePointerInfo &PtrInfo = St.getPointerInfo();
11218   SDValue NewST1 =
11219       DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
11220                    OrigAlignment, St.getMemOperand()->getFlags());
11221 
11222   // As this in ISel, we will not merge this add which may degrade results.
11223   if (BasePtr->getOpcode() == ISD::ADD &&
11224       isa<ConstantSDNode>(BasePtr->getOperand(1))) {
11225     BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
11226     BasePtr = BasePtr->getOperand(0);
11227   }
11228 
11229   unsigned Offset = EltOffset;
11230   while (--NumVecElts) {
11231     unsigned Alignment = MinAlign(OrigAlignment, Offset);
11232     SDValue OffsetPtr =
11233         DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
11234                     DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
11235     NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
11236                           PtrInfo.getWithOffset(Offset), Alignment,
11237                           St.getMemOperand()->getFlags());
11238     Offset += EltOffset;
11239   }
11240   return NewST1;
11241 }
11242 
11243 static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) {
11244   SDLoc DL(N);
11245   EVT VT = N->getValueType(0);
11246   EVT PtrTy = N->getOperand(3).getValueType();
11247 
11248   EVT LoadVT = VT;
11249   if (VT.isFloatingPoint())
11250     LoadVT = VT.changeTypeToInteger();
11251 
11252   auto *MINode = cast<MemIntrinsicSDNode>(N);
11253   SDValue PassThru = DAG.getConstant(0, DL, LoadVT);
11254   SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(),
11255                                 MINode->getOperand(3), DAG.getUNDEF(PtrTy),
11256                                 MINode->getOperand(2), PassThru,
11257                                 MINode->getMemoryVT(), MINode->getMemOperand(),
11258                                 ISD::UNINDEXED, ISD::NON_EXTLOAD, false);
11259 
11260    if (VT.isFloatingPoint()) {
11261      SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) };
11262      return DAG.getMergeValues(Ops, DL);
11263    }
11264 
11265   return L;
11266 }
11267 
11268 static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) {
11269   SDLoc DL(N);
11270 
11271   SDValue Data = N->getOperand(2);
11272   EVT DataVT = Data.getValueType();
11273   EVT PtrTy = N->getOperand(4).getValueType();
11274 
11275   if (DataVT.isFloatingPoint())
11276     Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data);
11277 
11278   auto *MINode = cast<MemIntrinsicSDNode>(N);
11279   return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4),
11280                             DAG.getUNDEF(PtrTy), MINode->getOperand(3),
11281                             MINode->getMemoryVT(), MINode->getMemOperand(),
11282                             ISD::UNINDEXED, false, false);
11283 }
11284 
11285 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The
11286 /// load store optimizer pass will merge them to store pair stores.  This should
11287 /// be better than a movi to create the vector zero followed by a vector store
11288 /// if the zero constant is not re-used, since one instructions and one register
11289 /// live range will be removed.
11290 ///
11291 /// For example, the final generated code should be:
11292 ///
11293 ///   stp xzr, xzr, [x0]
11294 ///
11295 /// instead of:
11296 ///
11297 ///   movi v0.2d, #0
11298 ///   str q0, [x0]
11299 ///
11300 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
11301   SDValue StVal = St.getValue();
11302   EVT VT = StVal.getValueType();
11303 
11304   // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
11305   // 2, 3 or 4 i32 elements.
11306   int NumVecElts = VT.getVectorNumElements();
11307   if (!(((NumVecElts == 2 || NumVecElts == 3) &&
11308          VT.getVectorElementType().getSizeInBits() == 64) ||
11309         ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
11310          VT.getVectorElementType().getSizeInBits() == 32)))
11311     return SDValue();
11312 
11313   if (StVal.getOpcode() != ISD::BUILD_VECTOR)
11314     return SDValue();
11315 
11316   // If the zero constant has more than one use then the vector store could be
11317   // better since the constant mov will be amortized and stp q instructions
11318   // should be able to be formed.
11319   if (!StVal.hasOneUse())
11320     return SDValue();
11321 
11322   // If the store is truncating then it's going down to i16 or smaller, which
11323   // means it can be implemented in a single store anyway.
11324   if (St.isTruncatingStore())
11325     return SDValue();
11326 
11327   // If the immediate offset of the address operand is too large for the stp
11328   // instruction, then bail out.
11329   if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
11330     int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
11331     if (Offset < -512 || Offset > 504)
11332       return SDValue();
11333   }
11334 
11335   for (int I = 0; I < NumVecElts; ++I) {
11336     SDValue EltVal = StVal.getOperand(I);
11337     if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
11338       return SDValue();
11339   }
11340 
11341   // Use a CopyFromReg WZR/XZR here to prevent
11342   // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
11343   SDLoc DL(&St);
11344   unsigned ZeroReg;
11345   EVT ZeroVT;
11346   if (VT.getVectorElementType().getSizeInBits() == 32) {
11347     ZeroReg = AArch64::WZR;
11348     ZeroVT = MVT::i32;
11349   } else {
11350     ZeroReg = AArch64::XZR;
11351     ZeroVT = MVT::i64;
11352   }
11353   SDValue SplatVal =
11354       DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
11355   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
11356 }
11357 
11358 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
11359 /// value. The load store optimizer pass will merge them to store pair stores.
11360 /// This has better performance than a splat of the scalar followed by a split
11361 /// vector store. Even if the stores are not merged it is four stores vs a dup,
11362 /// followed by an ext.b and two stores.
11363 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
11364   SDValue StVal = St.getValue();
11365   EVT VT = StVal.getValueType();
11366 
11367   // Don't replace floating point stores, they possibly won't be transformed to
11368   // stp because of the store pair suppress pass.
11369   if (VT.isFloatingPoint())
11370     return SDValue();
11371 
11372   // We can express a splat as store pair(s) for 2 or 4 elements.
11373   unsigned NumVecElts = VT.getVectorNumElements();
11374   if (NumVecElts != 4 && NumVecElts != 2)
11375     return SDValue();
11376 
11377   // If the store is truncating then it's going down to i16 or smaller, which
11378   // means it can be implemented in a single store anyway.
11379   if (St.isTruncatingStore())
11380     return SDValue();
11381 
11382   // Check that this is a splat.
11383   // Make sure that each of the relevant vector element locations are inserted
11384   // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
11385   std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
11386   SDValue SplatVal;
11387   for (unsigned I = 0; I < NumVecElts; ++I) {
11388     // Check for insert vector elements.
11389     if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
11390       return SDValue();
11391 
11392     // Check that same value is inserted at each vector element.
11393     if (I == 0)
11394       SplatVal = StVal.getOperand(1);
11395     else if (StVal.getOperand(1) != SplatVal)
11396       return SDValue();
11397 
11398     // Check insert element index.
11399     ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
11400     if (!CIndex)
11401       return SDValue();
11402     uint64_t IndexVal = CIndex->getZExtValue();
11403     if (IndexVal >= NumVecElts)
11404       return SDValue();
11405     IndexNotInserted.reset(IndexVal);
11406 
11407     StVal = StVal.getOperand(0);
11408   }
11409   // Check that all vector element locations were inserted to.
11410   if (IndexNotInserted.any())
11411       return SDValue();
11412 
11413   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
11414 }
11415 
11416 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
11417                            SelectionDAG &DAG,
11418                            const AArch64Subtarget *Subtarget) {
11419 
11420   StoreSDNode *S = cast<StoreSDNode>(N);
11421   if (S->isVolatile() || S->isIndexed())
11422     return SDValue();
11423 
11424   SDValue StVal = S->getValue();
11425   EVT VT = StVal.getValueType();
11426   if (!VT.isVector())
11427     return SDValue();
11428 
11429   // If we get a splat of zeros, convert this vector store to a store of
11430   // scalars. They will be merged into store pairs of xzr thereby removing one
11431   // instruction and one register.
11432   if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
11433     return ReplacedZeroSplat;
11434 
11435   // FIXME: The logic for deciding if an unaligned store should be split should
11436   // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
11437   // a call to that function here.
11438 
11439   if (!Subtarget->isMisaligned128StoreSlow())
11440     return SDValue();
11441 
11442   // Don't split at -Oz.
11443   if (DAG.getMachineFunction().getFunction().hasMinSize())
11444     return SDValue();
11445 
11446   // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
11447   // those up regresses performance on micro-benchmarks and olden/bh.
11448   if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
11449     return SDValue();
11450 
11451   // Split unaligned 16B stores. They are terrible for performance.
11452   // Don't split stores with alignment of 1 or 2. Code that uses clang vector
11453   // extensions can use this to mark that it does not want splitting to happen
11454   // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
11455   // eliminating alignment hazards is only 1 in 8 for alignment of 2.
11456   if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
11457       S->getAlignment() <= 2)
11458     return SDValue();
11459 
11460   // If we get a splat of a scalar convert this vector store to a store of
11461   // scalars. They will be merged into store pairs thereby removing two
11462   // instructions.
11463   if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
11464     return ReplacedSplat;
11465 
11466   SDLoc DL(S);
11467 
11468   // Split VT into two.
11469   EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
11470   unsigned NumElts = HalfVT.getVectorNumElements();
11471   SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
11472                                    DAG.getConstant(0, DL, MVT::i64));
11473   SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
11474                                    DAG.getConstant(NumElts, DL, MVT::i64));
11475   SDValue BasePtr = S->getBasePtr();
11476   SDValue NewST1 =
11477       DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
11478                    S->getAlignment(), S->getMemOperand()->getFlags());
11479   SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
11480                                   DAG.getConstant(8, DL, MVT::i64));
11481   return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
11482                       S->getPointerInfo(), S->getAlignment(),
11483                       S->getMemOperand()->getFlags());
11484 }
11485 
11486 /// Target-specific DAG combine function for post-increment LD1 (lane) and
11487 /// post-increment LD1R.
11488 static SDValue performPostLD1Combine(SDNode *N,
11489                                      TargetLowering::DAGCombinerInfo &DCI,
11490                                      bool IsLaneOp) {
11491   if (DCI.isBeforeLegalizeOps())
11492     return SDValue();
11493 
11494   SelectionDAG &DAG = DCI.DAG;
11495   EVT VT = N->getValueType(0);
11496 
11497   unsigned LoadIdx = IsLaneOp ? 1 : 0;
11498   SDNode *LD = N->getOperand(LoadIdx).getNode();
11499   // If it is not LOAD, can not do such combine.
11500   if (LD->getOpcode() != ISD::LOAD)
11501     return SDValue();
11502 
11503   // The vector lane must be a constant in the LD1LANE opcode.
11504   SDValue Lane;
11505   if (IsLaneOp) {
11506     Lane = N->getOperand(2);
11507     auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
11508     if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
11509       return SDValue();
11510   }
11511 
11512   LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
11513   EVT MemVT = LoadSDN->getMemoryVT();
11514   // Check if memory operand is the same type as the vector element.
11515   if (MemVT != VT.getVectorElementType())
11516     return SDValue();
11517 
11518   // Check if there are other uses. If so, do not combine as it will introduce
11519   // an extra load.
11520   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
11521        ++UI) {
11522     if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
11523       continue;
11524     if (*UI != N)
11525       return SDValue();
11526   }
11527 
11528   SDValue Addr = LD->getOperand(1);
11529   SDValue Vector = N->getOperand(0);
11530   // Search for a use of the address operand that is an increment.
11531   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
11532        Addr.getNode()->use_end(); UI != UE; ++UI) {
11533     SDNode *User = *UI;
11534     if (User->getOpcode() != ISD::ADD
11535         || UI.getUse().getResNo() != Addr.getResNo())
11536       continue;
11537 
11538     // If the increment is a constant, it must match the memory ref size.
11539     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11540     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
11541       uint32_t IncVal = CInc->getZExtValue();
11542       unsigned NumBytes = VT.getScalarSizeInBits() / 8;
11543       if (IncVal != NumBytes)
11544         continue;
11545       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
11546     }
11547 
11548     // To avoid cycle construction make sure that neither the load nor the add
11549     // are predecessors to each other or the Vector.
11550     SmallPtrSet<const SDNode *, 32> Visited;
11551     SmallVector<const SDNode *, 16> Worklist;
11552     Visited.insert(Addr.getNode());
11553     Worklist.push_back(User);
11554     Worklist.push_back(LD);
11555     Worklist.push_back(Vector.getNode());
11556     if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
11557         SDNode::hasPredecessorHelper(User, Visited, Worklist))
11558       continue;
11559 
11560     SmallVector<SDValue, 8> Ops;
11561     Ops.push_back(LD->getOperand(0));  // Chain
11562     if (IsLaneOp) {
11563       Ops.push_back(Vector);           // The vector to be inserted
11564       Ops.push_back(Lane);             // The lane to be inserted in the vector
11565     }
11566     Ops.push_back(Addr);
11567     Ops.push_back(Inc);
11568 
11569     EVT Tys[3] = { VT, MVT::i64, MVT::Other };
11570     SDVTList SDTys = DAG.getVTList(Tys);
11571     unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
11572     SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
11573                                            MemVT,
11574                                            LoadSDN->getMemOperand());
11575 
11576     // Update the uses.
11577     SDValue NewResults[] = {
11578         SDValue(LD, 0),            // The result of load
11579         SDValue(UpdN.getNode(), 2) // Chain
11580     };
11581     DCI.CombineTo(LD, NewResults);
11582     DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
11583     DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
11584 
11585     break;
11586   }
11587   return SDValue();
11588 }
11589 
11590 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
11591 /// address translation.
11592 static bool performTBISimplification(SDValue Addr,
11593                                      TargetLowering::DAGCombinerInfo &DCI,
11594                                      SelectionDAG &DAG) {
11595   APInt DemandedMask = APInt::getLowBitsSet(64, 56);
11596   KnownBits Known;
11597   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11598                                         !DCI.isBeforeLegalizeOps());
11599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11600   if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
11601     DCI.CommitTargetLoweringOpt(TLO);
11602     return true;
11603   }
11604   return false;
11605 }
11606 
11607 static SDValue performSTORECombine(SDNode *N,
11608                                    TargetLowering::DAGCombinerInfo &DCI,
11609                                    SelectionDAG &DAG,
11610                                    const AArch64Subtarget *Subtarget) {
11611   if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
11612     return Split;
11613 
11614   if (Subtarget->supportsAddressTopByteIgnored() &&
11615       performTBISimplification(N->getOperand(2), DCI, DAG))
11616     return SDValue(N, 0);
11617 
11618   return SDValue();
11619 }
11620 
11621 
11622 /// Target-specific DAG combine function for NEON load/store intrinsics
11623 /// to merge base address updates.
11624 static SDValue performNEONPostLDSTCombine(SDNode *N,
11625                                           TargetLowering::DAGCombinerInfo &DCI,
11626                                           SelectionDAG &DAG) {
11627   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11628     return SDValue();
11629 
11630   unsigned AddrOpIdx = N->getNumOperands() - 1;
11631   SDValue Addr = N->getOperand(AddrOpIdx);
11632 
11633   // Search for a use of the address operand that is an increment.
11634   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11635        UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11636     SDNode *User = *UI;
11637     if (User->getOpcode() != ISD::ADD ||
11638         UI.getUse().getResNo() != Addr.getResNo())
11639       continue;
11640 
11641     // Check that the add is independent of the load/store.  Otherwise, folding
11642     // it would create a cycle.
11643     SmallPtrSet<const SDNode *, 32> Visited;
11644     SmallVector<const SDNode *, 16> Worklist;
11645     Visited.insert(Addr.getNode());
11646     Worklist.push_back(N);
11647     Worklist.push_back(User);
11648     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
11649         SDNode::hasPredecessorHelper(User, Visited, Worklist))
11650       continue;
11651 
11652     // Find the new opcode for the updating load/store.
11653     bool IsStore = false;
11654     bool IsLaneOp = false;
11655     bool IsDupOp = false;
11656     unsigned NewOpc = 0;
11657     unsigned NumVecs = 0;
11658     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11659     switch (IntNo) {
11660     default: llvm_unreachable("unexpected intrinsic for Neon base update");
11661     case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
11662       NumVecs = 2; break;
11663     case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
11664       NumVecs = 3; break;
11665     case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
11666       NumVecs = 4; break;
11667     case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
11668       NumVecs = 2; IsStore = true; break;
11669     case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
11670       NumVecs = 3; IsStore = true; break;
11671     case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
11672       NumVecs = 4; IsStore = true; break;
11673     case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
11674       NumVecs = 2; break;
11675     case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
11676       NumVecs = 3; break;
11677     case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
11678       NumVecs = 4; break;
11679     case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
11680       NumVecs = 2; IsStore = true; break;
11681     case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
11682       NumVecs = 3; IsStore = true; break;
11683     case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
11684       NumVecs = 4; IsStore = true; break;
11685     case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
11686       NumVecs = 2; IsDupOp = true; break;
11687     case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
11688       NumVecs = 3; IsDupOp = true; break;
11689     case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
11690       NumVecs = 4; IsDupOp = true; break;
11691     case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
11692       NumVecs = 2; IsLaneOp = true; break;
11693     case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
11694       NumVecs = 3; IsLaneOp = true; break;
11695     case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
11696       NumVecs = 4; IsLaneOp = true; break;
11697     case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
11698       NumVecs = 2; IsStore = true; IsLaneOp = true; break;
11699     case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
11700       NumVecs = 3; IsStore = true; IsLaneOp = true; break;
11701     case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
11702       NumVecs = 4; IsStore = true; IsLaneOp = true; break;
11703     }
11704 
11705     EVT VecTy;
11706     if (IsStore)
11707       VecTy = N->getOperand(2).getValueType();
11708     else
11709       VecTy = N->getValueType(0);
11710 
11711     // If the increment is a constant, it must match the memory ref size.
11712     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11713     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
11714       uint32_t IncVal = CInc->getZExtValue();
11715       unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11716       if (IsLaneOp || IsDupOp)
11717         NumBytes /= VecTy.getVectorNumElements();
11718       if (IncVal != NumBytes)
11719         continue;
11720       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
11721     }
11722     SmallVector<SDValue, 8> Ops;
11723     Ops.push_back(N->getOperand(0)); // Incoming chain
11724     // Load lane and store have vector list as input.
11725     if (IsLaneOp || IsStore)
11726       for (unsigned i = 2; i < AddrOpIdx; ++i)
11727         Ops.push_back(N->getOperand(i));
11728     Ops.push_back(Addr); // Base register
11729     Ops.push_back(Inc);
11730 
11731     // Return Types.
11732     EVT Tys[6];
11733     unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
11734     unsigned n;
11735     for (n = 0; n < NumResultVecs; ++n)
11736       Tys[n] = VecTy;
11737     Tys[n++] = MVT::i64;  // Type of write back register
11738     Tys[n] = MVT::Other;  // Type of the chain
11739     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
11740 
11741     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
11742     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
11743                                            MemInt->getMemoryVT(),
11744                                            MemInt->getMemOperand());
11745 
11746     // Update the uses.
11747     std::vector<SDValue> NewResults;
11748     for (unsigned i = 0; i < NumResultVecs; ++i) {
11749       NewResults.push_back(SDValue(UpdN.getNode(), i));
11750     }
11751     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
11752     DCI.CombineTo(N, NewResults);
11753     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
11754 
11755     break;
11756   }
11757   return SDValue();
11758 }
11759 
11760 // Checks to see if the value is the prescribed width and returns information
11761 // about its extension mode.
11762 static
11763 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
11764   ExtType = ISD::NON_EXTLOAD;
11765   switch(V.getNode()->getOpcode()) {
11766   default:
11767     return false;
11768   case ISD::LOAD: {
11769     LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
11770     if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
11771        || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
11772       ExtType = LoadNode->getExtensionType();
11773       return true;
11774     }
11775     return false;
11776   }
11777   case ISD::AssertSext: {
11778     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
11779     if ((TypeNode->getVT() == MVT::i8 && width == 8)
11780        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
11781       ExtType = ISD::SEXTLOAD;
11782       return true;
11783     }
11784     return false;
11785   }
11786   case ISD::AssertZext: {
11787     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
11788     if ((TypeNode->getVT() == MVT::i8 && width == 8)
11789        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
11790       ExtType = ISD::ZEXTLOAD;
11791       return true;
11792     }
11793     return false;
11794   }
11795   case ISD::Constant:
11796   case ISD::TargetConstant: {
11797     return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
11798            1LL << (width - 1);
11799   }
11800   }
11801 
11802   return true;
11803 }
11804 
11805 // This function does a whole lot of voodoo to determine if the tests are
11806 // equivalent without and with a mask. Essentially what happens is that given a
11807 // DAG resembling:
11808 //
11809 //  +-------------+ +-------------+ +-------------+ +-------------+
11810 //  |    Input    | | AddConstant | | CompConstant| |     CC      |
11811 //  +-------------+ +-------------+ +-------------+ +-------------+
11812 //           |           |           |               |
11813 //           V           V           |    +----------+
11814 //          +-------------+  +----+  |    |
11815 //          |     ADD     |  |0xff|  |    |
11816 //          +-------------+  +----+  |    |
11817 //                  |           |    |    |
11818 //                  V           V    |    |
11819 //                 +-------------+   |    |
11820 //                 |     AND     |   |    |
11821 //                 +-------------+   |    |
11822 //                      |            |    |
11823 //                      +-----+      |    |
11824 //                            |      |    |
11825 //                            V      V    V
11826 //                           +-------------+
11827 //                           |     CMP     |
11828 //                           +-------------+
11829 //
11830 // The AND node may be safely removed for some combinations of inputs. In
11831 // particular we need to take into account the extension type of the Input,
11832 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
11833 // width of the input (this can work for any width inputs, the above graph is
11834 // specific to 8 bits.
11835 //
11836 // The specific equations were worked out by generating output tables for each
11837 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
11838 // problem was simplified by working with 4 bit inputs, which means we only
11839 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
11840 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
11841 // patterns present in both extensions (0,7). For every distinct set of
11842 // AddConstant and CompConstants bit patterns we can consider the masked and
11843 // unmasked versions to be equivalent if the result of this function is true for
11844 // all 16 distinct bit patterns of for the current extension type of Input (w0).
11845 //
11846 //   sub      w8, w0, w1
11847 //   and      w10, w8, #0x0f
11848 //   cmp      w8, w2
11849 //   cset     w9, AArch64CC
11850 //   cmp      w10, w2
11851 //   cset     w11, AArch64CC
11852 //   cmp      w9, w11
11853 //   cset     w0, eq
11854 //   ret
11855 //
11856 // Since the above function shows when the outputs are equivalent it defines
11857 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
11858 // would be expensive to run during compiles. The equations below were written
11859 // in a test harness that confirmed they gave equivalent outputs to the above
11860 // for all inputs function, so they can be used determine if the removal is
11861 // legal instead.
11862 //
11863 // isEquivalentMaskless() is the code for testing if the AND can be removed
11864 // factored out of the DAG recognition as the DAG can take several forms.
11865 
11866 static bool isEquivalentMaskless(unsigned CC, unsigned width,
11867                                  ISD::LoadExtType ExtType, int AddConstant,
11868                                  int CompConstant) {
11869   // By being careful about our equations and only writing the in term
11870   // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
11871   // make them generally applicable to all bit widths.
11872   int MaxUInt = (1 << width);
11873 
11874   // For the purposes of these comparisons sign extending the type is
11875   // equivalent to zero extending the add and displacing it by half the integer
11876   // width. Provided we are careful and make sure our equations are valid over
11877   // the whole range we can just adjust the input and avoid writing equations
11878   // for sign extended inputs.
11879   if (ExtType == ISD::SEXTLOAD)
11880     AddConstant -= (1 << (width-1));
11881 
11882   switch(CC) {
11883   case AArch64CC::LE:
11884   case AArch64CC::GT:
11885     if ((AddConstant == 0) ||
11886         (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
11887         (AddConstant >= 0 && CompConstant < 0) ||
11888         (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
11889       return true;
11890     break;
11891   case AArch64CC::LT:
11892   case AArch64CC::GE:
11893     if ((AddConstant == 0) ||
11894         (AddConstant >= 0 && CompConstant <= 0) ||
11895         (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
11896       return true;
11897     break;
11898   case AArch64CC::HI:
11899   case AArch64CC::LS:
11900     if ((AddConstant >= 0 && CompConstant < 0) ||
11901        (AddConstant <= 0 && CompConstant >= -1 &&
11902         CompConstant < AddConstant + MaxUInt))
11903       return true;
11904    break;
11905   case AArch64CC::PL:
11906   case AArch64CC::MI:
11907     if ((AddConstant == 0) ||
11908         (AddConstant > 0 && CompConstant <= 0) ||
11909         (AddConstant < 0 && CompConstant <= AddConstant))
11910       return true;
11911     break;
11912   case AArch64CC::LO:
11913   case AArch64CC::HS:
11914     if ((AddConstant >= 0 && CompConstant <= 0) ||
11915         (AddConstant <= 0 && CompConstant >= 0 &&
11916          CompConstant <= AddConstant + MaxUInt))
11917       return true;
11918     break;
11919   case AArch64CC::EQ:
11920   case AArch64CC::NE:
11921     if ((AddConstant > 0 && CompConstant < 0) ||
11922         (AddConstant < 0 && CompConstant >= 0 &&
11923          CompConstant < AddConstant + MaxUInt) ||
11924         (AddConstant >= 0 && CompConstant >= 0 &&
11925          CompConstant >= AddConstant) ||
11926         (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
11927       return true;
11928     break;
11929   case AArch64CC::VS:
11930   case AArch64CC::VC:
11931   case AArch64CC::AL:
11932   case AArch64CC::NV:
11933     return true;
11934   case AArch64CC::Invalid:
11935     break;
11936   }
11937 
11938   return false;
11939 }
11940 
11941 static
11942 SDValue performCONDCombine(SDNode *N,
11943                            TargetLowering::DAGCombinerInfo &DCI,
11944                            SelectionDAG &DAG, unsigned CCIndex,
11945                            unsigned CmpIndex) {
11946   unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
11947   SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
11948   unsigned CondOpcode = SubsNode->getOpcode();
11949 
11950   if (CondOpcode != AArch64ISD::SUBS)
11951     return SDValue();
11952 
11953   // There is a SUBS feeding this condition. Is it fed by a mask we can
11954   // use?
11955 
11956   SDNode *AndNode = SubsNode->getOperand(0).getNode();
11957   unsigned MaskBits = 0;
11958 
11959   if (AndNode->getOpcode() != ISD::AND)
11960     return SDValue();
11961 
11962   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
11963     uint32_t CNV = CN->getZExtValue();
11964     if (CNV == 255)
11965       MaskBits = 8;
11966     else if (CNV == 65535)
11967       MaskBits = 16;
11968   }
11969 
11970   if (!MaskBits)
11971     return SDValue();
11972 
11973   SDValue AddValue = AndNode->getOperand(0);
11974 
11975   if (AddValue.getOpcode() != ISD::ADD)
11976     return SDValue();
11977 
11978   // The basic dag structure is correct, grab the inputs and validate them.
11979 
11980   SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
11981   SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
11982   SDValue SubsInputValue = SubsNode->getOperand(1);
11983 
11984   // The mask is present and the provenance of all the values is a smaller type,
11985   // lets see if the mask is superfluous.
11986 
11987   if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
11988       !isa<ConstantSDNode>(SubsInputValue.getNode()))
11989     return SDValue();
11990 
11991   ISD::LoadExtType ExtType;
11992 
11993   if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
11994       !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
11995       !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
11996     return SDValue();
11997 
11998   if(!isEquivalentMaskless(CC, MaskBits, ExtType,
11999                 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
12000                 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
12001     return SDValue();
12002 
12003   // The AND is not necessary, remove it.
12004 
12005   SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
12006                                SubsNode->getValueType(1));
12007   SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
12008 
12009   SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
12010   DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
12011 
12012   return SDValue(N, 0);
12013 }
12014 
12015 // Optimize compare with zero and branch.
12016 static SDValue performBRCONDCombine(SDNode *N,
12017                                     TargetLowering::DAGCombinerInfo &DCI,
12018                                     SelectionDAG &DAG) {
12019   MachineFunction &MF = DAG.getMachineFunction();
12020   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
12021   // will not be produced, as they are conditional branch instructions that do
12022   // not set flags.
12023   if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
12024     return SDValue();
12025 
12026   if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
12027     N = NV.getNode();
12028   SDValue Chain = N->getOperand(0);
12029   SDValue Dest = N->getOperand(1);
12030   SDValue CCVal = N->getOperand(2);
12031   SDValue Cmp = N->getOperand(3);
12032 
12033   assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
12034   unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
12035   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
12036     return SDValue();
12037 
12038   unsigned CmpOpc = Cmp.getOpcode();
12039   if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
12040     return SDValue();
12041 
12042   // Only attempt folding if there is only one use of the flag and no use of the
12043   // value.
12044   if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
12045     return SDValue();
12046 
12047   SDValue LHS = Cmp.getOperand(0);
12048   SDValue RHS = Cmp.getOperand(1);
12049 
12050   assert(LHS.getValueType() == RHS.getValueType() &&
12051          "Expected the value type to be the same for both operands!");
12052   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
12053     return SDValue();
12054 
12055   if (isNullConstant(LHS))
12056     std::swap(LHS, RHS);
12057 
12058   if (!isNullConstant(RHS))
12059     return SDValue();
12060 
12061   if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
12062       LHS.getOpcode() == ISD::SRL)
12063     return SDValue();
12064 
12065   // Fold the compare into the branch instruction.
12066   SDValue BR;
12067   if (CC == AArch64CC::EQ)
12068     BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
12069   else
12070     BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
12071 
12072   // Do not add new nodes to DAG combiner worklist.
12073   DCI.CombineTo(N, BR, false);
12074 
12075   return SDValue();
12076 }
12077 
12078 // Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
12079 // as well as whether the test should be inverted.  This code is required to
12080 // catch these cases (as opposed to standard dag combines) because
12081 // AArch64ISD::TBZ is matched during legalization.
12082 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
12083                                  SelectionDAG &DAG) {
12084 
12085   if (!Op->hasOneUse())
12086     return Op;
12087 
12088   // We don't handle undef/constant-fold cases below, as they should have
12089   // already been taken care of (e.g. and of 0, test of undefined shifted bits,
12090   // etc.)
12091 
12092   // (tbz (trunc x), b) -> (tbz x, b)
12093   // This case is just here to enable more of the below cases to be caught.
12094   if (Op->getOpcode() == ISD::TRUNCATE &&
12095       Bit < Op->getValueType(0).getSizeInBits()) {
12096     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
12097   }
12098 
12099   // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
12100   if (Op->getOpcode() == ISD::ANY_EXTEND &&
12101       Bit < Op->getOperand(0).getValueSizeInBits()) {
12102     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
12103   }
12104 
12105   if (Op->getNumOperands() != 2)
12106     return Op;
12107 
12108   auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
12109   if (!C)
12110     return Op;
12111 
12112   switch (Op->getOpcode()) {
12113   default:
12114     return Op;
12115 
12116   // (tbz (and x, m), b) -> (tbz x, b)
12117   case ISD::AND:
12118     if ((C->getZExtValue() >> Bit) & 1)
12119       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
12120     return Op;
12121 
12122   // (tbz (shl x, c), b) -> (tbz x, b-c)
12123   case ISD::SHL:
12124     if (C->getZExtValue() <= Bit &&
12125         (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
12126       Bit = Bit - C->getZExtValue();
12127       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
12128     }
12129     return Op;
12130 
12131   // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
12132   case ISD::SRA:
12133     Bit = Bit + C->getZExtValue();
12134     if (Bit >= Op->getValueType(0).getSizeInBits())
12135       Bit = Op->getValueType(0).getSizeInBits() - 1;
12136     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
12137 
12138   // (tbz (srl x, c), b) -> (tbz x, b+c)
12139   case ISD::SRL:
12140     if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
12141       Bit = Bit + C->getZExtValue();
12142       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
12143     }
12144     return Op;
12145 
12146   // (tbz (xor x, -1), b) -> (tbnz x, b)
12147   case ISD::XOR:
12148     if ((C->getZExtValue() >> Bit) & 1)
12149       Invert = !Invert;
12150     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
12151   }
12152 }
12153 
12154 // Optimize test single bit zero/non-zero and branch.
12155 static SDValue performTBZCombine(SDNode *N,
12156                                  TargetLowering::DAGCombinerInfo &DCI,
12157                                  SelectionDAG &DAG) {
12158   unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
12159   bool Invert = false;
12160   SDValue TestSrc = N->getOperand(1);
12161   SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
12162 
12163   if (TestSrc == NewTestSrc)
12164     return SDValue();
12165 
12166   unsigned NewOpc = N->getOpcode();
12167   if (Invert) {
12168     if (NewOpc == AArch64ISD::TBZ)
12169       NewOpc = AArch64ISD::TBNZ;
12170     else {
12171       assert(NewOpc == AArch64ISD::TBNZ);
12172       NewOpc = AArch64ISD::TBZ;
12173     }
12174   }
12175 
12176   SDLoc DL(N);
12177   return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
12178                      DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
12179 }
12180 
12181 // vselect (v1i1 setcc) ->
12182 //     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
12183 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
12184 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
12185 // such VSELECT.
12186 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
12187   SDValue N0 = N->getOperand(0);
12188   EVT CCVT = N0.getValueType();
12189 
12190   if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
12191       CCVT.getVectorElementType() != MVT::i1)
12192     return SDValue();
12193 
12194   EVT ResVT = N->getValueType(0);
12195   EVT CmpVT = N0.getOperand(0).getValueType();
12196   // Only combine when the result type is of the same size as the compared
12197   // operands.
12198   if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
12199     return SDValue();
12200 
12201   SDValue IfTrue = N->getOperand(1);
12202   SDValue IfFalse = N->getOperand(2);
12203   SDValue SetCC =
12204       DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
12205                    N0.getOperand(0), N0.getOperand(1),
12206                    cast<CondCodeSDNode>(N0.getOperand(2))->get());
12207   return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
12208                      IfTrue, IfFalse);
12209 }
12210 
12211 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
12212 /// the compare-mask instructions rather than going via NZCV, even if LHS and
12213 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
12214 /// with a vector one followed by a DUP shuffle on the result.
12215 static SDValue performSelectCombine(SDNode *N,
12216                                     TargetLowering::DAGCombinerInfo &DCI) {
12217   SelectionDAG &DAG = DCI.DAG;
12218   SDValue N0 = N->getOperand(0);
12219   EVT ResVT = N->getValueType(0);
12220 
12221   if (N0.getOpcode() != ISD::SETCC)
12222     return SDValue();
12223 
12224   // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
12225   // scalar SetCCResultType. We also don't expect vectors, because we assume
12226   // that selects fed by vector SETCCs are canonicalized to VSELECT.
12227   assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
12228          "Scalar-SETCC feeding SELECT has unexpected result type!");
12229 
12230   // If NumMaskElts == 0, the comparison is larger than select result. The
12231   // largest real NEON comparison is 64-bits per lane, which means the result is
12232   // at most 32-bits and an illegal vector. Just bail out for now.
12233   EVT SrcVT = N0.getOperand(0).getValueType();
12234 
12235   // Don't try to do this optimization when the setcc itself has i1 operands.
12236   // There are no legal vectors of i1, so this would be pointless.
12237   if (SrcVT == MVT::i1)
12238     return SDValue();
12239 
12240   int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
12241   if (!ResVT.isVector() || NumMaskElts == 0)
12242     return SDValue();
12243 
12244   SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
12245   EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
12246 
12247   // Also bail out if the vector CCVT isn't the same size as ResVT.
12248   // This can happen if the SETCC operand size doesn't divide the ResVT size
12249   // (e.g., f64 vs v3f32).
12250   if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
12251     return SDValue();
12252 
12253   // Make sure we didn't create illegal types, if we're not supposed to.
12254   assert(DCI.isBeforeLegalize() ||
12255          DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
12256 
12257   // First perform a vector comparison, where lane 0 is the one we're interested
12258   // in.
12259   SDLoc DL(N0);
12260   SDValue LHS =
12261       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
12262   SDValue RHS =
12263       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
12264   SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
12265 
12266   // Now duplicate the comparison mask we want across all other lanes.
12267   SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
12268   SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
12269   Mask = DAG.getNode(ISD::BITCAST, DL,
12270                      ResVT.changeVectorElementTypeToInteger(), Mask);
12271 
12272   return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
12273 }
12274 
12275 /// Get rid of unnecessary NVCASTs (that don't change the type).
12276 static SDValue performNVCASTCombine(SDNode *N) {
12277   if (N->getValueType(0) == N->getOperand(0).getValueType())
12278     return N->getOperand(0);
12279 
12280   return SDValue();
12281 }
12282 
12283 // If all users of the globaladdr are of the form (globaladdr + constant), find
12284 // the smallest constant, fold it into the globaladdr's offset and rewrite the
12285 // globaladdr as (globaladdr + constant) - constant.
12286 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
12287                                            const AArch64Subtarget *Subtarget,
12288                                            const TargetMachine &TM) {
12289   auto *GN = cast<GlobalAddressSDNode>(N);
12290   if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
12291       AArch64II::MO_NO_FLAG)
12292     return SDValue();
12293 
12294   uint64_t MinOffset = -1ull;
12295   for (SDNode *N : GN->uses()) {
12296     if (N->getOpcode() != ISD::ADD)
12297       return SDValue();
12298     auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
12299     if (!C)
12300       C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12301     if (!C)
12302       return SDValue();
12303     MinOffset = std::min(MinOffset, C->getZExtValue());
12304   }
12305   uint64_t Offset = MinOffset + GN->getOffset();
12306 
12307   // Require that the new offset is larger than the existing one. Otherwise, we
12308   // can end up oscillating between two possible DAGs, for example,
12309   // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
12310   if (Offset <= uint64_t(GN->getOffset()))
12311     return SDValue();
12312 
12313   // Check whether folding this offset is legal. It must not go out of bounds of
12314   // the referenced object to avoid violating the code model, and must be
12315   // smaller than 2^21 because this is the largest offset expressible in all
12316   // object formats.
12317   //
12318   // This check also prevents us from folding negative offsets, which will end
12319   // up being treated in the same way as large positive ones. They could also
12320   // cause code model violations, and aren't really common enough to matter.
12321   if (Offset >= (1 << 21))
12322     return SDValue();
12323 
12324   const GlobalValue *GV = GN->getGlobal();
12325   Type *T = GV->getValueType();
12326   if (!T->isSized() ||
12327       Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
12328     return SDValue();
12329 
12330   SDLoc DL(GN);
12331   SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
12332   return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
12333                      DAG.getConstant(MinOffset, DL, MVT::i64));
12334 }
12335 
12336 // Returns an SVE type that ContentTy can be trivially sign or zero extended
12337 // into.
12338 static MVT getSVEContainerType(EVT ContentTy) {
12339   assert(ContentTy.isSimple() && "No SVE containers for extended types");
12340 
12341   switch (ContentTy.getSimpleVT().SimpleTy) {
12342   default:
12343     llvm_unreachable("No known SVE container for this MVT type");
12344   case MVT::nxv2i8:
12345   case MVT::nxv2i16:
12346   case MVT::nxv2i32:
12347   case MVT::nxv2i64:
12348   case MVT::nxv2f32:
12349   case MVT::nxv2f64:
12350     return MVT::nxv2i64;
12351   case MVT::nxv4i8:
12352   case MVT::nxv4i16:
12353   case MVT::nxv4i32:
12354   case MVT::nxv4f32:
12355     return MVT::nxv4i32;
12356   }
12357 }
12358 
12359 static SDValue performST1ScatterCombine(SDNode *N, SelectionDAG &DAG,
12360                                         unsigned Opcode,
12361                                         bool OnlyPackedOffsets = true) {
12362   const SDValue Src = N->getOperand(2);
12363   const EVT SrcVT = Src->getValueType(0);
12364   assert(SrcVT.isScalableVector() &&
12365          "Scatter stores are only possible for SVE vectors");
12366 
12367   SDLoc DL(N);
12368   MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT();
12369 
12370   // Make sure that source data will fit into an SVE register
12371   if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
12372     return SDValue();
12373 
12374   // For FPs, ACLE only supports _packed_ single and double precision types.
12375   if (SrcElVT.isFloatingPoint())
12376     if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64))
12377       return SDValue();
12378 
12379   // Depending on the addressing mode, this is either a pointer or a vector of
12380   // pointers (that fits into one register)
12381   const SDValue Base = N->getOperand(4);
12382   // Depending on the addressing mode, this is either a single offset or a
12383   // vector of offsets  (that fits into one register)
12384   SDValue Offset = N->getOperand(5);
12385 
12386   auto &TLI = DAG.getTargetLoweringInfo();
12387   if (!TLI.isTypeLegal(Base.getValueType()))
12388     return SDValue();
12389 
12390   // Some scatter store variants allow unpacked offsets, but only as nxv2i32
12391   // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
12392   // nxv2i64. Legalize accordingly.
12393   if (!OnlyPackedOffsets &&
12394       Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
12395     Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);
12396 
12397   if (!TLI.isTypeLegal(Offset.getValueType()))
12398     return SDValue();
12399 
12400   // Source value type that is representable in hardware
12401   EVT HwSrcVt = getSVEContainerType(SrcVT);
12402 
12403   // Keep the original type of the input data to store - this is needed to
12404   // differentiate between ST1B, ST1H, ST1W and ST1D. For FP values we want the
12405   // integer equivalent, so just use HwSrcVt.
12406   SDValue InputVT = DAG.getValueType(SrcVT);
12407   if (SrcVT.isFloatingPoint())
12408     InputVT = DAG.getValueType(HwSrcVt);
12409 
12410   SDVTList VTs = DAG.getVTList(MVT::Other);
12411   SDValue SrcNew;
12412 
12413   if (Src.getValueType().isFloatingPoint())
12414     SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src);
12415   else
12416     SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src);
12417 
12418   SDValue Ops[] = {N->getOperand(0), // Chain
12419                    SrcNew,
12420                    N->getOperand(3), // Pg
12421                    Base,
12422                    Offset,
12423                    InputVT};
12424 
12425   return DAG.getNode(Opcode, DL, VTs, Ops);
12426 }
12427 
12428 static SDValue performLD1GatherCombine(SDNode *N, SelectionDAG &DAG,
12429                                        unsigned Opcode,
12430                                        bool OnlyPackedOffsets = true) {
12431   EVT RetVT = N->getValueType(0);
12432   assert(RetVT.isScalableVector() &&
12433          "Gather loads are only possible for SVE vectors");
12434   SDLoc DL(N);
12435 
12436   if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock)
12437     return SDValue();
12438 
12439   // Depending on the addressing mode, this is either a pointer or a vector of
12440   // pointers (that fits into one register)
12441   const SDValue Base = N->getOperand(3);
12442   // Depending on the addressing mode, this is either a single offset or a
12443   // vector of offsets  (that fits into one register)
12444   SDValue Offset = N->getOperand(4);
12445 
12446   auto &TLI = DAG.getTargetLoweringInfo();
12447   if (!TLI.isTypeLegal(Base.getValueType()))
12448     return SDValue();
12449 
12450   // Some gather load variants allow unpacked offsets, but only as nxv2i32
12451   // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to
12452   // nxv2i64. Legalize accordingly.
12453   if (!OnlyPackedOffsets &&
12454       Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32)
12455     Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0);
12456 
12457   // Return value type that is representable in hardware
12458   EVT HwRetVt = getSVEContainerType(RetVT);
12459 
12460   // Keep the original output value type around - this will better inform
12461   // optimisations (e.g. instruction folding when load is followed by
12462   // zext/sext). This will only be used for ints, so the value for FPs
12463   // doesn't matter.
12464   SDValue OutVT = DAG.getValueType(RetVT);
12465   if (RetVT.isFloatingPoint())
12466     OutVT = DAG.getValueType(HwRetVt);
12467 
12468   SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other);
12469   SDValue Ops[] = {N->getOperand(0), // Chain
12470                    N->getOperand(2), // Pg
12471                    Base, Offset, OutVT};
12472 
12473   SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops);
12474   SDValue LoadChain = SDValue(Load.getNode(), 1);
12475 
12476   if (RetVT.isInteger() && (RetVT != HwRetVt))
12477     Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0));
12478 
12479   // If the original return value was FP, bitcast accordingly. Doing it here
12480   // means that we can avoid adding TableGen patterns for FPs.
12481   if (RetVT.isFloatingPoint())
12482     Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0));
12483 
12484   return DAG.getMergeValues({Load, LoadChain}, DL);
12485 }
12486 
12487 
12488 static SDValue
12489 performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
12490                               SelectionDAG &DAG) {
12491   if (DCI.isBeforeLegalizeOps())
12492     return SDValue();
12493 
12494   SDValue Src = N->getOperand(0);
12495   unsigned Opc = Src->getOpcode();
12496 
12497   // Gather load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates
12498   // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes.
12499   unsigned NewOpc;
12500   switch (Opc) {
12501   case AArch64ISD::GLD1:
12502     NewOpc = AArch64ISD::GLD1S;
12503     break;
12504   case AArch64ISD::GLD1_SCALED:
12505     NewOpc = AArch64ISD::GLD1S_SCALED;
12506     break;
12507   case AArch64ISD::GLD1_SXTW:
12508     NewOpc = AArch64ISD::GLD1S_SXTW;
12509     break;
12510   case AArch64ISD::GLD1_SXTW_SCALED:
12511     NewOpc = AArch64ISD::GLD1S_SXTW_SCALED;
12512     break;
12513   case AArch64ISD::GLD1_UXTW:
12514     NewOpc = AArch64ISD::GLD1S_UXTW;
12515     break;
12516   case AArch64ISD::GLD1_UXTW_SCALED:
12517     NewOpc = AArch64ISD::GLD1S_UXTW_SCALED;
12518     break;
12519   case AArch64ISD::GLD1_IMM:
12520     NewOpc = AArch64ISD::GLD1S_IMM;
12521     break;
12522   default:
12523     return SDValue();
12524   }
12525 
12526   EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT();
12527   EVT GLD1SrcMemVT = cast<VTSDNode>(Src->getOperand(4))->getVT();
12528 
12529   if ((SignExtSrcVT != GLD1SrcMemVT) || !Src.hasOneUse())
12530     return SDValue();
12531 
12532   EVT DstVT = N->getValueType(0);
12533   SDVTList VTs = DAG.getVTList(DstVT, MVT::Other);
12534   SDValue Ops[] = {Src->getOperand(0), Src->getOperand(1), Src->getOperand(2),
12535                    Src->getOperand(3), Src->getOperand(4)};
12536 
12537   SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops);
12538   DCI.CombineTo(N, ExtLoad);
12539   DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1));
12540 
12541   // Return N so it doesn't get rechecked
12542   return SDValue(N, 0);
12543 }
12544 
12545 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
12546                                                  DAGCombinerInfo &DCI) const {
12547   SelectionDAG &DAG = DCI.DAG;
12548   switch (N->getOpcode()) {
12549   default:
12550     LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
12551     break;
12552   case ISD::ADD:
12553   case ISD::SUB:
12554     return performAddSubLongCombine(N, DCI, DAG);
12555   case ISD::XOR:
12556     return performXorCombine(N, DAG, DCI, Subtarget);
12557   case ISD::MUL:
12558     return performMulCombine(N, DAG, DCI, Subtarget);
12559   case ISD::SINT_TO_FP:
12560   case ISD::UINT_TO_FP:
12561     return performIntToFpCombine(N, DAG, Subtarget);
12562   case ISD::FP_TO_SINT:
12563   case ISD::FP_TO_UINT:
12564     return performFpToIntCombine(N, DAG, DCI, Subtarget);
12565   case ISD::FDIV:
12566     return performFDivCombine(N, DAG, DCI, Subtarget);
12567   case ISD::OR:
12568     return performORCombine(N, DCI, Subtarget);
12569   case ISD::AND:
12570     return performANDCombine(N, DCI);
12571   case ISD::SRL:
12572     return performSRLCombine(N, DCI);
12573   case ISD::INTRINSIC_WO_CHAIN:
12574     return performIntrinsicCombine(N, DCI, Subtarget);
12575   case ISD::ANY_EXTEND:
12576   case ISD::ZERO_EXTEND:
12577   case ISD::SIGN_EXTEND:
12578     return performExtendCombine(N, DCI, DAG);
12579   case ISD::SIGN_EXTEND_INREG:
12580     return performSignExtendInRegCombine(N, DCI, DAG);
12581   case ISD::CONCAT_VECTORS:
12582     return performConcatVectorsCombine(N, DCI, DAG);
12583   case ISD::SELECT:
12584     return performSelectCombine(N, DCI);
12585   case ISD::VSELECT:
12586     return performVSelectCombine(N, DCI.DAG);
12587   case ISD::LOAD:
12588     if (performTBISimplification(N->getOperand(1), DCI, DAG))
12589       return SDValue(N, 0);
12590     break;
12591   case ISD::STORE:
12592     return performSTORECombine(N, DCI, DAG, Subtarget);
12593   case AArch64ISD::BRCOND:
12594     return performBRCONDCombine(N, DCI, DAG);
12595   case AArch64ISD::TBNZ:
12596   case AArch64ISD::TBZ:
12597     return performTBZCombine(N, DCI, DAG);
12598   case AArch64ISD::CSEL:
12599     return performCONDCombine(N, DCI, DAG, 2, 3);
12600   case AArch64ISD::DUP:
12601     return performPostLD1Combine(N, DCI, false);
12602   case AArch64ISD::NVCAST:
12603     return performNVCASTCombine(N);
12604   case ISD::INSERT_VECTOR_ELT:
12605     return performPostLD1Combine(N, DCI, true);
12606   case ISD::INTRINSIC_VOID:
12607   case ISD::INTRINSIC_W_CHAIN:
12608     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12609     case Intrinsic::aarch64_neon_ld2:
12610     case Intrinsic::aarch64_neon_ld3:
12611     case Intrinsic::aarch64_neon_ld4:
12612     case Intrinsic::aarch64_neon_ld1x2:
12613     case Intrinsic::aarch64_neon_ld1x3:
12614     case Intrinsic::aarch64_neon_ld1x4:
12615     case Intrinsic::aarch64_neon_ld2lane:
12616     case Intrinsic::aarch64_neon_ld3lane:
12617     case Intrinsic::aarch64_neon_ld4lane:
12618     case Intrinsic::aarch64_neon_ld2r:
12619     case Intrinsic::aarch64_neon_ld3r:
12620     case Intrinsic::aarch64_neon_ld4r:
12621     case Intrinsic::aarch64_neon_st2:
12622     case Intrinsic::aarch64_neon_st3:
12623     case Intrinsic::aarch64_neon_st4:
12624     case Intrinsic::aarch64_neon_st1x2:
12625     case Intrinsic::aarch64_neon_st1x3:
12626     case Intrinsic::aarch64_neon_st1x4:
12627     case Intrinsic::aarch64_neon_st2lane:
12628     case Intrinsic::aarch64_neon_st3lane:
12629     case Intrinsic::aarch64_neon_st4lane:
12630       return performNEONPostLDSTCombine(N, DCI, DAG);
12631     case Intrinsic::aarch64_sve_ldnt1:
12632       return performLDNT1Combine(N, DAG);
12633     case Intrinsic::aarch64_sve_stnt1:
12634       return performSTNT1Combine(N, DAG);
12635     case Intrinsic::aarch64_sve_ld1_gather:
12636       return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1);
12637     case Intrinsic::aarch64_sve_ld1_gather_index:
12638       return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SCALED);
12639     case Intrinsic::aarch64_sve_ld1_gather_sxtw:
12640       return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW,
12641                                       /*OnlyPackedOffsets=*/false);
12642     case Intrinsic::aarch64_sve_ld1_gather_uxtw:
12643       return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW,
12644                                       /*OnlyPackedOffsets=*/false);
12645     case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
12646       return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW_SCALED,
12647                                       /*OnlyPackedOffsets=*/false);
12648     case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
12649       return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW_SCALED,
12650                                       /*OnlyPackedOffsets=*/false);
12651     case Intrinsic::aarch64_sve_ld1_gather_imm:
12652       return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_IMM);
12653     case Intrinsic::aarch64_sve_st1_scatter:
12654       return performST1ScatterCombine(N, DAG, AArch64ISD::SST1);
12655     case Intrinsic::aarch64_sve_st1_scatter_index:
12656       return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SCALED);
12657     case Intrinsic::aarch64_sve_st1_scatter_sxtw:
12658       return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW,
12659                                       /*OnlyPackedOffsets=*/false);
12660     case Intrinsic::aarch64_sve_st1_scatter_uxtw:
12661       return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW,
12662                                       /*OnlyPackedOffsets=*/false);
12663     case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
12664       return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW_SCALED,
12665                                       /*OnlyPackedOffsets=*/false);
12666     case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
12667       return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW_SCALED,
12668                                       /*OnlyPackedOffsets=*/false);
12669     case Intrinsic::aarch64_sve_st1_scatter_imm:
12670       return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_IMM);
12671     default:
12672       break;
12673     }
12674     break;
12675   case ISD::GlobalAddress:
12676     return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
12677   }
12678   return SDValue();
12679 }
12680 
12681 // Check if the return value is used as only a return value, as otherwise
12682 // we can't perform a tail-call. In particular, we need to check for
12683 // target ISD nodes that are returns and any other "odd" constructs
12684 // that the generic analysis code won't necessarily catch.
12685 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
12686                                                SDValue &Chain) const {
12687   if (N->getNumValues() != 1)
12688     return false;
12689   if (!N->hasNUsesOfValue(1, 0))
12690     return false;
12691 
12692   SDValue TCChain = Chain;
12693   SDNode *Copy = *N->use_begin();
12694   if (Copy->getOpcode() == ISD::CopyToReg) {
12695     // If the copy has a glue operand, we conservatively assume it isn't safe to
12696     // perform a tail call.
12697     if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
12698         MVT::Glue)
12699       return false;
12700     TCChain = Copy->getOperand(0);
12701   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
12702     return false;
12703 
12704   bool HasRet = false;
12705   for (SDNode *Node : Copy->uses()) {
12706     if (Node->getOpcode() != AArch64ISD::RET_FLAG)
12707       return false;
12708     HasRet = true;
12709   }
12710 
12711   if (!HasRet)
12712     return false;
12713 
12714   Chain = TCChain;
12715   return true;
12716 }
12717 
12718 // Return whether the an instruction can potentially be optimized to a tail
12719 // call. This will cause the optimizers to attempt to move, or duplicate,
12720 // return instructions to help enable tail call optimizations for this
12721 // instruction.
12722 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
12723   return CI->isTailCall();
12724 }
12725 
12726 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
12727                                                    SDValue &Offset,
12728                                                    ISD::MemIndexedMode &AM,
12729                                                    bool &IsInc,
12730                                                    SelectionDAG &DAG) const {
12731   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
12732     return false;
12733 
12734   Base = Op->getOperand(0);
12735   // All of the indexed addressing mode instructions take a signed
12736   // 9 bit immediate offset.
12737   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
12738     int64_t RHSC = RHS->getSExtValue();
12739     if (Op->getOpcode() == ISD::SUB)
12740       RHSC = -(uint64_t)RHSC;
12741     if (!isInt<9>(RHSC))
12742       return false;
12743     IsInc = (Op->getOpcode() == ISD::ADD);
12744     Offset = Op->getOperand(1);
12745     return true;
12746   }
12747   return false;
12748 }
12749 
12750 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
12751                                                       SDValue &Offset,
12752                                                       ISD::MemIndexedMode &AM,
12753                                                       SelectionDAG &DAG) const {
12754   EVT VT;
12755   SDValue Ptr;
12756   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
12757     VT = LD->getMemoryVT();
12758     Ptr = LD->getBasePtr();
12759   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
12760     VT = ST->getMemoryVT();
12761     Ptr = ST->getBasePtr();
12762   } else
12763     return false;
12764 
12765   bool IsInc;
12766   if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
12767     return false;
12768   AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
12769   return true;
12770 }
12771 
12772 bool AArch64TargetLowering::getPostIndexedAddressParts(
12773     SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
12774     ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
12775   EVT VT;
12776   SDValue Ptr;
12777   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
12778     VT = LD->getMemoryVT();
12779     Ptr = LD->getBasePtr();
12780   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
12781     VT = ST->getMemoryVT();
12782     Ptr = ST->getBasePtr();
12783   } else
12784     return false;
12785 
12786   bool IsInc;
12787   if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
12788     return false;
12789   // Post-indexing updates the base, so it's not a valid transform
12790   // if that's not the same as the load's pointer.
12791   if (Ptr != Base)
12792     return false;
12793   AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
12794   return true;
12795 }
12796 
12797 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
12798                                   SelectionDAG &DAG) {
12799   SDLoc DL(N);
12800   SDValue Op = N->getOperand(0);
12801 
12802   if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
12803     return;
12804 
12805   Op = SDValue(
12806       DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
12807                          DAG.getUNDEF(MVT::i32), Op,
12808                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
12809       0);
12810   Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
12811   Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
12812 }
12813 
12814 static void ReplaceReductionResults(SDNode *N,
12815                                     SmallVectorImpl<SDValue> &Results,
12816                                     SelectionDAG &DAG, unsigned InterOp,
12817                                     unsigned AcrossOp) {
12818   EVT LoVT, HiVT;
12819   SDValue Lo, Hi;
12820   SDLoc dl(N);
12821   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
12822   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
12823   SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
12824   SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
12825   Results.push_back(SplitVal);
12826 }
12827 
12828 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
12829   SDLoc DL(N);
12830   SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
12831   SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
12832                            DAG.getNode(ISD::SRL, DL, MVT::i128, N,
12833                                        DAG.getConstant(64, DL, MVT::i64)));
12834   return std::make_pair(Lo, Hi);
12835 }
12836 
12837 // Create an even/odd pair of X registers holding integer value V.
12838 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
12839   SDLoc dl(V.getNode());
12840   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
12841   SDValue VHi = DAG.getAnyExtOrTrunc(
12842       DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
12843       dl, MVT::i64);
12844   if (DAG.getDataLayout().isBigEndian())
12845     std::swap (VLo, VHi);
12846   SDValue RegClass =
12847       DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
12848   SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
12849   SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
12850   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
12851   return SDValue(
12852       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
12853 }
12854 
12855 static void ReplaceCMP_SWAP_128Results(SDNode *N,
12856                                        SmallVectorImpl<SDValue> &Results,
12857                                        SelectionDAG &DAG,
12858                                        const AArch64Subtarget *Subtarget) {
12859   assert(N->getValueType(0) == MVT::i128 &&
12860          "AtomicCmpSwap on types less than 128 should be legal");
12861 
12862   if (Subtarget->hasLSE()) {
12863     // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
12864     // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
12865     SDValue Ops[] = {
12866         createGPRPairNode(DAG, N->getOperand(2)), // Compare value
12867         createGPRPairNode(DAG, N->getOperand(3)), // Store value
12868         N->getOperand(1), // Ptr
12869         N->getOperand(0), // Chain in
12870     };
12871 
12872     MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
12873 
12874     unsigned Opcode;
12875     switch (MemOp->getOrdering()) {
12876     case AtomicOrdering::Monotonic:
12877       Opcode = AArch64::CASPX;
12878       break;
12879     case AtomicOrdering::Acquire:
12880       Opcode = AArch64::CASPAX;
12881       break;
12882     case AtomicOrdering::Release:
12883       Opcode = AArch64::CASPLX;
12884       break;
12885     case AtomicOrdering::AcquireRelease:
12886     case AtomicOrdering::SequentiallyConsistent:
12887       Opcode = AArch64::CASPALX;
12888       break;
12889     default:
12890       llvm_unreachable("Unexpected ordering!");
12891     }
12892 
12893     MachineSDNode *CmpSwap = DAG.getMachineNode(
12894         Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
12895     DAG.setNodeMemRefs(CmpSwap, {MemOp});
12896 
12897     unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
12898     if (DAG.getDataLayout().isBigEndian())
12899       std::swap(SubReg1, SubReg2);
12900     Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
12901                                                  SDValue(CmpSwap, 0)));
12902     Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
12903                                                  SDValue(CmpSwap, 0)));
12904     Results.push_back(SDValue(CmpSwap, 1)); // Chain out
12905     return;
12906   }
12907 
12908   auto Desired = splitInt128(N->getOperand(2), DAG);
12909   auto New = splitInt128(N->getOperand(3), DAG);
12910   SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
12911                    New.first,        New.second,    N->getOperand(0)};
12912   SDNode *CmpSwap = DAG.getMachineNode(
12913       AArch64::CMP_SWAP_128, SDLoc(N),
12914       DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
12915 
12916   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
12917   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
12918 
12919   Results.push_back(SDValue(CmpSwap, 0));
12920   Results.push_back(SDValue(CmpSwap, 1));
12921   Results.push_back(SDValue(CmpSwap, 3));
12922 }
12923 
12924 void AArch64TargetLowering::ReplaceNodeResults(
12925     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
12926   switch (N->getOpcode()) {
12927   default:
12928     llvm_unreachable("Don't know how to custom expand this");
12929   case ISD::BITCAST:
12930     ReplaceBITCASTResults(N, Results, DAG);
12931     return;
12932   case ISD::VECREDUCE_ADD:
12933   case ISD::VECREDUCE_SMAX:
12934   case ISD::VECREDUCE_SMIN:
12935   case ISD::VECREDUCE_UMAX:
12936   case ISD::VECREDUCE_UMIN:
12937     Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
12938     return;
12939 
12940   case AArch64ISD::SADDV:
12941     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
12942     return;
12943   case AArch64ISD::UADDV:
12944     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
12945     return;
12946   case AArch64ISD::SMINV:
12947     ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
12948     return;
12949   case AArch64ISD::UMINV:
12950     ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
12951     return;
12952   case AArch64ISD::SMAXV:
12953     ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
12954     return;
12955   case AArch64ISD::UMAXV:
12956     ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
12957     return;
12958   case ISD::FP_TO_UINT:
12959   case ISD::FP_TO_SINT:
12960     assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
12961     // Let normal code take care of it by not adding anything to Results.
12962     return;
12963   case ISD::ATOMIC_CMP_SWAP:
12964     ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
12965     return;
12966   case ISD::LOAD: {
12967     assert(SDValue(N, 0).getValueType() == MVT::i128 &&
12968            "unexpected load's value type");
12969     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
12970     if (!LoadNode->isVolatile() || LoadNode->getMemoryVT() != MVT::i128) {
12971       // Non-volatile loads are optimized later in AArch64's load/store
12972       // optimizer.
12973       return;
12974     }
12975 
12976     SDValue Result = DAG.getMemIntrinsicNode(
12977         AArch64ISD::LDP, SDLoc(N),
12978         DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}),
12979         {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(),
12980         LoadNode->getMemOperand());
12981 
12982     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128,
12983                                Result.getValue(0), Result.getValue(1));
12984     Results.append({Pair, Result.getValue(2) /* Chain */});
12985     return;
12986   }
12987   case ISD::INTRINSIC_WO_CHAIN: {
12988     EVT VT = N->getValueType(0);
12989     assert((VT == MVT::i8 || VT == MVT::i16) &&
12990            "custom lowering for unexpected type");
12991 
12992     ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0));
12993     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
12994     switch (IntID) {
12995     default:
12996       return;
12997     case Intrinsic::aarch64_sve_clasta_n: {
12998       SDLoc DL(N);
12999       auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
13000       auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32,
13001                            N->getOperand(1), Op2, N->getOperand(3));
13002       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
13003       return;
13004     }
13005     case Intrinsic::aarch64_sve_clastb_n: {
13006       SDLoc DL(N);
13007       auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2));
13008       auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32,
13009                            N->getOperand(1), Op2, N->getOperand(3));
13010       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
13011       return;
13012     }
13013     case Intrinsic::aarch64_sve_lasta: {
13014       SDLoc DL(N);
13015       auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32,
13016                            N->getOperand(1), N->getOperand(2));
13017       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
13018       return;
13019     }
13020     case Intrinsic::aarch64_sve_lastb: {
13021       SDLoc DL(N);
13022       auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32,
13023                            N->getOperand(1), N->getOperand(2));
13024       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V));
13025       return;
13026     }
13027     }
13028   }
13029   }
13030 }
13031 
13032 bool AArch64TargetLowering::useLoadStackGuardNode() const {
13033   if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
13034     return TargetLowering::useLoadStackGuardNode();
13035   return true;
13036 }
13037 
13038 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
13039   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13040   // reciprocal if there are three or more FDIVs.
13041   return 3;
13042 }
13043 
13044 TargetLoweringBase::LegalizeTypeAction
13045 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
13046   // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
13047   // v4i16, v2i32 instead of to promote.
13048   if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
13049       VT == MVT::v1f32)
13050     return TypeWidenVector;
13051 
13052   return TargetLoweringBase::getPreferredVectorAction(VT);
13053 }
13054 
13055 // Loads and stores less than 128-bits are already atomic; ones above that
13056 // are doomed anyway, so defer to the default libcall and blame the OS when
13057 // things go wrong.
13058 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
13059   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
13060   return Size == 128;
13061 }
13062 
13063 // Loads and stores less than 128-bits are already atomic; ones above that
13064 // are doomed anyway, so defer to the default libcall and blame the OS when
13065 // things go wrong.
13066 TargetLowering::AtomicExpansionKind
13067 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
13068   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
13069   return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
13070 }
13071 
13072 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
13073 TargetLowering::AtomicExpansionKind
13074 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
13075   if (AI->isFloatingPointOperation())
13076     return AtomicExpansionKind::CmpXChg;
13077 
13078   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
13079   if (Size > 128) return AtomicExpansionKind::None;
13080   // Nand not supported in LSE.
13081   if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
13082   // Leave 128 bits to LLSC.
13083   return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
13084 }
13085 
13086 TargetLowering::AtomicExpansionKind
13087 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
13088     AtomicCmpXchgInst *AI) const {
13089   // If subtarget has LSE, leave cmpxchg intact for codegen.
13090   if (Subtarget->hasLSE())
13091     return AtomicExpansionKind::None;
13092   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
13093   // implement cmpxchg without spilling. If the address being exchanged is also
13094   // on the stack and close enough to the spill slot, this can lead to a
13095   // situation where the monitor always gets cleared and the atomic operation
13096   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
13097   if (getTargetMachine().getOptLevel() == 0)
13098     return AtomicExpansionKind::None;
13099   return AtomicExpansionKind::LLSC;
13100 }
13101 
13102 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
13103                                              AtomicOrdering Ord) const {
13104   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
13105   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
13106   bool IsAcquire = isAcquireOrStronger(Ord);
13107 
13108   // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
13109   // intrinsic must return {i64, i64} and we have to recombine them into a
13110   // single i128 here.
13111   if (ValTy->getPrimitiveSizeInBits() == 128) {
13112     Intrinsic::ID Int =
13113         IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
13114     Function *Ldxr = Intrinsic::getDeclaration(M, Int);
13115 
13116     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
13117     Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
13118 
13119     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
13120     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
13121     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
13122     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
13123     return Builder.CreateOr(
13124         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
13125   }
13126 
13127   Type *Tys[] = { Addr->getType() };
13128   Intrinsic::ID Int =
13129       IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
13130   Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
13131 
13132   Type *EltTy = cast<PointerType>(Addr->getType())->getElementType();
13133 
13134   const DataLayout &DL = M->getDataLayout();
13135   IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy));
13136   Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy);
13137 
13138   return Builder.CreateBitCast(Trunc, EltTy);
13139 }
13140 
13141 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
13142     IRBuilder<> &Builder) const {
13143   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
13144   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
13145 }
13146 
13147 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
13148                                                    Value *Val, Value *Addr,
13149                                                    AtomicOrdering Ord) const {
13150   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
13151   bool IsRelease = isReleaseOrStronger(Ord);
13152 
13153   // Since the intrinsics must have legal type, the i128 intrinsics take two
13154   // parameters: "i64, i64". We must marshal Val into the appropriate form
13155   // before the call.
13156   if (Val->getType()->getPrimitiveSizeInBits() == 128) {
13157     Intrinsic::ID Int =
13158         IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
13159     Function *Stxr = Intrinsic::getDeclaration(M, Int);
13160     Type *Int64Ty = Type::getInt64Ty(M->getContext());
13161 
13162     Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
13163     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
13164     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
13165     return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
13166   }
13167 
13168   Intrinsic::ID Int =
13169       IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
13170   Type *Tys[] = { Addr->getType() };
13171   Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
13172 
13173   const DataLayout &DL = M->getDataLayout();
13174   IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
13175   Val = Builder.CreateBitCast(Val, IntValTy);
13176 
13177   return Builder.CreateCall(Stxr,
13178                             {Builder.CreateZExtOrBitCast(
13179                                  Val, Stxr->getFunctionType()->getParamType(0)),
13180                              Addr});
13181 }
13182 
13183 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
13184     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
13185   return Ty->isArrayTy();
13186 }
13187 
13188 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
13189                                                             EVT) const {
13190   return false;
13191 }
13192 
13193 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
13194   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
13195   Function *ThreadPointerFunc =
13196       Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
13197   return IRB.CreatePointerCast(
13198       IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
13199                              Offset),
13200       IRB.getInt8PtrTy()->getPointerTo(0));
13201 }
13202 
13203 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
13204   // Android provides a fixed TLS slot for the stack cookie. See the definition
13205   // of TLS_SLOT_STACK_GUARD in
13206   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
13207   if (Subtarget->isTargetAndroid())
13208     return UseTlsOffset(IRB, 0x28);
13209 
13210   // Fuchsia is similar.
13211   // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
13212   if (Subtarget->isTargetFuchsia())
13213     return UseTlsOffset(IRB, -0x10);
13214 
13215   return TargetLowering::getIRStackGuard(IRB);
13216 }
13217 
13218 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
13219   // MSVC CRT provides functionalities for stack protection.
13220   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
13221     // MSVC CRT has a global variable holding security cookie.
13222     M.getOrInsertGlobal("__security_cookie",
13223                         Type::getInt8PtrTy(M.getContext()));
13224 
13225     // MSVC CRT has a function to validate security cookie.
13226     FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
13227         "__security_check_cookie", Type::getVoidTy(M.getContext()),
13228         Type::getInt8PtrTy(M.getContext()));
13229     if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
13230       F->setCallingConv(CallingConv::Win64);
13231       F->addAttribute(1, Attribute::AttrKind::InReg);
13232     }
13233     return;
13234   }
13235   TargetLowering::insertSSPDeclarations(M);
13236 }
13237 
13238 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
13239   // MSVC CRT has a global variable holding security cookie.
13240   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
13241     return M.getGlobalVariable("__security_cookie");
13242   return TargetLowering::getSDagStackGuard(M);
13243 }
13244 
13245 Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
13246   // MSVC CRT has a function to validate security cookie.
13247   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
13248     return M.getFunction("__security_check_cookie");
13249   return TargetLowering::getSSPStackGuardCheck(M);
13250 }
13251 
13252 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
13253   // Android provides a fixed TLS slot for the SafeStack pointer. See the
13254   // definition of TLS_SLOT_SAFESTACK in
13255   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
13256   if (Subtarget->isTargetAndroid())
13257     return UseTlsOffset(IRB, 0x48);
13258 
13259   // Fuchsia is similar.
13260   // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
13261   if (Subtarget->isTargetFuchsia())
13262     return UseTlsOffset(IRB, -0x8);
13263 
13264   return TargetLowering::getSafeStackPointerLocation(IRB);
13265 }
13266 
13267 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
13268     const Instruction &AndI) const {
13269   // Only sink 'and' mask to cmp use block if it is masking a single bit, since
13270   // this is likely to be fold the and/cmp/br into a single tbz instruction.  It
13271   // may be beneficial to sink in other cases, but we would have to check that
13272   // the cmp would not get folded into the br to form a cbz for these to be
13273   // beneficial.
13274   ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
13275   if (!Mask)
13276     return false;
13277   return Mask->getValue().isPowerOf2();
13278 }
13279 
13280 bool AArch64TargetLowering::
13281     shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
13282         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
13283         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
13284         SelectionDAG &DAG) const {
13285   // Does baseline recommend not to perform the fold by default?
13286   if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
13287           X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
13288     return false;
13289   // Else, if this is a vector shift, prefer 'shl'.
13290   return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL;
13291 }
13292 
13293 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG,
13294                                               SDNode *N) const {
13295   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
13296       !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin())
13297     return false;
13298   return true;
13299 }
13300 
13301 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13302   // Update IsSplitCSR in AArch64unctionInfo.
13303   AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
13304   AFI->setIsSplitCSR(true);
13305 }
13306 
13307 void AArch64TargetLowering::insertCopiesSplitCSR(
13308     MachineBasicBlock *Entry,
13309     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
13310   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
13311   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
13312   if (!IStart)
13313     return;
13314 
13315   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
13316   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
13317   MachineBasicBlock::iterator MBBI = Entry->begin();
13318   for (const MCPhysReg *I = IStart; *I; ++I) {
13319     const TargetRegisterClass *RC = nullptr;
13320     if (AArch64::GPR64RegClass.contains(*I))
13321       RC = &AArch64::GPR64RegClass;
13322     else if (AArch64::FPR64RegClass.contains(*I))
13323       RC = &AArch64::FPR64RegClass;
13324     else
13325       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
13326 
13327     Register NewVR = MRI->createVirtualRegister(RC);
13328     // Create copy from CSR to a virtual register.
13329     // FIXME: this currently does not emit CFI pseudo-instructions, it works
13330     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
13331     // nounwind. If we want to generalize this later, we may need to emit
13332     // CFI pseudo-instructions.
13333     assert(Entry->getParent()->getFunction().hasFnAttribute(
13334                Attribute::NoUnwind) &&
13335            "Function should be nounwind in insertCopiesSplitCSR!");
13336     Entry->addLiveIn(*I);
13337     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
13338         .addReg(*I);
13339 
13340     // Insert the copy-back instructions right before the terminator.
13341     for (auto *Exit : Exits)
13342       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
13343               TII->get(TargetOpcode::COPY), *I)
13344           .addReg(NewVR);
13345   }
13346 }
13347 
13348 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
13349   // Integer division on AArch64 is expensive. However, when aggressively
13350   // optimizing for code size, we prefer to use a div instruction, as it is
13351   // usually smaller than the alternative sequence.
13352   // The exception to this is vector division. Since AArch64 doesn't have vector
13353   // integer division, leaving the division as-is is a loss even in terms of
13354   // size, because it will have to be scalarized, while the alternative code
13355   // sequence can be performed in vector form.
13356   bool OptSize =
13357       Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
13358   return OptSize && !VT.isVector();
13359 }
13360 
13361 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
13362   // We want inc-of-add for scalars and sub-of-not for vectors.
13363   return VT.isScalarInteger();
13364 }
13365 
13366 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
13367   return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
13368 }
13369 
13370 unsigned
13371 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
13372   if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
13373     return getPointerTy(DL).getSizeInBits();
13374 
13375   return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
13376 }
13377 
13378 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
13379   MF.getFrameInfo().computeMaxCallFrameSize(MF);
13380   TargetLoweringBase::finalizeLowering(MF);
13381 }
13382 
13383 // Unlike X86, we let frame lowering assign offsets to all catch objects.
13384 bool AArch64TargetLowering::needsFixedCatchObjects() const {
13385   return false;
13386 }
13387