1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AArch64TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64ISelLowering.h" 14 #include "AArch64CallingConvention.h" 15 #include "AArch64ExpandImm.h" 16 #include "AArch64MachineFunctionInfo.h" 17 #include "AArch64PerfectShuffle.h" 18 #include "AArch64RegisterInfo.h" 19 #include "AArch64Subtarget.h" 20 #include "MCTargetDesc/AArch64AddressingModes.h" 21 #include "Utils/AArch64BaseInfo.h" 22 #include "llvm/ADT/APFloat.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/StringSwitch.h" 31 #include "llvm/ADT/Triple.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/CodeGen/CallingConvLower.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/RuntimeLibcalls.h" 43 #include "llvm/CodeGen/SelectionDAG.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/TargetCallingConv.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/IntrinsicsAArch64.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/OperandTraits.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/MC/MCRegisterInfo.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CodeGen.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/KnownBits.h" 76 #include "llvm/Support/MachineValueType.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Target/TargetMachine.h" 80 #include "llvm/Target/TargetOptions.h" 81 #include <algorithm> 82 #include <bitset> 83 #include <cassert> 84 #include <cctype> 85 #include <cstdint> 86 #include <cstdlib> 87 #include <iterator> 88 #include <limits> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 using namespace llvm::PatternMatch; 95 96 #define DEBUG_TYPE "aarch64-lower" 97 98 STATISTIC(NumTailCalls, "Number of tail calls"); 99 STATISTIC(NumShiftInserts, "Number of vector shift inserts"); 100 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized"); 101 102 // FIXME: The necessary dtprel relocations don't seem to be supported 103 // well in the GNU bfd and gold linkers at the moment. Therefore, by 104 // default, for now, fall back to GeneralDynamic code generation. 105 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration( 106 "aarch64-elf-ldtls-generation", cl::Hidden, 107 cl::desc("Allow AArch64 Local Dynamic TLS code generation"), 108 cl::init(false)); 109 110 static cl::opt<bool> 111 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden, 112 cl::desc("Enable AArch64 logical imm instruction " 113 "optimization"), 114 cl::init(true)); 115 116 /// Value type used for condition codes. 117 static const MVT MVT_CC = MVT::i32; 118 119 /// Returns true if VT's elements occupy the lowest bit positions of its 120 /// associated register class without any intervening space. 121 /// 122 /// For example, nxv2f16, nxv4f16 and nxv8f16 are legal types that belong to the 123 /// same register class, but only nxv8f16 can be treated as a packed vector. 124 static inline bool isPackedVectorType(EVT VT, SelectionDAG &DAG) { 125 assert(VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && 126 "Expected legal vector type!"); 127 return VT.isFixedLengthVector() || 128 VT.getSizeInBits().getKnownMinSize() == AArch64::SVEBitsPerBlock; 129 } 130 131 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, 132 const AArch64Subtarget &STI) 133 : TargetLowering(TM), Subtarget(&STI) { 134 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so 135 // we have to make something up. Arbitrarily, choose ZeroOrOne. 136 setBooleanContents(ZeroOrOneBooleanContent); 137 // When comparing vectors the result sets the different elements in the 138 // vector to all-one or all-zero. 139 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 140 141 // Set up the register classes. 142 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); 143 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); 144 145 if (Subtarget->hasFPARMv8()) { 146 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); 147 addRegisterClass(MVT::bf16, &AArch64::FPR16RegClass); 148 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); 149 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); 150 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); 151 } 152 153 if (Subtarget->hasNEON()) { 154 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); 155 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); 156 // Someone set us up the NEON. 157 addDRTypeForNEON(MVT::v2f32); 158 addDRTypeForNEON(MVT::v8i8); 159 addDRTypeForNEON(MVT::v4i16); 160 addDRTypeForNEON(MVT::v2i32); 161 addDRTypeForNEON(MVT::v1i64); 162 addDRTypeForNEON(MVT::v1f64); 163 addDRTypeForNEON(MVT::v4f16); 164 addDRTypeForNEON(MVT::v4bf16); 165 166 addQRTypeForNEON(MVT::v4f32); 167 addQRTypeForNEON(MVT::v2f64); 168 addQRTypeForNEON(MVT::v16i8); 169 addQRTypeForNEON(MVT::v8i16); 170 addQRTypeForNEON(MVT::v4i32); 171 addQRTypeForNEON(MVT::v2i64); 172 addQRTypeForNEON(MVT::v8f16); 173 addQRTypeForNEON(MVT::v8bf16); 174 } 175 176 if (Subtarget->hasSVE()) { 177 // Add legal sve predicate types 178 addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass); 179 addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass); 180 addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass); 181 addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass); 182 183 // Add legal sve data types 184 addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass); 185 addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass); 186 addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass); 187 addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass); 188 189 addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass); 190 addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass); 191 addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass); 192 addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass); 193 addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass); 194 addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass); 195 196 if (Subtarget->hasBF16()) { 197 addRegisterClass(MVT::nxv2bf16, &AArch64::ZPRRegClass); 198 addRegisterClass(MVT::nxv4bf16, &AArch64::ZPRRegClass); 199 addRegisterClass(MVT::nxv8bf16, &AArch64::ZPRRegClass); 200 } 201 202 if (useSVEForFixedLengthVectors()) { 203 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 204 if (useSVEForFixedLengthVectorVT(VT)) 205 addRegisterClass(VT, &AArch64::ZPRRegClass); 206 207 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 208 if (useSVEForFixedLengthVectorVT(VT)) 209 addRegisterClass(VT, &AArch64::ZPRRegClass); 210 } 211 212 for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) { 213 setOperationAction(ISD::SADDSAT, VT, Legal); 214 setOperationAction(ISD::UADDSAT, VT, Legal); 215 setOperationAction(ISD::SSUBSAT, VT, Legal); 216 setOperationAction(ISD::USUBSAT, VT, Legal); 217 setOperationAction(ISD::UREM, VT, Expand); 218 setOperationAction(ISD::SREM, VT, Expand); 219 setOperationAction(ISD::SDIVREM, VT, Expand); 220 setOperationAction(ISD::UDIVREM, VT, Expand); 221 } 222 223 for (auto VT : 224 { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8, 225 MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 }) 226 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal); 227 228 for (auto VT : 229 { MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32, MVT::nxv4f32, 230 MVT::nxv2f64 }) { 231 setCondCodeAction(ISD::SETO, VT, Expand); 232 setCondCodeAction(ISD::SETOLT, VT, Expand); 233 setCondCodeAction(ISD::SETOLE, VT, Expand); 234 setCondCodeAction(ISD::SETULT, VT, Expand); 235 setCondCodeAction(ISD::SETULE, VT, Expand); 236 setCondCodeAction(ISD::SETUGE, VT, Expand); 237 setCondCodeAction(ISD::SETUGT, VT, Expand); 238 setCondCodeAction(ISD::SETUEQ, VT, Expand); 239 setCondCodeAction(ISD::SETUNE, VT, Expand); 240 } 241 } 242 243 // Compute derived properties from the register classes 244 computeRegisterProperties(Subtarget->getRegisterInfo()); 245 246 // Provide all sorts of operation actions 247 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 248 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 249 setOperationAction(ISD::SETCC, MVT::i32, Custom); 250 setOperationAction(ISD::SETCC, MVT::i64, Custom); 251 setOperationAction(ISD::SETCC, MVT::f16, Custom); 252 setOperationAction(ISD::SETCC, MVT::f32, Custom); 253 setOperationAction(ISD::SETCC, MVT::f64, Custom); 254 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom); 255 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom); 256 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom); 257 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom); 258 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom); 259 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom); 260 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 261 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 262 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 263 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 264 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 265 setOperationAction(ISD::BR_CC, MVT::f16, Custom); 266 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 267 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 268 setOperationAction(ISD::SELECT, MVT::i32, Custom); 269 setOperationAction(ISD::SELECT, MVT::i64, Custom); 270 setOperationAction(ISD::SELECT, MVT::f16, Custom); 271 setOperationAction(ISD::SELECT, MVT::f32, Custom); 272 setOperationAction(ISD::SELECT, MVT::f64, Custom); 273 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 274 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 275 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); 276 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 277 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 278 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 279 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 280 281 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 282 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 283 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 284 285 setOperationAction(ISD::FREM, MVT::f32, Expand); 286 setOperationAction(ISD::FREM, MVT::f64, Expand); 287 setOperationAction(ISD::FREM, MVT::f80, Expand); 288 289 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 290 291 // Custom lowering hooks are needed for XOR 292 // to fold it into CSINC/CSINV. 293 setOperationAction(ISD::XOR, MVT::i32, Custom); 294 setOperationAction(ISD::XOR, MVT::i64, Custom); 295 296 // Virtually no operation on f128 is legal, but LLVM can't expand them when 297 // there's a valid register class, so we need custom operations in most cases. 298 setOperationAction(ISD::FABS, MVT::f128, Expand); 299 setOperationAction(ISD::FADD, MVT::f128, Custom); 300 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 301 setOperationAction(ISD::FCOS, MVT::f128, Expand); 302 setOperationAction(ISD::FDIV, MVT::f128, Custom); 303 setOperationAction(ISD::FMA, MVT::f128, Expand); 304 setOperationAction(ISD::FMUL, MVT::f128, Custom); 305 setOperationAction(ISD::FNEG, MVT::f128, Expand); 306 setOperationAction(ISD::FPOW, MVT::f128, Expand); 307 setOperationAction(ISD::FREM, MVT::f128, Expand); 308 setOperationAction(ISD::FRINT, MVT::f128, Expand); 309 setOperationAction(ISD::FSIN, MVT::f128, Expand); 310 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 311 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 312 setOperationAction(ISD::FSUB, MVT::f128, Custom); 313 setOperationAction(ISD::FTRUNC, MVT::f128, Expand); 314 setOperationAction(ISD::SETCC, MVT::f128, Custom); 315 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 316 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 317 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 318 setOperationAction(ISD::SELECT, MVT::f128, Custom); 319 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 320 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 321 322 // Lowering for many of the conversions is actually specified by the non-f128 323 // type. The LowerXXX function will be trivial when f128 isn't involved. 324 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 325 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 326 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); 327 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 328 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 329 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom); 330 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 331 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 332 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); 333 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 334 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 335 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom); 336 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 337 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 338 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); 339 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 340 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 341 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom); 342 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 343 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 344 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); 345 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 346 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 347 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom); 348 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 349 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 350 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom); 351 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom); 352 353 // Variable arguments. 354 setOperationAction(ISD::VASTART, MVT::Other, Custom); 355 setOperationAction(ISD::VAARG, MVT::Other, Custom); 356 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 357 setOperationAction(ISD::VAEND, MVT::Other, Expand); 358 359 // Variable-sized objects. 360 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 361 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 362 363 if (Subtarget->isTargetWindows()) 364 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 365 else 366 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 367 368 // Constant pool entries 369 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 370 371 // BlockAddress 372 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 373 374 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. 375 setOperationAction(ISD::ADDC, MVT::i32, Custom); 376 setOperationAction(ISD::ADDE, MVT::i32, Custom); 377 setOperationAction(ISD::SUBC, MVT::i32, Custom); 378 setOperationAction(ISD::SUBE, MVT::i32, Custom); 379 setOperationAction(ISD::ADDC, MVT::i64, Custom); 380 setOperationAction(ISD::ADDE, MVT::i64, Custom); 381 setOperationAction(ISD::SUBC, MVT::i64, Custom); 382 setOperationAction(ISD::SUBE, MVT::i64, Custom); 383 384 // AArch64 lacks both left-rotate and popcount instructions. 385 setOperationAction(ISD::ROTL, MVT::i32, Expand); 386 setOperationAction(ISD::ROTL, MVT::i64, Expand); 387 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 388 setOperationAction(ISD::ROTL, VT, Expand); 389 setOperationAction(ISD::ROTR, VT, Expand); 390 } 391 392 // AArch64 doesn't have i32 MULH{S|U}. 393 setOperationAction(ISD::MULHU, MVT::i32, Expand); 394 setOperationAction(ISD::MULHS, MVT::i32, Expand); 395 396 // AArch64 doesn't have {U|S}MUL_LOHI. 397 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 398 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 399 400 setOperationAction(ISD::CTPOP, MVT::i32, Custom); 401 setOperationAction(ISD::CTPOP, MVT::i64, Custom); 402 setOperationAction(ISD::CTPOP, MVT::i128, Custom); 403 404 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 405 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 406 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 407 setOperationAction(ISD::SDIVREM, VT, Expand); 408 setOperationAction(ISD::UDIVREM, VT, Expand); 409 } 410 setOperationAction(ISD::SREM, MVT::i32, Expand); 411 setOperationAction(ISD::SREM, MVT::i64, Expand); 412 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 413 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 414 setOperationAction(ISD::UREM, MVT::i32, Expand); 415 setOperationAction(ISD::UREM, MVT::i64, Expand); 416 417 // Custom lower Add/Sub/Mul with overflow. 418 setOperationAction(ISD::SADDO, MVT::i32, Custom); 419 setOperationAction(ISD::SADDO, MVT::i64, Custom); 420 setOperationAction(ISD::UADDO, MVT::i32, Custom); 421 setOperationAction(ISD::UADDO, MVT::i64, Custom); 422 setOperationAction(ISD::SSUBO, MVT::i32, Custom); 423 setOperationAction(ISD::SSUBO, MVT::i64, Custom); 424 setOperationAction(ISD::USUBO, MVT::i32, Custom); 425 setOperationAction(ISD::USUBO, MVT::i64, Custom); 426 setOperationAction(ISD::SMULO, MVT::i32, Custom); 427 setOperationAction(ISD::SMULO, MVT::i64, Custom); 428 setOperationAction(ISD::UMULO, MVT::i32, Custom); 429 setOperationAction(ISD::UMULO, MVT::i64, Custom); 430 431 setOperationAction(ISD::FSIN, MVT::f32, Expand); 432 setOperationAction(ISD::FSIN, MVT::f64, Expand); 433 setOperationAction(ISD::FCOS, MVT::f32, Expand); 434 setOperationAction(ISD::FCOS, MVT::f64, Expand); 435 setOperationAction(ISD::FPOW, MVT::f32, Expand); 436 setOperationAction(ISD::FPOW, MVT::f64, Expand); 437 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 438 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 439 if (Subtarget->hasFullFP16()) 440 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom); 441 else 442 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); 443 444 setOperationAction(ISD::FREM, MVT::f16, Promote); 445 setOperationAction(ISD::FREM, MVT::v4f16, Expand); 446 setOperationAction(ISD::FREM, MVT::v8f16, Expand); 447 setOperationAction(ISD::FPOW, MVT::f16, Promote); 448 setOperationAction(ISD::FPOW, MVT::v4f16, Expand); 449 setOperationAction(ISD::FPOW, MVT::v8f16, Expand); 450 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 451 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand); 452 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand); 453 setOperationAction(ISD::FCOS, MVT::f16, Promote); 454 setOperationAction(ISD::FCOS, MVT::v4f16, Expand); 455 setOperationAction(ISD::FCOS, MVT::v8f16, Expand); 456 setOperationAction(ISD::FSIN, MVT::f16, Promote); 457 setOperationAction(ISD::FSIN, MVT::v4f16, Expand); 458 setOperationAction(ISD::FSIN, MVT::v8f16, Expand); 459 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 460 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand); 461 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand); 462 setOperationAction(ISD::FEXP, MVT::f16, Promote); 463 setOperationAction(ISD::FEXP, MVT::v4f16, Expand); 464 setOperationAction(ISD::FEXP, MVT::v8f16, Expand); 465 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 466 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand); 467 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand); 468 setOperationAction(ISD::FLOG, MVT::f16, Promote); 469 setOperationAction(ISD::FLOG, MVT::v4f16, Expand); 470 setOperationAction(ISD::FLOG, MVT::v8f16, Expand); 471 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 472 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand); 473 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand); 474 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 475 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand); 476 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand); 477 478 if (!Subtarget->hasFullFP16()) { 479 setOperationAction(ISD::SELECT, MVT::f16, Promote); 480 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); 481 setOperationAction(ISD::SETCC, MVT::f16, Promote); 482 setOperationAction(ISD::BR_CC, MVT::f16, Promote); 483 setOperationAction(ISD::FADD, MVT::f16, Promote); 484 setOperationAction(ISD::FSUB, MVT::f16, Promote); 485 setOperationAction(ISD::FMUL, MVT::f16, Promote); 486 setOperationAction(ISD::FDIV, MVT::f16, Promote); 487 setOperationAction(ISD::FMA, MVT::f16, Promote); 488 setOperationAction(ISD::FNEG, MVT::f16, Promote); 489 setOperationAction(ISD::FABS, MVT::f16, Promote); 490 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 491 setOperationAction(ISD::FSQRT, MVT::f16, Promote); 492 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 493 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 494 setOperationAction(ISD::FRINT, MVT::f16, Promote); 495 setOperationAction(ISD::FROUND, MVT::f16, Promote); 496 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 497 setOperationAction(ISD::FMINNUM, MVT::f16, Promote); 498 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); 499 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); 500 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); 501 502 // promote v4f16 to v4f32 when that is known to be safe. 503 setOperationAction(ISD::FADD, MVT::v4f16, Promote); 504 setOperationAction(ISD::FSUB, MVT::v4f16, Promote); 505 setOperationAction(ISD::FMUL, MVT::v4f16, Promote); 506 setOperationAction(ISD::FDIV, MVT::v4f16, Promote); 507 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); 508 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); 509 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); 510 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); 511 512 setOperationAction(ISD::FABS, MVT::v4f16, Expand); 513 setOperationAction(ISD::FNEG, MVT::v4f16, Expand); 514 setOperationAction(ISD::FROUND, MVT::v4f16, Expand); 515 setOperationAction(ISD::FMA, MVT::v4f16, Expand); 516 setOperationAction(ISD::SETCC, MVT::v4f16, Expand); 517 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); 518 setOperationAction(ISD::SELECT, MVT::v4f16, Expand); 519 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); 520 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); 521 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); 522 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); 523 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); 524 setOperationAction(ISD::FRINT, MVT::v4f16, Expand); 525 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); 526 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); 527 528 setOperationAction(ISD::FABS, MVT::v8f16, Expand); 529 setOperationAction(ISD::FADD, MVT::v8f16, Expand); 530 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); 531 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); 532 setOperationAction(ISD::FDIV, MVT::v8f16, Expand); 533 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); 534 setOperationAction(ISD::FMA, MVT::v8f16, Expand); 535 setOperationAction(ISD::FMUL, MVT::v8f16, Expand); 536 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); 537 setOperationAction(ISD::FNEG, MVT::v8f16, Expand); 538 setOperationAction(ISD::FROUND, MVT::v8f16, Expand); 539 setOperationAction(ISD::FRINT, MVT::v8f16, Expand); 540 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); 541 setOperationAction(ISD::FSUB, MVT::v8f16, Expand); 542 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); 543 setOperationAction(ISD::SETCC, MVT::v8f16, Expand); 544 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); 545 setOperationAction(ISD::SELECT, MVT::v8f16, Expand); 546 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); 547 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); 548 } 549 550 // AArch64 has implementations of a lot of rounding-like FP operations. 551 for (MVT Ty : {MVT::f32, MVT::f64}) { 552 setOperationAction(ISD::FFLOOR, Ty, Legal); 553 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 554 setOperationAction(ISD::FCEIL, Ty, Legal); 555 setOperationAction(ISD::FRINT, Ty, Legal); 556 setOperationAction(ISD::FTRUNC, Ty, Legal); 557 setOperationAction(ISD::FROUND, Ty, Legal); 558 setOperationAction(ISD::FMINNUM, Ty, Legal); 559 setOperationAction(ISD::FMAXNUM, Ty, Legal); 560 setOperationAction(ISD::FMINIMUM, Ty, Legal); 561 setOperationAction(ISD::FMAXIMUM, Ty, Legal); 562 setOperationAction(ISD::LROUND, Ty, Legal); 563 setOperationAction(ISD::LLROUND, Ty, Legal); 564 setOperationAction(ISD::LRINT, Ty, Legal); 565 setOperationAction(ISD::LLRINT, Ty, Legal); 566 } 567 568 if (Subtarget->hasFullFP16()) { 569 setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal); 570 setOperationAction(ISD::FFLOOR, MVT::f16, Legal); 571 setOperationAction(ISD::FCEIL, MVT::f16, Legal); 572 setOperationAction(ISD::FRINT, MVT::f16, Legal); 573 setOperationAction(ISD::FTRUNC, MVT::f16, Legal); 574 setOperationAction(ISD::FROUND, MVT::f16, Legal); 575 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 576 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 577 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal); 578 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal); 579 } 580 581 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 582 583 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 584 585 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); 586 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 587 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); 588 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 589 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); 590 591 // 128-bit loads and stores can be done without expanding 592 setOperationAction(ISD::LOAD, MVT::i128, Custom); 593 setOperationAction(ISD::STORE, MVT::i128, Custom); 594 595 // 256 bit non-temporal stores can be lowered to STNP. Do this as part of the 596 // custom lowering, as there are no un-paired non-temporal stores and 597 // legalization will break up 256 bit inputs. 598 setOperationAction(ISD::STORE, MVT::v32i8, Custom); 599 setOperationAction(ISD::STORE, MVT::v16i16, Custom); 600 setOperationAction(ISD::STORE, MVT::v16f16, Custom); 601 setOperationAction(ISD::STORE, MVT::v8i32, Custom); 602 setOperationAction(ISD::STORE, MVT::v8f32, Custom); 603 setOperationAction(ISD::STORE, MVT::v4f64, Custom); 604 setOperationAction(ISD::STORE, MVT::v4i64, Custom); 605 606 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0. 607 // This requires the Performance Monitors extension. 608 if (Subtarget->hasPerfMon()) 609 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 610 611 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && 612 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { 613 // Issue __sincos_stret if available. 614 setOperationAction(ISD::FSINCOS, MVT::f64, Custom); 615 setOperationAction(ISD::FSINCOS, MVT::f32, Custom); 616 } else { 617 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 618 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 619 } 620 621 if (Subtarget->getTargetTriple().isOSMSVCRT()) { 622 // MSVCRT doesn't have powi; fall back to pow 623 setLibcallName(RTLIB::POWI_F32, nullptr); 624 setLibcallName(RTLIB::POWI_F64, nullptr); 625 } 626 627 // Make floating-point constants legal for the large code model, so they don't 628 // become loads from the constant pool. 629 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { 630 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 631 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 632 } 633 634 // AArch64 does not have floating-point extending loads, i1 sign-extending 635 // load, floating-point truncating stores, or v2i32->v2i16 truncating store. 636 for (MVT VT : MVT::fp_valuetypes()) { 637 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 638 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 639 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 640 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 641 } 642 for (MVT VT : MVT::integer_valuetypes()) 643 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); 644 645 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 646 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 647 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 648 setTruncStoreAction(MVT::f128, MVT::f80, Expand); 649 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 650 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 651 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 652 653 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 654 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 655 setOperationAction(ISD::BITCAST, MVT::bf16, Custom); 656 657 // Indexed loads and stores are supported. 658 for (unsigned im = (unsigned)ISD::PRE_INC; 659 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 660 setIndexedLoadAction(im, MVT::i8, Legal); 661 setIndexedLoadAction(im, MVT::i16, Legal); 662 setIndexedLoadAction(im, MVT::i32, Legal); 663 setIndexedLoadAction(im, MVT::i64, Legal); 664 setIndexedLoadAction(im, MVT::f64, Legal); 665 setIndexedLoadAction(im, MVT::f32, Legal); 666 setIndexedLoadAction(im, MVT::f16, Legal); 667 setIndexedLoadAction(im, MVT::bf16, Legal); 668 setIndexedStoreAction(im, MVT::i8, Legal); 669 setIndexedStoreAction(im, MVT::i16, Legal); 670 setIndexedStoreAction(im, MVT::i32, Legal); 671 setIndexedStoreAction(im, MVT::i64, Legal); 672 setIndexedStoreAction(im, MVT::f64, Legal); 673 setIndexedStoreAction(im, MVT::f32, Legal); 674 setIndexedStoreAction(im, MVT::f16, Legal); 675 setIndexedStoreAction(im, MVT::bf16, Legal); 676 } 677 678 // Trap. 679 setOperationAction(ISD::TRAP, MVT::Other, Legal); 680 if (Subtarget->isTargetWindows()) 681 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 682 683 // We combine OR nodes for bitfield operations. 684 setTargetDAGCombine(ISD::OR); 685 // Try to create BICs for vector ANDs. 686 setTargetDAGCombine(ISD::AND); 687 688 // Vector add and sub nodes may conceal a high-half opportunity. 689 // Also, try to fold ADD into CSINC/CSINV.. 690 setTargetDAGCombine(ISD::ADD); 691 setTargetDAGCombine(ISD::SUB); 692 setTargetDAGCombine(ISD::SRL); 693 setTargetDAGCombine(ISD::XOR); 694 setTargetDAGCombine(ISD::SINT_TO_FP); 695 setTargetDAGCombine(ISD::UINT_TO_FP); 696 697 setTargetDAGCombine(ISD::FP_TO_SINT); 698 setTargetDAGCombine(ISD::FP_TO_UINT); 699 setTargetDAGCombine(ISD::FDIV); 700 701 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 702 703 setTargetDAGCombine(ISD::ANY_EXTEND); 704 setTargetDAGCombine(ISD::ZERO_EXTEND); 705 setTargetDAGCombine(ISD::SIGN_EXTEND); 706 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 707 setTargetDAGCombine(ISD::CONCAT_VECTORS); 708 setTargetDAGCombine(ISD::STORE); 709 if (Subtarget->supportsAddressTopByteIgnored()) 710 setTargetDAGCombine(ISD::LOAD); 711 712 setTargetDAGCombine(ISD::MUL); 713 714 setTargetDAGCombine(ISD::SELECT); 715 setTargetDAGCombine(ISD::VSELECT); 716 717 setTargetDAGCombine(ISD::INTRINSIC_VOID); 718 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 719 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 720 721 setTargetDAGCombine(ISD::GlobalAddress); 722 723 // In case of strict alignment, avoid an excessive number of byte wide stores. 724 MaxStoresPerMemsetOptSize = 8; 725 MaxStoresPerMemset = Subtarget->requiresStrictAlign() 726 ? MaxStoresPerMemsetOptSize : 32; 727 728 MaxGluedStoresPerMemcpy = 4; 729 MaxStoresPerMemcpyOptSize = 4; 730 MaxStoresPerMemcpy = Subtarget->requiresStrictAlign() 731 ? MaxStoresPerMemcpyOptSize : 16; 732 733 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4; 734 735 MaxLoadsPerMemcmpOptSize = 4; 736 MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign() 737 ? MaxLoadsPerMemcmpOptSize : 8; 738 739 setStackPointerRegisterToSaveRestore(AArch64::SP); 740 741 setSchedulingPreference(Sched::Hybrid); 742 743 EnableExtLdPromotion = true; 744 745 // Set required alignment. 746 setMinFunctionAlignment(Align(4)); 747 // Set preferred alignments. 748 setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment())); 749 setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment())); 750 751 // Only change the limit for entries in a jump table if specified by 752 // the sub target, but not at the command line. 753 unsigned MaxJT = STI.getMaximumJumpTableSize(); 754 if (MaxJT && getMaximumJumpTableSize() == UINT_MAX) 755 setMaximumJumpTableSize(MaxJT); 756 757 setHasExtractBitsInsn(true); 758 759 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 760 761 if (Subtarget->hasNEON()) { 762 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to 763 // silliness like this: 764 setOperationAction(ISD::FABS, MVT::v1f64, Expand); 765 setOperationAction(ISD::FADD, MVT::v1f64, Expand); 766 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); 767 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); 768 setOperationAction(ISD::FCOS, MVT::v1f64, Expand); 769 setOperationAction(ISD::FDIV, MVT::v1f64, Expand); 770 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); 771 setOperationAction(ISD::FMA, MVT::v1f64, Expand); 772 setOperationAction(ISD::FMUL, MVT::v1f64, Expand); 773 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); 774 setOperationAction(ISD::FNEG, MVT::v1f64, Expand); 775 setOperationAction(ISD::FPOW, MVT::v1f64, Expand); 776 setOperationAction(ISD::FREM, MVT::v1f64, Expand); 777 setOperationAction(ISD::FROUND, MVT::v1f64, Expand); 778 setOperationAction(ISD::FRINT, MVT::v1f64, Expand); 779 setOperationAction(ISD::FSIN, MVT::v1f64, Expand); 780 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); 781 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); 782 setOperationAction(ISD::FSUB, MVT::v1f64, Expand); 783 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); 784 setOperationAction(ISD::SETCC, MVT::v1f64, Expand); 785 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); 786 setOperationAction(ISD::SELECT, MVT::v1f64, Expand); 787 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); 788 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); 789 790 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); 791 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); 792 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); 793 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); 794 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); 795 796 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 797 798 // AArch64 doesn't have a direct vector ->f32 conversion instructions for 799 // elements smaller than i32, so promote the input to i32 first. 800 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32); 801 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32); 802 // i8 vector elements also need promotion to i32 for v8i8 803 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32); 804 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32); 805 // Similarly, there is no direct i32 -> f64 vector conversion instruction. 806 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); 807 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); 808 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); 809 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); 810 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the 811 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 812 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom); 813 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); 814 815 if (Subtarget->hasFullFP16()) { 816 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 817 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 818 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom); 819 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); 820 } else { 821 // when AArch64 doesn't have fullfp16 support, promote the input 822 // to i32 first. 823 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32); 824 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32); 825 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32); 826 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32); 827 } 828 829 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); 830 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); 831 832 // AArch64 doesn't have MUL.2d: 833 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 834 // Custom handling for some quad-vector types to detect MULL. 835 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 836 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 837 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 838 839 for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, 840 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { 841 // Vector reductions 842 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 843 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 844 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 845 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 846 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 847 848 // Saturates 849 setOperationAction(ISD::SADDSAT, VT, Legal); 850 setOperationAction(ISD::UADDSAT, VT, Legal); 851 setOperationAction(ISD::SSUBSAT, VT, Legal); 852 setOperationAction(ISD::USUBSAT, VT, Legal); 853 854 setOperationAction(ISD::TRUNCATE, VT, Custom); 855 } 856 for (MVT VT : { MVT::v4f16, MVT::v2f32, 857 MVT::v8f16, MVT::v4f32, MVT::v2f64 }) { 858 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 859 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 860 } 861 862 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); 863 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 864 // Likewise, narrowing and extending vector loads/stores aren't handled 865 // directly. 866 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 867 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 868 869 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) { 870 setOperationAction(ISD::MULHS, VT, Legal); 871 setOperationAction(ISD::MULHU, VT, Legal); 872 } else { 873 setOperationAction(ISD::MULHS, VT, Expand); 874 setOperationAction(ISD::MULHU, VT, Expand); 875 } 876 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 877 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 878 879 setOperationAction(ISD::BSWAP, VT, Expand); 880 setOperationAction(ISD::CTTZ, VT, Expand); 881 882 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 883 setTruncStoreAction(VT, InnerVT, Expand); 884 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 885 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 886 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 887 } 888 } 889 890 // AArch64 has implementations of a lot of rounding-like FP operations. 891 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) { 892 setOperationAction(ISD::FFLOOR, Ty, Legal); 893 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 894 setOperationAction(ISD::FCEIL, Ty, Legal); 895 setOperationAction(ISD::FRINT, Ty, Legal); 896 setOperationAction(ISD::FTRUNC, Ty, Legal); 897 setOperationAction(ISD::FROUND, Ty, Legal); 898 } 899 900 if (Subtarget->hasFullFP16()) { 901 for (MVT Ty : {MVT::v4f16, MVT::v8f16}) { 902 setOperationAction(ISD::FFLOOR, Ty, Legal); 903 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 904 setOperationAction(ISD::FCEIL, Ty, Legal); 905 setOperationAction(ISD::FRINT, Ty, Legal); 906 setOperationAction(ISD::FTRUNC, Ty, Legal); 907 setOperationAction(ISD::FROUND, Ty, Legal); 908 } 909 } 910 911 if (Subtarget->hasSVE()) 912 setOperationAction(ISD::VSCALE, MVT::i32, Custom); 913 914 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom); 915 } 916 917 if (Subtarget->hasSVE()) { 918 // FIXME: Add custom lowering of MLOAD to handle different passthrus (not a 919 // splat of 0 or undef) once vector selects supported in SVE codegen. See 920 // D68877 for more details. 921 for (MVT VT : MVT::integer_scalable_vector_valuetypes()) { 922 if (isTypeLegal(VT)) { 923 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 924 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 925 setOperationAction(ISD::SELECT, VT, Custom); 926 setOperationAction(ISD::SDIV, VT, Custom); 927 setOperationAction(ISD::UDIV, VT, Custom); 928 setOperationAction(ISD::SMIN, VT, Custom); 929 setOperationAction(ISD::UMIN, VT, Custom); 930 setOperationAction(ISD::SMAX, VT, Custom); 931 setOperationAction(ISD::UMAX, VT, Custom); 932 setOperationAction(ISD::SHL, VT, Custom); 933 setOperationAction(ISD::SRL, VT, Custom); 934 setOperationAction(ISD::SRA, VT, Custom); 935 if (VT.getScalarType() == MVT::i1) { 936 setOperationAction(ISD::SETCC, VT, Custom); 937 setOperationAction(ISD::TRUNCATE, VT, Custom); 938 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); 939 } 940 } 941 } 942 943 for (auto VT : {MVT::nxv8i8, MVT::nxv4i16, MVT::nxv2i32}) 944 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 945 946 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 947 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 948 949 for (MVT VT : MVT::fp_scalable_vector_valuetypes()) { 950 if (isTypeLegal(VT)) { 951 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 952 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 953 setOperationAction(ISD::SELECT, VT, Custom); 954 setOperationAction(ISD::FMA, VT, Custom); 955 } 956 } 957 958 // NOTE: Currently this has to happen after computeRegisterProperties rather 959 // than the preferred option of combining it with the addRegisterClass call. 960 if (useSVEForFixedLengthVectors()) { 961 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 962 if (useSVEForFixedLengthVectorVT(VT)) 963 addTypeForFixedLengthSVE(VT); 964 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 965 if (useSVEForFixedLengthVectorVT(VT)) 966 addTypeForFixedLengthSVE(VT); 967 968 // 64bit results can mean a bigger than NEON input. 969 for (auto VT : {MVT::v8i8, MVT::v4i16}) 970 setOperationAction(ISD::TRUNCATE, VT, Custom); 971 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Custom); 972 973 // 128bit results imply a bigger than NEON input. 974 for (auto VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 975 setOperationAction(ISD::TRUNCATE, VT, Custom); 976 for (auto VT : {MVT::v8f16, MVT::v4f32}) 977 setOperationAction(ISD::FP_ROUND, VT, Expand); 978 } 979 } 980 981 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive(); 982 } 983 984 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) { 985 assert(VT.isVector() && "VT should be a vector type"); 986 987 if (VT.isFloatingPoint()) { 988 MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT(); 989 setOperationPromotedToType(ISD::LOAD, VT, PromoteTo); 990 setOperationPromotedToType(ISD::STORE, VT, PromoteTo); 991 } 992 993 // Mark vector float intrinsics as expand. 994 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { 995 setOperationAction(ISD::FSIN, VT, Expand); 996 setOperationAction(ISD::FCOS, VT, Expand); 997 setOperationAction(ISD::FPOW, VT, Expand); 998 setOperationAction(ISD::FLOG, VT, Expand); 999 setOperationAction(ISD::FLOG2, VT, Expand); 1000 setOperationAction(ISD::FLOG10, VT, Expand); 1001 setOperationAction(ISD::FEXP, VT, Expand); 1002 setOperationAction(ISD::FEXP2, VT, Expand); 1003 1004 // But we do support custom-lowering for FCOPYSIGN. 1005 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 1006 } 1007 1008 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 1009 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 1010 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 1011 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 1012 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 1013 setOperationAction(ISD::SRA, VT, Custom); 1014 setOperationAction(ISD::SRL, VT, Custom); 1015 setOperationAction(ISD::SHL, VT, Custom); 1016 setOperationAction(ISD::OR, VT, Custom); 1017 setOperationAction(ISD::SETCC, VT, Custom); 1018 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); 1019 1020 setOperationAction(ISD::SELECT, VT, Expand); 1021 setOperationAction(ISD::SELECT_CC, VT, Expand); 1022 setOperationAction(ISD::VSELECT, VT, Expand); 1023 for (MVT InnerVT : MVT::all_valuetypes()) 1024 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); 1025 1026 // CNT supports only B element sizes, then use UADDLP to widen. 1027 if (VT != MVT::v8i8 && VT != MVT::v16i8) 1028 setOperationAction(ISD::CTPOP, VT, Custom); 1029 1030 setOperationAction(ISD::UDIV, VT, Expand); 1031 setOperationAction(ISD::SDIV, VT, Expand); 1032 setOperationAction(ISD::UREM, VT, Expand); 1033 setOperationAction(ISD::SREM, VT, Expand); 1034 setOperationAction(ISD::FREM, VT, Expand); 1035 1036 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 1037 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 1038 1039 if (!VT.isFloatingPoint()) 1040 setOperationAction(ISD::ABS, VT, Legal); 1041 1042 // [SU][MIN|MAX] are available for all NEON types apart from i64. 1043 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) 1044 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 1045 setOperationAction(Opcode, VT, Legal); 1046 1047 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types. 1048 if (VT.isFloatingPoint() && 1049 (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16())) 1050 for (unsigned Opcode : 1051 {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM}) 1052 setOperationAction(Opcode, VT, Legal); 1053 1054 if (Subtarget->isLittleEndian()) { 1055 for (unsigned im = (unsigned)ISD::PRE_INC; 1056 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 1057 setIndexedLoadAction(im, VT, Legal); 1058 setIndexedStoreAction(im, VT, Legal); 1059 } 1060 } 1061 } 1062 1063 void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT) { 1064 assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); 1065 1066 // By default everything must be expanded. 1067 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 1068 setOperationAction(Op, VT, Expand); 1069 1070 // We use EXTRACT_SUBVECTOR to "cast" a scalable vector to a fixed length one. 1071 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 1072 1073 // Lower fixed length vector operations to scalable equivalents. 1074 setOperationAction(ISD::ADD, VT, Custom); 1075 setOperationAction(ISD::FADD, VT, Custom); 1076 setOperationAction(ISD::LOAD, VT, Custom); 1077 setOperationAction(ISD::STORE, VT, Custom); 1078 setOperationAction(ISD::TRUNCATE, VT, Custom); 1079 } 1080 1081 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { 1082 addRegisterClass(VT, &AArch64::FPR64RegClass); 1083 addTypeForNEON(VT, MVT::v2i32); 1084 } 1085 1086 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { 1087 addRegisterClass(VT, &AArch64::FPR128RegClass); 1088 addTypeForNEON(VT, MVT::v4i32); 1089 } 1090 1091 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, 1092 LLVMContext &C, EVT VT) const { 1093 if (!VT.isVector()) 1094 return MVT::i32; 1095 if (VT.isScalableVector()) 1096 return EVT::getVectorVT(C, MVT::i1, VT.getVectorElementCount()); 1097 return VT.changeVectorElementTypeToInteger(); 1098 } 1099 1100 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm, 1101 const APInt &Demanded, 1102 TargetLowering::TargetLoweringOpt &TLO, 1103 unsigned NewOpc) { 1104 uint64_t OldImm = Imm, NewImm, Enc; 1105 uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask; 1106 1107 // Return if the immediate is already all zeros, all ones, a bimm32 or a 1108 // bimm64. 1109 if (Imm == 0 || Imm == Mask || 1110 AArch64_AM::isLogicalImmediate(Imm & Mask, Size)) 1111 return false; 1112 1113 unsigned EltSize = Size; 1114 uint64_t DemandedBits = Demanded.getZExtValue(); 1115 1116 // Clear bits that are not demanded. 1117 Imm &= DemandedBits; 1118 1119 while (true) { 1120 // The goal here is to set the non-demanded bits in a way that minimizes 1121 // the number of switching between 0 and 1. In order to achieve this goal, 1122 // we set the non-demanded bits to the value of the preceding demanded bits. 1123 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a 1124 // non-demanded bit), we copy bit0 (1) to the least significant 'x', 1125 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'. 1126 // The final result is 0b11000011. 1127 uint64_t NonDemandedBits = ~DemandedBits; 1128 uint64_t InvertedImm = ~Imm & DemandedBits; 1129 uint64_t RotatedImm = 1130 ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) & 1131 NonDemandedBits; 1132 uint64_t Sum = RotatedImm + NonDemandedBits; 1133 bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1)); 1134 uint64_t Ones = (Sum + Carry) & NonDemandedBits; 1135 NewImm = (Imm | Ones) & Mask; 1136 1137 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate 1138 // or all-ones or all-zeros, in which case we can stop searching. Otherwise, 1139 // we halve the element size and continue the search. 1140 if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask))) 1141 break; 1142 1143 // We cannot shrink the element size any further if it is 2-bits. 1144 if (EltSize == 2) 1145 return false; 1146 1147 EltSize /= 2; 1148 Mask >>= EltSize; 1149 uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize; 1150 1151 // Return if there is mismatch in any of the demanded bits of Imm and Hi. 1152 if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0) 1153 return false; 1154 1155 // Merge the upper and lower halves of Imm and DemandedBits. 1156 Imm |= Hi; 1157 DemandedBits |= DemandedBitsHi; 1158 } 1159 1160 ++NumOptimizedImms; 1161 1162 // Replicate the element across the register width. 1163 while (EltSize < Size) { 1164 NewImm |= NewImm << EltSize; 1165 EltSize *= 2; 1166 } 1167 1168 (void)OldImm; 1169 assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 && 1170 "demanded bits should never be altered"); 1171 assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm"); 1172 1173 // Create the new constant immediate node. 1174 EVT VT = Op.getValueType(); 1175 SDLoc DL(Op); 1176 SDValue New; 1177 1178 // If the new constant immediate is all-zeros or all-ones, let the target 1179 // independent DAG combine optimize this node. 1180 if (NewImm == 0 || NewImm == OrigMask) { 1181 New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0), 1182 TLO.DAG.getConstant(NewImm, DL, VT)); 1183 // Otherwise, create a machine node so that target independent DAG combine 1184 // doesn't undo this optimization. 1185 } else { 1186 Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size); 1187 SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT); 1188 New = SDValue( 1189 TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0); 1190 } 1191 1192 return TLO.CombineTo(Op, New); 1193 } 1194 1195 bool AArch64TargetLowering::targetShrinkDemandedConstant( 1196 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 1197 TargetLoweringOpt &TLO) const { 1198 // Delay this optimization to as late as possible. 1199 if (!TLO.LegalOps) 1200 return false; 1201 1202 if (!EnableOptimizeLogicalImm) 1203 return false; 1204 1205 EVT VT = Op.getValueType(); 1206 if (VT.isVector()) 1207 return false; 1208 1209 unsigned Size = VT.getSizeInBits(); 1210 assert((Size == 32 || Size == 64) && 1211 "i32 or i64 is expected after legalization."); 1212 1213 // Exit early if we demand all bits. 1214 if (DemandedBits.countPopulation() == Size) 1215 return false; 1216 1217 unsigned NewOpc; 1218 switch (Op.getOpcode()) { 1219 default: 1220 return false; 1221 case ISD::AND: 1222 NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri; 1223 break; 1224 case ISD::OR: 1225 NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri; 1226 break; 1227 case ISD::XOR: 1228 NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri; 1229 break; 1230 } 1231 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1232 if (!C) 1233 return false; 1234 uint64_t Imm = C->getZExtValue(); 1235 return optimizeLogicalImm(Op, Size, Imm, DemandedBits, TLO, NewOpc); 1236 } 1237 1238 /// computeKnownBitsForTargetNode - Determine which of the bits specified in 1239 /// Mask are known to be either zero or one and return them Known. 1240 void AArch64TargetLowering::computeKnownBitsForTargetNode( 1241 const SDValue Op, KnownBits &Known, 1242 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 1243 switch (Op.getOpcode()) { 1244 default: 1245 break; 1246 case AArch64ISD::CSEL: { 1247 KnownBits Known2; 1248 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 1249 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 1250 Known.Zero &= Known2.Zero; 1251 Known.One &= Known2.One; 1252 break; 1253 } 1254 case AArch64ISD::LOADgot: 1255 case AArch64ISD::ADDlow: { 1256 if (!Subtarget->isTargetILP32()) 1257 break; 1258 // In ILP32 mode all valid pointers are in the low 4GB of the address-space. 1259 Known.Zero = APInt::getHighBitsSet(64, 32); 1260 break; 1261 } 1262 case ISD::INTRINSIC_W_CHAIN: { 1263 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); 1264 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 1265 switch (IntID) { 1266 default: return; 1267 case Intrinsic::aarch64_ldaxr: 1268 case Intrinsic::aarch64_ldxr: { 1269 unsigned BitWidth = Known.getBitWidth(); 1270 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); 1271 unsigned MemBits = VT.getScalarSizeInBits(); 1272 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 1273 return; 1274 } 1275 } 1276 break; 1277 } 1278 case ISD::INTRINSIC_WO_CHAIN: 1279 case ISD::INTRINSIC_VOID: { 1280 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1281 switch (IntNo) { 1282 default: 1283 break; 1284 case Intrinsic::aarch64_neon_umaxv: 1285 case Intrinsic::aarch64_neon_uminv: { 1286 // Figure out the datatype of the vector operand. The UMINV instruction 1287 // will zero extend the result, so we can mark as known zero all the 1288 // bits larger than the element datatype. 32-bit or larget doesn't need 1289 // this as those are legal types and will be handled by isel directly. 1290 MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); 1291 unsigned BitWidth = Known.getBitWidth(); 1292 if (VT == MVT::v8i8 || VT == MVT::v16i8) { 1293 assert(BitWidth >= 8 && "Unexpected width!"); 1294 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); 1295 Known.Zero |= Mask; 1296 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { 1297 assert(BitWidth >= 16 && "Unexpected width!"); 1298 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 1299 Known.Zero |= Mask; 1300 } 1301 break; 1302 } break; 1303 } 1304 } 1305 } 1306 } 1307 1308 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, 1309 EVT) const { 1310 return MVT::i64; 1311 } 1312 1313 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( 1314 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1315 bool *Fast) const { 1316 if (Subtarget->requiresStrictAlign()) 1317 return false; 1318 1319 if (Fast) { 1320 // Some CPUs are fine with unaligned stores except for 128-bit ones. 1321 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 || 1322 // See comments in performSTORECombine() for more details about 1323 // these conditions. 1324 1325 // Code that uses clang vector extensions can mark that it 1326 // wants unaligned accesses to be treated as fast by 1327 // underspecifying alignment to be 1 or 2. 1328 Align <= 2 || 1329 1330 // Disregard v2i64. Memcpy lowering produces those and splitting 1331 // them regresses performance on micro-benchmarks and olden/bh. 1332 VT == MVT::v2i64; 1333 } 1334 return true; 1335 } 1336 1337 // Same as above but handling LLTs instead. 1338 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( 1339 LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1340 bool *Fast) const { 1341 if (Subtarget->requiresStrictAlign()) 1342 return false; 1343 1344 if (Fast) { 1345 // Some CPUs are fine with unaligned stores except for 128-bit ones. 1346 *Fast = !Subtarget->isMisaligned128StoreSlow() || 1347 Ty.getSizeInBytes() != 16 || 1348 // See comments in performSTORECombine() for more details about 1349 // these conditions. 1350 1351 // Code that uses clang vector extensions can mark that it 1352 // wants unaligned accesses to be treated as fast by 1353 // underspecifying alignment to be 1 or 2. 1354 Alignment <= 2 || 1355 1356 // Disregard v2i64. Memcpy lowering produces those and splitting 1357 // them regresses performance on micro-benchmarks and olden/bh. 1358 Ty == LLT::vector(2, 64); 1359 } 1360 return true; 1361 } 1362 1363 FastISel * 1364 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 1365 const TargetLibraryInfo *libInfo) const { 1366 return AArch64::createFastISel(funcInfo, libInfo); 1367 } 1368 1369 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { 1370 #define MAKE_CASE(V) \ 1371 case V: \ 1372 return #V; 1373 switch ((AArch64ISD::NodeType)Opcode) { 1374 case AArch64ISD::FIRST_NUMBER: 1375 break; 1376 MAKE_CASE(AArch64ISD::CALL) 1377 MAKE_CASE(AArch64ISD::ADRP) 1378 MAKE_CASE(AArch64ISD::ADR) 1379 MAKE_CASE(AArch64ISD::ADDlow) 1380 MAKE_CASE(AArch64ISD::LOADgot) 1381 MAKE_CASE(AArch64ISD::RET_FLAG) 1382 MAKE_CASE(AArch64ISD::BRCOND) 1383 MAKE_CASE(AArch64ISD::CSEL) 1384 MAKE_CASE(AArch64ISD::FCSEL) 1385 MAKE_CASE(AArch64ISD::CSINV) 1386 MAKE_CASE(AArch64ISD::CSNEG) 1387 MAKE_CASE(AArch64ISD::CSINC) 1388 MAKE_CASE(AArch64ISD::THREAD_POINTER) 1389 MAKE_CASE(AArch64ISD::TLSDESC_CALLSEQ) 1390 MAKE_CASE(AArch64ISD::ADD_PRED) 1391 MAKE_CASE(AArch64ISD::SDIV_PRED) 1392 MAKE_CASE(AArch64ISD::UDIV_PRED) 1393 MAKE_CASE(AArch64ISD::SMIN_MERGE_OP1) 1394 MAKE_CASE(AArch64ISD::UMIN_MERGE_OP1) 1395 MAKE_CASE(AArch64ISD::SMAX_MERGE_OP1) 1396 MAKE_CASE(AArch64ISD::UMAX_MERGE_OP1) 1397 MAKE_CASE(AArch64ISD::SHL_MERGE_OP1) 1398 MAKE_CASE(AArch64ISD::SRL_MERGE_OP1) 1399 MAKE_CASE(AArch64ISD::SRA_MERGE_OP1) 1400 MAKE_CASE(AArch64ISD::SETCC_MERGE_ZERO) 1401 MAKE_CASE(AArch64ISD::ADC) 1402 MAKE_CASE(AArch64ISD::SBC) 1403 MAKE_CASE(AArch64ISD::ADDS) 1404 MAKE_CASE(AArch64ISD::SUBS) 1405 MAKE_CASE(AArch64ISD::ADCS) 1406 MAKE_CASE(AArch64ISD::SBCS) 1407 MAKE_CASE(AArch64ISD::ANDS) 1408 MAKE_CASE(AArch64ISD::CCMP) 1409 MAKE_CASE(AArch64ISD::CCMN) 1410 MAKE_CASE(AArch64ISD::FCCMP) 1411 MAKE_CASE(AArch64ISD::FCMP) 1412 MAKE_CASE(AArch64ISD::STRICT_FCMP) 1413 MAKE_CASE(AArch64ISD::STRICT_FCMPE) 1414 MAKE_CASE(AArch64ISD::DUP) 1415 MAKE_CASE(AArch64ISD::DUPLANE8) 1416 MAKE_CASE(AArch64ISD::DUPLANE16) 1417 MAKE_CASE(AArch64ISD::DUPLANE32) 1418 MAKE_CASE(AArch64ISD::DUPLANE64) 1419 MAKE_CASE(AArch64ISD::MOVI) 1420 MAKE_CASE(AArch64ISD::MOVIshift) 1421 MAKE_CASE(AArch64ISD::MOVIedit) 1422 MAKE_CASE(AArch64ISD::MOVImsl) 1423 MAKE_CASE(AArch64ISD::FMOV) 1424 MAKE_CASE(AArch64ISD::MVNIshift) 1425 MAKE_CASE(AArch64ISD::MVNImsl) 1426 MAKE_CASE(AArch64ISD::BICi) 1427 MAKE_CASE(AArch64ISD::ORRi) 1428 MAKE_CASE(AArch64ISD::BSP) 1429 MAKE_CASE(AArch64ISD::NEG) 1430 MAKE_CASE(AArch64ISD::EXTR) 1431 MAKE_CASE(AArch64ISD::ZIP1) 1432 MAKE_CASE(AArch64ISD::ZIP2) 1433 MAKE_CASE(AArch64ISD::UZP1) 1434 MAKE_CASE(AArch64ISD::UZP2) 1435 MAKE_CASE(AArch64ISD::TRN1) 1436 MAKE_CASE(AArch64ISD::TRN2) 1437 MAKE_CASE(AArch64ISD::REV16) 1438 MAKE_CASE(AArch64ISD::REV32) 1439 MAKE_CASE(AArch64ISD::REV64) 1440 MAKE_CASE(AArch64ISD::EXT) 1441 MAKE_CASE(AArch64ISD::VSHL) 1442 MAKE_CASE(AArch64ISD::VLSHR) 1443 MAKE_CASE(AArch64ISD::VASHR) 1444 MAKE_CASE(AArch64ISD::VSLI) 1445 MAKE_CASE(AArch64ISD::VSRI) 1446 MAKE_CASE(AArch64ISD::CMEQ) 1447 MAKE_CASE(AArch64ISD::CMGE) 1448 MAKE_CASE(AArch64ISD::CMGT) 1449 MAKE_CASE(AArch64ISD::CMHI) 1450 MAKE_CASE(AArch64ISD::CMHS) 1451 MAKE_CASE(AArch64ISD::FCMEQ) 1452 MAKE_CASE(AArch64ISD::FCMGE) 1453 MAKE_CASE(AArch64ISD::FCMGT) 1454 MAKE_CASE(AArch64ISD::CMEQz) 1455 MAKE_CASE(AArch64ISD::CMGEz) 1456 MAKE_CASE(AArch64ISD::CMGTz) 1457 MAKE_CASE(AArch64ISD::CMLEz) 1458 MAKE_CASE(AArch64ISD::CMLTz) 1459 MAKE_CASE(AArch64ISD::FCMEQz) 1460 MAKE_CASE(AArch64ISD::FCMGEz) 1461 MAKE_CASE(AArch64ISD::FCMGTz) 1462 MAKE_CASE(AArch64ISD::FCMLEz) 1463 MAKE_CASE(AArch64ISD::FCMLTz) 1464 MAKE_CASE(AArch64ISD::SADDV) 1465 MAKE_CASE(AArch64ISD::UADDV) 1466 MAKE_CASE(AArch64ISD::SRHADD) 1467 MAKE_CASE(AArch64ISD::URHADD) 1468 MAKE_CASE(AArch64ISD::SMINV) 1469 MAKE_CASE(AArch64ISD::UMINV) 1470 MAKE_CASE(AArch64ISD::SMAXV) 1471 MAKE_CASE(AArch64ISD::UMAXV) 1472 MAKE_CASE(AArch64ISD::SMAXV_PRED) 1473 MAKE_CASE(AArch64ISD::UMAXV_PRED) 1474 MAKE_CASE(AArch64ISD::SMINV_PRED) 1475 MAKE_CASE(AArch64ISD::UMINV_PRED) 1476 MAKE_CASE(AArch64ISD::ORV_PRED) 1477 MAKE_CASE(AArch64ISD::EORV_PRED) 1478 MAKE_CASE(AArch64ISD::ANDV_PRED) 1479 MAKE_CASE(AArch64ISD::CLASTA_N) 1480 MAKE_CASE(AArch64ISD::CLASTB_N) 1481 MAKE_CASE(AArch64ISD::LASTA) 1482 MAKE_CASE(AArch64ISD::LASTB) 1483 MAKE_CASE(AArch64ISD::REV) 1484 MAKE_CASE(AArch64ISD::REINTERPRET_CAST) 1485 MAKE_CASE(AArch64ISD::TBL) 1486 MAKE_CASE(AArch64ISD::FADD_PRED) 1487 MAKE_CASE(AArch64ISD::FADDA_PRED) 1488 MAKE_CASE(AArch64ISD::FADDV_PRED) 1489 MAKE_CASE(AArch64ISD::FMA_PRED) 1490 MAKE_CASE(AArch64ISD::FMAXV_PRED) 1491 MAKE_CASE(AArch64ISD::FMAXNMV_PRED) 1492 MAKE_CASE(AArch64ISD::FMINV_PRED) 1493 MAKE_CASE(AArch64ISD::FMINNMV_PRED) 1494 MAKE_CASE(AArch64ISD::NOT) 1495 MAKE_CASE(AArch64ISD::BIT) 1496 MAKE_CASE(AArch64ISD::CBZ) 1497 MAKE_CASE(AArch64ISD::CBNZ) 1498 MAKE_CASE(AArch64ISD::TBZ) 1499 MAKE_CASE(AArch64ISD::TBNZ) 1500 MAKE_CASE(AArch64ISD::TC_RETURN) 1501 MAKE_CASE(AArch64ISD::PREFETCH) 1502 MAKE_CASE(AArch64ISD::SITOF) 1503 MAKE_CASE(AArch64ISD::UITOF) 1504 MAKE_CASE(AArch64ISD::NVCAST) 1505 MAKE_CASE(AArch64ISD::SQSHL_I) 1506 MAKE_CASE(AArch64ISD::UQSHL_I) 1507 MAKE_CASE(AArch64ISD::SRSHR_I) 1508 MAKE_CASE(AArch64ISD::URSHR_I) 1509 MAKE_CASE(AArch64ISD::SQSHLU_I) 1510 MAKE_CASE(AArch64ISD::WrapperLarge) 1511 MAKE_CASE(AArch64ISD::LD2post) 1512 MAKE_CASE(AArch64ISD::LD3post) 1513 MAKE_CASE(AArch64ISD::LD4post) 1514 MAKE_CASE(AArch64ISD::ST2post) 1515 MAKE_CASE(AArch64ISD::ST3post) 1516 MAKE_CASE(AArch64ISD::ST4post) 1517 MAKE_CASE(AArch64ISD::LD1x2post) 1518 MAKE_CASE(AArch64ISD::LD1x3post) 1519 MAKE_CASE(AArch64ISD::LD1x4post) 1520 MAKE_CASE(AArch64ISD::ST1x2post) 1521 MAKE_CASE(AArch64ISD::ST1x3post) 1522 MAKE_CASE(AArch64ISD::ST1x4post) 1523 MAKE_CASE(AArch64ISD::LD1DUPpost) 1524 MAKE_CASE(AArch64ISD::LD2DUPpost) 1525 MAKE_CASE(AArch64ISD::LD3DUPpost) 1526 MAKE_CASE(AArch64ISD::LD4DUPpost) 1527 MAKE_CASE(AArch64ISD::LD1LANEpost) 1528 MAKE_CASE(AArch64ISD::LD2LANEpost) 1529 MAKE_CASE(AArch64ISD::LD3LANEpost) 1530 MAKE_CASE(AArch64ISD::LD4LANEpost) 1531 MAKE_CASE(AArch64ISD::ST2LANEpost) 1532 MAKE_CASE(AArch64ISD::ST3LANEpost) 1533 MAKE_CASE(AArch64ISD::ST4LANEpost) 1534 MAKE_CASE(AArch64ISD::SMULL) 1535 MAKE_CASE(AArch64ISD::UMULL) 1536 MAKE_CASE(AArch64ISD::FRECPE) 1537 MAKE_CASE(AArch64ISD::FRECPS) 1538 MAKE_CASE(AArch64ISD::FRSQRTE) 1539 MAKE_CASE(AArch64ISD::FRSQRTS) 1540 MAKE_CASE(AArch64ISD::STG) 1541 MAKE_CASE(AArch64ISD::STZG) 1542 MAKE_CASE(AArch64ISD::ST2G) 1543 MAKE_CASE(AArch64ISD::STZ2G) 1544 MAKE_CASE(AArch64ISD::SUNPKHI) 1545 MAKE_CASE(AArch64ISD::SUNPKLO) 1546 MAKE_CASE(AArch64ISD::UUNPKHI) 1547 MAKE_CASE(AArch64ISD::UUNPKLO) 1548 MAKE_CASE(AArch64ISD::INSR) 1549 MAKE_CASE(AArch64ISD::PTEST) 1550 MAKE_CASE(AArch64ISD::PTRUE) 1551 MAKE_CASE(AArch64ISD::LD1_MERGE_ZERO) 1552 MAKE_CASE(AArch64ISD::LD1S_MERGE_ZERO) 1553 MAKE_CASE(AArch64ISD::LDNF1_MERGE_ZERO) 1554 MAKE_CASE(AArch64ISD::LDNF1S_MERGE_ZERO) 1555 MAKE_CASE(AArch64ISD::LDFF1_MERGE_ZERO) 1556 MAKE_CASE(AArch64ISD::LDFF1S_MERGE_ZERO) 1557 MAKE_CASE(AArch64ISD::LD1RQ_MERGE_ZERO) 1558 MAKE_CASE(AArch64ISD::LD1RO_MERGE_ZERO) 1559 MAKE_CASE(AArch64ISD::SVE_LD2_MERGE_ZERO) 1560 MAKE_CASE(AArch64ISD::SVE_LD3_MERGE_ZERO) 1561 MAKE_CASE(AArch64ISD::SVE_LD4_MERGE_ZERO) 1562 MAKE_CASE(AArch64ISD::GLD1_MERGE_ZERO) 1563 MAKE_CASE(AArch64ISD::GLD1_SCALED_MERGE_ZERO) 1564 MAKE_CASE(AArch64ISD::GLD1_SXTW_MERGE_ZERO) 1565 MAKE_CASE(AArch64ISD::GLD1_UXTW_MERGE_ZERO) 1566 MAKE_CASE(AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO) 1567 MAKE_CASE(AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO) 1568 MAKE_CASE(AArch64ISD::GLD1_IMM_MERGE_ZERO) 1569 MAKE_CASE(AArch64ISD::GLD1S_MERGE_ZERO) 1570 MAKE_CASE(AArch64ISD::GLD1S_SCALED_MERGE_ZERO) 1571 MAKE_CASE(AArch64ISD::GLD1S_SXTW_MERGE_ZERO) 1572 MAKE_CASE(AArch64ISD::GLD1S_UXTW_MERGE_ZERO) 1573 MAKE_CASE(AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO) 1574 MAKE_CASE(AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO) 1575 MAKE_CASE(AArch64ISD::GLD1S_IMM_MERGE_ZERO) 1576 MAKE_CASE(AArch64ISD::GLDFF1_MERGE_ZERO) 1577 MAKE_CASE(AArch64ISD::GLDFF1_SCALED_MERGE_ZERO) 1578 MAKE_CASE(AArch64ISD::GLDFF1_SXTW_MERGE_ZERO) 1579 MAKE_CASE(AArch64ISD::GLDFF1_UXTW_MERGE_ZERO) 1580 MAKE_CASE(AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO) 1581 MAKE_CASE(AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO) 1582 MAKE_CASE(AArch64ISD::GLDFF1_IMM_MERGE_ZERO) 1583 MAKE_CASE(AArch64ISD::GLDFF1S_MERGE_ZERO) 1584 MAKE_CASE(AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO) 1585 MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO) 1586 MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO) 1587 MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO) 1588 MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO) 1589 MAKE_CASE(AArch64ISD::GLDFF1S_IMM_MERGE_ZERO) 1590 MAKE_CASE(AArch64ISD::GLDNT1_MERGE_ZERO) 1591 MAKE_CASE(AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) 1592 MAKE_CASE(AArch64ISD::GLDNT1S_MERGE_ZERO) 1593 MAKE_CASE(AArch64ISD::ST1_PRED) 1594 MAKE_CASE(AArch64ISD::SST1_PRED) 1595 MAKE_CASE(AArch64ISD::SST1_SCALED_PRED) 1596 MAKE_CASE(AArch64ISD::SST1_SXTW_PRED) 1597 MAKE_CASE(AArch64ISD::SST1_UXTW_PRED) 1598 MAKE_CASE(AArch64ISD::SST1_SXTW_SCALED_PRED) 1599 MAKE_CASE(AArch64ISD::SST1_UXTW_SCALED_PRED) 1600 MAKE_CASE(AArch64ISD::SST1_IMM_PRED) 1601 MAKE_CASE(AArch64ISD::SSTNT1_PRED) 1602 MAKE_CASE(AArch64ISD::SSTNT1_INDEX_PRED) 1603 MAKE_CASE(AArch64ISD::LDP) 1604 MAKE_CASE(AArch64ISD::STP) 1605 MAKE_CASE(AArch64ISD::STNP) 1606 MAKE_CASE(AArch64ISD::DUP_MERGE_PASSTHRU) 1607 MAKE_CASE(AArch64ISD::INDEX_VECTOR) 1608 } 1609 #undef MAKE_CASE 1610 return nullptr; 1611 } 1612 1613 MachineBasicBlock * 1614 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI, 1615 MachineBasicBlock *MBB) const { 1616 // We materialise the F128CSEL pseudo-instruction as some control flow and a 1617 // phi node: 1618 1619 // OrigBB: 1620 // [... previous instrs leading to comparison ...] 1621 // b.ne TrueBB 1622 // b EndBB 1623 // TrueBB: 1624 // ; Fallthrough 1625 // EndBB: 1626 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] 1627 1628 MachineFunction *MF = MBB->getParent(); 1629 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1630 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 1631 DebugLoc DL = MI.getDebugLoc(); 1632 MachineFunction::iterator It = ++MBB->getIterator(); 1633 1634 Register DestReg = MI.getOperand(0).getReg(); 1635 Register IfTrueReg = MI.getOperand(1).getReg(); 1636 Register IfFalseReg = MI.getOperand(2).getReg(); 1637 unsigned CondCode = MI.getOperand(3).getImm(); 1638 bool NZCVKilled = MI.getOperand(4).isKill(); 1639 1640 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); 1641 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); 1642 MF->insert(It, TrueBB); 1643 MF->insert(It, EndBB); 1644 1645 // Transfer rest of current basic-block to EndBB 1646 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), 1647 MBB->end()); 1648 EndBB->transferSuccessorsAndUpdatePHIs(MBB); 1649 1650 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); 1651 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); 1652 MBB->addSuccessor(TrueBB); 1653 MBB->addSuccessor(EndBB); 1654 1655 // TrueBB falls through to the end. 1656 TrueBB->addSuccessor(EndBB); 1657 1658 if (!NZCVKilled) { 1659 TrueBB->addLiveIn(AArch64::NZCV); 1660 EndBB->addLiveIn(AArch64::NZCV); 1661 } 1662 1663 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) 1664 .addReg(IfTrueReg) 1665 .addMBB(TrueBB) 1666 .addReg(IfFalseReg) 1667 .addMBB(MBB); 1668 1669 MI.eraseFromParent(); 1670 return EndBB; 1671 } 1672 1673 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet( 1674 MachineInstr &MI, MachineBasicBlock *BB) const { 1675 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 1676 BB->getParent()->getFunction().getPersonalityFn())) && 1677 "SEH does not use catchret!"); 1678 return BB; 1679 } 1680 1681 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter( 1682 MachineInstr &MI, MachineBasicBlock *BB) const { 1683 switch (MI.getOpcode()) { 1684 default: 1685 #ifndef NDEBUG 1686 MI.dump(); 1687 #endif 1688 llvm_unreachable("Unexpected instruction for custom inserter!"); 1689 1690 case AArch64::F128CSEL: 1691 return EmitF128CSEL(MI, BB); 1692 1693 case TargetOpcode::STACKMAP: 1694 case TargetOpcode::PATCHPOINT: 1695 return emitPatchPoint(MI, BB); 1696 1697 case AArch64::CATCHRET: 1698 return EmitLoweredCatchRet(MI, BB); 1699 } 1700 } 1701 1702 //===----------------------------------------------------------------------===// 1703 // AArch64 Lowering private implementation. 1704 //===----------------------------------------------------------------------===// 1705 1706 //===----------------------------------------------------------------------===// 1707 // Lowering Code 1708 //===----------------------------------------------------------------------===// 1709 1710 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 1711 /// CC 1712 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { 1713 switch (CC) { 1714 default: 1715 llvm_unreachable("Unknown condition code!"); 1716 case ISD::SETNE: 1717 return AArch64CC::NE; 1718 case ISD::SETEQ: 1719 return AArch64CC::EQ; 1720 case ISD::SETGT: 1721 return AArch64CC::GT; 1722 case ISD::SETGE: 1723 return AArch64CC::GE; 1724 case ISD::SETLT: 1725 return AArch64CC::LT; 1726 case ISD::SETLE: 1727 return AArch64CC::LE; 1728 case ISD::SETUGT: 1729 return AArch64CC::HI; 1730 case ISD::SETUGE: 1731 return AArch64CC::HS; 1732 case ISD::SETULT: 1733 return AArch64CC::LO; 1734 case ISD::SETULE: 1735 return AArch64CC::LS; 1736 } 1737 } 1738 1739 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. 1740 static void changeFPCCToAArch64CC(ISD::CondCode CC, 1741 AArch64CC::CondCode &CondCode, 1742 AArch64CC::CondCode &CondCode2) { 1743 CondCode2 = AArch64CC::AL; 1744 switch (CC) { 1745 default: 1746 llvm_unreachable("Unknown FP condition!"); 1747 case ISD::SETEQ: 1748 case ISD::SETOEQ: 1749 CondCode = AArch64CC::EQ; 1750 break; 1751 case ISD::SETGT: 1752 case ISD::SETOGT: 1753 CondCode = AArch64CC::GT; 1754 break; 1755 case ISD::SETGE: 1756 case ISD::SETOGE: 1757 CondCode = AArch64CC::GE; 1758 break; 1759 case ISD::SETOLT: 1760 CondCode = AArch64CC::MI; 1761 break; 1762 case ISD::SETOLE: 1763 CondCode = AArch64CC::LS; 1764 break; 1765 case ISD::SETONE: 1766 CondCode = AArch64CC::MI; 1767 CondCode2 = AArch64CC::GT; 1768 break; 1769 case ISD::SETO: 1770 CondCode = AArch64CC::VC; 1771 break; 1772 case ISD::SETUO: 1773 CondCode = AArch64CC::VS; 1774 break; 1775 case ISD::SETUEQ: 1776 CondCode = AArch64CC::EQ; 1777 CondCode2 = AArch64CC::VS; 1778 break; 1779 case ISD::SETUGT: 1780 CondCode = AArch64CC::HI; 1781 break; 1782 case ISD::SETUGE: 1783 CondCode = AArch64CC::PL; 1784 break; 1785 case ISD::SETLT: 1786 case ISD::SETULT: 1787 CondCode = AArch64CC::LT; 1788 break; 1789 case ISD::SETLE: 1790 case ISD::SETULE: 1791 CondCode = AArch64CC::LE; 1792 break; 1793 case ISD::SETNE: 1794 case ISD::SETUNE: 1795 CondCode = AArch64CC::NE; 1796 break; 1797 } 1798 } 1799 1800 /// Convert a DAG fp condition code to an AArch64 CC. 1801 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that 1802 /// should be AND'ed instead of OR'ed. 1803 static void changeFPCCToANDAArch64CC(ISD::CondCode CC, 1804 AArch64CC::CondCode &CondCode, 1805 AArch64CC::CondCode &CondCode2) { 1806 CondCode2 = AArch64CC::AL; 1807 switch (CC) { 1808 default: 1809 changeFPCCToAArch64CC(CC, CondCode, CondCode2); 1810 assert(CondCode2 == AArch64CC::AL); 1811 break; 1812 case ISD::SETONE: 1813 // (a one b) 1814 // == ((a olt b) || (a ogt b)) 1815 // == ((a ord b) && (a une b)) 1816 CondCode = AArch64CC::VC; 1817 CondCode2 = AArch64CC::NE; 1818 break; 1819 case ISD::SETUEQ: 1820 // (a ueq b) 1821 // == ((a uno b) || (a oeq b)) 1822 // == ((a ule b) && (a uge b)) 1823 CondCode = AArch64CC::PL; 1824 CondCode2 = AArch64CC::LE; 1825 break; 1826 } 1827 } 1828 1829 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 1830 /// CC usable with the vector instructions. Fewer operations are available 1831 /// without a real NZCV register, so we have to use less efficient combinations 1832 /// to get the same effect. 1833 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, 1834 AArch64CC::CondCode &CondCode, 1835 AArch64CC::CondCode &CondCode2, 1836 bool &Invert) { 1837 Invert = false; 1838 switch (CC) { 1839 default: 1840 // Mostly the scalar mappings work fine. 1841 changeFPCCToAArch64CC(CC, CondCode, CondCode2); 1842 break; 1843 case ISD::SETUO: 1844 Invert = true; 1845 LLVM_FALLTHROUGH; 1846 case ISD::SETO: 1847 CondCode = AArch64CC::MI; 1848 CondCode2 = AArch64CC::GE; 1849 break; 1850 case ISD::SETUEQ: 1851 case ISD::SETULT: 1852 case ISD::SETULE: 1853 case ISD::SETUGT: 1854 case ISD::SETUGE: 1855 // All of the compare-mask comparisons are ordered, but we can switch 1856 // between the two by a double inversion. E.g. ULE == !OGT. 1857 Invert = true; 1858 changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32), 1859 CondCode, CondCode2); 1860 break; 1861 } 1862 } 1863 1864 static bool isLegalArithImmed(uint64_t C) { 1865 // Matches AArch64DAGToDAGISel::SelectArithImmed(). 1866 bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); 1867 LLVM_DEBUG(dbgs() << "Is imm " << C 1868 << " legal: " << (IsLegal ? "yes\n" : "no\n")); 1869 return IsLegal; 1870 } 1871 1872 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on 1873 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags 1874 // can be set differently by this operation. It comes down to whether 1875 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then 1876 // everything is fine. If not then the optimization is wrong. Thus general 1877 // comparisons are only valid if op2 != 0. 1878 // 1879 // So, finally, the only LLVM-native comparisons that don't mention C and V 1880 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in 1881 // the absence of information about op2. 1882 static bool isCMN(SDValue Op, ISD::CondCode CC) { 1883 return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) && 1884 (CC == ISD::SETEQ || CC == ISD::SETNE); 1885 } 1886 1887 static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl, 1888 SelectionDAG &DAG, SDValue Chain, 1889 bool IsSignaling) { 1890 EVT VT = LHS.getValueType(); 1891 assert(VT != MVT::f128); 1892 assert(VT != MVT::f16 && "Lowering of strict fp16 not yet implemented"); 1893 unsigned Opcode = 1894 IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP; 1895 return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS}); 1896 } 1897 1898 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, 1899 const SDLoc &dl, SelectionDAG &DAG) { 1900 EVT VT = LHS.getValueType(); 1901 const bool FullFP16 = 1902 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 1903 1904 if (VT.isFloatingPoint()) { 1905 assert(VT != MVT::f128); 1906 if (VT == MVT::f16 && !FullFP16) { 1907 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); 1908 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); 1909 VT = MVT::f32; 1910 } 1911 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); 1912 } 1913 1914 // The CMP instruction is just an alias for SUBS, and representing it as 1915 // SUBS means that it's possible to get CSE with subtract operations. 1916 // A later phase can perform the optimization of setting the destination 1917 // register to WZR/XZR if it ends up being unused. 1918 unsigned Opcode = AArch64ISD::SUBS; 1919 1920 if (isCMN(RHS, CC)) { 1921 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ? 1922 Opcode = AArch64ISD::ADDS; 1923 RHS = RHS.getOperand(1); 1924 } else if (isCMN(LHS, CC)) { 1925 // As we are looking for EQ/NE compares, the operands can be commuted ; can 1926 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ? 1927 Opcode = AArch64ISD::ADDS; 1928 LHS = LHS.getOperand(1); 1929 } else if (isNullConstant(RHS) && !isUnsignedIntSetCC(CC)) { 1930 if (LHS.getOpcode() == ISD::AND) { 1931 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST 1932 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one 1933 // of the signed comparisons. 1934 const SDValue ANDSNode = DAG.getNode(AArch64ISD::ANDS, dl, 1935 DAG.getVTList(VT, MVT_CC), 1936 LHS.getOperand(0), 1937 LHS.getOperand(1)); 1938 // Replace all users of (and X, Y) with newly generated (ands X, Y) 1939 DAG.ReplaceAllUsesWith(LHS, ANDSNode); 1940 return ANDSNode.getValue(1); 1941 } else if (LHS.getOpcode() == AArch64ISD::ANDS) { 1942 // Use result of ANDS 1943 return LHS.getValue(1); 1944 } 1945 } 1946 1947 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) 1948 .getValue(1); 1949 } 1950 1951 /// \defgroup AArch64CCMP CMP;CCMP matching 1952 /// 1953 /// These functions deal with the formation of CMP;CCMP;... sequences. 1954 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of 1955 /// a comparison. They set the NZCV flags to a predefined value if their 1956 /// predicate is false. This allows to express arbitrary conjunctions, for 1957 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))" 1958 /// expressed as: 1959 /// cmp A 1960 /// ccmp B, inv(CB), CA 1961 /// check for CB flags 1962 /// 1963 /// This naturally lets us implement chains of AND operations with SETCC 1964 /// operands. And we can even implement some other situations by transforming 1965 /// them: 1966 /// - We can implement (NEG SETCC) i.e. negating a single comparison by 1967 /// negating the flags used in a CCMP/FCCMP operations. 1968 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations 1969 /// by negating the flags we test for afterwards. i.e. 1970 /// NEG (CMP CCMP CCCMP ...) can be implemented. 1971 /// - Note that we can only ever negate all previously processed results. 1972 /// What we can not implement by flipping the flags to test is a negation 1973 /// of two sub-trees (because the negation affects all sub-trees emitted so 1974 /// far, so the 2nd sub-tree we emit would also affect the first). 1975 /// With those tools we can implement some OR operations: 1976 /// - (OR (SETCC A) (SETCC B)) can be implemented via: 1977 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B))) 1978 /// - After transforming OR to NEG/AND combinations we may be able to use NEG 1979 /// elimination rules from earlier to implement the whole thing as a 1980 /// CCMP/FCCMP chain. 1981 /// 1982 /// As complete example: 1983 /// or (or (setCA (cmp A)) (setCB (cmp B))) 1984 /// (and (setCC (cmp C)) (setCD (cmp D)))" 1985 /// can be reassociated to: 1986 /// or (and (setCC (cmp C)) setCD (cmp D)) 1987 // (or (setCA (cmp A)) (setCB (cmp B))) 1988 /// can be transformed to: 1989 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D)))) 1990 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" 1991 /// which can be implemented as: 1992 /// cmp C 1993 /// ccmp D, inv(CD), CC 1994 /// ccmp A, CA, inv(CD) 1995 /// ccmp B, CB, inv(CA) 1996 /// check for CB flags 1997 /// 1998 /// A counterexample is "or (and A B) (and C D)" which translates to 1999 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we 2000 /// can only implement 1 of the inner (not) operations, but not both! 2001 /// @{ 2002 2003 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. 2004 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, 2005 ISD::CondCode CC, SDValue CCOp, 2006 AArch64CC::CondCode Predicate, 2007 AArch64CC::CondCode OutCC, 2008 const SDLoc &DL, SelectionDAG &DAG) { 2009 unsigned Opcode = 0; 2010 const bool FullFP16 = 2011 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 2012 2013 if (LHS.getValueType().isFloatingPoint()) { 2014 assert(LHS.getValueType() != MVT::f128); 2015 if (LHS.getValueType() == MVT::f16 && !FullFP16) { 2016 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS); 2017 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS); 2018 } 2019 Opcode = AArch64ISD::FCCMP; 2020 } else if (RHS.getOpcode() == ISD::SUB) { 2021 SDValue SubOp0 = RHS.getOperand(0); 2022 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2023 // See emitComparison() on why we can only do this for SETEQ and SETNE. 2024 Opcode = AArch64ISD::CCMN; 2025 RHS = RHS.getOperand(1); 2026 } 2027 } 2028 if (Opcode == 0) 2029 Opcode = AArch64ISD::CCMP; 2030 2031 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC); 2032 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); 2033 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); 2034 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); 2035 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); 2036 } 2037 2038 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be 2039 /// expressed as a conjunction. See \ref AArch64CCMP. 2040 /// \param CanNegate Set to true if we can negate the whole sub-tree just by 2041 /// changing the conditions on the SETCC tests. 2042 /// (this means we can call emitConjunctionRec() with 2043 /// Negate==true on this sub-tree) 2044 /// \param MustBeFirst Set to true if this subtree needs to be negated and we 2045 /// cannot do the negation naturally. We are required to 2046 /// emit the subtree first in this case. 2047 /// \param WillNegate Is true if are called when the result of this 2048 /// subexpression must be negated. This happens when the 2049 /// outer expression is an OR. We can use this fact to know 2050 /// that we have a double negation (or (or ...) ...) that 2051 /// can be implemented for free. 2052 static bool canEmitConjunction(const SDValue Val, bool &CanNegate, 2053 bool &MustBeFirst, bool WillNegate, 2054 unsigned Depth = 0) { 2055 if (!Val.hasOneUse()) 2056 return false; 2057 unsigned Opcode = Val->getOpcode(); 2058 if (Opcode == ISD::SETCC) { 2059 if (Val->getOperand(0).getValueType() == MVT::f128) 2060 return false; 2061 CanNegate = true; 2062 MustBeFirst = false; 2063 return true; 2064 } 2065 // Protect against exponential runtime and stack overflow. 2066 if (Depth > 6) 2067 return false; 2068 if (Opcode == ISD::AND || Opcode == ISD::OR) { 2069 bool IsOR = Opcode == ISD::OR; 2070 SDValue O0 = Val->getOperand(0); 2071 SDValue O1 = Val->getOperand(1); 2072 bool CanNegateL; 2073 bool MustBeFirstL; 2074 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1)) 2075 return false; 2076 bool CanNegateR; 2077 bool MustBeFirstR; 2078 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1)) 2079 return false; 2080 2081 if (MustBeFirstL && MustBeFirstR) 2082 return false; 2083 2084 if (IsOR) { 2085 // For an OR expression we need to be able to naturally negate at least 2086 // one side or we cannot do the transformation at all. 2087 if (!CanNegateL && !CanNegateR) 2088 return false; 2089 // If we the result of the OR will be negated and we can naturally negate 2090 // the leafs, then this sub-tree as a whole negates naturally. 2091 CanNegate = WillNegate && CanNegateL && CanNegateR; 2092 // If we cannot naturally negate the whole sub-tree, then this must be 2093 // emitted first. 2094 MustBeFirst = !CanNegate; 2095 } else { 2096 assert(Opcode == ISD::AND && "Must be OR or AND"); 2097 // We cannot naturally negate an AND operation. 2098 CanNegate = false; 2099 MustBeFirst = MustBeFirstL || MustBeFirstR; 2100 } 2101 return true; 2102 } 2103 return false; 2104 } 2105 2106 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain 2107 /// of CCMP/CFCMP ops. See @ref AArch64CCMP. 2108 /// Tries to transform the given i1 producing node @p Val to a series compare 2109 /// and conditional compare operations. @returns an NZCV flags producing node 2110 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if 2111 /// transformation was not possible. 2112 /// \p Negate is true if we want this sub-tree being negated just by changing 2113 /// SETCC conditions. 2114 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val, 2115 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp, 2116 AArch64CC::CondCode Predicate) { 2117 // We're at a tree leaf, produce a conditional comparison operation. 2118 unsigned Opcode = Val->getOpcode(); 2119 if (Opcode == ISD::SETCC) { 2120 SDValue LHS = Val->getOperand(0); 2121 SDValue RHS = Val->getOperand(1); 2122 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get(); 2123 bool isInteger = LHS.getValueType().isInteger(); 2124 if (Negate) 2125 CC = getSetCCInverse(CC, LHS.getValueType()); 2126 SDLoc DL(Val); 2127 // Determine OutCC and handle FP special case. 2128 if (isInteger) { 2129 OutCC = changeIntCCToAArch64CC(CC); 2130 } else { 2131 assert(LHS.getValueType().isFloatingPoint()); 2132 AArch64CC::CondCode ExtraCC; 2133 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC); 2134 // Some floating point conditions can't be tested with a single condition 2135 // code. Construct an additional comparison in this case. 2136 if (ExtraCC != AArch64CC::AL) { 2137 SDValue ExtraCmp; 2138 if (!CCOp.getNode()) 2139 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); 2140 else 2141 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, 2142 ExtraCC, DL, DAG); 2143 CCOp = ExtraCmp; 2144 Predicate = ExtraCC; 2145 } 2146 } 2147 2148 // Produce a normal comparison if we are first in the chain 2149 if (!CCOp) 2150 return emitComparison(LHS, RHS, CC, DL, DAG); 2151 // Otherwise produce a ccmp. 2152 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL, 2153 DAG); 2154 } 2155 assert(Val->hasOneUse() && "Valid conjunction/disjunction tree"); 2156 2157 bool IsOR = Opcode == ISD::OR; 2158 2159 SDValue LHS = Val->getOperand(0); 2160 bool CanNegateL; 2161 bool MustBeFirstL; 2162 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR); 2163 assert(ValidL && "Valid conjunction/disjunction tree"); 2164 (void)ValidL; 2165 2166 SDValue RHS = Val->getOperand(1); 2167 bool CanNegateR; 2168 bool MustBeFirstR; 2169 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR); 2170 assert(ValidR && "Valid conjunction/disjunction tree"); 2171 (void)ValidR; 2172 2173 // Swap sub-tree that must come first to the right side. 2174 if (MustBeFirstL) { 2175 assert(!MustBeFirstR && "Valid conjunction/disjunction tree"); 2176 std::swap(LHS, RHS); 2177 std::swap(CanNegateL, CanNegateR); 2178 std::swap(MustBeFirstL, MustBeFirstR); 2179 } 2180 2181 bool NegateR; 2182 bool NegateAfterR; 2183 bool NegateL; 2184 bool NegateAfterAll; 2185 if (Opcode == ISD::OR) { 2186 // Swap the sub-tree that we can negate naturally to the left. 2187 if (!CanNegateL) { 2188 assert(CanNegateR && "at least one side must be negatable"); 2189 assert(!MustBeFirstR && "invalid conjunction/disjunction tree"); 2190 assert(!Negate); 2191 std::swap(LHS, RHS); 2192 NegateR = false; 2193 NegateAfterR = true; 2194 } else { 2195 // Negate the left sub-tree if possible, otherwise negate the result. 2196 NegateR = CanNegateR; 2197 NegateAfterR = !CanNegateR; 2198 } 2199 NegateL = true; 2200 NegateAfterAll = !Negate; 2201 } else { 2202 assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree"); 2203 assert(!Negate && "Valid conjunction/disjunction tree"); 2204 2205 NegateL = false; 2206 NegateR = false; 2207 NegateAfterR = false; 2208 NegateAfterAll = false; 2209 } 2210 2211 // Emit sub-trees. 2212 AArch64CC::CondCode RHSCC; 2213 SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate); 2214 if (NegateAfterR) 2215 RHSCC = AArch64CC::getInvertedCondCode(RHSCC); 2216 SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC); 2217 if (NegateAfterAll) 2218 OutCC = AArch64CC::getInvertedCondCode(OutCC); 2219 return CmpL; 2220 } 2221 2222 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops). 2223 /// In some cases this is even possible with OR operations in the expression. 2224 /// See \ref AArch64CCMP. 2225 /// \see emitConjunctionRec(). 2226 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val, 2227 AArch64CC::CondCode &OutCC) { 2228 bool DummyCanNegate; 2229 bool DummyMustBeFirst; 2230 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false)) 2231 return SDValue(); 2232 2233 return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL); 2234 } 2235 2236 /// @} 2237 2238 /// Returns how profitable it is to fold a comparison's operand's shift and/or 2239 /// extension operations. 2240 static unsigned getCmpOperandFoldingProfit(SDValue Op) { 2241 auto isSupportedExtend = [&](SDValue V) { 2242 if (V.getOpcode() == ISD::SIGN_EXTEND_INREG) 2243 return true; 2244 2245 if (V.getOpcode() == ISD::AND) 2246 if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2247 uint64_t Mask = MaskCst->getZExtValue(); 2248 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF); 2249 } 2250 2251 return false; 2252 }; 2253 2254 if (!Op.hasOneUse()) 2255 return 0; 2256 2257 if (isSupportedExtend(Op)) 2258 return 1; 2259 2260 unsigned Opc = Op.getOpcode(); 2261 if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) 2262 if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2263 uint64_t Shift = ShiftCst->getZExtValue(); 2264 if (isSupportedExtend(Op.getOperand(0))) 2265 return (Shift <= 4) ? 2 : 1; 2266 EVT VT = Op.getValueType(); 2267 if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63)) 2268 return 1; 2269 } 2270 2271 return 0; 2272 } 2273 2274 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2275 SDValue &AArch64cc, SelectionDAG &DAG, 2276 const SDLoc &dl) { 2277 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 2278 EVT VT = RHS.getValueType(); 2279 uint64_t C = RHSC->getZExtValue(); 2280 if (!isLegalArithImmed(C)) { 2281 // Constant does not fit, try adjusting it by one? 2282 switch (CC) { 2283 default: 2284 break; 2285 case ISD::SETLT: 2286 case ISD::SETGE: 2287 if ((VT == MVT::i32 && C != 0x80000000 && 2288 isLegalArithImmed((uint32_t)(C - 1))) || 2289 (VT == MVT::i64 && C != 0x80000000ULL && 2290 isLegalArithImmed(C - 1ULL))) { 2291 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 2292 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; 2293 RHS = DAG.getConstant(C, dl, VT); 2294 } 2295 break; 2296 case ISD::SETULT: 2297 case ISD::SETUGE: 2298 if ((VT == MVT::i32 && C != 0 && 2299 isLegalArithImmed((uint32_t)(C - 1))) || 2300 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { 2301 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 2302 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; 2303 RHS = DAG.getConstant(C, dl, VT); 2304 } 2305 break; 2306 case ISD::SETLE: 2307 case ISD::SETGT: 2308 if ((VT == MVT::i32 && C != INT32_MAX && 2309 isLegalArithImmed((uint32_t)(C + 1))) || 2310 (VT == MVT::i64 && C != INT64_MAX && 2311 isLegalArithImmed(C + 1ULL))) { 2312 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 2313 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; 2314 RHS = DAG.getConstant(C, dl, VT); 2315 } 2316 break; 2317 case ISD::SETULE: 2318 case ISD::SETUGT: 2319 if ((VT == MVT::i32 && C != UINT32_MAX && 2320 isLegalArithImmed((uint32_t)(C + 1))) || 2321 (VT == MVT::i64 && C != UINT64_MAX && 2322 isLegalArithImmed(C + 1ULL))) { 2323 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2324 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; 2325 RHS = DAG.getConstant(C, dl, VT); 2326 } 2327 break; 2328 } 2329 } 2330 } 2331 2332 // Comparisons are canonicalized so that the RHS operand is simpler than the 2333 // LHS one, the extreme case being when RHS is an immediate. However, AArch64 2334 // can fold some shift+extend operations on the RHS operand, so swap the 2335 // operands if that can be done. 2336 // 2337 // For example: 2338 // lsl w13, w11, #1 2339 // cmp w13, w12 2340 // can be turned into: 2341 // cmp w12, w11, lsl #1 2342 if (!isa<ConstantSDNode>(RHS) || 2343 !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) { 2344 SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS; 2345 2346 if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) { 2347 std::swap(LHS, RHS); 2348 CC = ISD::getSetCCSwappedOperands(CC); 2349 } 2350 } 2351 2352 SDValue Cmp; 2353 AArch64CC::CondCode AArch64CC; 2354 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) { 2355 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS); 2356 2357 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. 2358 // For the i8 operand, the largest immediate is 255, so this can be easily 2359 // encoded in the compare instruction. For the i16 operand, however, the 2360 // largest immediate cannot be encoded in the compare. 2361 // Therefore, use a sign extending load and cmn to avoid materializing the 2362 // -1 constant. For example, 2363 // movz w1, #65535 2364 // ldrh w0, [x0, #0] 2365 // cmp w0, w1 2366 // > 2367 // ldrsh w0, [x0, #0] 2368 // cmn w0, #1 2369 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) 2370 // if and only if (sext LHS) == (sext RHS). The checks are in place to 2371 // ensure both the LHS and RHS are truly zero extended and to make sure the 2372 // transformation is profitable. 2373 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) && 2374 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD && 2375 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 && 2376 LHS.getNode()->hasNUsesOfValue(1, 0)) { 2377 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue(); 2378 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { 2379 SDValue SExt = 2380 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, 2381 DAG.getValueType(MVT::i16)); 2382 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, 2383 RHS.getValueType()), 2384 CC, dl, DAG); 2385 AArch64CC = changeIntCCToAArch64CC(CC); 2386 } 2387 } 2388 2389 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) { 2390 if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) { 2391 if ((CC == ISD::SETNE) ^ RHSC->isNullValue()) 2392 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); 2393 } 2394 } 2395 } 2396 2397 if (!Cmp) { 2398 Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 2399 AArch64CC = changeIntCCToAArch64CC(CC); 2400 } 2401 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); 2402 return Cmp; 2403 } 2404 2405 static std::pair<SDValue, SDValue> 2406 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { 2407 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && 2408 "Unsupported value type"); 2409 SDValue Value, Overflow; 2410 SDLoc DL(Op); 2411 SDValue LHS = Op.getOperand(0); 2412 SDValue RHS = Op.getOperand(1); 2413 unsigned Opc = 0; 2414 switch (Op.getOpcode()) { 2415 default: 2416 llvm_unreachable("Unknown overflow instruction!"); 2417 case ISD::SADDO: 2418 Opc = AArch64ISD::ADDS; 2419 CC = AArch64CC::VS; 2420 break; 2421 case ISD::UADDO: 2422 Opc = AArch64ISD::ADDS; 2423 CC = AArch64CC::HS; 2424 break; 2425 case ISD::SSUBO: 2426 Opc = AArch64ISD::SUBS; 2427 CC = AArch64CC::VS; 2428 break; 2429 case ISD::USUBO: 2430 Opc = AArch64ISD::SUBS; 2431 CC = AArch64CC::LO; 2432 break; 2433 // Multiply needs a little bit extra work. 2434 case ISD::SMULO: 2435 case ISD::UMULO: { 2436 CC = AArch64CC::NE; 2437 bool IsSigned = Op.getOpcode() == ISD::SMULO; 2438 if (Op.getValueType() == MVT::i32) { 2439 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2440 // For a 32 bit multiply with overflow check we want the instruction 2441 // selector to generate a widening multiply (SMADDL/UMADDL). For that we 2442 // need to generate the following pattern: 2443 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) 2444 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); 2445 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); 2446 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 2447 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, 2448 DAG.getConstant(0, DL, MVT::i64)); 2449 // On AArch64 the upper 32 bits are always zero extended for a 32 bit 2450 // operation. We need to clear out the upper 32 bits, because we used a 2451 // widening multiply that wrote all 64 bits. In the end this should be a 2452 // noop. 2453 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); 2454 if (IsSigned) { 2455 // The signed overflow check requires more than just a simple check for 2456 // any bit set in the upper 32 bits of the result. These bits could be 2457 // just the sign bits of a negative number. To perform the overflow 2458 // check we have to arithmetic shift right the 32nd bit of the result by 2459 // 31 bits. Then we compare the result to the upper 32 bits. 2460 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, 2461 DAG.getConstant(32, DL, MVT::i64)); 2462 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); 2463 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, 2464 DAG.getConstant(31, DL, MVT::i64)); 2465 // It is important that LowerBits is last, otherwise the arithmetic 2466 // shift will not be folded into the compare (SUBS). 2467 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); 2468 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) 2469 .getValue(1); 2470 } else { 2471 // The overflow check for unsigned multiply is easy. We only need to 2472 // check if any of the upper 32 bits are set. This can be done with a 2473 // CMP (shifted register). For that we need to generate the following 2474 // pattern: 2475 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) 2476 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2477 DAG.getConstant(32, DL, MVT::i64)); 2478 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2479 Overflow = 2480 DAG.getNode(AArch64ISD::SUBS, DL, VTs, 2481 DAG.getConstant(0, DL, MVT::i64), 2482 UpperBits).getValue(1); 2483 } 2484 break; 2485 } 2486 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); 2487 // For the 64 bit multiply 2488 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 2489 if (IsSigned) { 2490 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); 2491 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, 2492 DAG.getConstant(63, DL, MVT::i64)); 2493 // It is important that LowerBits is last, otherwise the arithmetic 2494 // shift will not be folded into the compare (SUBS). 2495 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2496 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) 2497 .getValue(1); 2498 } else { 2499 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); 2500 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2501 Overflow = 2502 DAG.getNode(AArch64ISD::SUBS, DL, VTs, 2503 DAG.getConstant(0, DL, MVT::i64), 2504 UpperBits).getValue(1); 2505 } 2506 break; 2507 } 2508 } // switch (...) 2509 2510 if (Opc) { 2511 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); 2512 2513 // Emit the AArch64 operation with overflow check. 2514 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); 2515 Overflow = Value.getValue(1); 2516 } 2517 return std::make_pair(Value, Overflow); 2518 } 2519 2520 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, 2521 RTLIB::Libcall Call) const { 2522 bool IsStrict = Op->isStrictFPOpcode(); 2523 unsigned Offset = IsStrict ? 1 : 0; 2524 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 2525 SmallVector<SDValue, 2> Ops(Op->op_begin() + Offset, Op->op_end()); 2526 MakeLibCallOptions CallOptions; 2527 SDValue Result; 2528 SDLoc dl(Op); 2529 std::tie(Result, Chain) = makeLibCall(DAG, Call, Op.getValueType(), Ops, 2530 CallOptions, dl, Chain); 2531 return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result; 2532 } 2533 2534 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { 2535 SDValue Sel = Op.getOperand(0); 2536 SDValue Other = Op.getOperand(1); 2537 SDLoc dl(Sel); 2538 2539 // If the operand is an overflow checking operation, invert the condition 2540 // code and kill the Not operation. I.e., transform: 2541 // (xor (overflow_op_bool, 1)) 2542 // --> 2543 // (csel 1, 0, invert(cc), overflow_op_bool) 2544 // ... which later gets transformed to just a cset instruction with an 2545 // inverted condition code, rather than a cset + eor sequence. 2546 if (isOneConstant(Other) && ISD::isOverflowIntrOpRes(Sel)) { 2547 // Only lower legal XALUO ops. 2548 if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0))) 2549 return SDValue(); 2550 2551 SDValue TVal = DAG.getConstant(1, dl, MVT::i32); 2552 SDValue FVal = DAG.getConstant(0, dl, MVT::i32); 2553 AArch64CC::CondCode CC; 2554 SDValue Value, Overflow; 2555 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG); 2556 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); 2557 return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal, 2558 CCVal, Overflow); 2559 } 2560 // If neither operand is a SELECT_CC, give up. 2561 if (Sel.getOpcode() != ISD::SELECT_CC) 2562 std::swap(Sel, Other); 2563 if (Sel.getOpcode() != ISD::SELECT_CC) 2564 return Op; 2565 2566 // The folding we want to perform is: 2567 // (xor x, (select_cc a, b, cc, 0, -1) ) 2568 // --> 2569 // (csel x, (xor x, -1), cc ...) 2570 // 2571 // The latter will get matched to a CSINV instruction. 2572 2573 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); 2574 SDValue LHS = Sel.getOperand(0); 2575 SDValue RHS = Sel.getOperand(1); 2576 SDValue TVal = Sel.getOperand(2); 2577 SDValue FVal = Sel.getOperand(3); 2578 2579 // FIXME: This could be generalized to non-integer comparisons. 2580 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) 2581 return Op; 2582 2583 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); 2584 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); 2585 2586 // The values aren't constants, this isn't the pattern we're looking for. 2587 if (!CFVal || !CTVal) 2588 return Op; 2589 2590 // We can commute the SELECT_CC by inverting the condition. This 2591 // might be needed to make this fit into a CSINV pattern. 2592 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { 2593 std::swap(TVal, FVal); 2594 std::swap(CTVal, CFVal); 2595 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2596 } 2597 2598 // If the constants line up, perform the transform! 2599 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { 2600 SDValue CCVal; 2601 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 2602 2603 FVal = Other; 2604 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, 2605 DAG.getConstant(-1ULL, dl, Other.getValueType())); 2606 2607 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, 2608 CCVal, Cmp); 2609 } 2610 2611 return Op; 2612 } 2613 2614 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2615 EVT VT = Op.getValueType(); 2616 2617 // Let legalize expand this if it isn't a legal type yet. 2618 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 2619 return SDValue(); 2620 2621 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 2622 2623 unsigned Opc; 2624 bool ExtraOp = false; 2625 switch (Op.getOpcode()) { 2626 default: 2627 llvm_unreachable("Invalid code"); 2628 case ISD::ADDC: 2629 Opc = AArch64ISD::ADDS; 2630 break; 2631 case ISD::SUBC: 2632 Opc = AArch64ISD::SUBS; 2633 break; 2634 case ISD::ADDE: 2635 Opc = AArch64ISD::ADCS; 2636 ExtraOp = true; 2637 break; 2638 case ISD::SUBE: 2639 Opc = AArch64ISD::SBCS; 2640 ExtraOp = true; 2641 break; 2642 } 2643 2644 if (!ExtraOp) 2645 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); 2646 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), 2647 Op.getOperand(2)); 2648 } 2649 2650 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { 2651 // Let legalize expand this if it isn't a legal type yet. 2652 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) 2653 return SDValue(); 2654 2655 SDLoc dl(Op); 2656 AArch64CC::CondCode CC; 2657 // The actual operation that sets the overflow or carry flag. 2658 SDValue Value, Overflow; 2659 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); 2660 2661 // We use 0 and 1 as false and true values. 2662 SDValue TVal = DAG.getConstant(1, dl, MVT::i32); 2663 SDValue FVal = DAG.getConstant(0, dl, MVT::i32); 2664 2665 // We use an inverted condition, because the conditional select is inverted 2666 // too. This will allow it to be selected to a single instruction: 2667 // CSINC Wd, WZR, WZR, invert(cond). 2668 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); 2669 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, 2670 CCVal, Overflow); 2671 2672 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); 2673 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); 2674 } 2675 2676 // Prefetch operands are: 2677 // 1: Address to prefetch 2678 // 2: bool isWrite 2679 // 3: int locality (0 = no locality ... 3 = extreme locality) 2680 // 4: bool isDataCache 2681 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { 2682 SDLoc DL(Op); 2683 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2684 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 2685 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2686 2687 bool IsStream = !Locality; 2688 // When the locality number is set 2689 if (Locality) { 2690 // The front-end should have filtered out the out-of-range values 2691 assert(Locality <= 3 && "Prefetch locality out-of-range"); 2692 // The locality degree is the opposite of the cache speed. 2693 // Put the number the other way around. 2694 // The encoding starts at 0 for level 1 2695 Locality = 3 - Locality; 2696 } 2697 2698 // built the mask value encoding the expected behavior. 2699 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit 2700 (!IsData << 3) | // IsDataCache bit 2701 (Locality << 1) | // Cache level bits 2702 (unsigned)IsStream; // Stream bit 2703 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), 2704 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1)); 2705 } 2706 2707 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, 2708 SelectionDAG &DAG) const { 2709 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); 2710 2711 RTLIB::Libcall LC; 2712 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); 2713 2714 return LowerF128Call(Op, DAG, LC); 2715 } 2716 2717 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, 2718 SelectionDAG &DAG) const { 2719 bool IsStrict = Op->isStrictFPOpcode(); 2720 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 2721 EVT SrcVT = SrcVal.getValueType(); 2722 2723 if (SrcVT != MVT::f128) { 2724 // Expand cases where the input is a vector bigger than NEON. 2725 if (useSVEForFixedLengthVectorVT(SrcVT)) 2726 return SDValue(); 2727 2728 // It's legal except when f128 is involved 2729 return Op; 2730 } 2731 2732 RTLIB::Libcall LC; 2733 LC = RTLIB::getFPROUND(SrcVT, Op.getValueType()); 2734 2735 // FP_ROUND node has a second operand indicating whether it is known to be 2736 // precise. That doesn't take part in the LibCall so we can't directly use 2737 // LowerF128Call. 2738 MakeLibCallOptions CallOptions; 2739 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 2740 SDValue Result; 2741 SDLoc dl(Op); 2742 std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal, 2743 CallOptions, dl, Chain); 2744 return IsStrict ? DAG.getMergeValues({Result, Chain}, dl) : Result; 2745 } 2746 2747 SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op, 2748 SelectionDAG &DAG) const { 2749 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. 2750 // Any additional optimization in this function should be recorded 2751 // in the cost tables. 2752 EVT InVT = Op.getOperand(0).getValueType(); 2753 EVT VT = Op.getValueType(); 2754 unsigned NumElts = InVT.getVectorNumElements(); 2755 2756 // f16 conversions are promoted to f32 when full fp16 is not supported. 2757 if (InVT.getVectorElementType() == MVT::f16 && 2758 !Subtarget->hasFullFP16()) { 2759 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); 2760 SDLoc dl(Op); 2761 return DAG.getNode( 2762 Op.getOpcode(), dl, Op.getValueType(), 2763 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); 2764 } 2765 2766 if (VT.getSizeInBits() < InVT.getSizeInBits()) { 2767 SDLoc dl(Op); 2768 SDValue Cv = 2769 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), 2770 Op.getOperand(0)); 2771 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); 2772 } 2773 2774 if (VT.getSizeInBits() > InVT.getSizeInBits()) { 2775 SDLoc dl(Op); 2776 MVT ExtVT = 2777 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), 2778 VT.getVectorNumElements()); 2779 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); 2780 return DAG.getNode(Op.getOpcode(), dl, VT, Ext); 2781 } 2782 2783 // Type changing conversions are illegal. 2784 return Op; 2785 } 2786 2787 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, 2788 SelectionDAG &DAG) const { 2789 bool IsStrict = Op->isStrictFPOpcode(); 2790 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 2791 2792 if (SrcVal.getValueType().isVector()) 2793 return LowerVectorFP_TO_INT(Op, DAG); 2794 2795 // f16 conversions are promoted to f32 when full fp16 is not supported. 2796 if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { 2797 assert(!IsStrict && "Lowering of strict fp16 not yet implemented"); 2798 SDLoc dl(Op); 2799 return DAG.getNode( 2800 Op.getOpcode(), dl, Op.getValueType(), 2801 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal)); 2802 } 2803 2804 if (SrcVal.getValueType() != MVT::f128) { 2805 // It's legal except when f128 is involved 2806 return Op; 2807 } 2808 2809 RTLIB::Libcall LC; 2810 if (Op.getOpcode() == ISD::FP_TO_SINT || 2811 Op.getOpcode() == ISD::STRICT_FP_TO_SINT) 2812 LC = RTLIB::getFPTOSINT(SrcVal.getValueType(), Op.getValueType()); 2813 else 2814 LC = RTLIB::getFPTOUINT(SrcVal.getValueType(), Op.getValueType()); 2815 2816 return LowerF128Call(Op, DAG, LC); 2817 } 2818 2819 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 2820 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. 2821 // Any additional optimization in this function should be recorded 2822 // in the cost tables. 2823 EVT VT = Op.getValueType(); 2824 SDLoc dl(Op); 2825 SDValue In = Op.getOperand(0); 2826 EVT InVT = In.getValueType(); 2827 2828 if (VT.getSizeInBits() < InVT.getSizeInBits()) { 2829 MVT CastVT = 2830 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), 2831 InVT.getVectorNumElements()); 2832 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); 2833 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl)); 2834 } 2835 2836 if (VT.getSizeInBits() > InVT.getSizeInBits()) { 2837 unsigned CastOpc = 2838 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2839 EVT CastVT = VT.changeVectorElementTypeToInteger(); 2840 In = DAG.getNode(CastOpc, dl, CastVT, In); 2841 return DAG.getNode(Op.getOpcode(), dl, VT, In); 2842 } 2843 2844 return Op; 2845 } 2846 2847 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, 2848 SelectionDAG &DAG) const { 2849 if (Op.getValueType().isVector()) 2850 return LowerVectorINT_TO_FP(Op, DAG); 2851 2852 bool IsStrict = Op->isStrictFPOpcode(); 2853 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); 2854 2855 // f16 conversions are promoted to f32 when full fp16 is not supported. 2856 if (Op.getValueType() == MVT::f16 && 2857 !Subtarget->hasFullFP16()) { 2858 assert(!IsStrict && "Lowering of strict fp16 not yet implemented"); 2859 SDLoc dl(Op); 2860 return DAG.getNode( 2861 ISD::FP_ROUND, dl, MVT::f16, 2862 DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal), 2863 DAG.getIntPtrConstant(0, dl)); 2864 } 2865 2866 // i128 conversions are libcalls. 2867 if (SrcVal.getValueType() == MVT::i128) 2868 return SDValue(); 2869 2870 // Other conversions are legal, unless it's to the completely software-based 2871 // fp128. 2872 if (Op.getValueType() != MVT::f128) 2873 return Op; 2874 2875 RTLIB::Libcall LC; 2876 if (Op.getOpcode() == ISD::SINT_TO_FP || 2877 Op.getOpcode() == ISD::STRICT_SINT_TO_FP) 2878 LC = RTLIB::getSINTTOFP(SrcVal.getValueType(), Op.getValueType()); 2879 else 2880 LC = RTLIB::getUINTTOFP(SrcVal.getValueType(), Op.getValueType()); 2881 2882 return LowerF128Call(Op, DAG, LC); 2883 } 2884 2885 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, 2886 SelectionDAG &DAG) const { 2887 // For iOS, we want to call an alternative entry point: __sincos_stret, 2888 // which returns the values in two S / D registers. 2889 SDLoc dl(Op); 2890 SDValue Arg = Op.getOperand(0); 2891 EVT ArgVT = Arg.getValueType(); 2892 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2893 2894 ArgListTy Args; 2895 ArgListEntry Entry; 2896 2897 Entry.Node = Arg; 2898 Entry.Ty = ArgTy; 2899 Entry.IsSExt = false; 2900 Entry.IsZExt = false; 2901 Args.push_back(Entry); 2902 2903 RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64 2904 : RTLIB::SINCOS_STRET_F32; 2905 const char *LibcallName = getLibcallName(LC); 2906 SDValue Callee = 2907 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); 2908 2909 StructType *RetTy = StructType::get(ArgTy, ArgTy); 2910 TargetLowering::CallLoweringInfo CLI(DAG); 2911 CLI.setDebugLoc(dl) 2912 .setChain(DAG.getEntryNode()) 2913 .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args)); 2914 2915 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2916 return CallResult.first; 2917 } 2918 2919 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) { 2920 EVT OpVT = Op.getValueType(); 2921 if (OpVT != MVT::f16 && OpVT != MVT::bf16) 2922 return SDValue(); 2923 2924 assert(Op.getOperand(0).getValueType() == MVT::i16); 2925 SDLoc DL(Op); 2926 2927 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); 2928 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); 2929 return SDValue( 2930 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, OpVT, Op, 2931 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), 2932 0); 2933 } 2934 2935 static EVT getExtensionTo64Bits(const EVT &OrigVT) { 2936 if (OrigVT.getSizeInBits() >= 64) 2937 return OrigVT; 2938 2939 assert(OrigVT.isSimple() && "Expecting a simple value type"); 2940 2941 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; 2942 switch (OrigSimpleTy) { 2943 default: llvm_unreachable("Unexpected Vector Type"); 2944 case MVT::v2i8: 2945 case MVT::v2i16: 2946 return MVT::v2i32; 2947 case MVT::v4i8: 2948 return MVT::v4i16; 2949 } 2950 } 2951 2952 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, 2953 const EVT &OrigTy, 2954 const EVT &ExtTy, 2955 unsigned ExtOpcode) { 2956 // The vector originally had a size of OrigTy. It was then extended to ExtTy. 2957 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than 2958 // 64-bits we need to insert a new extension so that it will be 64-bits. 2959 assert(ExtTy.is128BitVector() && "Unexpected extension size"); 2960 if (OrigTy.getSizeInBits() >= 64) 2961 return N; 2962 2963 // Must extend size to at least 64 bits to be used as an operand for VMULL. 2964 EVT NewVT = getExtensionTo64Bits(OrigTy); 2965 2966 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); 2967 } 2968 2969 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, 2970 bool isSigned) { 2971 EVT VT = N->getValueType(0); 2972 2973 if (N->getOpcode() != ISD::BUILD_VECTOR) 2974 return false; 2975 2976 for (const SDValue &Elt : N->op_values()) { 2977 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { 2978 unsigned EltSize = VT.getScalarSizeInBits(); 2979 unsigned HalfSize = EltSize / 2; 2980 if (isSigned) { 2981 if (!isIntN(HalfSize, C->getSExtValue())) 2982 return false; 2983 } else { 2984 if (!isUIntN(HalfSize, C->getZExtValue())) 2985 return false; 2986 } 2987 continue; 2988 } 2989 return false; 2990 } 2991 2992 return true; 2993 } 2994 2995 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) { 2996 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) 2997 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG, 2998 N->getOperand(0)->getValueType(0), 2999 N->getValueType(0), 3000 N->getOpcode()); 3001 3002 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); 3003 EVT VT = N->getValueType(0); 3004 SDLoc dl(N); 3005 unsigned EltSize = VT.getScalarSizeInBits() / 2; 3006 unsigned NumElts = VT.getVectorNumElements(); 3007 MVT TruncVT = MVT::getIntegerVT(EltSize); 3008 SmallVector<SDValue, 8> Ops; 3009 for (unsigned i = 0; i != NumElts; ++i) { 3010 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); 3011 const APInt &CInt = C->getAPIntValue(); 3012 // Element types smaller than 32 bits are not legal, so use i32 elements. 3013 // The values are implicitly truncated so sext vs. zext doesn't matter. 3014 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); 3015 } 3016 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); 3017 } 3018 3019 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { 3020 return N->getOpcode() == ISD::SIGN_EXTEND || 3021 isExtendedBUILD_VECTOR(N, DAG, true); 3022 } 3023 3024 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { 3025 return N->getOpcode() == ISD::ZERO_EXTEND || 3026 isExtendedBUILD_VECTOR(N, DAG, false); 3027 } 3028 3029 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { 3030 unsigned Opcode = N->getOpcode(); 3031 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 3032 SDNode *N0 = N->getOperand(0).getNode(); 3033 SDNode *N1 = N->getOperand(1).getNode(); 3034 return N0->hasOneUse() && N1->hasOneUse() && 3035 isSignExtended(N0, DAG) && isSignExtended(N1, DAG); 3036 } 3037 return false; 3038 } 3039 3040 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { 3041 unsigned Opcode = N->getOpcode(); 3042 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 3043 SDNode *N0 = N->getOperand(0).getNode(); 3044 SDNode *N1 = N->getOperand(1).getNode(); 3045 return N0->hasOneUse() && N1->hasOneUse() && 3046 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); 3047 } 3048 return false; 3049 } 3050 3051 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3052 SelectionDAG &DAG) const { 3053 // The rounding mode is in bits 23:22 of the FPSCR. 3054 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 3055 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) 3056 // so that the shift + and get folded into a bitfield extract. 3057 SDLoc dl(Op); 3058 3059 SDValue Chain = Op.getOperand(0); 3060 SDValue FPCR_64 = DAG.getNode( 3061 ISD::INTRINSIC_W_CHAIN, dl, {MVT::i64, MVT::Other}, 3062 {Chain, DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, MVT::i64)}); 3063 Chain = FPCR_64.getValue(1); 3064 SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64); 3065 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32, 3066 DAG.getConstant(1U << 22, dl, MVT::i32)); 3067 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, 3068 DAG.getConstant(22, dl, MVT::i32)); 3069 SDValue AND = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, 3070 DAG.getConstant(3, dl, MVT::i32)); 3071 return DAG.getMergeValues({AND, Chain}, dl); 3072 } 3073 3074 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { 3075 // Multiplications are only custom-lowered for 128-bit vectors so that 3076 // VMULL can be detected. Otherwise v2i64 multiplications are not legal. 3077 EVT VT = Op.getValueType(); 3078 assert(VT.is128BitVector() && VT.isInteger() && 3079 "unexpected type for custom-lowering ISD::MUL"); 3080 SDNode *N0 = Op.getOperand(0).getNode(); 3081 SDNode *N1 = Op.getOperand(1).getNode(); 3082 unsigned NewOpc = 0; 3083 bool isMLA = false; 3084 bool isN0SExt = isSignExtended(N0, DAG); 3085 bool isN1SExt = isSignExtended(N1, DAG); 3086 if (isN0SExt && isN1SExt) 3087 NewOpc = AArch64ISD::SMULL; 3088 else { 3089 bool isN0ZExt = isZeroExtended(N0, DAG); 3090 bool isN1ZExt = isZeroExtended(N1, DAG); 3091 if (isN0ZExt && isN1ZExt) 3092 NewOpc = AArch64ISD::UMULL; 3093 else if (isN1SExt || isN1ZExt) { 3094 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these 3095 // into (s/zext A * s/zext C) + (s/zext B * s/zext C) 3096 if (isN1SExt && isAddSubSExt(N0, DAG)) { 3097 NewOpc = AArch64ISD::SMULL; 3098 isMLA = true; 3099 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { 3100 NewOpc = AArch64ISD::UMULL; 3101 isMLA = true; 3102 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { 3103 std::swap(N0, N1); 3104 NewOpc = AArch64ISD::UMULL; 3105 isMLA = true; 3106 } 3107 } 3108 3109 if (!NewOpc) { 3110 if (VT == MVT::v2i64) 3111 // Fall through to expand this. It is not legal. 3112 return SDValue(); 3113 else 3114 // Other vector multiplications are legal. 3115 return Op; 3116 } 3117 } 3118 3119 // Legalize to a S/UMULL instruction 3120 SDLoc DL(Op); 3121 SDValue Op0; 3122 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); 3123 if (!isMLA) { 3124 Op0 = skipExtensionForVectorMULL(N0, DAG); 3125 assert(Op0.getValueType().is64BitVector() && 3126 Op1.getValueType().is64BitVector() && 3127 "unexpected types for extended operands to VMULL"); 3128 return DAG.getNode(NewOpc, DL, VT, Op0, Op1); 3129 } 3130 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during 3131 // isel lowering to take advantage of no-stall back to back s/umul + s/umla. 3132 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 3133 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG); 3134 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG); 3135 EVT Op1VT = Op1.getValueType(); 3136 return DAG.getNode(N0->getOpcode(), DL, VT, 3137 DAG.getNode(NewOpc, DL, VT, 3138 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), 3139 DAG.getNode(NewOpc, DL, VT, 3140 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); 3141 } 3142 3143 static inline SDValue getPTrue(SelectionDAG &DAG, SDLoc DL, EVT VT, 3144 int Pattern) { 3145 return DAG.getNode(AArch64ISD::PTRUE, DL, VT, 3146 DAG.getTargetConstant(Pattern, DL, MVT::i32)); 3147 } 3148 3149 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3150 SelectionDAG &DAG) const { 3151 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3152 SDLoc dl(Op); 3153 switch (IntNo) { 3154 default: return SDValue(); // Don't custom lower most intrinsics. 3155 case Intrinsic::thread_pointer: { 3156 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3157 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); 3158 } 3159 case Intrinsic::aarch64_neon_abs: { 3160 EVT Ty = Op.getValueType(); 3161 if (Ty == MVT::i64) { 3162 SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, 3163 Op.getOperand(1)); 3164 Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result); 3165 return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result); 3166 } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) { 3167 return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1)); 3168 } else { 3169 report_fatal_error("Unexpected type for AArch64 NEON intrinic"); 3170 } 3171 } 3172 case Intrinsic::aarch64_neon_smax: 3173 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), 3174 Op.getOperand(1), Op.getOperand(2)); 3175 case Intrinsic::aarch64_neon_umax: 3176 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), 3177 Op.getOperand(1), Op.getOperand(2)); 3178 case Intrinsic::aarch64_neon_smin: 3179 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), 3180 Op.getOperand(1), Op.getOperand(2)); 3181 case Intrinsic::aarch64_neon_umin: 3182 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), 3183 Op.getOperand(1), Op.getOperand(2)); 3184 3185 case Intrinsic::aarch64_sve_sunpkhi: 3186 return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(), 3187 Op.getOperand(1)); 3188 case Intrinsic::aarch64_sve_sunpklo: 3189 return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(), 3190 Op.getOperand(1)); 3191 case Intrinsic::aarch64_sve_uunpkhi: 3192 return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(), 3193 Op.getOperand(1)); 3194 case Intrinsic::aarch64_sve_uunpklo: 3195 return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(), 3196 Op.getOperand(1)); 3197 case Intrinsic::aarch64_sve_clasta_n: 3198 return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(), 3199 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3200 case Intrinsic::aarch64_sve_clastb_n: 3201 return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(), 3202 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3203 case Intrinsic::aarch64_sve_lasta: 3204 return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(), 3205 Op.getOperand(1), Op.getOperand(2)); 3206 case Intrinsic::aarch64_sve_lastb: 3207 return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(), 3208 Op.getOperand(1), Op.getOperand(2)); 3209 case Intrinsic::aarch64_sve_rev: 3210 return DAG.getNode(AArch64ISD::REV, dl, Op.getValueType(), 3211 Op.getOperand(1)); 3212 case Intrinsic::aarch64_sve_tbl: 3213 return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(), 3214 Op.getOperand(1), Op.getOperand(2)); 3215 case Intrinsic::aarch64_sve_trn1: 3216 return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(), 3217 Op.getOperand(1), Op.getOperand(2)); 3218 case Intrinsic::aarch64_sve_trn2: 3219 return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(), 3220 Op.getOperand(1), Op.getOperand(2)); 3221 case Intrinsic::aarch64_sve_uzp1: 3222 return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(), 3223 Op.getOperand(1), Op.getOperand(2)); 3224 case Intrinsic::aarch64_sve_uzp2: 3225 return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(), 3226 Op.getOperand(1), Op.getOperand(2)); 3227 case Intrinsic::aarch64_sve_zip1: 3228 return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(), 3229 Op.getOperand(1), Op.getOperand(2)); 3230 case Intrinsic::aarch64_sve_zip2: 3231 return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(), 3232 Op.getOperand(1), Op.getOperand(2)); 3233 case Intrinsic::aarch64_sve_ptrue: 3234 return DAG.getNode(AArch64ISD::PTRUE, dl, Op.getValueType(), 3235 Op.getOperand(1)); 3236 case Intrinsic::aarch64_sve_dupq_lane: 3237 return LowerDUPQLane(Op, DAG); 3238 case Intrinsic::aarch64_sve_convert_from_svbool: 3239 return DAG.getNode(AArch64ISD::REINTERPRET_CAST, dl, Op.getValueType(), 3240 Op.getOperand(1)); 3241 case Intrinsic::aarch64_sve_convert_to_svbool: { 3242 EVT OutVT = Op.getValueType(); 3243 EVT InVT = Op.getOperand(1).getValueType(); 3244 // Return the operand if the cast isn't changing type, 3245 // i.e. <n x 16 x i1> -> <n x 16 x i1> 3246 if (InVT == OutVT) 3247 return Op.getOperand(1); 3248 // Otherwise, zero the newly introduced lanes. 3249 SDValue Reinterpret = 3250 DAG.getNode(AArch64ISD::REINTERPRET_CAST, dl, OutVT, Op.getOperand(1)); 3251 SDValue Mask = getPTrue(DAG, dl, InVT, AArch64SVEPredPattern::all); 3252 SDValue MaskReinterpret = 3253 DAG.getNode(AArch64ISD::REINTERPRET_CAST, dl, OutVT, Mask); 3254 return DAG.getNode(ISD::AND, dl, OutVT, Reinterpret, MaskReinterpret); 3255 } 3256 3257 case Intrinsic::aarch64_sve_insr: { 3258 SDValue Scalar = Op.getOperand(2); 3259 EVT ScalarTy = Scalar.getValueType(); 3260 if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) 3261 Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); 3262 3263 return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(), 3264 Op.getOperand(1), Scalar); 3265 } 3266 3267 case Intrinsic::localaddress: { 3268 const auto &MF = DAG.getMachineFunction(); 3269 const auto *RegInfo = Subtarget->getRegisterInfo(); 3270 unsigned Reg = RegInfo->getLocalAddressRegister(MF); 3271 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, 3272 Op.getSimpleValueType()); 3273 } 3274 3275 case Intrinsic::eh_recoverfp: { 3276 // FIXME: This needs to be implemented to correctly handle highly aligned 3277 // stack objects. For now we simply return the incoming FP. Refer D53541 3278 // for more details. 3279 SDValue FnOp = Op.getOperand(1); 3280 SDValue IncomingFPOp = Op.getOperand(2); 3281 GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); 3282 auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); 3283 if (!Fn) 3284 report_fatal_error( 3285 "llvm.eh.recoverfp must take a function as the first argument"); 3286 return IncomingFPOp; 3287 } 3288 3289 case Intrinsic::aarch64_neon_vsri: 3290 case Intrinsic::aarch64_neon_vsli: { 3291 EVT Ty = Op.getValueType(); 3292 3293 if (!Ty.isVector()) 3294 report_fatal_error("Unexpected type for aarch64_neon_vsli"); 3295 3296 assert(Op.getConstantOperandVal(3) <= Ty.getScalarSizeInBits()); 3297 3298 bool IsShiftRight = IntNo == Intrinsic::aarch64_neon_vsri; 3299 unsigned Opcode = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI; 3300 return DAG.getNode(Opcode, dl, Ty, Op.getOperand(1), Op.getOperand(2), 3301 Op.getOperand(3)); 3302 } 3303 3304 case Intrinsic::aarch64_neon_srhadd: 3305 case Intrinsic::aarch64_neon_urhadd: { 3306 bool IsSignedAdd = IntNo == Intrinsic::aarch64_neon_srhadd; 3307 unsigned Opcode = IsSignedAdd ? AArch64ISD::SRHADD : AArch64ISD::URHADD; 3308 return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), 3309 Op.getOperand(2)); 3310 } 3311 } 3312 } 3313 3314 bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 3315 return ExtVal.getValueType().isScalableVector(); 3316 } 3317 3318 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16. 3319 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST, 3320 EVT VT, EVT MemVT, 3321 SelectionDAG &DAG) { 3322 assert(VT.isVector() && "VT should be a vector type"); 3323 assert(MemVT == MVT::v4i8 && VT == MVT::v4i16); 3324 3325 SDValue Value = ST->getValue(); 3326 3327 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract 3328 // the word lane which represent the v4i8 subvector. It optimizes the store 3329 // to: 3330 // 3331 // xtn v0.8b, v0.8h 3332 // str s0, [x0] 3333 3334 SDValue Undef = DAG.getUNDEF(MVT::i16); 3335 SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL, 3336 {Undef, Undef, Undef, Undef}); 3337 3338 SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, 3339 Value, UndefVec); 3340 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt); 3341 3342 Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc); 3343 SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 3344 Trunc, DAG.getConstant(0, DL, MVT::i64)); 3345 3346 return DAG.getStore(ST->getChain(), DL, ExtractTrunc, 3347 ST->getBasePtr(), ST->getMemOperand()); 3348 } 3349 3350 // Custom lowering for any store, vector or scalar and/or default or with 3351 // a truncate operations. Currently only custom lower truncate operation 3352 // from vector v4i16 to v4i8 or volatile stores of i128. 3353 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op, 3354 SelectionDAG &DAG) const { 3355 SDLoc Dl(Op); 3356 StoreSDNode *StoreNode = cast<StoreSDNode>(Op); 3357 assert (StoreNode && "Can only custom lower store nodes"); 3358 3359 SDValue Value = StoreNode->getValue(); 3360 3361 EVT VT = Value.getValueType(); 3362 EVT MemVT = StoreNode->getMemoryVT(); 3363 3364 if (VT.isVector()) { 3365 if (useSVEForFixedLengthVectorVT(VT)) 3366 return LowerFixedLengthVectorStoreToSVE(Op, DAG); 3367 3368 unsigned AS = StoreNode->getAddressSpace(); 3369 Align Alignment = StoreNode->getAlign(); 3370 if (Alignment < MemVT.getStoreSize() && 3371 !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment.value(), 3372 StoreNode->getMemOperand()->getFlags(), 3373 nullptr)) { 3374 return scalarizeVectorStore(StoreNode, DAG); 3375 } 3376 3377 if (StoreNode->isTruncatingStore()) { 3378 return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG); 3379 } 3380 // 256 bit non-temporal stores can be lowered to STNP. Do this as part of 3381 // the custom lowering, as there are no un-paired non-temporal stores and 3382 // legalization will break up 256 bit inputs. 3383 if (StoreNode->isNonTemporal() && MemVT.getSizeInBits() == 256u && 3384 MemVT.getVectorElementCount().Min % 2u == 0 && 3385 ((MemVT.getScalarSizeInBits() == 8u || 3386 MemVT.getScalarSizeInBits() == 16u || 3387 MemVT.getScalarSizeInBits() == 32u || 3388 MemVT.getScalarSizeInBits() == 64u))) { 3389 SDValue Lo = 3390 DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl, 3391 MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), 3392 StoreNode->getValue(), DAG.getConstant(0, Dl, MVT::i64)); 3393 SDValue Hi = DAG.getNode( 3394 ISD::EXTRACT_SUBVECTOR, Dl, 3395 MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), 3396 StoreNode->getValue(), 3397 DAG.getConstant(MemVT.getVectorElementCount().Min / 2, Dl, MVT::i64)); 3398 SDValue Result = DAG.getMemIntrinsicNode( 3399 AArch64ISD::STNP, Dl, DAG.getVTList(MVT::Other), 3400 {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, 3401 StoreNode->getMemoryVT(), StoreNode->getMemOperand()); 3402 return Result; 3403 } 3404 } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) { 3405 assert(StoreNode->getValue()->getValueType(0) == MVT::i128); 3406 SDValue Lo = 3407 DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(), 3408 DAG.getConstant(0, Dl, MVT::i64)); 3409 SDValue Hi = 3410 DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(), 3411 DAG.getConstant(1, Dl, MVT::i64)); 3412 SDValue Result = DAG.getMemIntrinsicNode( 3413 AArch64ISD::STP, Dl, DAG.getVTList(MVT::Other), 3414 {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, 3415 StoreNode->getMemoryVT(), StoreNode->getMemOperand()); 3416 return Result; 3417 } 3418 3419 return SDValue(); 3420 } 3421 3422 SDValue AArch64TargetLowering::LowerOperation(SDValue Op, 3423 SelectionDAG &DAG) const { 3424 LLVM_DEBUG(dbgs() << "Custom lowering: "); 3425 LLVM_DEBUG(Op.dump()); 3426 3427 switch (Op.getOpcode()) { 3428 default: 3429 llvm_unreachable("unimplemented operand"); 3430 return SDValue(); 3431 case ISD::BITCAST: 3432 return LowerBITCAST(Op, DAG); 3433 case ISD::GlobalAddress: 3434 return LowerGlobalAddress(Op, DAG); 3435 case ISD::GlobalTLSAddress: 3436 return LowerGlobalTLSAddress(Op, DAG); 3437 case ISD::SETCC: 3438 case ISD::STRICT_FSETCC: 3439 case ISD::STRICT_FSETCCS: 3440 return LowerSETCC(Op, DAG); 3441 case ISD::BR_CC: 3442 return LowerBR_CC(Op, DAG); 3443 case ISD::SELECT: 3444 return LowerSELECT(Op, DAG); 3445 case ISD::SELECT_CC: 3446 return LowerSELECT_CC(Op, DAG); 3447 case ISD::JumpTable: 3448 return LowerJumpTable(Op, DAG); 3449 case ISD::BR_JT: 3450 return LowerBR_JT(Op, DAG); 3451 case ISD::ConstantPool: 3452 return LowerConstantPool(Op, DAG); 3453 case ISD::BlockAddress: 3454 return LowerBlockAddress(Op, DAG); 3455 case ISD::VASTART: 3456 return LowerVASTART(Op, DAG); 3457 case ISD::VACOPY: 3458 return LowerVACOPY(Op, DAG); 3459 case ISD::VAARG: 3460 return LowerVAARG(Op, DAG); 3461 case ISD::ADDC: 3462 case ISD::ADDE: 3463 case ISD::SUBC: 3464 case ISD::SUBE: 3465 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3466 case ISD::SADDO: 3467 case ISD::UADDO: 3468 case ISD::SSUBO: 3469 case ISD::USUBO: 3470 case ISD::SMULO: 3471 case ISD::UMULO: 3472 return LowerXALUO(Op, DAG); 3473 case ISD::FADD: 3474 if (useSVEForFixedLengthVectorVT(Op.getValueType())) 3475 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FADD_PRED); 3476 return LowerF128Call(Op, DAG, RTLIB::ADD_F128); 3477 case ISD::FSUB: 3478 return LowerF128Call(Op, DAG, RTLIB::SUB_F128); 3479 case ISD::FMUL: 3480 return LowerF128Call(Op, DAG, RTLIB::MUL_F128); 3481 case ISD::FMA: 3482 return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMA_PRED); 3483 case ISD::FDIV: 3484 return LowerF128Call(Op, DAG, RTLIB::DIV_F128); 3485 case ISD::FP_ROUND: 3486 case ISD::STRICT_FP_ROUND: 3487 return LowerFP_ROUND(Op, DAG); 3488 case ISD::FP_EXTEND: 3489 return LowerFP_EXTEND(Op, DAG); 3490 case ISD::FRAMEADDR: 3491 return LowerFRAMEADDR(Op, DAG); 3492 case ISD::SPONENTRY: 3493 return LowerSPONENTRY(Op, DAG); 3494 case ISD::RETURNADDR: 3495 return LowerRETURNADDR(Op, DAG); 3496 case ISD::ADDROFRETURNADDR: 3497 return LowerADDROFRETURNADDR(Op, DAG); 3498 case ISD::INSERT_VECTOR_ELT: 3499 return LowerINSERT_VECTOR_ELT(Op, DAG); 3500 case ISD::EXTRACT_VECTOR_ELT: 3501 return LowerEXTRACT_VECTOR_ELT(Op, DAG); 3502 case ISD::BUILD_VECTOR: 3503 return LowerBUILD_VECTOR(Op, DAG); 3504 case ISD::VECTOR_SHUFFLE: 3505 return LowerVECTOR_SHUFFLE(Op, DAG); 3506 case ISD::SPLAT_VECTOR: 3507 return LowerSPLAT_VECTOR(Op, DAG); 3508 case ISD::EXTRACT_SUBVECTOR: 3509 return LowerEXTRACT_SUBVECTOR(Op, DAG); 3510 case ISD::INSERT_SUBVECTOR: 3511 return LowerINSERT_SUBVECTOR(Op, DAG); 3512 case ISD::SDIV: 3513 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SDIV_PRED); 3514 case ISD::UDIV: 3515 return LowerToPredicatedOp(Op, DAG, AArch64ISD::UDIV_PRED); 3516 case ISD::SMIN: 3517 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMIN_MERGE_OP1); 3518 case ISD::UMIN: 3519 return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMIN_MERGE_OP1); 3520 case ISD::SMAX: 3521 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMAX_MERGE_OP1); 3522 case ISD::UMAX: 3523 return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMAX_MERGE_OP1); 3524 case ISD::SRA: 3525 case ISD::SRL: 3526 case ISD::SHL: 3527 return LowerVectorSRA_SRL_SHL(Op, DAG); 3528 case ISD::SHL_PARTS: 3529 return LowerShiftLeftParts(Op, DAG); 3530 case ISD::SRL_PARTS: 3531 case ISD::SRA_PARTS: 3532 return LowerShiftRightParts(Op, DAG); 3533 case ISD::CTPOP: 3534 return LowerCTPOP(Op, DAG); 3535 case ISD::FCOPYSIGN: 3536 return LowerFCOPYSIGN(Op, DAG); 3537 case ISD::OR: 3538 return LowerVectorOR(Op, DAG); 3539 case ISD::XOR: 3540 return LowerXOR(Op, DAG); 3541 case ISD::PREFETCH: 3542 return LowerPREFETCH(Op, DAG); 3543 case ISD::SINT_TO_FP: 3544 case ISD::UINT_TO_FP: 3545 case ISD::STRICT_SINT_TO_FP: 3546 case ISD::STRICT_UINT_TO_FP: 3547 return LowerINT_TO_FP(Op, DAG); 3548 case ISD::FP_TO_SINT: 3549 case ISD::FP_TO_UINT: 3550 case ISD::STRICT_FP_TO_SINT: 3551 case ISD::STRICT_FP_TO_UINT: 3552 return LowerFP_TO_INT(Op, DAG); 3553 case ISD::FSINCOS: 3554 return LowerFSINCOS(Op, DAG); 3555 case ISD::FLT_ROUNDS_: 3556 return LowerFLT_ROUNDS_(Op, DAG); 3557 case ISD::MUL: 3558 return LowerMUL(Op, DAG); 3559 case ISD::INTRINSIC_WO_CHAIN: 3560 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3561 case ISD::STORE: 3562 return LowerSTORE(Op, DAG); 3563 case ISD::VECREDUCE_ADD: 3564 case ISD::VECREDUCE_SMAX: 3565 case ISD::VECREDUCE_SMIN: 3566 case ISD::VECREDUCE_UMAX: 3567 case ISD::VECREDUCE_UMIN: 3568 case ISD::VECREDUCE_FMAX: 3569 case ISD::VECREDUCE_FMIN: 3570 return LowerVECREDUCE(Op, DAG); 3571 case ISD::ATOMIC_LOAD_SUB: 3572 return LowerATOMIC_LOAD_SUB(Op, DAG); 3573 case ISD::ATOMIC_LOAD_AND: 3574 return LowerATOMIC_LOAD_AND(Op, DAG); 3575 case ISD::DYNAMIC_STACKALLOC: 3576 return LowerDYNAMIC_STACKALLOC(Op, DAG); 3577 case ISD::VSCALE: 3578 return LowerVSCALE(Op, DAG); 3579 case ISD::TRUNCATE: 3580 return LowerTRUNCATE(Op, DAG); 3581 case ISD::LOAD: 3582 if (useSVEForFixedLengthVectorVT(Op.getValueType())) 3583 return LowerFixedLengthVectorLoadToSVE(Op, DAG); 3584 llvm_unreachable("Unexpected request to lower ISD::LOAD"); 3585 case ISD::ADD: 3586 if (useSVEForFixedLengthVectorVT(Op.getValueType())) 3587 return LowerToPredicatedOp(Op, DAG, AArch64ISD::ADD_PRED); 3588 llvm_unreachable("Unexpected request to lower ISD::ADD"); 3589 } 3590 } 3591 3592 bool AArch64TargetLowering::useSVEForFixedLengthVectors() const { 3593 // Prefer NEON unless larger SVE registers are available. 3594 return Subtarget->hasSVE() && Subtarget->getMinSVEVectorSizeInBits() >= 256; 3595 } 3596 3597 bool AArch64TargetLowering::useSVEForFixedLengthVectorVT(EVT VT) const { 3598 if (!useSVEForFixedLengthVectors()) 3599 return false; 3600 3601 if (!VT.isFixedLengthVector()) 3602 return false; 3603 3604 // Fixed length predicates should be promoted to i8. 3605 // NOTE: This is consistent with how NEON (and thus 64/128bit vectors) work. 3606 if (VT.getVectorElementType() == MVT::i1) 3607 return false; 3608 3609 // Don't use SVE for vectors we cannot scalarize if required. 3610 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { 3611 default: 3612 return false; 3613 case MVT::i8: 3614 case MVT::i16: 3615 case MVT::i32: 3616 case MVT::i64: 3617 case MVT::f16: 3618 case MVT::f32: 3619 case MVT::f64: 3620 break; 3621 } 3622 3623 // Ensure NEON MVTs only belong to a single register class. 3624 if (VT.getSizeInBits() <= 128) 3625 return false; 3626 3627 // Don't use SVE for types that don't fit. 3628 if (VT.getSizeInBits() > Subtarget->getMinSVEVectorSizeInBits()) 3629 return false; 3630 3631 // TODO: Perhaps an artificial restriction, but worth having whilst getting 3632 // the base fixed length SVE support in place. 3633 if (!VT.isPow2VectorType()) 3634 return false; 3635 3636 return true; 3637 } 3638 3639 //===----------------------------------------------------------------------===// 3640 // Calling Convention Implementation 3641 //===----------------------------------------------------------------------===// 3642 3643 /// Selects the correct CCAssignFn for a given CallingConvention value. 3644 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, 3645 bool IsVarArg) const { 3646 switch (CC) { 3647 default: 3648 report_fatal_error("Unsupported calling convention."); 3649 case CallingConv::WebKit_JS: 3650 return CC_AArch64_WebKit_JS; 3651 case CallingConv::GHC: 3652 return CC_AArch64_GHC; 3653 case CallingConv::C: 3654 case CallingConv::Fast: 3655 case CallingConv::PreserveMost: 3656 case CallingConv::CXX_FAST_TLS: 3657 case CallingConv::Swift: 3658 if (Subtarget->isTargetWindows() && IsVarArg) 3659 return CC_AArch64_Win64_VarArg; 3660 if (!Subtarget->isTargetDarwin()) 3661 return CC_AArch64_AAPCS; 3662 if (!IsVarArg) 3663 return CC_AArch64_DarwinPCS; 3664 return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg 3665 : CC_AArch64_DarwinPCS_VarArg; 3666 case CallingConv::Win64: 3667 return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS; 3668 case CallingConv::CFGuard_Check: 3669 return CC_AArch64_Win64_CFGuard_Check; 3670 case CallingConv::AArch64_VectorCall: 3671 case CallingConv::AArch64_SVE_VectorCall: 3672 return CC_AArch64_AAPCS; 3673 } 3674 } 3675 3676 CCAssignFn * 3677 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { 3678 return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS 3679 : RetCC_AArch64_AAPCS; 3680 } 3681 3682 SDValue AArch64TargetLowering::LowerFormalArguments( 3683 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3684 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3685 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3686 MachineFunction &MF = DAG.getMachineFunction(); 3687 MachineFrameInfo &MFI = MF.getFrameInfo(); 3688 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); 3689 3690 // Assign locations to all of the incoming arguments. 3691 SmallVector<CCValAssign, 16> ArgLocs; 3692 DenseMap<unsigned, SDValue> CopiedRegs; 3693 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3694 *DAG.getContext()); 3695 3696 // At this point, Ins[].VT may already be promoted to i32. To correctly 3697 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and 3698 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. 3699 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here 3700 // we use a special version of AnalyzeFormalArguments to pass in ValVT and 3701 // LocVT. 3702 unsigned NumArgs = Ins.size(); 3703 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin(); 3704 unsigned CurArgIdx = 0; 3705 for (unsigned i = 0; i != NumArgs; ++i) { 3706 MVT ValVT = Ins[i].VT; 3707 if (Ins[i].isOrigArg()) { 3708 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); 3709 CurArgIdx = Ins[i].getOrigArgIndex(); 3710 3711 // Get type of the original argument. 3712 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), 3713 /*AllowUnknown*/ true); 3714 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; 3715 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. 3716 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) 3717 ValVT = MVT::i8; 3718 else if (ActualMVT == MVT::i16) 3719 ValVT = MVT::i16; 3720 } 3721 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); 3722 bool Res = 3723 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); 3724 assert(!Res && "Call operand has unhandled type"); 3725 (void)Res; 3726 } 3727 assert(ArgLocs.size() == Ins.size()); 3728 SmallVector<SDValue, 16> ArgValues; 3729 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3730 CCValAssign &VA = ArgLocs[i]; 3731 3732 if (Ins[i].Flags.isByVal()) { 3733 // Byval is used for HFAs in the PCS, but the system should work in a 3734 // non-compliant manner for larger structs. 3735 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3736 int Size = Ins[i].Flags.getByValSize(); 3737 unsigned NumRegs = (Size + 7) / 8; 3738 3739 // FIXME: This works on big-endian for composite byvals, which are the common 3740 // case. It should also work for fundamental types too. 3741 unsigned FrameIdx = 3742 MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); 3743 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); 3744 InVals.push_back(FrameIdxN); 3745 3746 continue; 3747 } 3748 3749 SDValue ArgValue; 3750 if (VA.isRegLoc()) { 3751 // Arguments stored in registers. 3752 EVT RegVT = VA.getLocVT(); 3753 const TargetRegisterClass *RC; 3754 3755 if (RegVT == MVT::i32) 3756 RC = &AArch64::GPR32RegClass; 3757 else if (RegVT == MVT::i64) 3758 RC = &AArch64::GPR64RegClass; 3759 else if (RegVT == MVT::f16 || RegVT == MVT::bf16) 3760 RC = &AArch64::FPR16RegClass; 3761 else if (RegVT == MVT::f32) 3762 RC = &AArch64::FPR32RegClass; 3763 else if (RegVT == MVT::f64 || RegVT.is64BitVector()) 3764 RC = &AArch64::FPR64RegClass; 3765 else if (RegVT == MVT::f128 || RegVT.is128BitVector()) 3766 RC = &AArch64::FPR128RegClass; 3767 else if (RegVT.isScalableVector() && 3768 RegVT.getVectorElementType() == MVT::i1) 3769 RC = &AArch64::PPRRegClass; 3770 else if (RegVT.isScalableVector()) 3771 RC = &AArch64::ZPRRegClass; 3772 else 3773 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 3774 3775 // Transform the arguments in physical registers into virtual ones. 3776 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3777 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 3778 3779 // If this is an 8, 16 or 32-bit value, it is really passed promoted 3780 // to 64 bits. Insert an assert[sz]ext to capture this, then 3781 // truncate to the right size. 3782 switch (VA.getLocInfo()) { 3783 default: 3784 llvm_unreachable("Unknown loc info!"); 3785 case CCValAssign::Full: 3786 break; 3787 case CCValAssign::Indirect: 3788 assert(VA.getValVT().isScalableVector() && 3789 "Only scalable vectors can be passed indirectly"); 3790 break; 3791 case CCValAssign::BCvt: 3792 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); 3793 break; 3794 case CCValAssign::AExt: 3795 case CCValAssign::SExt: 3796 case CCValAssign::ZExt: 3797 break; 3798 case CCValAssign::AExtUpper: 3799 ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue, 3800 DAG.getConstant(32, DL, RegVT)); 3801 ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT()); 3802 break; 3803 } 3804 } else { // VA.isRegLoc() 3805 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); 3806 unsigned ArgOffset = VA.getLocMemOffset(); 3807 unsigned ArgSize = (VA.getLocInfo() == CCValAssign::Indirect 3808 ? VA.getLocVT().getSizeInBits() 3809 : VA.getValVT().getSizeInBits()) / 8; 3810 3811 uint32_t BEAlign = 0; 3812 if (!Subtarget->isLittleEndian() && ArgSize < 8 && 3813 !Ins[i].Flags.isInConsecutiveRegs()) 3814 BEAlign = 8 - ArgSize; 3815 3816 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); 3817 3818 // Create load nodes to retrieve arguments from the stack. 3819 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3820 3821 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 3822 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 3823 MVT MemVT = VA.getValVT(); 3824 3825 switch (VA.getLocInfo()) { 3826 default: 3827 break; 3828 case CCValAssign::Trunc: 3829 case CCValAssign::BCvt: 3830 MemVT = VA.getLocVT(); 3831 break; 3832 case CCValAssign::Indirect: 3833 assert(VA.getValVT().isScalableVector() && 3834 "Only scalable vectors can be passed indirectly"); 3835 MemVT = VA.getLocVT(); 3836 break; 3837 case CCValAssign::SExt: 3838 ExtType = ISD::SEXTLOAD; 3839 break; 3840 case CCValAssign::ZExt: 3841 ExtType = ISD::ZEXTLOAD; 3842 break; 3843 case CCValAssign::AExt: 3844 ExtType = ISD::EXTLOAD; 3845 break; 3846 } 3847 3848 ArgValue = DAG.getExtLoad( 3849 ExtType, DL, VA.getLocVT(), Chain, FIN, 3850 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 3851 MemVT); 3852 3853 } 3854 3855 if (VA.getLocInfo() == CCValAssign::Indirect) { 3856 assert(VA.getValVT().isScalableVector() && 3857 "Only scalable vectors can be passed indirectly"); 3858 // If value is passed via pointer - do a load. 3859 ArgValue = 3860 DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, MachinePointerInfo()); 3861 } 3862 3863 if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer()) 3864 ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(), 3865 ArgValue, DAG.getValueType(MVT::i32)); 3866 InVals.push_back(ArgValue); 3867 } 3868 3869 // varargs 3870 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3871 if (isVarArg) { 3872 if (!Subtarget->isTargetDarwin() || IsWin64) { 3873 // The AAPCS variadic function ABI is identical to the non-variadic 3874 // one. As a result there may be more arguments in registers and we should 3875 // save them for future reference. 3876 // Win64 variadic functions also pass arguments in registers, but all float 3877 // arguments are passed in integer registers. 3878 saveVarArgRegisters(CCInfo, DAG, DL, Chain); 3879 } 3880 3881 // This will point to the next argument passed via stack. 3882 unsigned StackOffset = CCInfo.getNextStackOffset(); 3883 // We currently pass all varargs at 8-byte alignment, or 4 for ILP32 3884 StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8); 3885 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); 3886 3887 if (MFI.hasMustTailInVarArgFunc()) { 3888 SmallVector<MVT, 2> RegParmTypes; 3889 RegParmTypes.push_back(MVT::i64); 3890 RegParmTypes.push_back(MVT::f128); 3891 // Compute the set of forwarded registers. The rest are scratch. 3892 SmallVectorImpl<ForwardedRegister> &Forwards = 3893 FuncInfo->getForwardedMustTailRegParms(); 3894 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, 3895 CC_AArch64_AAPCS); 3896 3897 // Conservatively forward X8, since it might be used for aggregate return. 3898 if (!CCInfo.isAllocated(AArch64::X8)) { 3899 unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); 3900 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); 3901 } 3902 } 3903 } 3904 3905 // On Windows, InReg pointers must be returned, so record the pointer in a 3906 // virtual register at the start of the function so it can be returned in the 3907 // epilogue. 3908 if (IsWin64) { 3909 for (unsigned I = 0, E = Ins.size(); I != E; ++I) { 3910 if (Ins[I].Flags.isInReg()) { 3911 assert(!FuncInfo->getSRetReturnReg()); 3912 3913 MVT PtrTy = getPointerTy(DAG.getDataLayout()); 3914 Register Reg = 3915 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); 3916 FuncInfo->setSRetReturnReg(Reg); 3917 3918 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]); 3919 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 3920 break; 3921 } 3922 } 3923 } 3924 3925 unsigned StackArgSize = CCInfo.getNextStackOffset(); 3926 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3927 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { 3928 // This is a non-standard ABI so by fiat I say we're allowed to make full 3929 // use of the stack area to be popped, which must be aligned to 16 bytes in 3930 // any case: 3931 StackArgSize = alignTo(StackArgSize, 16); 3932 3933 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding 3934 // a multiple of 16. 3935 FuncInfo->setArgumentStackToRestore(StackArgSize); 3936 3937 // This realignment carries over to the available bytes below. Our own 3938 // callers will guarantee the space is free by giving an aligned value to 3939 // CALLSEQ_START. 3940 } 3941 // Even if we're not expected to free up the space, it's useful to know how 3942 // much is there while considering tail calls (because we can reuse it). 3943 FuncInfo->setBytesInStackArgArea(StackArgSize); 3944 3945 if (Subtarget->hasCustomCallingConv()) 3946 Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); 3947 3948 return Chain; 3949 } 3950 3951 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, 3952 SelectionDAG &DAG, 3953 const SDLoc &DL, 3954 SDValue &Chain) const { 3955 MachineFunction &MF = DAG.getMachineFunction(); 3956 MachineFrameInfo &MFI = MF.getFrameInfo(); 3957 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3958 auto PtrVT = getPointerTy(DAG.getDataLayout()); 3959 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); 3960 3961 SmallVector<SDValue, 8> MemOps; 3962 3963 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, 3964 AArch64::X3, AArch64::X4, AArch64::X5, 3965 AArch64::X6, AArch64::X7 }; 3966 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); 3967 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); 3968 3969 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); 3970 int GPRIdx = 0; 3971 if (GPRSaveSize != 0) { 3972 if (IsWin64) { 3973 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false); 3974 if (GPRSaveSize & 15) 3975 // The extra size here, if triggered, will always be 8. 3976 MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false); 3977 } else 3978 GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false); 3979 3980 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT); 3981 3982 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { 3983 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); 3984 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 3985 SDValue Store = DAG.getStore( 3986 Val.getValue(1), DL, Val, FIN, 3987 IsWin64 3988 ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 3989 GPRIdx, 3990 (i - FirstVariadicGPR) * 8) 3991 : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8)); 3992 MemOps.push_back(Store); 3993 FIN = 3994 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); 3995 } 3996 } 3997 FuncInfo->setVarArgsGPRIndex(GPRIdx); 3998 FuncInfo->setVarArgsGPRSize(GPRSaveSize); 3999 4000 if (Subtarget->hasFPARMv8() && !IsWin64) { 4001 static const MCPhysReg FPRArgRegs[] = { 4002 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, 4003 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; 4004 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); 4005 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); 4006 4007 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); 4008 int FPRIdx = 0; 4009 if (FPRSaveSize != 0) { 4010 FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false); 4011 4012 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); 4013 4014 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { 4015 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); 4016 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); 4017 4018 SDValue Store = DAG.getStore( 4019 Val.getValue(1), DL, Val, FIN, 4020 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16)); 4021 MemOps.push_back(Store); 4022 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 4023 DAG.getConstant(16, DL, PtrVT)); 4024 } 4025 } 4026 FuncInfo->setVarArgsFPRIndex(FPRIdx); 4027 FuncInfo->setVarArgsFPRSize(FPRSaveSize); 4028 } 4029 4030 if (!MemOps.empty()) { 4031 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 4032 } 4033 } 4034 4035 /// LowerCallResult - Lower the result values of a call into the 4036 /// appropriate copies out of appropriate physical registers. 4037 SDValue AArch64TargetLowering::LowerCallResult( 4038 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 4039 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 4040 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, 4041 SDValue ThisVal) const { 4042 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 4043 ? RetCC_AArch64_WebKit_JS 4044 : RetCC_AArch64_AAPCS; 4045 // Assign locations to each value returned by this call. 4046 SmallVector<CCValAssign, 16> RVLocs; 4047 DenseMap<unsigned, SDValue> CopiedRegs; 4048 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4049 *DAG.getContext()); 4050 CCInfo.AnalyzeCallResult(Ins, RetCC); 4051 4052 // Copy all of the result registers out of their specified physreg. 4053 for (unsigned i = 0; i != RVLocs.size(); ++i) { 4054 CCValAssign VA = RVLocs[i]; 4055 4056 // Pass 'this' value directly from the argument to return value, to avoid 4057 // reg unit interference 4058 if (i == 0 && isThisReturn) { 4059 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && 4060 "unexpected return calling convention register assignment"); 4061 InVals.push_back(ThisVal); 4062 continue; 4063 } 4064 4065 // Avoid copying a physreg twice since RegAllocFast is incompetent and only 4066 // allows one use of a physreg per block. 4067 SDValue Val = CopiedRegs.lookup(VA.getLocReg()); 4068 if (!Val) { 4069 Val = 4070 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 4071 Chain = Val.getValue(1); 4072 InFlag = Val.getValue(2); 4073 CopiedRegs[VA.getLocReg()] = Val; 4074 } 4075 4076 switch (VA.getLocInfo()) { 4077 default: 4078 llvm_unreachable("Unknown loc info!"); 4079 case CCValAssign::Full: 4080 break; 4081 case CCValAssign::BCvt: 4082 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 4083 break; 4084 case CCValAssign::AExtUpper: 4085 Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val, 4086 DAG.getConstant(32, DL, VA.getLocVT())); 4087 LLVM_FALLTHROUGH; 4088 case CCValAssign::AExt: 4089 LLVM_FALLTHROUGH; 4090 case CCValAssign::ZExt: 4091 Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT()); 4092 break; 4093 } 4094 4095 InVals.push_back(Val); 4096 } 4097 4098 return Chain; 4099 } 4100 4101 /// Return true if the calling convention is one that we can guarantee TCO for. 4102 static bool canGuaranteeTCO(CallingConv::ID CC) { 4103 return CC == CallingConv::Fast; 4104 } 4105 4106 /// Return true if we might ever do TCO for calls with this calling convention. 4107 static bool mayTailCallThisCC(CallingConv::ID CC) { 4108 switch (CC) { 4109 case CallingConv::C: 4110 case CallingConv::AArch64_SVE_VectorCall: 4111 case CallingConv::PreserveMost: 4112 case CallingConv::Swift: 4113 return true; 4114 default: 4115 return canGuaranteeTCO(CC); 4116 } 4117 } 4118 4119 bool AArch64TargetLowering::isEligibleForTailCallOptimization( 4120 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, 4121 const SmallVectorImpl<ISD::OutputArg> &Outs, 4122 const SmallVectorImpl<SDValue> &OutVals, 4123 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4124 if (!mayTailCallThisCC(CalleeCC)) 4125 return false; 4126 4127 MachineFunction &MF = DAG.getMachineFunction(); 4128 const Function &CallerF = MF.getFunction(); 4129 CallingConv::ID CallerCC = CallerF.getCallingConv(); 4130 4131 // If this function uses the C calling convention but has an SVE signature, 4132 // then it preserves more registers and should assume the SVE_VectorCall CC. 4133 // The check for matching callee-saved regs will determine whether it is 4134 // eligible for TCO. 4135 if (CallerCC == CallingConv::C && 4136 AArch64RegisterInfo::hasSVEArgsOrReturn(&MF)) 4137 CallerCC = CallingConv::AArch64_SVE_VectorCall; 4138 4139 bool CCMatch = CallerCC == CalleeCC; 4140 4141 // When using the Windows calling convention on a non-windows OS, we want 4142 // to back up and restore X18 in such functions; we can't do a tail call 4143 // from those functions. 4144 if (CallerCC == CallingConv::Win64 && !Subtarget->isTargetWindows() && 4145 CalleeCC != CallingConv::Win64) 4146 return false; 4147 4148 // Byval parameters hand the function a pointer directly into the stack area 4149 // we want to reuse during a tail call. Working around this *is* possible (see 4150 // X86) but less efficient and uglier in LowerCall. 4151 for (Function::const_arg_iterator i = CallerF.arg_begin(), 4152 e = CallerF.arg_end(); 4153 i != e; ++i) { 4154 if (i->hasByValAttr()) 4155 return false; 4156 4157 // On Windows, "inreg" attributes signify non-aggregate indirect returns. 4158 // In this case, it is necessary to save/restore X0 in the callee. Tail 4159 // call opt interferes with this. So we disable tail call opt when the 4160 // caller has an argument with "inreg" attribute. 4161 4162 // FIXME: Check whether the callee also has an "inreg" argument. 4163 if (i->hasInRegAttr()) 4164 return false; 4165 } 4166 4167 if (getTargetMachine().Options.GuaranteedTailCallOpt) 4168 return canGuaranteeTCO(CalleeCC) && CCMatch; 4169 4170 // Externally-defined functions with weak linkage should not be 4171 // tail-called on AArch64 when the OS does not support dynamic 4172 // pre-emption of symbols, as the AAELF spec requires normal calls 4173 // to undefined weak functions to be replaced with a NOP or jump to the 4174 // next instruction. The behaviour of branch instructions in this 4175 // situation (as used for tail calls) is implementation-defined, so we 4176 // cannot rely on the linker replacing the tail call with a return. 4177 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4178 const GlobalValue *GV = G->getGlobal(); 4179 const Triple &TT = getTargetMachine().getTargetTriple(); 4180 if (GV->hasExternalWeakLinkage() && 4181 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) 4182 return false; 4183 } 4184 4185 // Now we search for cases where we can use a tail call without changing the 4186 // ABI. Sibcall is used in some places (particularly gcc) to refer to this 4187 // concept. 4188 4189 // I want anyone implementing a new calling convention to think long and hard 4190 // about this assert. 4191 assert((!isVarArg || CalleeCC == CallingConv::C) && 4192 "Unexpected variadic calling convention"); 4193 4194 LLVMContext &C = *DAG.getContext(); 4195 if (isVarArg && !Outs.empty()) { 4196 // At least two cases here: if caller is fastcc then we can't have any 4197 // memory arguments (we'd be expected to clean up the stack afterwards). If 4198 // caller is C then we could potentially use its argument area. 4199 4200 // FIXME: for now we take the most conservative of these in both cases: 4201 // disallow all variadic memory operands. 4202 SmallVector<CCValAssign, 16> ArgLocs; 4203 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); 4204 4205 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); 4206 for (const CCValAssign &ArgLoc : ArgLocs) 4207 if (!ArgLoc.isRegLoc()) 4208 return false; 4209 } 4210 4211 // Check that the call results are passed in the same way. 4212 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, 4213 CCAssignFnForCall(CalleeCC, isVarArg), 4214 CCAssignFnForCall(CallerCC, isVarArg))) 4215 return false; 4216 // The callee has to preserve all registers the caller needs to preserve. 4217 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4218 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 4219 if (!CCMatch) { 4220 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 4221 if (Subtarget->hasCustomCallingConv()) { 4222 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); 4223 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); 4224 } 4225 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 4226 return false; 4227 } 4228 4229 // Nothing more to check if the callee is taking no arguments 4230 if (Outs.empty()) 4231 return true; 4232 4233 SmallVector<CCValAssign, 16> ArgLocs; 4234 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); 4235 4236 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); 4237 4238 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 4239 4240 // If any of the arguments is passed indirectly, it must be SVE, so the 4241 // 'getBytesInStackArgArea' is not sufficient to determine whether we need to 4242 // allocate space on the stack. That is why we determine this explicitly here 4243 // the call cannot be a tailcall. 4244 if (llvm::any_of(ArgLocs, [](CCValAssign &A) { 4245 assert((A.getLocInfo() != CCValAssign::Indirect || 4246 A.getValVT().isScalableVector()) && 4247 "Expected value to be scalable"); 4248 return A.getLocInfo() == CCValAssign::Indirect; 4249 })) 4250 return false; 4251 4252 // If the stack arguments for this call do not fit into our own save area then 4253 // the call cannot be made tail. 4254 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 4255 return false; 4256 4257 const MachineRegisterInfo &MRI = MF.getRegInfo(); 4258 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) 4259 return false; 4260 4261 return true; 4262 } 4263 4264 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, 4265 SelectionDAG &DAG, 4266 MachineFrameInfo &MFI, 4267 int ClobberedFI) const { 4268 SmallVector<SDValue, 8> ArgChains; 4269 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 4270 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 4271 4272 // Include the original chain at the beginning of the list. When this is 4273 // used by target LowerCall hooks, this helps legalize find the 4274 // CALLSEQ_BEGIN node. 4275 ArgChains.push_back(Chain); 4276 4277 // Add a chain value for each stack argument corresponding 4278 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 4279 UE = DAG.getEntryNode().getNode()->use_end(); 4280 U != UE; ++U) 4281 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 4282 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 4283 if (FI->getIndex() < 0) { 4284 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 4285 int64_t InLastByte = InFirstByte; 4286 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 4287 4288 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 4289 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 4290 ArgChains.push_back(SDValue(L, 1)); 4291 } 4292 4293 // Build a tokenfactor for all the chains. 4294 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 4295 } 4296 4297 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, 4298 bool TailCallOpt) const { 4299 return CallCC == CallingConv::Fast && TailCallOpt; 4300 } 4301 4302 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, 4303 /// and add input and output parameter nodes. 4304 SDValue 4305 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, 4306 SmallVectorImpl<SDValue> &InVals) const { 4307 SelectionDAG &DAG = CLI.DAG; 4308 SDLoc &DL = CLI.DL; 4309 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 4310 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 4311 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 4312 SDValue Chain = CLI.Chain; 4313 SDValue Callee = CLI.Callee; 4314 bool &IsTailCall = CLI.IsTailCall; 4315 CallingConv::ID CallConv = CLI.CallConv; 4316 bool IsVarArg = CLI.IsVarArg; 4317 4318 MachineFunction &MF = DAG.getMachineFunction(); 4319 MachineFunction::CallSiteInfo CSInfo; 4320 bool IsThisReturn = false; 4321 4322 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 4323 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 4324 bool IsSibCall = false; 4325 4326 // Check callee args/returns for SVE registers and set calling convention 4327 // accordingly. 4328 if (CallConv == CallingConv::C) { 4329 bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){ 4330 return Out.VT.isScalableVector(); 4331 }); 4332 bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){ 4333 return In.VT.isScalableVector(); 4334 }); 4335 4336 if (CalleeInSVE || CalleeOutSVE) 4337 CallConv = CallingConv::AArch64_SVE_VectorCall; 4338 } 4339 4340 if (IsTailCall) { 4341 // Check if it's really possible to do a tail call. 4342 IsTailCall = isEligibleForTailCallOptimization( 4343 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 4344 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) 4345 report_fatal_error("failed to perform tail call elimination on a call " 4346 "site marked musttail"); 4347 4348 // A sibling call is one where we're under the usual C ABI and not planning 4349 // to change that but can still do a tail call: 4350 if (!TailCallOpt && IsTailCall) 4351 IsSibCall = true; 4352 4353 if (IsTailCall) 4354 ++NumTailCalls; 4355 } 4356 4357 // Analyze operands of the call, assigning locations to each operand. 4358 SmallVector<CCValAssign, 16> ArgLocs; 4359 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 4360 *DAG.getContext()); 4361 4362 if (IsVarArg) { 4363 // Handle fixed and variable vector arguments differently. 4364 // Variable vector arguments always go into memory. 4365 unsigned NumArgs = Outs.size(); 4366 4367 for (unsigned i = 0; i != NumArgs; ++i) { 4368 MVT ArgVT = Outs[i].VT; 4369 if (!Outs[i].IsFixed && ArgVT.isScalableVector()) 4370 report_fatal_error("Passing SVE types to variadic functions is " 4371 "currently not supported"); 4372 4373 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4374 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, 4375 /*IsVarArg=*/ !Outs[i].IsFixed); 4376 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); 4377 assert(!Res && "Call operand has unhandled type"); 4378 (void)Res; 4379 } 4380 } else { 4381 // At this point, Outs[].VT may already be promoted to i32. To correctly 4382 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and 4383 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. 4384 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here 4385 // we use a special version of AnalyzeCallOperands to pass in ValVT and 4386 // LocVT. 4387 unsigned NumArgs = Outs.size(); 4388 for (unsigned i = 0; i != NumArgs; ++i) { 4389 MVT ValVT = Outs[i].VT; 4390 // Get type of the original argument. 4391 EVT ActualVT = getValueType(DAG.getDataLayout(), 4392 CLI.getArgs()[Outs[i].OrigArgIndex].Ty, 4393 /*AllowUnknown*/ true); 4394 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; 4395 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 4396 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. 4397 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) 4398 ValVT = MVT::i8; 4399 else if (ActualMVT == MVT::i16) 4400 ValVT = MVT::i16; 4401 4402 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); 4403 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); 4404 assert(!Res && "Call operand has unhandled type"); 4405 (void)Res; 4406 } 4407 } 4408 4409 // Get a count of how many bytes are to be pushed on the stack. 4410 unsigned NumBytes = CCInfo.getNextStackOffset(); 4411 4412 if (IsSibCall) { 4413 // Since we're not changing the ABI to make this a tail call, the memory 4414 // operands are already available in the caller's incoming argument space. 4415 NumBytes = 0; 4416 } 4417 4418 // FPDiff is the byte offset of the call's argument area from the callee's. 4419 // Stores to callee stack arguments will be placed in FixedStackSlots offset 4420 // by this amount for a tail call. In a sibling call it must be 0 because the 4421 // caller will deallocate the entire stack and the callee still expects its 4422 // arguments to begin at SP+0. Completely unused for non-tail calls. 4423 int FPDiff = 0; 4424 4425 if (IsTailCall && !IsSibCall) { 4426 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 4427 4428 // Since callee will pop argument stack as a tail call, we must keep the 4429 // popped size 16-byte aligned. 4430 NumBytes = alignTo(NumBytes, 16); 4431 4432 // FPDiff will be negative if this tail call requires more space than we 4433 // would automatically have in our incoming argument space. Positive if we 4434 // can actually shrink the stack. 4435 FPDiff = NumReusableBytes - NumBytes; 4436 4437 // The stack pointer must be 16-byte aligned at all times it's used for a 4438 // memory operation, which in practice means at *all* times and in 4439 // particular across call boundaries. Therefore our own arguments started at 4440 // a 16-byte aligned SP and the delta applied for the tail call should 4441 // satisfy the same constraint. 4442 assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); 4443 } 4444 4445 // Adjust the stack pointer for the new arguments... 4446 // These operations are automatically eliminated by the prolog/epilog pass 4447 if (!IsSibCall) 4448 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 4449 4450 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, 4451 getPointerTy(DAG.getDataLayout())); 4452 4453 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 4454 SmallSet<unsigned, 8> RegsUsed; 4455 SmallVector<SDValue, 8> MemOpChains; 4456 auto PtrVT = getPointerTy(DAG.getDataLayout()); 4457 4458 if (IsVarArg && CLI.CB && CLI.CB->isMustTailCall()) { 4459 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); 4460 for (const auto &F : Forwards) { 4461 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT); 4462 RegsToPass.emplace_back(F.PReg, Val); 4463 } 4464 } 4465 4466 // Walk the register/memloc assignments, inserting copies/loads. 4467 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4468 CCValAssign &VA = ArgLocs[i]; 4469 SDValue Arg = OutVals[i]; 4470 ISD::ArgFlagsTy Flags = Outs[i].Flags; 4471 4472 // Promote the value if needed. 4473 switch (VA.getLocInfo()) { 4474 default: 4475 llvm_unreachable("Unknown loc info!"); 4476 case CCValAssign::Full: 4477 break; 4478 case CCValAssign::SExt: 4479 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 4480 break; 4481 case CCValAssign::ZExt: 4482 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 4483 break; 4484 case CCValAssign::AExt: 4485 if (Outs[i].ArgVT == MVT::i1) { 4486 // AAPCS requires i1 to be zero-extended to 8-bits by the caller. 4487 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); 4488 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); 4489 } 4490 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 4491 break; 4492 case CCValAssign::AExtUpper: 4493 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); 4494 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 4495 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, 4496 DAG.getConstant(32, DL, VA.getLocVT())); 4497 break; 4498 case CCValAssign::BCvt: 4499 Arg = DAG.getBitcast(VA.getLocVT(), Arg); 4500 break; 4501 case CCValAssign::Trunc: 4502 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4503 break; 4504 case CCValAssign::FPExt: 4505 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 4506 break; 4507 case CCValAssign::Indirect: 4508 assert(VA.getValVT().isScalableVector() && 4509 "Only scalable vectors can be passed indirectly"); 4510 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 4511 Type *Ty = EVT(VA.getValVT()).getTypeForEVT(*DAG.getContext()); 4512 Align Alignment = DAG.getDataLayout().getPrefTypeAlign(Ty); 4513 int FI = MFI.CreateStackObject( 4514 VA.getValVT().getStoreSize().getKnownMinSize(), Alignment, false); 4515 MFI.setStackID(FI, TargetStackID::SVEVector); 4516 4517 SDValue SpillSlot = DAG.getFrameIndex( 4518 FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); 4519 Chain = DAG.getStore( 4520 Chain, DL, Arg, SpillSlot, 4521 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 4522 Arg = SpillSlot; 4523 break; 4524 } 4525 4526 if (VA.isRegLoc()) { 4527 if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && 4528 Outs[0].VT == MVT::i64) { 4529 assert(VA.getLocVT() == MVT::i64 && 4530 "unexpected calling convention register assignment"); 4531 assert(!Ins.empty() && Ins[0].VT == MVT::i64 && 4532 "unexpected use of 'returned'"); 4533 IsThisReturn = true; 4534 } 4535 if (RegsUsed.count(VA.getLocReg())) { 4536 // If this register has already been used then we're trying to pack 4537 // parts of an [N x i32] into an X-register. The extension type will 4538 // take care of putting the two halves in the right place but we have to 4539 // combine them. 4540 SDValue &Bits = 4541 std::find_if(RegsToPass.begin(), RegsToPass.end(), 4542 [=](const std::pair<unsigned, SDValue> &Elt) { 4543 return Elt.first == VA.getLocReg(); 4544 }) 4545 ->second; 4546 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); 4547 // Call site info is used for function's parameter entry value 4548 // tracking. For now we track only simple cases when parameter 4549 // is transferred through whole register. 4550 CSInfo.erase(std::remove_if(CSInfo.begin(), CSInfo.end(), 4551 [&VA](MachineFunction::ArgRegPair ArgReg) { 4552 return ArgReg.Reg == VA.getLocReg(); 4553 }), 4554 CSInfo.end()); 4555 } else { 4556 RegsToPass.emplace_back(VA.getLocReg(), Arg); 4557 RegsUsed.insert(VA.getLocReg()); 4558 const TargetOptions &Options = DAG.getTarget().Options; 4559 if (Options.EmitCallSiteInfo) 4560 CSInfo.emplace_back(VA.getLocReg(), i); 4561 } 4562 } else { 4563 assert(VA.isMemLoc()); 4564 4565 SDValue DstAddr; 4566 MachinePointerInfo DstInfo; 4567 4568 // FIXME: This works on big-endian for composite byvals, which are the 4569 // common case. It should also work for fundamental types too. 4570 uint32_t BEAlign = 0; 4571 unsigned OpSize; 4572 if (VA.getLocInfo() == CCValAssign::Indirect) 4573 OpSize = VA.getLocVT().getSizeInBits(); 4574 else 4575 OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 4576 : VA.getValVT().getSizeInBits(); 4577 OpSize = (OpSize + 7) / 8; 4578 if (!Subtarget->isLittleEndian() && !Flags.isByVal() && 4579 !Flags.isInConsecutiveRegs()) { 4580 if (OpSize < 8) 4581 BEAlign = 8 - OpSize; 4582 } 4583 unsigned LocMemOffset = VA.getLocMemOffset(); 4584 int32_t Offset = LocMemOffset + BEAlign; 4585 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); 4586 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 4587 4588 if (IsTailCall) { 4589 Offset = Offset + FPDiff; 4590 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4591 4592 DstAddr = DAG.getFrameIndex(FI, PtrVT); 4593 DstInfo = 4594 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 4595 4596 // Make sure any stack arguments overlapping with where we're storing 4597 // are loaded before this eventual operation. Otherwise they'll be 4598 // clobbered. 4599 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); 4600 } else { 4601 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); 4602 4603 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 4604 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(), 4605 LocMemOffset); 4606 } 4607 4608 if (Outs[i].Flags.isByVal()) { 4609 SDValue SizeNode = 4610 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); 4611 SDValue Cpy = DAG.getMemcpy( 4612 Chain, DL, DstAddr, Arg, SizeNode, 4613 Outs[i].Flags.getNonZeroByValAlign(), 4614 /*isVol = */ false, /*AlwaysInline = */ false, 4615 /*isTailCall = */ false, DstInfo, MachinePointerInfo()); 4616 4617 MemOpChains.push_back(Cpy); 4618 } else { 4619 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already 4620 // promoted to a legal register type i32, we should truncate Arg back to 4621 // i1/i8/i16. 4622 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || 4623 VA.getValVT() == MVT::i16) 4624 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 4625 4626 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); 4627 MemOpChains.push_back(Store); 4628 } 4629 } 4630 } 4631 4632 if (!MemOpChains.empty()) 4633 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 4634 4635 // Build a sequence of copy-to-reg nodes chained together with token chain 4636 // and flag operands which copy the outgoing args into the appropriate regs. 4637 SDValue InFlag; 4638 for (auto &RegToPass : RegsToPass) { 4639 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 4640 RegToPass.second, InFlag); 4641 InFlag = Chain.getValue(1); 4642 } 4643 4644 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 4645 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 4646 // node so that legalize doesn't hack it. 4647 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4648 auto GV = G->getGlobal(); 4649 unsigned OpFlags = 4650 Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()); 4651 if (OpFlags & AArch64II::MO_GOT) { 4652 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 4653 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); 4654 } else { 4655 const GlobalValue *GV = G->getGlobal(); 4656 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 4657 } 4658 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4659 if (getTargetMachine().getCodeModel() == CodeModel::Large && 4660 Subtarget->isTargetMachO()) { 4661 const char *Sym = S->getSymbol(); 4662 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); 4663 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); 4664 } else { 4665 const char *Sym = S->getSymbol(); 4666 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); 4667 } 4668 } 4669 4670 // We don't usually want to end the call-sequence here because we would tidy 4671 // the frame up *after* the call, however in the ABI-changing tail-call case 4672 // we've carefully laid out the parameters so that when sp is reset they'll be 4673 // in the correct location. 4674 if (IsTailCall && !IsSibCall) { 4675 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), 4676 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 4677 InFlag = Chain.getValue(1); 4678 } 4679 4680 std::vector<SDValue> Ops; 4681 Ops.push_back(Chain); 4682 Ops.push_back(Callee); 4683 4684 if (IsTailCall) { 4685 // Each tail call may have to adjust the stack by a different amount, so 4686 // this information must travel along with the operation for eventual 4687 // consumption by emitEpilogue. 4688 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 4689 } 4690 4691 // Add argument registers to the end of the list so that they are known live 4692 // into the call. 4693 for (auto &RegToPass : RegsToPass) 4694 Ops.push_back(DAG.getRegister(RegToPass.first, 4695 RegToPass.second.getValueType())); 4696 4697 // Add a register mask operand representing the call-preserved registers. 4698 const uint32_t *Mask; 4699 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4700 if (IsThisReturn) { 4701 // For 'this' returns, use the X0-preserving mask if applicable 4702 Mask = TRI->getThisReturnPreservedMask(MF, CallConv); 4703 if (!Mask) { 4704 IsThisReturn = false; 4705 Mask = TRI->getCallPreservedMask(MF, CallConv); 4706 } 4707 } else 4708 Mask = TRI->getCallPreservedMask(MF, CallConv); 4709 4710 if (Subtarget->hasCustomCallingConv()) 4711 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 4712 4713 if (TRI->isAnyArgRegReserved(MF)) 4714 TRI->emitReservedArgRegCallError(MF); 4715 4716 assert(Mask && "Missing call preserved mask for calling convention"); 4717 Ops.push_back(DAG.getRegisterMask(Mask)); 4718 4719 if (InFlag.getNode()) 4720 Ops.push_back(InFlag); 4721 4722 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 4723 4724 // If we're doing a tall call, use a TC_RETURN here rather than an 4725 // actual call instruction. 4726 if (IsTailCall) { 4727 MF.getFrameInfo().setHasTailCall(); 4728 SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); 4729 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); 4730 return Ret; 4731 } 4732 4733 // Returns a chain and a flag for retval copy to use. 4734 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); 4735 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 4736 InFlag = Chain.getValue(1); 4737 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); 4738 4739 uint64_t CalleePopBytes = 4740 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0; 4741 4742 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), 4743 DAG.getIntPtrConstant(CalleePopBytes, DL, true), 4744 InFlag, DL); 4745 if (!Ins.empty()) 4746 InFlag = Chain.getValue(1); 4747 4748 // Handle result values, copying them out of physregs into vregs that we 4749 // return. 4750 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 4751 InVals, IsThisReturn, 4752 IsThisReturn ? OutVals[0] : SDValue()); 4753 } 4754 4755 bool AArch64TargetLowering::CanLowerReturn( 4756 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, 4757 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 4758 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 4759 ? RetCC_AArch64_WebKit_JS 4760 : RetCC_AArch64_AAPCS; 4761 SmallVector<CCValAssign, 16> RVLocs; 4762 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 4763 return CCInfo.CheckReturn(Outs, RetCC); 4764 } 4765 4766 SDValue 4767 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 4768 bool isVarArg, 4769 const SmallVectorImpl<ISD::OutputArg> &Outs, 4770 const SmallVectorImpl<SDValue> &OutVals, 4771 const SDLoc &DL, SelectionDAG &DAG) const { 4772 auto &MF = DAG.getMachineFunction(); 4773 auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 4774 4775 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 4776 ? RetCC_AArch64_WebKit_JS 4777 : RetCC_AArch64_AAPCS; 4778 SmallVector<CCValAssign, 16> RVLocs; 4779 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4780 *DAG.getContext()); 4781 CCInfo.AnalyzeReturn(Outs, RetCC); 4782 4783 // Copy the result values into the output registers. 4784 SDValue Flag; 4785 SmallVector<std::pair<unsigned, SDValue>, 4> RetVals; 4786 SmallSet<unsigned, 4> RegsUsed; 4787 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); 4788 ++i, ++realRVLocIdx) { 4789 CCValAssign &VA = RVLocs[i]; 4790 assert(VA.isRegLoc() && "Can only return in registers!"); 4791 SDValue Arg = OutVals[realRVLocIdx]; 4792 4793 switch (VA.getLocInfo()) { 4794 default: 4795 llvm_unreachable("Unknown loc info!"); 4796 case CCValAssign::Full: 4797 if (Outs[i].ArgVT == MVT::i1) { 4798 // AAPCS requires i1 to be zero-extended to i8 by the producer of the 4799 // value. This is strictly redundant on Darwin (which uses "zeroext 4800 // i1"), but will be optimised out before ISel. 4801 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); 4802 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 4803 } 4804 break; 4805 case CCValAssign::BCvt: 4806 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 4807 break; 4808 case CCValAssign::AExt: 4809 case CCValAssign::ZExt: 4810 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4811 break; 4812 case CCValAssign::AExtUpper: 4813 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); 4814 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4815 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, 4816 DAG.getConstant(32, DL, VA.getLocVT())); 4817 break; 4818 } 4819 4820 if (RegsUsed.count(VA.getLocReg())) { 4821 SDValue &Bits = 4822 std::find_if(RetVals.begin(), RetVals.end(), 4823 [=](const std::pair<unsigned, SDValue> &Elt) { 4824 return Elt.first == VA.getLocReg(); 4825 }) 4826 ->second; 4827 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); 4828 } else { 4829 RetVals.emplace_back(VA.getLocReg(), Arg); 4830 RegsUsed.insert(VA.getLocReg()); 4831 } 4832 } 4833 4834 SmallVector<SDValue, 4> RetOps(1, Chain); 4835 for (auto &RetVal : RetVals) { 4836 Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag); 4837 Flag = Chain.getValue(1); 4838 RetOps.push_back( 4839 DAG.getRegister(RetVal.first, RetVal.second.getValueType())); 4840 } 4841 4842 // Windows AArch64 ABIs require that for returning structs by value we copy 4843 // the sret argument into X0 for the return. 4844 // We saved the argument into a virtual register in the entry block, 4845 // so now we copy the value out and into X0. 4846 if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { 4847 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg, 4848 getPointerTy(MF.getDataLayout())); 4849 4850 unsigned RetValReg = AArch64::X0; 4851 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag); 4852 Flag = Chain.getValue(1); 4853 4854 RetOps.push_back( 4855 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); 4856 } 4857 4858 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4859 const MCPhysReg *I = 4860 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 4861 if (I) { 4862 for (; *I; ++I) { 4863 if (AArch64::GPR64RegClass.contains(*I)) 4864 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 4865 else if (AArch64::FPR64RegClass.contains(*I)) 4866 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 4867 else 4868 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 4869 } 4870 } 4871 4872 RetOps[0] = Chain; // Update chain. 4873 4874 // Add the flag if we have it. 4875 if (Flag.getNode()) 4876 RetOps.push_back(Flag); 4877 4878 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); 4879 } 4880 4881 //===----------------------------------------------------------------------===// 4882 // Other Lowering Code 4883 //===----------------------------------------------------------------------===// 4884 4885 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, 4886 SelectionDAG &DAG, 4887 unsigned Flag) const { 4888 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 4889 N->getOffset(), Flag); 4890 } 4891 4892 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, 4893 SelectionDAG &DAG, 4894 unsigned Flag) const { 4895 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); 4896 } 4897 4898 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, 4899 SelectionDAG &DAG, 4900 unsigned Flag) const { 4901 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 4902 N->getOffset(), Flag); 4903 } 4904 4905 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty, 4906 SelectionDAG &DAG, 4907 unsigned Flag) const { 4908 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); 4909 } 4910 4911 // (loadGOT sym) 4912 template <class NodeTy> 4913 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG, 4914 unsigned Flags) const { 4915 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n"); 4916 SDLoc DL(N); 4917 EVT Ty = getPointerTy(DAG.getDataLayout()); 4918 SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags); 4919 // FIXME: Once remat is capable of dealing with instructions with register 4920 // operands, expand this into two nodes instead of using a wrapper node. 4921 return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr); 4922 } 4923 4924 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym)) 4925 template <class NodeTy> 4926 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG, 4927 unsigned Flags) const { 4928 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n"); 4929 SDLoc DL(N); 4930 EVT Ty = getPointerTy(DAG.getDataLayout()); 4931 const unsigned char MO_NC = AArch64II::MO_NC; 4932 return DAG.getNode( 4933 AArch64ISD::WrapperLarge, DL, Ty, 4934 getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags), 4935 getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags), 4936 getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags), 4937 getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags)); 4938 } 4939 4940 // (addlow (adrp %hi(sym)) %lo(sym)) 4941 template <class NodeTy> 4942 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 4943 unsigned Flags) const { 4944 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n"); 4945 SDLoc DL(N); 4946 EVT Ty = getPointerTy(DAG.getDataLayout()); 4947 SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags); 4948 SDValue Lo = getTargetNode(N, Ty, DAG, 4949 AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags); 4950 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi); 4951 return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo); 4952 } 4953 4954 // (adr sym) 4955 template <class NodeTy> 4956 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG, 4957 unsigned Flags) const { 4958 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n"); 4959 SDLoc DL(N); 4960 EVT Ty = getPointerTy(DAG.getDataLayout()); 4961 SDValue Sym = getTargetNode(N, Ty, DAG, Flags); 4962 return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym); 4963 } 4964 4965 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, 4966 SelectionDAG &DAG) const { 4967 GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 4968 const GlobalValue *GV = GN->getGlobal(); 4969 unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); 4970 4971 if (OpFlags != AArch64II::MO_NO_FLAG) 4972 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && 4973 "unexpected offset in global node"); 4974 4975 // This also catches the large code model case for Darwin, and tiny code 4976 // model with got relocations. 4977 if ((OpFlags & AArch64II::MO_GOT) != 0) { 4978 return getGOT(GN, DAG, OpFlags); 4979 } 4980 4981 SDValue Result; 4982 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 4983 Result = getAddrLarge(GN, DAG, OpFlags); 4984 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 4985 Result = getAddrTiny(GN, DAG, OpFlags); 4986 } else { 4987 Result = getAddr(GN, DAG, OpFlags); 4988 } 4989 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4990 SDLoc DL(GN); 4991 if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB)) 4992 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 4993 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 4994 return Result; 4995 } 4996 4997 /// Convert a TLS address reference into the correct sequence of loads 4998 /// and calls to compute the variable's address (for Darwin, currently) and 4999 /// return an SDValue containing the final node. 5000 5001 /// Darwin only has one TLS scheme which must be capable of dealing with the 5002 /// fully general situation, in the worst case. This means: 5003 /// + "extern __thread" declaration. 5004 /// + Defined in a possibly unknown dynamic library. 5005 /// 5006 /// The general system is that each __thread variable has a [3 x i64] descriptor 5007 /// which contains information used by the runtime to calculate the address. The 5008 /// only part of this the compiler needs to know about is the first xword, which 5009 /// contains a function pointer that must be called with the address of the 5010 /// entire descriptor in "x0". 5011 /// 5012 /// Since this descriptor may be in a different unit, in general even the 5013 /// descriptor must be accessed via an indirect load. The "ideal" code sequence 5014 /// is: 5015 /// adrp x0, _var@TLVPPAGE 5016 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor 5017 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, 5018 /// ; the function pointer 5019 /// blr x1 ; Uses descriptor address in x0 5020 /// ; Address of _var is now in x0. 5021 /// 5022 /// If the address of _var's descriptor *is* known to the linker, then it can 5023 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for 5024 /// a slight efficiency gain. 5025 SDValue 5026 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, 5027 SelectionDAG &DAG) const { 5028 assert(Subtarget->isTargetDarwin() && 5029 "This function expects a Darwin target"); 5030 5031 SDLoc DL(Op); 5032 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 5033 MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout()); 5034 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 5035 5036 SDValue TLVPAddr = 5037 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 5038 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); 5039 5040 // The first entry in the descriptor is a function pointer that we must call 5041 // to obtain the address of the variable. 5042 SDValue Chain = DAG.getEntryNode(); 5043 SDValue FuncTLVGet = DAG.getLoad( 5044 PtrMemVT, DL, Chain, DescAddr, 5045 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 5046 /* Alignment = */ PtrMemVT.getSizeInBits() / 8, 5047 MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 5048 Chain = FuncTLVGet.getValue(1); 5049 5050 // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer. 5051 FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT); 5052 5053 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5054 MFI.setAdjustsStack(true); 5055 5056 // TLS calls preserve all registers except those that absolutely must be 5057 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be 5058 // silly). 5059 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 5060 const uint32_t *Mask = TRI->getTLSCallPreservedMask(); 5061 if (Subtarget->hasCustomCallingConv()) 5062 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); 5063 5064 // Finally, we can make the call. This is just a degenerate version of a 5065 // normal AArch64 call node: x0 takes the address of the descriptor, and 5066 // returns the address of the variable in this thread. 5067 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); 5068 Chain = 5069 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), 5070 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), 5071 DAG.getRegisterMask(Mask), Chain.getValue(1)); 5072 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); 5073 } 5074 5075 /// Convert a thread-local variable reference into a sequence of instructions to 5076 /// compute the variable's address for the local exec TLS model of ELF targets. 5077 /// The sequence depends on the maximum TLS area size. 5078 SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV, 5079 SDValue ThreadBase, 5080 const SDLoc &DL, 5081 SelectionDAG &DAG) const { 5082 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5083 SDValue TPOff, Addr; 5084 5085 switch (DAG.getTarget().Options.TLSSize) { 5086 default: 5087 llvm_unreachable("Unexpected TLS size"); 5088 5089 case 12: { 5090 // mrs x0, TPIDR_EL0 5091 // add x0, x0, :tprel_lo12:a 5092 SDValue Var = DAG.getTargetGlobalAddress( 5093 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF); 5094 return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, 5095 Var, 5096 DAG.getTargetConstant(0, DL, MVT::i32)), 5097 0); 5098 } 5099 5100 case 24: { 5101 // mrs x0, TPIDR_EL0 5102 // add x0, x0, :tprel_hi12:a 5103 // add x0, x0, :tprel_lo12_nc:a 5104 SDValue HiVar = DAG.getTargetGlobalAddress( 5105 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 5106 SDValue LoVar = DAG.getTargetGlobalAddress( 5107 GV, DL, PtrVT, 0, 5108 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 5109 Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, 5110 HiVar, 5111 DAG.getTargetConstant(0, DL, MVT::i32)), 5112 0); 5113 return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr, 5114 LoVar, 5115 DAG.getTargetConstant(0, DL, MVT::i32)), 5116 0); 5117 } 5118 5119 case 32: { 5120 // mrs x1, TPIDR_EL0 5121 // movz x0, #:tprel_g1:a 5122 // movk x0, #:tprel_g0_nc:a 5123 // add x0, x1, x0 5124 SDValue HiVar = DAG.getTargetGlobalAddress( 5125 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); 5126 SDValue LoVar = DAG.getTargetGlobalAddress( 5127 GV, DL, PtrVT, 0, 5128 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); 5129 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, 5130 DAG.getTargetConstant(16, DL, MVT::i32)), 5131 0); 5132 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, 5133 DAG.getTargetConstant(0, DL, MVT::i32)), 5134 0); 5135 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 5136 } 5137 5138 case 48: { 5139 // mrs x1, TPIDR_EL0 5140 // movz x0, #:tprel_g2:a 5141 // movk x0, #:tprel_g1_nc:a 5142 // movk x0, #:tprel_g0_nc:a 5143 // add x0, x1, x0 5144 SDValue HiVar = DAG.getTargetGlobalAddress( 5145 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2); 5146 SDValue MiVar = DAG.getTargetGlobalAddress( 5147 GV, DL, PtrVT, 0, 5148 AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC); 5149 SDValue LoVar = DAG.getTargetGlobalAddress( 5150 GV, DL, PtrVT, 0, 5151 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); 5152 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, 5153 DAG.getTargetConstant(32, DL, MVT::i32)), 5154 0); 5155 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar, 5156 DAG.getTargetConstant(16, DL, MVT::i32)), 5157 0); 5158 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, 5159 DAG.getTargetConstant(0, DL, MVT::i32)), 5160 0); 5161 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 5162 } 5163 } 5164 } 5165 5166 /// When accessing thread-local variables under either the general-dynamic or 5167 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will 5168 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry 5169 /// is a function pointer to carry out the resolution. 5170 /// 5171 /// The sequence is: 5172 /// adrp x0, :tlsdesc:var 5173 /// ldr x1, [x0, #:tlsdesc_lo12:var] 5174 /// add x0, x0, #:tlsdesc_lo12:var 5175 /// .tlsdesccall var 5176 /// blr x1 5177 /// (TPIDR_EL0 offset now in x0) 5178 /// 5179 /// The above sequence must be produced unscheduled, to enable the linker to 5180 /// optimize/relax this sequence. 5181 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the 5182 /// above sequence, and expanded really late in the compilation flow, to ensure 5183 /// the sequence is produced as per above. 5184 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, 5185 const SDLoc &DL, 5186 SelectionDAG &DAG) const { 5187 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5188 5189 SDValue Chain = DAG.getEntryNode(); 5190 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5191 5192 Chain = 5193 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr}); 5194 SDValue Glue = Chain.getValue(1); 5195 5196 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); 5197 } 5198 5199 SDValue 5200 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, 5201 SelectionDAG &DAG) const { 5202 assert(Subtarget->isTargetELF() && "This function expects an ELF target"); 5203 5204 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 5205 5206 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); 5207 5208 if (!EnableAArch64ELFLocalDynamicTLSGeneration) { 5209 if (Model == TLSModel::LocalDynamic) 5210 Model = TLSModel::GeneralDynamic; 5211 } 5212 5213 if (getTargetMachine().getCodeModel() == CodeModel::Large && 5214 Model != TLSModel::LocalExec) 5215 report_fatal_error("ELF TLS only supported in small memory model or " 5216 "in local exec TLS model"); 5217 // Different choices can be made for the maximum size of the TLS area for a 5218 // module. For the small address model, the default TLS size is 16MiB and the 5219 // maximum TLS size is 4GiB. 5220 // FIXME: add tiny and large code model support for TLS access models other 5221 // than local exec. We currently generate the same code as small for tiny, 5222 // which may be larger than needed. 5223 5224 SDValue TPOff; 5225 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5226 SDLoc DL(Op); 5227 const GlobalValue *GV = GA->getGlobal(); 5228 5229 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); 5230 5231 if (Model == TLSModel::LocalExec) { 5232 return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG); 5233 } else if (Model == TLSModel::InitialExec) { 5234 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 5235 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); 5236 } else if (Model == TLSModel::LocalDynamic) { 5237 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS 5238 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate 5239 // the beginning of the module's TLS region, followed by a DTPREL offset 5240 // calculation. 5241 5242 // These accesses will need deduplicating if there's more than one. 5243 AArch64FunctionInfo *MFI = 5244 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 5245 MFI->incNumLocalDynamicTLSAccesses(); 5246 5247 // The call needs a relocation too for linker relaxation. It doesn't make 5248 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of 5249 // the address. 5250 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, 5251 AArch64II::MO_TLS); 5252 5253 // Now we can calculate the offset from TPIDR_EL0 to this module's 5254 // thread-local area. 5255 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); 5256 5257 // Now use :dtprel_whatever: operations to calculate this variable's offset 5258 // in its thread-storage area. 5259 SDValue HiVar = DAG.getTargetGlobalAddress( 5260 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 5261 SDValue LoVar = DAG.getTargetGlobalAddress( 5262 GV, DL, MVT::i64, 0, 5263 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 5264 5265 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, 5266 DAG.getTargetConstant(0, DL, MVT::i32)), 5267 0); 5268 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, 5269 DAG.getTargetConstant(0, DL, MVT::i32)), 5270 0); 5271 } else if (Model == TLSModel::GeneralDynamic) { 5272 // The call needs a relocation too for linker relaxation. It doesn't make 5273 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of 5274 // the address. 5275 SDValue SymAddr = 5276 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 5277 5278 // Finally we can make a call to calculate the offset from tpidr_el0. 5279 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); 5280 } else 5281 llvm_unreachable("Unsupported ELF TLS access model"); 5282 5283 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 5284 } 5285 5286 SDValue 5287 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op, 5288 SelectionDAG &DAG) const { 5289 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); 5290 5291 SDValue Chain = DAG.getEntryNode(); 5292 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5293 SDLoc DL(Op); 5294 5295 SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64); 5296 5297 // Load the ThreadLocalStoragePointer from the TEB 5298 // A pointer to the TLS array is located at offset 0x58 from the TEB. 5299 SDValue TLSArray = 5300 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL)); 5301 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); 5302 Chain = TLSArray.getValue(1); 5303 5304 // Load the TLS index from the C runtime; 5305 // This does the same as getAddr(), but without having a GlobalAddressSDNode. 5306 // This also does the same as LOADgot, but using a generic i32 load, 5307 // while LOADgot only loads i64. 5308 SDValue TLSIndexHi = 5309 DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE); 5310 SDValue TLSIndexLo = DAG.getTargetExternalSymbol( 5311 "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 5312 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi); 5313 SDValue TLSIndex = 5314 DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo); 5315 TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo()); 5316 Chain = TLSIndex.getValue(1); 5317 5318 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8 5319 // offset into the TLSArray. 5320 TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex); 5321 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, 5322 DAG.getConstant(3, DL, PtrVT)); 5323 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, 5324 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), 5325 MachinePointerInfo()); 5326 Chain = TLS.getValue(1); 5327 5328 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 5329 const GlobalValue *GV = GA->getGlobal(); 5330 SDValue TGAHi = DAG.getTargetGlobalAddress( 5331 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 5332 SDValue TGALo = DAG.getTargetGlobalAddress( 5333 GV, DL, PtrVT, 0, 5334 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 5335 5336 // Add the offset from the start of the .tls section (section base). 5337 SDValue Addr = 5338 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi, 5339 DAG.getTargetConstant(0, DL, MVT::i32)), 5340 0); 5341 Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo); 5342 return Addr; 5343 } 5344 5345 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, 5346 SelectionDAG &DAG) const { 5347 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 5348 if (DAG.getTarget().useEmulatedTLS()) 5349 return LowerToTLSEmulatedModel(GA, DAG); 5350 5351 if (Subtarget->isTargetDarwin()) 5352 return LowerDarwinGlobalTLSAddress(Op, DAG); 5353 if (Subtarget->isTargetELF()) 5354 return LowerELFGlobalTLSAddress(Op, DAG); 5355 if (Subtarget->isTargetWindows()) 5356 return LowerWindowsGlobalTLSAddress(Op, DAG); 5357 5358 llvm_unreachable("Unexpected platform trying to use TLS"); 5359 } 5360 5361 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 5362 SDValue Chain = Op.getOperand(0); 5363 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 5364 SDValue LHS = Op.getOperand(2); 5365 SDValue RHS = Op.getOperand(3); 5366 SDValue Dest = Op.getOperand(4); 5367 SDLoc dl(Op); 5368 5369 MachineFunction &MF = DAG.getMachineFunction(); 5370 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions 5371 // will not be produced, as they are conditional branch instructions that do 5372 // not set flags. 5373 bool ProduceNonFlagSettingCondBr = 5374 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); 5375 5376 // Handle f128 first, since lowering it will result in comparing the return 5377 // value of a libcall against zero, which is just what the rest of LowerBR_CC 5378 // is expecting to deal with. 5379 if (LHS.getValueType() == MVT::f128) { 5380 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); 5381 5382 // If softenSetCCOperands returned a scalar, we need to compare the result 5383 // against zero to select between true and false values. 5384 if (!RHS.getNode()) { 5385 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 5386 CC = ISD::SETNE; 5387 } 5388 } 5389 5390 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch 5391 // instruction. 5392 if (ISD::isOverflowIntrOpRes(LHS) && isOneConstant(RHS) && 5393 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 5394 // Only lower legal XALUO ops. 5395 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) 5396 return SDValue(); 5397 5398 // The actual operation with overflow check. 5399 AArch64CC::CondCode OFCC; 5400 SDValue Value, Overflow; 5401 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); 5402 5403 if (CC == ISD::SETNE) 5404 OFCC = getInvertedCondCode(OFCC); 5405 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); 5406 5407 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, 5408 Overflow); 5409 } 5410 5411 if (LHS.getValueType().isInteger()) { 5412 assert((LHS.getValueType() == RHS.getValueType()) && 5413 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); 5414 5415 // If the RHS of the comparison is zero, we can potentially fold this 5416 // to a specialized branch. 5417 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); 5418 if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) { 5419 if (CC == ISD::SETEQ) { 5420 // See if we can use a TBZ to fold in an AND as well. 5421 // TBZ has a smaller branch displacement than CBZ. If the offset is 5422 // out of bounds, a late MI-layer pass rewrites branches. 5423 // 403.gcc is an example that hits this case. 5424 if (LHS.getOpcode() == ISD::AND && 5425 isa<ConstantSDNode>(LHS.getOperand(1)) && 5426 isPowerOf2_64(LHS.getConstantOperandVal(1))) { 5427 SDValue Test = LHS.getOperand(0); 5428 uint64_t Mask = LHS.getConstantOperandVal(1); 5429 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, 5430 DAG.getConstant(Log2_64(Mask), dl, MVT::i64), 5431 Dest); 5432 } 5433 5434 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); 5435 } else if (CC == ISD::SETNE) { 5436 // See if we can use a TBZ to fold in an AND as well. 5437 // TBZ has a smaller branch displacement than CBZ. If the offset is 5438 // out of bounds, a late MI-layer pass rewrites branches. 5439 // 403.gcc is an example that hits this case. 5440 if (LHS.getOpcode() == ISD::AND && 5441 isa<ConstantSDNode>(LHS.getOperand(1)) && 5442 isPowerOf2_64(LHS.getConstantOperandVal(1))) { 5443 SDValue Test = LHS.getOperand(0); 5444 uint64_t Mask = LHS.getConstantOperandVal(1); 5445 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, 5446 DAG.getConstant(Log2_64(Mask), dl, MVT::i64), 5447 Dest); 5448 } 5449 5450 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); 5451 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { 5452 // Don't combine AND since emitComparison converts the AND to an ANDS 5453 // (a.k.a. TST) and the test in the test bit and branch instruction 5454 // becomes redundant. This would also increase register pressure. 5455 uint64_t Mask = LHS.getValueSizeInBits() - 1; 5456 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, 5457 DAG.getConstant(Mask, dl, MVT::i64), Dest); 5458 } 5459 } 5460 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && 5461 LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) { 5462 // Don't combine AND since emitComparison converts the AND to an ANDS 5463 // (a.k.a. TST) and the test in the test bit and branch instruction 5464 // becomes redundant. This would also increase register pressure. 5465 uint64_t Mask = LHS.getValueSizeInBits() - 1; 5466 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, 5467 DAG.getConstant(Mask, dl, MVT::i64), Dest); 5468 } 5469 5470 SDValue CCVal; 5471 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 5472 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, 5473 Cmp); 5474 } 5475 5476 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 || 5477 LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); 5478 5479 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 5480 // clean. Some of them require two branches to implement. 5481 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5482 AArch64CC::CondCode CC1, CC2; 5483 changeFPCCToAArch64CC(CC, CC1, CC2); 5484 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5485 SDValue BR1 = 5486 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); 5487 if (CC2 != AArch64CC::AL) { 5488 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5489 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, 5490 Cmp); 5491 } 5492 5493 return BR1; 5494 } 5495 5496 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, 5497 SelectionDAG &DAG) const { 5498 EVT VT = Op.getValueType(); 5499 SDLoc DL(Op); 5500 5501 SDValue In1 = Op.getOperand(0); 5502 SDValue In2 = Op.getOperand(1); 5503 EVT SrcVT = In2.getValueType(); 5504 5505 if (SrcVT.bitsLT(VT)) 5506 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); 5507 else if (SrcVT.bitsGT(VT)) 5508 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL)); 5509 5510 EVT VecVT; 5511 uint64_t EltMask; 5512 SDValue VecVal1, VecVal2; 5513 5514 auto setVecVal = [&] (int Idx) { 5515 if (!VT.isVector()) { 5516 VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, 5517 DAG.getUNDEF(VecVT), In1); 5518 VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, 5519 DAG.getUNDEF(VecVT), In2); 5520 } else { 5521 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); 5522 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); 5523 } 5524 }; 5525 5526 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { 5527 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32); 5528 EltMask = 0x80000000ULL; 5529 setVecVal(AArch64::ssub); 5530 } else if (VT == MVT::f64 || VT == MVT::v2f64) { 5531 VecVT = MVT::v2i64; 5532 5533 // We want to materialize a mask with the high bit set, but the AdvSIMD 5534 // immediate moves cannot materialize that in a single instruction for 5535 // 64-bit elements. Instead, materialize zero and then negate it. 5536 EltMask = 0; 5537 5538 setVecVal(AArch64::dsub); 5539 } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) { 5540 VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16); 5541 EltMask = 0x8000ULL; 5542 setVecVal(AArch64::hsub); 5543 } else { 5544 llvm_unreachable("Invalid type for copysign!"); 5545 } 5546 5547 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT); 5548 5549 // If we couldn't materialize the mask above, then the mask vector will be 5550 // the zero vector, and we need to negate it here. 5551 if (VT == MVT::f64 || VT == MVT::v2f64) { 5552 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); 5553 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); 5554 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); 5555 } 5556 5557 SDValue Sel = 5558 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); 5559 5560 if (VT == MVT::f16) 5561 return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel); 5562 if (VT == MVT::f32) 5563 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); 5564 else if (VT == MVT::f64) 5565 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); 5566 else 5567 return DAG.getNode(ISD::BITCAST, DL, VT, Sel); 5568 } 5569 5570 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { 5571 if (DAG.getMachineFunction().getFunction().hasFnAttribute( 5572 Attribute::NoImplicitFloat)) 5573 return SDValue(); 5574 5575 if (!Subtarget->hasNEON()) 5576 return SDValue(); 5577 5578 // While there is no integer popcount instruction, it can 5579 // be more efficiently lowered to the following sequence that uses 5580 // AdvSIMD registers/instructions as long as the copies to/from 5581 // the AdvSIMD registers are cheap. 5582 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd 5583 // CNT V0.8B, V0.8B // 8xbyte pop-counts 5584 // ADDV B0, V0.8B // sum 8xbyte pop-counts 5585 // UMOV X0, V0.B[0] // copy byte result back to integer reg 5586 SDValue Val = Op.getOperand(0); 5587 SDLoc DL(Op); 5588 EVT VT = Op.getValueType(); 5589 5590 if (VT == MVT::i32 || VT == MVT::i64) { 5591 if (VT == MVT::i32) 5592 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 5593 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); 5594 5595 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); 5596 SDValue UaddLV = DAG.getNode( 5597 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 5598 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); 5599 5600 if (VT == MVT::i64) 5601 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); 5602 return UaddLV; 5603 } else if (VT == MVT::i128) { 5604 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Val); 5605 5606 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v16i8, Val); 5607 SDValue UaddLV = DAG.getNode( 5608 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 5609 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); 5610 5611 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, UaddLV); 5612 } 5613 5614 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || 5615 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && 5616 "Unexpected type for custom ctpop lowering"); 5617 5618 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; 5619 Val = DAG.getBitcast(VT8Bit, Val); 5620 Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val); 5621 5622 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds. 5623 unsigned EltSize = 8; 5624 unsigned NumElts = VT.is64BitVector() ? 8 : 16; 5625 while (EltSize != VT.getScalarSizeInBits()) { 5626 EltSize *= 2; 5627 NumElts /= 2; 5628 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); 5629 Val = DAG.getNode( 5630 ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, 5631 DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val); 5632 } 5633 5634 return Val; 5635 } 5636 5637 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 5638 5639 if (Op.getValueType().isVector()) 5640 return LowerVSETCC(Op, DAG); 5641 5642 bool IsStrict = Op->isStrictFPOpcode(); 5643 bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS; 5644 unsigned OpNo = IsStrict ? 1 : 0; 5645 SDValue Chain; 5646 if (IsStrict) 5647 Chain = Op.getOperand(0); 5648 SDValue LHS = Op.getOperand(OpNo + 0); 5649 SDValue RHS = Op.getOperand(OpNo + 1); 5650 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get(); 5651 SDLoc dl(Op); 5652 5653 // We chose ZeroOrOneBooleanContents, so use zero and one. 5654 EVT VT = Op.getValueType(); 5655 SDValue TVal = DAG.getConstant(1, dl, VT); 5656 SDValue FVal = DAG.getConstant(0, dl, VT); 5657 5658 // Handle f128 first, since one possible outcome is a normal integer 5659 // comparison which gets picked up by the next if statement. 5660 if (LHS.getValueType() == MVT::f128) { 5661 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain, 5662 IsSignaling); 5663 5664 // If softenSetCCOperands returned a scalar, use it. 5665 if (!RHS.getNode()) { 5666 assert(LHS.getValueType() == Op.getValueType() && 5667 "Unexpected setcc expansion!"); 5668 return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS; 5669 } 5670 } 5671 5672 if (LHS.getValueType().isInteger()) { 5673 SDValue CCVal; 5674 SDValue Cmp = getAArch64Cmp( 5675 LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl); 5676 5677 // Note that we inverted the condition above, so we reverse the order of 5678 // the true and false operands here. This will allow the setcc to be 5679 // matched to a single CSINC instruction. 5680 SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); 5681 return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res; 5682 } 5683 5684 // Now we know we're dealing with FP values. 5685 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || 5686 LHS.getValueType() == MVT::f64); 5687 5688 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead 5689 // and do the comparison. 5690 SDValue Cmp; 5691 if (IsStrict) 5692 Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling); 5693 else 5694 Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5695 5696 AArch64CC::CondCode CC1, CC2; 5697 changeFPCCToAArch64CC(CC, CC1, CC2); 5698 SDValue Res; 5699 if (CC2 == AArch64CC::AL) { 5700 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1, 5701 CC2); 5702 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5703 5704 // Note that we inverted the condition above, so we reverse the order of 5705 // the true and false operands here. This will allow the setcc to be 5706 // matched to a single CSINC instruction. 5707 Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); 5708 } else { 5709 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't 5710 // totally clean. Some of them require two CSELs to implement. As is in 5711 // this case, we emit the first CSEL and then emit a second using the output 5712 // of the first as the RHS. We're effectively OR'ing the two CC's together. 5713 5714 // FIXME: It would be nice if we could match the two CSELs to two CSINCs. 5715 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5716 SDValue CS1 = 5717 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); 5718 5719 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5720 Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); 5721 } 5722 return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res; 5723 } 5724 5725 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, 5726 SDValue RHS, SDValue TVal, 5727 SDValue FVal, const SDLoc &dl, 5728 SelectionDAG &DAG) const { 5729 // Handle f128 first, because it will result in a comparison of some RTLIB 5730 // call result against zero. 5731 if (LHS.getValueType() == MVT::f128) { 5732 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); 5733 5734 // If softenSetCCOperands returned a scalar, we need to compare the result 5735 // against zero to select between true and false values. 5736 if (!RHS.getNode()) { 5737 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 5738 CC = ISD::SETNE; 5739 } 5740 } 5741 5742 // Also handle f16, for which we need to do a f32 comparison. 5743 if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { 5744 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); 5745 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); 5746 } 5747 5748 // Next, handle integers. 5749 if (LHS.getValueType().isInteger()) { 5750 assert((LHS.getValueType() == RHS.getValueType()) && 5751 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); 5752 5753 unsigned Opcode = AArch64ISD::CSEL; 5754 5755 // If both the TVal and the FVal are constants, see if we can swap them in 5756 // order to for a CSINV or CSINC out of them. 5757 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); 5758 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); 5759 5760 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { 5761 std::swap(TVal, FVal); 5762 std::swap(CTVal, CFVal); 5763 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5764 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { 5765 std::swap(TVal, FVal); 5766 std::swap(CTVal, CFVal); 5767 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5768 } else if (TVal.getOpcode() == ISD::XOR) { 5769 // If TVal is a NOT we want to swap TVal and FVal so that we can match 5770 // with a CSINV rather than a CSEL. 5771 if (isAllOnesConstant(TVal.getOperand(1))) { 5772 std::swap(TVal, FVal); 5773 std::swap(CTVal, CFVal); 5774 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5775 } 5776 } else if (TVal.getOpcode() == ISD::SUB) { 5777 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so 5778 // that we can match with a CSNEG rather than a CSEL. 5779 if (isNullConstant(TVal.getOperand(0))) { 5780 std::swap(TVal, FVal); 5781 std::swap(CTVal, CFVal); 5782 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5783 } 5784 } else if (CTVal && CFVal) { 5785 const int64_t TrueVal = CTVal->getSExtValue(); 5786 const int64_t FalseVal = CFVal->getSExtValue(); 5787 bool Swap = false; 5788 5789 // If both TVal and FVal are constants, see if FVal is the 5790 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC 5791 // instead of a CSEL in that case. 5792 if (TrueVal == ~FalseVal) { 5793 Opcode = AArch64ISD::CSINV; 5794 } else if (TrueVal == -FalseVal) { 5795 Opcode = AArch64ISD::CSNEG; 5796 } else if (TVal.getValueType() == MVT::i32) { 5797 // If our operands are only 32-bit wide, make sure we use 32-bit 5798 // arithmetic for the check whether we can use CSINC. This ensures that 5799 // the addition in the check will wrap around properly in case there is 5800 // an overflow (which would not be the case if we do the check with 5801 // 64-bit arithmetic). 5802 const uint32_t TrueVal32 = CTVal->getZExtValue(); 5803 const uint32_t FalseVal32 = CFVal->getZExtValue(); 5804 5805 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { 5806 Opcode = AArch64ISD::CSINC; 5807 5808 if (TrueVal32 > FalseVal32) { 5809 Swap = true; 5810 } 5811 } 5812 // 64-bit check whether we can use CSINC. 5813 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { 5814 Opcode = AArch64ISD::CSINC; 5815 5816 if (TrueVal > FalseVal) { 5817 Swap = true; 5818 } 5819 } 5820 5821 // Swap TVal and FVal if necessary. 5822 if (Swap) { 5823 std::swap(TVal, FVal); 5824 std::swap(CTVal, CFVal); 5825 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5826 } 5827 5828 if (Opcode != AArch64ISD::CSEL) { 5829 // Drop FVal since we can get its value by simply inverting/negating 5830 // TVal. 5831 FVal = TVal; 5832 } 5833 } 5834 5835 // Avoid materializing a constant when possible by reusing a known value in 5836 // a register. However, don't perform this optimization if the known value 5837 // is one, zero or negative one in the case of a CSEL. We can always 5838 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the 5839 // FVal, respectively. 5840 ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS); 5841 if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() && 5842 !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) { 5843 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 5844 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to 5845 // "a != C ? x : a" to avoid materializing C. 5846 if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ) 5847 TVal = LHS; 5848 else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE) 5849 FVal = LHS; 5850 } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) { 5851 assert (CTVal && CFVal && "Expected constant operands for CSNEG."); 5852 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to 5853 // avoid materializing C. 5854 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 5855 if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) { 5856 Opcode = AArch64ISD::CSINV; 5857 TVal = LHS; 5858 FVal = DAG.getConstant(0, dl, FVal.getValueType()); 5859 } 5860 } 5861 5862 SDValue CCVal; 5863 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 5864 EVT VT = TVal.getValueType(); 5865 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); 5866 } 5867 5868 // Now we know we're dealing with FP values. 5869 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || 5870 LHS.getValueType() == MVT::f64); 5871 assert(LHS.getValueType() == RHS.getValueType()); 5872 EVT VT = TVal.getValueType(); 5873 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5874 5875 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 5876 // clean. Some of them require two CSELs to implement. 5877 AArch64CC::CondCode CC1, CC2; 5878 changeFPCCToAArch64CC(CC, CC1, CC2); 5879 5880 if (DAG.getTarget().Options.UnsafeFPMath) { 5881 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and 5882 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0. 5883 ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS); 5884 if (RHSVal && RHSVal->isZero()) { 5885 ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal); 5886 ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal); 5887 5888 if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) && 5889 CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType()) 5890 TVal = LHS; 5891 else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) && 5892 CFVal && CFVal->isZero() && 5893 FVal.getValueType() == LHS.getValueType()) 5894 FVal = LHS; 5895 } 5896 } 5897 5898 // Emit first, and possibly only, CSEL. 5899 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5900 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); 5901 5902 // If we need a second CSEL, emit it, using the output of the first as the 5903 // RHS. We're effectively OR'ing the two CC's together. 5904 if (CC2 != AArch64CC::AL) { 5905 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5906 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); 5907 } 5908 5909 // Otherwise, return the output of the first CSEL. 5910 return CS1; 5911 } 5912 5913 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, 5914 SelectionDAG &DAG) const { 5915 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5916 SDValue LHS = Op.getOperand(0); 5917 SDValue RHS = Op.getOperand(1); 5918 SDValue TVal = Op.getOperand(2); 5919 SDValue FVal = Op.getOperand(3); 5920 SDLoc DL(Op); 5921 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); 5922 } 5923 5924 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, 5925 SelectionDAG &DAG) const { 5926 SDValue CCVal = Op->getOperand(0); 5927 SDValue TVal = Op->getOperand(1); 5928 SDValue FVal = Op->getOperand(2); 5929 SDLoc DL(Op); 5930 5931 EVT Ty = Op.getValueType(); 5932 if (Ty.isScalableVector()) { 5933 SDValue TruncCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, CCVal); 5934 MVT PredVT = MVT::getVectorVT(MVT::i1, Ty.getVectorElementCount()); 5935 SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, TruncCC); 5936 return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal); 5937 } 5938 5939 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select 5940 // instruction. 5941 if (ISD::isOverflowIntrOpRes(CCVal)) { 5942 // Only lower legal XALUO ops. 5943 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) 5944 return SDValue(); 5945 5946 AArch64CC::CondCode OFCC; 5947 SDValue Value, Overflow; 5948 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); 5949 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); 5950 5951 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, 5952 CCVal, Overflow); 5953 } 5954 5955 // Lower it the same way as we would lower a SELECT_CC node. 5956 ISD::CondCode CC; 5957 SDValue LHS, RHS; 5958 if (CCVal.getOpcode() == ISD::SETCC) { 5959 LHS = CCVal.getOperand(0); 5960 RHS = CCVal.getOperand(1); 5961 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get(); 5962 } else { 5963 LHS = CCVal; 5964 RHS = DAG.getConstant(0, DL, CCVal.getValueType()); 5965 CC = ISD::SETNE; 5966 } 5967 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); 5968 } 5969 5970 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, 5971 SelectionDAG &DAG) const { 5972 // Jump table entries as PC relative offsets. No additional tweaking 5973 // is necessary here. Just get the address of the jump table. 5974 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 5975 5976 if (getTargetMachine().getCodeModel() == CodeModel::Large && 5977 !Subtarget->isTargetMachO()) { 5978 return getAddrLarge(JT, DAG); 5979 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 5980 return getAddrTiny(JT, DAG); 5981 } 5982 return getAddr(JT, DAG); 5983 } 5984 5985 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op, 5986 SelectionDAG &DAG) const { 5987 // Jump table entries as PC relative offsets. No additional tweaking 5988 // is necessary here. Just get the address of the jump table. 5989 SDLoc DL(Op); 5990 SDValue JT = Op.getOperand(1); 5991 SDValue Entry = Op.getOperand(2); 5992 int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex(); 5993 5994 SDNode *Dest = 5995 DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT, 5996 Entry, DAG.getTargetJumpTable(JTI, MVT::i32)); 5997 return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0), 5998 SDValue(Dest, 0)); 5999 } 6000 6001 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, 6002 SelectionDAG &DAG) const { 6003 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 6004 6005 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 6006 // Use the GOT for the large code model on iOS. 6007 if (Subtarget->isTargetMachO()) { 6008 return getGOT(CP, DAG); 6009 } 6010 return getAddrLarge(CP, DAG); 6011 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 6012 return getAddrTiny(CP, DAG); 6013 } else { 6014 return getAddr(CP, DAG); 6015 } 6016 } 6017 6018 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, 6019 SelectionDAG &DAG) const { 6020 BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op); 6021 if (getTargetMachine().getCodeModel() == CodeModel::Large && 6022 !Subtarget->isTargetMachO()) { 6023 return getAddrLarge(BA, DAG); 6024 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 6025 return getAddrTiny(BA, DAG); 6026 } 6027 return getAddr(BA, DAG); 6028 } 6029 6030 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, 6031 SelectionDAG &DAG) const { 6032 AArch64FunctionInfo *FuncInfo = 6033 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 6034 6035 SDLoc DL(Op); 6036 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), 6037 getPointerTy(DAG.getDataLayout())); 6038 FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout())); 6039 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 6040 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 6041 MachinePointerInfo(SV)); 6042 } 6043 6044 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op, 6045 SelectionDAG &DAG) const { 6046 AArch64FunctionInfo *FuncInfo = 6047 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 6048 6049 SDLoc DL(Op); 6050 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0 6051 ? FuncInfo->getVarArgsGPRIndex() 6052 : FuncInfo->getVarArgsStackIndex(), 6053 getPointerTy(DAG.getDataLayout())); 6054 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 6055 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 6056 MachinePointerInfo(SV)); 6057 } 6058 6059 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, 6060 SelectionDAG &DAG) const { 6061 // The layout of the va_list struct is specified in the AArch64 Procedure Call 6062 // Standard, section B.3. 6063 MachineFunction &MF = DAG.getMachineFunction(); 6064 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 6065 auto PtrVT = getPointerTy(DAG.getDataLayout()); 6066 SDLoc DL(Op); 6067 6068 SDValue Chain = Op.getOperand(0); 6069 SDValue VAList = Op.getOperand(1); 6070 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 6071 SmallVector<SDValue, 4> MemOps; 6072 6073 // void *__stack at offset 0 6074 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); 6075 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, 6076 MachinePointerInfo(SV), /* Alignment = */ 8)); 6077 6078 // void *__gr_top at offset 8 6079 int GPRSize = FuncInfo->getVarArgsGPRSize(); 6080 if (GPRSize > 0) { 6081 SDValue GRTop, GRTopAddr; 6082 6083 GRTopAddr = 6084 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT)); 6085 6086 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); 6087 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, 6088 DAG.getConstant(GPRSize, DL, PtrVT)); 6089 6090 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, 6091 MachinePointerInfo(SV, 8), 6092 /* Alignment = */ 8)); 6093 } 6094 6095 // void *__vr_top at offset 16 6096 int FPRSize = FuncInfo->getVarArgsFPRSize(); 6097 if (FPRSize > 0) { 6098 SDValue VRTop, VRTopAddr; 6099 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 6100 DAG.getConstant(16, DL, PtrVT)); 6101 6102 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); 6103 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, 6104 DAG.getConstant(FPRSize, DL, PtrVT)); 6105 6106 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, 6107 MachinePointerInfo(SV, 16), 6108 /* Alignment = */ 8)); 6109 } 6110 6111 // int __gr_offs at offset 24 6112 SDValue GROffsAddr = 6113 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT)); 6114 MemOps.push_back(DAG.getStore( 6115 Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr, 6116 MachinePointerInfo(SV, 24), /* Alignment = */ 4)); 6117 6118 // int __vr_offs at offset 28 6119 SDValue VROffsAddr = 6120 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT)); 6121 MemOps.push_back(DAG.getStore( 6122 Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr, 6123 MachinePointerInfo(SV, 28), /* Alignment = */ 4)); 6124 6125 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 6126 } 6127 6128 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, 6129 SelectionDAG &DAG) const { 6130 MachineFunction &MF = DAG.getMachineFunction(); 6131 6132 if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv())) 6133 return LowerWin64_VASTART(Op, DAG); 6134 else if (Subtarget->isTargetDarwin()) 6135 return LowerDarwin_VASTART(Op, DAG); 6136 else 6137 return LowerAAPCS_VASTART(Op, DAG); 6138 } 6139 6140 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, 6141 SelectionDAG &DAG) const { 6142 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single 6143 // pointer. 6144 SDLoc DL(Op); 6145 unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8; 6146 unsigned VaListSize = (Subtarget->isTargetDarwin() || 6147 Subtarget->isTargetWindows()) ? PtrSize : 32; 6148 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 6149 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 6150 6151 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2), 6152 DAG.getConstant(VaListSize, DL, MVT::i32), 6153 Align(PtrSize), false, false, false, 6154 MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); 6155 } 6156 6157 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 6158 assert(Subtarget->isTargetDarwin() && 6159 "automatic va_arg instruction only works on Darwin"); 6160 6161 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 6162 EVT VT = Op.getValueType(); 6163 SDLoc DL(Op); 6164 SDValue Chain = Op.getOperand(0); 6165 SDValue Addr = Op.getOperand(1); 6166 MaybeAlign Align(Op.getConstantOperandVal(3)); 6167 unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8; 6168 auto PtrVT = getPointerTy(DAG.getDataLayout()); 6169 auto PtrMemVT = getPointerMemTy(DAG.getDataLayout()); 6170 SDValue VAList = 6171 DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V)); 6172 Chain = VAList.getValue(1); 6173 VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT); 6174 6175 if (VT.isScalableVector()) 6176 report_fatal_error("Passing SVE types to variadic functions is " 6177 "currently not supported"); 6178 6179 if (Align && *Align > MinSlotSize) { 6180 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 6181 DAG.getConstant(Align->value() - 1, DL, PtrVT)); 6182 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 6183 DAG.getConstant(-(int64_t)Align->value(), DL, PtrVT)); 6184 } 6185 6186 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6187 unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); 6188 6189 // Scalar integer and FP values smaller than 64 bits are implicitly extended 6190 // up to 64 bits. At the very least, we have to increase the striding of the 6191 // vaargs list to match this, and for FP values we need to introduce 6192 // FP_ROUND nodes as well. 6193 if (VT.isInteger() && !VT.isVector()) 6194 ArgSize = std::max(ArgSize, MinSlotSize); 6195 bool NeedFPTrunc = false; 6196 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { 6197 ArgSize = 8; 6198 NeedFPTrunc = true; 6199 } 6200 6201 // Increment the pointer, VAList, to the next vaarg 6202 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 6203 DAG.getConstant(ArgSize, DL, PtrVT)); 6204 VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT); 6205 6206 // Store the incremented VAList to the legalized pointer 6207 SDValue APStore = 6208 DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V)); 6209 6210 // Load the actual argument out of the pointer VAList 6211 if (NeedFPTrunc) { 6212 // Load the value as an f64. 6213 SDValue WideFP = 6214 DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo()); 6215 // Round the value down to an f32. 6216 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), 6217 DAG.getIntPtrConstant(1, DL)); 6218 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; 6219 // Merge the rounded value with the chain output of the load. 6220 return DAG.getMergeValues(Ops, DL); 6221 } 6222 6223 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo()); 6224 } 6225 6226 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, 6227 SelectionDAG &DAG) const { 6228 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6229 MFI.setFrameAddressIsTaken(true); 6230 6231 EVT VT = Op.getValueType(); 6232 SDLoc DL(Op); 6233 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6234 SDValue FrameAddr = 6235 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64); 6236 while (Depth--) 6237 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, 6238 MachinePointerInfo()); 6239 6240 if (Subtarget->isTargetILP32()) 6241 FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr, 6242 DAG.getValueType(VT)); 6243 6244 return FrameAddr; 6245 } 6246 6247 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op, 6248 SelectionDAG &DAG) const { 6249 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6250 6251 EVT VT = getPointerTy(DAG.getDataLayout()); 6252 SDLoc DL(Op); 6253 int FI = MFI.CreateFixedObject(4, 0, false); 6254 return DAG.getFrameIndex(FI, VT); 6255 } 6256 6257 #define GET_REGISTER_MATCHER 6258 #include "AArch64GenAsmMatcher.inc" 6259 6260 // FIXME? Maybe this could be a TableGen attribute on some registers and 6261 // this table could be generated automatically from RegInfo. 6262 Register AArch64TargetLowering:: 6263 getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { 6264 Register Reg = MatchRegisterName(RegName); 6265 if (AArch64::X1 <= Reg && Reg <= AArch64::X28) { 6266 const MCRegisterInfo *MRI = Subtarget->getRegisterInfo(); 6267 unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false); 6268 if (!Subtarget->isXRegisterReserved(DwarfRegNum)) 6269 Reg = 0; 6270 } 6271 if (Reg) 6272 return Reg; 6273 report_fatal_error(Twine("Invalid register name \"" 6274 + StringRef(RegName) + "\".")); 6275 } 6276 6277 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op, 6278 SelectionDAG &DAG) const { 6279 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 6280 6281 EVT VT = Op.getValueType(); 6282 SDLoc DL(Op); 6283 6284 SDValue FrameAddr = 6285 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); 6286 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); 6287 6288 return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset); 6289 } 6290 6291 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, 6292 SelectionDAG &DAG) const { 6293 MachineFunction &MF = DAG.getMachineFunction(); 6294 MachineFrameInfo &MFI = MF.getFrameInfo(); 6295 MFI.setReturnAddressIsTaken(true); 6296 6297 EVT VT = Op.getValueType(); 6298 SDLoc DL(Op); 6299 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6300 if (Depth) { 6301 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 6302 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); 6303 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 6304 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 6305 MachinePointerInfo()); 6306 } 6307 6308 // Return LR, which contains the return address. Mark it an implicit live-in. 6309 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); 6310 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 6311 } 6312 6313 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two 6314 /// i64 values and take a 2 x i64 value to shift plus a shift amount. 6315 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, 6316 SelectionDAG &DAG) const { 6317 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 6318 EVT VT = Op.getValueType(); 6319 unsigned VTBits = VT.getSizeInBits(); 6320 SDLoc dl(Op); 6321 SDValue ShOpLo = Op.getOperand(0); 6322 SDValue ShOpHi = Op.getOperand(1); 6323 SDValue ShAmt = Op.getOperand(2); 6324 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 6325 6326 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 6327 6328 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, 6329 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); 6330 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 6331 6332 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which 6333 // is "undef". We wanted 0, so CSEL it directly. 6334 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), 6335 ISD::SETEQ, dl, DAG); 6336 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); 6337 HiBitsForLo = 6338 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), 6339 HiBitsForLo, CCVal, Cmp); 6340 6341 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, 6342 DAG.getConstant(VTBits, dl, MVT::i64)); 6343 6344 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 6345 SDValue LoForNormalShift = 6346 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo); 6347 6348 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, 6349 dl, DAG); 6350 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); 6351 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 6352 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, 6353 LoForNormalShift, CCVal, Cmp); 6354 6355 // AArch64 shifts larger than the register width are wrapped rather than 6356 // clamped, so we can't just emit "hi >> x". 6357 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 6358 SDValue HiForBigShift = 6359 Opc == ISD::SRA 6360 ? DAG.getNode(Opc, dl, VT, ShOpHi, 6361 DAG.getConstant(VTBits - 1, dl, MVT::i64)) 6362 : DAG.getConstant(0, dl, VT); 6363 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, 6364 HiForNormalShift, CCVal, Cmp); 6365 6366 SDValue Ops[2] = { Lo, Hi }; 6367 return DAG.getMergeValues(Ops, dl); 6368 } 6369 6370 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 6371 /// i64 values and take a 2 x i64 value to shift plus a shift amount. 6372 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, 6373 SelectionDAG &DAG) const { 6374 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 6375 EVT VT = Op.getValueType(); 6376 unsigned VTBits = VT.getSizeInBits(); 6377 SDLoc dl(Op); 6378 SDValue ShOpLo = Op.getOperand(0); 6379 SDValue ShOpHi = Op.getOperand(1); 6380 SDValue ShAmt = Op.getOperand(2); 6381 6382 assert(Op.getOpcode() == ISD::SHL_PARTS); 6383 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, 6384 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); 6385 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 6386 6387 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which 6388 // is "undef". We wanted 0, so CSEL it directly. 6389 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), 6390 ISD::SETEQ, dl, DAG); 6391 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); 6392 LoBitsForHi = 6393 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), 6394 LoBitsForHi, CCVal, Cmp); 6395 6396 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, 6397 DAG.getConstant(VTBits, dl, MVT::i64)); 6398 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 6399 SDValue HiForNormalShift = 6400 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); 6401 6402 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 6403 6404 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, 6405 dl, DAG); 6406 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); 6407 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, 6408 HiForNormalShift, CCVal, Cmp); 6409 6410 // AArch64 shifts of larger than register sizes are wrapped rather than 6411 // clamped, so we can't just emit "lo << a" if a is too big. 6412 SDValue LoForBigShift = DAG.getConstant(0, dl, VT); 6413 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 6414 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, 6415 LoForNormalShift, CCVal, Cmp); 6416 6417 SDValue Ops[2] = { Lo, Hi }; 6418 return DAG.getMergeValues(Ops, dl); 6419 } 6420 6421 bool AArch64TargetLowering::isOffsetFoldingLegal( 6422 const GlobalAddressSDNode *GA) const { 6423 // Offsets are folded in the DAG combine rather than here so that we can 6424 // intelligently choose an offset based on the uses. 6425 return false; 6426 } 6427 6428 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 6429 bool OptForSize) const { 6430 bool IsLegal = false; 6431 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and 6432 // 16-bit case when target has full fp16 support. 6433 // FIXME: We should be able to handle f128 as well with a clever lowering. 6434 const APInt ImmInt = Imm.bitcastToAPInt(); 6435 if (VT == MVT::f64) 6436 IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero(); 6437 else if (VT == MVT::f32) 6438 IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero(); 6439 else if (VT == MVT::f16 && Subtarget->hasFullFP16()) 6440 IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero(); 6441 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to 6442 // generate that fmov. 6443 6444 // If we can not materialize in immediate field for fmov, check if the 6445 // value can be encoded as the immediate operand of a logical instruction. 6446 // The immediate value will be created with either MOVZ, MOVN, or ORR. 6447 if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) { 6448 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr; 6449 // however the mov+fmov sequence is always better because of the reduced 6450 // cache pressure. The timings are still the same if you consider 6451 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the 6452 // movw+movk is fused). So we limit up to 2 instrdduction at most. 6453 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 6454 AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(), 6455 Insn); 6456 unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2)); 6457 IsLegal = Insn.size() <= Limit; 6458 } 6459 6460 LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString() 6461 << " imm value: "; Imm.dump();); 6462 return IsLegal; 6463 } 6464 6465 //===----------------------------------------------------------------------===// 6466 // AArch64 Optimization Hooks 6467 //===----------------------------------------------------------------------===// 6468 6469 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode, 6470 SDValue Operand, SelectionDAG &DAG, 6471 int &ExtraSteps) { 6472 EVT VT = Operand.getValueType(); 6473 if (ST->hasNEON() && 6474 (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 || 6475 VT == MVT::f32 || VT == MVT::v1f32 || 6476 VT == MVT::v2f32 || VT == MVT::v4f32)) { 6477 if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) 6478 // For the reciprocal estimates, convergence is quadratic, so the number 6479 // of digits is doubled after each iteration. In ARMv8, the accuracy of 6480 // the initial estimate is 2^-8. Thus the number of extra steps to refine 6481 // the result for float (23 mantissa bits) is 2 and for double (52 6482 // mantissa bits) is 3. 6483 ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2; 6484 6485 return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand); 6486 } 6487 6488 return SDValue(); 6489 } 6490 6491 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand, 6492 SelectionDAG &DAG, int Enabled, 6493 int &ExtraSteps, 6494 bool &UseOneConst, 6495 bool Reciprocal) const { 6496 if (Enabled == ReciprocalEstimate::Enabled || 6497 (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt())) 6498 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand, 6499 DAG, ExtraSteps)) { 6500 SDLoc DL(Operand); 6501 EVT VT = Operand.getValueType(); 6502 6503 SDNodeFlags Flags; 6504 Flags.setAllowReassociation(true); 6505 6506 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2) 6507 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) 6508 for (int i = ExtraSteps; i > 0; --i) { 6509 SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate, 6510 Flags); 6511 Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags); 6512 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); 6513 } 6514 if (!Reciprocal) { 6515 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 6516 VT); 6517 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6518 SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ); 6519 6520 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags); 6521 // Correct the result if the operand is 0.0. 6522 Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, 6523 VT, Eq, Operand, Estimate); 6524 } 6525 6526 ExtraSteps = 0; 6527 return Estimate; 6528 } 6529 6530 return SDValue(); 6531 } 6532 6533 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand, 6534 SelectionDAG &DAG, int Enabled, 6535 int &ExtraSteps) const { 6536 if (Enabled == ReciprocalEstimate::Enabled) 6537 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand, 6538 DAG, ExtraSteps)) { 6539 SDLoc DL(Operand); 6540 EVT VT = Operand.getValueType(); 6541 6542 SDNodeFlags Flags; 6543 Flags.setAllowReassociation(true); 6544 6545 // Newton reciprocal iteration: E * (2 - X * E) 6546 // AArch64 reciprocal iteration instruction: (2 - M * N) 6547 for (int i = ExtraSteps; i > 0; --i) { 6548 SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand, 6549 Estimate, Flags); 6550 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); 6551 } 6552 6553 ExtraSteps = 0; 6554 return Estimate; 6555 } 6556 6557 return SDValue(); 6558 } 6559 6560 //===----------------------------------------------------------------------===// 6561 // AArch64 Inline Assembly Support 6562 //===----------------------------------------------------------------------===// 6563 6564 // Table of Constraints 6565 // TODO: This is the current set of constraints supported by ARM for the 6566 // compiler, not all of them may make sense. 6567 // 6568 // r - A general register 6569 // w - An FP/SIMD register of some size in the range v0-v31 6570 // x - An FP/SIMD register of some size in the range v0-v15 6571 // I - Constant that can be used with an ADD instruction 6572 // J - Constant that can be used with a SUB instruction 6573 // K - Constant that can be used with a 32-bit logical instruction 6574 // L - Constant that can be used with a 64-bit logical instruction 6575 // M - Constant that can be used as a 32-bit MOV immediate 6576 // N - Constant that can be used as a 64-bit MOV immediate 6577 // Q - A memory reference with base register and no offset 6578 // S - A symbolic address 6579 // Y - Floating point constant zero 6580 // Z - Integer constant zero 6581 // 6582 // Note that general register operands will be output using their 64-bit x 6583 // register name, whatever the size of the variable, unless the asm operand 6584 // is prefixed by the %w modifier. Floating-point and SIMD register operands 6585 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or 6586 // %q modifier. 6587 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 6588 // At this point, we have to lower this constraint to something else, so we 6589 // lower it to an "r" or "w". However, by doing this we will force the result 6590 // to be in register, while the X constraint is much more permissive. 6591 // 6592 // Although we are correct (we are free to emit anything, without 6593 // constraints), we might break use cases that would expect us to be more 6594 // efficient and emit something else. 6595 if (!Subtarget->hasFPARMv8()) 6596 return "r"; 6597 6598 if (ConstraintVT.isFloatingPoint()) 6599 return "w"; 6600 6601 if (ConstraintVT.isVector() && 6602 (ConstraintVT.getSizeInBits() == 64 || 6603 ConstraintVT.getSizeInBits() == 128)) 6604 return "w"; 6605 6606 return "r"; 6607 } 6608 6609 enum PredicateConstraint { 6610 Upl, 6611 Upa, 6612 Invalid 6613 }; 6614 6615 static PredicateConstraint parsePredicateConstraint(StringRef Constraint) { 6616 PredicateConstraint P = PredicateConstraint::Invalid; 6617 if (Constraint == "Upa") 6618 P = PredicateConstraint::Upa; 6619 if (Constraint == "Upl") 6620 P = PredicateConstraint::Upl; 6621 return P; 6622 } 6623 6624 /// getConstraintType - Given a constraint letter, return the type of 6625 /// constraint it is for this target. 6626 AArch64TargetLowering::ConstraintType 6627 AArch64TargetLowering::getConstraintType(StringRef Constraint) const { 6628 if (Constraint.size() == 1) { 6629 switch (Constraint[0]) { 6630 default: 6631 break; 6632 case 'x': 6633 case 'w': 6634 case 'y': 6635 return C_RegisterClass; 6636 // An address with a single base register. Due to the way we 6637 // currently handle addresses it is the same as 'r'. 6638 case 'Q': 6639 return C_Memory; 6640 case 'I': 6641 case 'J': 6642 case 'K': 6643 case 'L': 6644 case 'M': 6645 case 'N': 6646 case 'Y': 6647 case 'Z': 6648 return C_Immediate; 6649 case 'z': 6650 case 'S': // A symbolic address 6651 return C_Other; 6652 } 6653 } else if (parsePredicateConstraint(Constraint) != 6654 PredicateConstraint::Invalid) 6655 return C_RegisterClass; 6656 return TargetLowering::getConstraintType(Constraint); 6657 } 6658 6659 /// Examine constraint type and operand type and determine a weight value. 6660 /// This object must already have been set up with the operand type 6661 /// and the current alternative constraint selected. 6662 TargetLowering::ConstraintWeight 6663 AArch64TargetLowering::getSingleConstraintMatchWeight( 6664 AsmOperandInfo &info, const char *constraint) const { 6665 ConstraintWeight weight = CW_Invalid; 6666 Value *CallOperandVal = info.CallOperandVal; 6667 // If we don't have a value, we can't do a match, 6668 // but allow it at the lowest weight. 6669 if (!CallOperandVal) 6670 return CW_Default; 6671 Type *type = CallOperandVal->getType(); 6672 // Look at the constraint type. 6673 switch (*constraint) { 6674 default: 6675 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 6676 break; 6677 case 'x': 6678 case 'w': 6679 case 'y': 6680 if (type->isFloatingPointTy() || type->isVectorTy()) 6681 weight = CW_Register; 6682 break; 6683 case 'z': 6684 weight = CW_Constant; 6685 break; 6686 case 'U': 6687 if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid) 6688 weight = CW_Register; 6689 break; 6690 } 6691 return weight; 6692 } 6693 6694 std::pair<unsigned, const TargetRegisterClass *> 6695 AArch64TargetLowering::getRegForInlineAsmConstraint( 6696 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 6697 if (Constraint.size() == 1) { 6698 switch (Constraint[0]) { 6699 case 'r': 6700 if (VT.getSizeInBits() == 64) 6701 return std::make_pair(0U, &AArch64::GPR64commonRegClass); 6702 return std::make_pair(0U, &AArch64::GPR32commonRegClass); 6703 case 'w': 6704 if (!Subtarget->hasFPARMv8()) 6705 break; 6706 if (VT.isScalableVector()) 6707 return std::make_pair(0U, &AArch64::ZPRRegClass); 6708 if (VT.getSizeInBits() == 16) 6709 return std::make_pair(0U, &AArch64::FPR16RegClass); 6710 if (VT.getSizeInBits() == 32) 6711 return std::make_pair(0U, &AArch64::FPR32RegClass); 6712 if (VT.getSizeInBits() == 64) 6713 return std::make_pair(0U, &AArch64::FPR64RegClass); 6714 if (VT.getSizeInBits() == 128) 6715 return std::make_pair(0U, &AArch64::FPR128RegClass); 6716 break; 6717 // The instructions that this constraint is designed for can 6718 // only take 128-bit registers so just use that regclass. 6719 case 'x': 6720 if (!Subtarget->hasFPARMv8()) 6721 break; 6722 if (VT.isScalableVector()) 6723 return std::make_pair(0U, &AArch64::ZPR_4bRegClass); 6724 if (VT.getSizeInBits() == 128) 6725 return std::make_pair(0U, &AArch64::FPR128_loRegClass); 6726 break; 6727 case 'y': 6728 if (!Subtarget->hasFPARMv8()) 6729 break; 6730 if (VT.isScalableVector()) 6731 return std::make_pair(0U, &AArch64::ZPR_3bRegClass); 6732 break; 6733 } 6734 } else { 6735 PredicateConstraint PC = parsePredicateConstraint(Constraint); 6736 if (PC != PredicateConstraint::Invalid) { 6737 assert(VT.isScalableVector()); 6738 bool restricted = (PC == PredicateConstraint::Upl); 6739 return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass) 6740 : std::make_pair(0U, &AArch64::PPRRegClass); 6741 } 6742 } 6743 if (StringRef("{cc}").equals_lower(Constraint)) 6744 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); 6745 6746 // Use the default implementation in TargetLowering to convert the register 6747 // constraint into a member of a register class. 6748 std::pair<unsigned, const TargetRegisterClass *> Res; 6749 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 6750 6751 // Not found as a standard register? 6752 if (!Res.second) { 6753 unsigned Size = Constraint.size(); 6754 if ((Size == 4 || Size == 5) && Constraint[0] == '{' && 6755 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { 6756 int RegNo; 6757 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); 6758 if (!Failed && RegNo >= 0 && RegNo <= 31) { 6759 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size. 6760 // By default we'll emit v0-v31 for this unless there's a modifier where 6761 // we'll emit the correct register as well. 6762 if (VT != MVT::Other && VT.getSizeInBits() == 64) { 6763 Res.first = AArch64::FPR64RegClass.getRegister(RegNo); 6764 Res.second = &AArch64::FPR64RegClass; 6765 } else { 6766 Res.first = AArch64::FPR128RegClass.getRegister(RegNo); 6767 Res.second = &AArch64::FPR128RegClass; 6768 } 6769 } 6770 } 6771 } 6772 6773 if (Res.second && !Subtarget->hasFPARMv8() && 6774 !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) && 6775 !AArch64::GPR64allRegClass.hasSubClassEq(Res.second)) 6776 return std::make_pair(0U, nullptr); 6777 6778 return Res; 6779 } 6780 6781 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 6782 /// vector. If it is invalid, don't add anything to Ops. 6783 void AArch64TargetLowering::LowerAsmOperandForConstraint( 6784 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 6785 SelectionDAG &DAG) const { 6786 SDValue Result; 6787 6788 // Currently only support length 1 constraints. 6789 if (Constraint.length() != 1) 6790 return; 6791 6792 char ConstraintLetter = Constraint[0]; 6793 switch (ConstraintLetter) { 6794 default: 6795 break; 6796 6797 // This set of constraints deal with valid constants for various instructions. 6798 // Validate and return a target constant for them if we can. 6799 case 'z': { 6800 // 'z' maps to xzr or wzr so it needs an input of 0. 6801 if (!isNullConstant(Op)) 6802 return; 6803 6804 if (Op.getValueType() == MVT::i64) 6805 Result = DAG.getRegister(AArch64::XZR, MVT::i64); 6806 else 6807 Result = DAG.getRegister(AArch64::WZR, MVT::i32); 6808 break; 6809 } 6810 case 'S': { 6811 // An absolute symbolic address or label reference. 6812 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 6813 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 6814 GA->getValueType(0)); 6815 } else if (const BlockAddressSDNode *BA = 6816 dyn_cast<BlockAddressSDNode>(Op)) { 6817 Result = 6818 DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0)); 6819 } else if (const ExternalSymbolSDNode *ES = 6820 dyn_cast<ExternalSymbolSDNode>(Op)) { 6821 Result = 6822 DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0)); 6823 } else 6824 return; 6825 break; 6826 } 6827 6828 case 'I': 6829 case 'J': 6830 case 'K': 6831 case 'L': 6832 case 'M': 6833 case 'N': 6834 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 6835 if (!C) 6836 return; 6837 6838 // Grab the value and do some validation. 6839 uint64_t CVal = C->getZExtValue(); 6840 switch (ConstraintLetter) { 6841 // The I constraint applies only to simple ADD or SUB immediate operands: 6842 // i.e. 0 to 4095 with optional shift by 12 6843 // The J constraint applies only to ADD or SUB immediates that would be 6844 // valid when negated, i.e. if [an add pattern] were to be output as a SUB 6845 // instruction [or vice versa], in other words -1 to -4095 with optional 6846 // left shift by 12. 6847 case 'I': 6848 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) 6849 break; 6850 return; 6851 case 'J': { 6852 uint64_t NVal = -C->getSExtValue(); 6853 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { 6854 CVal = C->getSExtValue(); 6855 break; 6856 } 6857 return; 6858 } 6859 // The K and L constraints apply *only* to logical immediates, including 6860 // what used to be the MOVI alias for ORR (though the MOVI alias has now 6861 // been removed and MOV should be used). So these constraints have to 6862 // distinguish between bit patterns that are valid 32-bit or 64-bit 6863 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but 6864 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice 6865 // versa. 6866 case 'K': 6867 if (AArch64_AM::isLogicalImmediate(CVal, 32)) 6868 break; 6869 return; 6870 case 'L': 6871 if (AArch64_AM::isLogicalImmediate(CVal, 64)) 6872 break; 6873 return; 6874 // The M and N constraints are a superset of K and L respectively, for use 6875 // with the MOV (immediate) alias. As well as the logical immediates they 6876 // also match 32 or 64-bit immediates that can be loaded either using a 6877 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca 6878 // (M) or 64-bit 0x1234000000000000 (N) etc. 6879 // As a note some of this code is liberally stolen from the asm parser. 6880 case 'M': { 6881 if (!isUInt<32>(CVal)) 6882 return; 6883 if (AArch64_AM::isLogicalImmediate(CVal, 32)) 6884 break; 6885 if ((CVal & 0xFFFF) == CVal) 6886 break; 6887 if ((CVal & 0xFFFF0000ULL) == CVal) 6888 break; 6889 uint64_t NCVal = ~(uint32_t)CVal; 6890 if ((NCVal & 0xFFFFULL) == NCVal) 6891 break; 6892 if ((NCVal & 0xFFFF0000ULL) == NCVal) 6893 break; 6894 return; 6895 } 6896 case 'N': { 6897 if (AArch64_AM::isLogicalImmediate(CVal, 64)) 6898 break; 6899 if ((CVal & 0xFFFFULL) == CVal) 6900 break; 6901 if ((CVal & 0xFFFF0000ULL) == CVal) 6902 break; 6903 if ((CVal & 0xFFFF00000000ULL) == CVal) 6904 break; 6905 if ((CVal & 0xFFFF000000000000ULL) == CVal) 6906 break; 6907 uint64_t NCVal = ~CVal; 6908 if ((NCVal & 0xFFFFULL) == NCVal) 6909 break; 6910 if ((NCVal & 0xFFFF0000ULL) == NCVal) 6911 break; 6912 if ((NCVal & 0xFFFF00000000ULL) == NCVal) 6913 break; 6914 if ((NCVal & 0xFFFF000000000000ULL) == NCVal) 6915 break; 6916 return; 6917 } 6918 default: 6919 return; 6920 } 6921 6922 // All assembler immediates are 64-bit integers. 6923 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); 6924 break; 6925 } 6926 6927 if (Result.getNode()) { 6928 Ops.push_back(Result); 6929 return; 6930 } 6931 6932 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 6933 } 6934 6935 //===----------------------------------------------------------------------===// 6936 // AArch64 Advanced SIMD Support 6937 //===----------------------------------------------------------------------===// 6938 6939 /// WidenVector - Given a value in the V64 register class, produce the 6940 /// equivalent value in the V128 register class. 6941 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { 6942 EVT VT = V64Reg.getValueType(); 6943 unsigned NarrowSize = VT.getVectorNumElements(); 6944 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 6945 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); 6946 SDLoc DL(V64Reg); 6947 6948 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), 6949 V64Reg, DAG.getConstant(0, DL, MVT::i32)); 6950 } 6951 6952 /// getExtFactor - Determine the adjustment factor for the position when 6953 /// generating an "extract from vector registers" instruction. 6954 static unsigned getExtFactor(SDValue &V) { 6955 EVT EltType = V.getValueType().getVectorElementType(); 6956 return EltType.getSizeInBits() / 8; 6957 } 6958 6959 /// NarrowVector - Given a value in the V128 register class, produce the 6960 /// equivalent value in the V64 register class. 6961 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { 6962 EVT VT = V128Reg.getValueType(); 6963 unsigned WideSize = VT.getVectorNumElements(); 6964 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 6965 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); 6966 SDLoc DL(V128Reg); 6967 6968 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); 6969 } 6970 6971 // Gather data to see if the operation can be modelled as a 6972 // shuffle in combination with VEXTs. 6973 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, 6974 SelectionDAG &DAG) const { 6975 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 6976 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n"); 6977 SDLoc dl(Op); 6978 EVT VT = Op.getValueType(); 6979 unsigned NumElts = VT.getVectorNumElements(); 6980 6981 struct ShuffleSourceInfo { 6982 SDValue Vec; 6983 unsigned MinElt; 6984 unsigned MaxElt; 6985 6986 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to 6987 // be compatible with the shuffle we intend to construct. As a result 6988 // ShuffleVec will be some sliding window into the original Vec. 6989 SDValue ShuffleVec; 6990 6991 // Code should guarantee that element i in Vec starts at element "WindowBase 6992 // + i * WindowScale in ShuffleVec". 6993 int WindowBase; 6994 int WindowScale; 6995 6996 ShuffleSourceInfo(SDValue Vec) 6997 : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0), 6998 ShuffleVec(Vec), WindowBase(0), WindowScale(1) {} 6999 7000 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } 7001 }; 7002 7003 // First gather all vectors used as an immediate source for this BUILD_VECTOR 7004 // node. 7005 SmallVector<ShuffleSourceInfo, 2> Sources; 7006 for (unsigned i = 0; i < NumElts; ++i) { 7007 SDValue V = Op.getOperand(i); 7008 if (V.isUndef()) 7009 continue; 7010 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 7011 !isa<ConstantSDNode>(V.getOperand(1))) { 7012 LLVM_DEBUG( 7013 dbgs() << "Reshuffle failed: " 7014 "a shuffle can only come from building a vector from " 7015 "various elements of other vectors, provided their " 7016 "indices are constant\n"); 7017 return SDValue(); 7018 } 7019 7020 // Add this element source to the list if it's not already there. 7021 SDValue SourceVec = V.getOperand(0); 7022 auto Source = find(Sources, SourceVec); 7023 if (Source == Sources.end()) 7024 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); 7025 7026 // Update the minimum and maximum lane number seen. 7027 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); 7028 Source->MinElt = std::min(Source->MinElt, EltNo); 7029 Source->MaxElt = std::max(Source->MaxElt, EltNo); 7030 } 7031 7032 if (Sources.size() > 2) { 7033 LLVM_DEBUG( 7034 dbgs() << "Reshuffle failed: currently only do something sane when at " 7035 "most two source vectors are involved\n"); 7036 return SDValue(); 7037 } 7038 7039 // Find out the smallest element size among result and two sources, and use 7040 // it as element size to build the shuffle_vector. 7041 EVT SmallestEltTy = VT.getVectorElementType(); 7042 for (auto &Source : Sources) { 7043 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); 7044 if (SrcEltTy.bitsLT(SmallestEltTy)) { 7045 SmallestEltTy = SrcEltTy; 7046 } 7047 } 7048 unsigned ResMultiplier = 7049 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits(); 7050 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); 7051 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); 7052 7053 // If the source vector is too wide or too narrow, we may nevertheless be able 7054 // to construct a compatible shuffle either by concatenating it with UNDEF or 7055 // extracting a suitable range of elements. 7056 for (auto &Src : Sources) { 7057 EVT SrcVT = Src.ShuffleVec.getValueType(); 7058 7059 if (SrcVT.getSizeInBits() == VT.getSizeInBits()) 7060 continue; 7061 7062 // This stage of the search produces a source with the same element type as 7063 // the original, but with a total width matching the BUILD_VECTOR output. 7064 EVT EltVT = SrcVT.getVectorElementType(); 7065 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); 7066 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); 7067 7068 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { 7069 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits()); 7070 // We can pad out the smaller vector for free, so if it's part of a 7071 // shuffle... 7072 Src.ShuffleVec = 7073 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, 7074 DAG.getUNDEF(Src.ShuffleVec.getValueType())); 7075 continue; 7076 } 7077 7078 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits()); 7079 7080 if (Src.MaxElt - Src.MinElt >= NumSrcElts) { 7081 LLVM_DEBUG( 7082 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n"); 7083 return SDValue(); 7084 } 7085 7086 if (Src.MinElt >= NumSrcElts) { 7087 // The extraction can just take the second half 7088 Src.ShuffleVec = 7089 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 7090 DAG.getConstant(NumSrcElts, dl, MVT::i64)); 7091 Src.WindowBase = -NumSrcElts; 7092 } else if (Src.MaxElt < NumSrcElts) { 7093 // The extraction can just take the first half 7094 Src.ShuffleVec = 7095 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 7096 DAG.getConstant(0, dl, MVT::i64)); 7097 } else { 7098 // An actual VEXT is needed 7099 SDValue VEXTSrc1 = 7100 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 7101 DAG.getConstant(0, dl, MVT::i64)); 7102 SDValue VEXTSrc2 = 7103 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 7104 DAG.getConstant(NumSrcElts, dl, MVT::i64)); 7105 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); 7106 7107 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, 7108 VEXTSrc2, 7109 DAG.getConstant(Imm, dl, MVT::i32)); 7110 Src.WindowBase = -Src.MinElt; 7111 } 7112 } 7113 7114 // Another possible incompatibility occurs from the vector element types. We 7115 // can fix this by bitcasting the source vectors to the same type we intend 7116 // for the shuffle. 7117 for (auto &Src : Sources) { 7118 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); 7119 if (SrcEltTy == SmallestEltTy) 7120 continue; 7121 assert(ShuffleVT.getVectorElementType() == SmallestEltTy); 7122 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); 7123 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); 7124 Src.WindowBase *= Src.WindowScale; 7125 } 7126 7127 // Final sanity check before we try to actually produce a shuffle. 7128 LLVM_DEBUG(for (auto Src 7129 : Sources) 7130 assert(Src.ShuffleVec.getValueType() == ShuffleVT);); 7131 7132 // The stars all align, our next step is to produce the mask for the shuffle. 7133 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); 7134 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); 7135 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 7136 SDValue Entry = Op.getOperand(i); 7137 if (Entry.isUndef()) 7138 continue; 7139 7140 auto Src = find(Sources, Entry.getOperand(0)); 7141 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); 7142 7143 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit 7144 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this 7145 // segment. 7146 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); 7147 int BitsDefined = 7148 std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits()); 7149 int LanesDefined = BitsDefined / BitsPerShuffleLane; 7150 7151 // This source is expected to fill ResMultiplier lanes of the final shuffle, 7152 // starting at the appropriate offset. 7153 int *LaneMask = &Mask[i * ResMultiplier]; 7154 7155 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; 7156 ExtractBase += NumElts * (Src - Sources.begin()); 7157 for (int j = 0; j < LanesDefined; ++j) 7158 LaneMask[j] = ExtractBase + j; 7159 } 7160 7161 // Final check before we try to produce nonsense... 7162 if (!isShuffleMaskLegal(Mask, ShuffleVT)) { 7163 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n"); 7164 return SDValue(); 7165 } 7166 7167 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; 7168 for (unsigned i = 0; i < Sources.size(); ++i) 7169 ShuffleOps[i] = Sources[i].ShuffleVec; 7170 7171 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], 7172 ShuffleOps[1], Mask); 7173 SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); 7174 7175 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump(); 7176 dbgs() << "Reshuffle, creating node: "; V.dump();); 7177 7178 return V; 7179 } 7180 7181 // check if an EXT instruction can handle the shuffle mask when the 7182 // vector sources of the shuffle are the same. 7183 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { 7184 unsigned NumElts = VT.getVectorNumElements(); 7185 7186 // Assume that the first shuffle index is not UNDEF. Fail if it is. 7187 if (M[0] < 0) 7188 return false; 7189 7190 Imm = M[0]; 7191 7192 // If this is a VEXT shuffle, the immediate value is the index of the first 7193 // element. The other shuffle indices must be the successive elements after 7194 // the first one. 7195 unsigned ExpectedElt = Imm; 7196 for (unsigned i = 1; i < NumElts; ++i) { 7197 // Increment the expected index. If it wraps around, just follow it 7198 // back to index zero and keep going. 7199 ++ExpectedElt; 7200 if (ExpectedElt == NumElts) 7201 ExpectedElt = 0; 7202 7203 if (M[i] < 0) 7204 continue; // ignore UNDEF indices 7205 if (ExpectedElt != static_cast<unsigned>(M[i])) 7206 return false; 7207 } 7208 7209 return true; 7210 } 7211 7212 // check if an EXT instruction can handle the shuffle mask when the 7213 // vector sources of the shuffle are different. 7214 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, 7215 unsigned &Imm) { 7216 // Look for the first non-undef element. 7217 const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); 7218 7219 // Benefit form APInt to handle overflow when calculating expected element. 7220 unsigned NumElts = VT.getVectorNumElements(); 7221 unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); 7222 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); 7223 // The following shuffle indices must be the successive elements after the 7224 // first real element. 7225 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), 7226 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); 7227 if (FirstWrongElt != M.end()) 7228 return false; 7229 7230 // The index of an EXT is the first element if it is not UNDEF. 7231 // Watch out for the beginning UNDEFs. The EXT index should be the expected 7232 // value of the first element. E.g. 7233 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. 7234 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. 7235 // ExpectedElt is the last mask index plus 1. 7236 Imm = ExpectedElt.getZExtValue(); 7237 7238 // There are two difference cases requiring to reverse input vectors. 7239 // For example, for vector <4 x i32> we have the following cases, 7240 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) 7241 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) 7242 // For both cases, we finally use mask <5, 6, 7, 0>, which requires 7243 // to reverse two input vectors. 7244 if (Imm < NumElts) 7245 ReverseEXT = true; 7246 else 7247 Imm -= NumElts; 7248 7249 return true; 7250 } 7251 7252 /// isREVMask - Check if a vector shuffle corresponds to a REV 7253 /// instruction with the specified blocksize. (The order of the elements 7254 /// within each block of the vector is reversed.) 7255 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { 7256 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && 7257 "Only possible block sizes for REV are: 16, 32, 64"); 7258 7259 unsigned EltSz = VT.getScalarSizeInBits(); 7260 if (EltSz == 64) 7261 return false; 7262 7263 unsigned NumElts = VT.getVectorNumElements(); 7264 unsigned BlockElts = M[0] + 1; 7265 // If the first shuffle index is UNDEF, be optimistic. 7266 if (M[0] < 0) 7267 BlockElts = BlockSize / EltSz; 7268 7269 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) 7270 return false; 7271 7272 for (unsigned i = 0; i < NumElts; ++i) { 7273 if (M[i] < 0) 7274 continue; // ignore UNDEF indices 7275 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) 7276 return false; 7277 } 7278 7279 return true; 7280 } 7281 7282 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7283 unsigned NumElts = VT.getVectorNumElements(); 7284 if (NumElts % 2 != 0) 7285 return false; 7286 WhichResult = (M[0] == 0 ? 0 : 1); 7287 unsigned Idx = WhichResult * NumElts / 2; 7288 for (unsigned i = 0; i != NumElts; i += 2) { 7289 if ((M[i] >= 0 && (unsigned)M[i] != Idx) || 7290 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) 7291 return false; 7292 Idx += 1; 7293 } 7294 7295 return true; 7296 } 7297 7298 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7299 unsigned NumElts = VT.getVectorNumElements(); 7300 WhichResult = (M[0] == 0 ? 0 : 1); 7301 for (unsigned i = 0; i != NumElts; ++i) { 7302 if (M[i] < 0) 7303 continue; // ignore UNDEF indices 7304 if ((unsigned)M[i] != 2 * i + WhichResult) 7305 return false; 7306 } 7307 7308 return true; 7309 } 7310 7311 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7312 unsigned NumElts = VT.getVectorNumElements(); 7313 if (NumElts % 2 != 0) 7314 return false; 7315 WhichResult = (M[0] == 0 ? 0 : 1); 7316 for (unsigned i = 0; i < NumElts; i += 2) { 7317 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || 7318 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) 7319 return false; 7320 } 7321 return true; 7322 } 7323 7324 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of 7325 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 7326 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 7327 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7328 unsigned NumElts = VT.getVectorNumElements(); 7329 if (NumElts % 2 != 0) 7330 return false; 7331 WhichResult = (M[0] == 0 ? 0 : 1); 7332 unsigned Idx = WhichResult * NumElts / 2; 7333 for (unsigned i = 0; i != NumElts; i += 2) { 7334 if ((M[i] >= 0 && (unsigned)M[i] != Idx) || 7335 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) 7336 return false; 7337 Idx += 1; 7338 } 7339 7340 return true; 7341 } 7342 7343 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of 7344 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 7345 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 7346 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7347 unsigned Half = VT.getVectorNumElements() / 2; 7348 WhichResult = (M[0] == 0 ? 0 : 1); 7349 for (unsigned j = 0; j != 2; ++j) { 7350 unsigned Idx = WhichResult; 7351 for (unsigned i = 0; i != Half; ++i) { 7352 int MIdx = M[i + j * Half]; 7353 if (MIdx >= 0 && (unsigned)MIdx != Idx) 7354 return false; 7355 Idx += 2; 7356 } 7357 } 7358 7359 return true; 7360 } 7361 7362 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of 7363 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 7364 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 7365 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 7366 unsigned NumElts = VT.getVectorNumElements(); 7367 if (NumElts % 2 != 0) 7368 return false; 7369 WhichResult = (M[0] == 0 ? 0 : 1); 7370 for (unsigned i = 0; i < NumElts; i += 2) { 7371 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || 7372 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) 7373 return false; 7374 } 7375 return true; 7376 } 7377 7378 static bool isINSMask(ArrayRef<int> M, int NumInputElements, 7379 bool &DstIsLeft, int &Anomaly) { 7380 if (M.size() != static_cast<size_t>(NumInputElements)) 7381 return false; 7382 7383 int NumLHSMatch = 0, NumRHSMatch = 0; 7384 int LastLHSMismatch = -1, LastRHSMismatch = -1; 7385 7386 for (int i = 0; i < NumInputElements; ++i) { 7387 if (M[i] == -1) { 7388 ++NumLHSMatch; 7389 ++NumRHSMatch; 7390 continue; 7391 } 7392 7393 if (M[i] == i) 7394 ++NumLHSMatch; 7395 else 7396 LastLHSMismatch = i; 7397 7398 if (M[i] == i + NumInputElements) 7399 ++NumRHSMatch; 7400 else 7401 LastRHSMismatch = i; 7402 } 7403 7404 if (NumLHSMatch == NumInputElements - 1) { 7405 DstIsLeft = true; 7406 Anomaly = LastLHSMismatch; 7407 return true; 7408 } else if (NumRHSMatch == NumInputElements - 1) { 7409 DstIsLeft = false; 7410 Anomaly = LastRHSMismatch; 7411 return true; 7412 } 7413 7414 return false; 7415 } 7416 7417 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { 7418 if (VT.getSizeInBits() != 128) 7419 return false; 7420 7421 unsigned NumElts = VT.getVectorNumElements(); 7422 7423 for (int I = 0, E = NumElts / 2; I != E; I++) { 7424 if (Mask[I] != I) 7425 return false; 7426 } 7427 7428 int Offset = NumElts / 2; 7429 for (int I = NumElts / 2, E = NumElts; I != E; I++) { 7430 if (Mask[I] != I + SplitLHS * Offset) 7431 return false; 7432 } 7433 7434 return true; 7435 } 7436 7437 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { 7438 SDLoc DL(Op); 7439 EVT VT = Op.getValueType(); 7440 SDValue V0 = Op.getOperand(0); 7441 SDValue V1 = Op.getOperand(1); 7442 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); 7443 7444 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || 7445 VT.getVectorElementType() != V1.getValueType().getVectorElementType()) 7446 return SDValue(); 7447 7448 bool SplitV0 = V0.getValueSizeInBits() == 128; 7449 7450 if (!isConcatMask(Mask, VT, SplitV0)) 7451 return SDValue(); 7452 7453 EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7454 if (SplitV0) { 7455 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, 7456 DAG.getConstant(0, DL, MVT::i64)); 7457 } 7458 if (V1.getValueSizeInBits() == 128) { 7459 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, 7460 DAG.getConstant(0, DL, MVT::i64)); 7461 } 7462 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); 7463 } 7464 7465 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 7466 /// the specified operations to build the shuffle. 7467 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 7468 SDValue RHS, SelectionDAG &DAG, 7469 const SDLoc &dl) { 7470 unsigned OpNum = (PFEntry >> 26) & 0x0F; 7471 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); 7472 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); 7473 7474 enum { 7475 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 7476 OP_VREV, 7477 OP_VDUP0, 7478 OP_VDUP1, 7479 OP_VDUP2, 7480 OP_VDUP3, 7481 OP_VEXT1, 7482 OP_VEXT2, 7483 OP_VEXT3, 7484 OP_VUZPL, // VUZP, left result 7485 OP_VUZPR, // VUZP, right result 7486 OP_VZIPL, // VZIP, left result 7487 OP_VZIPR, // VZIP, right result 7488 OP_VTRNL, // VTRN, left result 7489 OP_VTRNR // VTRN, right result 7490 }; 7491 7492 if (OpNum == OP_COPY) { 7493 if (LHSID == (1 * 9 + 2) * 9 + 3) 7494 return LHS; 7495 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); 7496 return RHS; 7497 } 7498 7499 SDValue OpLHS, OpRHS; 7500 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 7501 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 7502 EVT VT = OpLHS.getValueType(); 7503 7504 switch (OpNum) { 7505 default: 7506 llvm_unreachable("Unknown shuffle opcode!"); 7507 case OP_VREV: 7508 // VREV divides the vector in half and swaps within the half. 7509 if (VT.getVectorElementType() == MVT::i32 || 7510 VT.getVectorElementType() == MVT::f32) 7511 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); 7512 // vrev <4 x i16> -> REV32 7513 if (VT.getVectorElementType() == MVT::i16 || 7514 VT.getVectorElementType() == MVT::f16 || 7515 VT.getVectorElementType() == MVT::bf16) 7516 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); 7517 // vrev <4 x i8> -> REV16 7518 assert(VT.getVectorElementType() == MVT::i8); 7519 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); 7520 case OP_VDUP0: 7521 case OP_VDUP1: 7522 case OP_VDUP2: 7523 case OP_VDUP3: { 7524 EVT EltTy = VT.getVectorElementType(); 7525 unsigned Opcode; 7526 if (EltTy == MVT::i8) 7527 Opcode = AArch64ISD::DUPLANE8; 7528 else if (EltTy == MVT::i16 || EltTy == MVT::f16 || EltTy == MVT::bf16) 7529 Opcode = AArch64ISD::DUPLANE16; 7530 else if (EltTy == MVT::i32 || EltTy == MVT::f32) 7531 Opcode = AArch64ISD::DUPLANE32; 7532 else if (EltTy == MVT::i64 || EltTy == MVT::f64) 7533 Opcode = AArch64ISD::DUPLANE64; 7534 else 7535 llvm_unreachable("Invalid vector element type?"); 7536 7537 if (VT.getSizeInBits() == 64) 7538 OpLHS = WidenVector(OpLHS, DAG); 7539 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); 7540 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); 7541 } 7542 case OP_VEXT1: 7543 case OP_VEXT2: 7544 case OP_VEXT3: { 7545 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); 7546 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, 7547 DAG.getConstant(Imm, dl, MVT::i32)); 7548 } 7549 case OP_VUZPL: 7550 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, 7551 OpRHS); 7552 case OP_VUZPR: 7553 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, 7554 OpRHS); 7555 case OP_VZIPL: 7556 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, 7557 OpRHS); 7558 case OP_VZIPR: 7559 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, 7560 OpRHS); 7561 case OP_VTRNL: 7562 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, 7563 OpRHS); 7564 case OP_VTRNR: 7565 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, 7566 OpRHS); 7567 } 7568 } 7569 7570 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, 7571 SelectionDAG &DAG) { 7572 // Check to see if we can use the TBL instruction. 7573 SDValue V1 = Op.getOperand(0); 7574 SDValue V2 = Op.getOperand(1); 7575 SDLoc DL(Op); 7576 7577 EVT EltVT = Op.getValueType().getVectorElementType(); 7578 unsigned BytesPerElt = EltVT.getSizeInBits() / 8; 7579 7580 SmallVector<SDValue, 8> TBLMask; 7581 for (int Val : ShuffleMask) { 7582 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { 7583 unsigned Offset = Byte + Val * BytesPerElt; 7584 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); 7585 } 7586 } 7587 7588 MVT IndexVT = MVT::v8i8; 7589 unsigned IndexLen = 8; 7590 if (Op.getValueSizeInBits() == 128) { 7591 IndexVT = MVT::v16i8; 7592 IndexLen = 16; 7593 } 7594 7595 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); 7596 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); 7597 7598 SDValue Shuffle; 7599 if (V2.getNode()->isUndef()) { 7600 if (IndexLen == 8) 7601 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); 7602 Shuffle = DAG.getNode( 7603 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7604 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, 7605 DAG.getBuildVector(IndexVT, DL, 7606 makeArrayRef(TBLMask.data(), IndexLen))); 7607 } else { 7608 if (IndexLen == 8) { 7609 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); 7610 Shuffle = DAG.getNode( 7611 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7612 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, 7613 DAG.getBuildVector(IndexVT, DL, 7614 makeArrayRef(TBLMask.data(), IndexLen))); 7615 } else { 7616 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we 7617 // cannot currently represent the register constraints on the input 7618 // table registers. 7619 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, 7620 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0], 7621 // IndexLen)); 7622 Shuffle = DAG.getNode( 7623 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7624 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst, 7625 V2Cst, DAG.getBuildVector(IndexVT, DL, 7626 makeArrayRef(TBLMask.data(), IndexLen))); 7627 } 7628 } 7629 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); 7630 } 7631 7632 static unsigned getDUPLANEOp(EVT EltType) { 7633 if (EltType == MVT::i8) 7634 return AArch64ISD::DUPLANE8; 7635 if (EltType == MVT::i16 || EltType == MVT::f16 || EltType == MVT::bf16) 7636 return AArch64ISD::DUPLANE16; 7637 if (EltType == MVT::i32 || EltType == MVT::f32) 7638 return AArch64ISD::DUPLANE32; 7639 if (EltType == MVT::i64 || EltType == MVT::f64) 7640 return AArch64ISD::DUPLANE64; 7641 7642 llvm_unreachable("Invalid vector element type?"); 7643 } 7644 7645 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7646 SelectionDAG &DAG) const { 7647 SDLoc dl(Op); 7648 EVT VT = Op.getValueType(); 7649 7650 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 7651 7652 // Convert shuffles that are directly supported on NEON to target-specific 7653 // DAG nodes, instead of keeping them as shuffles and matching them again 7654 // during code selection. This is more efficient and avoids the possibility 7655 // of inconsistencies between legalization and selection. 7656 ArrayRef<int> ShuffleMask = SVN->getMask(); 7657 7658 SDValue V1 = Op.getOperand(0); 7659 SDValue V2 = Op.getOperand(1); 7660 7661 if (SVN->isSplat()) { 7662 int Lane = SVN->getSplatIndex(); 7663 // If this is undef splat, generate it via "just" vdup, if possible. 7664 if (Lane == -1) 7665 Lane = 0; 7666 7667 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) 7668 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), 7669 V1.getOperand(0)); 7670 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- 7671 // constant. If so, we can just reference the lane's definition directly. 7672 if (V1.getOpcode() == ISD::BUILD_VECTOR && 7673 !isa<ConstantSDNode>(V1.getOperand(Lane))) 7674 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); 7675 7676 // Otherwise, duplicate from the lane of the input vector. 7677 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); 7678 7679 // Try to eliminate a bitcasted extract subvector before a DUPLANE. 7680 auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) { 7681 // Match: dup (bitcast (extract_subv X, C)), LaneC 7682 if (BitCast.getOpcode() != ISD::BITCAST || 7683 BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR) 7684 return false; 7685 7686 // The extract index must align in the destination type. That may not 7687 // happen if the bitcast is from narrow to wide type. 7688 SDValue Extract = BitCast.getOperand(0); 7689 unsigned ExtIdx = Extract.getConstantOperandVal(1); 7690 unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits(); 7691 unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth; 7692 unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits(); 7693 if (ExtIdxInBits % CastedEltBitWidth != 0) 7694 return false; 7695 7696 // Update the lane value by offsetting with the scaled extract index. 7697 LaneC += ExtIdxInBits / CastedEltBitWidth; 7698 7699 // Determine the casted vector type of the wide vector input. 7700 // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC' 7701 // Examples: 7702 // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3 7703 // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5 7704 unsigned SrcVecNumElts = 7705 Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth; 7706 CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(), 7707 SrcVecNumElts); 7708 return true; 7709 }; 7710 MVT CastVT; 7711 if (getScaledOffsetDup(V1, Lane, CastVT)) { 7712 V1 = DAG.getBitcast(CastVT, V1.getOperand(0).getOperand(0)); 7713 } else if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 7714 // The lane is incremented by the index of the extract. 7715 // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3 7716 Lane += V1.getConstantOperandVal(1); 7717 V1 = V1.getOperand(0); 7718 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { 7719 // The lane is decremented if we are splatting from the 2nd operand. 7720 // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1 7721 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; 7722 Lane -= Idx * VT.getVectorNumElements() / 2; 7723 V1 = WidenVector(V1.getOperand(Idx), DAG); 7724 } else if (VT.getSizeInBits() == 64) { 7725 // Widen the operand to 128-bit register with undef. 7726 V1 = WidenVector(V1, DAG); 7727 } 7728 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64)); 7729 } 7730 7731 if (isREVMask(ShuffleMask, VT, 64)) 7732 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); 7733 if (isREVMask(ShuffleMask, VT, 32)) 7734 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); 7735 if (isREVMask(ShuffleMask, VT, 16)) 7736 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); 7737 7738 bool ReverseEXT = false; 7739 unsigned Imm; 7740 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { 7741 if (ReverseEXT) 7742 std::swap(V1, V2); 7743 Imm *= getExtFactor(V1); 7744 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, 7745 DAG.getConstant(Imm, dl, MVT::i32)); 7746 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) { 7747 Imm *= getExtFactor(V1); 7748 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, 7749 DAG.getConstant(Imm, dl, MVT::i32)); 7750 } 7751 7752 unsigned WhichResult; 7753 if (isZIPMask(ShuffleMask, VT, WhichResult)) { 7754 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; 7755 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7756 } 7757 if (isUZPMask(ShuffleMask, VT, WhichResult)) { 7758 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; 7759 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7760 } 7761 if (isTRNMask(ShuffleMask, VT, WhichResult)) { 7762 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; 7763 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7764 } 7765 7766 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7767 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; 7768 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7769 } 7770 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7771 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; 7772 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7773 } 7774 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7775 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; 7776 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7777 } 7778 7779 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG)) 7780 return Concat; 7781 7782 bool DstIsLeft; 7783 int Anomaly; 7784 int NumInputElements = V1.getValueType().getVectorNumElements(); 7785 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { 7786 SDValue DstVec = DstIsLeft ? V1 : V2; 7787 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); 7788 7789 SDValue SrcVec = V1; 7790 int SrcLane = ShuffleMask[Anomaly]; 7791 if (SrcLane >= NumInputElements) { 7792 SrcVec = V2; 7793 SrcLane -= VT.getVectorNumElements(); 7794 } 7795 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); 7796 7797 EVT ScalarVT = VT.getVectorElementType(); 7798 7799 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger()) 7800 ScalarVT = MVT::i32; 7801 7802 return DAG.getNode( 7803 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, 7804 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), 7805 DstLaneV); 7806 } 7807 7808 // If the shuffle is not directly supported and it has 4 elements, use 7809 // the PerfectShuffle-generated table to synthesize it from other shuffles. 7810 unsigned NumElts = VT.getVectorNumElements(); 7811 if (NumElts == 4) { 7812 unsigned PFIndexes[4]; 7813 for (unsigned i = 0; i != 4; ++i) { 7814 if (ShuffleMask[i] < 0) 7815 PFIndexes[i] = 8; 7816 else 7817 PFIndexes[i] = ShuffleMask[i]; 7818 } 7819 7820 // Compute the index in the perfect shuffle table. 7821 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 7822 PFIndexes[2] * 9 + PFIndexes[3]; 7823 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7824 unsigned Cost = (PFEntry >> 30); 7825 7826 if (Cost <= 4) 7827 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7828 } 7829 7830 return GenerateTBL(Op, ShuffleMask, DAG); 7831 } 7832 7833 SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op, 7834 SelectionDAG &DAG) const { 7835 SDLoc dl(Op); 7836 EVT VT = Op.getValueType(); 7837 EVT ElemVT = VT.getScalarType(); 7838 7839 SDValue SplatVal = Op.getOperand(0); 7840 7841 // Extend input splat value where needed to fit into a GPR (32b or 64b only) 7842 // FPRs don't have this restriction. 7843 switch (ElemVT.getSimpleVT().SimpleTy) { 7844 case MVT::i1: { 7845 // The only legal i1 vectors are SVE vectors, so we can use SVE-specific 7846 // lowering code. 7847 if (auto *ConstVal = dyn_cast<ConstantSDNode>(SplatVal)) { 7848 if (ConstVal->isOne()) 7849 return getPTrue(DAG, dl, VT, AArch64SVEPredPattern::all); 7850 // TODO: Add special case for constant false 7851 } 7852 // The general case of i1. There isn't any natural way to do this, 7853 // so we use some trickery with whilelo. 7854 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64); 7855 SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i64, SplatVal, 7856 DAG.getValueType(MVT::i1)); 7857 SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl, 7858 MVT::i64); 7859 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID, 7860 DAG.getConstant(0, dl, MVT::i64), SplatVal); 7861 } 7862 case MVT::i8: 7863 case MVT::i16: 7864 case MVT::i32: 7865 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32); 7866 break; 7867 case MVT::i64: 7868 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64); 7869 break; 7870 case MVT::f16: 7871 case MVT::bf16: 7872 case MVT::f32: 7873 case MVT::f64: 7874 // Fine as is 7875 break; 7876 default: 7877 report_fatal_error("Unsupported SPLAT_VECTOR input operand type"); 7878 } 7879 7880 return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal); 7881 } 7882 7883 SDValue AArch64TargetLowering::LowerDUPQLane(SDValue Op, 7884 SelectionDAG &DAG) const { 7885 SDLoc DL(Op); 7886 7887 EVT VT = Op.getValueType(); 7888 if (!isTypeLegal(VT) || !VT.isScalableVector()) 7889 return SDValue(); 7890 7891 // Current lowering only supports the SVE-ACLE types. 7892 if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock) 7893 return SDValue(); 7894 7895 // The DUPQ operation is indepedent of element type so normalise to i64s. 7896 SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::nxv2i64, Op.getOperand(1)); 7897 SDValue Idx128 = Op.getOperand(2); 7898 7899 // DUPQ can be used when idx is in range. 7900 auto *CIdx = dyn_cast<ConstantSDNode>(Idx128); 7901 if (CIdx && (CIdx->getZExtValue() <= 3)) { 7902 SDValue CI = DAG.getTargetConstant(CIdx->getZExtValue(), DL, MVT::i64); 7903 SDNode *DUPQ = 7904 DAG.getMachineNode(AArch64::DUP_ZZI_Q, DL, MVT::nxv2i64, V, CI); 7905 return DAG.getNode(ISD::BITCAST, DL, VT, SDValue(DUPQ, 0)); 7906 } 7907 7908 // The ACLE says this must produce the same result as: 7909 // svtbl(data, svadd_x(svptrue_b64(), 7910 // svand_x(svptrue_b64(), svindex_u64(0, 1), 1), 7911 // index * 2)) 7912 SDValue One = DAG.getConstant(1, DL, MVT::i64); 7913 SDValue SplatOne = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, One); 7914 7915 // create the vector 0,1,0,1,... 7916 SDValue Zero = DAG.getConstant(0, DL, MVT::i64); 7917 SDValue SV = DAG.getNode(AArch64ISD::INDEX_VECTOR, 7918 DL, MVT::nxv2i64, Zero, One); 7919 SV = DAG.getNode(ISD::AND, DL, MVT::nxv2i64, SV, SplatOne); 7920 7921 // create the vector idx64,idx64+1,idx64,idx64+1,... 7922 SDValue Idx64 = DAG.getNode(ISD::ADD, DL, MVT::i64, Idx128, Idx128); 7923 SDValue SplatIdx64 = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Idx64); 7924 SDValue ShuffleMask = DAG.getNode(ISD::ADD, DL, MVT::nxv2i64, SV, SplatIdx64); 7925 7926 // create the vector Val[idx64],Val[idx64+1],Val[idx64],Val[idx64+1],... 7927 SDValue TBL = DAG.getNode(AArch64ISD::TBL, DL, MVT::nxv2i64, V, ShuffleMask); 7928 return DAG.getNode(ISD::BITCAST, DL, VT, TBL); 7929 } 7930 7931 7932 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, 7933 APInt &UndefBits) { 7934 EVT VT = BVN->getValueType(0); 7935 APInt SplatBits, SplatUndef; 7936 unsigned SplatBitSize; 7937 bool HasAnyUndefs; 7938 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 7939 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; 7940 7941 for (unsigned i = 0; i < NumSplats; ++i) { 7942 CnstBits <<= SplatBitSize; 7943 UndefBits <<= SplatBitSize; 7944 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); 7945 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); 7946 } 7947 7948 return true; 7949 } 7950 7951 return false; 7952 } 7953 7954 // Try 64-bit splatted SIMD immediate. 7955 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7956 const APInt &Bits) { 7957 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7958 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7959 EVT VT = Op.getValueType(); 7960 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64; 7961 7962 if (AArch64_AM::isAdvSIMDModImmType10(Value)) { 7963 Value = AArch64_AM::encodeAdvSIMDModImmType10(Value); 7964 7965 SDLoc dl(Op); 7966 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7967 DAG.getConstant(Value, dl, MVT::i32)); 7968 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7969 } 7970 } 7971 7972 return SDValue(); 7973 } 7974 7975 // Try 32-bit splatted SIMD immediate. 7976 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7977 const APInt &Bits, 7978 const SDValue *LHS = nullptr) { 7979 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7980 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7981 EVT VT = Op.getValueType(); 7982 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 7983 bool isAdvSIMDModImm = false; 7984 uint64_t Shift; 7985 7986 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) { 7987 Value = AArch64_AM::encodeAdvSIMDModImmType1(Value); 7988 Shift = 0; 7989 } 7990 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) { 7991 Value = AArch64_AM::encodeAdvSIMDModImmType2(Value); 7992 Shift = 8; 7993 } 7994 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) { 7995 Value = AArch64_AM::encodeAdvSIMDModImmType3(Value); 7996 Shift = 16; 7997 } 7998 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) { 7999 Value = AArch64_AM::encodeAdvSIMDModImmType4(Value); 8000 Shift = 24; 8001 } 8002 8003 if (isAdvSIMDModImm) { 8004 SDLoc dl(Op); 8005 SDValue Mov; 8006 8007 if (LHS) 8008 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, 8009 DAG.getConstant(Value, dl, MVT::i32), 8010 DAG.getConstant(Shift, dl, MVT::i32)); 8011 else 8012 Mov = DAG.getNode(NewOp, dl, MovTy, 8013 DAG.getConstant(Value, dl, MVT::i32), 8014 DAG.getConstant(Shift, dl, MVT::i32)); 8015 8016 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 8017 } 8018 } 8019 8020 return SDValue(); 8021 } 8022 8023 // Try 16-bit splatted SIMD immediate. 8024 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 8025 const APInt &Bits, 8026 const SDValue *LHS = nullptr) { 8027 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 8028 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 8029 EVT VT = Op.getValueType(); 8030 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 8031 bool isAdvSIMDModImm = false; 8032 uint64_t Shift; 8033 8034 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) { 8035 Value = AArch64_AM::encodeAdvSIMDModImmType5(Value); 8036 Shift = 0; 8037 } 8038 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) { 8039 Value = AArch64_AM::encodeAdvSIMDModImmType6(Value); 8040 Shift = 8; 8041 } 8042 8043 if (isAdvSIMDModImm) { 8044 SDLoc dl(Op); 8045 SDValue Mov; 8046 8047 if (LHS) 8048 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, 8049 DAG.getConstant(Value, dl, MVT::i32), 8050 DAG.getConstant(Shift, dl, MVT::i32)); 8051 else 8052 Mov = DAG.getNode(NewOp, dl, MovTy, 8053 DAG.getConstant(Value, dl, MVT::i32), 8054 DAG.getConstant(Shift, dl, MVT::i32)); 8055 8056 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 8057 } 8058 } 8059 8060 return SDValue(); 8061 } 8062 8063 // Try 32-bit splatted SIMD immediate with shifted ones. 8064 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op, 8065 SelectionDAG &DAG, const APInt &Bits) { 8066 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 8067 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 8068 EVT VT = Op.getValueType(); 8069 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 8070 bool isAdvSIMDModImm = false; 8071 uint64_t Shift; 8072 8073 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) { 8074 Value = AArch64_AM::encodeAdvSIMDModImmType7(Value); 8075 Shift = 264; 8076 } 8077 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) { 8078 Value = AArch64_AM::encodeAdvSIMDModImmType8(Value); 8079 Shift = 272; 8080 } 8081 8082 if (isAdvSIMDModImm) { 8083 SDLoc dl(Op); 8084 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 8085 DAG.getConstant(Value, dl, MVT::i32), 8086 DAG.getConstant(Shift, dl, MVT::i32)); 8087 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 8088 } 8089 } 8090 8091 return SDValue(); 8092 } 8093 8094 // Try 8-bit splatted SIMD immediate. 8095 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 8096 const APInt &Bits) { 8097 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 8098 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 8099 EVT VT = Op.getValueType(); 8100 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; 8101 8102 if (AArch64_AM::isAdvSIMDModImmType9(Value)) { 8103 Value = AArch64_AM::encodeAdvSIMDModImmType9(Value); 8104 8105 SDLoc dl(Op); 8106 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 8107 DAG.getConstant(Value, dl, MVT::i32)); 8108 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 8109 } 8110 } 8111 8112 return SDValue(); 8113 } 8114 8115 // Try FP splatted SIMD immediate. 8116 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 8117 const APInt &Bits) { 8118 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 8119 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 8120 EVT VT = Op.getValueType(); 8121 bool isWide = (VT.getSizeInBits() == 128); 8122 MVT MovTy; 8123 bool isAdvSIMDModImm = false; 8124 8125 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) { 8126 Value = AArch64_AM::encodeAdvSIMDModImmType11(Value); 8127 MovTy = isWide ? MVT::v4f32 : MVT::v2f32; 8128 } 8129 else if (isWide && 8130 (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) { 8131 Value = AArch64_AM::encodeAdvSIMDModImmType12(Value); 8132 MovTy = MVT::v2f64; 8133 } 8134 8135 if (isAdvSIMDModImm) { 8136 SDLoc dl(Op); 8137 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 8138 DAG.getConstant(Value, dl, MVT::i32)); 8139 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 8140 } 8141 } 8142 8143 return SDValue(); 8144 } 8145 8146 // Specialized code to quickly find if PotentialBVec is a BuildVector that 8147 // consists of only the same constant int value, returned in reference arg 8148 // ConstVal 8149 static bool isAllConstantBuildVector(const SDValue &PotentialBVec, 8150 uint64_t &ConstVal) { 8151 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); 8152 if (!Bvec) 8153 return false; 8154 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); 8155 if (!FirstElt) 8156 return false; 8157 EVT VT = Bvec->getValueType(0); 8158 unsigned NumElts = VT.getVectorNumElements(); 8159 for (unsigned i = 1; i < NumElts; ++i) 8160 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) 8161 return false; 8162 ConstVal = FirstElt->getZExtValue(); 8163 return true; 8164 } 8165 8166 static unsigned getIntrinsicID(const SDNode *N) { 8167 unsigned Opcode = N->getOpcode(); 8168 switch (Opcode) { 8169 default: 8170 return Intrinsic::not_intrinsic; 8171 case ISD::INTRINSIC_WO_CHAIN: { 8172 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 8173 if (IID < Intrinsic::num_intrinsics) 8174 return IID; 8175 return Intrinsic::not_intrinsic; 8176 } 8177 } 8178 } 8179 8180 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), 8181 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a 8182 // BUILD_VECTORs with constant element C1, C2 is a constant, and: 8183 // - for the SLI case: C1 == ~(Ones(ElemSizeInBits) << C2) 8184 // - for the SRI case: C1 == ~(Ones(ElemSizeInBits) >> C2) 8185 // The (or (lsl Y, C2), (and X, BvecC1)) case is also handled. 8186 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { 8187 EVT VT = N->getValueType(0); 8188 8189 if (!VT.isVector()) 8190 return SDValue(); 8191 8192 SDLoc DL(N); 8193 8194 SDValue And; 8195 SDValue Shift; 8196 8197 SDValue FirstOp = N->getOperand(0); 8198 unsigned FirstOpc = FirstOp.getOpcode(); 8199 SDValue SecondOp = N->getOperand(1); 8200 unsigned SecondOpc = SecondOp.getOpcode(); 8201 8202 // Is one of the operands an AND or a BICi? The AND may have been optimised to 8203 // a BICi in order to use an immediate instead of a register. 8204 // Is the other operand an shl or lshr? This will have been turned into: 8205 // AArch64ISD::VSHL vector, #shift or AArch64ISD::VLSHR vector, #shift. 8206 if ((FirstOpc == ISD::AND || FirstOpc == AArch64ISD::BICi) && 8207 (SecondOpc == AArch64ISD::VSHL || SecondOpc == AArch64ISD::VLSHR)) { 8208 And = FirstOp; 8209 Shift = SecondOp; 8210 8211 } else if ((SecondOpc == ISD::AND || SecondOpc == AArch64ISD::BICi) && 8212 (FirstOpc == AArch64ISD::VSHL || FirstOpc == AArch64ISD::VLSHR)) { 8213 And = SecondOp; 8214 Shift = FirstOp; 8215 } else 8216 return SDValue(); 8217 8218 bool IsAnd = And.getOpcode() == ISD::AND; 8219 bool IsShiftRight = Shift.getOpcode() == AArch64ISD::VLSHR; 8220 8221 // Is the shift amount constant? 8222 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 8223 if (!C2node) 8224 return SDValue(); 8225 8226 uint64_t C1; 8227 if (IsAnd) { 8228 // Is the and mask vector all constant? 8229 if (!isAllConstantBuildVector(And.getOperand(1), C1)) 8230 return SDValue(); 8231 } else { 8232 // Reconstruct the corresponding AND immediate from the two BICi immediates. 8233 ConstantSDNode *C1nodeImm = dyn_cast<ConstantSDNode>(And.getOperand(1)); 8234 ConstantSDNode *C1nodeShift = dyn_cast<ConstantSDNode>(And.getOperand(2)); 8235 assert(C1nodeImm && C1nodeShift); 8236 C1 = ~(C1nodeImm->getZExtValue() << C1nodeShift->getZExtValue()); 8237 } 8238 8239 // Is C1 == ~(Ones(ElemSizeInBits) << C2) or 8240 // C1 == ~(Ones(ElemSizeInBits) >> C2), taking into account 8241 // how much one can shift elements of a particular size? 8242 uint64_t C2 = C2node->getZExtValue(); 8243 unsigned ElemSizeInBits = VT.getScalarSizeInBits(); 8244 if (C2 > ElemSizeInBits) 8245 return SDValue(); 8246 8247 APInt C1AsAPInt(ElemSizeInBits, C1); 8248 APInt RequiredC1 = IsShiftRight ? APInt::getHighBitsSet(ElemSizeInBits, C2) 8249 : APInt::getLowBitsSet(ElemSizeInBits, C2); 8250 if (C1AsAPInt != RequiredC1) 8251 return SDValue(); 8252 8253 SDValue X = And.getOperand(0); 8254 SDValue Y = Shift.getOperand(0); 8255 8256 unsigned Inst = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI; 8257 SDValue ResultSLI = DAG.getNode(Inst, DL, VT, X, Y, Shift.getOperand(1)); 8258 8259 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n"); 8260 LLVM_DEBUG(N->dump(&DAG)); 8261 LLVM_DEBUG(dbgs() << "into: \n"); 8262 LLVM_DEBUG(ResultSLI->dump(&DAG)); 8263 8264 ++NumShiftInserts; 8265 return ResultSLI; 8266 } 8267 8268 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, 8269 SelectionDAG &DAG) const { 8270 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) 8271 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG)) 8272 return Res; 8273 8274 EVT VT = Op.getValueType(); 8275 8276 SDValue LHS = Op.getOperand(0); 8277 BuildVectorSDNode *BVN = 8278 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); 8279 if (!BVN) { 8280 // OR commutes, so try swapping the operands. 8281 LHS = Op.getOperand(1); 8282 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); 8283 } 8284 if (!BVN) 8285 return Op; 8286 8287 APInt DefBits(VT.getSizeInBits(), 0); 8288 APInt UndefBits(VT.getSizeInBits(), 0); 8289 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 8290 SDValue NewOp; 8291 8292 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, 8293 DefBits, &LHS)) || 8294 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, 8295 DefBits, &LHS))) 8296 return NewOp; 8297 8298 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, 8299 UndefBits, &LHS)) || 8300 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, 8301 UndefBits, &LHS))) 8302 return NewOp; 8303 } 8304 8305 // We can always fall back to a non-immediate OR. 8306 return Op; 8307 } 8308 8309 // Normalize the operands of BUILD_VECTOR. The value of constant operands will 8310 // be truncated to fit element width. 8311 static SDValue NormalizeBuildVector(SDValue Op, 8312 SelectionDAG &DAG) { 8313 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 8314 SDLoc dl(Op); 8315 EVT VT = Op.getValueType(); 8316 EVT EltTy= VT.getVectorElementType(); 8317 8318 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) 8319 return Op; 8320 8321 SmallVector<SDValue, 16> Ops; 8322 for (SDValue Lane : Op->ops()) { 8323 // For integer vectors, type legalization would have promoted the 8324 // operands already. Otherwise, if Op is a floating-point splat 8325 // (with operands cast to integers), then the only possibilities 8326 // are constants and UNDEFs. 8327 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) { 8328 APInt LowBits(EltTy.getSizeInBits(), 8329 CstLane->getZExtValue()); 8330 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); 8331 } else if (Lane.getNode()->isUndef()) { 8332 Lane = DAG.getUNDEF(MVT::i32); 8333 } else { 8334 assert(Lane.getValueType() == MVT::i32 && 8335 "Unexpected BUILD_VECTOR operand type"); 8336 } 8337 Ops.push_back(Lane); 8338 } 8339 return DAG.getBuildVector(VT, dl, Ops); 8340 } 8341 8342 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) { 8343 EVT VT = Op.getValueType(); 8344 8345 APInt DefBits(VT.getSizeInBits(), 0); 8346 APInt UndefBits(VT.getSizeInBits(), 0); 8347 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 8348 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 8349 SDValue NewOp; 8350 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || 8351 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 8352 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || 8353 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 8354 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || 8355 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) 8356 return NewOp; 8357 8358 DefBits = ~DefBits; 8359 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || 8360 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || 8361 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) 8362 return NewOp; 8363 8364 DefBits = UndefBits; 8365 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || 8366 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 8367 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || 8368 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 8369 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || 8370 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) 8371 return NewOp; 8372 8373 DefBits = ~UndefBits; 8374 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || 8375 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || 8376 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) 8377 return NewOp; 8378 } 8379 8380 return SDValue(); 8381 } 8382 8383 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, 8384 SelectionDAG &DAG) const { 8385 EVT VT = Op.getValueType(); 8386 8387 // Try to build a simple constant vector. 8388 Op = NormalizeBuildVector(Op, DAG); 8389 if (VT.isInteger()) { 8390 // Certain vector constants, used to express things like logical NOT and 8391 // arithmetic NEG, are passed through unmodified. This allows special 8392 // patterns for these operations to match, which will lower these constants 8393 // to whatever is proven necessary. 8394 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 8395 if (BVN->isConstant()) 8396 if (ConstantSDNode *Const = BVN->getConstantSplatNode()) { 8397 unsigned BitSize = VT.getVectorElementType().getSizeInBits(); 8398 APInt Val(BitSize, 8399 Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue()); 8400 if (Val.isNullValue() || Val.isAllOnesValue()) 8401 return Op; 8402 } 8403 } 8404 8405 if (SDValue V = ConstantBuildVector(Op, DAG)) 8406 return V; 8407 8408 // Scan through the operands to find some interesting properties we can 8409 // exploit: 8410 // 1) If only one value is used, we can use a DUP, or 8411 // 2) if only the low element is not undef, we can just insert that, or 8412 // 3) if only one constant value is used (w/ some non-constant lanes), 8413 // we can splat the constant value into the whole vector then fill 8414 // in the non-constant lanes. 8415 // 4) FIXME: If different constant values are used, but we can intelligently 8416 // select the values we'll be overwriting for the non-constant 8417 // lanes such that we can directly materialize the vector 8418 // some other way (MOVI, e.g.), we can be sneaky. 8419 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP. 8420 SDLoc dl(Op); 8421 unsigned NumElts = VT.getVectorNumElements(); 8422 bool isOnlyLowElement = true; 8423 bool usesOnlyOneValue = true; 8424 bool usesOnlyOneConstantValue = true; 8425 bool isConstant = true; 8426 bool AllLanesExtractElt = true; 8427 unsigned NumConstantLanes = 0; 8428 SDValue Value; 8429 SDValue ConstantValue; 8430 for (unsigned i = 0; i < NumElts; ++i) { 8431 SDValue V = Op.getOperand(i); 8432 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 8433 AllLanesExtractElt = false; 8434 if (V.isUndef()) 8435 continue; 8436 if (i > 0) 8437 isOnlyLowElement = false; 8438 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 8439 isConstant = false; 8440 8441 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { 8442 ++NumConstantLanes; 8443 if (!ConstantValue.getNode()) 8444 ConstantValue = V; 8445 else if (ConstantValue != V) 8446 usesOnlyOneConstantValue = false; 8447 } 8448 8449 if (!Value.getNode()) 8450 Value = V; 8451 else if (V != Value) 8452 usesOnlyOneValue = false; 8453 } 8454 8455 if (!Value.getNode()) { 8456 LLVM_DEBUG( 8457 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n"); 8458 return DAG.getUNDEF(VT); 8459 } 8460 8461 // Convert BUILD_VECTOR where all elements but the lowest are undef into 8462 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector 8463 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR. 8464 if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) { 8465 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 " 8466 "SCALAR_TO_VECTOR node\n"); 8467 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 8468 } 8469 8470 if (AllLanesExtractElt) { 8471 SDNode *Vector = nullptr; 8472 bool Even = false; 8473 bool Odd = false; 8474 // Check whether the extract elements match the Even pattern <0,2,4,...> or 8475 // the Odd pattern <1,3,5,...>. 8476 for (unsigned i = 0; i < NumElts; ++i) { 8477 SDValue V = Op.getOperand(i); 8478 const SDNode *N = V.getNode(); 8479 if (!isa<ConstantSDNode>(N->getOperand(1))) 8480 break; 8481 SDValue N0 = N->getOperand(0); 8482 8483 // All elements are extracted from the same vector. 8484 if (!Vector) { 8485 Vector = N0.getNode(); 8486 // Check that the type of EXTRACT_VECTOR_ELT matches the type of 8487 // BUILD_VECTOR. 8488 if (VT.getVectorElementType() != 8489 N0.getValueType().getVectorElementType()) 8490 break; 8491 } else if (Vector != N0.getNode()) { 8492 Odd = false; 8493 Even = false; 8494 break; 8495 } 8496 8497 // Extracted values are either at Even indices <0,2,4,...> or at Odd 8498 // indices <1,3,5,...>. 8499 uint64_t Val = N->getConstantOperandVal(1); 8500 if (Val == 2 * i) { 8501 Even = true; 8502 continue; 8503 } 8504 if (Val - 1 == 2 * i) { 8505 Odd = true; 8506 continue; 8507 } 8508 8509 // Something does not match: abort. 8510 Odd = false; 8511 Even = false; 8512 break; 8513 } 8514 if (Even || Odd) { 8515 SDValue LHS = 8516 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), 8517 DAG.getConstant(0, dl, MVT::i64)); 8518 SDValue RHS = 8519 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), 8520 DAG.getConstant(NumElts, dl, MVT::i64)); 8521 8522 if (Even && !Odd) 8523 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS, 8524 RHS); 8525 if (Odd && !Even) 8526 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS, 8527 RHS); 8528 } 8529 } 8530 8531 // Use DUP for non-constant splats. For f32 constant splats, reduce to 8532 // i32 and try again. 8533 if (usesOnlyOneValue) { 8534 if (!isConstant) { 8535 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 8536 Value.getValueType() != VT) { 8537 LLVM_DEBUG( 8538 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n"); 8539 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); 8540 } 8541 8542 // This is actually a DUPLANExx operation, which keeps everything vectory. 8543 8544 SDValue Lane = Value.getOperand(1); 8545 Value = Value.getOperand(0); 8546 if (Value.getValueSizeInBits() == 64) { 8547 LLVM_DEBUG( 8548 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " 8549 "widening it\n"); 8550 Value = WidenVector(Value, DAG); 8551 } 8552 8553 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); 8554 return DAG.getNode(Opcode, dl, VT, Value, Lane); 8555 } 8556 8557 if (VT.getVectorElementType().isFloatingPoint()) { 8558 SmallVector<SDValue, 8> Ops; 8559 EVT EltTy = VT.getVectorElementType(); 8560 assert ((EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 || 8561 EltTy == MVT::f64) && "Unsupported floating-point vector type"); 8562 LLVM_DEBUG( 8563 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " 8564 "BITCASTS, and try again\n"); 8565 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); 8566 for (unsigned i = 0; i < NumElts; ++i) 8567 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); 8568 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); 8569 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); 8570 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: "; 8571 Val.dump();); 8572 Val = LowerBUILD_VECTOR(Val, DAG); 8573 if (Val.getNode()) 8574 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 8575 } 8576 } 8577 8578 // If there was only one constant value used and for more than one lane, 8579 // start by splatting that value, then replace the non-constant lanes. This 8580 // is better than the default, which will perform a separate initialization 8581 // for each lane. 8582 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { 8583 // Firstly, try to materialize the splat constant. 8584 SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue), 8585 Val = ConstantBuildVector(Vec, DAG); 8586 if (!Val) { 8587 // Otherwise, materialize the constant and splat it. 8588 Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); 8589 DAG.ReplaceAllUsesWith(Vec.getNode(), &Val); 8590 } 8591 8592 // Now insert the non-constant lanes. 8593 for (unsigned i = 0; i < NumElts; ++i) { 8594 SDValue V = Op.getOperand(i); 8595 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); 8596 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) 8597 // Note that type legalization likely mucked about with the VT of the 8598 // source operand, so we may have to convert it here before inserting. 8599 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); 8600 } 8601 return Val; 8602 } 8603 8604 // This will generate a load from the constant pool. 8605 if (isConstant) { 8606 LLVM_DEBUG( 8607 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " 8608 "expansion\n"); 8609 return SDValue(); 8610 } 8611 8612 // Empirical tests suggest this is rarely worth it for vectors of length <= 2. 8613 if (NumElts >= 4) { 8614 if (SDValue shuffle = ReconstructShuffle(Op, DAG)) 8615 return shuffle; 8616 } 8617 8618 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we 8619 // know the default expansion would otherwise fall back on something even 8620 // worse. For a vector with one or two non-undef values, that's 8621 // scalar_to_vector for the elements followed by a shuffle (provided the 8622 // shuffle is valid for the target) and materialization element by element 8623 // on the stack followed by a load for everything else. 8624 if (!isConstant && !usesOnlyOneValue) { 8625 LLVM_DEBUG( 8626 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " 8627 "of INSERT_VECTOR_ELT\n"); 8628 8629 SDValue Vec = DAG.getUNDEF(VT); 8630 SDValue Op0 = Op.getOperand(0); 8631 unsigned i = 0; 8632 8633 // Use SCALAR_TO_VECTOR for lane zero to 8634 // a) Avoid a RMW dependency on the full vector register, and 8635 // b) Allow the register coalescer to fold away the copy if the 8636 // value is already in an S or D register, and we're forced to emit an 8637 // INSERT_SUBREG that we can't fold anywhere. 8638 // 8639 // We also allow types like i8 and i16 which are illegal scalar but legal 8640 // vector element types. After type-legalization the inserted value is 8641 // extended (i32) and it is safe to cast them to the vector type by ignoring 8642 // the upper bits of the lowest lane (e.g. v8i8, v4i16). 8643 if (!Op0.isUndef()) { 8644 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n"); 8645 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0); 8646 ++i; 8647 } 8648 LLVM_DEBUG(if (i < NumElts) dbgs() 8649 << "Creating nodes for the other vector elements:\n";); 8650 for (; i < NumElts; ++i) { 8651 SDValue V = Op.getOperand(i); 8652 if (V.isUndef()) 8653 continue; 8654 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); 8655 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); 8656 } 8657 return Vec; 8658 } 8659 8660 LLVM_DEBUG( 8661 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " 8662 "better alternative\n"); 8663 return SDValue(); 8664 } 8665 8666 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 8667 SelectionDAG &DAG) const { 8668 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 8669 8670 // Check for non-constant or out of range lane. 8671 EVT VT = Op.getOperand(0).getValueType(); 8672 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 8673 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) 8674 return SDValue(); 8675 8676 8677 // Insertion/extraction are legal for V128 types. 8678 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 8679 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || 8680 VT == MVT::v8f16 || VT == MVT::v8bf16) 8681 return Op; 8682 8683 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && 8684 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 && 8685 VT != MVT::v4bf16) 8686 return SDValue(); 8687 8688 // For V64 types, we perform insertion by expanding the value 8689 // to a V128 type and perform the insertion on that. 8690 SDLoc DL(Op); 8691 SDValue WideVec = WidenVector(Op.getOperand(0), DAG); 8692 EVT WideTy = WideVec.getValueType(); 8693 8694 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, 8695 Op.getOperand(1), Op.getOperand(2)); 8696 // Re-narrow the resultant vector. 8697 return NarrowVector(Node, DAG); 8698 } 8699 8700 SDValue 8701 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 8702 SelectionDAG &DAG) const { 8703 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 8704 8705 // Check for non-constant or out of range lane. 8706 EVT VT = Op.getOperand(0).getValueType(); 8707 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8708 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) 8709 return SDValue(); 8710 8711 8712 // Insertion/extraction are legal for V128 types. 8713 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 8714 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || 8715 VT == MVT::v8f16 || VT == MVT::v8bf16) 8716 return Op; 8717 8718 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && 8719 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 && 8720 VT != MVT::v4bf16) 8721 return SDValue(); 8722 8723 // For V64 types, we perform extraction by expanding the value 8724 // to a V128 type and perform the extraction on that. 8725 SDLoc DL(Op); 8726 SDValue WideVec = WidenVector(Op.getOperand(0), DAG); 8727 EVT WideTy = WideVec.getValueType(); 8728 8729 EVT ExtrTy = WideTy.getVectorElementType(); 8730 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) 8731 ExtrTy = MVT::i32; 8732 8733 // For extractions, we just return the result directly. 8734 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, 8735 Op.getOperand(1)); 8736 } 8737 8738 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 8739 SelectionDAG &DAG) const { 8740 assert(Op.getValueType().isFixedLengthVector() && 8741 "Only cases that extract a fixed length vector are supported!"); 8742 8743 EVT InVT = Op.getOperand(0).getValueType(); 8744 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 8745 unsigned Size = Op.getValueSizeInBits(); 8746 8747 if (InVT.isScalableVector()) { 8748 // This will be matched by custom code during ISelDAGToDAG. 8749 if (Idx == 0 && isPackedVectorType(InVT, DAG)) 8750 return Op; 8751 8752 return SDValue(); 8753 } 8754 8755 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. 8756 if (Idx == 0 && InVT.getSizeInBits() <= 128) 8757 return Op; 8758 8759 // If this is extracting the upper 64-bits of a 128-bit vector, we match 8760 // that directly. 8761 if (Size == 64 && Idx * InVT.getScalarSizeInBits() == 64) 8762 return Op; 8763 8764 return SDValue(); 8765 } 8766 8767 SDValue AArch64TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, 8768 SelectionDAG &DAG) const { 8769 assert(Op.getValueType().isScalableVector() && 8770 "Only expect to lower inserts into scalable vectors!"); 8771 8772 EVT InVT = Op.getOperand(1).getValueType(); 8773 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 8774 8775 // We don't have any patterns for scalable vector yet. 8776 if (InVT.isScalableVector() || !useSVEForFixedLengthVectorVT(InVT)) 8777 return SDValue(); 8778 8779 // This will be matched by custom code during ISelDAGToDAG. 8780 if (Idx == 0 && isPackedVectorType(InVT, DAG) && Op.getOperand(0).isUndef()) 8781 return Op; 8782 8783 return SDValue(); 8784 } 8785 8786 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 8787 // Currently no fixed length shuffles that require SVE are legal. 8788 if (useSVEForFixedLengthVectorVT(VT)) 8789 return false; 8790 8791 if (VT.getVectorNumElements() == 4 && 8792 (VT.is128BitVector() || VT.is64BitVector())) { 8793 unsigned PFIndexes[4]; 8794 for (unsigned i = 0; i != 4; ++i) { 8795 if (M[i] < 0) 8796 PFIndexes[i] = 8; 8797 else 8798 PFIndexes[i] = M[i]; 8799 } 8800 8801 // Compute the index in the perfect shuffle table. 8802 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 8803 PFIndexes[2] * 9 + PFIndexes[3]; 8804 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8805 unsigned Cost = (PFEntry >> 30); 8806 8807 if (Cost <= 4) 8808 return true; 8809 } 8810 8811 bool DummyBool; 8812 int DummyInt; 8813 unsigned DummyUnsigned; 8814 8815 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || 8816 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || 8817 isEXTMask(M, VT, DummyBool, DummyUnsigned) || 8818 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. 8819 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || 8820 isZIPMask(M, VT, DummyUnsigned) || 8821 isTRN_v_undef_Mask(M, VT, DummyUnsigned) || 8822 isUZP_v_undef_Mask(M, VT, DummyUnsigned) || 8823 isZIP_v_undef_Mask(M, VT, DummyUnsigned) || 8824 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || 8825 isConcatMask(M, VT, VT.getSizeInBits() == 128)); 8826 } 8827 8828 /// getVShiftImm - Check if this is a valid build_vector for the immediate 8829 /// operand of a vector shift operation, where all the elements of the 8830 /// build_vector must have the same constant integer value. 8831 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 8832 // Ignore bit_converts. 8833 while (Op.getOpcode() == ISD::BITCAST) 8834 Op = Op.getOperand(0); 8835 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8836 APInt SplatBits, SplatUndef; 8837 unsigned SplatBitSize; 8838 bool HasAnyUndefs; 8839 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, 8840 HasAnyUndefs, ElementBits) || 8841 SplatBitSize > ElementBits) 8842 return false; 8843 Cnt = SplatBits.getSExtValue(); 8844 return true; 8845 } 8846 8847 /// isVShiftLImm - Check if this is a valid build_vector for the immediate 8848 /// operand of a vector shift left operation. That value must be in the range: 8849 /// 0 <= Value < ElementBits for a left shift; or 8850 /// 0 <= Value <= ElementBits for a long left shift. 8851 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 8852 assert(VT.isVector() && "vector shift count is not a vector type"); 8853 int64_t ElementBits = VT.getScalarSizeInBits(); 8854 if (!getVShiftImm(Op, ElementBits, Cnt)) 8855 return false; 8856 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); 8857 } 8858 8859 /// isVShiftRImm - Check if this is a valid build_vector for the immediate 8860 /// operand of a vector shift right operation. The value must be in the range: 8861 /// 1 <= Value <= ElementBits for a right shift; or 8862 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { 8863 assert(VT.isVector() && "vector shift count is not a vector type"); 8864 int64_t ElementBits = VT.getScalarSizeInBits(); 8865 if (!getVShiftImm(Op, ElementBits, Cnt)) 8866 return false; 8867 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); 8868 } 8869 8870 // Attempt to form urhadd(OpA, OpB) from 8871 // truncate(vlshr(sub(zext(OpB), xor(zext(OpA), Ones(ElemSizeInBits))), 1)). 8872 // The original form of this expression is 8873 // truncate(srl(add(zext(OpB), add(zext(OpA), 1)), 1)) and before this function 8874 // is called the srl will have been lowered to AArch64ISD::VLSHR and the 8875 // ((OpA + OpB + 1) >> 1) expression will have been changed to (OpB - (~OpA)). 8876 // This pass can also recognize a variant of this pattern that uses sign 8877 // extension instead of zero extension and form a srhadd(OpA, OpB) from it. 8878 SDValue AArch64TargetLowering::LowerTRUNCATE(SDValue Op, 8879 SelectionDAG &DAG) const { 8880 EVT VT = Op.getValueType(); 8881 8882 if (VT.getScalarType() == MVT::i1) { 8883 // Lower i1 truncate to `(x & 1) != 0`. 8884 SDLoc dl(Op); 8885 EVT OpVT = Op.getOperand(0).getValueType(); 8886 SDValue Zero = DAG.getConstant(0, dl, OpVT); 8887 SDValue One = DAG.getConstant(1, dl, OpVT); 8888 SDValue And = DAG.getNode(ISD::AND, dl, OpVT, Op.getOperand(0), One); 8889 return DAG.getSetCC(dl, VT, And, Zero, ISD::SETNE); 8890 } 8891 8892 if (!VT.isVector() || VT.isScalableVector()) 8893 return Op; 8894 8895 if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType())) 8896 return LowerFixedLengthVectorTruncateToSVE(Op, DAG); 8897 8898 // Since we are looking for a right shift by a constant value of 1 and we are 8899 // operating on types at least 16 bits in length (sign/zero extended OpA and 8900 // OpB, which are at least 8 bits), it follows that the truncate will always 8901 // discard the shifted-in bit and therefore the right shift will be logical 8902 // regardless of the signedness of OpA and OpB. 8903 SDValue Shift = Op.getOperand(0); 8904 if (Shift.getOpcode() != AArch64ISD::VLSHR) 8905 return Op; 8906 8907 // Is the right shift using an immediate value of 1? 8908 uint64_t ShiftAmount = Shift.getConstantOperandVal(1); 8909 if (ShiftAmount != 1) 8910 return Op; 8911 8912 SDValue Sub = Shift->getOperand(0); 8913 if (Sub.getOpcode() != ISD::SUB) 8914 return Op; 8915 8916 SDValue Xor = Sub.getOperand(1); 8917 if (Xor.getOpcode() != ISD::XOR) 8918 return Op; 8919 8920 SDValue ExtendOpA = Xor.getOperand(0); 8921 SDValue ExtendOpB = Sub.getOperand(0); 8922 unsigned ExtendOpAOpc = ExtendOpA.getOpcode(); 8923 unsigned ExtendOpBOpc = ExtendOpB.getOpcode(); 8924 if (!(ExtendOpAOpc == ExtendOpBOpc && 8925 (ExtendOpAOpc == ISD::ZERO_EXTEND || ExtendOpAOpc == ISD::SIGN_EXTEND))) 8926 return Op; 8927 8928 // Is the result of the right shift being truncated to the same value type as 8929 // the original operands, OpA and OpB? 8930 SDValue OpA = ExtendOpA.getOperand(0); 8931 SDValue OpB = ExtendOpB.getOperand(0); 8932 EVT OpAVT = OpA.getValueType(); 8933 assert(ExtendOpA.getValueType() == ExtendOpB.getValueType()); 8934 if (!(VT == OpAVT && OpAVT == OpB.getValueType())) 8935 return Op; 8936 8937 // Is the XOR using a constant amount of all ones in the right hand side? 8938 uint64_t C; 8939 if (!isAllConstantBuildVector(Xor.getOperand(1), C)) 8940 return Op; 8941 8942 unsigned ElemSizeInBits = VT.getScalarSizeInBits(); 8943 APInt CAsAPInt(ElemSizeInBits, C); 8944 if (CAsAPInt != APInt::getAllOnesValue(ElemSizeInBits)) 8945 return Op; 8946 8947 SDLoc DL(Op); 8948 bool IsSignExtend = ExtendOpAOpc == ISD::SIGN_EXTEND; 8949 unsigned RHADDOpc = IsSignExtend ? AArch64ISD::SRHADD : AArch64ISD::URHADD; 8950 SDValue ResultURHADD = DAG.getNode(RHADDOpc, DL, VT, OpA, OpB); 8951 8952 return ResultURHADD; 8953 } 8954 8955 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, 8956 SelectionDAG &DAG) const { 8957 EVT VT = Op.getValueType(); 8958 SDLoc DL(Op); 8959 int64_t Cnt; 8960 8961 if (!Op.getOperand(1).getValueType().isVector()) 8962 return Op; 8963 unsigned EltSize = VT.getScalarSizeInBits(); 8964 8965 switch (Op.getOpcode()) { 8966 default: 8967 llvm_unreachable("unexpected shift opcode"); 8968 8969 case ISD::SHL: 8970 if (VT.isScalableVector()) 8971 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SHL_MERGE_OP1); 8972 8973 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) 8974 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), 8975 DAG.getConstant(Cnt, DL, MVT::i32)); 8976 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 8977 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, 8978 MVT::i32), 8979 Op.getOperand(0), Op.getOperand(1)); 8980 case ISD::SRA: 8981 case ISD::SRL: 8982 if (VT.isScalableVector()) { 8983 unsigned Opc = Op.getOpcode() == ISD::SRA ? AArch64ISD::SRA_MERGE_OP1 8984 : AArch64ISD::SRL_MERGE_OP1; 8985 return LowerToPredicatedOp(Op, DAG, Opc); 8986 } 8987 8988 // Right shift immediate 8989 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { 8990 unsigned Opc = 8991 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; 8992 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), 8993 DAG.getConstant(Cnt, DL, MVT::i32)); 8994 } 8995 8996 // Right shift register. Note, there is not a shift right register 8997 // instruction, but the shift left register instruction takes a signed 8998 // value, where negative numbers specify a right shift. 8999 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl 9000 : Intrinsic::aarch64_neon_ushl; 9001 // negate the shift amount 9002 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); 9003 SDValue NegShiftLeft = 9004 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 9005 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), 9006 NegShift); 9007 return NegShiftLeft; 9008 } 9009 9010 return SDValue(); 9011 } 9012 9013 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, 9014 AArch64CC::CondCode CC, bool NoNans, EVT VT, 9015 const SDLoc &dl, SelectionDAG &DAG) { 9016 EVT SrcVT = LHS.getValueType(); 9017 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() && 9018 "function only supposed to emit natural comparisons"); 9019 9020 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9021 APInt CnstBits(VT.getSizeInBits(), 0); 9022 APInt UndefBits(VT.getSizeInBits(), 0); 9023 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); 9024 bool IsZero = IsCnst && (CnstBits == 0); 9025 9026 if (SrcVT.getVectorElementType().isFloatingPoint()) { 9027 switch (CC) { 9028 default: 9029 return SDValue(); 9030 case AArch64CC::NE: { 9031 SDValue Fcmeq; 9032 if (IsZero) 9033 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); 9034 else 9035 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); 9036 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); 9037 } 9038 case AArch64CC::EQ: 9039 if (IsZero) 9040 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); 9041 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); 9042 case AArch64CC::GE: 9043 if (IsZero) 9044 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); 9045 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); 9046 case AArch64CC::GT: 9047 if (IsZero) 9048 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); 9049 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); 9050 case AArch64CC::LS: 9051 if (IsZero) 9052 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); 9053 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); 9054 case AArch64CC::LT: 9055 if (!NoNans) 9056 return SDValue(); 9057 // If we ignore NaNs then we can use to the MI implementation. 9058 LLVM_FALLTHROUGH; 9059 case AArch64CC::MI: 9060 if (IsZero) 9061 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); 9062 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); 9063 } 9064 } 9065 9066 switch (CC) { 9067 default: 9068 return SDValue(); 9069 case AArch64CC::NE: { 9070 SDValue Cmeq; 9071 if (IsZero) 9072 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); 9073 else 9074 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); 9075 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); 9076 } 9077 case AArch64CC::EQ: 9078 if (IsZero) 9079 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); 9080 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); 9081 case AArch64CC::GE: 9082 if (IsZero) 9083 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); 9084 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); 9085 case AArch64CC::GT: 9086 if (IsZero) 9087 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); 9088 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); 9089 case AArch64CC::LE: 9090 if (IsZero) 9091 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); 9092 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); 9093 case AArch64CC::LS: 9094 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); 9095 case AArch64CC::LO: 9096 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); 9097 case AArch64CC::LT: 9098 if (IsZero) 9099 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); 9100 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); 9101 case AArch64CC::HI: 9102 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); 9103 case AArch64CC::HS: 9104 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); 9105 } 9106 } 9107 9108 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, 9109 SelectionDAG &DAG) const { 9110 if (Op.getValueType().isScalableVector()) { 9111 if (Op.getOperand(0).getValueType().isFloatingPoint()) 9112 return Op; 9113 return LowerToPredicatedOp(Op, DAG, AArch64ISD::SETCC_MERGE_ZERO); 9114 } 9115 9116 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 9117 SDValue LHS = Op.getOperand(0); 9118 SDValue RHS = Op.getOperand(1); 9119 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); 9120 SDLoc dl(Op); 9121 9122 if (LHS.getValueType().getVectorElementType().isInteger()) { 9123 assert(LHS.getValueType() == RHS.getValueType()); 9124 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 9125 SDValue Cmp = 9126 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); 9127 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); 9128 } 9129 9130 const bool FullFP16 = 9131 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 9132 9133 // Make v4f16 (only) fcmp operations utilise vector instructions 9134 // v8f16 support will be a litle more complicated 9135 if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) { 9136 if (LHS.getValueType().getVectorNumElements() == 4) { 9137 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS); 9138 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS); 9139 SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC); 9140 DAG.ReplaceAllUsesWith(Op, NewSetcc); 9141 CmpVT = MVT::v4i32; 9142 } else 9143 return SDValue(); 9144 } 9145 9146 assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) || 9147 LHS.getValueType().getVectorElementType() != MVT::f128); 9148 9149 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 9150 // clean. Some of them require two branches to implement. 9151 AArch64CC::CondCode CC1, CC2; 9152 bool ShouldInvert; 9153 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); 9154 9155 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; 9156 SDValue Cmp = 9157 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); 9158 if (!Cmp.getNode()) 9159 return SDValue(); 9160 9161 if (CC2 != AArch64CC::AL) { 9162 SDValue Cmp2 = 9163 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); 9164 if (!Cmp2.getNode()) 9165 return SDValue(); 9166 9167 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); 9168 } 9169 9170 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); 9171 9172 if (ShouldInvert) 9173 Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); 9174 9175 return Cmp; 9176 } 9177 9178 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp, 9179 SelectionDAG &DAG) { 9180 SDValue VecOp = ScalarOp.getOperand(0); 9181 auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp); 9182 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx, 9183 DAG.getConstant(0, DL, MVT::i64)); 9184 } 9185 9186 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op, 9187 SelectionDAG &DAG) const { 9188 SDLoc dl(Op); 9189 switch (Op.getOpcode()) { 9190 case ISD::VECREDUCE_ADD: 9191 return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG); 9192 case ISD::VECREDUCE_SMAX: 9193 return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG); 9194 case ISD::VECREDUCE_SMIN: 9195 return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG); 9196 case ISD::VECREDUCE_UMAX: 9197 return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG); 9198 case ISD::VECREDUCE_UMIN: 9199 return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG); 9200 case ISD::VECREDUCE_FMAX: { 9201 assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag"); 9202 return DAG.getNode( 9203 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), 9204 DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32), 9205 Op.getOperand(0)); 9206 } 9207 case ISD::VECREDUCE_FMIN: { 9208 assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag"); 9209 return DAG.getNode( 9210 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), 9211 DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32), 9212 Op.getOperand(0)); 9213 } 9214 default: 9215 llvm_unreachable("Unhandled reduction"); 9216 } 9217 } 9218 9219 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op, 9220 SelectionDAG &DAG) const { 9221 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget()); 9222 if (!Subtarget.hasLSE()) 9223 return SDValue(); 9224 9225 // LSE has an atomic load-add instruction, but not a load-sub. 9226 SDLoc dl(Op); 9227 MVT VT = Op.getSimpleValueType(); 9228 SDValue RHS = Op.getOperand(2); 9229 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); 9230 RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS); 9231 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(), 9232 Op.getOperand(0), Op.getOperand(1), RHS, 9233 AN->getMemOperand()); 9234 } 9235 9236 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op, 9237 SelectionDAG &DAG) const { 9238 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget()); 9239 if (!Subtarget.hasLSE()) 9240 return SDValue(); 9241 9242 // LSE has an atomic load-clear instruction, but not a load-and. 9243 SDLoc dl(Op); 9244 MVT VT = Op.getSimpleValueType(); 9245 SDValue RHS = Op.getOperand(2); 9246 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); 9247 RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS); 9248 return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(), 9249 Op.getOperand(0), Op.getOperand(1), RHS, 9250 AN->getMemOperand()); 9251 } 9252 9253 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC( 9254 SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const { 9255 SDLoc dl(Op); 9256 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9257 SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0); 9258 9259 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 9260 const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask(); 9261 if (Subtarget->hasCustomCallingConv()) 9262 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); 9263 9264 Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size, 9265 DAG.getConstant(4, dl, MVT::i64)); 9266 Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue()); 9267 Chain = 9268 DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue), 9269 Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64), 9270 DAG.getRegisterMask(Mask), Chain.getValue(1)); 9271 // To match the actual intent better, we should read the output from X15 here 9272 // again (instead of potentially spilling it to the stack), but rereading Size 9273 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined 9274 // here. 9275 9276 Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size, 9277 DAG.getConstant(4, dl, MVT::i64)); 9278 return Chain; 9279 } 9280 9281 SDValue 9282 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 9283 SelectionDAG &DAG) const { 9284 assert(Subtarget->isTargetWindows() && 9285 "Only Windows alloca probing supported"); 9286 SDLoc dl(Op); 9287 // Get the inputs. 9288 SDNode *Node = Op.getNode(); 9289 SDValue Chain = Op.getOperand(0); 9290 SDValue Size = Op.getOperand(1); 9291 MaybeAlign Align = 9292 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 9293 EVT VT = Node->getValueType(0); 9294 9295 if (DAG.getMachineFunction().getFunction().hasFnAttribute( 9296 "no-stack-arg-probe")) { 9297 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); 9298 Chain = SP.getValue(1); 9299 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); 9300 if (Align) 9301 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), 9302 DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); 9303 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); 9304 SDValue Ops[2] = {SP, Chain}; 9305 return DAG.getMergeValues(Ops, dl); 9306 } 9307 9308 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 9309 9310 Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG); 9311 9312 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); 9313 Chain = SP.getValue(1); 9314 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); 9315 if (Align) 9316 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), 9317 DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); 9318 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); 9319 9320 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 9321 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 9322 9323 SDValue Ops[2] = {SP, Chain}; 9324 return DAG.getMergeValues(Ops, dl); 9325 } 9326 9327 SDValue AArch64TargetLowering::LowerVSCALE(SDValue Op, 9328 SelectionDAG &DAG) const { 9329 EVT VT = Op.getValueType(); 9330 assert(VT != MVT::i64 && "Expected illegal VSCALE node"); 9331 9332 SDLoc DL(Op); 9333 APInt MulImm = cast<ConstantSDNode>(Op.getOperand(0))->getAPIntValue(); 9334 return DAG.getZExtOrTrunc(DAG.getVScale(DL, MVT::i64, MulImm.sextOrSelf(64)), 9335 DL, VT); 9336 } 9337 9338 /// Set the IntrinsicInfo for the `aarch64_sve_st<N>` intrinsics. 9339 template <unsigned NumVecs> 9340 static bool setInfoSVEStN(AArch64TargetLowering::IntrinsicInfo &Info, 9341 const CallInst &CI) { 9342 Info.opc = ISD::INTRINSIC_VOID; 9343 // Retrieve EC from first vector argument. 9344 const EVT VT = EVT::getEVT(CI.getArgOperand(0)->getType()); 9345 ElementCount EC = VT.getVectorElementCount(); 9346 #ifndef NDEBUG 9347 // Check the assumption that all input vectors are the same type. 9348 for (unsigned I = 0; I < NumVecs; ++I) 9349 assert(VT == EVT::getEVT(CI.getArgOperand(I)->getType()) && 9350 "Invalid type."); 9351 #endif 9352 // memVT is `NumVecs * VT`. 9353 Info.memVT = EVT::getVectorVT(CI.getType()->getContext(), VT.getScalarType(), 9354 EC * NumVecs); 9355 Info.ptrVal = CI.getArgOperand(CI.getNumArgOperands() - 1); 9356 Info.offset = 0; 9357 Info.align.reset(); 9358 Info.flags = MachineMemOperand::MOStore; 9359 return true; 9360 } 9361 9362 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 9363 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 9364 /// specified in the intrinsic calls. 9365 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 9366 const CallInst &I, 9367 MachineFunction &MF, 9368 unsigned Intrinsic) const { 9369 auto &DL = I.getModule()->getDataLayout(); 9370 switch (Intrinsic) { 9371 case Intrinsic::aarch64_sve_st2: 9372 return setInfoSVEStN<2>(Info, I); 9373 case Intrinsic::aarch64_sve_st3: 9374 return setInfoSVEStN<3>(Info, I); 9375 case Intrinsic::aarch64_sve_st4: 9376 return setInfoSVEStN<4>(Info, I); 9377 case Intrinsic::aarch64_neon_ld2: 9378 case Intrinsic::aarch64_neon_ld3: 9379 case Intrinsic::aarch64_neon_ld4: 9380 case Intrinsic::aarch64_neon_ld1x2: 9381 case Intrinsic::aarch64_neon_ld1x3: 9382 case Intrinsic::aarch64_neon_ld1x4: 9383 case Intrinsic::aarch64_neon_ld2lane: 9384 case Intrinsic::aarch64_neon_ld3lane: 9385 case Intrinsic::aarch64_neon_ld4lane: 9386 case Intrinsic::aarch64_neon_ld2r: 9387 case Intrinsic::aarch64_neon_ld3r: 9388 case Intrinsic::aarch64_neon_ld4r: { 9389 Info.opc = ISD::INTRINSIC_W_CHAIN; 9390 // Conservatively set memVT to the entire set of vectors loaded. 9391 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; 9392 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 9393 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); 9394 Info.offset = 0; 9395 Info.align.reset(); 9396 // volatile loads with NEON intrinsics not supported 9397 Info.flags = MachineMemOperand::MOLoad; 9398 return true; 9399 } 9400 case Intrinsic::aarch64_neon_st2: 9401 case Intrinsic::aarch64_neon_st3: 9402 case Intrinsic::aarch64_neon_st4: 9403 case Intrinsic::aarch64_neon_st1x2: 9404 case Intrinsic::aarch64_neon_st1x3: 9405 case Intrinsic::aarch64_neon_st1x4: 9406 case Intrinsic::aarch64_neon_st2lane: 9407 case Intrinsic::aarch64_neon_st3lane: 9408 case Intrinsic::aarch64_neon_st4lane: { 9409 Info.opc = ISD::INTRINSIC_VOID; 9410 // Conservatively set memVT to the entire set of vectors stored. 9411 unsigned NumElts = 0; 9412 for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { 9413 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 9414 if (!ArgTy->isVectorTy()) 9415 break; 9416 NumElts += DL.getTypeSizeInBits(ArgTy) / 64; 9417 } 9418 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 9419 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); 9420 Info.offset = 0; 9421 Info.align.reset(); 9422 // volatile stores with NEON intrinsics not supported 9423 Info.flags = MachineMemOperand::MOStore; 9424 return true; 9425 } 9426 case Intrinsic::aarch64_ldaxr: 9427 case Intrinsic::aarch64_ldxr: { 9428 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 9429 Info.opc = ISD::INTRINSIC_W_CHAIN; 9430 Info.memVT = MVT::getVT(PtrTy->getElementType()); 9431 Info.ptrVal = I.getArgOperand(0); 9432 Info.offset = 0; 9433 Info.align = DL.getABITypeAlign(PtrTy->getElementType()); 9434 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 9435 return true; 9436 } 9437 case Intrinsic::aarch64_stlxr: 9438 case Intrinsic::aarch64_stxr: { 9439 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 9440 Info.opc = ISD::INTRINSIC_W_CHAIN; 9441 Info.memVT = MVT::getVT(PtrTy->getElementType()); 9442 Info.ptrVal = I.getArgOperand(1); 9443 Info.offset = 0; 9444 Info.align = DL.getABITypeAlign(PtrTy->getElementType()); 9445 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 9446 return true; 9447 } 9448 case Intrinsic::aarch64_ldaxp: 9449 case Intrinsic::aarch64_ldxp: 9450 Info.opc = ISD::INTRINSIC_W_CHAIN; 9451 Info.memVT = MVT::i128; 9452 Info.ptrVal = I.getArgOperand(0); 9453 Info.offset = 0; 9454 Info.align = Align(16); 9455 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 9456 return true; 9457 case Intrinsic::aarch64_stlxp: 9458 case Intrinsic::aarch64_stxp: 9459 Info.opc = ISD::INTRINSIC_W_CHAIN; 9460 Info.memVT = MVT::i128; 9461 Info.ptrVal = I.getArgOperand(2); 9462 Info.offset = 0; 9463 Info.align = Align(16); 9464 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 9465 return true; 9466 case Intrinsic::aarch64_sve_ldnt1: { 9467 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 9468 Info.opc = ISD::INTRINSIC_W_CHAIN; 9469 Info.memVT = MVT::getVT(I.getType()); 9470 Info.ptrVal = I.getArgOperand(1); 9471 Info.offset = 0; 9472 Info.align = DL.getABITypeAlign(PtrTy->getElementType()); 9473 Info.flags = MachineMemOperand::MOLoad; 9474 if (Intrinsic == Intrinsic::aarch64_sve_ldnt1) 9475 Info.flags |= MachineMemOperand::MONonTemporal; 9476 return true; 9477 } 9478 case Intrinsic::aarch64_sve_stnt1: { 9479 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(2)->getType()); 9480 Info.opc = ISD::INTRINSIC_W_CHAIN; 9481 Info.memVT = MVT::getVT(I.getOperand(0)->getType()); 9482 Info.ptrVal = I.getArgOperand(2); 9483 Info.offset = 0; 9484 Info.align = DL.getABITypeAlign(PtrTy->getElementType()); 9485 Info.flags = MachineMemOperand::MOStore; 9486 if (Intrinsic == Intrinsic::aarch64_sve_stnt1) 9487 Info.flags |= MachineMemOperand::MONonTemporal; 9488 return true; 9489 } 9490 default: 9491 break; 9492 } 9493 9494 return false; 9495 } 9496 9497 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load, 9498 ISD::LoadExtType ExtTy, 9499 EVT NewVT) const { 9500 // TODO: This may be worth removing. Check regression tests for diffs. 9501 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) 9502 return false; 9503 9504 // If we're reducing the load width in order to avoid having to use an extra 9505 // instruction to do extension then it's probably a good idea. 9506 if (ExtTy != ISD::NON_EXTLOAD) 9507 return true; 9508 // Don't reduce load width if it would prevent us from combining a shift into 9509 // the offset. 9510 MemSDNode *Mem = dyn_cast<MemSDNode>(Load); 9511 assert(Mem); 9512 const SDValue &Base = Mem->getBasePtr(); 9513 if (Base.getOpcode() == ISD::ADD && 9514 Base.getOperand(1).getOpcode() == ISD::SHL && 9515 Base.getOperand(1).hasOneUse() && 9516 Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) { 9517 // The shift can be combined if it matches the size of the value being 9518 // loaded (and so reducing the width would make it not match). 9519 uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1); 9520 uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8; 9521 if (ShiftAmount == Log2_32(LoadBytes)) 9522 return false; 9523 } 9524 // We have no reason to disallow reducing the load width, so allow it. 9525 return true; 9526 } 9527 9528 // Truncations from 64-bit GPR to 32-bit GPR is free. 9529 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 9530 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 9531 return false; 9532 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 9533 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 9534 return NumBits1 > NumBits2; 9535 } 9536 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 9537 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) 9538 return false; 9539 unsigned NumBits1 = VT1.getSizeInBits(); 9540 unsigned NumBits2 = VT2.getSizeInBits(); 9541 return NumBits1 > NumBits2; 9542 } 9543 9544 /// Check if it is profitable to hoist instruction in then/else to if. 9545 /// Not profitable if I and it's user can form a FMA instruction 9546 /// because we prefer FMSUB/FMADD. 9547 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { 9548 if (I->getOpcode() != Instruction::FMul) 9549 return true; 9550 9551 if (!I->hasOneUse()) 9552 return true; 9553 9554 Instruction *User = I->user_back(); 9555 9556 if (User && 9557 !(User->getOpcode() == Instruction::FSub || 9558 User->getOpcode() == Instruction::FAdd)) 9559 return true; 9560 9561 const TargetOptions &Options = getTargetMachine().Options; 9562 const Function *F = I->getFunction(); 9563 const DataLayout &DL = F->getParent()->getDataLayout(); 9564 Type *Ty = User->getOperand(0)->getType(); 9565 9566 return !(isFMAFasterThanFMulAndFAdd(*F, Ty) && 9567 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 9568 (Options.AllowFPOpFusion == FPOpFusion::Fast || 9569 Options.UnsafeFPMath)); 9570 } 9571 9572 // All 32-bit GPR operations implicitly zero the high-half of the corresponding 9573 // 64-bit GPR. 9574 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 9575 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 9576 return false; 9577 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 9578 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 9579 return NumBits1 == 32 && NumBits2 == 64; 9580 } 9581 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 9582 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) 9583 return false; 9584 unsigned NumBits1 = VT1.getSizeInBits(); 9585 unsigned NumBits2 = VT2.getSizeInBits(); 9586 return NumBits1 == 32 && NumBits2 == 64; 9587 } 9588 9589 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 9590 EVT VT1 = Val.getValueType(); 9591 if (isZExtFree(VT1, VT2)) { 9592 return true; 9593 } 9594 9595 if (Val.getOpcode() != ISD::LOAD) 9596 return false; 9597 9598 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. 9599 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && 9600 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && 9601 VT1.getSizeInBits() <= 32); 9602 } 9603 9604 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { 9605 if (isa<FPExtInst>(Ext)) 9606 return false; 9607 9608 // Vector types are not free. 9609 if (Ext->getType()->isVectorTy()) 9610 return false; 9611 9612 for (const Use &U : Ext->uses()) { 9613 // The extension is free if we can fold it with a left shift in an 9614 // addressing mode or an arithmetic operation: add, sub, and cmp. 9615 9616 // Is there a shift? 9617 const Instruction *Instr = cast<Instruction>(U.getUser()); 9618 9619 // Is this a constant shift? 9620 switch (Instr->getOpcode()) { 9621 case Instruction::Shl: 9622 if (!isa<ConstantInt>(Instr->getOperand(1))) 9623 return false; 9624 break; 9625 case Instruction::GetElementPtr: { 9626 gep_type_iterator GTI = gep_type_begin(Instr); 9627 auto &DL = Ext->getModule()->getDataLayout(); 9628 std::advance(GTI, U.getOperandNo()-1); 9629 Type *IdxTy = GTI.getIndexedType(); 9630 // This extension will end up with a shift because of the scaling factor. 9631 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. 9632 // Get the shift amount based on the scaling factor: 9633 // log2(sizeof(IdxTy)) - log2(8). 9634 uint64_t ShiftAmt = 9635 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3; 9636 // Is the constant foldable in the shift of the addressing mode? 9637 // I.e., shift amount is between 1 and 4 inclusive. 9638 if (ShiftAmt == 0 || ShiftAmt > 4) 9639 return false; 9640 break; 9641 } 9642 case Instruction::Trunc: 9643 // Check if this is a noop. 9644 // trunc(sext ty1 to ty2) to ty1. 9645 if (Instr->getType() == Ext->getOperand(0)->getType()) 9646 continue; 9647 LLVM_FALLTHROUGH; 9648 default: 9649 return false; 9650 } 9651 9652 // At this point we can use the bfm family, so this extension is free 9653 // for that use. 9654 } 9655 return true; 9656 } 9657 9658 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower 9659 /// or upper half of the vector elements. 9660 static bool areExtractShuffleVectors(Value *Op1, Value *Op2) { 9661 auto areTypesHalfed = [](Value *FullV, Value *HalfV) { 9662 auto *FullTy = FullV->getType(); 9663 auto *HalfTy = HalfV->getType(); 9664 return FullTy->getPrimitiveSizeInBits().getFixedSize() == 9665 2 * HalfTy->getPrimitiveSizeInBits().getFixedSize(); 9666 }; 9667 9668 auto extractHalf = [](Value *FullV, Value *HalfV) { 9669 auto *FullVT = cast<FixedVectorType>(FullV->getType()); 9670 auto *HalfVT = cast<FixedVectorType>(HalfV->getType()); 9671 return FullVT->getNumElements() == 2 * HalfVT->getNumElements(); 9672 }; 9673 9674 ArrayRef<int> M1, M2; 9675 Value *S1Op1, *S2Op1; 9676 if (!match(Op1, m_Shuffle(m_Value(S1Op1), m_Undef(), m_Mask(M1))) || 9677 !match(Op2, m_Shuffle(m_Value(S2Op1), m_Undef(), m_Mask(M2)))) 9678 return false; 9679 9680 // Check that the operands are half as wide as the result and we extract 9681 // half of the elements of the input vectors. 9682 if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) || 9683 !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2)) 9684 return false; 9685 9686 // Check the mask extracts either the lower or upper half of vector 9687 // elements. 9688 int M1Start = -1; 9689 int M2Start = -1; 9690 int NumElements = cast<FixedVectorType>(Op1->getType())->getNumElements() * 2; 9691 if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) || 9692 !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) || 9693 M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2))) 9694 return false; 9695 9696 return true; 9697 } 9698 9699 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth 9700 /// of the vector elements. 9701 static bool areExtractExts(Value *Ext1, Value *Ext2) { 9702 auto areExtDoubled = [](Instruction *Ext) { 9703 return Ext->getType()->getScalarSizeInBits() == 9704 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); 9705 }; 9706 9707 if (!match(Ext1, m_ZExtOrSExt(m_Value())) || 9708 !match(Ext2, m_ZExtOrSExt(m_Value())) || 9709 !areExtDoubled(cast<Instruction>(Ext1)) || 9710 !areExtDoubled(cast<Instruction>(Ext2))) 9711 return false; 9712 9713 return true; 9714 } 9715 9716 /// Check if Op could be used with vmull_high_p64 intrinsic. 9717 static bool isOperandOfVmullHighP64(Value *Op) { 9718 Value *VectorOperand = nullptr; 9719 ConstantInt *ElementIndex = nullptr; 9720 return match(Op, m_ExtractElt(m_Value(VectorOperand), 9721 m_ConstantInt(ElementIndex))) && 9722 ElementIndex->getValue() == 1 && 9723 isa<FixedVectorType>(VectorOperand->getType()) && 9724 cast<FixedVectorType>(VectorOperand->getType())->getNumElements() == 2; 9725 } 9726 9727 /// Check if Op1 and Op2 could be used with vmull_high_p64 intrinsic. 9728 static bool areOperandsOfVmullHighP64(Value *Op1, Value *Op2) { 9729 return isOperandOfVmullHighP64(Op1) && isOperandOfVmullHighP64(Op2); 9730 } 9731 9732 /// Check if sinking \p I's operands to I's basic block is profitable, because 9733 /// the operands can be folded into a target instruction, e.g. 9734 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2). 9735 bool AArch64TargetLowering::shouldSinkOperands( 9736 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 9737 if (!I->getType()->isVectorTy()) 9738 return false; 9739 9740 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 9741 switch (II->getIntrinsicID()) { 9742 case Intrinsic::aarch64_neon_umull: 9743 if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1))) 9744 return false; 9745 Ops.push_back(&II->getOperandUse(0)); 9746 Ops.push_back(&II->getOperandUse(1)); 9747 return true; 9748 9749 case Intrinsic::aarch64_neon_pmull64: 9750 if (!areOperandsOfVmullHighP64(II->getArgOperand(0), 9751 II->getArgOperand(1))) 9752 return false; 9753 Ops.push_back(&II->getArgOperandUse(0)); 9754 Ops.push_back(&II->getArgOperandUse(1)); 9755 return true; 9756 9757 default: 9758 return false; 9759 } 9760 } 9761 9762 switch (I->getOpcode()) { 9763 case Instruction::Sub: 9764 case Instruction::Add: { 9765 if (!areExtractExts(I->getOperand(0), I->getOperand(1))) 9766 return false; 9767 9768 // If the exts' operands extract either the lower or upper elements, we 9769 // can sink them too. 9770 auto Ext1 = cast<Instruction>(I->getOperand(0)); 9771 auto Ext2 = cast<Instruction>(I->getOperand(1)); 9772 if (areExtractShuffleVectors(Ext1, Ext2)) { 9773 Ops.push_back(&Ext1->getOperandUse(0)); 9774 Ops.push_back(&Ext2->getOperandUse(0)); 9775 } 9776 9777 Ops.push_back(&I->getOperandUse(0)); 9778 Ops.push_back(&I->getOperandUse(1)); 9779 9780 return true; 9781 } 9782 default: 9783 return false; 9784 } 9785 return false; 9786 } 9787 9788 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, 9789 Align &RequiredAligment) const { 9790 if (!LoadedType.isSimple() || 9791 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) 9792 return false; 9793 // Cyclone supports unaligned accesses. 9794 RequiredAligment = Align(1); 9795 unsigned NumBits = LoadedType.getSizeInBits(); 9796 return NumBits == 32 || NumBits == 64; 9797 } 9798 9799 /// A helper function for determining the number of interleaved accesses we 9800 /// will generate when lowering accesses of the given type. 9801 unsigned 9802 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy, 9803 const DataLayout &DL) const { 9804 return (DL.getTypeSizeInBits(VecTy) + 127) / 128; 9805 } 9806 9807 MachineMemOperand::Flags 9808 AArch64TargetLowering::getTargetMMOFlags(const Instruction &I) const { 9809 if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor && 9810 I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr) 9811 return MOStridedAccess; 9812 return MachineMemOperand::MONone; 9813 } 9814 9815 bool AArch64TargetLowering::isLegalInterleavedAccessType( 9816 VectorType *VecTy, const DataLayout &DL) const { 9817 9818 unsigned VecSize = DL.getTypeSizeInBits(VecTy); 9819 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); 9820 9821 // Ensure the number of vector elements is greater than 1. 9822 if (cast<FixedVectorType>(VecTy)->getNumElements() < 2) 9823 return false; 9824 9825 // Ensure the element type is legal. 9826 if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64) 9827 return false; 9828 9829 // Ensure the total vector size is 64 or a multiple of 128. Types larger than 9830 // 128 will be split into multiple interleaved accesses. 9831 return VecSize == 64 || VecSize % 128 == 0; 9832 } 9833 9834 /// Lower an interleaved load into a ldN intrinsic. 9835 /// 9836 /// E.g. Lower an interleaved load (Factor = 2): 9837 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr 9838 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements 9839 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements 9840 /// 9841 /// Into: 9842 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) 9843 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 9844 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 9845 bool AArch64TargetLowering::lowerInterleavedLoad( 9846 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, 9847 ArrayRef<unsigned> Indices, unsigned Factor) const { 9848 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 9849 "Invalid interleave factor"); 9850 assert(!Shuffles.empty() && "Empty shufflevector input"); 9851 assert(Shuffles.size() == Indices.size() && 9852 "Unmatched number of shufflevectors and indices"); 9853 9854 const DataLayout &DL = LI->getModule()->getDataLayout(); 9855 9856 VectorType *VTy = Shuffles[0]->getType(); 9857 9858 // Skip if we do not have NEON and skip illegal vector types. We can 9859 // "legalize" wide vector types into multiple interleaved accesses as long as 9860 // the vector types are divisible by 128. 9861 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VTy, DL)) 9862 return false; 9863 9864 unsigned NumLoads = getNumInterleavedAccesses(VTy, DL); 9865 9866 auto *FVTy = cast<FixedVectorType>(VTy); 9867 9868 // A pointer vector can not be the return type of the ldN intrinsics. Need to 9869 // load integer vectors first and then convert to pointer vectors. 9870 Type *EltTy = FVTy->getElementType(); 9871 if (EltTy->isPointerTy()) 9872 FVTy = 9873 FixedVectorType::get(DL.getIntPtrType(EltTy), FVTy->getNumElements()); 9874 9875 IRBuilder<> Builder(LI); 9876 9877 // The base address of the load. 9878 Value *BaseAddr = LI->getPointerOperand(); 9879 9880 if (NumLoads > 1) { 9881 // If we're going to generate more than one load, reset the sub-vector type 9882 // to something legal. 9883 FVTy = FixedVectorType::get(FVTy->getElementType(), 9884 FVTy->getNumElements() / NumLoads); 9885 9886 // We will compute the pointer operand of each load from the original base 9887 // address using GEPs. Cast the base address to a pointer to the scalar 9888 // element type. 9889 BaseAddr = Builder.CreateBitCast( 9890 BaseAddr, 9891 FVTy->getElementType()->getPointerTo(LI->getPointerAddressSpace())); 9892 } 9893 9894 Type *PtrTy = FVTy->getPointerTo(LI->getPointerAddressSpace()); 9895 Type *Tys[2] = {FVTy, PtrTy}; 9896 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2, 9897 Intrinsic::aarch64_neon_ld3, 9898 Intrinsic::aarch64_neon_ld4}; 9899 Function *LdNFunc = 9900 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); 9901 9902 // Holds sub-vectors extracted from the load intrinsic return values. The 9903 // sub-vectors are associated with the shufflevector instructions they will 9904 // replace. 9905 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs; 9906 9907 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { 9908 9909 // If we're generating more than one load, compute the base address of 9910 // subsequent loads as an offset from the previous. 9911 if (LoadCount > 0) 9912 BaseAddr = Builder.CreateConstGEP1_32(FVTy->getElementType(), BaseAddr, 9913 FVTy->getNumElements() * Factor); 9914 9915 CallInst *LdN = Builder.CreateCall( 9916 LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN"); 9917 9918 // Extract and store the sub-vectors returned by the load intrinsic. 9919 for (unsigned i = 0; i < Shuffles.size(); i++) { 9920 ShuffleVectorInst *SVI = Shuffles[i]; 9921 unsigned Index = Indices[i]; 9922 9923 Value *SubVec = Builder.CreateExtractValue(LdN, Index); 9924 9925 // Convert the integer vector to pointer vector if the element is pointer. 9926 if (EltTy->isPointerTy()) 9927 SubVec = Builder.CreateIntToPtr( 9928 SubVec, FixedVectorType::get(SVI->getType()->getElementType(), 9929 FVTy->getNumElements())); 9930 SubVecs[SVI].push_back(SubVec); 9931 } 9932 } 9933 9934 // Replace uses of the shufflevector instructions with the sub-vectors 9935 // returned by the load intrinsic. If a shufflevector instruction is 9936 // associated with more than one sub-vector, those sub-vectors will be 9937 // concatenated into a single wide vector. 9938 for (ShuffleVectorInst *SVI : Shuffles) { 9939 auto &SubVec = SubVecs[SVI]; 9940 auto *WideVec = 9941 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; 9942 SVI->replaceAllUsesWith(WideVec); 9943 } 9944 9945 return true; 9946 } 9947 9948 /// Lower an interleaved store into a stN intrinsic. 9949 /// 9950 /// E.g. Lower an interleaved store (Factor = 3): 9951 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 9952 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 9953 /// store <12 x i32> %i.vec, <12 x i32>* %ptr 9954 /// 9955 /// Into: 9956 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> 9957 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> 9958 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> 9959 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) 9960 /// 9961 /// Note that the new shufflevectors will be removed and we'll only generate one 9962 /// st3 instruction in CodeGen. 9963 /// 9964 /// Example for a more general valid mask (Factor 3). Lower: 9965 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, 9966 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 9967 /// store <12 x i32> %i.vec, <12 x i32>* %ptr 9968 /// 9969 /// Into: 9970 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> 9971 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> 9972 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> 9973 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) 9974 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, 9975 ShuffleVectorInst *SVI, 9976 unsigned Factor) const { 9977 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 9978 "Invalid interleave factor"); 9979 9980 auto *VecTy = cast<FixedVectorType>(SVI->getType()); 9981 assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store"); 9982 9983 unsigned LaneLen = VecTy->getNumElements() / Factor; 9984 Type *EltTy = VecTy->getElementType(); 9985 auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen); 9986 9987 const DataLayout &DL = SI->getModule()->getDataLayout(); 9988 9989 // Skip if we do not have NEON and skip illegal vector types. We can 9990 // "legalize" wide vector types into multiple interleaved accesses as long as 9991 // the vector types are divisible by 128. 9992 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL)) 9993 return false; 9994 9995 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL); 9996 9997 Value *Op0 = SVI->getOperand(0); 9998 Value *Op1 = SVI->getOperand(1); 9999 IRBuilder<> Builder(SI); 10000 10001 // StN intrinsics don't support pointer vectors as arguments. Convert pointer 10002 // vectors to integer vectors. 10003 if (EltTy->isPointerTy()) { 10004 Type *IntTy = DL.getIntPtrType(EltTy); 10005 unsigned NumOpElts = 10006 cast<FixedVectorType>(Op0->getType())->getNumElements(); 10007 10008 // Convert to the corresponding integer vector. 10009 auto *IntVecTy = FixedVectorType::get(IntTy, NumOpElts); 10010 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); 10011 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); 10012 10013 SubVecTy = FixedVectorType::get(IntTy, LaneLen); 10014 } 10015 10016 // The base address of the store. 10017 Value *BaseAddr = SI->getPointerOperand(); 10018 10019 if (NumStores > 1) { 10020 // If we're going to generate more than one store, reset the lane length 10021 // and sub-vector type to something legal. 10022 LaneLen /= NumStores; 10023 SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen); 10024 10025 // We will compute the pointer operand of each store from the original base 10026 // address using GEPs. Cast the base address to a pointer to the scalar 10027 // element type. 10028 BaseAddr = Builder.CreateBitCast( 10029 BaseAddr, 10030 SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace())); 10031 } 10032 10033 auto Mask = SVI->getShuffleMask(); 10034 10035 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace()); 10036 Type *Tys[2] = {SubVecTy, PtrTy}; 10037 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2, 10038 Intrinsic::aarch64_neon_st3, 10039 Intrinsic::aarch64_neon_st4}; 10040 Function *StNFunc = 10041 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys); 10042 10043 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { 10044 10045 SmallVector<Value *, 5> Ops; 10046 10047 // Split the shufflevector operands into sub vectors for the new stN call. 10048 for (unsigned i = 0; i < Factor; i++) { 10049 unsigned IdxI = StoreCount * LaneLen * Factor + i; 10050 if (Mask[IdxI] >= 0) { 10051 Ops.push_back(Builder.CreateShuffleVector( 10052 Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0))); 10053 } else { 10054 unsigned StartMask = 0; 10055 for (unsigned j = 1; j < LaneLen; j++) { 10056 unsigned IdxJ = StoreCount * LaneLen * Factor + j; 10057 if (Mask[IdxJ * Factor + IdxI] >= 0) { 10058 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ; 10059 break; 10060 } 10061 } 10062 // Note: Filling undef gaps with random elements is ok, since 10063 // those elements were being written anyway (with undefs). 10064 // In the case of all undefs we're defaulting to using elems from 0 10065 // Note: StartMask cannot be negative, it's checked in 10066 // isReInterleaveMask 10067 Ops.push_back(Builder.CreateShuffleVector( 10068 Op0, Op1, createSequentialMask(StartMask, LaneLen, 0))); 10069 } 10070 } 10071 10072 // If we generating more than one store, we compute the base address of 10073 // subsequent stores as an offset from the previous. 10074 if (StoreCount > 0) 10075 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(), 10076 BaseAddr, LaneLen * Factor); 10077 10078 Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy)); 10079 Builder.CreateCall(StNFunc, Ops); 10080 } 10081 return true; 10082 } 10083 10084 // Lower an SVE structured load intrinsic returning a tuple type to target 10085 // specific intrinsic taking the same input but returning a multi-result value 10086 // of the split tuple type. 10087 // 10088 // E.g. Lowering an LD3: 10089 // 10090 // call <vscale x 12 x i32> @llvm.aarch64.sve.ld3.nxv12i32( 10091 // <vscale x 4 x i1> %pred, 10092 // <vscale x 4 x i32>* %addr) 10093 // 10094 // Output DAG: 10095 // 10096 // t0: ch = EntryToken 10097 // t2: nxv4i1,ch = CopyFromReg t0, Register:nxv4i1 %0 10098 // t4: i64,ch = CopyFromReg t0, Register:i64 %1 10099 // t5: nxv4i32,nxv4i32,nxv4i32,ch = AArch64ISD::SVE_LD3 t0, t2, t4 10100 // t6: nxv12i32 = concat_vectors t5, t5:1, t5:2 10101 // 10102 // This is called pre-legalization to avoid widening/splitting issues with 10103 // non-power-of-2 tuple types used for LD3, such as nxv12i32. 10104 SDValue AArch64TargetLowering::LowerSVEStructLoad(unsigned Intrinsic, 10105 ArrayRef<SDValue> LoadOps, 10106 EVT VT, SelectionDAG &DAG, 10107 const SDLoc &DL) const { 10108 assert(VT.isScalableVector() && "Can only lower scalable vectors"); 10109 10110 unsigned N, Opcode; 10111 static std::map<unsigned, std::pair<unsigned, unsigned>> IntrinsicMap = { 10112 {Intrinsic::aarch64_sve_ld2, {2, AArch64ISD::SVE_LD2_MERGE_ZERO}}, 10113 {Intrinsic::aarch64_sve_ld3, {3, AArch64ISD::SVE_LD3_MERGE_ZERO}}, 10114 {Intrinsic::aarch64_sve_ld4, {4, AArch64ISD::SVE_LD4_MERGE_ZERO}}}; 10115 10116 std::tie(N, Opcode) = IntrinsicMap[Intrinsic]; 10117 assert(VT.getVectorElementCount().Min % N == 0 && 10118 "invalid tuple vector type!"); 10119 10120 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 10121 VT.getVectorElementCount() / N); 10122 assert(isTypeLegal(SplitVT)); 10123 10124 SmallVector<EVT, 5> VTs(N, SplitVT); 10125 VTs.push_back(MVT::Other); // Chain 10126 SDVTList NodeTys = DAG.getVTList(VTs); 10127 10128 SDValue PseudoLoad = DAG.getNode(Opcode, DL, NodeTys, LoadOps); 10129 SmallVector<SDValue, 4> PseudoLoadOps; 10130 for (unsigned I = 0; I < N; ++I) 10131 PseudoLoadOps.push_back(SDValue(PseudoLoad.getNode(), I)); 10132 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, PseudoLoadOps); 10133 } 10134 10135 EVT AArch64TargetLowering::getOptimalMemOpType( 10136 const MemOp &Op, const AttributeList &FuncAttributes) const { 10137 bool CanImplicitFloat = 10138 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat); 10139 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; 10140 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; 10141 // Only use AdvSIMD to implement memset of 32-byte and above. It would have 10142 // taken one instruction to materialize the v2i64 zero and one store (with 10143 // restrictive addressing mode). Just do i64 stores. 10144 bool IsSmallMemset = Op.isMemset() && Op.size() < 32; 10145 auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) { 10146 if (Op.isAligned(AlignCheck)) 10147 return true; 10148 bool Fast; 10149 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone, 10150 &Fast) && 10151 Fast; 10152 }; 10153 10154 if (CanUseNEON && Op.isMemset() && !IsSmallMemset && 10155 AlignmentIsAcceptable(MVT::v2i64, Align(16))) 10156 return MVT::v2i64; 10157 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16))) 10158 return MVT::f128; 10159 if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8))) 10160 return MVT::i64; 10161 if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4))) 10162 return MVT::i32; 10163 return MVT::Other; 10164 } 10165 10166 LLT AArch64TargetLowering::getOptimalMemOpLLT( 10167 const MemOp &Op, const AttributeList &FuncAttributes) const { 10168 bool CanImplicitFloat = 10169 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat); 10170 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; 10171 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; 10172 // Only use AdvSIMD to implement memset of 32-byte and above. It would have 10173 // taken one instruction to materialize the v2i64 zero and one store (with 10174 // restrictive addressing mode). Just do i64 stores. 10175 bool IsSmallMemset = Op.isMemset() && Op.size() < 32; 10176 auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) { 10177 if (Op.isAligned(AlignCheck)) 10178 return true; 10179 bool Fast; 10180 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone, 10181 &Fast) && 10182 Fast; 10183 }; 10184 10185 if (CanUseNEON && Op.isMemset() && !IsSmallMemset && 10186 AlignmentIsAcceptable(MVT::v2i64, Align(16))) 10187 return LLT::vector(2, 64); 10188 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16))) 10189 return LLT::scalar(128); 10190 if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8))) 10191 return LLT::scalar(64); 10192 if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4))) 10193 return LLT::scalar(32); 10194 return LLT(); 10195 } 10196 10197 // 12-bit optionally shifted immediates are legal for adds. 10198 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { 10199 if (Immed == std::numeric_limits<int64_t>::min()) { 10200 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed 10201 << ": avoid UB for INT64_MIN\n"); 10202 return false; 10203 } 10204 // Same encoding for add/sub, just flip the sign. 10205 Immed = std::abs(Immed); 10206 bool IsLegal = ((Immed >> 12) == 0 || 10207 ((Immed & 0xfff) == 0 && Immed >> 24 == 0)); 10208 LLVM_DEBUG(dbgs() << "Is " << Immed 10209 << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n"); 10210 return IsLegal; 10211 } 10212 10213 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid 10214 // immediates is the same as for an add or a sub. 10215 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { 10216 return isLegalAddImmediate(Immed); 10217 } 10218 10219 /// isLegalAddressingMode - Return true if the addressing mode represented 10220 /// by AM is legal for this target, for a load/store of the specified type. 10221 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, 10222 const AddrMode &AM, Type *Ty, 10223 unsigned AS, Instruction *I) const { 10224 // AArch64 has five basic addressing modes: 10225 // reg 10226 // reg + 9-bit signed offset 10227 // reg + SIZE_IN_BYTES * 12-bit unsigned offset 10228 // reg1 + reg2 10229 // reg + SIZE_IN_BYTES * reg 10230 10231 // No global is ever allowed as a base. 10232 if (AM.BaseGV) 10233 return false; 10234 10235 // No reg+reg+imm addressing. 10236 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) 10237 return false; 10238 10239 // FIXME: Update this method to support scalable addressing modes. 10240 if (isa<ScalableVectorType>(Ty)) 10241 return AM.HasBaseReg && !AM.BaseOffs && !AM.Scale; 10242 10243 // check reg + imm case: 10244 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 10245 uint64_t NumBytes = 0; 10246 if (Ty->isSized()) { 10247 uint64_t NumBits = DL.getTypeSizeInBits(Ty); 10248 NumBytes = NumBits / 8; 10249 if (!isPowerOf2_64(NumBits)) 10250 NumBytes = 0; 10251 } 10252 10253 if (!AM.Scale) { 10254 int64_t Offset = AM.BaseOffs; 10255 10256 // 9-bit signed offset 10257 if (isInt<9>(Offset)) 10258 return true; 10259 10260 // 12-bit unsigned offset 10261 unsigned shift = Log2_64(NumBytes); 10262 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && 10263 // Must be a multiple of NumBytes (NumBytes is a power of 2) 10264 (Offset >> shift) << shift == Offset) 10265 return true; 10266 return false; 10267 } 10268 10269 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 10270 10271 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes); 10272 } 10273 10274 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const { 10275 // Consider splitting large offset of struct or array. 10276 return true; 10277 } 10278 10279 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL, 10280 const AddrMode &AM, Type *Ty, 10281 unsigned AS) const { 10282 // Scaling factors are not free at all. 10283 // Operands | Rt Latency 10284 // ------------------------------------------- 10285 // Rt, [Xn, Xm] | 4 10286 // ------------------------------------------- 10287 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 10288 // Rt, [Xn, Wm, <extend> #imm] | 10289 if (isLegalAddressingMode(DL, AM, Ty, AS)) 10290 // Scale represents reg2 * scale, thus account for 1 if 10291 // it is not equal to 0 or 1. 10292 return AM.Scale != 0 && AM.Scale != 1; 10293 return -1; 10294 } 10295 10296 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd( 10297 const MachineFunction &MF, EVT VT) const { 10298 VT = VT.getScalarType(); 10299 10300 if (!VT.isSimple()) 10301 return false; 10302 10303 switch (VT.getSimpleVT().SimpleTy) { 10304 case MVT::f32: 10305 case MVT::f64: 10306 return true; 10307 default: 10308 break; 10309 } 10310 10311 return false; 10312 } 10313 10314 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 10315 Type *Ty) const { 10316 switch (Ty->getScalarType()->getTypeID()) { 10317 case Type::FloatTyID: 10318 case Type::DoubleTyID: 10319 return true; 10320 default: 10321 return false; 10322 } 10323 } 10324 10325 const MCPhysReg * 10326 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { 10327 // LR is a callee-save register, but we must treat it as clobbered by any call 10328 // site. Hence we include LR in the scratch registers, which are in turn added 10329 // as implicit-defs for stackmaps and patchpoints. 10330 static const MCPhysReg ScratchRegs[] = { 10331 AArch64::X16, AArch64::X17, AArch64::LR, 0 10332 }; 10333 return ScratchRegs; 10334 } 10335 10336 bool 10337 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N, 10338 CombineLevel Level) const { 10339 N = N->getOperand(0).getNode(); 10340 EVT VT = N->getValueType(0); 10341 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine 10342 // it with shift to let it be lowered to UBFX. 10343 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && 10344 isa<ConstantSDNode>(N->getOperand(1))) { 10345 uint64_t TruncMask = N->getConstantOperandVal(1); 10346 if (isMask_64(TruncMask) && 10347 N->getOperand(0).getOpcode() == ISD::SRL && 10348 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 10349 return false; 10350 } 10351 return true; 10352 } 10353 10354 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 10355 Type *Ty) const { 10356 assert(Ty->isIntegerTy()); 10357 10358 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 10359 if (BitSize == 0) 10360 return false; 10361 10362 int64_t Val = Imm.getSExtValue(); 10363 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) 10364 return true; 10365 10366 if ((int64_t)Val < 0) 10367 Val = ~Val; 10368 if (BitSize == 32) 10369 Val &= (1LL << 32) - 1; 10370 10371 unsigned LZ = countLeadingZeros((uint64_t)Val); 10372 unsigned Shift = (63 - LZ) / 16; 10373 // MOVZ is free so return true for one or fewer MOVK. 10374 return Shift < 3; 10375 } 10376 10377 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 10378 unsigned Index) const { 10379 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 10380 return false; 10381 10382 return (Index == 0 || Index == ResVT.getVectorNumElements()); 10383 } 10384 10385 /// Turn vector tests of the signbit in the form of: 10386 /// xor (sra X, elt_size(X)-1), -1 10387 /// into: 10388 /// cmge X, X, #0 10389 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, 10390 const AArch64Subtarget *Subtarget) { 10391 EVT VT = N->getValueType(0); 10392 if (!Subtarget->hasNEON() || !VT.isVector()) 10393 return SDValue(); 10394 10395 // There must be a shift right algebraic before the xor, and the xor must be a 10396 // 'not' operation. 10397 SDValue Shift = N->getOperand(0); 10398 SDValue Ones = N->getOperand(1); 10399 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() || 10400 !ISD::isBuildVectorAllOnes(Ones.getNode())) 10401 return SDValue(); 10402 10403 // The shift should be smearing the sign bit across each vector element. 10404 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 10405 EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); 10406 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) 10407 return SDValue(); 10408 10409 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0)); 10410 } 10411 10412 // Generate SUBS and CSEL for integer abs. 10413 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { 10414 EVT VT = N->getValueType(0); 10415 10416 SDValue N0 = N->getOperand(0); 10417 SDValue N1 = N->getOperand(1); 10418 SDLoc DL(N); 10419 10420 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) 10421 // and change it to SUB and CSEL. 10422 if (VT.isInteger() && N->getOpcode() == ISD::XOR && 10423 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && 10424 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) 10425 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) 10426 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { 10427 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 10428 N0.getOperand(0)); 10429 // Generate SUBS & CSEL. 10430 SDValue Cmp = 10431 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), 10432 N0.getOperand(0), DAG.getConstant(0, DL, VT)); 10433 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, 10434 DAG.getConstant(AArch64CC::PL, DL, MVT::i32), 10435 SDValue(Cmp.getNode(), 1)); 10436 } 10437 return SDValue(); 10438 } 10439 10440 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, 10441 TargetLowering::DAGCombinerInfo &DCI, 10442 const AArch64Subtarget *Subtarget) { 10443 if (DCI.isBeforeLegalizeOps()) 10444 return SDValue(); 10445 10446 if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget)) 10447 return Cmp; 10448 10449 return performIntegerAbsCombine(N, DAG); 10450 } 10451 10452 SDValue 10453 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 10454 SelectionDAG &DAG, 10455 SmallVectorImpl<SDNode *> &Created) const { 10456 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 10457 if (isIntDivCheap(N->getValueType(0), Attr)) 10458 return SDValue(N,0); // Lower SDIV as SDIV 10459 10460 // fold (sdiv X, pow2) 10461 EVT VT = N->getValueType(0); 10462 if ((VT != MVT::i32 && VT != MVT::i64) || 10463 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 10464 return SDValue(); 10465 10466 SDLoc DL(N); 10467 SDValue N0 = N->getOperand(0); 10468 unsigned Lg2 = Divisor.countTrailingZeros(); 10469 SDValue Zero = DAG.getConstant(0, DL, VT); 10470 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 10471 10472 // Add (N0 < 0) ? Pow2 - 1 : 0; 10473 SDValue CCVal; 10474 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); 10475 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 10476 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); 10477 10478 Created.push_back(Cmp.getNode()); 10479 Created.push_back(Add.getNode()); 10480 Created.push_back(CSel.getNode()); 10481 10482 // Divide by pow2. 10483 SDValue SRA = 10484 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64)); 10485 10486 // If we're dividing by a positive value, we're done. Otherwise, we must 10487 // negate the result. 10488 if (Divisor.isNonNegative()) 10489 return SRA; 10490 10491 Created.push_back(SRA.getNode()); 10492 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 10493 } 10494 10495 static bool IsSVECntIntrinsic(SDValue S) { 10496 switch(getIntrinsicID(S.getNode())) { 10497 default: 10498 break; 10499 case Intrinsic::aarch64_sve_cntb: 10500 case Intrinsic::aarch64_sve_cnth: 10501 case Intrinsic::aarch64_sve_cntw: 10502 case Intrinsic::aarch64_sve_cntd: 10503 return true; 10504 } 10505 return false; 10506 } 10507 10508 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, 10509 TargetLowering::DAGCombinerInfo &DCI, 10510 const AArch64Subtarget *Subtarget) { 10511 if (DCI.isBeforeLegalizeOps()) 10512 return SDValue(); 10513 10514 // The below optimizations require a constant RHS. 10515 if (!isa<ConstantSDNode>(N->getOperand(1))) 10516 return SDValue(); 10517 10518 SDValue N0 = N->getOperand(0); 10519 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1)); 10520 const APInt &ConstValue = C->getAPIntValue(); 10521 10522 // Allow the scaling to be folded into the `cnt` instruction by preventing 10523 // the scaling to be obscured here. This makes it easier to pattern match. 10524 if (IsSVECntIntrinsic(N0) || 10525 (N0->getOpcode() == ISD::TRUNCATE && 10526 (IsSVECntIntrinsic(N0->getOperand(0))))) 10527 if (ConstValue.sge(1) && ConstValue.sle(16)) 10528 return SDValue(); 10529 10530 // Multiplication of a power of two plus/minus one can be done more 10531 // cheaply as as shift+add/sub. For now, this is true unilaterally. If 10532 // future CPUs have a cheaper MADD instruction, this may need to be 10533 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and 10534 // 64-bit is 5 cycles, so this is always a win. 10535 // More aggressively, some multiplications N0 * C can be lowered to 10536 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M, 10537 // e.g. 6=3*2=(2+1)*2. 10538 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45 10539 // which equals to (1+2)*16-(1+2). 10540 // TrailingZeroes is used to test if the mul can be lowered to 10541 // shift+add+shift. 10542 unsigned TrailingZeroes = ConstValue.countTrailingZeros(); 10543 if (TrailingZeroes) { 10544 // Conservatively do not lower to shift+add+shift if the mul might be 10545 // folded into smul or umul. 10546 if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) || 10547 isZeroExtended(N0.getNode(), DAG))) 10548 return SDValue(); 10549 // Conservatively do not lower to shift+add+shift if the mul might be 10550 // folded into madd or msub. 10551 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD || 10552 N->use_begin()->getOpcode() == ISD::SUB)) 10553 return SDValue(); 10554 } 10555 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub 10556 // and shift+add+shift. 10557 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes); 10558 10559 unsigned ShiftAmt, AddSubOpc; 10560 // Is the shifted value the LHS operand of the add/sub? 10561 bool ShiftValUseIsN0 = true; 10562 // Do we need to negate the result? 10563 bool NegateResult = false; 10564 10565 if (ConstValue.isNonNegative()) { 10566 // (mul x, 2^N + 1) => (add (shl x, N), x) 10567 // (mul x, 2^N - 1) => (sub (shl x, N), x) 10568 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M) 10569 APInt SCVMinus1 = ShiftedConstValue - 1; 10570 APInt CVPlus1 = ConstValue + 1; 10571 if (SCVMinus1.isPowerOf2()) { 10572 ShiftAmt = SCVMinus1.logBase2(); 10573 AddSubOpc = ISD::ADD; 10574 } else if (CVPlus1.isPowerOf2()) { 10575 ShiftAmt = CVPlus1.logBase2(); 10576 AddSubOpc = ISD::SUB; 10577 } else 10578 return SDValue(); 10579 } else { 10580 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 10581 // (mul x, -(2^N + 1)) => - (add (shl x, N), x) 10582 APInt CVNegPlus1 = -ConstValue + 1; 10583 APInt CVNegMinus1 = -ConstValue - 1; 10584 if (CVNegPlus1.isPowerOf2()) { 10585 ShiftAmt = CVNegPlus1.logBase2(); 10586 AddSubOpc = ISD::SUB; 10587 ShiftValUseIsN0 = false; 10588 } else if (CVNegMinus1.isPowerOf2()) { 10589 ShiftAmt = CVNegMinus1.logBase2(); 10590 AddSubOpc = ISD::ADD; 10591 NegateResult = true; 10592 } else 10593 return SDValue(); 10594 } 10595 10596 SDLoc DL(N); 10597 EVT VT = N->getValueType(0); 10598 SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0, 10599 DAG.getConstant(ShiftAmt, DL, MVT::i64)); 10600 10601 SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0; 10602 SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal; 10603 SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1); 10604 assert(!(NegateResult && TrailingZeroes) && 10605 "NegateResult and TrailingZeroes cannot both be true for now."); 10606 // Negate the result. 10607 if (NegateResult) 10608 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 10609 // Shift the result. 10610 if (TrailingZeroes) 10611 return DAG.getNode(ISD::SHL, DL, VT, Res, 10612 DAG.getConstant(TrailingZeroes, DL, MVT::i64)); 10613 return Res; 10614 } 10615 10616 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, 10617 SelectionDAG &DAG) { 10618 // Take advantage of vector comparisons producing 0 or -1 in each lane to 10619 // optimize away operation when it's from a constant. 10620 // 10621 // The general transformation is: 10622 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> 10623 // AND(VECTOR_CMP(x,y), constant2) 10624 // constant2 = UNARYOP(constant) 10625 10626 // Early exit if this isn't a vector operation, the operand of the 10627 // unary operation isn't a bitwise AND, or if the sizes of the operations 10628 // aren't the same. 10629 EVT VT = N->getValueType(0); 10630 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || 10631 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || 10632 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) 10633 return SDValue(); 10634 10635 // Now check that the other operand of the AND is a constant. We could 10636 // make the transformation for non-constant splats as well, but it's unclear 10637 // that would be a benefit as it would not eliminate any operations, just 10638 // perform one more step in scalar code before moving to the vector unit. 10639 if (BuildVectorSDNode *BV = 10640 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { 10641 // Bail out if the vector isn't a constant. 10642 if (!BV->isConstant()) 10643 return SDValue(); 10644 10645 // Everything checks out. Build up the new and improved node. 10646 SDLoc DL(N); 10647 EVT IntVT = BV->getValueType(0); 10648 // Create a new constant of the appropriate type for the transformed 10649 // DAG. 10650 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); 10651 // The AND node needs bitcasts to/from an integer vector type around it. 10652 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); 10653 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, 10654 N->getOperand(0)->getOperand(0), MaskConst); 10655 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); 10656 return Res; 10657 } 10658 10659 return SDValue(); 10660 } 10661 10662 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, 10663 const AArch64Subtarget *Subtarget) { 10664 // First try to optimize away the conversion when it's conditionally from 10665 // a constant. Vectors only. 10666 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) 10667 return Res; 10668 10669 EVT VT = N->getValueType(0); 10670 if (VT != MVT::f32 && VT != MVT::f64) 10671 return SDValue(); 10672 10673 // Only optimize when the source and destination types have the same width. 10674 if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) 10675 return SDValue(); 10676 10677 // If the result of an integer load is only used by an integer-to-float 10678 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. 10679 // This eliminates an "integer-to-vector-move" UOP and improves throughput. 10680 SDValue N0 = N->getOperand(0); 10681 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 10682 // Do not change the width of a volatile load. 10683 !cast<LoadSDNode>(N0)->isVolatile()) { 10684 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 10685 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 10686 LN0->getPointerInfo(), LN0->getAlignment(), 10687 LN0->getMemOperand()->getFlags()); 10688 10689 // Make sure successors of the original load stay after it by updating them 10690 // to use the new Chain. 10691 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); 10692 10693 unsigned Opcode = 10694 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; 10695 return DAG.getNode(Opcode, SDLoc(N), VT, Load); 10696 } 10697 10698 return SDValue(); 10699 } 10700 10701 /// Fold a floating-point multiply by power of two into floating-point to 10702 /// fixed-point conversion. 10703 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, 10704 TargetLowering::DAGCombinerInfo &DCI, 10705 const AArch64Subtarget *Subtarget) { 10706 if (!Subtarget->hasNEON()) 10707 return SDValue(); 10708 10709 if (!N->getValueType(0).isSimple()) 10710 return SDValue(); 10711 10712 SDValue Op = N->getOperand(0); 10713 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || 10714 Op.getOpcode() != ISD::FMUL) 10715 return SDValue(); 10716 10717 SDValue ConstVec = Op->getOperand(1); 10718 if (!isa<BuildVectorSDNode>(ConstVec)) 10719 return SDValue(); 10720 10721 MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); 10722 uint32_t FloatBits = FloatTy.getSizeInBits(); 10723 if (FloatBits != 32 && FloatBits != 64) 10724 return SDValue(); 10725 10726 MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); 10727 uint32_t IntBits = IntTy.getSizeInBits(); 10728 if (IntBits != 16 && IntBits != 32 && IntBits != 64) 10729 return SDValue(); 10730 10731 // Avoid conversions where iN is larger than the float (e.g., float -> i64). 10732 if (IntBits > FloatBits) 10733 return SDValue(); 10734 10735 BitVector UndefElements; 10736 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 10737 int32_t Bits = IntBits == 64 ? 64 : 32; 10738 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); 10739 if (C == -1 || C == 0 || C > Bits) 10740 return SDValue(); 10741 10742 MVT ResTy; 10743 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 10744 switch (NumLanes) { 10745 default: 10746 return SDValue(); 10747 case 2: 10748 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; 10749 break; 10750 case 4: 10751 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; 10752 break; 10753 } 10754 10755 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) 10756 return SDValue(); 10757 10758 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) && 10759 "Illegal vector type after legalization"); 10760 10761 SDLoc DL(N); 10762 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 10763 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs 10764 : Intrinsic::aarch64_neon_vcvtfp2fxu; 10765 SDValue FixConv = 10766 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, 10767 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), 10768 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); 10769 // We can handle smaller integers by generating an extra trunc. 10770 if (IntBits < FloatBits) 10771 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); 10772 10773 return FixConv; 10774 } 10775 10776 /// Fold a floating-point divide by power of two into fixed-point to 10777 /// floating-point conversion. 10778 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, 10779 TargetLowering::DAGCombinerInfo &DCI, 10780 const AArch64Subtarget *Subtarget) { 10781 if (!Subtarget->hasNEON()) 10782 return SDValue(); 10783 10784 SDValue Op = N->getOperand(0); 10785 unsigned Opc = Op->getOpcode(); 10786 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || 10787 !Op.getOperand(0).getValueType().isSimple() || 10788 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) 10789 return SDValue(); 10790 10791 SDValue ConstVec = N->getOperand(1); 10792 if (!isa<BuildVectorSDNode>(ConstVec)) 10793 return SDValue(); 10794 10795 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); 10796 int32_t IntBits = IntTy.getSizeInBits(); 10797 if (IntBits != 16 && IntBits != 32 && IntBits != 64) 10798 return SDValue(); 10799 10800 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); 10801 int32_t FloatBits = FloatTy.getSizeInBits(); 10802 if (FloatBits != 32 && FloatBits != 64) 10803 return SDValue(); 10804 10805 // Avoid conversions where iN is larger than the float (e.g., i64 -> float). 10806 if (IntBits > FloatBits) 10807 return SDValue(); 10808 10809 BitVector UndefElements; 10810 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 10811 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); 10812 if (C == -1 || C == 0 || C > FloatBits) 10813 return SDValue(); 10814 10815 MVT ResTy; 10816 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 10817 switch (NumLanes) { 10818 default: 10819 return SDValue(); 10820 case 2: 10821 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; 10822 break; 10823 case 4: 10824 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; 10825 break; 10826 } 10827 10828 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) 10829 return SDValue(); 10830 10831 SDLoc DL(N); 10832 SDValue ConvInput = Op.getOperand(0); 10833 bool IsSigned = Opc == ISD::SINT_TO_FP; 10834 if (IntBits < FloatBits) 10835 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, 10836 ResTy, ConvInput); 10837 10838 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp 10839 : Intrinsic::aarch64_neon_vcvtfxu2fp; 10840 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 10841 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, 10842 DAG.getConstant(C, DL, MVT::i32)); 10843 } 10844 10845 /// An EXTR instruction is made up of two shifts, ORed together. This helper 10846 /// searches for and classifies those shifts. 10847 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, 10848 bool &FromHi) { 10849 if (N.getOpcode() == ISD::SHL) 10850 FromHi = false; 10851 else if (N.getOpcode() == ISD::SRL) 10852 FromHi = true; 10853 else 10854 return false; 10855 10856 if (!isa<ConstantSDNode>(N.getOperand(1))) 10857 return false; 10858 10859 ShiftAmount = N->getConstantOperandVal(1); 10860 Src = N->getOperand(0); 10861 return true; 10862 } 10863 10864 /// EXTR instruction extracts a contiguous chunk of bits from two existing 10865 /// registers viewed as a high/low pair. This function looks for the pattern: 10866 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it 10867 /// with an EXTR. Can't quite be done in TableGen because the two immediates 10868 /// aren't independent. 10869 static SDValue tryCombineToEXTR(SDNode *N, 10870 TargetLowering::DAGCombinerInfo &DCI) { 10871 SelectionDAG &DAG = DCI.DAG; 10872 SDLoc DL(N); 10873 EVT VT = N->getValueType(0); 10874 10875 assert(N->getOpcode() == ISD::OR && "Unexpected root"); 10876 10877 if (VT != MVT::i32 && VT != MVT::i64) 10878 return SDValue(); 10879 10880 SDValue LHS; 10881 uint32_t ShiftLHS = 0; 10882 bool LHSFromHi = false; 10883 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) 10884 return SDValue(); 10885 10886 SDValue RHS; 10887 uint32_t ShiftRHS = 0; 10888 bool RHSFromHi = false; 10889 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) 10890 return SDValue(); 10891 10892 // If they're both trying to come from the high part of the register, they're 10893 // not really an EXTR. 10894 if (LHSFromHi == RHSFromHi) 10895 return SDValue(); 10896 10897 if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) 10898 return SDValue(); 10899 10900 if (LHSFromHi) { 10901 std::swap(LHS, RHS); 10902 std::swap(ShiftLHS, ShiftRHS); 10903 } 10904 10905 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, 10906 DAG.getConstant(ShiftRHS, DL, MVT::i64)); 10907 } 10908 10909 static SDValue tryCombineToBSL(SDNode *N, 10910 TargetLowering::DAGCombinerInfo &DCI) { 10911 EVT VT = N->getValueType(0); 10912 SelectionDAG &DAG = DCI.DAG; 10913 SDLoc DL(N); 10914 10915 if (!VT.isVector()) 10916 return SDValue(); 10917 10918 SDValue N0 = N->getOperand(0); 10919 if (N0.getOpcode() != ISD::AND) 10920 return SDValue(); 10921 10922 SDValue N1 = N->getOperand(1); 10923 if (N1.getOpcode() != ISD::AND) 10924 return SDValue(); 10925 10926 // We only have to look for constant vectors here since the general, variable 10927 // case can be handled in TableGen. 10928 unsigned Bits = VT.getScalarSizeInBits(); 10929 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); 10930 for (int i = 1; i >= 0; --i) 10931 for (int j = 1; j >= 0; --j) { 10932 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); 10933 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); 10934 if (!BVN0 || !BVN1) 10935 continue; 10936 10937 bool FoundMatch = true; 10938 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { 10939 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); 10940 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); 10941 if (!CN0 || !CN1 || 10942 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { 10943 FoundMatch = false; 10944 break; 10945 } 10946 } 10947 10948 if (FoundMatch) 10949 return DAG.getNode(AArch64ISD::BSP, DL, VT, SDValue(BVN0, 0), 10950 N0->getOperand(1 - i), N1->getOperand(1 - j)); 10951 } 10952 10953 return SDValue(); 10954 } 10955 10956 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 10957 const AArch64Subtarget *Subtarget) { 10958 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) 10959 SelectionDAG &DAG = DCI.DAG; 10960 EVT VT = N->getValueType(0); 10961 10962 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 10963 return SDValue(); 10964 10965 if (SDValue Res = tryCombineToEXTR(N, DCI)) 10966 return Res; 10967 10968 if (SDValue Res = tryCombineToBSL(N, DCI)) 10969 return Res; 10970 10971 return SDValue(); 10972 } 10973 10974 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) { 10975 if (!MemVT.getVectorElementType().isSimple()) 10976 return false; 10977 10978 uint64_t MaskForTy = 0ull; 10979 switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) { 10980 case MVT::i8: 10981 MaskForTy = 0xffull; 10982 break; 10983 case MVT::i16: 10984 MaskForTy = 0xffffull; 10985 break; 10986 case MVT::i32: 10987 MaskForTy = 0xffffffffull; 10988 break; 10989 default: 10990 return false; 10991 break; 10992 } 10993 10994 if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR) 10995 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) 10996 return Op0->getAPIntValue().getLimitedValue() == MaskForTy; 10997 10998 return false; 10999 } 11000 11001 static SDValue performSVEAndCombine(SDNode *N, 11002 TargetLowering::DAGCombinerInfo &DCI) { 11003 if (DCI.isBeforeLegalizeOps()) 11004 return SDValue(); 11005 11006 SelectionDAG &DAG = DCI.DAG; 11007 SDValue Src = N->getOperand(0); 11008 unsigned Opc = Src->getOpcode(); 11009 11010 // Zero/any extend of an unsigned unpack 11011 if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) { 11012 SDValue UnpkOp = Src->getOperand(0); 11013 SDValue Dup = N->getOperand(1); 11014 11015 if (Dup.getOpcode() != AArch64ISD::DUP) 11016 return SDValue(); 11017 11018 SDLoc DL(N); 11019 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Dup->getOperand(0)); 11020 uint64_t ExtVal = C->getZExtValue(); 11021 11022 // If the mask is fully covered by the unpack, we don't need to push 11023 // a new AND onto the operand 11024 EVT EltTy = UnpkOp->getValueType(0).getVectorElementType(); 11025 if ((ExtVal == 0xFF && EltTy == MVT::i8) || 11026 (ExtVal == 0xFFFF && EltTy == MVT::i16) || 11027 (ExtVal == 0xFFFFFFFF && EltTy == MVT::i32)) 11028 return Src; 11029 11030 // Truncate to prevent a DUP with an over wide constant 11031 APInt Mask = C->getAPIntValue().trunc(EltTy.getSizeInBits()); 11032 11033 // Otherwise, make sure we propagate the AND to the operand 11034 // of the unpack 11035 Dup = DAG.getNode(AArch64ISD::DUP, DL, 11036 UnpkOp->getValueType(0), 11037 DAG.getConstant(Mask.zextOrTrunc(32), DL, MVT::i32)); 11038 11039 SDValue And = DAG.getNode(ISD::AND, DL, 11040 UnpkOp->getValueType(0), UnpkOp, Dup); 11041 11042 return DAG.getNode(Opc, DL, N->getValueType(0), And); 11043 } 11044 11045 SDValue Mask = N->getOperand(1); 11046 11047 if (!Src.hasOneUse()) 11048 return SDValue(); 11049 11050 EVT MemVT; 11051 11052 // SVE load instructions perform an implicit zero-extend, which makes them 11053 // perfect candidates for combining. 11054 switch (Opc) { 11055 case AArch64ISD::LD1_MERGE_ZERO: 11056 case AArch64ISD::LDNF1_MERGE_ZERO: 11057 case AArch64ISD::LDFF1_MERGE_ZERO: 11058 MemVT = cast<VTSDNode>(Src->getOperand(3))->getVT(); 11059 break; 11060 case AArch64ISD::GLD1_MERGE_ZERO: 11061 case AArch64ISD::GLD1_SCALED_MERGE_ZERO: 11062 case AArch64ISD::GLD1_SXTW_MERGE_ZERO: 11063 case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: 11064 case AArch64ISD::GLD1_UXTW_MERGE_ZERO: 11065 case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: 11066 case AArch64ISD::GLD1_IMM_MERGE_ZERO: 11067 case AArch64ISD::GLDFF1_MERGE_ZERO: 11068 case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO: 11069 case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO: 11070 case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO: 11071 case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO: 11072 case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO: 11073 case AArch64ISD::GLDFF1_IMM_MERGE_ZERO: 11074 case AArch64ISD::GLDNT1_MERGE_ZERO: 11075 MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT(); 11076 break; 11077 default: 11078 return SDValue(); 11079 } 11080 11081 if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT)) 11082 return Src; 11083 11084 return SDValue(); 11085 } 11086 11087 static SDValue performANDCombine(SDNode *N, 11088 TargetLowering::DAGCombinerInfo &DCI) { 11089 SelectionDAG &DAG = DCI.DAG; 11090 SDValue LHS = N->getOperand(0); 11091 EVT VT = N->getValueType(0); 11092 if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT)) 11093 return SDValue(); 11094 11095 if (VT.isScalableVector()) 11096 return performSVEAndCombine(N, DCI); 11097 11098 BuildVectorSDNode *BVN = 11099 dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode()); 11100 if (!BVN) 11101 return SDValue(); 11102 11103 // AND does not accept an immediate, so check if we can use a BIC immediate 11104 // instruction instead. We do this here instead of using a (and x, (mvni imm)) 11105 // pattern in isel, because some immediates may be lowered to the preferred 11106 // (and x, (movi imm)) form, even though an mvni representation also exists. 11107 APInt DefBits(VT.getSizeInBits(), 0); 11108 APInt UndefBits(VT.getSizeInBits(), 0); 11109 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 11110 SDValue NewOp; 11111 11112 DefBits = ~DefBits; 11113 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, 11114 DefBits, &LHS)) || 11115 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, 11116 DefBits, &LHS))) 11117 return NewOp; 11118 11119 UndefBits = ~UndefBits; 11120 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, 11121 UndefBits, &LHS)) || 11122 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, 11123 UndefBits, &LHS))) 11124 return NewOp; 11125 } 11126 11127 return SDValue(); 11128 } 11129 11130 static SDValue performSRLCombine(SDNode *N, 11131 TargetLowering::DAGCombinerInfo &DCI) { 11132 SelectionDAG &DAG = DCI.DAG; 11133 EVT VT = N->getValueType(0); 11134 if (VT != MVT::i32 && VT != MVT::i64) 11135 return SDValue(); 11136 11137 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the 11138 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32) 11139 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero. 11140 SDValue N0 = N->getOperand(0); 11141 if (N0.getOpcode() == ISD::BSWAP) { 11142 SDLoc DL(N); 11143 SDValue N1 = N->getOperand(1); 11144 SDValue N00 = N0.getOperand(0); 11145 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 11146 uint64_t ShiftAmt = C->getZExtValue(); 11147 if (VT == MVT::i32 && ShiftAmt == 16 && 11148 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16))) 11149 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); 11150 if (VT == MVT::i64 && ShiftAmt == 32 && 11151 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32))) 11152 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); 11153 } 11154 } 11155 return SDValue(); 11156 } 11157 11158 static SDValue performConcatVectorsCombine(SDNode *N, 11159 TargetLowering::DAGCombinerInfo &DCI, 11160 SelectionDAG &DAG) { 11161 SDLoc dl(N); 11162 EVT VT = N->getValueType(0); 11163 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 11164 unsigned N0Opc = N0->getOpcode(), N1Opc = N1->getOpcode(); 11165 11166 // Optimize concat_vectors of truncated vectors, where the intermediate 11167 // type is illegal, to avoid said illegality, e.g., 11168 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), 11169 // (v2i16 (truncate (v2i64))))) 11170 // -> 11171 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), 11172 // (v4i32 (bitcast (v2i64))), 11173 // <0, 2, 4, 6>))) 11174 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed 11175 // on both input and result type, so we might generate worse code. 11176 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. 11177 if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE && 11178 N1Opc == ISD::TRUNCATE) { 11179 SDValue N00 = N0->getOperand(0); 11180 SDValue N10 = N1->getOperand(0); 11181 EVT N00VT = N00.getValueType(); 11182 11183 if (N00VT == N10.getValueType() && 11184 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && 11185 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { 11186 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); 11187 SmallVector<int, 8> Mask(MidVT.getVectorNumElements()); 11188 for (size_t i = 0; i < Mask.size(); ++i) 11189 Mask[i] = i * 2; 11190 return DAG.getNode(ISD::TRUNCATE, dl, VT, 11191 DAG.getVectorShuffle( 11192 MidVT, dl, 11193 DAG.getNode(ISD::BITCAST, dl, MidVT, N00), 11194 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); 11195 } 11196 } 11197 11198 // Wait 'til after everything is legalized to try this. That way we have 11199 // legal vector types and such. 11200 if (DCI.isBeforeLegalizeOps()) 11201 return SDValue(); 11202 11203 // Optimise concat_vectors of two [us]rhadds that use extracted subvectors 11204 // from the same original vectors. Combine these into a single [us]rhadd that 11205 // operates on the two original vectors. Example: 11206 // (v16i8 (concat_vectors (v8i8 (urhadd (extract_subvector (v16i8 OpA, <0>), 11207 // extract_subvector (v16i8 OpB, 11208 // <0>))), 11209 // (v8i8 (urhadd (extract_subvector (v16i8 OpA, <8>), 11210 // extract_subvector (v16i8 OpB, 11211 // <8>))))) 11212 // -> 11213 // (v16i8(urhadd(v16i8 OpA, v16i8 OpB))) 11214 if (N->getNumOperands() == 2 && N0Opc == N1Opc && 11215 (N0Opc == AArch64ISD::URHADD || N0Opc == AArch64ISD::SRHADD)) { 11216 SDValue N00 = N0->getOperand(0); 11217 SDValue N01 = N0->getOperand(1); 11218 SDValue N10 = N1->getOperand(0); 11219 SDValue N11 = N1->getOperand(1); 11220 11221 EVT N00VT = N00.getValueType(); 11222 EVT N10VT = N10.getValueType(); 11223 11224 if (N00->getOpcode() == ISD::EXTRACT_SUBVECTOR && 11225 N01->getOpcode() == ISD::EXTRACT_SUBVECTOR && 11226 N10->getOpcode() == ISD::EXTRACT_SUBVECTOR && 11227 N11->getOpcode() == ISD::EXTRACT_SUBVECTOR && N00VT == N10VT) { 11228 SDValue N00Source = N00->getOperand(0); 11229 SDValue N01Source = N01->getOperand(0); 11230 SDValue N10Source = N10->getOperand(0); 11231 SDValue N11Source = N11->getOperand(0); 11232 11233 if (N00Source == N10Source && N01Source == N11Source && 11234 N00Source.getValueType() == VT && N01Source.getValueType() == VT) { 11235 assert(N0.getValueType() == N1.getValueType()); 11236 11237 uint64_t N00Index = N00.getConstantOperandVal(1); 11238 uint64_t N01Index = N01.getConstantOperandVal(1); 11239 uint64_t N10Index = N10.getConstantOperandVal(1); 11240 uint64_t N11Index = N11.getConstantOperandVal(1); 11241 11242 if (N00Index == N01Index && N10Index == N11Index && N00Index == 0 && 11243 N10Index == N00VT.getVectorNumElements()) 11244 return DAG.getNode(N0Opc, dl, VT, N00Source, N01Source); 11245 } 11246 } 11247 } 11248 11249 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector 11250 // splat. The indexed instructions are going to be expecting a DUPLANE64, so 11251 // canonicalise to that. 11252 if (N0 == N1 && VT.getVectorNumElements() == 2) { 11253 assert(VT.getScalarSizeInBits() == 64); 11254 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), 11255 DAG.getConstant(0, dl, MVT::i64)); 11256 } 11257 11258 // Canonicalise concat_vectors so that the right-hand vector has as few 11259 // bit-casts as possible before its real operation. The primary matching 11260 // destination for these operations will be the narrowing "2" instructions, 11261 // which depend on the operation being performed on this right-hand vector. 11262 // For example, 11263 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) 11264 // becomes 11265 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) 11266 11267 if (N1Opc != ISD::BITCAST) 11268 return SDValue(); 11269 SDValue RHS = N1->getOperand(0); 11270 MVT RHSTy = RHS.getValueType().getSimpleVT(); 11271 // If the RHS is not a vector, this is not the pattern we're looking for. 11272 if (!RHSTy.isVector()) 11273 return SDValue(); 11274 11275 LLVM_DEBUG( 11276 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); 11277 11278 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), 11279 RHSTy.getVectorNumElements() * 2); 11280 return DAG.getNode(ISD::BITCAST, dl, VT, 11281 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, 11282 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), 11283 RHS)); 11284 } 11285 11286 static SDValue tryCombineFixedPointConvert(SDNode *N, 11287 TargetLowering::DAGCombinerInfo &DCI, 11288 SelectionDAG &DAG) { 11289 // Wait until after everything is legalized to try this. That way we have 11290 // legal vector types and such. 11291 if (DCI.isBeforeLegalizeOps()) 11292 return SDValue(); 11293 // Transform a scalar conversion of a value from a lane extract into a 11294 // lane extract of a vector conversion. E.g., from foo1 to foo2: 11295 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } 11296 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } 11297 // 11298 // The second form interacts better with instruction selection and the 11299 // register allocator to avoid cross-class register copies that aren't 11300 // coalescable due to a lane reference. 11301 11302 // Check the operand and see if it originates from a lane extract. 11303 SDValue Op1 = N->getOperand(1); 11304 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 11305 // Yep, no additional predication needed. Perform the transform. 11306 SDValue IID = N->getOperand(0); 11307 SDValue Shift = N->getOperand(2); 11308 SDValue Vec = Op1.getOperand(0); 11309 SDValue Lane = Op1.getOperand(1); 11310 EVT ResTy = N->getValueType(0); 11311 EVT VecResTy; 11312 SDLoc DL(N); 11313 11314 // The vector width should be 128 bits by the time we get here, even 11315 // if it started as 64 bits (the extract_vector handling will have 11316 // done so). 11317 assert(Vec.getValueSizeInBits() == 128 && 11318 "unexpected vector size on extract_vector_elt!"); 11319 if (Vec.getValueType() == MVT::v4i32) 11320 VecResTy = MVT::v4f32; 11321 else if (Vec.getValueType() == MVT::v2i64) 11322 VecResTy = MVT::v2f64; 11323 else 11324 llvm_unreachable("unexpected vector type!"); 11325 11326 SDValue Convert = 11327 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); 11328 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); 11329 } 11330 return SDValue(); 11331 } 11332 11333 // AArch64 high-vector "long" operations are formed by performing the non-high 11334 // version on an extract_subvector of each operand which gets the high half: 11335 // 11336 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) 11337 // 11338 // However, there are cases which don't have an extract_high explicitly, but 11339 // have another operation that can be made compatible with one for free. For 11340 // example: 11341 // 11342 // (dupv64 scalar) --> (extract_high (dup128 scalar)) 11343 // 11344 // This routine does the actual conversion of such DUPs, once outer routines 11345 // have determined that everything else is in order. 11346 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold 11347 // similarly here. 11348 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { 11349 switch (N.getOpcode()) { 11350 case AArch64ISD::DUP: 11351 case AArch64ISD::DUPLANE8: 11352 case AArch64ISD::DUPLANE16: 11353 case AArch64ISD::DUPLANE32: 11354 case AArch64ISD::DUPLANE64: 11355 case AArch64ISD::MOVI: 11356 case AArch64ISD::MOVIshift: 11357 case AArch64ISD::MOVIedit: 11358 case AArch64ISD::MOVImsl: 11359 case AArch64ISD::MVNIshift: 11360 case AArch64ISD::MVNImsl: 11361 break; 11362 default: 11363 // FMOV could be supported, but isn't very useful, as it would only occur 11364 // if you passed a bitcast' floating point immediate to an eligible long 11365 // integer op (addl, smull, ...). 11366 return SDValue(); 11367 } 11368 11369 MVT NarrowTy = N.getSimpleValueType(); 11370 if (!NarrowTy.is64BitVector()) 11371 return SDValue(); 11372 11373 MVT ElementTy = NarrowTy.getVectorElementType(); 11374 unsigned NumElems = NarrowTy.getVectorNumElements(); 11375 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); 11376 11377 SDLoc dl(N); 11378 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy, 11379 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()), 11380 DAG.getConstant(NumElems, dl, MVT::i64)); 11381 } 11382 11383 static bool isEssentiallyExtractHighSubvector(SDValue N) { 11384 if (N.getOpcode() == ISD::BITCAST) 11385 N = N.getOperand(0); 11386 if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR) 11387 return false; 11388 return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() == 11389 N.getOperand(0).getValueType().getVectorNumElements() / 2; 11390 } 11391 11392 /// Helper structure to keep track of ISD::SET_CC operands. 11393 struct GenericSetCCInfo { 11394 const SDValue *Opnd0; 11395 const SDValue *Opnd1; 11396 ISD::CondCode CC; 11397 }; 11398 11399 /// Helper structure to keep track of a SET_CC lowered into AArch64 code. 11400 struct AArch64SetCCInfo { 11401 const SDValue *Cmp; 11402 AArch64CC::CondCode CC; 11403 }; 11404 11405 /// Helper structure to keep track of SetCC information. 11406 union SetCCInfo { 11407 GenericSetCCInfo Generic; 11408 AArch64SetCCInfo AArch64; 11409 }; 11410 11411 /// Helper structure to be able to read SetCC information. If set to 11412 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a 11413 /// GenericSetCCInfo. 11414 struct SetCCInfoAndKind { 11415 SetCCInfo Info; 11416 bool IsAArch64; 11417 }; 11418 11419 /// Check whether or not \p Op is a SET_CC operation, either a generic or 11420 /// an 11421 /// AArch64 lowered one. 11422 /// \p SetCCInfo is filled accordingly. 11423 /// \post SetCCInfo is meanginfull only when this function returns true. 11424 /// \return True when Op is a kind of SET_CC operation. 11425 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { 11426 // If this is a setcc, this is straight forward. 11427 if (Op.getOpcode() == ISD::SETCC) { 11428 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); 11429 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); 11430 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 11431 SetCCInfo.IsAArch64 = false; 11432 return true; 11433 } 11434 // Otherwise, check if this is a matching csel instruction. 11435 // In other words: 11436 // - csel 1, 0, cc 11437 // - csel 0, 1, !cc 11438 if (Op.getOpcode() != AArch64ISD::CSEL) 11439 return false; 11440 // Set the information about the operands. 11441 // TODO: we want the operands of the Cmp not the csel 11442 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); 11443 SetCCInfo.IsAArch64 = true; 11444 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( 11445 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 11446 11447 // Check that the operands matches the constraints: 11448 // (1) Both operands must be constants. 11449 // (2) One must be 1 and the other must be 0. 11450 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 11451 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 11452 11453 // Check (1). 11454 if (!TValue || !FValue) 11455 return false; 11456 11457 // Check (2). 11458 if (!TValue->isOne()) { 11459 // Update the comparison when we are interested in !cc. 11460 std::swap(TValue, FValue); 11461 SetCCInfo.Info.AArch64.CC = 11462 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); 11463 } 11464 return TValue->isOne() && FValue->isNullValue(); 11465 } 11466 11467 // Returns true if Op is setcc or zext of setcc. 11468 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { 11469 if (isSetCC(Op, Info)) 11470 return true; 11471 return ((Op.getOpcode() == ISD::ZERO_EXTEND) && 11472 isSetCC(Op->getOperand(0), Info)); 11473 } 11474 11475 // The folding we want to perform is: 11476 // (add x, [zext] (setcc cc ...) ) 11477 // --> 11478 // (csel x, (add x, 1), !cc ...) 11479 // 11480 // The latter will get matched to a CSINC instruction. 11481 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { 11482 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); 11483 SDValue LHS = Op->getOperand(0); 11484 SDValue RHS = Op->getOperand(1); 11485 SetCCInfoAndKind InfoAndKind; 11486 11487 // If neither operand is a SET_CC, give up. 11488 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { 11489 std::swap(LHS, RHS); 11490 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) 11491 return SDValue(); 11492 } 11493 11494 // FIXME: This could be generatized to work for FP comparisons. 11495 EVT CmpVT = InfoAndKind.IsAArch64 11496 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() 11497 : InfoAndKind.Info.Generic.Opnd0->getValueType(); 11498 if (CmpVT != MVT::i32 && CmpVT != MVT::i64) 11499 return SDValue(); 11500 11501 SDValue CCVal; 11502 SDValue Cmp; 11503 SDLoc dl(Op); 11504 if (InfoAndKind.IsAArch64) { 11505 CCVal = DAG.getConstant( 11506 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, 11507 MVT::i32); 11508 Cmp = *InfoAndKind.Info.AArch64.Cmp; 11509 } else 11510 Cmp = getAArch64Cmp( 11511 *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1, 11512 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG, 11513 dl); 11514 11515 EVT VT = Op->getValueType(0); 11516 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); 11517 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); 11518 } 11519 11520 // The basic add/sub long vector instructions have variants with "2" on the end 11521 // which act on the high-half of their inputs. They are normally matched by 11522 // patterns like: 11523 // 11524 // (add (zeroext (extract_high LHS)), 11525 // (zeroext (extract_high RHS))) 11526 // -> uaddl2 vD, vN, vM 11527 // 11528 // However, if one of the extracts is something like a duplicate, this 11529 // instruction can still be used profitably. This function puts the DAG into a 11530 // more appropriate form for those patterns to trigger. 11531 static SDValue performAddSubLongCombine(SDNode *N, 11532 TargetLowering::DAGCombinerInfo &DCI, 11533 SelectionDAG &DAG) { 11534 if (DCI.isBeforeLegalizeOps()) 11535 return SDValue(); 11536 11537 MVT VT = N->getSimpleValueType(0); 11538 if (!VT.is128BitVector()) { 11539 if (N->getOpcode() == ISD::ADD) 11540 return performSetccAddFolding(N, DAG); 11541 return SDValue(); 11542 } 11543 11544 // Make sure both branches are extended in the same way. 11545 SDValue LHS = N->getOperand(0); 11546 SDValue RHS = N->getOperand(1); 11547 if ((LHS.getOpcode() != ISD::ZERO_EXTEND && 11548 LHS.getOpcode() != ISD::SIGN_EXTEND) || 11549 LHS.getOpcode() != RHS.getOpcode()) 11550 return SDValue(); 11551 11552 unsigned ExtType = LHS.getOpcode(); 11553 11554 // It's not worth doing if at least one of the inputs isn't already an 11555 // extract, but we don't know which it'll be so we have to try both. 11556 if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) { 11557 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); 11558 if (!RHS.getNode()) 11559 return SDValue(); 11560 11561 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); 11562 } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) { 11563 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); 11564 if (!LHS.getNode()) 11565 return SDValue(); 11566 11567 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); 11568 } 11569 11570 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); 11571 } 11572 11573 // Massage DAGs which we can use the high-half "long" operations on into 11574 // something isel will recognize better. E.g. 11575 // 11576 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> 11577 // (aarch64_neon_umull (extract_high (v2i64 vec))) 11578 // (extract_high (v2i64 (dup128 scalar))))) 11579 // 11580 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, 11581 TargetLowering::DAGCombinerInfo &DCI, 11582 SelectionDAG &DAG) { 11583 if (DCI.isBeforeLegalizeOps()) 11584 return SDValue(); 11585 11586 SDValue LHS = N->getOperand(1); 11587 SDValue RHS = N->getOperand(2); 11588 assert(LHS.getValueType().is64BitVector() && 11589 RHS.getValueType().is64BitVector() && 11590 "unexpected shape for long operation"); 11591 11592 // Either node could be a DUP, but it's not worth doing both of them (you'd 11593 // just as well use the non-high version) so look for a corresponding extract 11594 // operation on the other "wing". 11595 if (isEssentiallyExtractHighSubvector(LHS)) { 11596 RHS = tryExtendDUPToExtractHigh(RHS, DAG); 11597 if (!RHS.getNode()) 11598 return SDValue(); 11599 } else if (isEssentiallyExtractHighSubvector(RHS)) { 11600 LHS = tryExtendDUPToExtractHigh(LHS, DAG); 11601 if (!LHS.getNode()) 11602 return SDValue(); 11603 } 11604 11605 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), 11606 N->getOperand(0), LHS, RHS); 11607 } 11608 11609 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { 11610 MVT ElemTy = N->getSimpleValueType(0).getScalarType(); 11611 unsigned ElemBits = ElemTy.getSizeInBits(); 11612 11613 int64_t ShiftAmount; 11614 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { 11615 APInt SplatValue, SplatUndef; 11616 unsigned SplatBitSize; 11617 bool HasAnyUndefs; 11618 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 11619 HasAnyUndefs, ElemBits) || 11620 SplatBitSize != ElemBits) 11621 return SDValue(); 11622 11623 ShiftAmount = SplatValue.getSExtValue(); 11624 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { 11625 ShiftAmount = CVN->getSExtValue(); 11626 } else 11627 return SDValue(); 11628 11629 unsigned Opcode; 11630 bool IsRightShift; 11631 switch (IID) { 11632 default: 11633 llvm_unreachable("Unknown shift intrinsic"); 11634 case Intrinsic::aarch64_neon_sqshl: 11635 Opcode = AArch64ISD::SQSHL_I; 11636 IsRightShift = false; 11637 break; 11638 case Intrinsic::aarch64_neon_uqshl: 11639 Opcode = AArch64ISD::UQSHL_I; 11640 IsRightShift = false; 11641 break; 11642 case Intrinsic::aarch64_neon_srshl: 11643 Opcode = AArch64ISD::SRSHR_I; 11644 IsRightShift = true; 11645 break; 11646 case Intrinsic::aarch64_neon_urshl: 11647 Opcode = AArch64ISD::URSHR_I; 11648 IsRightShift = true; 11649 break; 11650 case Intrinsic::aarch64_neon_sqshlu: 11651 Opcode = AArch64ISD::SQSHLU_I; 11652 IsRightShift = false; 11653 break; 11654 case Intrinsic::aarch64_neon_sshl: 11655 case Intrinsic::aarch64_neon_ushl: 11656 // For positive shift amounts we can use SHL, as ushl/sshl perform a regular 11657 // left shift for positive shift amounts. Below, we only replace the current 11658 // node with VSHL, if this condition is met. 11659 Opcode = AArch64ISD::VSHL; 11660 IsRightShift = false; 11661 break; 11662 } 11663 11664 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { 11665 SDLoc dl(N); 11666 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), 11667 DAG.getConstant(-ShiftAmount, dl, MVT::i32)); 11668 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { 11669 SDLoc dl(N); 11670 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), 11671 DAG.getConstant(ShiftAmount, dl, MVT::i32)); 11672 } 11673 11674 return SDValue(); 11675 } 11676 11677 // The CRC32[BH] instructions ignore the high bits of their data operand. Since 11678 // the intrinsics must be legal and take an i32, this means there's almost 11679 // certainly going to be a zext in the DAG which we can eliminate. 11680 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { 11681 SDValue AndN = N->getOperand(2); 11682 if (AndN.getOpcode() != ISD::AND) 11683 return SDValue(); 11684 11685 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); 11686 if (!CMask || CMask->getZExtValue() != Mask) 11687 return SDValue(); 11688 11689 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, 11690 N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); 11691 } 11692 11693 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, 11694 SelectionDAG &DAG) { 11695 SDLoc dl(N); 11696 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), 11697 DAG.getNode(Opc, dl, 11698 N->getOperand(1).getSimpleValueType(), 11699 N->getOperand(1)), 11700 DAG.getConstant(0, dl, MVT::i64)); 11701 } 11702 11703 static SDValue LowerSVEIntReduction(SDNode *N, unsigned Opc, 11704 SelectionDAG &DAG) { 11705 SDLoc dl(N); 11706 LLVMContext &Ctx = *DAG.getContext(); 11707 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11708 11709 EVT VT = N->getValueType(0); 11710 SDValue Pred = N->getOperand(1); 11711 SDValue Data = N->getOperand(2); 11712 EVT DataVT = Data.getValueType(); 11713 11714 if (DataVT.getVectorElementType().isScalarInteger() && 11715 (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)) { 11716 if (!TLI.isTypeLegal(DataVT)) 11717 return SDValue(); 11718 11719 EVT OutputVT = EVT::getVectorVT(Ctx, VT, 11720 AArch64::NeonBitsPerVector / VT.getSizeInBits()); 11721 SDValue Reduce = DAG.getNode(Opc, dl, OutputVT, Pred, Data); 11722 SDValue Zero = DAG.getConstant(0, dl, MVT::i64); 11723 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Reduce, Zero); 11724 11725 return Result; 11726 } 11727 11728 return SDValue(); 11729 } 11730 11731 static SDValue LowerSVEIntrinsicIndex(SDNode *N, SelectionDAG &DAG) { 11732 SDLoc DL(N); 11733 SDValue Op1 = N->getOperand(1); 11734 SDValue Op2 = N->getOperand(2); 11735 EVT ScalarTy = Op1.getValueType(); 11736 11737 if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) { 11738 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1); 11739 Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2); 11740 } 11741 11742 return DAG.getNode(AArch64ISD::INDEX_VECTOR, DL, N->getValueType(0), 11743 Op1, Op2); 11744 } 11745 11746 static SDValue LowerSVEIntrinsicDUP(SDNode *N, SelectionDAG &DAG) { 11747 SDLoc dl(N); 11748 SDValue Scalar = N->getOperand(3); 11749 EVT ScalarTy = Scalar.getValueType(); 11750 11751 if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) 11752 Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); 11753 11754 SDValue Passthru = N->getOperand(1); 11755 SDValue Pred = N->getOperand(2); 11756 return DAG.getNode(AArch64ISD::DUP_MERGE_PASSTHRU, dl, N->getValueType(0), 11757 Pred, Scalar, Passthru); 11758 } 11759 11760 static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) { 11761 SDLoc dl(N); 11762 LLVMContext &Ctx = *DAG.getContext(); 11763 EVT VT = N->getValueType(0); 11764 11765 assert(VT.isScalableVector() && "Expected a scalable vector."); 11766 11767 // Current lowering only supports the SVE-ACLE types. 11768 if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock) 11769 return SDValue(); 11770 11771 unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8; 11772 unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8; 11773 EVT ByteVT = EVT::getVectorVT(Ctx, MVT::i8, { ByteSize, true }); 11774 11775 // Convert everything to the domain of EXT (i.e bytes). 11776 SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1)); 11777 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2)); 11778 SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3), 11779 DAG.getConstant(ElemSize, dl, MVT::i32)); 11780 11781 SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2); 11782 return DAG.getNode(ISD::BITCAST, dl, VT, EXT); 11783 } 11784 11785 static SDValue tryConvertSVEWideCompare(SDNode *N, ISD::CondCode CC, 11786 TargetLowering::DAGCombinerInfo &DCI, 11787 SelectionDAG &DAG) { 11788 if (DCI.isBeforeLegalize()) 11789 return SDValue(); 11790 11791 SDValue Comparator = N->getOperand(3); 11792 if (Comparator.getOpcode() == AArch64ISD::DUP || 11793 Comparator.getOpcode() == ISD::SPLAT_VECTOR) { 11794 unsigned IID = getIntrinsicID(N); 11795 EVT VT = N->getValueType(0); 11796 EVT CmpVT = N->getOperand(2).getValueType(); 11797 SDValue Pred = N->getOperand(1); 11798 SDValue Imm; 11799 SDLoc DL(N); 11800 11801 switch (IID) { 11802 default: 11803 llvm_unreachable("Called with wrong intrinsic!"); 11804 break; 11805 11806 // Signed comparisons 11807 case Intrinsic::aarch64_sve_cmpeq_wide: 11808 case Intrinsic::aarch64_sve_cmpne_wide: 11809 case Intrinsic::aarch64_sve_cmpge_wide: 11810 case Intrinsic::aarch64_sve_cmpgt_wide: 11811 case Intrinsic::aarch64_sve_cmplt_wide: 11812 case Intrinsic::aarch64_sve_cmple_wide: { 11813 if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) { 11814 int64_t ImmVal = CN->getSExtValue(); 11815 if (ImmVal >= -16 && ImmVal <= 15) 11816 Imm = DAG.getConstant(ImmVal, DL, MVT::i32); 11817 else 11818 return SDValue(); 11819 } 11820 break; 11821 } 11822 // Unsigned comparisons 11823 case Intrinsic::aarch64_sve_cmphs_wide: 11824 case Intrinsic::aarch64_sve_cmphi_wide: 11825 case Intrinsic::aarch64_sve_cmplo_wide: 11826 case Intrinsic::aarch64_sve_cmpls_wide: { 11827 if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) { 11828 uint64_t ImmVal = CN->getZExtValue(); 11829 if (ImmVal <= 127) 11830 Imm = DAG.getConstant(ImmVal, DL, MVT::i32); 11831 else 11832 return SDValue(); 11833 } 11834 break; 11835 } 11836 } 11837 11838 if (!Imm) 11839 return SDValue(); 11840 11841 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm); 11842 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, VT, Pred, 11843 N->getOperand(2), Splat, DAG.getCondCode(CC)); 11844 } 11845 11846 return SDValue(); 11847 } 11848 11849 static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op, 11850 AArch64CC::CondCode Cond) { 11851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11852 11853 SDLoc DL(Op); 11854 assert(Op.getValueType().isScalableVector() && 11855 TLI.isTypeLegal(Op.getValueType()) && 11856 "Expected legal scalable vector type!"); 11857 11858 // Ensure target specific opcodes are using legal type. 11859 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 11860 SDValue TVal = DAG.getConstant(1, DL, OutVT); 11861 SDValue FVal = DAG.getConstant(0, DL, OutVT); 11862 11863 // Set condition code (CC) flags. 11864 SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op); 11865 11866 // Convert CC to integer based on requested condition. 11867 // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare. 11868 SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32); 11869 SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test); 11870 return DAG.getZExtOrTrunc(Res, DL, VT); 11871 } 11872 11873 static SDValue combineSVEReductionFP(SDNode *N, unsigned Opc, 11874 SelectionDAG &DAG) { 11875 SDLoc DL(N); 11876 11877 SDValue Pred = N->getOperand(1); 11878 SDValue VecToReduce = N->getOperand(2); 11879 11880 EVT ReduceVT = VecToReduce.getValueType(); 11881 SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce); 11882 11883 // SVE reductions set the whole vector register with the first element 11884 // containing the reduction result, which we'll now extract. 11885 SDValue Zero = DAG.getConstant(0, DL, MVT::i64); 11886 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, 11887 Zero); 11888 } 11889 11890 static SDValue combineSVEReductionOrderedFP(SDNode *N, unsigned Opc, 11891 SelectionDAG &DAG) { 11892 SDLoc DL(N); 11893 11894 SDValue Pred = N->getOperand(1); 11895 SDValue InitVal = N->getOperand(2); 11896 SDValue VecToReduce = N->getOperand(3); 11897 EVT ReduceVT = VecToReduce.getValueType(); 11898 11899 // Ordered reductions use the first lane of the result vector as the 11900 // reduction's initial value. 11901 SDValue Zero = DAG.getConstant(0, DL, MVT::i64); 11902 InitVal = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ReduceVT, 11903 DAG.getUNDEF(ReduceVT), InitVal, Zero); 11904 11905 SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, InitVal, VecToReduce); 11906 11907 // SVE reductions set the whole vector register with the first element 11908 // containing the reduction result, which we'll now extract. 11909 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, 11910 Zero); 11911 } 11912 11913 static SDValue performIntrinsicCombine(SDNode *N, 11914 TargetLowering::DAGCombinerInfo &DCI, 11915 const AArch64Subtarget *Subtarget) { 11916 SelectionDAG &DAG = DCI.DAG; 11917 unsigned IID = getIntrinsicID(N); 11918 switch (IID) { 11919 default: 11920 break; 11921 case Intrinsic::aarch64_neon_vcvtfxs2fp: 11922 case Intrinsic::aarch64_neon_vcvtfxu2fp: 11923 return tryCombineFixedPointConvert(N, DCI, DAG); 11924 case Intrinsic::aarch64_neon_saddv: 11925 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); 11926 case Intrinsic::aarch64_neon_uaddv: 11927 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); 11928 case Intrinsic::aarch64_neon_sminv: 11929 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); 11930 case Intrinsic::aarch64_neon_uminv: 11931 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); 11932 case Intrinsic::aarch64_neon_smaxv: 11933 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); 11934 case Intrinsic::aarch64_neon_umaxv: 11935 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); 11936 case Intrinsic::aarch64_neon_fmax: 11937 return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0), 11938 N->getOperand(1), N->getOperand(2)); 11939 case Intrinsic::aarch64_neon_fmin: 11940 return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0), 11941 N->getOperand(1), N->getOperand(2)); 11942 case Intrinsic::aarch64_neon_fmaxnm: 11943 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), 11944 N->getOperand(1), N->getOperand(2)); 11945 case Intrinsic::aarch64_neon_fminnm: 11946 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), 11947 N->getOperand(1), N->getOperand(2)); 11948 case Intrinsic::aarch64_neon_smull: 11949 case Intrinsic::aarch64_neon_umull: 11950 case Intrinsic::aarch64_neon_pmull: 11951 case Intrinsic::aarch64_neon_sqdmull: 11952 return tryCombineLongOpWithDup(IID, N, DCI, DAG); 11953 case Intrinsic::aarch64_neon_sqshl: 11954 case Intrinsic::aarch64_neon_uqshl: 11955 case Intrinsic::aarch64_neon_sqshlu: 11956 case Intrinsic::aarch64_neon_srshl: 11957 case Intrinsic::aarch64_neon_urshl: 11958 case Intrinsic::aarch64_neon_sshl: 11959 case Intrinsic::aarch64_neon_ushl: 11960 return tryCombineShiftImm(IID, N, DAG); 11961 case Intrinsic::aarch64_crc32b: 11962 case Intrinsic::aarch64_crc32cb: 11963 return tryCombineCRC32(0xff, N, DAG); 11964 case Intrinsic::aarch64_crc32h: 11965 case Intrinsic::aarch64_crc32ch: 11966 return tryCombineCRC32(0xffff, N, DAG); 11967 case Intrinsic::aarch64_sve_smaxv: 11968 return LowerSVEIntReduction(N, AArch64ISD::SMAXV_PRED, DAG); 11969 case Intrinsic::aarch64_sve_umaxv: 11970 return LowerSVEIntReduction(N, AArch64ISD::UMAXV_PRED, DAG); 11971 case Intrinsic::aarch64_sve_sminv: 11972 return LowerSVEIntReduction(N, AArch64ISD::SMINV_PRED, DAG); 11973 case Intrinsic::aarch64_sve_uminv: 11974 return LowerSVEIntReduction(N, AArch64ISD::UMINV_PRED, DAG); 11975 case Intrinsic::aarch64_sve_orv: 11976 return LowerSVEIntReduction(N, AArch64ISD::ORV_PRED, DAG); 11977 case Intrinsic::aarch64_sve_eorv: 11978 return LowerSVEIntReduction(N, AArch64ISD::EORV_PRED, DAG); 11979 case Intrinsic::aarch64_sve_andv: 11980 return LowerSVEIntReduction(N, AArch64ISD::ANDV_PRED, DAG); 11981 case Intrinsic::aarch64_sve_index: 11982 return LowerSVEIntrinsicIndex(N, DAG); 11983 case Intrinsic::aarch64_sve_dup: 11984 return LowerSVEIntrinsicDUP(N, DAG); 11985 case Intrinsic::aarch64_sve_dup_x: 11986 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), N->getValueType(0), 11987 N->getOperand(1)); 11988 case Intrinsic::aarch64_sve_ext: 11989 return LowerSVEIntrinsicEXT(N, DAG); 11990 case Intrinsic::aarch64_sve_smin: 11991 return DAG.getNode(AArch64ISD::SMIN_MERGE_OP1, SDLoc(N), N->getValueType(0), 11992 N->getOperand(1), N->getOperand(2), N->getOperand(3)); 11993 case Intrinsic::aarch64_sve_umin: 11994 return DAG.getNode(AArch64ISD::UMIN_MERGE_OP1, SDLoc(N), N->getValueType(0), 11995 N->getOperand(1), N->getOperand(2), N->getOperand(3)); 11996 case Intrinsic::aarch64_sve_smax: 11997 return DAG.getNode(AArch64ISD::SMAX_MERGE_OP1, SDLoc(N), N->getValueType(0), 11998 N->getOperand(1), N->getOperand(2), N->getOperand(3)); 11999 case Intrinsic::aarch64_sve_umax: 12000 return DAG.getNode(AArch64ISD::UMAX_MERGE_OP1, SDLoc(N), N->getValueType(0), 12001 N->getOperand(1), N->getOperand(2), N->getOperand(3)); 12002 case Intrinsic::aarch64_sve_lsl: 12003 return DAG.getNode(AArch64ISD::SHL_MERGE_OP1, SDLoc(N), N->getValueType(0), 12004 N->getOperand(1), N->getOperand(2), N->getOperand(3)); 12005 case Intrinsic::aarch64_sve_lsr: 12006 return DAG.getNode(AArch64ISD::SRL_MERGE_OP1, SDLoc(N), N->getValueType(0), 12007 N->getOperand(1), N->getOperand(2), N->getOperand(3)); 12008 case Intrinsic::aarch64_sve_asr: 12009 return DAG.getNode(AArch64ISD::SRA_MERGE_OP1, SDLoc(N), N->getValueType(0), 12010 N->getOperand(1), N->getOperand(2), N->getOperand(3)); 12011 case Intrinsic::aarch64_sve_cmphs: 12012 if (!N->getOperand(2).getValueType().isFloatingPoint()) 12013 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), 12014 N->getValueType(0), N->getOperand(1), N->getOperand(2), 12015 N->getOperand(3), DAG.getCondCode(ISD::SETUGE)); 12016 break; 12017 case Intrinsic::aarch64_sve_cmphi: 12018 if (!N->getOperand(2).getValueType().isFloatingPoint()) 12019 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), 12020 N->getValueType(0), N->getOperand(1), N->getOperand(2), 12021 N->getOperand(3), DAG.getCondCode(ISD::SETUGT)); 12022 break; 12023 case Intrinsic::aarch64_sve_cmpge: 12024 if (!N->getOperand(2).getValueType().isFloatingPoint()) 12025 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), 12026 N->getValueType(0), N->getOperand(1), N->getOperand(2), 12027 N->getOperand(3), DAG.getCondCode(ISD::SETGE)); 12028 break; 12029 case Intrinsic::aarch64_sve_cmpgt: 12030 if (!N->getOperand(2).getValueType().isFloatingPoint()) 12031 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), 12032 N->getValueType(0), N->getOperand(1), N->getOperand(2), 12033 N->getOperand(3), DAG.getCondCode(ISD::SETGT)); 12034 break; 12035 case Intrinsic::aarch64_sve_cmpeq: 12036 if (!N->getOperand(2).getValueType().isFloatingPoint()) 12037 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), 12038 N->getValueType(0), N->getOperand(1), N->getOperand(2), 12039 N->getOperand(3), DAG.getCondCode(ISD::SETEQ)); 12040 break; 12041 case Intrinsic::aarch64_sve_cmpne: 12042 if (!N->getOperand(2).getValueType().isFloatingPoint()) 12043 return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), 12044 N->getValueType(0), N->getOperand(1), N->getOperand(2), 12045 N->getOperand(3), DAG.getCondCode(ISD::SETNE)); 12046 break; 12047 case Intrinsic::aarch64_sve_fadda: 12048 return combineSVEReductionOrderedFP(N, AArch64ISD::FADDA_PRED, DAG); 12049 case Intrinsic::aarch64_sve_faddv: 12050 return combineSVEReductionFP(N, AArch64ISD::FADDV_PRED, DAG); 12051 case Intrinsic::aarch64_sve_fmaxnmv: 12052 return combineSVEReductionFP(N, AArch64ISD::FMAXNMV_PRED, DAG); 12053 case Intrinsic::aarch64_sve_fmaxv: 12054 return combineSVEReductionFP(N, AArch64ISD::FMAXV_PRED, DAG); 12055 case Intrinsic::aarch64_sve_fminnmv: 12056 return combineSVEReductionFP(N, AArch64ISD::FMINNMV_PRED, DAG); 12057 case Intrinsic::aarch64_sve_fminv: 12058 return combineSVEReductionFP(N, AArch64ISD::FMINV_PRED, DAG); 12059 case Intrinsic::aarch64_sve_sel: 12060 return DAG.getNode(ISD::VSELECT, SDLoc(N), N->getValueType(0), 12061 N->getOperand(1), N->getOperand(2), N->getOperand(3)); 12062 case Intrinsic::aarch64_sve_cmpeq_wide: 12063 return tryConvertSVEWideCompare(N, ISD::SETEQ, DCI, DAG); 12064 case Intrinsic::aarch64_sve_cmpne_wide: 12065 return tryConvertSVEWideCompare(N, ISD::SETNE, DCI, DAG); 12066 case Intrinsic::aarch64_sve_cmpge_wide: 12067 return tryConvertSVEWideCompare(N, ISD::SETGE, DCI, DAG); 12068 case Intrinsic::aarch64_sve_cmpgt_wide: 12069 return tryConvertSVEWideCompare(N, ISD::SETGT, DCI, DAG); 12070 case Intrinsic::aarch64_sve_cmplt_wide: 12071 return tryConvertSVEWideCompare(N, ISD::SETLT, DCI, DAG); 12072 case Intrinsic::aarch64_sve_cmple_wide: 12073 return tryConvertSVEWideCompare(N, ISD::SETLE, DCI, DAG); 12074 case Intrinsic::aarch64_sve_cmphs_wide: 12075 return tryConvertSVEWideCompare(N, ISD::SETUGE, DCI, DAG); 12076 case Intrinsic::aarch64_sve_cmphi_wide: 12077 return tryConvertSVEWideCompare(N, ISD::SETUGT, DCI, DAG); 12078 case Intrinsic::aarch64_sve_cmplo_wide: 12079 return tryConvertSVEWideCompare(N, ISD::SETULT, DCI, DAG); 12080 case Intrinsic::aarch64_sve_cmpls_wide: 12081 return tryConvertSVEWideCompare(N, ISD::SETULE, DCI, DAG); 12082 case Intrinsic::aarch64_sve_ptest_any: 12083 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 12084 AArch64CC::ANY_ACTIVE); 12085 case Intrinsic::aarch64_sve_ptest_first: 12086 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 12087 AArch64CC::FIRST_ACTIVE); 12088 case Intrinsic::aarch64_sve_ptest_last: 12089 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 12090 AArch64CC::LAST_ACTIVE); 12091 } 12092 return SDValue(); 12093 } 12094 12095 static SDValue performExtendCombine(SDNode *N, 12096 TargetLowering::DAGCombinerInfo &DCI, 12097 SelectionDAG &DAG) { 12098 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then 12099 // we can convert that DUP into another extract_high (of a bigger DUP), which 12100 // helps the backend to decide that an sabdl2 would be useful, saving a real 12101 // extract_high operation. 12102 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && 12103 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 12104 SDNode *ABDNode = N->getOperand(0).getNode(); 12105 unsigned IID = getIntrinsicID(ABDNode); 12106 if (IID == Intrinsic::aarch64_neon_sabd || 12107 IID == Intrinsic::aarch64_neon_uabd) { 12108 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); 12109 if (!NewABD.getNode()) 12110 return SDValue(); 12111 12112 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), 12113 NewABD); 12114 } 12115 } 12116 12117 // This is effectively a custom type legalization for AArch64. 12118 // 12119 // Type legalization will split an extend of a small, legal, type to a larger 12120 // illegal type by first splitting the destination type, often creating 12121 // illegal source types, which then get legalized in isel-confusing ways, 12122 // leading to really terrible codegen. E.g., 12123 // %result = v8i32 sext v8i8 %value 12124 // becomes 12125 // %losrc = extract_subreg %value, ... 12126 // %hisrc = extract_subreg %value, ... 12127 // %lo = v4i32 sext v4i8 %losrc 12128 // %hi = v4i32 sext v4i8 %hisrc 12129 // Things go rapidly downhill from there. 12130 // 12131 // For AArch64, the [sz]ext vector instructions can only go up one element 12132 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 12133 // take two instructions. 12134 // 12135 // This implies that the most efficient way to do the extend from v8i8 12136 // to two v4i32 values is to first extend the v8i8 to v8i16, then do 12137 // the normal splitting to happen for the v8i16->v8i32. 12138 12139 // This is pre-legalization to catch some cases where the default 12140 // type legalization will create ill-tempered code. 12141 if (!DCI.isBeforeLegalizeOps()) 12142 return SDValue(); 12143 12144 // We're only interested in cleaning things up for non-legal vector types 12145 // here. If both the source and destination are legal, things will just 12146 // work naturally without any fiddling. 12147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12148 EVT ResVT = N->getValueType(0); 12149 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) 12150 return SDValue(); 12151 // If the vector type isn't a simple VT, it's beyond the scope of what 12152 // we're worried about here. Let legalization do its thing and hope for 12153 // the best. 12154 SDValue Src = N->getOperand(0); 12155 EVT SrcVT = Src->getValueType(0); 12156 if (!ResVT.isSimple() || !SrcVT.isSimple()) 12157 return SDValue(); 12158 12159 // If the source VT is a 64-bit fixed or scalable vector, we can play games 12160 // and get the better results we want. 12161 if (SrcVT.getSizeInBits().getKnownMinSize() != 64) 12162 return SDValue(); 12163 12164 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 12165 ElementCount SrcEC = SrcVT.getVectorElementCount(); 12166 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), SrcEC); 12167 SDLoc DL(N); 12168 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); 12169 12170 // Now split the rest of the operation into two halves, each with a 64 12171 // bit source. 12172 EVT LoVT, HiVT; 12173 SDValue Lo, Hi; 12174 LoVT = HiVT = ResVT.getHalfNumVectorElementsVT(*DAG.getContext()); 12175 12176 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), 12177 LoVT.getVectorElementCount()); 12178 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, 12179 DAG.getConstant(0, DL, MVT::i64)); 12180 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, 12181 DAG.getConstant(InNVT.getVectorMinNumElements(), DL, MVT::i64)); 12182 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); 12183 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); 12184 12185 // Now combine the parts back together so we still have a single result 12186 // like the combiner expects. 12187 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); 12188 } 12189 12190 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St, 12191 SDValue SplatVal, unsigned NumVecElts) { 12192 assert(!St.isTruncatingStore() && "cannot split truncating vector store"); 12193 unsigned OrigAlignment = St.getAlignment(); 12194 unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8; 12195 12196 // Create scalar stores. This is at least as good as the code sequence for a 12197 // split unaligned store which is a dup.s, ext.b, and two stores. 12198 // Most of the time the three stores should be replaced by store pair 12199 // instructions (stp). 12200 SDLoc DL(&St); 12201 SDValue BasePtr = St.getBasePtr(); 12202 uint64_t BaseOffset = 0; 12203 12204 const MachinePointerInfo &PtrInfo = St.getPointerInfo(); 12205 SDValue NewST1 = 12206 DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo, 12207 OrigAlignment, St.getMemOperand()->getFlags()); 12208 12209 // As this in ISel, we will not merge this add which may degrade results. 12210 if (BasePtr->getOpcode() == ISD::ADD && 12211 isa<ConstantSDNode>(BasePtr->getOperand(1))) { 12212 BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 12213 BasePtr = BasePtr->getOperand(0); 12214 } 12215 12216 unsigned Offset = EltOffset; 12217 while (--NumVecElts) { 12218 unsigned Alignment = MinAlign(OrigAlignment, Offset); 12219 SDValue OffsetPtr = 12220 DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, 12221 DAG.getConstant(BaseOffset + Offset, DL, MVT::i64)); 12222 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, 12223 PtrInfo.getWithOffset(Offset), Alignment, 12224 St.getMemOperand()->getFlags()); 12225 Offset += EltOffset; 12226 } 12227 return NewST1; 12228 } 12229 12230 // Returns an SVE type that ContentTy can be trivially sign or zero extended 12231 // into. 12232 static MVT getSVEContainerType(EVT ContentTy) { 12233 assert(ContentTy.isSimple() && "No SVE containers for extended types"); 12234 12235 switch (ContentTy.getSimpleVT().SimpleTy) { 12236 default: 12237 llvm_unreachable("No known SVE container for this MVT type"); 12238 case MVT::nxv2i8: 12239 case MVT::nxv2i16: 12240 case MVT::nxv2i32: 12241 case MVT::nxv2i64: 12242 case MVT::nxv2f32: 12243 case MVT::nxv2f64: 12244 return MVT::nxv2i64; 12245 case MVT::nxv4i8: 12246 case MVT::nxv4i16: 12247 case MVT::nxv4i32: 12248 case MVT::nxv4f32: 12249 return MVT::nxv4i32; 12250 case MVT::nxv8i8: 12251 case MVT::nxv8i16: 12252 case MVT::nxv8f16: 12253 case MVT::nxv8bf16: 12254 return MVT::nxv8i16; 12255 case MVT::nxv16i8: 12256 return MVT::nxv16i8; 12257 } 12258 } 12259 12260 static SDValue performLD1Combine(SDNode *N, SelectionDAG &DAG, unsigned Opc) { 12261 SDLoc DL(N); 12262 EVT VT = N->getValueType(0); 12263 12264 if (VT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) 12265 return SDValue(); 12266 12267 EVT ContainerVT = VT; 12268 if (ContainerVT.isInteger()) 12269 ContainerVT = getSVEContainerType(ContainerVT); 12270 12271 SDVTList VTs = DAG.getVTList(ContainerVT, MVT::Other); 12272 SDValue Ops[] = { N->getOperand(0), // Chain 12273 N->getOperand(2), // Pg 12274 N->getOperand(3), // Base 12275 DAG.getValueType(VT) }; 12276 12277 SDValue Load = DAG.getNode(Opc, DL, VTs, Ops); 12278 SDValue LoadChain = SDValue(Load.getNode(), 1); 12279 12280 if (ContainerVT.isInteger() && (VT != ContainerVT)) 12281 Load = DAG.getNode(ISD::TRUNCATE, DL, VT, Load.getValue(0)); 12282 12283 return DAG.getMergeValues({ Load, LoadChain }, DL); 12284 } 12285 12286 static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) { 12287 SDLoc DL(N); 12288 EVT VT = N->getValueType(0); 12289 EVT PtrTy = N->getOperand(3).getValueType(); 12290 12291 if (VT == MVT::nxv8bf16 && 12292 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16()) 12293 return SDValue(); 12294 12295 EVT LoadVT = VT; 12296 if (VT.isFloatingPoint()) 12297 LoadVT = VT.changeTypeToInteger(); 12298 12299 auto *MINode = cast<MemIntrinsicSDNode>(N); 12300 SDValue PassThru = DAG.getConstant(0, DL, LoadVT); 12301 SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(), 12302 MINode->getOperand(3), DAG.getUNDEF(PtrTy), 12303 MINode->getOperand(2), PassThru, 12304 MINode->getMemoryVT(), MINode->getMemOperand(), 12305 ISD::UNINDEXED, ISD::NON_EXTLOAD, false); 12306 12307 if (VT.isFloatingPoint()) { 12308 SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) }; 12309 return DAG.getMergeValues(Ops, DL); 12310 } 12311 12312 return L; 12313 } 12314 12315 template <unsigned Opcode> 12316 static SDValue performLD1ReplicateCombine(SDNode *N, SelectionDAG &DAG) { 12317 static_assert(Opcode == AArch64ISD::LD1RQ_MERGE_ZERO || 12318 Opcode == AArch64ISD::LD1RO_MERGE_ZERO, 12319 "Unsupported opcode."); 12320 SDLoc DL(N); 12321 EVT VT = N->getValueType(0); 12322 if (VT == MVT::nxv8bf16 && 12323 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16()) 12324 return SDValue(); 12325 12326 EVT LoadVT = VT; 12327 if (VT.isFloatingPoint()) 12328 LoadVT = VT.changeTypeToInteger(); 12329 12330 SDValue Ops[] = {N->getOperand(0), N->getOperand(2), N->getOperand(3)}; 12331 SDValue Load = DAG.getNode(Opcode, DL, {LoadVT, MVT::Other}, Ops); 12332 SDValue LoadChain = SDValue(Load.getNode(), 1); 12333 12334 if (VT.isFloatingPoint()) 12335 Load = DAG.getNode(ISD::BITCAST, DL, VT, Load.getValue(0)); 12336 12337 return DAG.getMergeValues({Load, LoadChain}, DL); 12338 } 12339 12340 static SDValue performST1Combine(SDNode *N, SelectionDAG &DAG) { 12341 SDLoc DL(N); 12342 SDValue Data = N->getOperand(2); 12343 EVT DataVT = Data.getValueType(); 12344 EVT HwSrcVt = getSVEContainerType(DataVT); 12345 SDValue InputVT = DAG.getValueType(DataVT); 12346 12347 if (DataVT == MVT::nxv8bf16 && 12348 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16()) 12349 return SDValue(); 12350 12351 if (DataVT.isFloatingPoint()) 12352 InputVT = DAG.getValueType(HwSrcVt); 12353 12354 SDValue SrcNew; 12355 if (Data.getValueType().isFloatingPoint()) 12356 SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Data); 12357 else 12358 SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Data); 12359 12360 SDValue Ops[] = { N->getOperand(0), // Chain 12361 SrcNew, 12362 N->getOperand(4), // Base 12363 N->getOperand(3), // Pg 12364 InputVT 12365 }; 12366 12367 return DAG.getNode(AArch64ISD::ST1_PRED, DL, N->getValueType(0), Ops); 12368 } 12369 12370 static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) { 12371 SDLoc DL(N); 12372 12373 SDValue Data = N->getOperand(2); 12374 EVT DataVT = Data.getValueType(); 12375 EVT PtrTy = N->getOperand(4).getValueType(); 12376 12377 if (DataVT == MVT::nxv8bf16 && 12378 !static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasBF16()) 12379 return SDValue(); 12380 12381 if (DataVT.isFloatingPoint()) 12382 Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data); 12383 12384 auto *MINode = cast<MemIntrinsicSDNode>(N); 12385 return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4), 12386 DAG.getUNDEF(PtrTy), MINode->getOperand(3), 12387 MINode->getMemoryVT(), MINode->getMemOperand(), 12388 ISD::UNINDEXED, false, false); 12389 } 12390 12391 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The 12392 /// load store optimizer pass will merge them to store pair stores. This should 12393 /// be better than a movi to create the vector zero followed by a vector store 12394 /// if the zero constant is not re-used, since one instructions and one register 12395 /// live range will be removed. 12396 /// 12397 /// For example, the final generated code should be: 12398 /// 12399 /// stp xzr, xzr, [x0] 12400 /// 12401 /// instead of: 12402 /// 12403 /// movi v0.2d, #0 12404 /// str q0, [x0] 12405 /// 12406 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) { 12407 SDValue StVal = St.getValue(); 12408 EVT VT = StVal.getValueType(); 12409 12410 // Avoid scalarizing zero splat stores for scalable vectors. 12411 if (VT.isScalableVector()) 12412 return SDValue(); 12413 12414 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or 12415 // 2, 3 or 4 i32 elements. 12416 int NumVecElts = VT.getVectorNumElements(); 12417 if (!(((NumVecElts == 2 || NumVecElts == 3) && 12418 VT.getVectorElementType().getSizeInBits() == 64) || 12419 ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) && 12420 VT.getVectorElementType().getSizeInBits() == 32))) 12421 return SDValue(); 12422 12423 if (StVal.getOpcode() != ISD::BUILD_VECTOR) 12424 return SDValue(); 12425 12426 // If the zero constant has more than one use then the vector store could be 12427 // better since the constant mov will be amortized and stp q instructions 12428 // should be able to be formed. 12429 if (!StVal.hasOneUse()) 12430 return SDValue(); 12431 12432 // If the store is truncating then it's going down to i16 or smaller, which 12433 // means it can be implemented in a single store anyway. 12434 if (St.isTruncatingStore()) 12435 return SDValue(); 12436 12437 // If the immediate offset of the address operand is too large for the stp 12438 // instruction, then bail out. 12439 if (DAG.isBaseWithConstantOffset(St.getBasePtr())) { 12440 int64_t Offset = St.getBasePtr()->getConstantOperandVal(1); 12441 if (Offset < -512 || Offset > 504) 12442 return SDValue(); 12443 } 12444 12445 for (int I = 0; I < NumVecElts; ++I) { 12446 SDValue EltVal = StVal.getOperand(I); 12447 if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal)) 12448 return SDValue(); 12449 } 12450 12451 // Use a CopyFromReg WZR/XZR here to prevent 12452 // DAGCombiner::MergeConsecutiveStores from undoing this transformation. 12453 SDLoc DL(&St); 12454 unsigned ZeroReg; 12455 EVT ZeroVT; 12456 if (VT.getVectorElementType().getSizeInBits() == 32) { 12457 ZeroReg = AArch64::WZR; 12458 ZeroVT = MVT::i32; 12459 } else { 12460 ZeroReg = AArch64::XZR; 12461 ZeroVT = MVT::i64; 12462 } 12463 SDValue SplatVal = 12464 DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT); 12465 return splitStoreSplat(DAG, St, SplatVal, NumVecElts); 12466 } 12467 12468 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar 12469 /// value. The load store optimizer pass will merge them to store pair stores. 12470 /// This has better performance than a splat of the scalar followed by a split 12471 /// vector store. Even if the stores are not merged it is four stores vs a dup, 12472 /// followed by an ext.b and two stores. 12473 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) { 12474 SDValue StVal = St.getValue(); 12475 EVT VT = StVal.getValueType(); 12476 12477 // Don't replace floating point stores, they possibly won't be transformed to 12478 // stp because of the store pair suppress pass. 12479 if (VT.isFloatingPoint()) 12480 return SDValue(); 12481 12482 // We can express a splat as store pair(s) for 2 or 4 elements. 12483 unsigned NumVecElts = VT.getVectorNumElements(); 12484 if (NumVecElts != 4 && NumVecElts != 2) 12485 return SDValue(); 12486 12487 // If the store is truncating then it's going down to i16 or smaller, which 12488 // means it can be implemented in a single store anyway. 12489 if (St.isTruncatingStore()) 12490 return SDValue(); 12491 12492 // Check that this is a splat. 12493 // Make sure that each of the relevant vector element locations are inserted 12494 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32. 12495 std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1); 12496 SDValue SplatVal; 12497 for (unsigned I = 0; I < NumVecElts; ++I) { 12498 // Check for insert vector elements. 12499 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) 12500 return SDValue(); 12501 12502 // Check that same value is inserted at each vector element. 12503 if (I == 0) 12504 SplatVal = StVal.getOperand(1); 12505 else if (StVal.getOperand(1) != SplatVal) 12506 return SDValue(); 12507 12508 // Check insert element index. 12509 ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2)); 12510 if (!CIndex) 12511 return SDValue(); 12512 uint64_t IndexVal = CIndex->getZExtValue(); 12513 if (IndexVal >= NumVecElts) 12514 return SDValue(); 12515 IndexNotInserted.reset(IndexVal); 12516 12517 StVal = StVal.getOperand(0); 12518 } 12519 // Check that all vector element locations were inserted to. 12520 if (IndexNotInserted.any()) 12521 return SDValue(); 12522 12523 return splitStoreSplat(DAG, St, SplatVal, NumVecElts); 12524 } 12525 12526 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 12527 SelectionDAG &DAG, 12528 const AArch64Subtarget *Subtarget) { 12529 12530 StoreSDNode *S = cast<StoreSDNode>(N); 12531 if (S->isVolatile() || S->isIndexed()) 12532 return SDValue(); 12533 12534 SDValue StVal = S->getValue(); 12535 EVT VT = StVal.getValueType(); 12536 12537 if (!VT.isFixedLengthVector()) 12538 return SDValue(); 12539 12540 // If we get a splat of zeros, convert this vector store to a store of 12541 // scalars. They will be merged into store pairs of xzr thereby removing one 12542 // instruction and one register. 12543 if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S)) 12544 return ReplacedZeroSplat; 12545 12546 // FIXME: The logic for deciding if an unaligned store should be split should 12547 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be 12548 // a call to that function here. 12549 12550 if (!Subtarget->isMisaligned128StoreSlow()) 12551 return SDValue(); 12552 12553 // Don't split at -Oz. 12554 if (DAG.getMachineFunction().getFunction().hasMinSize()) 12555 return SDValue(); 12556 12557 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting 12558 // those up regresses performance on micro-benchmarks and olden/bh. 12559 if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64) 12560 return SDValue(); 12561 12562 // Split unaligned 16B stores. They are terrible for performance. 12563 // Don't split stores with alignment of 1 or 2. Code that uses clang vector 12564 // extensions can use this to mark that it does not want splitting to happen 12565 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of 12566 // eliminating alignment hazards is only 1 in 8 for alignment of 2. 12567 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || 12568 S->getAlignment() <= 2) 12569 return SDValue(); 12570 12571 // If we get a splat of a scalar convert this vector store to a store of 12572 // scalars. They will be merged into store pairs thereby removing two 12573 // instructions. 12574 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S)) 12575 return ReplacedSplat; 12576 12577 SDLoc DL(S); 12578 12579 // Split VT into two. 12580 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 12581 unsigned NumElts = HalfVT.getVectorNumElements(); 12582 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, 12583 DAG.getConstant(0, DL, MVT::i64)); 12584 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, 12585 DAG.getConstant(NumElts, DL, MVT::i64)); 12586 SDValue BasePtr = S->getBasePtr(); 12587 SDValue NewST1 = 12588 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), 12589 S->getAlignment(), S->getMemOperand()->getFlags()); 12590 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, 12591 DAG.getConstant(8, DL, MVT::i64)); 12592 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, 12593 S->getPointerInfo(), S->getAlignment(), 12594 S->getMemOperand()->getFlags()); 12595 } 12596 12597 /// Target-specific DAG combine function for post-increment LD1 (lane) and 12598 /// post-increment LD1R. 12599 static SDValue performPostLD1Combine(SDNode *N, 12600 TargetLowering::DAGCombinerInfo &DCI, 12601 bool IsLaneOp) { 12602 if (DCI.isBeforeLegalizeOps()) 12603 return SDValue(); 12604 12605 SelectionDAG &DAG = DCI.DAG; 12606 EVT VT = N->getValueType(0); 12607 12608 if (VT.isScalableVector()) 12609 return SDValue(); 12610 12611 unsigned LoadIdx = IsLaneOp ? 1 : 0; 12612 SDNode *LD = N->getOperand(LoadIdx).getNode(); 12613 // If it is not LOAD, can not do such combine. 12614 if (LD->getOpcode() != ISD::LOAD) 12615 return SDValue(); 12616 12617 // The vector lane must be a constant in the LD1LANE opcode. 12618 SDValue Lane; 12619 if (IsLaneOp) { 12620 Lane = N->getOperand(2); 12621 auto *LaneC = dyn_cast<ConstantSDNode>(Lane); 12622 if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements()) 12623 return SDValue(); 12624 } 12625 12626 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); 12627 EVT MemVT = LoadSDN->getMemoryVT(); 12628 // Check if memory operand is the same type as the vector element. 12629 if (MemVT != VT.getVectorElementType()) 12630 return SDValue(); 12631 12632 // Check if there are other uses. If so, do not combine as it will introduce 12633 // an extra load. 12634 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; 12635 ++UI) { 12636 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. 12637 continue; 12638 if (*UI != N) 12639 return SDValue(); 12640 } 12641 12642 SDValue Addr = LD->getOperand(1); 12643 SDValue Vector = N->getOperand(0); 12644 // Search for a use of the address operand that is an increment. 12645 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = 12646 Addr.getNode()->use_end(); UI != UE; ++UI) { 12647 SDNode *User = *UI; 12648 if (User->getOpcode() != ISD::ADD 12649 || UI.getUse().getResNo() != Addr.getResNo()) 12650 continue; 12651 12652 // If the increment is a constant, it must match the memory ref size. 12653 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 12654 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 12655 uint32_t IncVal = CInc->getZExtValue(); 12656 unsigned NumBytes = VT.getScalarSizeInBits() / 8; 12657 if (IncVal != NumBytes) 12658 continue; 12659 Inc = DAG.getRegister(AArch64::XZR, MVT::i64); 12660 } 12661 12662 // To avoid cycle construction make sure that neither the load nor the add 12663 // are predecessors to each other or the Vector. 12664 SmallPtrSet<const SDNode *, 32> Visited; 12665 SmallVector<const SDNode *, 16> Worklist; 12666 Visited.insert(Addr.getNode()); 12667 Worklist.push_back(User); 12668 Worklist.push_back(LD); 12669 Worklist.push_back(Vector.getNode()); 12670 if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) || 12671 SDNode::hasPredecessorHelper(User, Visited, Worklist)) 12672 continue; 12673 12674 SmallVector<SDValue, 8> Ops; 12675 Ops.push_back(LD->getOperand(0)); // Chain 12676 if (IsLaneOp) { 12677 Ops.push_back(Vector); // The vector to be inserted 12678 Ops.push_back(Lane); // The lane to be inserted in the vector 12679 } 12680 Ops.push_back(Addr); 12681 Ops.push_back(Inc); 12682 12683 EVT Tys[3] = { VT, MVT::i64, MVT::Other }; 12684 SDVTList SDTys = DAG.getVTList(Tys); 12685 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; 12686 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, 12687 MemVT, 12688 LoadSDN->getMemOperand()); 12689 12690 // Update the uses. 12691 SDValue NewResults[] = { 12692 SDValue(LD, 0), // The result of load 12693 SDValue(UpdN.getNode(), 2) // Chain 12694 }; 12695 DCI.CombineTo(LD, NewResults); 12696 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result 12697 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register 12698 12699 break; 12700 } 12701 return SDValue(); 12702 } 12703 12704 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during 12705 /// address translation. 12706 static bool performTBISimplification(SDValue Addr, 12707 TargetLowering::DAGCombinerInfo &DCI, 12708 SelectionDAG &DAG) { 12709 APInt DemandedMask = APInt::getLowBitsSet(64, 56); 12710 KnownBits Known; 12711 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 12712 !DCI.isBeforeLegalizeOps()); 12713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12714 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) { 12715 DCI.CommitTargetLoweringOpt(TLO); 12716 return true; 12717 } 12718 return false; 12719 } 12720 12721 static SDValue performSTORECombine(SDNode *N, 12722 TargetLowering::DAGCombinerInfo &DCI, 12723 SelectionDAG &DAG, 12724 const AArch64Subtarget *Subtarget) { 12725 if (SDValue Split = splitStores(N, DCI, DAG, Subtarget)) 12726 return Split; 12727 12728 if (Subtarget->supportsAddressTopByteIgnored() && 12729 performTBISimplification(N->getOperand(2), DCI, DAG)) 12730 return SDValue(N, 0); 12731 12732 return SDValue(); 12733 } 12734 12735 12736 /// Target-specific DAG combine function for NEON load/store intrinsics 12737 /// to merge base address updates. 12738 static SDValue performNEONPostLDSTCombine(SDNode *N, 12739 TargetLowering::DAGCombinerInfo &DCI, 12740 SelectionDAG &DAG) { 12741 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 12742 return SDValue(); 12743 12744 unsigned AddrOpIdx = N->getNumOperands() - 1; 12745 SDValue Addr = N->getOperand(AddrOpIdx); 12746 12747 // Search for a use of the address operand that is an increment. 12748 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 12749 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 12750 SDNode *User = *UI; 12751 if (User->getOpcode() != ISD::ADD || 12752 UI.getUse().getResNo() != Addr.getResNo()) 12753 continue; 12754 12755 // Check that the add is independent of the load/store. Otherwise, folding 12756 // it would create a cycle. 12757 SmallPtrSet<const SDNode *, 32> Visited; 12758 SmallVector<const SDNode *, 16> Worklist; 12759 Visited.insert(Addr.getNode()); 12760 Worklist.push_back(N); 12761 Worklist.push_back(User); 12762 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || 12763 SDNode::hasPredecessorHelper(User, Visited, Worklist)) 12764 continue; 12765 12766 // Find the new opcode for the updating load/store. 12767 bool IsStore = false; 12768 bool IsLaneOp = false; 12769 bool IsDupOp = false; 12770 unsigned NewOpc = 0; 12771 unsigned NumVecs = 0; 12772 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 12773 switch (IntNo) { 12774 default: llvm_unreachable("unexpected intrinsic for Neon base update"); 12775 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; 12776 NumVecs = 2; break; 12777 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; 12778 NumVecs = 3; break; 12779 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; 12780 NumVecs = 4; break; 12781 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; 12782 NumVecs = 2; IsStore = true; break; 12783 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; 12784 NumVecs = 3; IsStore = true; break; 12785 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; 12786 NumVecs = 4; IsStore = true; break; 12787 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; 12788 NumVecs = 2; break; 12789 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; 12790 NumVecs = 3; break; 12791 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; 12792 NumVecs = 4; break; 12793 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; 12794 NumVecs = 2; IsStore = true; break; 12795 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; 12796 NumVecs = 3; IsStore = true; break; 12797 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; 12798 NumVecs = 4; IsStore = true; break; 12799 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; 12800 NumVecs = 2; IsDupOp = true; break; 12801 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; 12802 NumVecs = 3; IsDupOp = true; break; 12803 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; 12804 NumVecs = 4; IsDupOp = true; break; 12805 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; 12806 NumVecs = 2; IsLaneOp = true; break; 12807 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; 12808 NumVecs = 3; IsLaneOp = true; break; 12809 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; 12810 NumVecs = 4; IsLaneOp = true; break; 12811 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; 12812 NumVecs = 2; IsStore = true; IsLaneOp = true; break; 12813 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; 12814 NumVecs = 3; IsStore = true; IsLaneOp = true; break; 12815 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; 12816 NumVecs = 4; IsStore = true; IsLaneOp = true; break; 12817 } 12818 12819 EVT VecTy; 12820 if (IsStore) 12821 VecTy = N->getOperand(2).getValueType(); 12822 else 12823 VecTy = N->getValueType(0); 12824 12825 // If the increment is a constant, it must match the memory ref size. 12826 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 12827 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 12828 uint32_t IncVal = CInc->getZExtValue(); 12829 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 12830 if (IsLaneOp || IsDupOp) 12831 NumBytes /= VecTy.getVectorNumElements(); 12832 if (IncVal != NumBytes) 12833 continue; 12834 Inc = DAG.getRegister(AArch64::XZR, MVT::i64); 12835 } 12836 SmallVector<SDValue, 8> Ops; 12837 Ops.push_back(N->getOperand(0)); // Incoming chain 12838 // Load lane and store have vector list as input. 12839 if (IsLaneOp || IsStore) 12840 for (unsigned i = 2; i < AddrOpIdx; ++i) 12841 Ops.push_back(N->getOperand(i)); 12842 Ops.push_back(Addr); // Base register 12843 Ops.push_back(Inc); 12844 12845 // Return Types. 12846 EVT Tys[6]; 12847 unsigned NumResultVecs = (IsStore ? 0 : NumVecs); 12848 unsigned n; 12849 for (n = 0; n < NumResultVecs; ++n) 12850 Tys[n] = VecTy; 12851 Tys[n++] = MVT::i64; // Type of write back register 12852 Tys[n] = MVT::Other; // Type of the chain 12853 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); 12854 12855 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); 12856 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, 12857 MemInt->getMemoryVT(), 12858 MemInt->getMemOperand()); 12859 12860 // Update the uses. 12861 std::vector<SDValue> NewResults; 12862 for (unsigned i = 0; i < NumResultVecs; ++i) { 12863 NewResults.push_back(SDValue(UpdN.getNode(), i)); 12864 } 12865 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); 12866 DCI.CombineTo(N, NewResults); 12867 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 12868 12869 break; 12870 } 12871 return SDValue(); 12872 } 12873 12874 // Checks to see if the value is the prescribed width and returns information 12875 // about its extension mode. 12876 static 12877 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { 12878 ExtType = ISD::NON_EXTLOAD; 12879 switch(V.getNode()->getOpcode()) { 12880 default: 12881 return false; 12882 case ISD::LOAD: { 12883 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode()); 12884 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) 12885 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { 12886 ExtType = LoadNode->getExtensionType(); 12887 return true; 12888 } 12889 return false; 12890 } 12891 case ISD::AssertSext: { 12892 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); 12893 if ((TypeNode->getVT() == MVT::i8 && width == 8) 12894 || (TypeNode->getVT() == MVT::i16 && width == 16)) { 12895 ExtType = ISD::SEXTLOAD; 12896 return true; 12897 } 12898 return false; 12899 } 12900 case ISD::AssertZext: { 12901 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); 12902 if ((TypeNode->getVT() == MVT::i8 && width == 8) 12903 || (TypeNode->getVT() == MVT::i16 && width == 16)) { 12904 ExtType = ISD::ZEXTLOAD; 12905 return true; 12906 } 12907 return false; 12908 } 12909 case ISD::Constant: 12910 case ISD::TargetConstant: { 12911 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) < 12912 1LL << (width - 1); 12913 } 12914 } 12915 12916 return true; 12917 } 12918 12919 // This function does a whole lot of voodoo to determine if the tests are 12920 // equivalent without and with a mask. Essentially what happens is that given a 12921 // DAG resembling: 12922 // 12923 // +-------------+ +-------------+ +-------------+ +-------------+ 12924 // | Input | | AddConstant | | CompConstant| | CC | 12925 // +-------------+ +-------------+ +-------------+ +-------------+ 12926 // | | | | 12927 // V V | +----------+ 12928 // +-------------+ +----+ | | 12929 // | ADD | |0xff| | | 12930 // +-------------+ +----+ | | 12931 // | | | | 12932 // V V | | 12933 // +-------------+ | | 12934 // | AND | | | 12935 // +-------------+ | | 12936 // | | | 12937 // +-----+ | | 12938 // | | | 12939 // V V V 12940 // +-------------+ 12941 // | CMP | 12942 // +-------------+ 12943 // 12944 // The AND node may be safely removed for some combinations of inputs. In 12945 // particular we need to take into account the extension type of the Input, 12946 // the exact values of AddConstant, CompConstant, and CC, along with the nominal 12947 // width of the input (this can work for any width inputs, the above graph is 12948 // specific to 8 bits. 12949 // 12950 // The specific equations were worked out by generating output tables for each 12951 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The 12952 // problem was simplified by working with 4 bit inputs, which means we only 12953 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero 12954 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 12955 // patterns present in both extensions (0,7). For every distinct set of 12956 // AddConstant and CompConstants bit patterns we can consider the masked and 12957 // unmasked versions to be equivalent if the result of this function is true for 12958 // all 16 distinct bit patterns of for the current extension type of Input (w0). 12959 // 12960 // sub w8, w0, w1 12961 // and w10, w8, #0x0f 12962 // cmp w8, w2 12963 // cset w9, AArch64CC 12964 // cmp w10, w2 12965 // cset w11, AArch64CC 12966 // cmp w9, w11 12967 // cset w0, eq 12968 // ret 12969 // 12970 // Since the above function shows when the outputs are equivalent it defines 12971 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and 12972 // would be expensive to run during compiles. The equations below were written 12973 // in a test harness that confirmed they gave equivalent outputs to the above 12974 // for all inputs function, so they can be used determine if the removal is 12975 // legal instead. 12976 // 12977 // isEquivalentMaskless() is the code for testing if the AND can be removed 12978 // factored out of the DAG recognition as the DAG can take several forms. 12979 12980 static bool isEquivalentMaskless(unsigned CC, unsigned width, 12981 ISD::LoadExtType ExtType, int AddConstant, 12982 int CompConstant) { 12983 // By being careful about our equations and only writing the in term 12984 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can 12985 // make them generally applicable to all bit widths. 12986 int MaxUInt = (1 << width); 12987 12988 // For the purposes of these comparisons sign extending the type is 12989 // equivalent to zero extending the add and displacing it by half the integer 12990 // width. Provided we are careful and make sure our equations are valid over 12991 // the whole range we can just adjust the input and avoid writing equations 12992 // for sign extended inputs. 12993 if (ExtType == ISD::SEXTLOAD) 12994 AddConstant -= (1 << (width-1)); 12995 12996 switch(CC) { 12997 case AArch64CC::LE: 12998 case AArch64CC::GT: 12999 if ((AddConstant == 0) || 13000 (CompConstant == MaxUInt - 1 && AddConstant < 0) || 13001 (AddConstant >= 0 && CompConstant < 0) || 13002 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) 13003 return true; 13004 break; 13005 case AArch64CC::LT: 13006 case AArch64CC::GE: 13007 if ((AddConstant == 0) || 13008 (AddConstant >= 0 && CompConstant <= 0) || 13009 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) 13010 return true; 13011 break; 13012 case AArch64CC::HI: 13013 case AArch64CC::LS: 13014 if ((AddConstant >= 0 && CompConstant < 0) || 13015 (AddConstant <= 0 && CompConstant >= -1 && 13016 CompConstant < AddConstant + MaxUInt)) 13017 return true; 13018 break; 13019 case AArch64CC::PL: 13020 case AArch64CC::MI: 13021 if ((AddConstant == 0) || 13022 (AddConstant > 0 && CompConstant <= 0) || 13023 (AddConstant < 0 && CompConstant <= AddConstant)) 13024 return true; 13025 break; 13026 case AArch64CC::LO: 13027 case AArch64CC::HS: 13028 if ((AddConstant >= 0 && CompConstant <= 0) || 13029 (AddConstant <= 0 && CompConstant >= 0 && 13030 CompConstant <= AddConstant + MaxUInt)) 13031 return true; 13032 break; 13033 case AArch64CC::EQ: 13034 case AArch64CC::NE: 13035 if ((AddConstant > 0 && CompConstant < 0) || 13036 (AddConstant < 0 && CompConstant >= 0 && 13037 CompConstant < AddConstant + MaxUInt) || 13038 (AddConstant >= 0 && CompConstant >= 0 && 13039 CompConstant >= AddConstant) || 13040 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) 13041 return true; 13042 break; 13043 case AArch64CC::VS: 13044 case AArch64CC::VC: 13045 case AArch64CC::AL: 13046 case AArch64CC::NV: 13047 return true; 13048 case AArch64CC::Invalid: 13049 break; 13050 } 13051 13052 return false; 13053 } 13054 13055 static 13056 SDValue performCONDCombine(SDNode *N, 13057 TargetLowering::DAGCombinerInfo &DCI, 13058 SelectionDAG &DAG, unsigned CCIndex, 13059 unsigned CmpIndex) { 13060 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue(); 13061 SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); 13062 unsigned CondOpcode = SubsNode->getOpcode(); 13063 13064 if (CondOpcode != AArch64ISD::SUBS) 13065 return SDValue(); 13066 13067 // There is a SUBS feeding this condition. Is it fed by a mask we can 13068 // use? 13069 13070 SDNode *AndNode = SubsNode->getOperand(0).getNode(); 13071 unsigned MaskBits = 0; 13072 13073 if (AndNode->getOpcode() != ISD::AND) 13074 return SDValue(); 13075 13076 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) { 13077 uint32_t CNV = CN->getZExtValue(); 13078 if (CNV == 255) 13079 MaskBits = 8; 13080 else if (CNV == 65535) 13081 MaskBits = 16; 13082 } 13083 13084 if (!MaskBits) 13085 return SDValue(); 13086 13087 SDValue AddValue = AndNode->getOperand(0); 13088 13089 if (AddValue.getOpcode() != ISD::ADD) 13090 return SDValue(); 13091 13092 // The basic dag structure is correct, grab the inputs and validate them. 13093 13094 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); 13095 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); 13096 SDValue SubsInputValue = SubsNode->getOperand(1); 13097 13098 // The mask is present and the provenance of all the values is a smaller type, 13099 // lets see if the mask is superfluous. 13100 13101 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) || 13102 !isa<ConstantSDNode>(SubsInputValue.getNode())) 13103 return SDValue(); 13104 13105 ISD::LoadExtType ExtType; 13106 13107 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || 13108 !checkValueWidth(AddInputValue2, MaskBits, ExtType) || 13109 !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) 13110 return SDValue(); 13111 13112 if(!isEquivalentMaskless(CC, MaskBits, ExtType, 13113 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(), 13114 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue())) 13115 return SDValue(); 13116 13117 // The AND is not necessary, remove it. 13118 13119 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), 13120 SubsNode->getValueType(1)); 13121 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; 13122 13123 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); 13124 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); 13125 13126 return SDValue(N, 0); 13127 } 13128 13129 // Optimize compare with zero and branch. 13130 static SDValue performBRCONDCombine(SDNode *N, 13131 TargetLowering::DAGCombinerInfo &DCI, 13132 SelectionDAG &DAG) { 13133 MachineFunction &MF = DAG.getMachineFunction(); 13134 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions 13135 // will not be produced, as they are conditional branch instructions that do 13136 // not set flags. 13137 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) 13138 return SDValue(); 13139 13140 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3)) 13141 N = NV.getNode(); 13142 SDValue Chain = N->getOperand(0); 13143 SDValue Dest = N->getOperand(1); 13144 SDValue CCVal = N->getOperand(2); 13145 SDValue Cmp = N->getOperand(3); 13146 13147 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); 13148 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); 13149 if (CC != AArch64CC::EQ && CC != AArch64CC::NE) 13150 return SDValue(); 13151 13152 unsigned CmpOpc = Cmp.getOpcode(); 13153 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) 13154 return SDValue(); 13155 13156 // Only attempt folding if there is only one use of the flag and no use of the 13157 // value. 13158 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) 13159 return SDValue(); 13160 13161 SDValue LHS = Cmp.getOperand(0); 13162 SDValue RHS = Cmp.getOperand(1); 13163 13164 assert(LHS.getValueType() == RHS.getValueType() && 13165 "Expected the value type to be the same for both operands!"); 13166 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) 13167 return SDValue(); 13168 13169 if (isNullConstant(LHS)) 13170 std::swap(LHS, RHS); 13171 13172 if (!isNullConstant(RHS)) 13173 return SDValue(); 13174 13175 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || 13176 LHS.getOpcode() == ISD::SRL) 13177 return SDValue(); 13178 13179 // Fold the compare into the branch instruction. 13180 SDValue BR; 13181 if (CC == AArch64CC::EQ) 13182 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); 13183 else 13184 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); 13185 13186 // Do not add new nodes to DAG combiner worklist. 13187 DCI.CombineTo(N, BR, false); 13188 13189 return SDValue(); 13190 } 13191 13192 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test 13193 // as well as whether the test should be inverted. This code is required to 13194 // catch these cases (as opposed to standard dag combines) because 13195 // AArch64ISD::TBZ is matched during legalization. 13196 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert, 13197 SelectionDAG &DAG) { 13198 13199 if (!Op->hasOneUse()) 13200 return Op; 13201 13202 // We don't handle undef/constant-fold cases below, as they should have 13203 // already been taken care of (e.g. and of 0, test of undefined shifted bits, 13204 // etc.) 13205 13206 // (tbz (trunc x), b) -> (tbz x, b) 13207 // This case is just here to enable more of the below cases to be caught. 13208 if (Op->getOpcode() == ISD::TRUNCATE && 13209 Bit < Op->getValueType(0).getSizeInBits()) { 13210 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 13211 } 13212 13213 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits. 13214 if (Op->getOpcode() == ISD::ANY_EXTEND && 13215 Bit < Op->getOperand(0).getValueSizeInBits()) { 13216 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 13217 } 13218 13219 if (Op->getNumOperands() != 2) 13220 return Op; 13221 13222 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 13223 if (!C) 13224 return Op; 13225 13226 switch (Op->getOpcode()) { 13227 default: 13228 return Op; 13229 13230 // (tbz (and x, m), b) -> (tbz x, b) 13231 case ISD::AND: 13232 if ((C->getZExtValue() >> Bit) & 1) 13233 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 13234 return Op; 13235 13236 // (tbz (shl x, c), b) -> (tbz x, b-c) 13237 case ISD::SHL: 13238 if (C->getZExtValue() <= Bit && 13239 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { 13240 Bit = Bit - C->getZExtValue(); 13241 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 13242 } 13243 return Op; 13244 13245 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x 13246 case ISD::SRA: 13247 Bit = Bit + C->getZExtValue(); 13248 if (Bit >= Op->getValueType(0).getSizeInBits()) 13249 Bit = Op->getValueType(0).getSizeInBits() - 1; 13250 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 13251 13252 // (tbz (srl x, c), b) -> (tbz x, b+c) 13253 case ISD::SRL: 13254 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { 13255 Bit = Bit + C->getZExtValue(); 13256 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 13257 } 13258 return Op; 13259 13260 // (tbz (xor x, -1), b) -> (tbnz x, b) 13261 case ISD::XOR: 13262 if ((C->getZExtValue() >> Bit) & 1) 13263 Invert = !Invert; 13264 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 13265 } 13266 } 13267 13268 // Optimize test single bit zero/non-zero and branch. 13269 static SDValue performTBZCombine(SDNode *N, 13270 TargetLowering::DAGCombinerInfo &DCI, 13271 SelectionDAG &DAG) { 13272 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); 13273 bool Invert = false; 13274 SDValue TestSrc = N->getOperand(1); 13275 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG); 13276 13277 if (TestSrc == NewTestSrc) 13278 return SDValue(); 13279 13280 unsigned NewOpc = N->getOpcode(); 13281 if (Invert) { 13282 if (NewOpc == AArch64ISD::TBZ) 13283 NewOpc = AArch64ISD::TBNZ; 13284 else { 13285 assert(NewOpc == AArch64ISD::TBNZ); 13286 NewOpc = AArch64ISD::TBZ; 13287 } 13288 } 13289 13290 SDLoc DL(N); 13291 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc, 13292 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3)); 13293 } 13294 13295 // vselect (v1i1 setcc) -> 13296 // vselect (v1iXX setcc) (XX is the size of the compared operand type) 13297 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as 13298 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine 13299 // such VSELECT. 13300 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { 13301 SDValue N0 = N->getOperand(0); 13302 EVT CCVT = N0.getValueType(); 13303 13304 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || 13305 CCVT.getVectorElementType() != MVT::i1) 13306 return SDValue(); 13307 13308 EVT ResVT = N->getValueType(0); 13309 EVT CmpVT = N0.getOperand(0).getValueType(); 13310 // Only combine when the result type is of the same size as the compared 13311 // operands. 13312 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) 13313 return SDValue(); 13314 13315 SDValue IfTrue = N->getOperand(1); 13316 SDValue IfFalse = N->getOperand(2); 13317 SDValue SetCC = 13318 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), 13319 N0.getOperand(0), N0.getOperand(1), 13320 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 13321 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, 13322 IfTrue, IfFalse); 13323 } 13324 13325 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with 13326 /// the compare-mask instructions rather than going via NZCV, even if LHS and 13327 /// RHS are really scalar. This replaces any scalar setcc in the above pattern 13328 /// with a vector one followed by a DUP shuffle on the result. 13329 static SDValue performSelectCombine(SDNode *N, 13330 TargetLowering::DAGCombinerInfo &DCI) { 13331 SelectionDAG &DAG = DCI.DAG; 13332 SDValue N0 = N->getOperand(0); 13333 EVT ResVT = N->getValueType(0); 13334 13335 if (N0.getOpcode() != ISD::SETCC) 13336 return SDValue(); 13337 13338 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered 13339 // scalar SetCCResultType. We also don't expect vectors, because we assume 13340 // that selects fed by vector SETCCs are canonicalized to VSELECT. 13341 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && 13342 "Scalar-SETCC feeding SELECT has unexpected result type!"); 13343 13344 // If NumMaskElts == 0, the comparison is larger than select result. The 13345 // largest real NEON comparison is 64-bits per lane, which means the result is 13346 // at most 32-bits and an illegal vector. Just bail out for now. 13347 EVT SrcVT = N0.getOperand(0).getValueType(); 13348 13349 // Don't try to do this optimization when the setcc itself has i1 operands. 13350 // There are no legal vectors of i1, so this would be pointless. 13351 if (SrcVT == MVT::i1) 13352 return SDValue(); 13353 13354 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); 13355 if (!ResVT.isVector() || NumMaskElts == 0) 13356 return SDValue(); 13357 13358 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); 13359 EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); 13360 13361 // Also bail out if the vector CCVT isn't the same size as ResVT. 13362 // This can happen if the SETCC operand size doesn't divide the ResVT size 13363 // (e.g., f64 vs v3f32). 13364 if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) 13365 return SDValue(); 13366 13367 // Make sure we didn't create illegal types, if we're not supposed to. 13368 assert(DCI.isBeforeLegalize() || 13369 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)); 13370 13371 // First perform a vector comparison, where lane 0 is the one we're interested 13372 // in. 13373 SDLoc DL(N0); 13374 SDValue LHS = 13375 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); 13376 SDValue RHS = 13377 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); 13378 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); 13379 13380 // Now duplicate the comparison mask we want across all other lanes. 13381 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); 13382 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask); 13383 Mask = DAG.getNode(ISD::BITCAST, DL, 13384 ResVT.changeVectorElementTypeToInteger(), Mask); 13385 13386 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); 13387 } 13388 13389 /// Get rid of unnecessary NVCASTs (that don't change the type). 13390 static SDValue performNVCASTCombine(SDNode *N) { 13391 if (N->getValueType(0) == N->getOperand(0).getValueType()) 13392 return N->getOperand(0); 13393 13394 return SDValue(); 13395 } 13396 13397 // If all users of the globaladdr are of the form (globaladdr + constant), find 13398 // the smallest constant, fold it into the globaladdr's offset and rewrite the 13399 // globaladdr as (globaladdr + constant) - constant. 13400 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG, 13401 const AArch64Subtarget *Subtarget, 13402 const TargetMachine &TM) { 13403 auto *GN = cast<GlobalAddressSDNode>(N); 13404 if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) != 13405 AArch64II::MO_NO_FLAG) 13406 return SDValue(); 13407 13408 uint64_t MinOffset = -1ull; 13409 for (SDNode *N : GN->uses()) { 13410 if (N->getOpcode() != ISD::ADD) 13411 return SDValue(); 13412 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0)); 13413 if (!C) 13414 C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13415 if (!C) 13416 return SDValue(); 13417 MinOffset = std::min(MinOffset, C->getZExtValue()); 13418 } 13419 uint64_t Offset = MinOffset + GN->getOffset(); 13420 13421 // Require that the new offset is larger than the existing one. Otherwise, we 13422 // can end up oscillating between two possible DAGs, for example, 13423 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1). 13424 if (Offset <= uint64_t(GN->getOffset())) 13425 return SDValue(); 13426 13427 // Check whether folding this offset is legal. It must not go out of bounds of 13428 // the referenced object to avoid violating the code model, and must be 13429 // smaller than 2^21 because this is the largest offset expressible in all 13430 // object formats. 13431 // 13432 // This check also prevents us from folding negative offsets, which will end 13433 // up being treated in the same way as large positive ones. They could also 13434 // cause code model violations, and aren't really common enough to matter. 13435 if (Offset >= (1 << 21)) 13436 return SDValue(); 13437 13438 const GlobalValue *GV = GN->getGlobal(); 13439 Type *T = GV->getValueType(); 13440 if (!T->isSized() || 13441 Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) 13442 return SDValue(); 13443 13444 SDLoc DL(GN); 13445 SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset); 13446 return DAG.getNode(ISD::SUB, DL, MVT::i64, Result, 13447 DAG.getConstant(MinOffset, DL, MVT::i64)); 13448 } 13449 13450 // Turns the vector of indices into a vector of byte offstes by scaling Offset 13451 // by (BitWidth / 8). 13452 static SDValue getScaledOffsetForBitWidth(SelectionDAG &DAG, SDValue Offset, 13453 SDLoc DL, unsigned BitWidth) { 13454 assert(Offset.getValueType().isScalableVector() && 13455 "This method is only for scalable vectors of offsets"); 13456 13457 SDValue Shift = DAG.getConstant(Log2_32(BitWidth / 8), DL, MVT::i64); 13458 SDValue SplatShift = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Shift); 13459 13460 return DAG.getNode(ISD::SHL, DL, MVT::nxv2i64, Offset, SplatShift); 13461 } 13462 13463 /// Check if the value of \p OffsetInBytes can be used as an immediate for 13464 /// the gather load/prefetch and scatter store instructions with vector base and 13465 /// immediate offset addressing mode: 13466 /// 13467 /// [<Zn>.[S|D]{, #<imm>}] 13468 /// 13469 /// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31. 13470 13471 inline static bool isValidImmForSVEVecImmAddrMode(unsigned OffsetInBytes, 13472 unsigned ScalarSizeInBytes) { 13473 // The immediate is not a multiple of the scalar size. 13474 if (OffsetInBytes % ScalarSizeInBytes) 13475 return false; 13476 13477 // The immediate is out of range. 13478 if (OffsetInBytes / ScalarSizeInBytes > 31) 13479 return false; 13480 13481 return true; 13482 } 13483 13484 /// Check if the value of \p Offset represents a valid immediate for the SVE 13485 /// gather load/prefetch and scatter store instructiona with vector base and 13486 /// immediate offset addressing mode: 13487 /// 13488 /// [<Zn>.[S|D]{, #<imm>}] 13489 /// 13490 /// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31. 13491 static bool isValidImmForSVEVecImmAddrMode(SDValue Offset, 13492 unsigned ScalarSizeInBytes) { 13493 ConstantSDNode *OffsetConst = dyn_cast<ConstantSDNode>(Offset.getNode()); 13494 return OffsetConst && isValidImmForSVEVecImmAddrMode( 13495 OffsetConst->getZExtValue(), ScalarSizeInBytes); 13496 } 13497 13498 static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG, 13499 unsigned Opcode, 13500 bool OnlyPackedOffsets = true) { 13501 const SDValue Src = N->getOperand(2); 13502 const EVT SrcVT = Src->getValueType(0); 13503 assert(SrcVT.isScalableVector() && 13504 "Scatter stores are only possible for SVE vectors"); 13505 13506 SDLoc DL(N); 13507 MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT(); 13508 13509 // Make sure that source data will fit into an SVE register 13510 if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) 13511 return SDValue(); 13512 13513 // For FPs, ACLE only supports _packed_ single and double precision types. 13514 if (SrcElVT.isFloatingPoint()) 13515 if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64)) 13516 return SDValue(); 13517 13518 // Depending on the addressing mode, this is either a pointer or a vector of 13519 // pointers (that fits into one register) 13520 SDValue Base = N->getOperand(4); 13521 // Depending on the addressing mode, this is either a single offset or a 13522 // vector of offsets (that fits into one register) 13523 SDValue Offset = N->getOperand(5); 13524 13525 // For "scalar + vector of indices", just scale the indices. This only 13526 // applies to non-temporal scatters because there's no instruction that takes 13527 // indicies. 13528 if (Opcode == AArch64ISD::SSTNT1_INDEX_PRED) { 13529 Offset = 13530 getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits()); 13531 Opcode = AArch64ISD::SSTNT1_PRED; 13532 } 13533 13534 // In the case of non-temporal gather loads there's only one SVE instruction 13535 // per data-size: "scalar + vector", i.e. 13536 // * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] 13537 // Since we do have intrinsics that allow the arguments to be in a different 13538 // order, we may need to swap them to match the spec. 13539 if (Opcode == AArch64ISD::SSTNT1_PRED && Offset.getValueType().isVector()) 13540 std::swap(Base, Offset); 13541 13542 // SST1_IMM requires that the offset is an immediate that is: 13543 // * a multiple of #SizeInBytes, 13544 // * in the range [0, 31 x #SizeInBytes], 13545 // where #SizeInBytes is the size in bytes of the stored items. For 13546 // immediates outside that range and non-immediate scalar offsets use SST1 or 13547 // SST1_UXTW instead. 13548 if (Opcode == AArch64ISD::SST1_IMM_PRED) { 13549 if (!isValidImmForSVEVecImmAddrMode(Offset, 13550 SrcVT.getScalarSizeInBits() / 8)) { 13551 if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy) 13552 Opcode = AArch64ISD::SST1_UXTW_PRED; 13553 else 13554 Opcode = AArch64ISD::SST1_PRED; 13555 13556 std::swap(Base, Offset); 13557 } 13558 } 13559 13560 auto &TLI = DAG.getTargetLoweringInfo(); 13561 if (!TLI.isTypeLegal(Base.getValueType())) 13562 return SDValue(); 13563 13564 // Some scatter store variants allow unpacked offsets, but only as nxv2i32 13565 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to 13566 // nxv2i64. Legalize accordingly. 13567 if (!OnlyPackedOffsets && 13568 Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) 13569 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); 13570 13571 if (!TLI.isTypeLegal(Offset.getValueType())) 13572 return SDValue(); 13573 13574 // Source value type that is representable in hardware 13575 EVT HwSrcVt = getSVEContainerType(SrcVT); 13576 13577 // Keep the original type of the input data to store - this is needed to be 13578 // able to select the correct instruction, e.g. ST1B, ST1H, ST1W and ST1D. For 13579 // FP values we want the integer equivalent, so just use HwSrcVt. 13580 SDValue InputVT = DAG.getValueType(SrcVT); 13581 if (SrcVT.isFloatingPoint()) 13582 InputVT = DAG.getValueType(HwSrcVt); 13583 13584 SDVTList VTs = DAG.getVTList(MVT::Other); 13585 SDValue SrcNew; 13586 13587 if (Src.getValueType().isFloatingPoint()) 13588 SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src); 13589 else 13590 SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src); 13591 13592 SDValue Ops[] = {N->getOperand(0), // Chain 13593 SrcNew, 13594 N->getOperand(3), // Pg 13595 Base, 13596 Offset, 13597 InputVT}; 13598 13599 return DAG.getNode(Opcode, DL, VTs, Ops); 13600 } 13601 13602 static SDValue performGatherLoadCombine(SDNode *N, SelectionDAG &DAG, 13603 unsigned Opcode, 13604 bool OnlyPackedOffsets = true) { 13605 const EVT RetVT = N->getValueType(0); 13606 assert(RetVT.isScalableVector() && 13607 "Gather loads are only possible for SVE vectors"); 13608 13609 SDLoc DL(N); 13610 13611 // Make sure that the loaded data will fit into an SVE register 13612 if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) 13613 return SDValue(); 13614 13615 // Depending on the addressing mode, this is either a pointer or a vector of 13616 // pointers (that fits into one register) 13617 SDValue Base = N->getOperand(3); 13618 // Depending on the addressing mode, this is either a single offset or a 13619 // vector of offsets (that fits into one register) 13620 SDValue Offset = N->getOperand(4); 13621 13622 // For "scalar + vector of indices", just scale the indices. This only 13623 // applies to non-temporal gathers because there's no instruction that takes 13624 // indicies. 13625 if (Opcode == AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) { 13626 Offset = getScaledOffsetForBitWidth(DAG, Offset, DL, 13627 RetVT.getScalarSizeInBits()); 13628 Opcode = AArch64ISD::GLDNT1_MERGE_ZERO; 13629 } 13630 13631 // In the case of non-temporal gather loads there's only one SVE instruction 13632 // per data-size: "scalar + vector", i.e. 13633 // * ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] 13634 // Since we do have intrinsics that allow the arguments to be in a different 13635 // order, we may need to swap them to match the spec. 13636 if (Opcode == AArch64ISD::GLDNT1_MERGE_ZERO && 13637 Offset.getValueType().isVector()) 13638 std::swap(Base, Offset); 13639 13640 // GLD{FF}1_IMM requires that the offset is an immediate that is: 13641 // * a multiple of #SizeInBytes, 13642 // * in the range [0, 31 x #SizeInBytes], 13643 // where #SizeInBytes is the size in bytes of the loaded items. For 13644 // immediates outside that range and non-immediate scalar offsets use 13645 // GLD1_MERGE_ZERO or GLD1_UXTW_MERGE_ZERO instead. 13646 if (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO || 13647 Opcode == AArch64ISD::GLDFF1_IMM_MERGE_ZERO) { 13648 if (!isValidImmForSVEVecImmAddrMode(Offset, 13649 RetVT.getScalarSizeInBits() / 8)) { 13650 if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy) 13651 Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO) 13652 ? AArch64ISD::GLD1_UXTW_MERGE_ZERO 13653 : AArch64ISD::GLDFF1_UXTW_MERGE_ZERO; 13654 else 13655 Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO) 13656 ? AArch64ISD::GLD1_MERGE_ZERO 13657 : AArch64ISD::GLDFF1_MERGE_ZERO; 13658 13659 std::swap(Base, Offset); 13660 } 13661 } 13662 13663 auto &TLI = DAG.getTargetLoweringInfo(); 13664 if (!TLI.isTypeLegal(Base.getValueType())) 13665 return SDValue(); 13666 13667 // Some gather load variants allow unpacked offsets, but only as nxv2i32 13668 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to 13669 // nxv2i64. Legalize accordingly. 13670 if (!OnlyPackedOffsets && 13671 Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) 13672 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); 13673 13674 // Return value type that is representable in hardware 13675 EVT HwRetVt = getSVEContainerType(RetVT); 13676 13677 // Keep the original output value type around - this is needed to be able to 13678 // select the correct instruction, e.g. LD1B, LD1H, LD1W and LD1D. For FP 13679 // values we want the integer equivalent, so just use HwRetVT. 13680 SDValue OutVT = DAG.getValueType(RetVT); 13681 if (RetVT.isFloatingPoint()) 13682 OutVT = DAG.getValueType(HwRetVt); 13683 13684 SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other); 13685 SDValue Ops[] = {N->getOperand(0), // Chain 13686 N->getOperand(2), // Pg 13687 Base, Offset, OutVT}; 13688 13689 SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops); 13690 SDValue LoadChain = SDValue(Load.getNode(), 1); 13691 13692 if (RetVT.isInteger() && (RetVT != HwRetVt)) 13693 Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0)); 13694 13695 // If the original return value was FP, bitcast accordingly. Doing it here 13696 // means that we can avoid adding TableGen patterns for FPs. 13697 if (RetVT.isFloatingPoint()) 13698 Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0)); 13699 13700 return DAG.getMergeValues({Load, LoadChain}, DL); 13701 } 13702 13703 static SDValue 13704 performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 13705 SelectionDAG &DAG) { 13706 if (DCI.isBeforeLegalizeOps()) 13707 return SDValue(); 13708 13709 SDLoc DL(N); 13710 SDValue Src = N->getOperand(0); 13711 unsigned Opc = Src->getOpcode(); 13712 13713 // Sign extend of an unsigned unpack -> signed unpack 13714 if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) { 13715 13716 unsigned SOpc = Opc == AArch64ISD::UUNPKHI ? AArch64ISD::SUNPKHI 13717 : AArch64ISD::SUNPKLO; 13718 13719 // Push the sign extend to the operand of the unpack 13720 // This is necessary where, for example, the operand of the unpack 13721 // is another unpack: 13722 // 4i32 sign_extend_inreg (4i32 uunpklo(8i16 uunpklo (16i8 opnd)), from 4i8) 13723 // -> 13724 // 4i32 sunpklo (8i16 sign_extend_inreg(8i16 uunpklo (16i8 opnd), from 8i8) 13725 // -> 13726 // 4i32 sunpklo(8i16 sunpklo(16i8 opnd)) 13727 SDValue ExtOp = Src->getOperand(0); 13728 auto VT = cast<VTSDNode>(N->getOperand(1))->getVT(); 13729 EVT EltTy = VT.getVectorElementType(); 13730 (void)EltTy; 13731 13732 assert((EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) && 13733 "Sign extending from an invalid type"); 13734 13735 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13736 VT.getVectorElementType(), 13737 VT.getVectorElementCount() * 2); 13738 13739 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ExtOp.getValueType(), 13740 ExtOp, DAG.getValueType(ExtVT)); 13741 13742 return DAG.getNode(SOpc, DL, N->getValueType(0), Ext); 13743 } 13744 13745 // SVE load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates 13746 // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes. 13747 unsigned NewOpc; 13748 unsigned MemVTOpNum = 4; 13749 switch (Opc) { 13750 case AArch64ISD::LD1_MERGE_ZERO: 13751 NewOpc = AArch64ISD::LD1S_MERGE_ZERO; 13752 MemVTOpNum = 3; 13753 break; 13754 case AArch64ISD::LDNF1_MERGE_ZERO: 13755 NewOpc = AArch64ISD::LDNF1S_MERGE_ZERO; 13756 MemVTOpNum = 3; 13757 break; 13758 case AArch64ISD::LDFF1_MERGE_ZERO: 13759 NewOpc = AArch64ISD::LDFF1S_MERGE_ZERO; 13760 MemVTOpNum = 3; 13761 break; 13762 case AArch64ISD::GLD1_MERGE_ZERO: 13763 NewOpc = AArch64ISD::GLD1S_MERGE_ZERO; 13764 break; 13765 case AArch64ISD::GLD1_SCALED_MERGE_ZERO: 13766 NewOpc = AArch64ISD::GLD1S_SCALED_MERGE_ZERO; 13767 break; 13768 case AArch64ISD::GLD1_SXTW_MERGE_ZERO: 13769 NewOpc = AArch64ISD::GLD1S_SXTW_MERGE_ZERO; 13770 break; 13771 case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: 13772 NewOpc = AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO; 13773 break; 13774 case AArch64ISD::GLD1_UXTW_MERGE_ZERO: 13775 NewOpc = AArch64ISD::GLD1S_UXTW_MERGE_ZERO; 13776 break; 13777 case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: 13778 NewOpc = AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO; 13779 break; 13780 case AArch64ISD::GLD1_IMM_MERGE_ZERO: 13781 NewOpc = AArch64ISD::GLD1S_IMM_MERGE_ZERO; 13782 break; 13783 case AArch64ISD::GLDFF1_MERGE_ZERO: 13784 NewOpc = AArch64ISD::GLDFF1S_MERGE_ZERO; 13785 break; 13786 case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO: 13787 NewOpc = AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO; 13788 break; 13789 case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO: 13790 NewOpc = AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO; 13791 break; 13792 case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO: 13793 NewOpc = AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO; 13794 break; 13795 case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO: 13796 NewOpc = AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO; 13797 break; 13798 case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO: 13799 NewOpc = AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO; 13800 break; 13801 case AArch64ISD::GLDFF1_IMM_MERGE_ZERO: 13802 NewOpc = AArch64ISD::GLDFF1S_IMM_MERGE_ZERO; 13803 break; 13804 case AArch64ISD::GLDNT1_MERGE_ZERO: 13805 NewOpc = AArch64ISD::GLDNT1S_MERGE_ZERO; 13806 break; 13807 default: 13808 return SDValue(); 13809 } 13810 13811 EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 13812 EVT SrcMemVT = cast<VTSDNode>(Src->getOperand(MemVTOpNum))->getVT(); 13813 13814 if ((SignExtSrcVT != SrcMemVT) || !Src.hasOneUse()) 13815 return SDValue(); 13816 13817 EVT DstVT = N->getValueType(0); 13818 SDVTList VTs = DAG.getVTList(DstVT, MVT::Other); 13819 13820 SmallVector<SDValue, 5> Ops; 13821 for (unsigned I = 0; I < Src->getNumOperands(); ++I) 13822 Ops.push_back(Src->getOperand(I)); 13823 13824 SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops); 13825 DCI.CombineTo(N, ExtLoad); 13826 DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1)); 13827 13828 // Return N so it doesn't get rechecked 13829 return SDValue(N, 0); 13830 } 13831 13832 /// Legalize the gather prefetch (scalar + vector addressing mode) when the 13833 /// offset vector is an unpacked 32-bit scalable vector. The other cases (Offset 13834 /// != nxv2i32) do not need legalization. 13835 static SDValue legalizeSVEGatherPrefetchOffsVec(SDNode *N, SelectionDAG &DAG) { 13836 const unsigned OffsetPos = 4; 13837 SDValue Offset = N->getOperand(OffsetPos); 13838 13839 // Not an unpacked vector, bail out. 13840 if (Offset.getValueType().getSimpleVT().SimpleTy != MVT::nxv2i32) 13841 return SDValue(); 13842 13843 // Extend the unpacked offset vector to 64-bit lanes. 13844 SDLoc DL(N); 13845 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset); 13846 SmallVector<SDValue, 5> Ops(N->op_begin(), N->op_end()); 13847 // Replace the offset operand with the 64-bit one. 13848 Ops[OffsetPos] = Offset; 13849 13850 return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops); 13851 } 13852 13853 /// Combines a node carrying the intrinsic 13854 /// `aarch64_sve_prf<T>_gather_scalar_offset` into a node that uses 13855 /// `aarch64_sve_prfb_gather_uxtw_index` when the scalar offset passed to 13856 /// `aarch64_sve_prf<T>_gather_scalar_offset` is not a valid immediate for the 13857 /// sve gather prefetch instruction with vector plus immediate addressing mode. 13858 static SDValue combineSVEPrefetchVecBaseImmOff(SDNode *N, SelectionDAG &DAG, 13859 unsigned ScalarSizeInBytes) { 13860 const unsigned ImmPos = 4, OffsetPos = 3; 13861 // No need to combine the node if the immediate is valid... 13862 if (isValidImmForSVEVecImmAddrMode(N->getOperand(ImmPos), ScalarSizeInBytes)) 13863 return SDValue(); 13864 13865 // ...otherwise swap the offset base with the offset... 13866 SmallVector<SDValue, 5> Ops(N->op_begin(), N->op_end()); 13867 std::swap(Ops[ImmPos], Ops[OffsetPos]); 13868 // ...and remap the intrinsic `aarch64_sve_prf<T>_gather_scalar_offset` to 13869 // `aarch64_sve_prfb_gather_uxtw_index`. 13870 SDLoc DL(N); 13871 Ops[1] = DAG.getConstant(Intrinsic::aarch64_sve_prfb_gather_uxtw_index, DL, 13872 MVT::i64); 13873 13874 return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops); 13875 } 13876 13877 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, 13878 DAGCombinerInfo &DCI) const { 13879 SelectionDAG &DAG = DCI.DAG; 13880 switch (N->getOpcode()) { 13881 default: 13882 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n"); 13883 break; 13884 case ISD::ADD: 13885 case ISD::SUB: 13886 return performAddSubLongCombine(N, DCI, DAG); 13887 case ISD::XOR: 13888 return performXorCombine(N, DAG, DCI, Subtarget); 13889 case ISD::MUL: 13890 return performMulCombine(N, DAG, DCI, Subtarget); 13891 case ISD::SINT_TO_FP: 13892 case ISD::UINT_TO_FP: 13893 return performIntToFpCombine(N, DAG, Subtarget); 13894 case ISD::FP_TO_SINT: 13895 case ISD::FP_TO_UINT: 13896 return performFpToIntCombine(N, DAG, DCI, Subtarget); 13897 case ISD::FDIV: 13898 return performFDivCombine(N, DAG, DCI, Subtarget); 13899 case ISD::OR: 13900 return performORCombine(N, DCI, Subtarget); 13901 case ISD::AND: 13902 return performANDCombine(N, DCI); 13903 case ISD::SRL: 13904 return performSRLCombine(N, DCI); 13905 case ISD::INTRINSIC_WO_CHAIN: 13906 return performIntrinsicCombine(N, DCI, Subtarget); 13907 case ISD::ANY_EXTEND: 13908 case ISD::ZERO_EXTEND: 13909 case ISD::SIGN_EXTEND: 13910 return performExtendCombine(N, DCI, DAG); 13911 case ISD::SIGN_EXTEND_INREG: 13912 return performSignExtendInRegCombine(N, DCI, DAG); 13913 case ISD::CONCAT_VECTORS: 13914 return performConcatVectorsCombine(N, DCI, DAG); 13915 case ISD::SELECT: 13916 return performSelectCombine(N, DCI); 13917 case ISD::VSELECT: 13918 return performVSelectCombine(N, DCI.DAG); 13919 case ISD::LOAD: 13920 if (performTBISimplification(N->getOperand(1), DCI, DAG)) 13921 return SDValue(N, 0); 13922 break; 13923 case ISD::STORE: 13924 return performSTORECombine(N, DCI, DAG, Subtarget); 13925 case AArch64ISD::BRCOND: 13926 return performBRCONDCombine(N, DCI, DAG); 13927 case AArch64ISD::TBNZ: 13928 case AArch64ISD::TBZ: 13929 return performTBZCombine(N, DCI, DAG); 13930 case AArch64ISD::CSEL: 13931 return performCONDCombine(N, DCI, DAG, 2, 3); 13932 case AArch64ISD::DUP: 13933 return performPostLD1Combine(N, DCI, false); 13934 case AArch64ISD::NVCAST: 13935 return performNVCASTCombine(N); 13936 case ISD::INSERT_VECTOR_ELT: 13937 return performPostLD1Combine(N, DCI, true); 13938 case ISD::INTRINSIC_VOID: 13939 case ISD::INTRINSIC_W_CHAIN: 13940 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 13941 case Intrinsic::aarch64_sve_prfb_gather_scalar_offset: 13942 return combineSVEPrefetchVecBaseImmOff(N, DAG, 1 /*=ScalarSizeInBytes*/); 13943 case Intrinsic::aarch64_sve_prfh_gather_scalar_offset: 13944 return combineSVEPrefetchVecBaseImmOff(N, DAG, 2 /*=ScalarSizeInBytes*/); 13945 case Intrinsic::aarch64_sve_prfw_gather_scalar_offset: 13946 return combineSVEPrefetchVecBaseImmOff(N, DAG, 4 /*=ScalarSizeInBytes*/); 13947 case Intrinsic::aarch64_sve_prfd_gather_scalar_offset: 13948 return combineSVEPrefetchVecBaseImmOff(N, DAG, 8 /*=ScalarSizeInBytes*/); 13949 case Intrinsic::aarch64_sve_prfb_gather_uxtw_index: 13950 case Intrinsic::aarch64_sve_prfb_gather_sxtw_index: 13951 case Intrinsic::aarch64_sve_prfh_gather_uxtw_index: 13952 case Intrinsic::aarch64_sve_prfh_gather_sxtw_index: 13953 case Intrinsic::aarch64_sve_prfw_gather_uxtw_index: 13954 case Intrinsic::aarch64_sve_prfw_gather_sxtw_index: 13955 case Intrinsic::aarch64_sve_prfd_gather_uxtw_index: 13956 case Intrinsic::aarch64_sve_prfd_gather_sxtw_index: 13957 return legalizeSVEGatherPrefetchOffsVec(N, DAG); 13958 case Intrinsic::aarch64_neon_ld2: 13959 case Intrinsic::aarch64_neon_ld3: 13960 case Intrinsic::aarch64_neon_ld4: 13961 case Intrinsic::aarch64_neon_ld1x2: 13962 case Intrinsic::aarch64_neon_ld1x3: 13963 case Intrinsic::aarch64_neon_ld1x4: 13964 case Intrinsic::aarch64_neon_ld2lane: 13965 case Intrinsic::aarch64_neon_ld3lane: 13966 case Intrinsic::aarch64_neon_ld4lane: 13967 case Intrinsic::aarch64_neon_ld2r: 13968 case Intrinsic::aarch64_neon_ld3r: 13969 case Intrinsic::aarch64_neon_ld4r: 13970 case Intrinsic::aarch64_neon_st2: 13971 case Intrinsic::aarch64_neon_st3: 13972 case Intrinsic::aarch64_neon_st4: 13973 case Intrinsic::aarch64_neon_st1x2: 13974 case Intrinsic::aarch64_neon_st1x3: 13975 case Intrinsic::aarch64_neon_st1x4: 13976 case Intrinsic::aarch64_neon_st2lane: 13977 case Intrinsic::aarch64_neon_st3lane: 13978 case Intrinsic::aarch64_neon_st4lane: 13979 return performNEONPostLDSTCombine(N, DCI, DAG); 13980 case Intrinsic::aarch64_sve_ldnt1: 13981 return performLDNT1Combine(N, DAG); 13982 case Intrinsic::aarch64_sve_ld1rq: 13983 return performLD1ReplicateCombine<AArch64ISD::LD1RQ_MERGE_ZERO>(N, DAG); 13984 case Intrinsic::aarch64_sve_ld1ro: 13985 return performLD1ReplicateCombine<AArch64ISD::LD1RO_MERGE_ZERO>(N, DAG); 13986 case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset: 13987 return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); 13988 case Intrinsic::aarch64_sve_ldnt1_gather: 13989 return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); 13990 case Intrinsic::aarch64_sve_ldnt1_gather_index: 13991 return performGatherLoadCombine(N, DAG, 13992 AArch64ISD::GLDNT1_INDEX_MERGE_ZERO); 13993 case Intrinsic::aarch64_sve_ldnt1_gather_uxtw: 13994 return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); 13995 case Intrinsic::aarch64_sve_ld1: 13996 return performLD1Combine(N, DAG, AArch64ISD::LD1_MERGE_ZERO); 13997 case Intrinsic::aarch64_sve_ldnf1: 13998 return performLD1Combine(N, DAG, AArch64ISD::LDNF1_MERGE_ZERO); 13999 case Intrinsic::aarch64_sve_ldff1: 14000 return performLD1Combine(N, DAG, AArch64ISD::LDFF1_MERGE_ZERO); 14001 case Intrinsic::aarch64_sve_st1: 14002 return performST1Combine(N, DAG); 14003 case Intrinsic::aarch64_sve_stnt1: 14004 return performSTNT1Combine(N, DAG); 14005 case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset: 14006 return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); 14007 case Intrinsic::aarch64_sve_stnt1_scatter_uxtw: 14008 return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); 14009 case Intrinsic::aarch64_sve_stnt1_scatter: 14010 return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); 14011 case Intrinsic::aarch64_sve_stnt1_scatter_index: 14012 return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_INDEX_PRED); 14013 case Intrinsic::aarch64_sve_ld1_gather: 14014 return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_MERGE_ZERO); 14015 case Intrinsic::aarch64_sve_ld1_gather_index: 14016 return performGatherLoadCombine(N, DAG, 14017 AArch64ISD::GLD1_SCALED_MERGE_ZERO); 14018 case Intrinsic::aarch64_sve_ld1_gather_sxtw: 14019 return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_MERGE_ZERO, 14020 /*OnlyPackedOffsets=*/false); 14021 case Intrinsic::aarch64_sve_ld1_gather_uxtw: 14022 return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_MERGE_ZERO, 14023 /*OnlyPackedOffsets=*/false); 14024 case Intrinsic::aarch64_sve_ld1_gather_sxtw_index: 14025 return performGatherLoadCombine(N, DAG, 14026 AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO, 14027 /*OnlyPackedOffsets=*/false); 14028 case Intrinsic::aarch64_sve_ld1_gather_uxtw_index: 14029 return performGatherLoadCombine(N, DAG, 14030 AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO, 14031 /*OnlyPackedOffsets=*/false); 14032 case Intrinsic::aarch64_sve_ld1_gather_scalar_offset: 14033 return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_IMM_MERGE_ZERO); 14034 case Intrinsic::aarch64_sve_ldff1_gather: 14035 return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_MERGE_ZERO); 14036 case Intrinsic::aarch64_sve_ldff1_gather_index: 14037 return performGatherLoadCombine(N, DAG, 14038 AArch64ISD::GLDFF1_SCALED_MERGE_ZERO); 14039 case Intrinsic::aarch64_sve_ldff1_gather_sxtw: 14040 return performGatherLoadCombine(N, DAG, 14041 AArch64ISD::GLDFF1_SXTW_MERGE_ZERO, 14042 /*OnlyPackedOffsets=*/false); 14043 case Intrinsic::aarch64_sve_ldff1_gather_uxtw: 14044 return performGatherLoadCombine(N, DAG, 14045 AArch64ISD::GLDFF1_UXTW_MERGE_ZERO, 14046 /*OnlyPackedOffsets=*/false); 14047 case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index: 14048 return performGatherLoadCombine(N, DAG, 14049 AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO, 14050 /*OnlyPackedOffsets=*/false); 14051 case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index: 14052 return performGatherLoadCombine(N, DAG, 14053 AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO, 14054 /*OnlyPackedOffsets=*/false); 14055 case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset: 14056 return performGatherLoadCombine(N, DAG, 14057 AArch64ISD::GLDFF1_IMM_MERGE_ZERO); 14058 case Intrinsic::aarch64_sve_st1_scatter: 14059 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_PRED); 14060 case Intrinsic::aarch64_sve_st1_scatter_index: 14061 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SCALED_PRED); 14062 case Intrinsic::aarch64_sve_st1_scatter_sxtw: 14063 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_PRED, 14064 /*OnlyPackedOffsets=*/false); 14065 case Intrinsic::aarch64_sve_st1_scatter_uxtw: 14066 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_PRED, 14067 /*OnlyPackedOffsets=*/false); 14068 case Intrinsic::aarch64_sve_st1_scatter_sxtw_index: 14069 return performScatterStoreCombine(N, DAG, 14070 AArch64ISD::SST1_SXTW_SCALED_PRED, 14071 /*OnlyPackedOffsets=*/false); 14072 case Intrinsic::aarch64_sve_st1_scatter_uxtw_index: 14073 return performScatterStoreCombine(N, DAG, 14074 AArch64ISD::SST1_UXTW_SCALED_PRED, 14075 /*OnlyPackedOffsets=*/false); 14076 case Intrinsic::aarch64_sve_st1_scatter_scalar_offset: 14077 return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_IMM_PRED); 14078 case Intrinsic::aarch64_sve_tuple_get: { 14079 SDLoc DL(N); 14080 SDValue Chain = N->getOperand(0); 14081 SDValue Src1 = N->getOperand(2); 14082 SDValue Idx = N->getOperand(3); 14083 14084 uint64_t IdxConst = cast<ConstantSDNode>(Idx)->getZExtValue(); 14085 EVT ResVT = N->getValueType(0); 14086 uint64_t NumLanes = ResVT.getVectorElementCount().Min; 14087 SDValue Val = 14088 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResVT, Src1, 14089 DAG.getConstant(IdxConst * NumLanes, DL, MVT::i32)); 14090 return DAG.getMergeValues({Val, Chain}, DL); 14091 } 14092 case Intrinsic::aarch64_sve_tuple_set: { 14093 SDLoc DL(N); 14094 SDValue Chain = N->getOperand(0); 14095 SDValue Tuple = N->getOperand(2); 14096 SDValue Idx = N->getOperand(3); 14097 SDValue Vec = N->getOperand(4); 14098 14099 EVT TupleVT = Tuple.getValueType(); 14100 uint64_t TupleLanes = TupleVT.getVectorElementCount().Min; 14101 14102 uint64_t IdxConst = cast<ConstantSDNode>(Idx)->getZExtValue(); 14103 uint64_t NumLanes = Vec.getValueType().getVectorElementCount().Min; 14104 14105 if ((TupleLanes % NumLanes) != 0) 14106 report_fatal_error("invalid tuple vector!"); 14107 14108 uint64_t NumVecs = TupleLanes / NumLanes; 14109 14110 SmallVector<SDValue, 4> Opnds; 14111 for (unsigned I = 0; I < NumVecs; ++I) { 14112 if (I == IdxConst) 14113 Opnds.push_back(Vec); 14114 else { 14115 Opnds.push_back( 14116 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, Vec.getValueType(), Tuple, 14117 DAG.getConstant(I * NumLanes, DL, MVT::i32))); 14118 } 14119 } 14120 SDValue Concat = 14121 DAG.getNode(ISD::CONCAT_VECTORS, DL, Tuple.getValueType(), Opnds); 14122 return DAG.getMergeValues({Concat, Chain}, DL); 14123 } 14124 case Intrinsic::aarch64_sve_tuple_create2: 14125 case Intrinsic::aarch64_sve_tuple_create3: 14126 case Intrinsic::aarch64_sve_tuple_create4: { 14127 SDLoc DL(N); 14128 SDValue Chain = N->getOperand(0); 14129 14130 SmallVector<SDValue, 4> Opnds; 14131 for (unsigned I = 2; I < N->getNumOperands(); ++I) 14132 Opnds.push_back(N->getOperand(I)); 14133 14134 EVT VT = Opnds[0].getValueType(); 14135 EVT EltVT = VT.getVectorElementType(); 14136 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, 14137 VT.getVectorElementCount() * 14138 (N->getNumOperands() - 2)); 14139 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, DestVT, Opnds); 14140 return DAG.getMergeValues({Concat, Chain}, DL); 14141 } 14142 case Intrinsic::aarch64_sve_ld2: 14143 case Intrinsic::aarch64_sve_ld3: 14144 case Intrinsic::aarch64_sve_ld4: { 14145 SDLoc DL(N); 14146 SDValue Chain = N->getOperand(0); 14147 SDValue Mask = N->getOperand(2); 14148 SDValue BasePtr = N->getOperand(3); 14149 SDValue LoadOps[] = {Chain, Mask, BasePtr}; 14150 unsigned IntrinsicID = 14151 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 14152 SDValue Result = 14153 LowerSVEStructLoad(IntrinsicID, LoadOps, N->getValueType(0), DAG, DL); 14154 return DAG.getMergeValues({Result, Chain}, DL); 14155 } 14156 default: 14157 break; 14158 } 14159 break; 14160 case ISD::GlobalAddress: 14161 return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine()); 14162 } 14163 return SDValue(); 14164 } 14165 14166 // Check if the return value is used as only a return value, as otherwise 14167 // we can't perform a tail-call. In particular, we need to check for 14168 // target ISD nodes that are returns and any other "odd" constructs 14169 // that the generic analysis code won't necessarily catch. 14170 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, 14171 SDValue &Chain) const { 14172 if (N->getNumValues() != 1) 14173 return false; 14174 if (!N->hasNUsesOfValue(1, 0)) 14175 return false; 14176 14177 SDValue TCChain = Chain; 14178 SDNode *Copy = *N->use_begin(); 14179 if (Copy->getOpcode() == ISD::CopyToReg) { 14180 // If the copy has a glue operand, we conservatively assume it isn't safe to 14181 // perform a tail call. 14182 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == 14183 MVT::Glue) 14184 return false; 14185 TCChain = Copy->getOperand(0); 14186 } else if (Copy->getOpcode() != ISD::FP_EXTEND) 14187 return false; 14188 14189 bool HasRet = false; 14190 for (SDNode *Node : Copy->uses()) { 14191 if (Node->getOpcode() != AArch64ISD::RET_FLAG) 14192 return false; 14193 HasRet = true; 14194 } 14195 14196 if (!HasRet) 14197 return false; 14198 14199 Chain = TCChain; 14200 return true; 14201 } 14202 14203 // Return whether the an instruction can potentially be optimized to a tail 14204 // call. This will cause the optimizers to attempt to move, or duplicate, 14205 // return instructions to help enable tail call optimizations for this 14206 // instruction. 14207 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 14208 return CI->isTailCall(); 14209 } 14210 14211 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, 14212 SDValue &Offset, 14213 ISD::MemIndexedMode &AM, 14214 bool &IsInc, 14215 SelectionDAG &DAG) const { 14216 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) 14217 return false; 14218 14219 Base = Op->getOperand(0); 14220 // All of the indexed addressing mode instructions take a signed 14221 // 9 bit immediate offset. 14222 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 14223 int64_t RHSC = RHS->getSExtValue(); 14224 if (Op->getOpcode() == ISD::SUB) 14225 RHSC = -(uint64_t)RHSC; 14226 if (!isInt<9>(RHSC)) 14227 return false; 14228 IsInc = (Op->getOpcode() == ISD::ADD); 14229 Offset = Op->getOperand(1); 14230 return true; 14231 } 14232 return false; 14233 } 14234 14235 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 14236 SDValue &Offset, 14237 ISD::MemIndexedMode &AM, 14238 SelectionDAG &DAG) const { 14239 EVT VT; 14240 SDValue Ptr; 14241 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 14242 VT = LD->getMemoryVT(); 14243 Ptr = LD->getBasePtr(); 14244 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 14245 VT = ST->getMemoryVT(); 14246 Ptr = ST->getBasePtr(); 14247 } else 14248 return false; 14249 14250 bool IsInc; 14251 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) 14252 return false; 14253 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; 14254 return true; 14255 } 14256 14257 bool AArch64TargetLowering::getPostIndexedAddressParts( 14258 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, 14259 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { 14260 EVT VT; 14261 SDValue Ptr; 14262 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 14263 VT = LD->getMemoryVT(); 14264 Ptr = LD->getBasePtr(); 14265 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 14266 VT = ST->getMemoryVT(); 14267 Ptr = ST->getBasePtr(); 14268 } else 14269 return false; 14270 14271 bool IsInc; 14272 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) 14273 return false; 14274 // Post-indexing updates the base, so it's not a valid transform 14275 // if that's not the same as the load's pointer. 14276 if (Ptr != Base) 14277 return false; 14278 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; 14279 return true; 14280 } 14281 14282 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results, 14283 SelectionDAG &DAG) { 14284 SDLoc DL(N); 14285 SDValue Op = N->getOperand(0); 14286 14287 if (N->getValueType(0) != MVT::i16 || 14288 (Op.getValueType() != MVT::f16 && Op.getValueType() != MVT::bf16)) 14289 return; 14290 14291 Op = SDValue( 14292 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, 14293 DAG.getUNDEF(MVT::i32), Op, 14294 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), 14295 0); 14296 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); 14297 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); 14298 } 14299 14300 static void ReplaceReductionResults(SDNode *N, 14301 SmallVectorImpl<SDValue> &Results, 14302 SelectionDAG &DAG, unsigned InterOp, 14303 unsigned AcrossOp) { 14304 EVT LoVT, HiVT; 14305 SDValue Lo, Hi; 14306 SDLoc dl(N); 14307 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 14308 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); 14309 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); 14310 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); 14311 Results.push_back(SplitVal); 14312 } 14313 14314 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) { 14315 SDLoc DL(N); 14316 SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N); 14317 SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, 14318 DAG.getNode(ISD::SRL, DL, MVT::i128, N, 14319 DAG.getConstant(64, DL, MVT::i64))); 14320 return std::make_pair(Lo, Hi); 14321 } 14322 14323 void AArch64TargetLowering::ReplaceExtractSubVectorResults( 14324 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 14325 SDValue In = N->getOperand(0); 14326 EVT InVT = In.getValueType(); 14327 14328 // Common code will handle these just fine. 14329 if (!InVT.isScalableVector() || !InVT.isInteger()) 14330 return; 14331 14332 SDLoc DL(N); 14333 EVT VT = N->getValueType(0); 14334 14335 // The following checks bail if this is not a halving operation. 14336 14337 ElementCount ResEC = VT.getVectorElementCount(); 14338 14339 if (InVT.getVectorElementCount().Min != (ResEC.Min * 2)) 14340 return; 14341 14342 auto *CIndex = dyn_cast<ConstantSDNode>(N->getOperand(1)); 14343 if (!CIndex) 14344 return; 14345 14346 unsigned Index = CIndex->getZExtValue(); 14347 if ((Index != 0) && (Index != ResEC.Min)) 14348 return; 14349 14350 unsigned Opcode = (Index == 0) ? AArch64ISD::UUNPKLO : AArch64ISD::UUNPKHI; 14351 EVT ExtendedHalfVT = VT.widenIntegerVectorElementType(*DAG.getContext()); 14352 14353 SDValue Half = DAG.getNode(Opcode, DL, ExtendedHalfVT, N->getOperand(0)); 14354 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Half)); 14355 } 14356 14357 // Create an even/odd pair of X registers holding integer value V. 14358 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { 14359 SDLoc dl(V.getNode()); 14360 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64); 14361 SDValue VHi = DAG.getAnyExtOrTrunc( 14362 DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)), 14363 dl, MVT::i64); 14364 if (DAG.getDataLayout().isBigEndian()) 14365 std::swap (VLo, VHi); 14366 SDValue RegClass = 14367 DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32); 14368 SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32); 14369 SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32); 14370 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; 14371 return SDValue( 14372 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); 14373 } 14374 14375 static void ReplaceCMP_SWAP_128Results(SDNode *N, 14376 SmallVectorImpl<SDValue> &Results, 14377 SelectionDAG &DAG, 14378 const AArch64Subtarget *Subtarget) { 14379 assert(N->getValueType(0) == MVT::i128 && 14380 "AtomicCmpSwap on types less than 128 should be legal"); 14381 14382 if (Subtarget->hasLSE()) { 14383 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type, 14384 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG. 14385 SDValue Ops[] = { 14386 createGPRPairNode(DAG, N->getOperand(2)), // Compare value 14387 createGPRPairNode(DAG, N->getOperand(3)), // Store value 14388 N->getOperand(1), // Ptr 14389 N->getOperand(0), // Chain in 14390 }; 14391 14392 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 14393 14394 unsigned Opcode; 14395 switch (MemOp->getOrdering()) { 14396 case AtomicOrdering::Monotonic: 14397 Opcode = AArch64::CASPX; 14398 break; 14399 case AtomicOrdering::Acquire: 14400 Opcode = AArch64::CASPAX; 14401 break; 14402 case AtomicOrdering::Release: 14403 Opcode = AArch64::CASPLX; 14404 break; 14405 case AtomicOrdering::AcquireRelease: 14406 case AtomicOrdering::SequentiallyConsistent: 14407 Opcode = AArch64::CASPALX; 14408 break; 14409 default: 14410 llvm_unreachable("Unexpected ordering!"); 14411 } 14412 14413 MachineSDNode *CmpSwap = DAG.getMachineNode( 14414 Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops); 14415 DAG.setNodeMemRefs(CmpSwap, {MemOp}); 14416 14417 unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64; 14418 if (DAG.getDataLayout().isBigEndian()) 14419 std::swap(SubReg1, SubReg2); 14420 SDValue Lo = DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64, 14421 SDValue(CmpSwap, 0)); 14422 SDValue Hi = DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64, 14423 SDValue(CmpSwap, 0)); 14424 Results.push_back( 14425 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi)); 14426 Results.push_back(SDValue(CmpSwap, 1)); // Chain out 14427 return; 14428 } 14429 14430 auto Desired = splitInt128(N->getOperand(2), DAG); 14431 auto New = splitInt128(N->getOperand(3), DAG); 14432 SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second, 14433 New.first, New.second, N->getOperand(0)}; 14434 SDNode *CmpSwap = DAG.getMachineNode( 14435 AArch64::CMP_SWAP_128, SDLoc(N), 14436 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops); 14437 14438 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 14439 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp}); 14440 14441 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, 14442 SDValue(CmpSwap, 0), SDValue(CmpSwap, 1))); 14443 Results.push_back(SDValue(CmpSwap, 3)); 14444 } 14445 14446 void AArch64TargetLowering::ReplaceNodeResults( 14447 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 14448 switch (N->getOpcode()) { 14449 default: 14450 llvm_unreachable("Don't know how to custom expand this"); 14451 case ISD::BITCAST: 14452 ReplaceBITCASTResults(N, Results, DAG); 14453 return; 14454 case ISD::VECREDUCE_ADD: 14455 case ISD::VECREDUCE_SMAX: 14456 case ISD::VECREDUCE_SMIN: 14457 case ISD::VECREDUCE_UMAX: 14458 case ISD::VECREDUCE_UMIN: 14459 Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG)); 14460 return; 14461 14462 case ISD::CTPOP: 14463 Results.push_back(LowerCTPOP(SDValue(N, 0), DAG)); 14464 return; 14465 case AArch64ISD::SADDV: 14466 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); 14467 return; 14468 case AArch64ISD::UADDV: 14469 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); 14470 return; 14471 case AArch64ISD::SMINV: 14472 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); 14473 return; 14474 case AArch64ISD::UMINV: 14475 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); 14476 return; 14477 case AArch64ISD::SMAXV: 14478 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); 14479 return; 14480 case AArch64ISD::UMAXV: 14481 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); 14482 return; 14483 case ISD::FP_TO_UINT: 14484 case ISD::FP_TO_SINT: 14485 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); 14486 // Let normal code take care of it by not adding anything to Results. 14487 return; 14488 case ISD::ATOMIC_CMP_SWAP: 14489 ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget); 14490 return; 14491 case ISD::LOAD: { 14492 assert(SDValue(N, 0).getValueType() == MVT::i128 && 14493 "unexpected load's value type"); 14494 LoadSDNode *LoadNode = cast<LoadSDNode>(N); 14495 if (!LoadNode->isVolatile() || LoadNode->getMemoryVT() != MVT::i128) { 14496 // Non-volatile loads are optimized later in AArch64's load/store 14497 // optimizer. 14498 return; 14499 } 14500 14501 SDValue Result = DAG.getMemIntrinsicNode( 14502 AArch64ISD::LDP, SDLoc(N), 14503 DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}), 14504 {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(), 14505 LoadNode->getMemOperand()); 14506 14507 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, 14508 Result.getValue(0), Result.getValue(1)); 14509 Results.append({Pair, Result.getValue(2) /* Chain */}); 14510 return; 14511 } 14512 case ISD::EXTRACT_SUBVECTOR: 14513 ReplaceExtractSubVectorResults(N, Results, DAG); 14514 return; 14515 case ISD::INTRINSIC_WO_CHAIN: { 14516 EVT VT = N->getValueType(0); 14517 assert((VT == MVT::i8 || VT == MVT::i16) && 14518 "custom lowering for unexpected type"); 14519 14520 ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0)); 14521 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 14522 switch (IntID) { 14523 default: 14524 return; 14525 case Intrinsic::aarch64_sve_clasta_n: { 14526 SDLoc DL(N); 14527 auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); 14528 auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32, 14529 N->getOperand(1), Op2, N->getOperand(3)); 14530 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 14531 return; 14532 } 14533 case Intrinsic::aarch64_sve_clastb_n: { 14534 SDLoc DL(N); 14535 auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); 14536 auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32, 14537 N->getOperand(1), Op2, N->getOperand(3)); 14538 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 14539 return; 14540 } 14541 case Intrinsic::aarch64_sve_lasta: { 14542 SDLoc DL(N); 14543 auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32, 14544 N->getOperand(1), N->getOperand(2)); 14545 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 14546 return; 14547 } 14548 case Intrinsic::aarch64_sve_lastb: { 14549 SDLoc DL(N); 14550 auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32, 14551 N->getOperand(1), N->getOperand(2)); 14552 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 14553 return; 14554 } 14555 } 14556 } 14557 } 14558 } 14559 14560 bool AArch64TargetLowering::useLoadStackGuardNode() const { 14561 if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia()) 14562 return TargetLowering::useLoadStackGuardNode(); 14563 return true; 14564 } 14565 14566 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { 14567 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 14568 // reciprocal if there are three or more FDIVs. 14569 return 3; 14570 } 14571 14572 TargetLoweringBase::LegalizeTypeAction 14573 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const { 14574 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, 14575 // v4i16, v2i32 instead of to promote. 14576 if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 || 14577 VT == MVT::v1f32) 14578 return TypeWidenVector; 14579 14580 return TargetLoweringBase::getPreferredVectorAction(VT); 14581 } 14582 14583 // Loads and stores less than 128-bits are already atomic; ones above that 14584 // are doomed anyway, so defer to the default libcall and blame the OS when 14585 // things go wrong. 14586 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 14587 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); 14588 return Size == 128; 14589 } 14590 14591 // Loads and stores less than 128-bits are already atomic; ones above that 14592 // are doomed anyway, so defer to the default libcall and blame the OS when 14593 // things go wrong. 14594 TargetLowering::AtomicExpansionKind 14595 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 14596 unsigned Size = LI->getType()->getPrimitiveSizeInBits(); 14597 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; 14598 } 14599 14600 // For the real atomic operations, we have ldxr/stxr up to 128 bits, 14601 TargetLowering::AtomicExpansionKind 14602 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 14603 if (AI->isFloatingPointOperation()) 14604 return AtomicExpansionKind::CmpXChg; 14605 14606 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 14607 if (Size > 128) return AtomicExpansionKind::None; 14608 // Nand not supported in LSE. 14609 if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC; 14610 // Leave 128 bits to LLSC. 14611 return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC; 14612 } 14613 14614 TargetLowering::AtomicExpansionKind 14615 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( 14616 AtomicCmpXchgInst *AI) const { 14617 // If subtarget has LSE, leave cmpxchg intact for codegen. 14618 if (Subtarget->hasLSE()) 14619 return AtomicExpansionKind::None; 14620 // At -O0, fast-regalloc cannot cope with the live vregs necessary to 14621 // implement cmpxchg without spilling. If the address being exchanged is also 14622 // on the stack and close enough to the spill slot, this can lead to a 14623 // situation where the monitor always gets cleared and the atomic operation 14624 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. 14625 if (getTargetMachine().getOptLevel() == CodeGenOpt::None) 14626 return AtomicExpansionKind::None; 14627 return AtomicExpansionKind::LLSC; 14628 } 14629 14630 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 14631 AtomicOrdering Ord) const { 14632 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 14633 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); 14634 bool IsAcquire = isAcquireOrStronger(Ord); 14635 14636 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd 14637 // intrinsic must return {i64, i64} and we have to recombine them into a 14638 // single i128 here. 14639 if (ValTy->getPrimitiveSizeInBits() == 128) { 14640 Intrinsic::ID Int = 14641 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; 14642 Function *Ldxr = Intrinsic::getDeclaration(M, Int); 14643 14644 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 14645 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); 14646 14647 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 14648 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 14649 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 14650 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 14651 return Builder.CreateOr( 14652 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 14653 } 14654 14655 Type *Tys[] = { Addr->getType() }; 14656 Intrinsic::ID Int = 14657 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; 14658 Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys); 14659 14660 Type *EltTy = cast<PointerType>(Addr->getType())->getElementType(); 14661 14662 const DataLayout &DL = M->getDataLayout(); 14663 IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy)); 14664 Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy); 14665 14666 return Builder.CreateBitCast(Trunc, EltTy); 14667 } 14668 14669 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( 14670 IRBuilder<> &Builder) const { 14671 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 14672 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); 14673 } 14674 14675 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, 14676 Value *Val, Value *Addr, 14677 AtomicOrdering Ord) const { 14678 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 14679 bool IsRelease = isReleaseOrStronger(Ord); 14680 14681 // Since the intrinsics must have legal type, the i128 intrinsics take two 14682 // parameters: "i64, i64". We must marshal Val into the appropriate form 14683 // before the call. 14684 if (Val->getType()->getPrimitiveSizeInBits() == 128) { 14685 Intrinsic::ID Int = 14686 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; 14687 Function *Stxr = Intrinsic::getDeclaration(M, Int); 14688 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 14689 14690 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); 14691 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); 14692 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 14693 return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); 14694 } 14695 14696 Intrinsic::ID Int = 14697 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; 14698 Type *Tys[] = { Addr->getType() }; 14699 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); 14700 14701 const DataLayout &DL = M->getDataLayout(); 14702 IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType())); 14703 Val = Builder.CreateBitCast(Val, IntValTy); 14704 14705 return Builder.CreateCall(Stxr, 14706 {Builder.CreateZExtOrBitCast( 14707 Val, Stxr->getFunctionType()->getParamType(0)), 14708 Addr}); 14709 } 14710 14711 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( 14712 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { 14713 if (Ty->isArrayTy()) 14714 return true; 14715 14716 const TypeSize &TySize = Ty->getPrimitiveSizeInBits(); 14717 if (TySize.isScalable() && TySize.getKnownMinSize() > 128) 14718 return true; 14719 14720 return false; 14721 } 14722 14723 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, 14724 EVT) const { 14725 return false; 14726 } 14727 14728 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) { 14729 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 14730 Function *ThreadPointerFunc = 14731 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); 14732 return IRB.CreatePointerCast( 14733 IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc), 14734 Offset), 14735 IRB.getInt8PtrTy()->getPointerTo(0)); 14736 } 14737 14738 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const { 14739 // Android provides a fixed TLS slot for the stack cookie. See the definition 14740 // of TLS_SLOT_STACK_GUARD in 14741 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h 14742 if (Subtarget->isTargetAndroid()) 14743 return UseTlsOffset(IRB, 0x28); 14744 14745 // Fuchsia is similar. 14746 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. 14747 if (Subtarget->isTargetFuchsia()) 14748 return UseTlsOffset(IRB, -0x10); 14749 14750 return TargetLowering::getIRStackGuard(IRB); 14751 } 14752 14753 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const { 14754 // MSVC CRT provides functionalities for stack protection. 14755 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) { 14756 // MSVC CRT has a global variable holding security cookie. 14757 M.getOrInsertGlobal("__security_cookie", 14758 Type::getInt8PtrTy(M.getContext())); 14759 14760 // MSVC CRT has a function to validate security cookie. 14761 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction( 14762 "__security_check_cookie", Type::getVoidTy(M.getContext()), 14763 Type::getInt8PtrTy(M.getContext())); 14764 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) { 14765 F->setCallingConv(CallingConv::Win64); 14766 F->addAttribute(1, Attribute::AttrKind::InReg); 14767 } 14768 return; 14769 } 14770 TargetLowering::insertSSPDeclarations(M); 14771 } 14772 14773 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const { 14774 // MSVC CRT has a global variable holding security cookie. 14775 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 14776 return M.getGlobalVariable("__security_cookie"); 14777 return TargetLowering::getSDagStackGuard(M); 14778 } 14779 14780 Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const { 14781 // MSVC CRT has a function to validate security cookie. 14782 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 14783 return M.getFunction("__security_check_cookie"); 14784 return TargetLowering::getSSPStackGuardCheck(M); 14785 } 14786 14787 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 14788 // Android provides a fixed TLS slot for the SafeStack pointer. See the 14789 // definition of TLS_SLOT_SAFESTACK in 14790 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h 14791 if (Subtarget->isTargetAndroid()) 14792 return UseTlsOffset(IRB, 0x48); 14793 14794 // Fuchsia is similar. 14795 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value. 14796 if (Subtarget->isTargetFuchsia()) 14797 return UseTlsOffset(IRB, -0x8); 14798 14799 return TargetLowering::getSafeStackPointerLocation(IRB); 14800 } 14801 14802 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial( 14803 const Instruction &AndI) const { 14804 // Only sink 'and' mask to cmp use block if it is masking a single bit, since 14805 // this is likely to be fold the and/cmp/br into a single tbz instruction. It 14806 // may be beneficial to sink in other cases, but we would have to check that 14807 // the cmp would not get folded into the br to form a cbz for these to be 14808 // beneficial. 14809 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1)); 14810 if (!Mask) 14811 return false; 14812 return Mask->getValue().isPowerOf2(); 14813 } 14814 14815 bool AArch64TargetLowering:: 14816 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 14817 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 14818 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 14819 SelectionDAG &DAG) const { 14820 // Does baseline recommend not to perform the fold by default? 14821 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 14822 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG)) 14823 return false; 14824 // Else, if this is a vector shift, prefer 'shl'. 14825 return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL; 14826 } 14827 14828 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG, 14829 SDNode *N) const { 14830 if (DAG.getMachineFunction().getFunction().hasMinSize() && 14831 !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin()) 14832 return false; 14833 return true; 14834 } 14835 14836 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 14837 // Update IsSplitCSR in AArch64unctionInfo. 14838 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>(); 14839 AFI->setIsSplitCSR(true); 14840 } 14841 14842 void AArch64TargetLowering::insertCopiesSplitCSR( 14843 MachineBasicBlock *Entry, 14844 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 14845 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 14846 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 14847 if (!IStart) 14848 return; 14849 14850 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 14851 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 14852 MachineBasicBlock::iterator MBBI = Entry->begin(); 14853 for (const MCPhysReg *I = IStart; *I; ++I) { 14854 const TargetRegisterClass *RC = nullptr; 14855 if (AArch64::GPR64RegClass.contains(*I)) 14856 RC = &AArch64::GPR64RegClass; 14857 else if (AArch64::FPR64RegClass.contains(*I)) 14858 RC = &AArch64::FPR64RegClass; 14859 else 14860 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 14861 14862 Register NewVR = MRI->createVirtualRegister(RC); 14863 // Create copy from CSR to a virtual register. 14864 // FIXME: this currently does not emit CFI pseudo-instructions, it works 14865 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 14866 // nounwind. If we want to generalize this later, we may need to emit 14867 // CFI pseudo-instructions. 14868 assert(Entry->getParent()->getFunction().hasFnAttribute( 14869 Attribute::NoUnwind) && 14870 "Function should be nounwind in insertCopiesSplitCSR!"); 14871 Entry->addLiveIn(*I); 14872 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 14873 .addReg(*I); 14874 14875 // Insert the copy-back instructions right before the terminator. 14876 for (auto *Exit : Exits) 14877 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 14878 TII->get(TargetOpcode::COPY), *I) 14879 .addReg(NewVR); 14880 } 14881 } 14882 14883 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { 14884 // Integer division on AArch64 is expensive. However, when aggressively 14885 // optimizing for code size, we prefer to use a div instruction, as it is 14886 // usually smaller than the alternative sequence. 14887 // The exception to this is vector division. Since AArch64 doesn't have vector 14888 // integer division, leaving the division as-is is a loss even in terms of 14889 // size, because it will have to be scalarized, while the alternative code 14890 // sequence can be performed in vector form. 14891 bool OptSize = Attr.hasFnAttribute(Attribute::MinSize); 14892 return OptSize && !VT.isVector(); 14893 } 14894 14895 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 14896 // We want inc-of-add for scalars and sub-of-not for vectors. 14897 return VT.isScalarInteger(); 14898 } 14899 14900 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const { 14901 return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint(); 14902 } 14903 14904 unsigned 14905 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const { 14906 if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) 14907 return getPointerTy(DL).getSizeInBits(); 14908 14909 return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32; 14910 } 14911 14912 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const { 14913 MF.getFrameInfo().computeMaxCallFrameSize(MF); 14914 TargetLoweringBase::finalizeLowering(MF); 14915 } 14916 14917 // Unlike X86, we let frame lowering assign offsets to all catch objects. 14918 bool AArch64TargetLowering::needsFixedCatchObjects() const { 14919 return false; 14920 } 14921 14922 bool AArch64TargetLowering::shouldLocalize( 14923 const MachineInstr &MI, const TargetTransformInfo *TTI) const { 14924 switch (MI.getOpcode()) { 14925 case TargetOpcode::G_GLOBAL_VALUE: { 14926 // On Darwin, TLS global vars get selected into function calls, which 14927 // we don't want localized, as they can get moved into the middle of a 14928 // another call sequence. 14929 const GlobalValue &GV = *MI.getOperand(1).getGlobal(); 14930 if (GV.isThreadLocal() && Subtarget->isTargetMachO()) 14931 return false; 14932 break; 14933 } 14934 // If we legalized G_GLOBAL_VALUE into ADRP + G_ADD_LOW, mark both as being 14935 // localizable. 14936 case AArch64::ADRP: 14937 case AArch64::G_ADD_LOW: 14938 return true; 14939 default: 14940 break; 14941 } 14942 return TargetLoweringBase::shouldLocalize(MI, TTI); 14943 } 14944 14945 bool AArch64TargetLowering::fallBackToDAGISel(const Instruction &Inst) const { 14946 if (isa<ScalableVectorType>(Inst.getType())) 14947 return true; 14948 14949 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) 14950 if (isa<ScalableVectorType>(Inst.getOperand(i)->getType())) 14951 return true; 14952 14953 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) { 14954 if (isa<ScalableVectorType>(AI->getAllocatedType())) 14955 return true; 14956 } 14957 14958 return false; 14959 } 14960 14961 // Return the largest legal scalable vector type that matches VT's element type. 14962 static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT) { 14963 assert(VT.isFixedLengthVector() && 14964 DAG.getTargetLoweringInfo().isTypeLegal(VT) && 14965 "Expected legal fixed length vector!"); 14966 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { 14967 default: 14968 llvm_unreachable("unexpected element type for SVE container"); 14969 case MVT::i8: 14970 return EVT(MVT::nxv16i8); 14971 case MVT::i16: 14972 return EVT(MVT::nxv8i16); 14973 case MVT::i32: 14974 return EVT(MVT::nxv4i32); 14975 case MVT::i64: 14976 return EVT(MVT::nxv2i64); 14977 case MVT::f16: 14978 return EVT(MVT::nxv8f16); 14979 case MVT::f32: 14980 return EVT(MVT::nxv4f32); 14981 case MVT::f64: 14982 return EVT(MVT::nxv2f64); 14983 } 14984 } 14985 14986 // Return a PTRUE with active lanes corresponding to the extent of VT. 14987 static SDValue getPredicateForFixedLengthVector(SelectionDAG &DAG, SDLoc &DL, 14988 EVT VT) { 14989 assert(VT.isFixedLengthVector() && 14990 DAG.getTargetLoweringInfo().isTypeLegal(VT) && 14991 "Expected legal fixed length vector!"); 14992 14993 int PgPattern; 14994 switch (VT.getVectorNumElements()) { 14995 default: 14996 llvm_unreachable("unexpected element count for SVE predicate"); 14997 case 1: 14998 PgPattern = AArch64SVEPredPattern::vl1; 14999 break; 15000 case 2: 15001 PgPattern = AArch64SVEPredPattern::vl2; 15002 break; 15003 case 4: 15004 PgPattern = AArch64SVEPredPattern::vl4; 15005 break; 15006 case 8: 15007 PgPattern = AArch64SVEPredPattern::vl8; 15008 break; 15009 case 16: 15010 PgPattern = AArch64SVEPredPattern::vl16; 15011 break; 15012 case 32: 15013 PgPattern = AArch64SVEPredPattern::vl32; 15014 break; 15015 case 64: 15016 PgPattern = AArch64SVEPredPattern::vl64; 15017 break; 15018 case 128: 15019 PgPattern = AArch64SVEPredPattern::vl128; 15020 break; 15021 case 256: 15022 PgPattern = AArch64SVEPredPattern::vl256; 15023 break; 15024 } 15025 15026 // TODO: For vectors that are exactly getMaxSVEVectorSizeInBits big, we can 15027 // use AArch64SVEPredPattern::all, which can enable the use of unpredicated 15028 // variants of instructions when available. 15029 15030 MVT MaskVT; 15031 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { 15032 default: 15033 llvm_unreachable("unexpected element type for SVE predicate"); 15034 case MVT::i8: 15035 MaskVT = MVT::nxv16i1; 15036 break; 15037 case MVT::i16: 15038 case MVT::f16: 15039 MaskVT = MVT::nxv8i1; 15040 break; 15041 case MVT::i32: 15042 case MVT::f32: 15043 MaskVT = MVT::nxv4i1; 15044 break; 15045 case MVT::i64: 15046 case MVT::f64: 15047 MaskVT = MVT::nxv2i1; 15048 break; 15049 } 15050 15051 return DAG.getNode(AArch64ISD::PTRUE, DL, MaskVT, 15052 DAG.getTargetConstant(PgPattern, DL, MVT::i64)); 15053 } 15054 15055 static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL, 15056 EVT VT) { 15057 assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && 15058 "Expected legal scalable vector!"); 15059 auto PredTy = VT.changeVectorElementType(MVT::i1); 15060 return getPTrue(DAG, DL, PredTy, AArch64SVEPredPattern::all); 15061 } 15062 15063 static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) { 15064 if (VT.isFixedLengthVector()) 15065 return getPredicateForFixedLengthVector(DAG, DL, VT); 15066 15067 return getPredicateForScalableVector(DAG, DL, VT); 15068 } 15069 15070 // Grow V to consume an entire SVE register. 15071 static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) { 15072 assert(VT.isScalableVector() && 15073 "Expected to convert into a scalable vector!"); 15074 assert(V.getValueType().isFixedLengthVector() && 15075 "Expected a fixed length vector operand!"); 15076 SDLoc DL(V); 15077 SDValue Zero = DAG.getConstant(0, DL, MVT::i64); 15078 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 15079 } 15080 15081 // Shrink V so it's just big enough to maintain a VT's worth of data. 15082 static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) { 15083 assert(VT.isFixedLengthVector() && 15084 "Expected to convert into a fixed length vector!"); 15085 assert(V.getValueType().isScalableVector() && 15086 "Expected a scalable vector operand!"); 15087 SDLoc DL(V); 15088 SDValue Zero = DAG.getConstant(0, DL, MVT::i64); 15089 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 15090 } 15091 15092 // Convert all fixed length vector loads larger than NEON to masked_loads. 15093 SDValue AArch64TargetLowering::LowerFixedLengthVectorLoadToSVE( 15094 SDValue Op, SelectionDAG &DAG) const { 15095 auto Load = cast<LoadSDNode>(Op); 15096 15097 SDLoc DL(Op); 15098 EVT VT = Op.getValueType(); 15099 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); 15100 15101 auto NewLoad = DAG.getMaskedLoad( 15102 ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(), 15103 getPredicateForFixedLengthVector(DAG, DL, VT), DAG.getUNDEF(ContainerVT), 15104 Load->getMemoryVT(), Load->getMemOperand(), Load->getAddressingMode(), 15105 Load->getExtensionType()); 15106 15107 auto Result = convertFromScalableVector(DAG, VT, NewLoad); 15108 SDValue MergedValues[2] = {Result, Load->getChain()}; 15109 return DAG.getMergeValues(MergedValues, DL); 15110 } 15111 15112 // Convert all fixed length vector stores larger than NEON to masked_stores. 15113 SDValue AArch64TargetLowering::LowerFixedLengthVectorStoreToSVE( 15114 SDValue Op, SelectionDAG &DAG) const { 15115 auto Store = cast<StoreSDNode>(Op); 15116 15117 SDLoc DL(Op); 15118 EVT VT = Store->getValue().getValueType(); 15119 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); 15120 15121 auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue()); 15122 return DAG.getMaskedStore( 15123 Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(), 15124 getPredicateForFixedLengthVector(DAG, DL, VT), Store->getMemoryVT(), 15125 Store->getMemOperand(), Store->getAddressingMode(), 15126 Store->isTruncatingStore()); 15127 } 15128 15129 SDValue AArch64TargetLowering::LowerFixedLengthVectorTruncateToSVE( 15130 SDValue Op, SelectionDAG &DAG) const { 15131 EVT VT = Op.getValueType(); 15132 assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); 15133 15134 SDLoc DL(Op); 15135 SDValue Val = Op.getOperand(0); 15136 EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType()); 15137 Val = convertToScalableVector(DAG, ContainerVT, Val); 15138 15139 // Repeatedly truncate Val until the result is of the desired element type. 15140 switch (ContainerVT.getSimpleVT().SimpleTy) { 15141 default: 15142 llvm_unreachable("unimplemented container type"); 15143 case MVT::nxv2i64: 15144 Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv4i32, Val); 15145 Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv4i32, Val, Val); 15146 if (VT.getVectorElementType() == MVT::i32) 15147 break; 15148 LLVM_FALLTHROUGH; 15149 case MVT::nxv4i32: 15150 Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv8i16, Val); 15151 Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv8i16, Val, Val); 15152 if (VT.getVectorElementType() == MVT::i16) 15153 break; 15154 LLVM_FALLTHROUGH; 15155 case MVT::nxv8i16: 15156 Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i8, Val); 15157 Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv16i8, Val, Val); 15158 assert(VT.getVectorElementType() == MVT::i8 && "Unexpected element type!"); 15159 break; 15160 } 15161 15162 return convertFromScalableVector(DAG, VT, Val); 15163 } 15164 15165 SDValue AArch64TargetLowering::LowerToPredicatedOp(SDValue Op, 15166 SelectionDAG &DAG, 15167 unsigned NewOp) const { 15168 EVT VT = Op.getValueType(); 15169 SDLoc DL(Op); 15170 auto Pg = getPredicateForVector(DAG, DL, VT); 15171 15172 if (useSVEForFixedLengthVectorVT(VT)) { 15173 EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); 15174 15175 // Create list of operands by convereting existing ones to scalable types. 15176 SmallVector<SDValue, 4> Operands = {Pg}; 15177 for (const SDValue &V : Op->op_values()) { 15178 if (isa<CondCodeSDNode>(V)) { 15179 Operands.push_back(V); 15180 continue; 15181 } 15182 15183 assert(useSVEForFixedLengthVectorVT(V.getValueType()) && 15184 "Only fixed length vectors are supported!"); 15185 Operands.push_back(convertToScalableVector(DAG, ContainerVT, V)); 15186 } 15187 15188 auto ScalableRes = DAG.getNode(NewOp, DL, ContainerVT, Operands); 15189 return convertFromScalableVector(DAG, VT, ScalableRes); 15190 } 15191 15192 assert(VT.isScalableVector() && "Only expect to lower scalable vector op!"); 15193 15194 SmallVector<SDValue, 4> Operands = {Pg}; 15195 for (const SDValue &V : Op->op_values()) { 15196 assert((isa<CondCodeSDNode>(V) || V.getValueType().isScalableVector()) && 15197 "Only scalable vectors are supported!"); 15198 Operands.push_back(V); 15199 } 15200 15201 return DAG.getNode(NewOp, DL, VT, Operands); 15202 } 15203