1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AArch64TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64ISelLowering.h" 14 #include "AArch64CallingConvention.h" 15 #include "AArch64ExpandImm.h" 16 #include "AArch64MachineFunctionInfo.h" 17 #include "AArch64PerfectShuffle.h" 18 #include "AArch64RegisterInfo.h" 19 #include "AArch64Subtarget.h" 20 #include "MCTargetDesc/AArch64AddressingModes.h" 21 #include "Utils/AArch64BaseInfo.h" 22 #include "llvm/ADT/APFloat.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/StringSwitch.h" 31 #include "llvm/ADT/Triple.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/CodeGen/CallingConvLower.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/RuntimeLibcalls.h" 43 #include "llvm/CodeGen/SelectionDAG.h" 44 #include "llvm/CodeGen/SelectionDAGNodes.h" 45 #include "llvm/CodeGen/TargetCallingConv.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/IntrinsicsAArch64.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/OperandTraits.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/MC/MCRegisterInfo.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CodeGen.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/KnownBits.h" 76 #include "llvm/Support/MachineValueType.h" 77 #include "llvm/Support/MathExtras.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Target/TargetMachine.h" 80 #include "llvm/Target/TargetOptions.h" 81 #include <algorithm> 82 #include <bitset> 83 #include <cassert> 84 #include <cctype> 85 #include <cstdint> 86 #include <cstdlib> 87 #include <iterator> 88 #include <limits> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 using namespace llvm::PatternMatch; 95 96 #define DEBUG_TYPE "aarch64-lower" 97 98 STATISTIC(NumTailCalls, "Number of tail calls"); 99 STATISTIC(NumShiftInserts, "Number of vector shift inserts"); 100 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized"); 101 102 static cl::opt<bool> 103 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, 104 cl::desc("Allow AArch64 SLI/SRI formation"), 105 cl::init(false)); 106 107 // FIXME: The necessary dtprel relocations don't seem to be supported 108 // well in the GNU bfd and gold linkers at the moment. Therefore, by 109 // default, for now, fall back to GeneralDynamic code generation. 110 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration( 111 "aarch64-elf-ldtls-generation", cl::Hidden, 112 cl::desc("Allow AArch64 Local Dynamic TLS code generation"), 113 cl::init(false)); 114 115 static cl::opt<bool> 116 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden, 117 cl::desc("Enable AArch64 logical imm instruction " 118 "optimization"), 119 cl::init(true)); 120 121 /// Value type used for condition codes. 122 static const MVT MVT_CC = MVT::i32; 123 124 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, 125 const AArch64Subtarget &STI) 126 : TargetLowering(TM), Subtarget(&STI) { 127 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so 128 // we have to make something up. Arbitrarily, choose ZeroOrOne. 129 setBooleanContents(ZeroOrOneBooleanContent); 130 // When comparing vectors the result sets the different elements in the 131 // vector to all-one or all-zero. 132 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 133 134 // Set up the register classes. 135 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); 136 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); 137 138 if (Subtarget->hasFPARMv8()) { 139 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); 140 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); 141 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); 142 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); 143 } 144 145 if (Subtarget->hasNEON()) { 146 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); 147 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); 148 // Someone set us up the NEON. 149 addDRTypeForNEON(MVT::v2f32); 150 addDRTypeForNEON(MVT::v8i8); 151 addDRTypeForNEON(MVT::v4i16); 152 addDRTypeForNEON(MVT::v2i32); 153 addDRTypeForNEON(MVT::v1i64); 154 addDRTypeForNEON(MVT::v1f64); 155 addDRTypeForNEON(MVT::v4f16); 156 157 addQRTypeForNEON(MVT::v4f32); 158 addQRTypeForNEON(MVT::v2f64); 159 addQRTypeForNEON(MVT::v16i8); 160 addQRTypeForNEON(MVT::v8i16); 161 addQRTypeForNEON(MVT::v4i32); 162 addQRTypeForNEON(MVT::v2i64); 163 addQRTypeForNEON(MVT::v8f16); 164 } 165 166 if (Subtarget->hasSVE()) { 167 // Add legal sve predicate types 168 addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass); 169 addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass); 170 addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass); 171 addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass); 172 173 // Add legal sve data types 174 addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass); 175 addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass); 176 addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass); 177 addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass); 178 179 addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass); 180 addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass); 181 addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass); 182 addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass); 183 addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass); 184 addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass); 185 186 for (auto VT : { MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64 }) { 187 setOperationAction(ISD::SADDSAT, VT, Legal); 188 setOperationAction(ISD::UADDSAT, VT, Legal); 189 setOperationAction(ISD::SSUBSAT, VT, Legal); 190 setOperationAction(ISD::USUBSAT, VT, Legal); 191 setOperationAction(ISD::SMAX, VT, Legal); 192 setOperationAction(ISD::UMAX, VT, Legal); 193 setOperationAction(ISD::SMIN, VT, Legal); 194 setOperationAction(ISD::UMIN, VT, Legal); 195 } 196 197 for (auto VT : 198 { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8, 199 MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 }) 200 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal); 201 } 202 203 // Compute derived properties from the register classes 204 computeRegisterProperties(Subtarget->getRegisterInfo()); 205 206 // Provide all sorts of operation actions 207 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 208 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 209 setOperationAction(ISD::SETCC, MVT::i32, Custom); 210 setOperationAction(ISD::SETCC, MVT::i64, Custom); 211 setOperationAction(ISD::SETCC, MVT::f16, Custom); 212 setOperationAction(ISD::SETCC, MVT::f32, Custom); 213 setOperationAction(ISD::SETCC, MVT::f64, Custom); 214 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 215 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 216 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 217 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 218 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 219 setOperationAction(ISD::BR_CC, MVT::f16, Custom); 220 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 221 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 222 setOperationAction(ISD::SELECT, MVT::i32, Custom); 223 setOperationAction(ISD::SELECT, MVT::i64, Custom); 224 setOperationAction(ISD::SELECT, MVT::f16, Custom); 225 setOperationAction(ISD::SELECT, MVT::f32, Custom); 226 setOperationAction(ISD::SELECT, MVT::f64, Custom); 227 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 228 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 229 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); 230 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 231 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 232 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 233 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 234 235 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 236 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 237 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 238 239 setOperationAction(ISD::FREM, MVT::f32, Expand); 240 setOperationAction(ISD::FREM, MVT::f64, Expand); 241 setOperationAction(ISD::FREM, MVT::f80, Expand); 242 243 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 244 245 // Custom lowering hooks are needed for XOR 246 // to fold it into CSINC/CSINV. 247 setOperationAction(ISD::XOR, MVT::i32, Custom); 248 setOperationAction(ISD::XOR, MVT::i64, Custom); 249 250 // Virtually no operation on f128 is legal, but LLVM can't expand them when 251 // there's a valid register class, so we need custom operations in most cases. 252 setOperationAction(ISD::FABS, MVT::f128, Expand); 253 setOperationAction(ISD::FADD, MVT::f128, Custom); 254 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 255 setOperationAction(ISD::FCOS, MVT::f128, Expand); 256 setOperationAction(ISD::FDIV, MVT::f128, Custom); 257 setOperationAction(ISD::FMA, MVT::f128, Expand); 258 setOperationAction(ISD::FMUL, MVT::f128, Custom); 259 setOperationAction(ISD::FNEG, MVT::f128, Expand); 260 setOperationAction(ISD::FPOW, MVT::f128, Expand); 261 setOperationAction(ISD::FREM, MVT::f128, Expand); 262 setOperationAction(ISD::FRINT, MVT::f128, Expand); 263 setOperationAction(ISD::FSIN, MVT::f128, Expand); 264 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 265 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 266 setOperationAction(ISD::FSUB, MVT::f128, Custom); 267 setOperationAction(ISD::FTRUNC, MVT::f128, Expand); 268 setOperationAction(ISD::SETCC, MVT::f128, Custom); 269 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 270 setOperationAction(ISD::SELECT, MVT::f128, Custom); 271 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 272 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 273 274 // Lowering for many of the conversions is actually specified by the non-f128 275 // type. The LowerXXX function will be trivial when f128 isn't involved. 276 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 277 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 278 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); 279 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 280 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 281 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); 282 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 283 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 284 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); 285 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 286 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 287 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); 288 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 289 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 290 291 // Variable arguments. 292 setOperationAction(ISD::VASTART, MVT::Other, Custom); 293 setOperationAction(ISD::VAARG, MVT::Other, Custom); 294 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 295 setOperationAction(ISD::VAEND, MVT::Other, Expand); 296 297 // Variable-sized objects. 298 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 299 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 300 301 if (Subtarget->isTargetWindows()) 302 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 303 else 304 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 305 306 // Constant pool entries 307 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 308 309 // BlockAddress 310 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 311 312 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. 313 setOperationAction(ISD::ADDC, MVT::i32, Custom); 314 setOperationAction(ISD::ADDE, MVT::i32, Custom); 315 setOperationAction(ISD::SUBC, MVT::i32, Custom); 316 setOperationAction(ISD::SUBE, MVT::i32, Custom); 317 setOperationAction(ISD::ADDC, MVT::i64, Custom); 318 setOperationAction(ISD::ADDE, MVT::i64, Custom); 319 setOperationAction(ISD::SUBC, MVT::i64, Custom); 320 setOperationAction(ISD::SUBE, MVT::i64, Custom); 321 322 // AArch64 lacks both left-rotate and popcount instructions. 323 setOperationAction(ISD::ROTL, MVT::i32, Expand); 324 setOperationAction(ISD::ROTL, MVT::i64, Expand); 325 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 326 setOperationAction(ISD::ROTL, VT, Expand); 327 setOperationAction(ISD::ROTR, VT, Expand); 328 } 329 330 // AArch64 doesn't have {U|S}MUL_LOHI. 331 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 332 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 333 334 setOperationAction(ISD::CTPOP, MVT::i32, Custom); 335 setOperationAction(ISD::CTPOP, MVT::i64, Custom); 336 337 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 338 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 339 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 340 setOperationAction(ISD::SDIVREM, VT, Expand); 341 setOperationAction(ISD::UDIVREM, VT, Expand); 342 } 343 setOperationAction(ISD::SREM, MVT::i32, Expand); 344 setOperationAction(ISD::SREM, MVT::i64, Expand); 345 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 346 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 347 setOperationAction(ISD::UREM, MVT::i32, Expand); 348 setOperationAction(ISD::UREM, MVT::i64, Expand); 349 350 // Custom lower Add/Sub/Mul with overflow. 351 setOperationAction(ISD::SADDO, MVT::i32, Custom); 352 setOperationAction(ISD::SADDO, MVT::i64, Custom); 353 setOperationAction(ISD::UADDO, MVT::i32, Custom); 354 setOperationAction(ISD::UADDO, MVT::i64, Custom); 355 setOperationAction(ISD::SSUBO, MVT::i32, Custom); 356 setOperationAction(ISD::SSUBO, MVT::i64, Custom); 357 setOperationAction(ISD::USUBO, MVT::i32, Custom); 358 setOperationAction(ISD::USUBO, MVT::i64, Custom); 359 setOperationAction(ISD::SMULO, MVT::i32, Custom); 360 setOperationAction(ISD::SMULO, MVT::i64, Custom); 361 setOperationAction(ISD::UMULO, MVT::i32, Custom); 362 setOperationAction(ISD::UMULO, MVT::i64, Custom); 363 364 setOperationAction(ISD::FSIN, MVT::f32, Expand); 365 setOperationAction(ISD::FSIN, MVT::f64, Expand); 366 setOperationAction(ISD::FCOS, MVT::f32, Expand); 367 setOperationAction(ISD::FCOS, MVT::f64, Expand); 368 setOperationAction(ISD::FPOW, MVT::f32, Expand); 369 setOperationAction(ISD::FPOW, MVT::f64, Expand); 370 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 371 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 372 if (Subtarget->hasFullFP16()) 373 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom); 374 else 375 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); 376 377 setOperationAction(ISD::FREM, MVT::f16, Promote); 378 setOperationAction(ISD::FREM, MVT::v4f16, Expand); 379 setOperationAction(ISD::FREM, MVT::v8f16, Expand); 380 setOperationAction(ISD::FPOW, MVT::f16, Promote); 381 setOperationAction(ISD::FPOW, MVT::v4f16, Expand); 382 setOperationAction(ISD::FPOW, MVT::v8f16, Expand); 383 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 384 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand); 385 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand); 386 setOperationAction(ISD::FCOS, MVT::f16, Promote); 387 setOperationAction(ISD::FCOS, MVT::v4f16, Expand); 388 setOperationAction(ISD::FCOS, MVT::v8f16, Expand); 389 setOperationAction(ISD::FSIN, MVT::f16, Promote); 390 setOperationAction(ISD::FSIN, MVT::v4f16, Expand); 391 setOperationAction(ISD::FSIN, MVT::v8f16, Expand); 392 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 393 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand); 394 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand); 395 setOperationAction(ISD::FEXP, MVT::f16, Promote); 396 setOperationAction(ISD::FEXP, MVT::v4f16, Expand); 397 setOperationAction(ISD::FEXP, MVT::v8f16, Expand); 398 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 399 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand); 400 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand); 401 setOperationAction(ISD::FLOG, MVT::f16, Promote); 402 setOperationAction(ISD::FLOG, MVT::v4f16, Expand); 403 setOperationAction(ISD::FLOG, MVT::v8f16, Expand); 404 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 405 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand); 406 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand); 407 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 408 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand); 409 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand); 410 411 if (!Subtarget->hasFullFP16()) { 412 setOperationAction(ISD::SELECT, MVT::f16, Promote); 413 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); 414 setOperationAction(ISD::SETCC, MVT::f16, Promote); 415 setOperationAction(ISD::BR_CC, MVT::f16, Promote); 416 setOperationAction(ISD::FADD, MVT::f16, Promote); 417 setOperationAction(ISD::FSUB, MVT::f16, Promote); 418 setOperationAction(ISD::FMUL, MVT::f16, Promote); 419 setOperationAction(ISD::FDIV, MVT::f16, Promote); 420 setOperationAction(ISD::FMA, MVT::f16, Promote); 421 setOperationAction(ISD::FNEG, MVT::f16, Promote); 422 setOperationAction(ISD::FABS, MVT::f16, Promote); 423 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 424 setOperationAction(ISD::FSQRT, MVT::f16, Promote); 425 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 426 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 427 setOperationAction(ISD::FRINT, MVT::f16, Promote); 428 setOperationAction(ISD::FROUND, MVT::f16, Promote); 429 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 430 setOperationAction(ISD::FMINNUM, MVT::f16, Promote); 431 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); 432 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); 433 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); 434 435 // promote v4f16 to v4f32 when that is known to be safe. 436 setOperationAction(ISD::FADD, MVT::v4f16, Promote); 437 setOperationAction(ISD::FSUB, MVT::v4f16, Promote); 438 setOperationAction(ISD::FMUL, MVT::v4f16, Promote); 439 setOperationAction(ISD::FDIV, MVT::v4f16, Promote); 440 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); 441 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); 442 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); 443 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); 444 445 setOperationAction(ISD::FABS, MVT::v4f16, Expand); 446 setOperationAction(ISD::FNEG, MVT::v4f16, Expand); 447 setOperationAction(ISD::FROUND, MVT::v4f16, Expand); 448 setOperationAction(ISD::FMA, MVT::v4f16, Expand); 449 setOperationAction(ISD::SETCC, MVT::v4f16, Expand); 450 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); 451 setOperationAction(ISD::SELECT, MVT::v4f16, Expand); 452 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); 453 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); 454 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); 455 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); 456 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); 457 setOperationAction(ISD::FRINT, MVT::v4f16, Expand); 458 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); 459 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); 460 461 setOperationAction(ISD::FABS, MVT::v8f16, Expand); 462 setOperationAction(ISD::FADD, MVT::v8f16, Expand); 463 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); 464 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); 465 setOperationAction(ISD::FDIV, MVT::v8f16, Expand); 466 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); 467 setOperationAction(ISD::FMA, MVT::v8f16, Expand); 468 setOperationAction(ISD::FMUL, MVT::v8f16, Expand); 469 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); 470 setOperationAction(ISD::FNEG, MVT::v8f16, Expand); 471 setOperationAction(ISD::FROUND, MVT::v8f16, Expand); 472 setOperationAction(ISD::FRINT, MVT::v8f16, Expand); 473 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); 474 setOperationAction(ISD::FSUB, MVT::v8f16, Expand); 475 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); 476 setOperationAction(ISD::SETCC, MVT::v8f16, Expand); 477 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); 478 setOperationAction(ISD::SELECT, MVT::v8f16, Expand); 479 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); 480 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); 481 } 482 483 // AArch64 has implementations of a lot of rounding-like FP operations. 484 for (MVT Ty : {MVT::f32, MVT::f64}) { 485 setOperationAction(ISD::FFLOOR, Ty, Legal); 486 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 487 setOperationAction(ISD::FCEIL, Ty, Legal); 488 setOperationAction(ISD::FRINT, Ty, Legal); 489 setOperationAction(ISD::FTRUNC, Ty, Legal); 490 setOperationAction(ISD::FROUND, Ty, Legal); 491 setOperationAction(ISD::FMINNUM, Ty, Legal); 492 setOperationAction(ISD::FMAXNUM, Ty, Legal); 493 setOperationAction(ISD::FMINIMUM, Ty, Legal); 494 setOperationAction(ISD::FMAXIMUM, Ty, Legal); 495 setOperationAction(ISD::LROUND, Ty, Legal); 496 setOperationAction(ISD::LLROUND, Ty, Legal); 497 setOperationAction(ISD::LRINT, Ty, Legal); 498 setOperationAction(ISD::LLRINT, Ty, Legal); 499 } 500 501 if (Subtarget->hasFullFP16()) { 502 setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal); 503 setOperationAction(ISD::FFLOOR, MVT::f16, Legal); 504 setOperationAction(ISD::FCEIL, MVT::f16, Legal); 505 setOperationAction(ISD::FRINT, MVT::f16, Legal); 506 setOperationAction(ISD::FTRUNC, MVT::f16, Legal); 507 setOperationAction(ISD::FROUND, MVT::f16, Legal); 508 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 509 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 510 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal); 511 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal); 512 } 513 514 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 515 516 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 517 518 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); 519 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 520 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); 521 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 522 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); 523 524 // 128-bit loads and stores can be done without expanding 525 setOperationAction(ISD::LOAD, MVT::i128, Custom); 526 setOperationAction(ISD::STORE, MVT::i128, Custom); 527 528 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0. 529 // This requires the Performance Monitors extension. 530 if (Subtarget->hasPerfMon()) 531 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); 532 533 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && 534 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { 535 // Issue __sincos_stret if available. 536 setOperationAction(ISD::FSINCOS, MVT::f64, Custom); 537 setOperationAction(ISD::FSINCOS, MVT::f32, Custom); 538 } else { 539 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 540 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 541 } 542 543 if (Subtarget->getTargetTriple().isOSMSVCRT()) { 544 // MSVCRT doesn't have powi; fall back to pow 545 setLibcallName(RTLIB::POWI_F32, nullptr); 546 setLibcallName(RTLIB::POWI_F64, nullptr); 547 } 548 549 // Make floating-point constants legal for the large code model, so they don't 550 // become loads from the constant pool. 551 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { 552 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 553 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 554 } 555 556 // AArch64 does not have floating-point extending loads, i1 sign-extending 557 // load, floating-point truncating stores, or v2i32->v2i16 truncating store. 558 for (MVT VT : MVT::fp_valuetypes()) { 559 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 560 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 561 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 562 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 563 } 564 for (MVT VT : MVT::integer_valuetypes()) 565 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); 566 567 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 568 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 569 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 570 setTruncStoreAction(MVT::f128, MVT::f80, Expand); 571 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 572 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 573 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 574 575 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 576 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 577 578 // Indexed loads and stores are supported. 579 for (unsigned im = (unsigned)ISD::PRE_INC; 580 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 581 setIndexedLoadAction(im, MVT::i8, Legal); 582 setIndexedLoadAction(im, MVT::i16, Legal); 583 setIndexedLoadAction(im, MVT::i32, Legal); 584 setIndexedLoadAction(im, MVT::i64, Legal); 585 setIndexedLoadAction(im, MVT::f64, Legal); 586 setIndexedLoadAction(im, MVT::f32, Legal); 587 setIndexedLoadAction(im, MVT::f16, Legal); 588 setIndexedStoreAction(im, MVT::i8, Legal); 589 setIndexedStoreAction(im, MVT::i16, Legal); 590 setIndexedStoreAction(im, MVT::i32, Legal); 591 setIndexedStoreAction(im, MVT::i64, Legal); 592 setIndexedStoreAction(im, MVT::f64, Legal); 593 setIndexedStoreAction(im, MVT::f32, Legal); 594 setIndexedStoreAction(im, MVT::f16, Legal); 595 } 596 597 // Trap. 598 setOperationAction(ISD::TRAP, MVT::Other, Legal); 599 if (Subtarget->isTargetWindows()) 600 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 601 602 // We combine OR nodes for bitfield operations. 603 setTargetDAGCombine(ISD::OR); 604 // Try to create BICs for vector ANDs. 605 setTargetDAGCombine(ISD::AND); 606 607 // Vector add and sub nodes may conceal a high-half opportunity. 608 // Also, try to fold ADD into CSINC/CSINV.. 609 setTargetDAGCombine(ISD::ADD); 610 setTargetDAGCombine(ISD::SUB); 611 setTargetDAGCombine(ISD::SRL); 612 setTargetDAGCombine(ISD::XOR); 613 setTargetDAGCombine(ISD::SINT_TO_FP); 614 setTargetDAGCombine(ISD::UINT_TO_FP); 615 616 setTargetDAGCombine(ISD::FP_TO_SINT); 617 setTargetDAGCombine(ISD::FP_TO_UINT); 618 setTargetDAGCombine(ISD::FDIV); 619 620 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 621 622 setTargetDAGCombine(ISD::ANY_EXTEND); 623 setTargetDAGCombine(ISD::ZERO_EXTEND); 624 setTargetDAGCombine(ISD::SIGN_EXTEND); 625 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 626 setTargetDAGCombine(ISD::CONCAT_VECTORS); 627 setTargetDAGCombine(ISD::STORE); 628 if (Subtarget->supportsAddressTopByteIgnored()) 629 setTargetDAGCombine(ISD::LOAD); 630 631 setTargetDAGCombine(ISD::MUL); 632 633 setTargetDAGCombine(ISD::SELECT); 634 setTargetDAGCombine(ISD::VSELECT); 635 636 setTargetDAGCombine(ISD::INTRINSIC_VOID); 637 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 638 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 639 640 setTargetDAGCombine(ISD::GlobalAddress); 641 642 // In case of strict alignment, avoid an excessive number of byte wide stores. 643 MaxStoresPerMemsetOptSize = 8; 644 MaxStoresPerMemset = Subtarget->requiresStrictAlign() 645 ? MaxStoresPerMemsetOptSize : 32; 646 647 MaxGluedStoresPerMemcpy = 4; 648 MaxStoresPerMemcpyOptSize = 4; 649 MaxStoresPerMemcpy = Subtarget->requiresStrictAlign() 650 ? MaxStoresPerMemcpyOptSize : 16; 651 652 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4; 653 654 MaxLoadsPerMemcmpOptSize = 4; 655 MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign() 656 ? MaxLoadsPerMemcmpOptSize : 8; 657 658 setStackPointerRegisterToSaveRestore(AArch64::SP); 659 660 setSchedulingPreference(Sched::Hybrid); 661 662 EnableExtLdPromotion = true; 663 664 // Set required alignment. 665 setMinFunctionAlignment(Align(4)); 666 // Set preferred alignments. 667 setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment())); 668 setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment())); 669 670 // Only change the limit for entries in a jump table if specified by 671 // the sub target, but not at the command line. 672 unsigned MaxJT = STI.getMaximumJumpTableSize(); 673 if (MaxJT && getMaximumJumpTableSize() == UINT_MAX) 674 setMaximumJumpTableSize(MaxJT); 675 676 setHasExtractBitsInsn(true); 677 678 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 679 680 if (Subtarget->hasNEON()) { 681 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to 682 // silliness like this: 683 setOperationAction(ISD::FABS, MVT::v1f64, Expand); 684 setOperationAction(ISD::FADD, MVT::v1f64, Expand); 685 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); 686 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); 687 setOperationAction(ISD::FCOS, MVT::v1f64, Expand); 688 setOperationAction(ISD::FDIV, MVT::v1f64, Expand); 689 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); 690 setOperationAction(ISD::FMA, MVT::v1f64, Expand); 691 setOperationAction(ISD::FMUL, MVT::v1f64, Expand); 692 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); 693 setOperationAction(ISD::FNEG, MVT::v1f64, Expand); 694 setOperationAction(ISD::FPOW, MVT::v1f64, Expand); 695 setOperationAction(ISD::FREM, MVT::v1f64, Expand); 696 setOperationAction(ISD::FROUND, MVT::v1f64, Expand); 697 setOperationAction(ISD::FRINT, MVT::v1f64, Expand); 698 setOperationAction(ISD::FSIN, MVT::v1f64, Expand); 699 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); 700 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); 701 setOperationAction(ISD::FSUB, MVT::v1f64, Expand); 702 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); 703 setOperationAction(ISD::SETCC, MVT::v1f64, Expand); 704 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); 705 setOperationAction(ISD::SELECT, MVT::v1f64, Expand); 706 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); 707 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); 708 709 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); 710 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); 711 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); 712 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); 713 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); 714 715 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 716 717 // AArch64 doesn't have a direct vector ->f32 conversion instructions for 718 // elements smaller than i32, so promote the input to i32 first. 719 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32); 720 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32); 721 // i8 vector elements also need promotion to i32 for v8i8 722 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32); 723 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32); 724 // Similarly, there is no direct i32 -> f64 vector conversion instruction. 725 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); 726 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); 727 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); 728 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); 729 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the 730 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 731 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom); 732 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); 733 734 if (Subtarget->hasFullFP16()) { 735 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 736 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 737 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom); 738 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); 739 } else { 740 // when AArch64 doesn't have fullfp16 support, promote the input 741 // to i32 first. 742 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32); 743 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32); 744 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32); 745 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32); 746 } 747 748 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); 749 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); 750 751 // AArch64 doesn't have MUL.2d: 752 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 753 // Custom handling for some quad-vector types to detect MULL. 754 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 755 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 756 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 757 758 for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, 759 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { 760 // Vector reductions 761 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 762 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 763 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 764 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 765 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 766 767 // Saturates 768 setOperationAction(ISD::SADDSAT, VT, Legal); 769 setOperationAction(ISD::UADDSAT, VT, Legal); 770 setOperationAction(ISD::SSUBSAT, VT, Legal); 771 setOperationAction(ISD::USUBSAT, VT, Legal); 772 } 773 for (MVT VT : { MVT::v4f16, MVT::v2f32, 774 MVT::v8f16, MVT::v4f32, MVT::v2f64 }) { 775 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 776 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 777 } 778 779 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); 780 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 781 // Likewise, narrowing and extending vector loads/stores aren't handled 782 // directly. 783 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 784 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 785 786 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) { 787 setOperationAction(ISD::MULHS, VT, Legal); 788 setOperationAction(ISD::MULHU, VT, Legal); 789 } else { 790 setOperationAction(ISD::MULHS, VT, Expand); 791 setOperationAction(ISD::MULHU, VT, Expand); 792 } 793 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 794 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 795 796 setOperationAction(ISD::BSWAP, VT, Expand); 797 setOperationAction(ISD::CTTZ, VT, Expand); 798 799 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 800 setTruncStoreAction(VT, InnerVT, Expand); 801 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 802 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 803 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 804 } 805 } 806 807 // AArch64 has implementations of a lot of rounding-like FP operations. 808 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) { 809 setOperationAction(ISD::FFLOOR, Ty, Legal); 810 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 811 setOperationAction(ISD::FCEIL, Ty, Legal); 812 setOperationAction(ISD::FRINT, Ty, Legal); 813 setOperationAction(ISD::FTRUNC, Ty, Legal); 814 setOperationAction(ISD::FROUND, Ty, Legal); 815 } 816 817 if (Subtarget->hasFullFP16()) { 818 for (MVT Ty : {MVT::v4f16, MVT::v8f16}) { 819 setOperationAction(ISD::FFLOOR, Ty, Legal); 820 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 821 setOperationAction(ISD::FCEIL, Ty, Legal); 822 setOperationAction(ISD::FRINT, Ty, Legal); 823 setOperationAction(ISD::FTRUNC, Ty, Legal); 824 setOperationAction(ISD::FROUND, Ty, Legal); 825 } 826 } 827 828 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom); 829 } 830 831 if (Subtarget->hasSVE()) { 832 // FIXME: Add custom lowering of MLOAD to handle different passthrus (not a 833 // splat of 0 or undef) once vector selects supported in SVE codegen. See 834 // D68877 for more details. 835 for (MVT VT : MVT::integer_scalable_vector_valuetypes()) { 836 if (isTypeLegal(VT)) 837 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 838 } 839 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 840 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 841 } 842 843 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive(); 844 } 845 846 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) { 847 assert(VT.isVector() && "VT should be a vector type"); 848 849 if (VT.isFloatingPoint()) { 850 MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT(); 851 setOperationPromotedToType(ISD::LOAD, VT, PromoteTo); 852 setOperationPromotedToType(ISD::STORE, VT, PromoteTo); 853 } 854 855 // Mark vector float intrinsics as expand. 856 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { 857 setOperationAction(ISD::FSIN, VT, Expand); 858 setOperationAction(ISD::FCOS, VT, Expand); 859 setOperationAction(ISD::FPOW, VT, Expand); 860 setOperationAction(ISD::FLOG, VT, Expand); 861 setOperationAction(ISD::FLOG2, VT, Expand); 862 setOperationAction(ISD::FLOG10, VT, Expand); 863 setOperationAction(ISD::FEXP, VT, Expand); 864 setOperationAction(ISD::FEXP2, VT, Expand); 865 866 // But we do support custom-lowering for FCOPYSIGN. 867 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 868 } 869 870 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 871 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 872 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 873 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 874 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 875 setOperationAction(ISD::SRA, VT, Custom); 876 setOperationAction(ISD::SRL, VT, Custom); 877 setOperationAction(ISD::SHL, VT, Custom); 878 setOperationAction(ISD::OR, VT, Custom); 879 setOperationAction(ISD::SETCC, VT, Custom); 880 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); 881 882 setOperationAction(ISD::SELECT, VT, Expand); 883 setOperationAction(ISD::SELECT_CC, VT, Expand); 884 setOperationAction(ISD::VSELECT, VT, Expand); 885 for (MVT InnerVT : MVT::all_valuetypes()) 886 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); 887 888 // CNT supports only B element sizes, then use UADDLP to widen. 889 if (VT != MVT::v8i8 && VT != MVT::v16i8) 890 setOperationAction(ISD::CTPOP, VT, Custom); 891 892 setOperationAction(ISD::UDIV, VT, Expand); 893 setOperationAction(ISD::SDIV, VT, Expand); 894 setOperationAction(ISD::UREM, VT, Expand); 895 setOperationAction(ISD::SREM, VT, Expand); 896 setOperationAction(ISD::FREM, VT, Expand); 897 898 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 899 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 900 901 if (!VT.isFloatingPoint()) 902 setOperationAction(ISD::ABS, VT, Legal); 903 904 // [SU][MIN|MAX] are available for all NEON types apart from i64. 905 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) 906 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 907 setOperationAction(Opcode, VT, Legal); 908 909 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types. 910 if (VT.isFloatingPoint() && 911 (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16())) 912 for (unsigned Opcode : 913 {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM}) 914 setOperationAction(Opcode, VT, Legal); 915 916 if (Subtarget->isLittleEndian()) { 917 for (unsigned im = (unsigned)ISD::PRE_INC; 918 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 919 setIndexedLoadAction(im, VT, Legal); 920 setIndexedStoreAction(im, VT, Legal); 921 } 922 } 923 } 924 925 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { 926 addRegisterClass(VT, &AArch64::FPR64RegClass); 927 addTypeForNEON(VT, MVT::v2i32); 928 } 929 930 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { 931 addRegisterClass(VT, &AArch64::FPR128RegClass); 932 addTypeForNEON(VT, MVT::v4i32); 933 } 934 935 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 936 EVT VT) const { 937 if (!VT.isVector()) 938 return MVT::i32; 939 return VT.changeVectorElementTypeToInteger(); 940 } 941 942 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm, 943 const APInt &Demanded, 944 TargetLowering::TargetLoweringOpt &TLO, 945 unsigned NewOpc) { 946 uint64_t OldImm = Imm, NewImm, Enc; 947 uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask; 948 949 // Return if the immediate is already all zeros, all ones, a bimm32 or a 950 // bimm64. 951 if (Imm == 0 || Imm == Mask || 952 AArch64_AM::isLogicalImmediate(Imm & Mask, Size)) 953 return false; 954 955 unsigned EltSize = Size; 956 uint64_t DemandedBits = Demanded.getZExtValue(); 957 958 // Clear bits that are not demanded. 959 Imm &= DemandedBits; 960 961 while (true) { 962 // The goal here is to set the non-demanded bits in a way that minimizes 963 // the number of switching between 0 and 1. In order to achieve this goal, 964 // we set the non-demanded bits to the value of the preceding demanded bits. 965 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a 966 // non-demanded bit), we copy bit0 (1) to the least significant 'x', 967 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'. 968 // The final result is 0b11000011. 969 uint64_t NonDemandedBits = ~DemandedBits; 970 uint64_t InvertedImm = ~Imm & DemandedBits; 971 uint64_t RotatedImm = 972 ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) & 973 NonDemandedBits; 974 uint64_t Sum = RotatedImm + NonDemandedBits; 975 bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1)); 976 uint64_t Ones = (Sum + Carry) & NonDemandedBits; 977 NewImm = (Imm | Ones) & Mask; 978 979 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate 980 // or all-ones or all-zeros, in which case we can stop searching. Otherwise, 981 // we halve the element size and continue the search. 982 if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask))) 983 break; 984 985 // We cannot shrink the element size any further if it is 2-bits. 986 if (EltSize == 2) 987 return false; 988 989 EltSize /= 2; 990 Mask >>= EltSize; 991 uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize; 992 993 // Return if there is mismatch in any of the demanded bits of Imm and Hi. 994 if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0) 995 return false; 996 997 // Merge the upper and lower halves of Imm and DemandedBits. 998 Imm |= Hi; 999 DemandedBits |= DemandedBitsHi; 1000 } 1001 1002 ++NumOptimizedImms; 1003 1004 // Replicate the element across the register width. 1005 while (EltSize < Size) { 1006 NewImm |= NewImm << EltSize; 1007 EltSize *= 2; 1008 } 1009 1010 (void)OldImm; 1011 assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 && 1012 "demanded bits should never be altered"); 1013 assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm"); 1014 1015 // Create the new constant immediate node. 1016 EVT VT = Op.getValueType(); 1017 SDLoc DL(Op); 1018 SDValue New; 1019 1020 // If the new constant immediate is all-zeros or all-ones, let the target 1021 // independent DAG combine optimize this node. 1022 if (NewImm == 0 || NewImm == OrigMask) { 1023 New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0), 1024 TLO.DAG.getConstant(NewImm, DL, VT)); 1025 // Otherwise, create a machine node so that target independent DAG combine 1026 // doesn't undo this optimization. 1027 } else { 1028 Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size); 1029 SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT); 1030 New = SDValue( 1031 TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0); 1032 } 1033 1034 return TLO.CombineTo(Op, New); 1035 } 1036 1037 bool AArch64TargetLowering::targetShrinkDemandedConstant( 1038 SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const { 1039 // Delay this optimization to as late as possible. 1040 if (!TLO.LegalOps) 1041 return false; 1042 1043 if (!EnableOptimizeLogicalImm) 1044 return false; 1045 1046 EVT VT = Op.getValueType(); 1047 if (VT.isVector()) 1048 return false; 1049 1050 unsigned Size = VT.getSizeInBits(); 1051 assert((Size == 32 || Size == 64) && 1052 "i32 or i64 is expected after legalization."); 1053 1054 // Exit early if we demand all bits. 1055 if (Demanded.countPopulation() == Size) 1056 return false; 1057 1058 unsigned NewOpc; 1059 switch (Op.getOpcode()) { 1060 default: 1061 return false; 1062 case ISD::AND: 1063 NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri; 1064 break; 1065 case ISD::OR: 1066 NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri; 1067 break; 1068 case ISD::XOR: 1069 NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri; 1070 break; 1071 } 1072 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1073 if (!C) 1074 return false; 1075 uint64_t Imm = C->getZExtValue(); 1076 return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc); 1077 } 1078 1079 /// computeKnownBitsForTargetNode - Determine which of the bits specified in 1080 /// Mask are known to be either zero or one and return them Known. 1081 void AArch64TargetLowering::computeKnownBitsForTargetNode( 1082 const SDValue Op, KnownBits &Known, 1083 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { 1084 switch (Op.getOpcode()) { 1085 default: 1086 break; 1087 case AArch64ISD::CSEL: { 1088 KnownBits Known2; 1089 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 1090 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 1091 Known.Zero &= Known2.Zero; 1092 Known.One &= Known2.One; 1093 break; 1094 } 1095 case AArch64ISD::LOADgot: 1096 case AArch64ISD::ADDlow: { 1097 if (!Subtarget->isTargetILP32()) 1098 break; 1099 // In ILP32 mode all valid pointers are in the low 4GB of the address-space. 1100 Known.Zero = APInt::getHighBitsSet(64, 32); 1101 break; 1102 } 1103 case ISD::INTRINSIC_W_CHAIN: { 1104 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); 1105 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 1106 switch (IntID) { 1107 default: return; 1108 case Intrinsic::aarch64_ldaxr: 1109 case Intrinsic::aarch64_ldxr: { 1110 unsigned BitWidth = Known.getBitWidth(); 1111 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); 1112 unsigned MemBits = VT.getScalarSizeInBits(); 1113 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 1114 return; 1115 } 1116 } 1117 break; 1118 } 1119 case ISD::INTRINSIC_WO_CHAIN: 1120 case ISD::INTRINSIC_VOID: { 1121 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1122 switch (IntNo) { 1123 default: 1124 break; 1125 case Intrinsic::aarch64_neon_umaxv: 1126 case Intrinsic::aarch64_neon_uminv: { 1127 // Figure out the datatype of the vector operand. The UMINV instruction 1128 // will zero extend the result, so we can mark as known zero all the 1129 // bits larger than the element datatype. 32-bit or larget doesn't need 1130 // this as those are legal types and will be handled by isel directly. 1131 MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); 1132 unsigned BitWidth = Known.getBitWidth(); 1133 if (VT == MVT::v8i8 || VT == MVT::v16i8) { 1134 assert(BitWidth >= 8 && "Unexpected width!"); 1135 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); 1136 Known.Zero |= Mask; 1137 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { 1138 assert(BitWidth >= 16 && "Unexpected width!"); 1139 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 1140 Known.Zero |= Mask; 1141 } 1142 break; 1143 } break; 1144 } 1145 } 1146 } 1147 } 1148 1149 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, 1150 EVT) const { 1151 return MVT::i64; 1152 } 1153 1154 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( 1155 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1156 bool *Fast) const { 1157 if (Subtarget->requiresStrictAlign()) 1158 return false; 1159 1160 if (Fast) { 1161 // Some CPUs are fine with unaligned stores except for 128-bit ones. 1162 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 || 1163 // See comments in performSTORECombine() for more details about 1164 // these conditions. 1165 1166 // Code that uses clang vector extensions can mark that it 1167 // wants unaligned accesses to be treated as fast by 1168 // underspecifying alignment to be 1 or 2. 1169 Align <= 2 || 1170 1171 // Disregard v2i64. Memcpy lowering produces those and splitting 1172 // them regresses performance on micro-benchmarks and olden/bh. 1173 VT == MVT::v2i64; 1174 } 1175 return true; 1176 } 1177 1178 // Same as above but handling LLTs instead. 1179 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( 1180 LLT Ty, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1181 bool *Fast) const { 1182 if (Subtarget->requiresStrictAlign()) 1183 return false; 1184 1185 if (Fast) { 1186 // Some CPUs are fine with unaligned stores except for 128-bit ones. 1187 *Fast = !Subtarget->isMisaligned128StoreSlow() || 1188 Ty.getSizeInBytes() != 16 || 1189 // See comments in performSTORECombine() for more details about 1190 // these conditions. 1191 1192 // Code that uses clang vector extensions can mark that it 1193 // wants unaligned accesses to be treated as fast by 1194 // underspecifying alignment to be 1 or 2. 1195 Align <= 2 || 1196 1197 // Disregard v2i64. Memcpy lowering produces those and splitting 1198 // them regresses performance on micro-benchmarks and olden/bh. 1199 Ty == LLT::vector(2, 64); 1200 } 1201 return true; 1202 } 1203 1204 FastISel * 1205 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 1206 const TargetLibraryInfo *libInfo) const { 1207 return AArch64::createFastISel(funcInfo, libInfo); 1208 } 1209 1210 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { 1211 switch ((AArch64ISD::NodeType)Opcode) { 1212 case AArch64ISD::FIRST_NUMBER: break; 1213 case AArch64ISD::CALL: return "AArch64ISD::CALL"; 1214 case AArch64ISD::ADRP: return "AArch64ISD::ADRP"; 1215 case AArch64ISD::ADR: return "AArch64ISD::ADR"; 1216 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow"; 1217 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot"; 1218 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG"; 1219 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND"; 1220 case AArch64ISD::CSEL: return "AArch64ISD::CSEL"; 1221 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL"; 1222 case AArch64ISD::CSINV: return "AArch64ISD::CSINV"; 1223 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG"; 1224 case AArch64ISD::CSINC: return "AArch64ISD::CSINC"; 1225 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; 1226 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ"; 1227 case AArch64ISD::ADC: return "AArch64ISD::ADC"; 1228 case AArch64ISD::SBC: return "AArch64ISD::SBC"; 1229 case AArch64ISD::ADDS: return "AArch64ISD::ADDS"; 1230 case AArch64ISD::SUBS: return "AArch64ISD::SUBS"; 1231 case AArch64ISD::ADCS: return "AArch64ISD::ADCS"; 1232 case AArch64ISD::SBCS: return "AArch64ISD::SBCS"; 1233 case AArch64ISD::ANDS: return "AArch64ISD::ANDS"; 1234 case AArch64ISD::CCMP: return "AArch64ISD::CCMP"; 1235 case AArch64ISD::CCMN: return "AArch64ISD::CCMN"; 1236 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP"; 1237 case AArch64ISD::FCMP: return "AArch64ISD::FCMP"; 1238 case AArch64ISD::DUP: return "AArch64ISD::DUP"; 1239 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8"; 1240 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16"; 1241 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32"; 1242 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64"; 1243 case AArch64ISD::MOVI: return "AArch64ISD::MOVI"; 1244 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift"; 1245 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit"; 1246 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl"; 1247 case AArch64ISD::FMOV: return "AArch64ISD::FMOV"; 1248 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift"; 1249 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl"; 1250 case AArch64ISD::BICi: return "AArch64ISD::BICi"; 1251 case AArch64ISD::ORRi: return "AArch64ISD::ORRi"; 1252 case AArch64ISD::BSL: return "AArch64ISD::BSL"; 1253 case AArch64ISD::NEG: return "AArch64ISD::NEG"; 1254 case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; 1255 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1"; 1256 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2"; 1257 case AArch64ISD::UZP1: return "AArch64ISD::UZP1"; 1258 case AArch64ISD::UZP2: return "AArch64ISD::UZP2"; 1259 case AArch64ISD::TRN1: return "AArch64ISD::TRN1"; 1260 case AArch64ISD::TRN2: return "AArch64ISD::TRN2"; 1261 case AArch64ISD::REV16: return "AArch64ISD::REV16"; 1262 case AArch64ISD::REV32: return "AArch64ISD::REV32"; 1263 case AArch64ISD::REV64: return "AArch64ISD::REV64"; 1264 case AArch64ISD::EXT: return "AArch64ISD::EXT"; 1265 case AArch64ISD::VSHL: return "AArch64ISD::VSHL"; 1266 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR"; 1267 case AArch64ISD::VASHR: return "AArch64ISD::VASHR"; 1268 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ"; 1269 case AArch64ISD::CMGE: return "AArch64ISD::CMGE"; 1270 case AArch64ISD::CMGT: return "AArch64ISD::CMGT"; 1271 case AArch64ISD::CMHI: return "AArch64ISD::CMHI"; 1272 case AArch64ISD::CMHS: return "AArch64ISD::CMHS"; 1273 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ"; 1274 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE"; 1275 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT"; 1276 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz"; 1277 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz"; 1278 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz"; 1279 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz"; 1280 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz"; 1281 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz"; 1282 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz"; 1283 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz"; 1284 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz"; 1285 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz"; 1286 case AArch64ISD::SADDV: return "AArch64ISD::SADDV"; 1287 case AArch64ISD::UADDV: return "AArch64ISD::UADDV"; 1288 case AArch64ISD::SMINV: return "AArch64ISD::SMINV"; 1289 case AArch64ISD::UMINV: return "AArch64ISD::UMINV"; 1290 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV"; 1291 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV"; 1292 case AArch64ISD::SMAXV_PRED: return "AArch64ISD::SMAXV_PRED"; 1293 case AArch64ISD::UMAXV_PRED: return "AArch64ISD::UMAXV_PRED"; 1294 case AArch64ISD::SMINV_PRED: return "AArch64ISD::SMINV_PRED"; 1295 case AArch64ISD::UMINV_PRED: return "AArch64ISD::UMINV_PRED"; 1296 case AArch64ISD::ORV_PRED: return "AArch64ISD::ORV_PRED"; 1297 case AArch64ISD::EORV_PRED: return "AArch64ISD::EORV_PRED"; 1298 case AArch64ISD::ANDV_PRED: return "AArch64ISD::ANDV_PRED"; 1299 case AArch64ISD::CLASTA_N: return "AArch64ISD::CLASTA_N"; 1300 case AArch64ISD::CLASTB_N: return "AArch64ISD::CLASTB_N"; 1301 case AArch64ISD::LASTA: return "AArch64ISD::LASTA"; 1302 case AArch64ISD::LASTB: return "AArch64ISD::LASTB"; 1303 case AArch64ISD::REV: return "AArch64ISD::REV"; 1304 case AArch64ISD::TBL: return "AArch64ISD::TBL"; 1305 case AArch64ISD::NOT: return "AArch64ISD::NOT"; 1306 case AArch64ISD::BIT: return "AArch64ISD::BIT"; 1307 case AArch64ISD::CBZ: return "AArch64ISD::CBZ"; 1308 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ"; 1309 case AArch64ISD::TBZ: return "AArch64ISD::TBZ"; 1310 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ"; 1311 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; 1312 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH"; 1313 case AArch64ISD::SITOF: return "AArch64ISD::SITOF"; 1314 case AArch64ISD::UITOF: return "AArch64ISD::UITOF"; 1315 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST"; 1316 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I"; 1317 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I"; 1318 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I"; 1319 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I"; 1320 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I"; 1321 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; 1322 case AArch64ISD::LD2post: return "AArch64ISD::LD2post"; 1323 case AArch64ISD::LD3post: return "AArch64ISD::LD3post"; 1324 case AArch64ISD::LD4post: return "AArch64ISD::LD4post"; 1325 case AArch64ISD::ST2post: return "AArch64ISD::ST2post"; 1326 case AArch64ISD::ST3post: return "AArch64ISD::ST3post"; 1327 case AArch64ISD::ST4post: return "AArch64ISD::ST4post"; 1328 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post"; 1329 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post"; 1330 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post"; 1331 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post"; 1332 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post"; 1333 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post"; 1334 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost"; 1335 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost"; 1336 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost"; 1337 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost"; 1338 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost"; 1339 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost"; 1340 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost"; 1341 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost"; 1342 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost"; 1343 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost"; 1344 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost"; 1345 case AArch64ISD::SMULL: return "AArch64ISD::SMULL"; 1346 case AArch64ISD::UMULL: return "AArch64ISD::UMULL"; 1347 case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE"; 1348 case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS"; 1349 case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE"; 1350 case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS"; 1351 case AArch64ISD::STG: return "AArch64ISD::STG"; 1352 case AArch64ISD::STZG: return "AArch64ISD::STZG"; 1353 case AArch64ISD::ST2G: return "AArch64ISD::ST2G"; 1354 case AArch64ISD::STZ2G: return "AArch64ISD::STZ2G"; 1355 case AArch64ISD::SUNPKHI: return "AArch64ISD::SUNPKHI"; 1356 case AArch64ISD::SUNPKLO: return "AArch64ISD::SUNPKLO"; 1357 case AArch64ISD::UUNPKHI: return "AArch64ISD::UUNPKHI"; 1358 case AArch64ISD::UUNPKLO: return "AArch64ISD::UUNPKLO"; 1359 case AArch64ISD::INSR: return "AArch64ISD::INSR"; 1360 case AArch64ISD::PTEST: return "AArch64ISD::PTEST"; 1361 case AArch64ISD::PTRUE: return "AArch64ISD::PTRUE"; 1362 case AArch64ISD::GLD1: return "AArch64ISD::GLD1"; 1363 case AArch64ISD::GLD1_SCALED: return "AArch64ISD::GLD1_SCALED"; 1364 case AArch64ISD::GLD1_SXTW: return "AArch64ISD::GLD1_SXTW"; 1365 case AArch64ISD::GLD1_UXTW: return "AArch64ISD::GLD1_UXTW"; 1366 case AArch64ISD::GLD1_SXTW_SCALED: return "AArch64ISD::GLD1_SXTW_SCALED"; 1367 case AArch64ISD::GLD1_UXTW_SCALED: return "AArch64ISD::GLD1_UXTW_SCALED"; 1368 case AArch64ISD::GLD1_IMM: return "AArch64ISD::GLD1_IMM"; 1369 case AArch64ISD::GLD1S: return "AArch64ISD::GLD1S"; 1370 case AArch64ISD::GLD1S_SCALED: return "AArch64ISD::GLD1S_SCALED"; 1371 case AArch64ISD::GLD1S_SXTW: return "AArch64ISD::GLD1S_SXTW"; 1372 case AArch64ISD::GLD1S_UXTW: return "AArch64ISD::GLD1S_UXTW"; 1373 case AArch64ISD::GLD1S_SXTW_SCALED: return "AArch64ISD::GLD1S_SXTW_SCALED"; 1374 case AArch64ISD::GLD1S_UXTW_SCALED: return "AArch64ISD::GLD1S_UXTW_SCALED"; 1375 case AArch64ISD::GLD1S_IMM: return "AArch64ISD::GLD1S_IMM"; 1376 case AArch64ISD::SST1: return "AArch64ISD::SST1"; 1377 case AArch64ISD::SST1_SCALED: return "AArch64ISD::SST1_SCALED"; 1378 case AArch64ISD::SST1_SXTW: return "AArch64ISD::SST1_SXTW"; 1379 case AArch64ISD::SST1_UXTW: return "AArch64ISD::SST1_UXTW"; 1380 case AArch64ISD::SST1_SXTW_SCALED: return "AArch64ISD::SST1_SXTW_SCALED"; 1381 case AArch64ISD::SST1_UXTW_SCALED: return "AArch64ISD::SST1_UXTW_SCALED"; 1382 case AArch64ISD::SST1_IMM: return "AArch64ISD::SST1_IMM"; 1383 case AArch64ISD::LDP: return "AArch64ISD::LDP"; 1384 case AArch64ISD::STP: return "AArch64ISD::STP"; 1385 } 1386 return nullptr; 1387 } 1388 1389 MachineBasicBlock * 1390 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI, 1391 MachineBasicBlock *MBB) const { 1392 // We materialise the F128CSEL pseudo-instruction as some control flow and a 1393 // phi node: 1394 1395 // OrigBB: 1396 // [... previous instrs leading to comparison ...] 1397 // b.ne TrueBB 1398 // b EndBB 1399 // TrueBB: 1400 // ; Fallthrough 1401 // EndBB: 1402 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] 1403 1404 MachineFunction *MF = MBB->getParent(); 1405 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1406 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 1407 DebugLoc DL = MI.getDebugLoc(); 1408 MachineFunction::iterator It = ++MBB->getIterator(); 1409 1410 Register DestReg = MI.getOperand(0).getReg(); 1411 Register IfTrueReg = MI.getOperand(1).getReg(); 1412 Register IfFalseReg = MI.getOperand(2).getReg(); 1413 unsigned CondCode = MI.getOperand(3).getImm(); 1414 bool NZCVKilled = MI.getOperand(4).isKill(); 1415 1416 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); 1417 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); 1418 MF->insert(It, TrueBB); 1419 MF->insert(It, EndBB); 1420 1421 // Transfer rest of current basic-block to EndBB 1422 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), 1423 MBB->end()); 1424 EndBB->transferSuccessorsAndUpdatePHIs(MBB); 1425 1426 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); 1427 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); 1428 MBB->addSuccessor(TrueBB); 1429 MBB->addSuccessor(EndBB); 1430 1431 // TrueBB falls through to the end. 1432 TrueBB->addSuccessor(EndBB); 1433 1434 if (!NZCVKilled) { 1435 TrueBB->addLiveIn(AArch64::NZCV); 1436 EndBB->addLiveIn(AArch64::NZCV); 1437 } 1438 1439 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) 1440 .addReg(IfTrueReg) 1441 .addMBB(TrueBB) 1442 .addReg(IfFalseReg) 1443 .addMBB(MBB); 1444 1445 MI.eraseFromParent(); 1446 return EndBB; 1447 } 1448 1449 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet( 1450 MachineInstr &MI, MachineBasicBlock *BB) const { 1451 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 1452 BB->getParent()->getFunction().getPersonalityFn())) && 1453 "SEH does not use catchret!"); 1454 return BB; 1455 } 1456 1457 MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad( 1458 MachineInstr &MI, MachineBasicBlock *BB) const { 1459 MI.eraseFromParent(); 1460 return BB; 1461 } 1462 1463 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter( 1464 MachineInstr &MI, MachineBasicBlock *BB) const { 1465 switch (MI.getOpcode()) { 1466 default: 1467 #ifndef NDEBUG 1468 MI.dump(); 1469 #endif 1470 llvm_unreachable("Unexpected instruction for custom inserter!"); 1471 1472 case AArch64::F128CSEL: 1473 return EmitF128CSEL(MI, BB); 1474 1475 case TargetOpcode::STACKMAP: 1476 case TargetOpcode::PATCHPOINT: 1477 return emitPatchPoint(MI, BB); 1478 1479 case AArch64::CATCHRET: 1480 return EmitLoweredCatchRet(MI, BB); 1481 case AArch64::CATCHPAD: 1482 return EmitLoweredCatchPad(MI, BB); 1483 } 1484 } 1485 1486 //===----------------------------------------------------------------------===// 1487 // AArch64 Lowering private implementation. 1488 //===----------------------------------------------------------------------===// 1489 1490 //===----------------------------------------------------------------------===// 1491 // Lowering Code 1492 //===----------------------------------------------------------------------===// 1493 1494 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 1495 /// CC 1496 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { 1497 switch (CC) { 1498 default: 1499 llvm_unreachable("Unknown condition code!"); 1500 case ISD::SETNE: 1501 return AArch64CC::NE; 1502 case ISD::SETEQ: 1503 return AArch64CC::EQ; 1504 case ISD::SETGT: 1505 return AArch64CC::GT; 1506 case ISD::SETGE: 1507 return AArch64CC::GE; 1508 case ISD::SETLT: 1509 return AArch64CC::LT; 1510 case ISD::SETLE: 1511 return AArch64CC::LE; 1512 case ISD::SETUGT: 1513 return AArch64CC::HI; 1514 case ISD::SETUGE: 1515 return AArch64CC::HS; 1516 case ISD::SETULT: 1517 return AArch64CC::LO; 1518 case ISD::SETULE: 1519 return AArch64CC::LS; 1520 } 1521 } 1522 1523 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. 1524 static void changeFPCCToAArch64CC(ISD::CondCode CC, 1525 AArch64CC::CondCode &CondCode, 1526 AArch64CC::CondCode &CondCode2) { 1527 CondCode2 = AArch64CC::AL; 1528 switch (CC) { 1529 default: 1530 llvm_unreachable("Unknown FP condition!"); 1531 case ISD::SETEQ: 1532 case ISD::SETOEQ: 1533 CondCode = AArch64CC::EQ; 1534 break; 1535 case ISD::SETGT: 1536 case ISD::SETOGT: 1537 CondCode = AArch64CC::GT; 1538 break; 1539 case ISD::SETGE: 1540 case ISD::SETOGE: 1541 CondCode = AArch64CC::GE; 1542 break; 1543 case ISD::SETOLT: 1544 CondCode = AArch64CC::MI; 1545 break; 1546 case ISD::SETOLE: 1547 CondCode = AArch64CC::LS; 1548 break; 1549 case ISD::SETONE: 1550 CondCode = AArch64CC::MI; 1551 CondCode2 = AArch64CC::GT; 1552 break; 1553 case ISD::SETO: 1554 CondCode = AArch64CC::VC; 1555 break; 1556 case ISD::SETUO: 1557 CondCode = AArch64CC::VS; 1558 break; 1559 case ISD::SETUEQ: 1560 CondCode = AArch64CC::EQ; 1561 CondCode2 = AArch64CC::VS; 1562 break; 1563 case ISD::SETUGT: 1564 CondCode = AArch64CC::HI; 1565 break; 1566 case ISD::SETUGE: 1567 CondCode = AArch64CC::PL; 1568 break; 1569 case ISD::SETLT: 1570 case ISD::SETULT: 1571 CondCode = AArch64CC::LT; 1572 break; 1573 case ISD::SETLE: 1574 case ISD::SETULE: 1575 CondCode = AArch64CC::LE; 1576 break; 1577 case ISD::SETNE: 1578 case ISD::SETUNE: 1579 CondCode = AArch64CC::NE; 1580 break; 1581 } 1582 } 1583 1584 /// Convert a DAG fp condition code to an AArch64 CC. 1585 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that 1586 /// should be AND'ed instead of OR'ed. 1587 static void changeFPCCToANDAArch64CC(ISD::CondCode CC, 1588 AArch64CC::CondCode &CondCode, 1589 AArch64CC::CondCode &CondCode2) { 1590 CondCode2 = AArch64CC::AL; 1591 switch (CC) { 1592 default: 1593 changeFPCCToAArch64CC(CC, CondCode, CondCode2); 1594 assert(CondCode2 == AArch64CC::AL); 1595 break; 1596 case ISD::SETONE: 1597 // (a one b) 1598 // == ((a olt b) || (a ogt b)) 1599 // == ((a ord b) && (a une b)) 1600 CondCode = AArch64CC::VC; 1601 CondCode2 = AArch64CC::NE; 1602 break; 1603 case ISD::SETUEQ: 1604 // (a ueq b) 1605 // == ((a uno b) || (a oeq b)) 1606 // == ((a ule b) && (a uge b)) 1607 CondCode = AArch64CC::PL; 1608 CondCode2 = AArch64CC::LE; 1609 break; 1610 } 1611 } 1612 1613 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 1614 /// CC usable with the vector instructions. Fewer operations are available 1615 /// without a real NZCV register, so we have to use less efficient combinations 1616 /// to get the same effect. 1617 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, 1618 AArch64CC::CondCode &CondCode, 1619 AArch64CC::CondCode &CondCode2, 1620 bool &Invert) { 1621 Invert = false; 1622 switch (CC) { 1623 default: 1624 // Mostly the scalar mappings work fine. 1625 changeFPCCToAArch64CC(CC, CondCode, CondCode2); 1626 break; 1627 case ISD::SETUO: 1628 Invert = true; 1629 LLVM_FALLTHROUGH; 1630 case ISD::SETO: 1631 CondCode = AArch64CC::MI; 1632 CondCode2 = AArch64CC::GE; 1633 break; 1634 case ISD::SETUEQ: 1635 case ISD::SETULT: 1636 case ISD::SETULE: 1637 case ISD::SETUGT: 1638 case ISD::SETUGE: 1639 // All of the compare-mask comparisons are ordered, but we can switch 1640 // between the two by a double inversion. E.g. ULE == !OGT. 1641 Invert = true; 1642 changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32), 1643 CondCode, CondCode2); 1644 break; 1645 } 1646 } 1647 1648 static bool isLegalArithImmed(uint64_t C) { 1649 // Matches AArch64DAGToDAGISel::SelectArithImmed(). 1650 bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); 1651 LLVM_DEBUG(dbgs() << "Is imm " << C 1652 << " legal: " << (IsLegal ? "yes\n" : "no\n")); 1653 return IsLegal; 1654 } 1655 1656 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on 1657 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags 1658 // can be set differently by this operation. It comes down to whether 1659 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then 1660 // everything is fine. If not then the optimization is wrong. Thus general 1661 // comparisons are only valid if op2 != 0. 1662 // 1663 // So, finally, the only LLVM-native comparisons that don't mention C and V 1664 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in 1665 // the absence of information about op2. 1666 static bool isCMN(SDValue Op, ISD::CondCode CC) { 1667 return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) && 1668 (CC == ISD::SETEQ || CC == ISD::SETNE); 1669 } 1670 1671 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, 1672 const SDLoc &dl, SelectionDAG &DAG) { 1673 EVT VT = LHS.getValueType(); 1674 const bool FullFP16 = 1675 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 1676 1677 if (VT.isFloatingPoint()) { 1678 assert(VT != MVT::f128); 1679 if (VT == MVT::f16 && !FullFP16) { 1680 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); 1681 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); 1682 VT = MVT::f32; 1683 } 1684 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); 1685 } 1686 1687 // The CMP instruction is just an alias for SUBS, and representing it as 1688 // SUBS means that it's possible to get CSE with subtract operations. 1689 // A later phase can perform the optimization of setting the destination 1690 // register to WZR/XZR if it ends up being unused. 1691 unsigned Opcode = AArch64ISD::SUBS; 1692 1693 if (isCMN(RHS, CC)) { 1694 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ? 1695 Opcode = AArch64ISD::ADDS; 1696 RHS = RHS.getOperand(1); 1697 } else if (isCMN(LHS, CC)) { 1698 // As we are looking for EQ/NE compares, the operands can be commuted ; can 1699 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ? 1700 Opcode = AArch64ISD::ADDS; 1701 LHS = LHS.getOperand(1); 1702 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) && 1703 !isUnsignedIntSetCC(CC)) { 1704 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST 1705 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one 1706 // of the signed comparisons. 1707 Opcode = AArch64ISD::ANDS; 1708 RHS = LHS.getOperand(1); 1709 LHS = LHS.getOperand(0); 1710 } 1711 1712 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) 1713 .getValue(1); 1714 } 1715 1716 /// \defgroup AArch64CCMP CMP;CCMP matching 1717 /// 1718 /// These functions deal with the formation of CMP;CCMP;... sequences. 1719 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of 1720 /// a comparison. They set the NZCV flags to a predefined value if their 1721 /// predicate is false. This allows to express arbitrary conjunctions, for 1722 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))" 1723 /// expressed as: 1724 /// cmp A 1725 /// ccmp B, inv(CB), CA 1726 /// check for CB flags 1727 /// 1728 /// This naturally lets us implement chains of AND operations with SETCC 1729 /// operands. And we can even implement some other situations by transforming 1730 /// them: 1731 /// - We can implement (NEG SETCC) i.e. negating a single comparison by 1732 /// negating the flags used in a CCMP/FCCMP operations. 1733 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations 1734 /// by negating the flags we test for afterwards. i.e. 1735 /// NEG (CMP CCMP CCCMP ...) can be implemented. 1736 /// - Note that we can only ever negate all previously processed results. 1737 /// What we can not implement by flipping the flags to test is a negation 1738 /// of two sub-trees (because the negation affects all sub-trees emitted so 1739 /// far, so the 2nd sub-tree we emit would also affect the first). 1740 /// With those tools we can implement some OR operations: 1741 /// - (OR (SETCC A) (SETCC B)) can be implemented via: 1742 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B))) 1743 /// - After transforming OR to NEG/AND combinations we may be able to use NEG 1744 /// elimination rules from earlier to implement the whole thing as a 1745 /// CCMP/FCCMP chain. 1746 /// 1747 /// As complete example: 1748 /// or (or (setCA (cmp A)) (setCB (cmp B))) 1749 /// (and (setCC (cmp C)) (setCD (cmp D)))" 1750 /// can be reassociated to: 1751 /// or (and (setCC (cmp C)) setCD (cmp D)) 1752 // (or (setCA (cmp A)) (setCB (cmp B))) 1753 /// can be transformed to: 1754 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D)))) 1755 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" 1756 /// which can be implemented as: 1757 /// cmp C 1758 /// ccmp D, inv(CD), CC 1759 /// ccmp A, CA, inv(CD) 1760 /// ccmp B, CB, inv(CA) 1761 /// check for CB flags 1762 /// 1763 /// A counterexample is "or (and A B) (and C D)" which translates to 1764 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we 1765 /// can only implement 1 of the inner (not) operations, but not both! 1766 /// @{ 1767 1768 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. 1769 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, 1770 ISD::CondCode CC, SDValue CCOp, 1771 AArch64CC::CondCode Predicate, 1772 AArch64CC::CondCode OutCC, 1773 const SDLoc &DL, SelectionDAG &DAG) { 1774 unsigned Opcode = 0; 1775 const bool FullFP16 = 1776 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 1777 1778 if (LHS.getValueType().isFloatingPoint()) { 1779 assert(LHS.getValueType() != MVT::f128); 1780 if (LHS.getValueType() == MVT::f16 && !FullFP16) { 1781 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS); 1782 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS); 1783 } 1784 Opcode = AArch64ISD::FCCMP; 1785 } else if (RHS.getOpcode() == ISD::SUB) { 1786 SDValue SubOp0 = RHS.getOperand(0); 1787 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 1788 // See emitComparison() on why we can only do this for SETEQ and SETNE. 1789 Opcode = AArch64ISD::CCMN; 1790 RHS = RHS.getOperand(1); 1791 } 1792 } 1793 if (Opcode == 0) 1794 Opcode = AArch64ISD::CCMP; 1795 1796 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC); 1797 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); 1798 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); 1799 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); 1800 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); 1801 } 1802 1803 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be 1804 /// expressed as a conjunction. See \ref AArch64CCMP. 1805 /// \param CanNegate Set to true if we can negate the whole sub-tree just by 1806 /// changing the conditions on the SETCC tests. 1807 /// (this means we can call emitConjunctionRec() with 1808 /// Negate==true on this sub-tree) 1809 /// \param MustBeFirst Set to true if this subtree needs to be negated and we 1810 /// cannot do the negation naturally. We are required to 1811 /// emit the subtree first in this case. 1812 /// \param WillNegate Is true if are called when the result of this 1813 /// subexpression must be negated. This happens when the 1814 /// outer expression is an OR. We can use this fact to know 1815 /// that we have a double negation (or (or ...) ...) that 1816 /// can be implemented for free. 1817 static bool canEmitConjunction(const SDValue Val, bool &CanNegate, 1818 bool &MustBeFirst, bool WillNegate, 1819 unsigned Depth = 0) { 1820 if (!Val.hasOneUse()) 1821 return false; 1822 unsigned Opcode = Val->getOpcode(); 1823 if (Opcode == ISD::SETCC) { 1824 if (Val->getOperand(0).getValueType() == MVT::f128) 1825 return false; 1826 CanNegate = true; 1827 MustBeFirst = false; 1828 return true; 1829 } 1830 // Protect against exponential runtime and stack overflow. 1831 if (Depth > 6) 1832 return false; 1833 if (Opcode == ISD::AND || Opcode == ISD::OR) { 1834 bool IsOR = Opcode == ISD::OR; 1835 SDValue O0 = Val->getOperand(0); 1836 SDValue O1 = Val->getOperand(1); 1837 bool CanNegateL; 1838 bool MustBeFirstL; 1839 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1)) 1840 return false; 1841 bool CanNegateR; 1842 bool MustBeFirstR; 1843 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1)) 1844 return false; 1845 1846 if (MustBeFirstL && MustBeFirstR) 1847 return false; 1848 1849 if (IsOR) { 1850 // For an OR expression we need to be able to naturally negate at least 1851 // one side or we cannot do the transformation at all. 1852 if (!CanNegateL && !CanNegateR) 1853 return false; 1854 // If we the result of the OR will be negated and we can naturally negate 1855 // the leafs, then this sub-tree as a whole negates naturally. 1856 CanNegate = WillNegate && CanNegateL && CanNegateR; 1857 // If we cannot naturally negate the whole sub-tree, then this must be 1858 // emitted first. 1859 MustBeFirst = !CanNegate; 1860 } else { 1861 assert(Opcode == ISD::AND && "Must be OR or AND"); 1862 // We cannot naturally negate an AND operation. 1863 CanNegate = false; 1864 MustBeFirst = MustBeFirstL || MustBeFirstR; 1865 } 1866 return true; 1867 } 1868 return false; 1869 } 1870 1871 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain 1872 /// of CCMP/CFCMP ops. See @ref AArch64CCMP. 1873 /// Tries to transform the given i1 producing node @p Val to a series compare 1874 /// and conditional compare operations. @returns an NZCV flags producing node 1875 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if 1876 /// transformation was not possible. 1877 /// \p Negate is true if we want this sub-tree being negated just by changing 1878 /// SETCC conditions. 1879 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val, 1880 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp, 1881 AArch64CC::CondCode Predicate) { 1882 // We're at a tree leaf, produce a conditional comparison operation. 1883 unsigned Opcode = Val->getOpcode(); 1884 if (Opcode == ISD::SETCC) { 1885 SDValue LHS = Val->getOperand(0); 1886 SDValue RHS = Val->getOperand(1); 1887 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get(); 1888 bool isInteger = LHS.getValueType().isInteger(); 1889 if (Negate) 1890 CC = getSetCCInverse(CC, LHS.getValueType()); 1891 SDLoc DL(Val); 1892 // Determine OutCC and handle FP special case. 1893 if (isInteger) { 1894 OutCC = changeIntCCToAArch64CC(CC); 1895 } else { 1896 assert(LHS.getValueType().isFloatingPoint()); 1897 AArch64CC::CondCode ExtraCC; 1898 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC); 1899 // Some floating point conditions can't be tested with a single condition 1900 // code. Construct an additional comparison in this case. 1901 if (ExtraCC != AArch64CC::AL) { 1902 SDValue ExtraCmp; 1903 if (!CCOp.getNode()) 1904 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); 1905 else 1906 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, 1907 ExtraCC, DL, DAG); 1908 CCOp = ExtraCmp; 1909 Predicate = ExtraCC; 1910 } 1911 } 1912 1913 // Produce a normal comparison if we are first in the chain 1914 if (!CCOp) 1915 return emitComparison(LHS, RHS, CC, DL, DAG); 1916 // Otherwise produce a ccmp. 1917 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL, 1918 DAG); 1919 } 1920 assert(Val->hasOneUse() && "Valid conjunction/disjunction tree"); 1921 1922 bool IsOR = Opcode == ISD::OR; 1923 1924 SDValue LHS = Val->getOperand(0); 1925 bool CanNegateL; 1926 bool MustBeFirstL; 1927 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR); 1928 assert(ValidL && "Valid conjunction/disjunction tree"); 1929 (void)ValidL; 1930 1931 SDValue RHS = Val->getOperand(1); 1932 bool CanNegateR; 1933 bool MustBeFirstR; 1934 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR); 1935 assert(ValidR && "Valid conjunction/disjunction tree"); 1936 (void)ValidR; 1937 1938 // Swap sub-tree that must come first to the right side. 1939 if (MustBeFirstL) { 1940 assert(!MustBeFirstR && "Valid conjunction/disjunction tree"); 1941 std::swap(LHS, RHS); 1942 std::swap(CanNegateL, CanNegateR); 1943 std::swap(MustBeFirstL, MustBeFirstR); 1944 } 1945 1946 bool NegateR; 1947 bool NegateAfterR; 1948 bool NegateL; 1949 bool NegateAfterAll; 1950 if (Opcode == ISD::OR) { 1951 // Swap the sub-tree that we can negate naturally to the left. 1952 if (!CanNegateL) { 1953 assert(CanNegateR && "at least one side must be negatable"); 1954 assert(!MustBeFirstR && "invalid conjunction/disjunction tree"); 1955 assert(!Negate); 1956 std::swap(LHS, RHS); 1957 NegateR = false; 1958 NegateAfterR = true; 1959 } else { 1960 // Negate the left sub-tree if possible, otherwise negate the result. 1961 NegateR = CanNegateR; 1962 NegateAfterR = !CanNegateR; 1963 } 1964 NegateL = true; 1965 NegateAfterAll = !Negate; 1966 } else { 1967 assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree"); 1968 assert(!Negate && "Valid conjunction/disjunction tree"); 1969 1970 NegateL = false; 1971 NegateR = false; 1972 NegateAfterR = false; 1973 NegateAfterAll = false; 1974 } 1975 1976 // Emit sub-trees. 1977 AArch64CC::CondCode RHSCC; 1978 SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate); 1979 if (NegateAfterR) 1980 RHSCC = AArch64CC::getInvertedCondCode(RHSCC); 1981 SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC); 1982 if (NegateAfterAll) 1983 OutCC = AArch64CC::getInvertedCondCode(OutCC); 1984 return CmpL; 1985 } 1986 1987 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops). 1988 /// In some cases this is even possible with OR operations in the expression. 1989 /// See \ref AArch64CCMP. 1990 /// \see emitConjunctionRec(). 1991 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val, 1992 AArch64CC::CondCode &OutCC) { 1993 bool DummyCanNegate; 1994 bool DummyMustBeFirst; 1995 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false)) 1996 return SDValue(); 1997 1998 return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL); 1999 } 2000 2001 /// @} 2002 2003 /// Returns how profitable it is to fold a comparison's operand's shift and/or 2004 /// extension operations. 2005 static unsigned getCmpOperandFoldingProfit(SDValue Op) { 2006 auto isSupportedExtend = [&](SDValue V) { 2007 if (V.getOpcode() == ISD::SIGN_EXTEND_INREG) 2008 return true; 2009 2010 if (V.getOpcode() == ISD::AND) 2011 if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2012 uint64_t Mask = MaskCst->getZExtValue(); 2013 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF); 2014 } 2015 2016 return false; 2017 }; 2018 2019 if (!Op.hasOneUse()) 2020 return 0; 2021 2022 if (isSupportedExtend(Op)) 2023 return 1; 2024 2025 unsigned Opc = Op.getOpcode(); 2026 if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) 2027 if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 2028 uint64_t Shift = ShiftCst->getZExtValue(); 2029 if (isSupportedExtend(Op.getOperand(0))) 2030 return (Shift <= 4) ? 2 : 1; 2031 EVT VT = Op.getValueType(); 2032 if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63)) 2033 return 1; 2034 } 2035 2036 return 0; 2037 } 2038 2039 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 2040 SDValue &AArch64cc, SelectionDAG &DAG, 2041 const SDLoc &dl) { 2042 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 2043 EVT VT = RHS.getValueType(); 2044 uint64_t C = RHSC->getZExtValue(); 2045 if (!isLegalArithImmed(C)) { 2046 // Constant does not fit, try adjusting it by one? 2047 switch (CC) { 2048 default: 2049 break; 2050 case ISD::SETLT: 2051 case ISD::SETGE: 2052 if ((VT == MVT::i32 && C != 0x80000000 && 2053 isLegalArithImmed((uint32_t)(C - 1))) || 2054 (VT == MVT::i64 && C != 0x80000000ULL && 2055 isLegalArithImmed(C - 1ULL))) { 2056 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 2057 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; 2058 RHS = DAG.getConstant(C, dl, VT); 2059 } 2060 break; 2061 case ISD::SETULT: 2062 case ISD::SETUGE: 2063 if ((VT == MVT::i32 && C != 0 && 2064 isLegalArithImmed((uint32_t)(C - 1))) || 2065 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { 2066 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 2067 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; 2068 RHS = DAG.getConstant(C, dl, VT); 2069 } 2070 break; 2071 case ISD::SETLE: 2072 case ISD::SETGT: 2073 if ((VT == MVT::i32 && C != INT32_MAX && 2074 isLegalArithImmed((uint32_t)(C + 1))) || 2075 (VT == MVT::i64 && C != INT64_MAX && 2076 isLegalArithImmed(C + 1ULL))) { 2077 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 2078 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; 2079 RHS = DAG.getConstant(C, dl, VT); 2080 } 2081 break; 2082 case ISD::SETULE: 2083 case ISD::SETUGT: 2084 if ((VT == MVT::i32 && C != UINT32_MAX && 2085 isLegalArithImmed((uint32_t)(C + 1))) || 2086 (VT == MVT::i64 && C != UINT64_MAX && 2087 isLegalArithImmed(C + 1ULL))) { 2088 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2089 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; 2090 RHS = DAG.getConstant(C, dl, VT); 2091 } 2092 break; 2093 } 2094 } 2095 } 2096 2097 // Comparisons are canonicalized so that the RHS operand is simpler than the 2098 // LHS one, the extreme case being when RHS is an immediate. However, AArch64 2099 // can fold some shift+extend operations on the RHS operand, so swap the 2100 // operands if that can be done. 2101 // 2102 // For example: 2103 // lsl w13, w11, #1 2104 // cmp w13, w12 2105 // can be turned into: 2106 // cmp w12, w11, lsl #1 2107 if (!isa<ConstantSDNode>(RHS) || 2108 !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) { 2109 SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS; 2110 2111 if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) { 2112 std::swap(LHS, RHS); 2113 CC = ISD::getSetCCSwappedOperands(CC); 2114 } 2115 } 2116 2117 SDValue Cmp; 2118 AArch64CC::CondCode AArch64CC; 2119 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) { 2120 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS); 2121 2122 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. 2123 // For the i8 operand, the largest immediate is 255, so this can be easily 2124 // encoded in the compare instruction. For the i16 operand, however, the 2125 // largest immediate cannot be encoded in the compare. 2126 // Therefore, use a sign extending load and cmn to avoid materializing the 2127 // -1 constant. For example, 2128 // movz w1, #65535 2129 // ldrh w0, [x0, #0] 2130 // cmp w0, w1 2131 // > 2132 // ldrsh w0, [x0, #0] 2133 // cmn w0, #1 2134 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) 2135 // if and only if (sext LHS) == (sext RHS). The checks are in place to 2136 // ensure both the LHS and RHS are truly zero extended and to make sure the 2137 // transformation is profitable. 2138 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) && 2139 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD && 2140 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 && 2141 LHS.getNode()->hasNUsesOfValue(1, 0)) { 2142 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue(); 2143 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { 2144 SDValue SExt = 2145 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, 2146 DAG.getValueType(MVT::i16)); 2147 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, 2148 RHS.getValueType()), 2149 CC, dl, DAG); 2150 AArch64CC = changeIntCCToAArch64CC(CC); 2151 } 2152 } 2153 2154 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) { 2155 if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) { 2156 if ((CC == ISD::SETNE) ^ RHSC->isNullValue()) 2157 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); 2158 } 2159 } 2160 } 2161 2162 if (!Cmp) { 2163 Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 2164 AArch64CC = changeIntCCToAArch64CC(CC); 2165 } 2166 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); 2167 return Cmp; 2168 } 2169 2170 static std::pair<SDValue, SDValue> 2171 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { 2172 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && 2173 "Unsupported value type"); 2174 SDValue Value, Overflow; 2175 SDLoc DL(Op); 2176 SDValue LHS = Op.getOperand(0); 2177 SDValue RHS = Op.getOperand(1); 2178 unsigned Opc = 0; 2179 switch (Op.getOpcode()) { 2180 default: 2181 llvm_unreachable("Unknown overflow instruction!"); 2182 case ISD::SADDO: 2183 Opc = AArch64ISD::ADDS; 2184 CC = AArch64CC::VS; 2185 break; 2186 case ISD::UADDO: 2187 Opc = AArch64ISD::ADDS; 2188 CC = AArch64CC::HS; 2189 break; 2190 case ISD::SSUBO: 2191 Opc = AArch64ISD::SUBS; 2192 CC = AArch64CC::VS; 2193 break; 2194 case ISD::USUBO: 2195 Opc = AArch64ISD::SUBS; 2196 CC = AArch64CC::LO; 2197 break; 2198 // Multiply needs a little bit extra work. 2199 case ISD::SMULO: 2200 case ISD::UMULO: { 2201 CC = AArch64CC::NE; 2202 bool IsSigned = Op.getOpcode() == ISD::SMULO; 2203 if (Op.getValueType() == MVT::i32) { 2204 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2205 // For a 32 bit multiply with overflow check we want the instruction 2206 // selector to generate a widening multiply (SMADDL/UMADDL). For that we 2207 // need to generate the following pattern: 2208 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) 2209 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); 2210 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); 2211 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 2212 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, 2213 DAG.getConstant(0, DL, MVT::i64)); 2214 // On AArch64 the upper 32 bits are always zero extended for a 32 bit 2215 // operation. We need to clear out the upper 32 bits, because we used a 2216 // widening multiply that wrote all 64 bits. In the end this should be a 2217 // noop. 2218 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); 2219 if (IsSigned) { 2220 // The signed overflow check requires more than just a simple check for 2221 // any bit set in the upper 32 bits of the result. These bits could be 2222 // just the sign bits of a negative number. To perform the overflow 2223 // check we have to arithmetic shift right the 32nd bit of the result by 2224 // 31 bits. Then we compare the result to the upper 32 bits. 2225 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, 2226 DAG.getConstant(32, DL, MVT::i64)); 2227 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); 2228 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, 2229 DAG.getConstant(31, DL, MVT::i64)); 2230 // It is important that LowerBits is last, otherwise the arithmetic 2231 // shift will not be folded into the compare (SUBS). 2232 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); 2233 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) 2234 .getValue(1); 2235 } else { 2236 // The overflow check for unsigned multiply is easy. We only need to 2237 // check if any of the upper 32 bits are set. This can be done with a 2238 // CMP (shifted register). For that we need to generate the following 2239 // pattern: 2240 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) 2241 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2242 DAG.getConstant(32, DL, MVT::i64)); 2243 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2244 Overflow = 2245 DAG.getNode(AArch64ISD::SUBS, DL, VTs, 2246 DAG.getConstant(0, DL, MVT::i64), 2247 UpperBits).getValue(1); 2248 } 2249 break; 2250 } 2251 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); 2252 // For the 64 bit multiply 2253 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 2254 if (IsSigned) { 2255 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); 2256 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, 2257 DAG.getConstant(63, DL, MVT::i64)); 2258 // It is important that LowerBits is last, otherwise the arithmetic 2259 // shift will not be folded into the compare (SUBS). 2260 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2261 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) 2262 .getValue(1); 2263 } else { 2264 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); 2265 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 2266 Overflow = 2267 DAG.getNode(AArch64ISD::SUBS, DL, VTs, 2268 DAG.getConstant(0, DL, MVT::i64), 2269 UpperBits).getValue(1); 2270 } 2271 break; 2272 } 2273 } // switch (...) 2274 2275 if (Opc) { 2276 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); 2277 2278 // Emit the AArch64 operation with overflow check. 2279 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); 2280 Overflow = Value.getValue(1); 2281 } 2282 return std::make_pair(Value, Overflow); 2283 } 2284 2285 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, 2286 RTLIB::Libcall Call) const { 2287 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end()); 2288 MakeLibCallOptions CallOptions; 2289 return makeLibCall(DAG, Call, MVT::f128, Ops, CallOptions, SDLoc(Op)).first; 2290 } 2291 2292 // Returns true if the given Op is the overflow flag result of an overflow 2293 // intrinsic operation. 2294 static bool isOverflowIntrOpRes(SDValue Op) { 2295 unsigned Opc = Op.getOpcode(); 2296 return (Op.getResNo() == 1 && 2297 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 2298 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)); 2299 } 2300 2301 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { 2302 SDValue Sel = Op.getOperand(0); 2303 SDValue Other = Op.getOperand(1); 2304 SDLoc dl(Sel); 2305 2306 // If the operand is an overflow checking operation, invert the condition 2307 // code and kill the Not operation. I.e., transform: 2308 // (xor (overflow_op_bool, 1)) 2309 // --> 2310 // (csel 1, 0, invert(cc), overflow_op_bool) 2311 // ... which later gets transformed to just a cset instruction with an 2312 // inverted condition code, rather than a cset + eor sequence. 2313 if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) { 2314 // Only lower legal XALUO ops. 2315 if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0))) 2316 return SDValue(); 2317 2318 SDValue TVal = DAG.getConstant(1, dl, MVT::i32); 2319 SDValue FVal = DAG.getConstant(0, dl, MVT::i32); 2320 AArch64CC::CondCode CC; 2321 SDValue Value, Overflow; 2322 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG); 2323 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); 2324 return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal, 2325 CCVal, Overflow); 2326 } 2327 // If neither operand is a SELECT_CC, give up. 2328 if (Sel.getOpcode() != ISD::SELECT_CC) 2329 std::swap(Sel, Other); 2330 if (Sel.getOpcode() != ISD::SELECT_CC) 2331 return Op; 2332 2333 // The folding we want to perform is: 2334 // (xor x, (select_cc a, b, cc, 0, -1) ) 2335 // --> 2336 // (csel x, (xor x, -1), cc ...) 2337 // 2338 // The latter will get matched to a CSINV instruction. 2339 2340 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); 2341 SDValue LHS = Sel.getOperand(0); 2342 SDValue RHS = Sel.getOperand(1); 2343 SDValue TVal = Sel.getOperand(2); 2344 SDValue FVal = Sel.getOperand(3); 2345 2346 // FIXME: This could be generalized to non-integer comparisons. 2347 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) 2348 return Op; 2349 2350 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); 2351 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); 2352 2353 // The values aren't constants, this isn't the pattern we're looking for. 2354 if (!CFVal || !CTVal) 2355 return Op; 2356 2357 // We can commute the SELECT_CC by inverting the condition. This 2358 // might be needed to make this fit into a CSINV pattern. 2359 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { 2360 std::swap(TVal, FVal); 2361 std::swap(CTVal, CFVal); 2362 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 2363 } 2364 2365 // If the constants line up, perform the transform! 2366 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { 2367 SDValue CCVal; 2368 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 2369 2370 FVal = Other; 2371 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, 2372 DAG.getConstant(-1ULL, dl, Other.getValueType())); 2373 2374 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, 2375 CCVal, Cmp); 2376 } 2377 2378 return Op; 2379 } 2380 2381 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2382 EVT VT = Op.getValueType(); 2383 2384 // Let legalize expand this if it isn't a legal type yet. 2385 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 2386 return SDValue(); 2387 2388 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 2389 2390 unsigned Opc; 2391 bool ExtraOp = false; 2392 switch (Op.getOpcode()) { 2393 default: 2394 llvm_unreachable("Invalid code"); 2395 case ISD::ADDC: 2396 Opc = AArch64ISD::ADDS; 2397 break; 2398 case ISD::SUBC: 2399 Opc = AArch64ISD::SUBS; 2400 break; 2401 case ISD::ADDE: 2402 Opc = AArch64ISD::ADCS; 2403 ExtraOp = true; 2404 break; 2405 case ISD::SUBE: 2406 Opc = AArch64ISD::SBCS; 2407 ExtraOp = true; 2408 break; 2409 } 2410 2411 if (!ExtraOp) 2412 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); 2413 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), 2414 Op.getOperand(2)); 2415 } 2416 2417 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { 2418 // Let legalize expand this if it isn't a legal type yet. 2419 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) 2420 return SDValue(); 2421 2422 SDLoc dl(Op); 2423 AArch64CC::CondCode CC; 2424 // The actual operation that sets the overflow or carry flag. 2425 SDValue Value, Overflow; 2426 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); 2427 2428 // We use 0 and 1 as false and true values. 2429 SDValue TVal = DAG.getConstant(1, dl, MVT::i32); 2430 SDValue FVal = DAG.getConstant(0, dl, MVT::i32); 2431 2432 // We use an inverted condition, because the conditional select is inverted 2433 // too. This will allow it to be selected to a single instruction: 2434 // CSINC Wd, WZR, WZR, invert(cond). 2435 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); 2436 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, 2437 CCVal, Overflow); 2438 2439 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); 2440 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); 2441 } 2442 2443 // Prefetch operands are: 2444 // 1: Address to prefetch 2445 // 2: bool isWrite 2446 // 3: int locality (0 = no locality ... 3 = extreme locality) 2447 // 4: bool isDataCache 2448 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { 2449 SDLoc DL(Op); 2450 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2451 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 2452 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2453 2454 bool IsStream = !Locality; 2455 // When the locality number is set 2456 if (Locality) { 2457 // The front-end should have filtered out the out-of-range values 2458 assert(Locality <= 3 && "Prefetch locality out-of-range"); 2459 // The locality degree is the opposite of the cache speed. 2460 // Put the number the other way around. 2461 // The encoding starts at 0 for level 1 2462 Locality = 3 - Locality; 2463 } 2464 2465 // built the mask value encoding the expected behavior. 2466 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit 2467 (!IsData << 3) | // IsDataCache bit 2468 (Locality << 1) | // Cache level bits 2469 (unsigned)IsStream; // Stream bit 2470 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), 2471 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1)); 2472 } 2473 2474 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, 2475 SelectionDAG &DAG) const { 2476 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); 2477 2478 RTLIB::Libcall LC; 2479 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); 2480 2481 return LowerF128Call(Op, DAG, LC); 2482 } 2483 2484 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, 2485 SelectionDAG &DAG) const { 2486 if (Op.getOperand(0).getValueType() != MVT::f128) { 2487 // It's legal except when f128 is involved 2488 return Op; 2489 } 2490 2491 RTLIB::Libcall LC; 2492 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); 2493 2494 // FP_ROUND node has a second operand indicating whether it is known to be 2495 // precise. That doesn't take part in the LibCall so we can't directly use 2496 // LowerF128Call. 2497 SDValue SrcVal = Op.getOperand(0); 2498 MakeLibCallOptions CallOptions; 2499 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, CallOptions, 2500 SDLoc(Op)).first; 2501 } 2502 2503 SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op, 2504 SelectionDAG &DAG) const { 2505 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. 2506 // Any additional optimization in this function should be recorded 2507 // in the cost tables. 2508 EVT InVT = Op.getOperand(0).getValueType(); 2509 EVT VT = Op.getValueType(); 2510 unsigned NumElts = InVT.getVectorNumElements(); 2511 2512 // f16 conversions are promoted to f32 when full fp16 is not supported. 2513 if (InVT.getVectorElementType() == MVT::f16 && 2514 !Subtarget->hasFullFP16()) { 2515 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); 2516 SDLoc dl(Op); 2517 return DAG.getNode( 2518 Op.getOpcode(), dl, Op.getValueType(), 2519 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); 2520 } 2521 2522 if (VT.getSizeInBits() < InVT.getSizeInBits()) { 2523 SDLoc dl(Op); 2524 SDValue Cv = 2525 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), 2526 Op.getOperand(0)); 2527 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); 2528 } 2529 2530 if (VT.getSizeInBits() > InVT.getSizeInBits()) { 2531 SDLoc dl(Op); 2532 MVT ExtVT = 2533 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), 2534 VT.getVectorNumElements()); 2535 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); 2536 return DAG.getNode(Op.getOpcode(), dl, VT, Ext); 2537 } 2538 2539 // Type changing conversions are illegal. 2540 return Op; 2541 } 2542 2543 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, 2544 SelectionDAG &DAG) const { 2545 if (Op.getOperand(0).getValueType().isVector()) 2546 return LowerVectorFP_TO_INT(Op, DAG); 2547 2548 // f16 conversions are promoted to f32 when full fp16 is not supported. 2549 if (Op.getOperand(0).getValueType() == MVT::f16 && 2550 !Subtarget->hasFullFP16()) { 2551 SDLoc dl(Op); 2552 return DAG.getNode( 2553 Op.getOpcode(), dl, Op.getValueType(), 2554 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0))); 2555 } 2556 2557 if (Op.getOperand(0).getValueType() != MVT::f128) { 2558 // It's legal except when f128 is involved 2559 return Op; 2560 } 2561 2562 RTLIB::Libcall LC; 2563 if (Op.getOpcode() == ISD::FP_TO_SINT) 2564 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); 2565 else 2566 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); 2567 2568 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end()); 2569 MakeLibCallOptions CallOptions; 2570 return makeLibCall(DAG, LC, Op.getValueType(), Ops, CallOptions, SDLoc(Op)).first; 2571 } 2572 2573 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 2574 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. 2575 // Any additional optimization in this function should be recorded 2576 // in the cost tables. 2577 EVT VT = Op.getValueType(); 2578 SDLoc dl(Op); 2579 SDValue In = Op.getOperand(0); 2580 EVT InVT = In.getValueType(); 2581 2582 if (VT.getSizeInBits() < InVT.getSizeInBits()) { 2583 MVT CastVT = 2584 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), 2585 InVT.getVectorNumElements()); 2586 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); 2587 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl)); 2588 } 2589 2590 if (VT.getSizeInBits() > InVT.getSizeInBits()) { 2591 unsigned CastOpc = 2592 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 2593 EVT CastVT = VT.changeVectorElementTypeToInteger(); 2594 In = DAG.getNode(CastOpc, dl, CastVT, In); 2595 return DAG.getNode(Op.getOpcode(), dl, VT, In); 2596 } 2597 2598 return Op; 2599 } 2600 2601 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, 2602 SelectionDAG &DAG) const { 2603 if (Op.getValueType().isVector()) 2604 return LowerVectorINT_TO_FP(Op, DAG); 2605 2606 // f16 conversions are promoted to f32 when full fp16 is not supported. 2607 if (Op.getValueType() == MVT::f16 && 2608 !Subtarget->hasFullFP16()) { 2609 SDLoc dl(Op); 2610 return DAG.getNode( 2611 ISD::FP_ROUND, dl, MVT::f16, 2612 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)), 2613 DAG.getIntPtrConstant(0, dl)); 2614 } 2615 2616 // i128 conversions are libcalls. 2617 if (Op.getOperand(0).getValueType() == MVT::i128) 2618 return SDValue(); 2619 2620 // Other conversions are legal, unless it's to the completely software-based 2621 // fp128. 2622 if (Op.getValueType() != MVT::f128) 2623 return Op; 2624 2625 RTLIB::Libcall LC; 2626 if (Op.getOpcode() == ISD::SINT_TO_FP) 2627 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); 2628 else 2629 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); 2630 2631 return LowerF128Call(Op, DAG, LC); 2632 } 2633 2634 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, 2635 SelectionDAG &DAG) const { 2636 // For iOS, we want to call an alternative entry point: __sincos_stret, 2637 // which returns the values in two S / D registers. 2638 SDLoc dl(Op); 2639 SDValue Arg = Op.getOperand(0); 2640 EVT ArgVT = Arg.getValueType(); 2641 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2642 2643 ArgListTy Args; 2644 ArgListEntry Entry; 2645 2646 Entry.Node = Arg; 2647 Entry.Ty = ArgTy; 2648 Entry.IsSExt = false; 2649 Entry.IsZExt = false; 2650 Args.push_back(Entry); 2651 2652 RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64 2653 : RTLIB::SINCOS_STRET_F32; 2654 const char *LibcallName = getLibcallName(LC); 2655 SDValue Callee = 2656 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); 2657 2658 StructType *RetTy = StructType::get(ArgTy, ArgTy); 2659 TargetLowering::CallLoweringInfo CLI(DAG); 2660 CLI.setDebugLoc(dl) 2661 .setChain(DAG.getEntryNode()) 2662 .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args)); 2663 2664 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2665 return CallResult.first; 2666 } 2667 2668 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) { 2669 if (Op.getValueType() != MVT::f16) 2670 return SDValue(); 2671 2672 assert(Op.getOperand(0).getValueType() == MVT::i16); 2673 SDLoc DL(Op); 2674 2675 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); 2676 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); 2677 return SDValue( 2678 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op, 2679 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), 2680 0); 2681 } 2682 2683 static EVT getExtensionTo64Bits(const EVT &OrigVT) { 2684 if (OrigVT.getSizeInBits() >= 64) 2685 return OrigVT; 2686 2687 assert(OrigVT.isSimple() && "Expecting a simple value type"); 2688 2689 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; 2690 switch (OrigSimpleTy) { 2691 default: llvm_unreachable("Unexpected Vector Type"); 2692 case MVT::v2i8: 2693 case MVT::v2i16: 2694 return MVT::v2i32; 2695 case MVT::v4i8: 2696 return MVT::v4i16; 2697 } 2698 } 2699 2700 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, 2701 const EVT &OrigTy, 2702 const EVT &ExtTy, 2703 unsigned ExtOpcode) { 2704 // The vector originally had a size of OrigTy. It was then extended to ExtTy. 2705 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than 2706 // 64-bits we need to insert a new extension so that it will be 64-bits. 2707 assert(ExtTy.is128BitVector() && "Unexpected extension size"); 2708 if (OrigTy.getSizeInBits() >= 64) 2709 return N; 2710 2711 // Must extend size to at least 64 bits to be used as an operand for VMULL. 2712 EVT NewVT = getExtensionTo64Bits(OrigTy); 2713 2714 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); 2715 } 2716 2717 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, 2718 bool isSigned) { 2719 EVT VT = N->getValueType(0); 2720 2721 if (N->getOpcode() != ISD::BUILD_VECTOR) 2722 return false; 2723 2724 for (const SDValue &Elt : N->op_values()) { 2725 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { 2726 unsigned EltSize = VT.getScalarSizeInBits(); 2727 unsigned HalfSize = EltSize / 2; 2728 if (isSigned) { 2729 if (!isIntN(HalfSize, C->getSExtValue())) 2730 return false; 2731 } else { 2732 if (!isUIntN(HalfSize, C->getZExtValue())) 2733 return false; 2734 } 2735 continue; 2736 } 2737 return false; 2738 } 2739 2740 return true; 2741 } 2742 2743 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) { 2744 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) 2745 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG, 2746 N->getOperand(0)->getValueType(0), 2747 N->getValueType(0), 2748 N->getOpcode()); 2749 2750 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); 2751 EVT VT = N->getValueType(0); 2752 SDLoc dl(N); 2753 unsigned EltSize = VT.getScalarSizeInBits() / 2; 2754 unsigned NumElts = VT.getVectorNumElements(); 2755 MVT TruncVT = MVT::getIntegerVT(EltSize); 2756 SmallVector<SDValue, 8> Ops; 2757 for (unsigned i = 0; i != NumElts; ++i) { 2758 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); 2759 const APInt &CInt = C->getAPIntValue(); 2760 // Element types smaller than 32 bits are not legal, so use i32 elements. 2761 // The values are implicitly truncated so sext vs. zext doesn't matter. 2762 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); 2763 } 2764 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); 2765 } 2766 2767 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { 2768 return N->getOpcode() == ISD::SIGN_EXTEND || 2769 isExtendedBUILD_VECTOR(N, DAG, true); 2770 } 2771 2772 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { 2773 return N->getOpcode() == ISD::ZERO_EXTEND || 2774 isExtendedBUILD_VECTOR(N, DAG, false); 2775 } 2776 2777 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { 2778 unsigned Opcode = N->getOpcode(); 2779 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 2780 SDNode *N0 = N->getOperand(0).getNode(); 2781 SDNode *N1 = N->getOperand(1).getNode(); 2782 return N0->hasOneUse() && N1->hasOneUse() && 2783 isSignExtended(N0, DAG) && isSignExtended(N1, DAG); 2784 } 2785 return false; 2786 } 2787 2788 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { 2789 unsigned Opcode = N->getOpcode(); 2790 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 2791 SDNode *N0 = N->getOperand(0).getNode(); 2792 SDNode *N1 = N->getOperand(1).getNode(); 2793 return N0->hasOneUse() && N1->hasOneUse() && 2794 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); 2795 } 2796 return false; 2797 } 2798 2799 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op, 2800 SelectionDAG &DAG) const { 2801 // The rounding mode is in bits 23:22 of the FPSCR. 2802 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 2803 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) 2804 // so that the shift + and get folded into a bitfield extract. 2805 SDLoc dl(Op); 2806 2807 SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64, 2808 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, 2809 MVT::i64)); 2810 SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64); 2811 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32, 2812 DAG.getConstant(1U << 22, dl, MVT::i32)); 2813 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, 2814 DAG.getConstant(22, dl, MVT::i32)); 2815 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, 2816 DAG.getConstant(3, dl, MVT::i32)); 2817 } 2818 2819 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { 2820 // Multiplications are only custom-lowered for 128-bit vectors so that 2821 // VMULL can be detected. Otherwise v2i64 multiplications are not legal. 2822 EVT VT = Op.getValueType(); 2823 assert(VT.is128BitVector() && VT.isInteger() && 2824 "unexpected type for custom-lowering ISD::MUL"); 2825 SDNode *N0 = Op.getOperand(0).getNode(); 2826 SDNode *N1 = Op.getOperand(1).getNode(); 2827 unsigned NewOpc = 0; 2828 bool isMLA = false; 2829 bool isN0SExt = isSignExtended(N0, DAG); 2830 bool isN1SExt = isSignExtended(N1, DAG); 2831 if (isN0SExt && isN1SExt) 2832 NewOpc = AArch64ISD::SMULL; 2833 else { 2834 bool isN0ZExt = isZeroExtended(N0, DAG); 2835 bool isN1ZExt = isZeroExtended(N1, DAG); 2836 if (isN0ZExt && isN1ZExt) 2837 NewOpc = AArch64ISD::UMULL; 2838 else if (isN1SExt || isN1ZExt) { 2839 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these 2840 // into (s/zext A * s/zext C) + (s/zext B * s/zext C) 2841 if (isN1SExt && isAddSubSExt(N0, DAG)) { 2842 NewOpc = AArch64ISD::SMULL; 2843 isMLA = true; 2844 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { 2845 NewOpc = AArch64ISD::UMULL; 2846 isMLA = true; 2847 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { 2848 std::swap(N0, N1); 2849 NewOpc = AArch64ISD::UMULL; 2850 isMLA = true; 2851 } 2852 } 2853 2854 if (!NewOpc) { 2855 if (VT == MVT::v2i64) 2856 // Fall through to expand this. It is not legal. 2857 return SDValue(); 2858 else 2859 // Other vector multiplications are legal. 2860 return Op; 2861 } 2862 } 2863 2864 // Legalize to a S/UMULL instruction 2865 SDLoc DL(Op); 2866 SDValue Op0; 2867 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); 2868 if (!isMLA) { 2869 Op0 = skipExtensionForVectorMULL(N0, DAG); 2870 assert(Op0.getValueType().is64BitVector() && 2871 Op1.getValueType().is64BitVector() && 2872 "unexpected types for extended operands to VMULL"); 2873 return DAG.getNode(NewOpc, DL, VT, Op0, Op1); 2874 } 2875 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during 2876 // isel lowering to take advantage of no-stall back to back s/umul + s/umla. 2877 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 2878 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG); 2879 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG); 2880 EVT Op1VT = Op1.getValueType(); 2881 return DAG.getNode(N0->getOpcode(), DL, VT, 2882 DAG.getNode(NewOpc, DL, VT, 2883 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), 2884 DAG.getNode(NewOpc, DL, VT, 2885 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); 2886 } 2887 2888 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2889 SelectionDAG &DAG) const { 2890 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2891 SDLoc dl(Op); 2892 switch (IntNo) { 2893 default: return SDValue(); // Don't custom lower most intrinsics. 2894 case Intrinsic::thread_pointer: { 2895 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2896 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); 2897 } 2898 case Intrinsic::aarch64_neon_abs: { 2899 EVT Ty = Op.getValueType(); 2900 if (Ty == MVT::i64) { 2901 SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, 2902 Op.getOperand(1)); 2903 Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result); 2904 return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result); 2905 } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) { 2906 return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1)); 2907 } else { 2908 report_fatal_error("Unexpected type for AArch64 NEON intrinic"); 2909 } 2910 } 2911 case Intrinsic::aarch64_neon_smax: 2912 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), 2913 Op.getOperand(1), Op.getOperand(2)); 2914 case Intrinsic::aarch64_neon_umax: 2915 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), 2916 Op.getOperand(1), Op.getOperand(2)); 2917 case Intrinsic::aarch64_neon_smin: 2918 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), 2919 Op.getOperand(1), Op.getOperand(2)); 2920 case Intrinsic::aarch64_neon_umin: 2921 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), 2922 Op.getOperand(1), Op.getOperand(2)); 2923 2924 case Intrinsic::aarch64_sve_sunpkhi: 2925 return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(), 2926 Op.getOperand(1)); 2927 case Intrinsic::aarch64_sve_sunpklo: 2928 return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(), 2929 Op.getOperand(1)); 2930 case Intrinsic::aarch64_sve_uunpkhi: 2931 return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(), 2932 Op.getOperand(1)); 2933 case Intrinsic::aarch64_sve_uunpklo: 2934 return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(), 2935 Op.getOperand(1)); 2936 case Intrinsic::aarch64_sve_clasta_n: 2937 return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(), 2938 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 2939 case Intrinsic::aarch64_sve_clastb_n: 2940 return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(), 2941 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 2942 case Intrinsic::aarch64_sve_lasta: 2943 return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(), 2944 Op.getOperand(1), Op.getOperand(2)); 2945 case Intrinsic::aarch64_sve_lastb: 2946 return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(), 2947 Op.getOperand(1), Op.getOperand(2)); 2948 case Intrinsic::aarch64_sve_rev: 2949 return DAG.getNode(AArch64ISD::REV, dl, Op.getValueType(), 2950 Op.getOperand(1)); 2951 case Intrinsic::aarch64_sve_tbl: 2952 return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(), 2953 Op.getOperand(1), Op.getOperand(2)); 2954 case Intrinsic::aarch64_sve_trn1: 2955 return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(), 2956 Op.getOperand(1), Op.getOperand(2)); 2957 case Intrinsic::aarch64_sve_trn2: 2958 return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(), 2959 Op.getOperand(1), Op.getOperand(2)); 2960 case Intrinsic::aarch64_sve_uzp1: 2961 return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(), 2962 Op.getOperand(1), Op.getOperand(2)); 2963 case Intrinsic::aarch64_sve_uzp2: 2964 return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(), 2965 Op.getOperand(1), Op.getOperand(2)); 2966 case Intrinsic::aarch64_sve_zip1: 2967 return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(), 2968 Op.getOperand(1), Op.getOperand(2)); 2969 case Intrinsic::aarch64_sve_zip2: 2970 return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(), 2971 Op.getOperand(1), Op.getOperand(2)); 2972 case Intrinsic::aarch64_sve_ptrue: 2973 return DAG.getNode(AArch64ISD::PTRUE, dl, Op.getValueType(), 2974 Op.getOperand(1)); 2975 2976 case Intrinsic::aarch64_sve_insr: { 2977 SDValue Scalar = Op.getOperand(2); 2978 EVT ScalarTy = Scalar.getValueType(); 2979 if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) 2980 Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); 2981 2982 return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(), 2983 Op.getOperand(1), Scalar); 2984 } 2985 2986 case Intrinsic::localaddress: { 2987 const auto &MF = DAG.getMachineFunction(); 2988 const auto *RegInfo = Subtarget->getRegisterInfo(); 2989 unsigned Reg = RegInfo->getLocalAddressRegister(MF); 2990 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, 2991 Op.getSimpleValueType()); 2992 } 2993 2994 case Intrinsic::eh_recoverfp: { 2995 // FIXME: This needs to be implemented to correctly handle highly aligned 2996 // stack objects. For now we simply return the incoming FP. Refer D53541 2997 // for more details. 2998 SDValue FnOp = Op.getOperand(1); 2999 SDValue IncomingFPOp = Op.getOperand(2); 3000 GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); 3001 auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); 3002 if (!Fn) 3003 report_fatal_error( 3004 "llvm.eh.recoverfp must take a function as the first argument"); 3005 return IncomingFPOp; 3006 } 3007 } 3008 } 3009 3010 bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 3011 return ExtVal.getValueType().isScalableVector(); 3012 } 3013 3014 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16. 3015 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST, 3016 EVT VT, EVT MemVT, 3017 SelectionDAG &DAG) { 3018 assert(VT.isVector() && "VT should be a vector type"); 3019 assert(MemVT == MVT::v4i8 && VT == MVT::v4i16); 3020 3021 SDValue Value = ST->getValue(); 3022 3023 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract 3024 // the word lane which represent the v4i8 subvector. It optimizes the store 3025 // to: 3026 // 3027 // xtn v0.8b, v0.8h 3028 // str s0, [x0] 3029 3030 SDValue Undef = DAG.getUNDEF(MVT::i16); 3031 SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL, 3032 {Undef, Undef, Undef, Undef}); 3033 3034 SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, 3035 Value, UndefVec); 3036 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt); 3037 3038 Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc); 3039 SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 3040 Trunc, DAG.getConstant(0, DL, MVT::i64)); 3041 3042 return DAG.getStore(ST->getChain(), DL, ExtractTrunc, 3043 ST->getBasePtr(), ST->getMemOperand()); 3044 } 3045 3046 // Custom lowering for any store, vector or scalar and/or default or with 3047 // a truncate operations. Currently only custom lower truncate operation 3048 // from vector v4i16 to v4i8 or volatile stores of i128. 3049 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op, 3050 SelectionDAG &DAG) const { 3051 SDLoc Dl(Op); 3052 StoreSDNode *StoreNode = cast<StoreSDNode>(Op); 3053 assert (StoreNode && "Can only custom lower store nodes"); 3054 3055 SDValue Value = StoreNode->getValue(); 3056 3057 EVT VT = Value.getValueType(); 3058 EVT MemVT = StoreNode->getMemoryVT(); 3059 3060 if (VT.isVector()) { 3061 unsigned AS = StoreNode->getAddressSpace(); 3062 unsigned Align = StoreNode->getAlignment(); 3063 if (Align < MemVT.getStoreSize() && 3064 !allowsMisalignedMemoryAccesses(MemVT, AS, Align, 3065 StoreNode->getMemOperand()->getFlags(), 3066 nullptr)) { 3067 return scalarizeVectorStore(StoreNode, DAG); 3068 } 3069 3070 if (StoreNode->isTruncatingStore()) { 3071 return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG); 3072 } 3073 } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) { 3074 assert(StoreNode->getValue()->getValueType(0) == MVT::i128); 3075 SDValue Lo = 3076 DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(), 3077 DAG.getConstant(0, Dl, MVT::i64)); 3078 SDValue Hi = 3079 DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i64, StoreNode->getValue(), 3080 DAG.getConstant(1, Dl, MVT::i64)); 3081 SDValue Result = DAG.getMemIntrinsicNode( 3082 AArch64ISD::STP, Dl, DAG.getVTList(MVT::Other), 3083 {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, 3084 StoreNode->getMemoryVT(), StoreNode->getMemOperand()); 3085 return Result; 3086 } 3087 3088 return SDValue(); 3089 } 3090 3091 SDValue AArch64TargetLowering::LowerOperation(SDValue Op, 3092 SelectionDAG &DAG) const { 3093 LLVM_DEBUG(dbgs() << "Custom lowering: "); 3094 LLVM_DEBUG(Op.dump()); 3095 3096 switch (Op.getOpcode()) { 3097 default: 3098 llvm_unreachable("unimplemented operand"); 3099 return SDValue(); 3100 case ISD::BITCAST: 3101 return LowerBITCAST(Op, DAG); 3102 case ISD::GlobalAddress: 3103 return LowerGlobalAddress(Op, DAG); 3104 case ISD::GlobalTLSAddress: 3105 return LowerGlobalTLSAddress(Op, DAG); 3106 case ISD::SETCC: 3107 return LowerSETCC(Op, DAG); 3108 case ISD::BR_CC: 3109 return LowerBR_CC(Op, DAG); 3110 case ISD::SELECT: 3111 return LowerSELECT(Op, DAG); 3112 case ISD::SELECT_CC: 3113 return LowerSELECT_CC(Op, DAG); 3114 case ISD::JumpTable: 3115 return LowerJumpTable(Op, DAG); 3116 case ISD::BR_JT: 3117 return LowerBR_JT(Op, DAG); 3118 case ISD::ConstantPool: 3119 return LowerConstantPool(Op, DAG); 3120 case ISD::BlockAddress: 3121 return LowerBlockAddress(Op, DAG); 3122 case ISD::VASTART: 3123 return LowerVASTART(Op, DAG); 3124 case ISD::VACOPY: 3125 return LowerVACOPY(Op, DAG); 3126 case ISD::VAARG: 3127 return LowerVAARG(Op, DAG); 3128 case ISD::ADDC: 3129 case ISD::ADDE: 3130 case ISD::SUBC: 3131 case ISD::SUBE: 3132 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3133 case ISD::SADDO: 3134 case ISD::UADDO: 3135 case ISD::SSUBO: 3136 case ISD::USUBO: 3137 case ISD::SMULO: 3138 case ISD::UMULO: 3139 return LowerXALUO(Op, DAG); 3140 case ISD::FADD: 3141 return LowerF128Call(Op, DAG, RTLIB::ADD_F128); 3142 case ISD::FSUB: 3143 return LowerF128Call(Op, DAG, RTLIB::SUB_F128); 3144 case ISD::FMUL: 3145 return LowerF128Call(Op, DAG, RTLIB::MUL_F128); 3146 case ISD::FDIV: 3147 return LowerF128Call(Op, DAG, RTLIB::DIV_F128); 3148 case ISD::FP_ROUND: 3149 return LowerFP_ROUND(Op, DAG); 3150 case ISD::FP_EXTEND: 3151 return LowerFP_EXTEND(Op, DAG); 3152 case ISD::FRAMEADDR: 3153 return LowerFRAMEADDR(Op, DAG); 3154 case ISD::SPONENTRY: 3155 return LowerSPONENTRY(Op, DAG); 3156 case ISD::RETURNADDR: 3157 return LowerRETURNADDR(Op, DAG); 3158 case ISD::ADDROFRETURNADDR: 3159 return LowerADDROFRETURNADDR(Op, DAG); 3160 case ISD::INSERT_VECTOR_ELT: 3161 return LowerINSERT_VECTOR_ELT(Op, DAG); 3162 case ISD::EXTRACT_VECTOR_ELT: 3163 return LowerEXTRACT_VECTOR_ELT(Op, DAG); 3164 case ISD::BUILD_VECTOR: 3165 return LowerBUILD_VECTOR(Op, DAG); 3166 case ISD::VECTOR_SHUFFLE: 3167 return LowerVECTOR_SHUFFLE(Op, DAG); 3168 case ISD::SPLAT_VECTOR: 3169 return LowerSPLAT_VECTOR(Op, DAG); 3170 case ISD::EXTRACT_SUBVECTOR: 3171 return LowerEXTRACT_SUBVECTOR(Op, DAG); 3172 case ISD::SRA: 3173 case ISD::SRL: 3174 case ISD::SHL: 3175 return LowerVectorSRA_SRL_SHL(Op, DAG); 3176 case ISD::SHL_PARTS: 3177 return LowerShiftLeftParts(Op, DAG); 3178 case ISD::SRL_PARTS: 3179 case ISD::SRA_PARTS: 3180 return LowerShiftRightParts(Op, DAG); 3181 case ISD::CTPOP: 3182 return LowerCTPOP(Op, DAG); 3183 case ISD::FCOPYSIGN: 3184 return LowerFCOPYSIGN(Op, DAG); 3185 case ISD::OR: 3186 return LowerVectorOR(Op, DAG); 3187 case ISD::XOR: 3188 return LowerXOR(Op, DAG); 3189 case ISD::PREFETCH: 3190 return LowerPREFETCH(Op, DAG); 3191 case ISD::SINT_TO_FP: 3192 case ISD::UINT_TO_FP: 3193 return LowerINT_TO_FP(Op, DAG); 3194 case ISD::FP_TO_SINT: 3195 case ISD::FP_TO_UINT: 3196 return LowerFP_TO_INT(Op, DAG); 3197 case ISD::FSINCOS: 3198 return LowerFSINCOS(Op, DAG); 3199 case ISD::FLT_ROUNDS_: 3200 return LowerFLT_ROUNDS_(Op, DAG); 3201 case ISD::MUL: 3202 return LowerMUL(Op, DAG); 3203 case ISD::INTRINSIC_WO_CHAIN: 3204 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3205 case ISD::STORE: 3206 return LowerSTORE(Op, DAG); 3207 case ISD::VECREDUCE_ADD: 3208 case ISD::VECREDUCE_SMAX: 3209 case ISD::VECREDUCE_SMIN: 3210 case ISD::VECREDUCE_UMAX: 3211 case ISD::VECREDUCE_UMIN: 3212 case ISD::VECREDUCE_FMAX: 3213 case ISD::VECREDUCE_FMIN: 3214 return LowerVECREDUCE(Op, DAG); 3215 case ISD::ATOMIC_LOAD_SUB: 3216 return LowerATOMIC_LOAD_SUB(Op, DAG); 3217 case ISD::ATOMIC_LOAD_AND: 3218 return LowerATOMIC_LOAD_AND(Op, DAG); 3219 case ISD::DYNAMIC_STACKALLOC: 3220 return LowerDYNAMIC_STACKALLOC(Op, DAG); 3221 } 3222 } 3223 3224 //===----------------------------------------------------------------------===// 3225 // Calling Convention Implementation 3226 //===----------------------------------------------------------------------===// 3227 3228 /// Selects the correct CCAssignFn for a given CallingConvention value. 3229 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, 3230 bool IsVarArg) const { 3231 switch (CC) { 3232 default: 3233 report_fatal_error("Unsupported calling convention."); 3234 case CallingConv::AArch64_SVE_VectorCall: 3235 // Calling SVE functions is currently not yet supported. 3236 report_fatal_error("Unsupported calling convention."); 3237 case CallingConv::WebKit_JS: 3238 return CC_AArch64_WebKit_JS; 3239 case CallingConv::GHC: 3240 return CC_AArch64_GHC; 3241 case CallingConv::C: 3242 case CallingConv::Fast: 3243 case CallingConv::PreserveMost: 3244 case CallingConv::CXX_FAST_TLS: 3245 case CallingConv::Swift: 3246 if (Subtarget->isTargetWindows() && IsVarArg) 3247 return CC_AArch64_Win64_VarArg; 3248 if (!Subtarget->isTargetDarwin()) 3249 return CC_AArch64_AAPCS; 3250 if (!IsVarArg) 3251 return CC_AArch64_DarwinPCS; 3252 return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg 3253 : CC_AArch64_DarwinPCS_VarArg; 3254 case CallingConv::Win64: 3255 return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS; 3256 case CallingConv::CFGuard_Check: 3257 return CC_AArch64_Win64_CFGuard_Check; 3258 case CallingConv::AArch64_VectorCall: 3259 return CC_AArch64_AAPCS; 3260 } 3261 } 3262 3263 CCAssignFn * 3264 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { 3265 return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS 3266 : RetCC_AArch64_AAPCS; 3267 } 3268 3269 SDValue AArch64TargetLowering::LowerFormalArguments( 3270 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3271 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3272 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3273 MachineFunction &MF = DAG.getMachineFunction(); 3274 MachineFrameInfo &MFI = MF.getFrameInfo(); 3275 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); 3276 3277 // Assign locations to all of the incoming arguments. 3278 SmallVector<CCValAssign, 16> ArgLocs; 3279 DenseMap<unsigned, SDValue> CopiedRegs; 3280 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3281 *DAG.getContext()); 3282 3283 // At this point, Ins[].VT may already be promoted to i32. To correctly 3284 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and 3285 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. 3286 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here 3287 // we use a special version of AnalyzeFormalArguments to pass in ValVT and 3288 // LocVT. 3289 unsigned NumArgs = Ins.size(); 3290 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin(); 3291 unsigned CurArgIdx = 0; 3292 for (unsigned i = 0; i != NumArgs; ++i) { 3293 MVT ValVT = Ins[i].VT; 3294 if (Ins[i].isOrigArg()) { 3295 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); 3296 CurArgIdx = Ins[i].getOrigArgIndex(); 3297 3298 // Get type of the original argument. 3299 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), 3300 /*AllowUnknown*/ true); 3301 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; 3302 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. 3303 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) 3304 ValVT = MVT::i8; 3305 else if (ActualMVT == MVT::i16) 3306 ValVT = MVT::i16; 3307 } 3308 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); 3309 bool Res = 3310 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); 3311 assert(!Res && "Call operand has unhandled type"); 3312 (void)Res; 3313 } 3314 assert(ArgLocs.size() == Ins.size()); 3315 SmallVector<SDValue, 16> ArgValues; 3316 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3317 CCValAssign &VA = ArgLocs[i]; 3318 3319 if (Ins[i].Flags.isByVal()) { 3320 // Byval is used for HFAs in the PCS, but the system should work in a 3321 // non-compliant manner for larger structs. 3322 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3323 int Size = Ins[i].Flags.getByValSize(); 3324 unsigned NumRegs = (Size + 7) / 8; 3325 3326 // FIXME: This works on big-endian for composite byvals, which are the common 3327 // case. It should also work for fundamental types too. 3328 unsigned FrameIdx = 3329 MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); 3330 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); 3331 InVals.push_back(FrameIdxN); 3332 3333 continue; 3334 } 3335 3336 SDValue ArgValue; 3337 if (VA.isRegLoc()) { 3338 // Arguments stored in registers. 3339 EVT RegVT = VA.getLocVT(); 3340 const TargetRegisterClass *RC; 3341 3342 if (RegVT == MVT::i32) 3343 RC = &AArch64::GPR32RegClass; 3344 else if (RegVT == MVT::i64) 3345 RC = &AArch64::GPR64RegClass; 3346 else if (RegVT == MVT::f16) 3347 RC = &AArch64::FPR16RegClass; 3348 else if (RegVT == MVT::f32) 3349 RC = &AArch64::FPR32RegClass; 3350 else if (RegVT == MVT::f64 || RegVT.is64BitVector()) 3351 RC = &AArch64::FPR64RegClass; 3352 else if (RegVT == MVT::f128 || RegVT.is128BitVector()) 3353 RC = &AArch64::FPR128RegClass; 3354 else if (RegVT.isScalableVector() && 3355 RegVT.getVectorElementType() == MVT::i1) 3356 RC = &AArch64::PPRRegClass; 3357 else if (RegVT.isScalableVector()) 3358 RC = &AArch64::ZPRRegClass; 3359 else 3360 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 3361 3362 // Transform the arguments in physical registers into virtual ones. 3363 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3364 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 3365 3366 // If this is an 8, 16 or 32-bit value, it is really passed promoted 3367 // to 64 bits. Insert an assert[sz]ext to capture this, then 3368 // truncate to the right size. 3369 switch (VA.getLocInfo()) { 3370 default: 3371 llvm_unreachable("Unknown loc info!"); 3372 case CCValAssign::Full: 3373 break; 3374 case CCValAssign::Indirect: 3375 assert(VA.getValVT().isScalableVector() && 3376 "Only scalable vectors can be passed indirectly"); 3377 llvm_unreachable("Spilling of SVE vectors not yet implemented"); 3378 case CCValAssign::BCvt: 3379 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); 3380 break; 3381 case CCValAssign::AExt: 3382 case CCValAssign::SExt: 3383 case CCValAssign::ZExt: 3384 break; 3385 case CCValAssign::AExtUpper: 3386 ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue, 3387 DAG.getConstant(32, DL, RegVT)); 3388 ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT()); 3389 break; 3390 } 3391 } else { // VA.isRegLoc() 3392 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); 3393 unsigned ArgOffset = VA.getLocMemOffset(); 3394 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8; 3395 3396 uint32_t BEAlign = 0; 3397 if (!Subtarget->isLittleEndian() && ArgSize < 8 && 3398 !Ins[i].Flags.isInConsecutiveRegs()) 3399 BEAlign = 8 - ArgSize; 3400 3401 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); 3402 3403 // Create load nodes to retrieve arguments from the stack. 3404 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3405 3406 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 3407 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 3408 MVT MemVT = VA.getValVT(); 3409 3410 switch (VA.getLocInfo()) { 3411 default: 3412 break; 3413 case CCValAssign::Trunc: 3414 case CCValAssign::BCvt: 3415 MemVT = VA.getLocVT(); 3416 break; 3417 case CCValAssign::Indirect: 3418 assert(VA.getValVT().isScalableVector() && 3419 "Only scalable vectors can be passed indirectly"); 3420 llvm_unreachable("Spilling of SVE vectors not yet implemented"); 3421 case CCValAssign::SExt: 3422 ExtType = ISD::SEXTLOAD; 3423 break; 3424 case CCValAssign::ZExt: 3425 ExtType = ISD::ZEXTLOAD; 3426 break; 3427 case CCValAssign::AExt: 3428 ExtType = ISD::EXTLOAD; 3429 break; 3430 } 3431 3432 ArgValue = DAG.getExtLoad( 3433 ExtType, DL, VA.getLocVT(), Chain, FIN, 3434 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 3435 MemVT); 3436 3437 } 3438 if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer()) 3439 ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(), 3440 ArgValue, DAG.getValueType(MVT::i32)); 3441 InVals.push_back(ArgValue); 3442 } 3443 3444 // varargs 3445 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3446 if (isVarArg) { 3447 if (!Subtarget->isTargetDarwin() || IsWin64) { 3448 // The AAPCS variadic function ABI is identical to the non-variadic 3449 // one. As a result there may be more arguments in registers and we should 3450 // save them for future reference. 3451 // Win64 variadic functions also pass arguments in registers, but all float 3452 // arguments are passed in integer registers. 3453 saveVarArgRegisters(CCInfo, DAG, DL, Chain); 3454 } 3455 3456 // This will point to the next argument passed via stack. 3457 unsigned StackOffset = CCInfo.getNextStackOffset(); 3458 // We currently pass all varargs at 8-byte alignment, or 4 for ILP32 3459 StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8); 3460 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); 3461 3462 if (MFI.hasMustTailInVarArgFunc()) { 3463 SmallVector<MVT, 2> RegParmTypes; 3464 RegParmTypes.push_back(MVT::i64); 3465 RegParmTypes.push_back(MVT::f128); 3466 // Compute the set of forwarded registers. The rest are scratch. 3467 SmallVectorImpl<ForwardedRegister> &Forwards = 3468 FuncInfo->getForwardedMustTailRegParms(); 3469 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, 3470 CC_AArch64_AAPCS); 3471 3472 // Conservatively forward X8, since it might be used for aggregate return. 3473 if (!CCInfo.isAllocated(AArch64::X8)) { 3474 unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); 3475 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); 3476 } 3477 } 3478 } 3479 3480 // On Windows, InReg pointers must be returned, so record the pointer in a 3481 // virtual register at the start of the function so it can be returned in the 3482 // epilogue. 3483 if (IsWin64) { 3484 for (unsigned I = 0, E = Ins.size(); I != E; ++I) { 3485 if (Ins[I].Flags.isInReg()) { 3486 assert(!FuncInfo->getSRetReturnReg()); 3487 3488 MVT PtrTy = getPointerTy(DAG.getDataLayout()); 3489 Register Reg = 3490 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); 3491 FuncInfo->setSRetReturnReg(Reg); 3492 3493 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]); 3494 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 3495 break; 3496 } 3497 } 3498 } 3499 3500 unsigned StackArgSize = CCInfo.getNextStackOffset(); 3501 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3502 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { 3503 // This is a non-standard ABI so by fiat I say we're allowed to make full 3504 // use of the stack area to be popped, which must be aligned to 16 bytes in 3505 // any case: 3506 StackArgSize = alignTo(StackArgSize, 16); 3507 3508 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding 3509 // a multiple of 16. 3510 FuncInfo->setArgumentStackToRestore(StackArgSize); 3511 3512 // This realignment carries over to the available bytes below. Our own 3513 // callers will guarantee the space is free by giving an aligned value to 3514 // CALLSEQ_START. 3515 } 3516 // Even if we're not expected to free up the space, it's useful to know how 3517 // much is there while considering tail calls (because we can reuse it). 3518 FuncInfo->setBytesInStackArgArea(StackArgSize); 3519 3520 if (Subtarget->hasCustomCallingConv()) 3521 Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); 3522 3523 return Chain; 3524 } 3525 3526 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, 3527 SelectionDAG &DAG, 3528 const SDLoc &DL, 3529 SDValue &Chain) const { 3530 MachineFunction &MF = DAG.getMachineFunction(); 3531 MachineFrameInfo &MFI = MF.getFrameInfo(); 3532 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3533 auto PtrVT = getPointerTy(DAG.getDataLayout()); 3534 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); 3535 3536 SmallVector<SDValue, 8> MemOps; 3537 3538 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, 3539 AArch64::X3, AArch64::X4, AArch64::X5, 3540 AArch64::X6, AArch64::X7 }; 3541 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); 3542 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); 3543 3544 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); 3545 int GPRIdx = 0; 3546 if (GPRSaveSize != 0) { 3547 if (IsWin64) { 3548 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false); 3549 if (GPRSaveSize & 15) 3550 // The extra size here, if triggered, will always be 8. 3551 MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false); 3552 } else 3553 GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false); 3554 3555 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT); 3556 3557 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { 3558 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); 3559 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 3560 SDValue Store = DAG.getStore( 3561 Val.getValue(1), DL, Val, FIN, 3562 IsWin64 3563 ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 3564 GPRIdx, 3565 (i - FirstVariadicGPR) * 8) 3566 : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8)); 3567 MemOps.push_back(Store); 3568 FIN = 3569 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); 3570 } 3571 } 3572 FuncInfo->setVarArgsGPRIndex(GPRIdx); 3573 FuncInfo->setVarArgsGPRSize(GPRSaveSize); 3574 3575 if (Subtarget->hasFPARMv8() && !IsWin64) { 3576 static const MCPhysReg FPRArgRegs[] = { 3577 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, 3578 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; 3579 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); 3580 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); 3581 3582 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); 3583 int FPRIdx = 0; 3584 if (FPRSaveSize != 0) { 3585 FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false); 3586 3587 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); 3588 3589 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { 3590 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); 3591 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); 3592 3593 SDValue Store = DAG.getStore( 3594 Val.getValue(1), DL, Val, FIN, 3595 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16)); 3596 MemOps.push_back(Store); 3597 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 3598 DAG.getConstant(16, DL, PtrVT)); 3599 } 3600 } 3601 FuncInfo->setVarArgsFPRIndex(FPRIdx); 3602 FuncInfo->setVarArgsFPRSize(FPRSaveSize); 3603 } 3604 3605 if (!MemOps.empty()) { 3606 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3607 } 3608 } 3609 3610 /// LowerCallResult - Lower the result values of a call into the 3611 /// appropriate copies out of appropriate physical registers. 3612 SDValue AArch64TargetLowering::LowerCallResult( 3613 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 3614 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 3615 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, 3616 SDValue ThisVal) const { 3617 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 3618 ? RetCC_AArch64_WebKit_JS 3619 : RetCC_AArch64_AAPCS; 3620 // Assign locations to each value returned by this call. 3621 SmallVector<CCValAssign, 16> RVLocs; 3622 DenseMap<unsigned, SDValue> CopiedRegs; 3623 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 3624 *DAG.getContext()); 3625 CCInfo.AnalyzeCallResult(Ins, RetCC); 3626 3627 // Copy all of the result registers out of their specified physreg. 3628 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3629 CCValAssign VA = RVLocs[i]; 3630 3631 // Pass 'this' value directly from the argument to return value, to avoid 3632 // reg unit interference 3633 if (i == 0 && isThisReturn) { 3634 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && 3635 "unexpected return calling convention register assignment"); 3636 InVals.push_back(ThisVal); 3637 continue; 3638 } 3639 3640 // Avoid copying a physreg twice since RegAllocFast is incompetent and only 3641 // allows one use of a physreg per block. 3642 SDValue Val = CopiedRegs.lookup(VA.getLocReg()); 3643 if (!Val) { 3644 Val = 3645 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 3646 Chain = Val.getValue(1); 3647 InFlag = Val.getValue(2); 3648 CopiedRegs[VA.getLocReg()] = Val; 3649 } 3650 3651 switch (VA.getLocInfo()) { 3652 default: 3653 llvm_unreachable("Unknown loc info!"); 3654 case CCValAssign::Full: 3655 break; 3656 case CCValAssign::BCvt: 3657 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 3658 break; 3659 case CCValAssign::AExtUpper: 3660 Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val, 3661 DAG.getConstant(32, DL, VA.getLocVT())); 3662 LLVM_FALLTHROUGH; 3663 case CCValAssign::AExt: 3664 LLVM_FALLTHROUGH; 3665 case CCValAssign::ZExt: 3666 Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT()); 3667 break; 3668 } 3669 3670 InVals.push_back(Val); 3671 } 3672 3673 return Chain; 3674 } 3675 3676 /// Return true if the calling convention is one that we can guarantee TCO for. 3677 static bool canGuaranteeTCO(CallingConv::ID CC) { 3678 return CC == CallingConv::Fast; 3679 } 3680 3681 /// Return true if we might ever do TCO for calls with this calling convention. 3682 static bool mayTailCallThisCC(CallingConv::ID CC) { 3683 switch (CC) { 3684 case CallingConv::C: 3685 case CallingConv::PreserveMost: 3686 case CallingConv::Swift: 3687 return true; 3688 default: 3689 return canGuaranteeTCO(CC); 3690 } 3691 } 3692 3693 bool AArch64TargetLowering::isEligibleForTailCallOptimization( 3694 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, 3695 const SmallVectorImpl<ISD::OutputArg> &Outs, 3696 const SmallVectorImpl<SDValue> &OutVals, 3697 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 3698 if (!mayTailCallThisCC(CalleeCC)) 3699 return false; 3700 3701 MachineFunction &MF = DAG.getMachineFunction(); 3702 const Function &CallerF = MF.getFunction(); 3703 CallingConv::ID CallerCC = CallerF.getCallingConv(); 3704 bool CCMatch = CallerCC == CalleeCC; 3705 3706 // Byval parameters hand the function a pointer directly into the stack area 3707 // we want to reuse during a tail call. Working around this *is* possible (see 3708 // X86) but less efficient and uglier in LowerCall. 3709 for (Function::const_arg_iterator i = CallerF.arg_begin(), 3710 e = CallerF.arg_end(); 3711 i != e; ++i) { 3712 if (i->hasByValAttr()) 3713 return false; 3714 3715 // On Windows, "inreg" attributes signify non-aggregate indirect returns. 3716 // In this case, it is necessary to save/restore X0 in the callee. Tail 3717 // call opt interferes with this. So we disable tail call opt when the 3718 // caller has an argument with "inreg" attribute. 3719 3720 // FIXME: Check whether the callee also has an "inreg" argument. 3721 if (i->hasInRegAttr()) 3722 return false; 3723 } 3724 3725 if (getTargetMachine().Options.GuaranteedTailCallOpt) 3726 return canGuaranteeTCO(CalleeCC) && CCMatch; 3727 3728 // Externally-defined functions with weak linkage should not be 3729 // tail-called on AArch64 when the OS does not support dynamic 3730 // pre-emption of symbols, as the AAELF spec requires normal calls 3731 // to undefined weak functions to be replaced with a NOP or jump to the 3732 // next instruction. The behaviour of branch instructions in this 3733 // situation (as used for tail calls) is implementation-defined, so we 3734 // cannot rely on the linker replacing the tail call with a return. 3735 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 3736 const GlobalValue *GV = G->getGlobal(); 3737 const Triple &TT = getTargetMachine().getTargetTriple(); 3738 if (GV->hasExternalWeakLinkage() && 3739 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) 3740 return false; 3741 } 3742 3743 // Now we search for cases where we can use a tail call without changing the 3744 // ABI. Sibcall is used in some places (particularly gcc) to refer to this 3745 // concept. 3746 3747 // I want anyone implementing a new calling convention to think long and hard 3748 // about this assert. 3749 assert((!isVarArg || CalleeCC == CallingConv::C) && 3750 "Unexpected variadic calling convention"); 3751 3752 LLVMContext &C = *DAG.getContext(); 3753 if (isVarArg && !Outs.empty()) { 3754 // At least two cases here: if caller is fastcc then we can't have any 3755 // memory arguments (we'd be expected to clean up the stack afterwards). If 3756 // caller is C then we could potentially use its argument area. 3757 3758 // FIXME: for now we take the most conservative of these in both cases: 3759 // disallow all variadic memory operands. 3760 SmallVector<CCValAssign, 16> ArgLocs; 3761 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); 3762 3763 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); 3764 for (const CCValAssign &ArgLoc : ArgLocs) 3765 if (!ArgLoc.isRegLoc()) 3766 return false; 3767 } 3768 3769 // Check that the call results are passed in the same way. 3770 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, 3771 CCAssignFnForCall(CalleeCC, isVarArg), 3772 CCAssignFnForCall(CallerCC, isVarArg))) 3773 return false; 3774 // The callee has to preserve all registers the caller needs to preserve. 3775 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 3776 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 3777 if (!CCMatch) { 3778 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 3779 if (Subtarget->hasCustomCallingConv()) { 3780 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); 3781 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); 3782 } 3783 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 3784 return false; 3785 } 3786 3787 // Nothing more to check if the callee is taking no arguments 3788 if (Outs.empty()) 3789 return true; 3790 3791 SmallVector<CCValAssign, 16> ArgLocs; 3792 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); 3793 3794 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); 3795 3796 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3797 3798 // If the stack arguments for this call do not fit into our own save area then 3799 // the call cannot be made tail. 3800 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) 3801 return false; 3802 3803 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3804 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) 3805 return false; 3806 3807 return true; 3808 } 3809 3810 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, 3811 SelectionDAG &DAG, 3812 MachineFrameInfo &MFI, 3813 int ClobberedFI) const { 3814 SmallVector<SDValue, 8> ArgChains; 3815 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); 3816 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; 3817 3818 // Include the original chain at the beginning of the list. When this is 3819 // used by target LowerCall hooks, this helps legalize find the 3820 // CALLSEQ_BEGIN node. 3821 ArgChains.push_back(Chain); 3822 3823 // Add a chain value for each stack argument corresponding 3824 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 3825 UE = DAG.getEntryNode().getNode()->use_end(); 3826 U != UE; ++U) 3827 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 3828 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 3829 if (FI->getIndex() < 0) { 3830 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); 3831 int64_t InLastByte = InFirstByte; 3832 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; 3833 3834 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 3835 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 3836 ArgChains.push_back(SDValue(L, 1)); 3837 } 3838 3839 // Build a tokenfactor for all the chains. 3840 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 3841 } 3842 3843 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, 3844 bool TailCallOpt) const { 3845 return CallCC == CallingConv::Fast && TailCallOpt; 3846 } 3847 3848 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, 3849 /// and add input and output parameter nodes. 3850 SDValue 3851 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, 3852 SmallVectorImpl<SDValue> &InVals) const { 3853 SelectionDAG &DAG = CLI.DAG; 3854 SDLoc &DL = CLI.DL; 3855 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 3856 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 3857 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 3858 SDValue Chain = CLI.Chain; 3859 SDValue Callee = CLI.Callee; 3860 bool &IsTailCall = CLI.IsTailCall; 3861 CallingConv::ID CallConv = CLI.CallConv; 3862 bool IsVarArg = CLI.IsVarArg; 3863 3864 MachineFunction &MF = DAG.getMachineFunction(); 3865 MachineFunction::CallSiteInfo CSInfo; 3866 bool IsThisReturn = false; 3867 3868 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 3869 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 3870 bool IsSibCall = false; 3871 3872 if (IsTailCall) { 3873 // Check if it's really possible to do a tail call. 3874 IsTailCall = isEligibleForTailCallOptimization( 3875 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); 3876 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) 3877 report_fatal_error("failed to perform tail call elimination on a call " 3878 "site marked musttail"); 3879 3880 // A sibling call is one where we're under the usual C ABI and not planning 3881 // to change that but can still do a tail call: 3882 if (!TailCallOpt && IsTailCall) 3883 IsSibCall = true; 3884 3885 if (IsTailCall) 3886 ++NumTailCalls; 3887 } 3888 3889 // Analyze operands of the call, assigning locations to each operand. 3890 SmallVector<CCValAssign, 16> ArgLocs; 3891 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 3892 *DAG.getContext()); 3893 3894 if (IsVarArg) { 3895 // Handle fixed and variable vector arguments differently. 3896 // Variable vector arguments always go into memory. 3897 unsigned NumArgs = Outs.size(); 3898 3899 for (unsigned i = 0; i != NumArgs; ++i) { 3900 MVT ArgVT = Outs[i].VT; 3901 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3902 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, 3903 /*IsVarArg=*/ !Outs[i].IsFixed); 3904 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); 3905 assert(!Res && "Call operand has unhandled type"); 3906 (void)Res; 3907 } 3908 } else { 3909 // At this point, Outs[].VT may already be promoted to i32. To correctly 3910 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and 3911 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. 3912 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here 3913 // we use a special version of AnalyzeCallOperands to pass in ValVT and 3914 // LocVT. 3915 unsigned NumArgs = Outs.size(); 3916 for (unsigned i = 0; i != NumArgs; ++i) { 3917 MVT ValVT = Outs[i].VT; 3918 // Get type of the original argument. 3919 EVT ActualVT = getValueType(DAG.getDataLayout(), 3920 CLI.getArgs()[Outs[i].OrigArgIndex].Ty, 3921 /*AllowUnknown*/ true); 3922 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; 3923 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 3924 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. 3925 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) 3926 ValVT = MVT::i8; 3927 else if (ActualMVT == MVT::i16) 3928 ValVT = MVT::i16; 3929 3930 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); 3931 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); 3932 assert(!Res && "Call operand has unhandled type"); 3933 (void)Res; 3934 } 3935 } 3936 3937 // Get a count of how many bytes are to be pushed on the stack. 3938 unsigned NumBytes = CCInfo.getNextStackOffset(); 3939 3940 if (IsSibCall) { 3941 // Since we're not changing the ABI to make this a tail call, the memory 3942 // operands are already available in the caller's incoming argument space. 3943 NumBytes = 0; 3944 } 3945 3946 // FPDiff is the byte offset of the call's argument area from the callee's. 3947 // Stores to callee stack arguments will be placed in FixedStackSlots offset 3948 // by this amount for a tail call. In a sibling call it must be 0 because the 3949 // caller will deallocate the entire stack and the callee still expects its 3950 // arguments to begin at SP+0. Completely unused for non-tail calls. 3951 int FPDiff = 0; 3952 3953 if (IsTailCall && !IsSibCall) { 3954 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 3955 3956 // Since callee will pop argument stack as a tail call, we must keep the 3957 // popped size 16-byte aligned. 3958 NumBytes = alignTo(NumBytes, 16); 3959 3960 // FPDiff will be negative if this tail call requires more space than we 3961 // would automatically have in our incoming argument space. Positive if we 3962 // can actually shrink the stack. 3963 FPDiff = NumReusableBytes - NumBytes; 3964 3965 // The stack pointer must be 16-byte aligned at all times it's used for a 3966 // memory operation, which in practice means at *all* times and in 3967 // particular across call boundaries. Therefore our own arguments started at 3968 // a 16-byte aligned SP and the delta applied for the tail call should 3969 // satisfy the same constraint. 3970 assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); 3971 } 3972 3973 // Adjust the stack pointer for the new arguments... 3974 // These operations are automatically eliminated by the prolog/epilog pass 3975 if (!IsSibCall) 3976 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 3977 3978 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, 3979 getPointerTy(DAG.getDataLayout())); 3980 3981 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 3982 SmallSet<unsigned, 8> RegsUsed; 3983 SmallVector<SDValue, 8> MemOpChains; 3984 auto PtrVT = getPointerTy(DAG.getDataLayout()); 3985 3986 if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) { 3987 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); 3988 for (const auto &F : Forwards) { 3989 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT); 3990 RegsToPass.emplace_back(F.PReg, Val); 3991 } 3992 } 3993 3994 // Walk the register/memloc assignments, inserting copies/loads. 3995 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3996 CCValAssign &VA = ArgLocs[i]; 3997 SDValue Arg = OutVals[i]; 3998 ISD::ArgFlagsTy Flags = Outs[i].Flags; 3999 4000 // Promote the value if needed. 4001 switch (VA.getLocInfo()) { 4002 default: 4003 llvm_unreachable("Unknown loc info!"); 4004 case CCValAssign::Full: 4005 break; 4006 case CCValAssign::SExt: 4007 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 4008 break; 4009 case CCValAssign::ZExt: 4010 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 4011 break; 4012 case CCValAssign::AExt: 4013 if (Outs[i].ArgVT == MVT::i1) { 4014 // AAPCS requires i1 to be zero-extended to 8-bits by the caller. 4015 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); 4016 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); 4017 } 4018 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 4019 break; 4020 case CCValAssign::AExtUpper: 4021 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); 4022 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 4023 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, 4024 DAG.getConstant(32, DL, VA.getLocVT())); 4025 break; 4026 case CCValAssign::BCvt: 4027 Arg = DAG.getBitcast(VA.getLocVT(), Arg); 4028 break; 4029 case CCValAssign::Trunc: 4030 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4031 break; 4032 case CCValAssign::FPExt: 4033 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 4034 break; 4035 case CCValAssign::Indirect: 4036 assert(VA.getValVT().isScalableVector() && 4037 "Only scalable vectors can be passed indirectly"); 4038 llvm_unreachable("Spilling of SVE vectors not yet implemented"); 4039 } 4040 4041 if (VA.isRegLoc()) { 4042 if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && 4043 Outs[0].VT == MVT::i64) { 4044 assert(VA.getLocVT() == MVT::i64 && 4045 "unexpected calling convention register assignment"); 4046 assert(!Ins.empty() && Ins[0].VT == MVT::i64 && 4047 "unexpected use of 'returned'"); 4048 IsThisReturn = true; 4049 } 4050 if (RegsUsed.count(VA.getLocReg())) { 4051 // If this register has already been used then we're trying to pack 4052 // parts of an [N x i32] into an X-register. The extension type will 4053 // take care of putting the two halves in the right place but we have to 4054 // combine them. 4055 SDValue &Bits = 4056 std::find_if(RegsToPass.begin(), RegsToPass.end(), 4057 [=](const std::pair<unsigned, SDValue> &Elt) { 4058 return Elt.first == VA.getLocReg(); 4059 }) 4060 ->second; 4061 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); 4062 // Call site info is used for function's parameter entry value 4063 // tracking. For now we track only simple cases when parameter 4064 // is transferred through whole register. 4065 CSInfo.erase(std::remove_if(CSInfo.begin(), CSInfo.end(), 4066 [&VA](MachineFunction::ArgRegPair ArgReg) { 4067 return ArgReg.Reg == VA.getLocReg(); 4068 }), 4069 CSInfo.end()); 4070 } else { 4071 RegsToPass.emplace_back(VA.getLocReg(), Arg); 4072 RegsUsed.insert(VA.getLocReg()); 4073 const TargetOptions &Options = DAG.getTarget().Options; 4074 if (Options.EnableDebugEntryValues) 4075 CSInfo.emplace_back(VA.getLocReg(), i); 4076 } 4077 } else { 4078 assert(VA.isMemLoc()); 4079 4080 SDValue DstAddr; 4081 MachinePointerInfo DstInfo; 4082 4083 // FIXME: This works on big-endian for composite byvals, which are the 4084 // common case. It should also work for fundamental types too. 4085 uint32_t BEAlign = 0; 4086 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 4087 : VA.getValVT().getSizeInBits(); 4088 OpSize = (OpSize + 7) / 8; 4089 if (!Subtarget->isLittleEndian() && !Flags.isByVal() && 4090 !Flags.isInConsecutiveRegs()) { 4091 if (OpSize < 8) 4092 BEAlign = 8 - OpSize; 4093 } 4094 unsigned LocMemOffset = VA.getLocMemOffset(); 4095 int32_t Offset = LocMemOffset + BEAlign; 4096 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); 4097 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 4098 4099 if (IsTailCall) { 4100 Offset = Offset + FPDiff; 4101 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4102 4103 DstAddr = DAG.getFrameIndex(FI, PtrVT); 4104 DstInfo = 4105 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 4106 4107 // Make sure any stack arguments overlapping with where we're storing 4108 // are loaded before this eventual operation. Otherwise they'll be 4109 // clobbered. 4110 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); 4111 } else { 4112 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); 4113 4114 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 4115 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(), 4116 LocMemOffset); 4117 } 4118 4119 if (Outs[i].Flags.isByVal()) { 4120 SDValue SizeNode = 4121 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); 4122 SDValue Cpy = DAG.getMemcpy( 4123 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), 4124 /*isVol = */ false, /*AlwaysInline = */ false, 4125 /*isTailCall = */ false, 4126 DstInfo, MachinePointerInfo()); 4127 4128 MemOpChains.push_back(Cpy); 4129 } else { 4130 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already 4131 // promoted to a legal register type i32, we should truncate Arg back to 4132 // i1/i8/i16. 4133 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || 4134 VA.getValVT() == MVT::i16) 4135 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 4136 4137 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); 4138 MemOpChains.push_back(Store); 4139 } 4140 } 4141 } 4142 4143 if (!MemOpChains.empty()) 4144 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 4145 4146 // Build a sequence of copy-to-reg nodes chained together with token chain 4147 // and flag operands which copy the outgoing args into the appropriate regs. 4148 SDValue InFlag; 4149 for (auto &RegToPass : RegsToPass) { 4150 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, 4151 RegToPass.second, InFlag); 4152 InFlag = Chain.getValue(1); 4153 } 4154 4155 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 4156 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 4157 // node so that legalize doesn't hack it. 4158 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 4159 auto GV = G->getGlobal(); 4160 unsigned OpFlags = 4161 Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()); 4162 if (OpFlags & AArch64II::MO_GOT) { 4163 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 4164 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); 4165 } else { 4166 const GlobalValue *GV = G->getGlobal(); 4167 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); 4168 } 4169 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 4170 if (getTargetMachine().getCodeModel() == CodeModel::Large && 4171 Subtarget->isTargetMachO()) { 4172 const char *Sym = S->getSymbol(); 4173 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); 4174 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); 4175 } else { 4176 const char *Sym = S->getSymbol(); 4177 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); 4178 } 4179 } 4180 4181 // We don't usually want to end the call-sequence here because we would tidy 4182 // the frame up *after* the call, however in the ABI-changing tail-call case 4183 // we've carefully laid out the parameters so that when sp is reset they'll be 4184 // in the correct location. 4185 if (IsTailCall && !IsSibCall) { 4186 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), 4187 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 4188 InFlag = Chain.getValue(1); 4189 } 4190 4191 std::vector<SDValue> Ops; 4192 Ops.push_back(Chain); 4193 Ops.push_back(Callee); 4194 4195 if (IsTailCall) { 4196 // Each tail call may have to adjust the stack by a different amount, so 4197 // this information must travel along with the operation for eventual 4198 // consumption by emitEpilogue. 4199 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); 4200 } 4201 4202 // Add argument registers to the end of the list so that they are known live 4203 // into the call. 4204 for (auto &RegToPass : RegsToPass) 4205 Ops.push_back(DAG.getRegister(RegToPass.first, 4206 RegToPass.second.getValueType())); 4207 4208 // Check callee args/returns for SVE registers and set calling convention 4209 // accordingly. 4210 if (CallConv == CallingConv::C) { 4211 bool CalleeOutSVE = any_of(Outs, [](ISD::OutputArg &Out){ 4212 return Out.VT.isScalableVector(); 4213 }); 4214 bool CalleeInSVE = any_of(Ins, [](ISD::InputArg &In){ 4215 return In.VT.isScalableVector(); 4216 }); 4217 4218 if (CalleeInSVE || CalleeOutSVE) 4219 CallConv = CallingConv::AArch64_SVE_VectorCall; 4220 } 4221 4222 // Add a register mask operand representing the call-preserved registers. 4223 const uint32_t *Mask; 4224 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4225 if (IsThisReturn) { 4226 // For 'this' returns, use the X0-preserving mask if applicable 4227 Mask = TRI->getThisReturnPreservedMask(MF, CallConv); 4228 if (!Mask) { 4229 IsThisReturn = false; 4230 Mask = TRI->getCallPreservedMask(MF, CallConv); 4231 } 4232 } else 4233 Mask = TRI->getCallPreservedMask(MF, CallConv); 4234 4235 if (Subtarget->hasCustomCallingConv()) 4236 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 4237 4238 if (TRI->isAnyArgRegReserved(MF)) 4239 TRI->emitReservedArgRegCallError(MF); 4240 4241 assert(Mask && "Missing call preserved mask for calling convention"); 4242 Ops.push_back(DAG.getRegisterMask(Mask)); 4243 4244 if (InFlag.getNode()) 4245 Ops.push_back(InFlag); 4246 4247 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 4248 4249 // If we're doing a tall call, use a TC_RETURN here rather than an 4250 // actual call instruction. 4251 if (IsTailCall) { 4252 MF.getFrameInfo().setHasTailCall(); 4253 SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); 4254 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); 4255 return Ret; 4256 } 4257 4258 // Returns a chain and a flag for retval copy to use. 4259 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); 4260 InFlag = Chain.getValue(1); 4261 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); 4262 4263 uint64_t CalleePopBytes = 4264 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0; 4265 4266 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), 4267 DAG.getIntPtrConstant(CalleePopBytes, DL, true), 4268 InFlag, DL); 4269 if (!Ins.empty()) 4270 InFlag = Chain.getValue(1); 4271 4272 // Handle result values, copying them out of physregs into vregs that we 4273 // return. 4274 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 4275 InVals, IsThisReturn, 4276 IsThisReturn ? OutVals[0] : SDValue()); 4277 } 4278 4279 bool AArch64TargetLowering::CanLowerReturn( 4280 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, 4281 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 4282 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 4283 ? RetCC_AArch64_WebKit_JS 4284 : RetCC_AArch64_AAPCS; 4285 SmallVector<CCValAssign, 16> RVLocs; 4286 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 4287 return CCInfo.CheckReturn(Outs, RetCC); 4288 } 4289 4290 SDValue 4291 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 4292 bool isVarArg, 4293 const SmallVectorImpl<ISD::OutputArg> &Outs, 4294 const SmallVectorImpl<SDValue> &OutVals, 4295 const SDLoc &DL, SelectionDAG &DAG) const { 4296 auto &MF = DAG.getMachineFunction(); 4297 auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 4298 4299 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 4300 ? RetCC_AArch64_WebKit_JS 4301 : RetCC_AArch64_AAPCS; 4302 SmallVector<CCValAssign, 16> RVLocs; 4303 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 4304 *DAG.getContext()); 4305 CCInfo.AnalyzeReturn(Outs, RetCC); 4306 4307 // Copy the result values into the output registers. 4308 SDValue Flag; 4309 SmallVector<std::pair<unsigned, SDValue>, 4> RetVals; 4310 SmallSet<unsigned, 4> RegsUsed; 4311 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); 4312 ++i, ++realRVLocIdx) { 4313 CCValAssign &VA = RVLocs[i]; 4314 assert(VA.isRegLoc() && "Can only return in registers!"); 4315 SDValue Arg = OutVals[realRVLocIdx]; 4316 4317 switch (VA.getLocInfo()) { 4318 default: 4319 llvm_unreachable("Unknown loc info!"); 4320 case CCValAssign::Full: 4321 if (Outs[i].ArgVT == MVT::i1) { 4322 // AAPCS requires i1 to be zero-extended to i8 by the producer of the 4323 // value. This is strictly redundant on Darwin (which uses "zeroext 4324 // i1"), but will be optimised out before ISel. 4325 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); 4326 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 4327 } 4328 break; 4329 case CCValAssign::BCvt: 4330 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 4331 break; 4332 case CCValAssign::AExt: 4333 case CCValAssign::ZExt: 4334 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4335 break; 4336 case CCValAssign::AExtUpper: 4337 assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); 4338 Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); 4339 Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, 4340 DAG.getConstant(32, DL, VA.getLocVT())); 4341 break; 4342 } 4343 4344 if (RegsUsed.count(VA.getLocReg())) { 4345 SDValue &Bits = 4346 std::find_if(RetVals.begin(), RetVals.end(), 4347 [=](const std::pair<unsigned, SDValue> &Elt) { 4348 return Elt.first == VA.getLocReg(); 4349 }) 4350 ->second; 4351 Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); 4352 } else { 4353 RetVals.emplace_back(VA.getLocReg(), Arg); 4354 RegsUsed.insert(VA.getLocReg()); 4355 } 4356 } 4357 4358 SmallVector<SDValue, 4> RetOps(1, Chain); 4359 for (auto &RetVal : RetVals) { 4360 Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag); 4361 Flag = Chain.getValue(1); 4362 RetOps.push_back( 4363 DAG.getRegister(RetVal.first, RetVal.second.getValueType())); 4364 } 4365 4366 // Windows AArch64 ABIs require that for returning structs by value we copy 4367 // the sret argument into X0 for the return. 4368 // We saved the argument into a virtual register in the entry block, 4369 // so now we copy the value out and into X0. 4370 if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { 4371 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg, 4372 getPointerTy(MF.getDataLayout())); 4373 4374 unsigned RetValReg = AArch64::X0; 4375 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag); 4376 Flag = Chain.getValue(1); 4377 4378 RetOps.push_back( 4379 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); 4380 } 4381 4382 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4383 const MCPhysReg *I = 4384 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 4385 if (I) { 4386 for (; *I; ++I) { 4387 if (AArch64::GPR64RegClass.contains(*I)) 4388 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 4389 else if (AArch64::FPR64RegClass.contains(*I)) 4390 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 4391 else 4392 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 4393 } 4394 } 4395 4396 RetOps[0] = Chain; // Update chain. 4397 4398 // Add the flag if we have it. 4399 if (Flag.getNode()) 4400 RetOps.push_back(Flag); 4401 4402 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); 4403 } 4404 4405 //===----------------------------------------------------------------------===// 4406 // Other Lowering Code 4407 //===----------------------------------------------------------------------===// 4408 4409 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, 4410 SelectionDAG &DAG, 4411 unsigned Flag) const { 4412 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 4413 N->getOffset(), Flag); 4414 } 4415 4416 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, 4417 SelectionDAG &DAG, 4418 unsigned Flag) const { 4419 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); 4420 } 4421 4422 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, 4423 SelectionDAG &DAG, 4424 unsigned Flag) const { 4425 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 4426 N->getOffset(), Flag); 4427 } 4428 4429 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty, 4430 SelectionDAG &DAG, 4431 unsigned Flag) const { 4432 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); 4433 } 4434 4435 // (loadGOT sym) 4436 template <class NodeTy> 4437 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG, 4438 unsigned Flags) const { 4439 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n"); 4440 SDLoc DL(N); 4441 EVT Ty = getPointerTy(DAG.getDataLayout()); 4442 SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags); 4443 // FIXME: Once remat is capable of dealing with instructions with register 4444 // operands, expand this into two nodes instead of using a wrapper node. 4445 return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr); 4446 } 4447 4448 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym)) 4449 template <class NodeTy> 4450 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG, 4451 unsigned Flags) const { 4452 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n"); 4453 SDLoc DL(N); 4454 EVT Ty = getPointerTy(DAG.getDataLayout()); 4455 const unsigned char MO_NC = AArch64II::MO_NC; 4456 return DAG.getNode( 4457 AArch64ISD::WrapperLarge, DL, Ty, 4458 getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags), 4459 getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags), 4460 getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags), 4461 getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags)); 4462 } 4463 4464 // (addlow (adrp %hi(sym)) %lo(sym)) 4465 template <class NodeTy> 4466 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 4467 unsigned Flags) const { 4468 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n"); 4469 SDLoc DL(N); 4470 EVT Ty = getPointerTy(DAG.getDataLayout()); 4471 SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags); 4472 SDValue Lo = getTargetNode(N, Ty, DAG, 4473 AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags); 4474 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi); 4475 return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo); 4476 } 4477 4478 // (adr sym) 4479 template <class NodeTy> 4480 SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG, 4481 unsigned Flags) const { 4482 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n"); 4483 SDLoc DL(N); 4484 EVT Ty = getPointerTy(DAG.getDataLayout()); 4485 SDValue Sym = getTargetNode(N, Ty, DAG, Flags); 4486 return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym); 4487 } 4488 4489 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, 4490 SelectionDAG &DAG) const { 4491 GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 4492 const GlobalValue *GV = GN->getGlobal(); 4493 unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); 4494 4495 if (OpFlags != AArch64II::MO_NO_FLAG) 4496 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && 4497 "unexpected offset in global node"); 4498 4499 // This also catches the large code model case for Darwin, and tiny code 4500 // model with got relocations. 4501 if ((OpFlags & AArch64II::MO_GOT) != 0) { 4502 return getGOT(GN, DAG, OpFlags); 4503 } 4504 4505 SDValue Result; 4506 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 4507 Result = getAddrLarge(GN, DAG, OpFlags); 4508 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 4509 Result = getAddrTiny(GN, DAG, OpFlags); 4510 } else { 4511 Result = getAddr(GN, DAG, OpFlags); 4512 } 4513 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4514 SDLoc DL(GN); 4515 if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB)) 4516 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 4517 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 4518 return Result; 4519 } 4520 4521 /// Convert a TLS address reference into the correct sequence of loads 4522 /// and calls to compute the variable's address (for Darwin, currently) and 4523 /// return an SDValue containing the final node. 4524 4525 /// Darwin only has one TLS scheme which must be capable of dealing with the 4526 /// fully general situation, in the worst case. This means: 4527 /// + "extern __thread" declaration. 4528 /// + Defined in a possibly unknown dynamic library. 4529 /// 4530 /// The general system is that each __thread variable has a [3 x i64] descriptor 4531 /// which contains information used by the runtime to calculate the address. The 4532 /// only part of this the compiler needs to know about is the first xword, which 4533 /// contains a function pointer that must be called with the address of the 4534 /// entire descriptor in "x0". 4535 /// 4536 /// Since this descriptor may be in a different unit, in general even the 4537 /// descriptor must be accessed via an indirect load. The "ideal" code sequence 4538 /// is: 4539 /// adrp x0, _var@TLVPPAGE 4540 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor 4541 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, 4542 /// ; the function pointer 4543 /// blr x1 ; Uses descriptor address in x0 4544 /// ; Address of _var is now in x0. 4545 /// 4546 /// If the address of _var's descriptor *is* known to the linker, then it can 4547 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for 4548 /// a slight efficiency gain. 4549 SDValue 4550 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, 4551 SelectionDAG &DAG) const { 4552 assert(Subtarget->isTargetDarwin() && 4553 "This function expects a Darwin target"); 4554 4555 SDLoc DL(Op); 4556 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 4557 MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout()); 4558 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 4559 4560 SDValue TLVPAddr = 4561 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 4562 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); 4563 4564 // The first entry in the descriptor is a function pointer that we must call 4565 // to obtain the address of the variable. 4566 SDValue Chain = DAG.getEntryNode(); 4567 SDValue FuncTLVGet = DAG.getLoad( 4568 PtrMemVT, DL, Chain, DescAddr, 4569 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 4570 /* Alignment = */ PtrMemVT.getSizeInBits() / 8, 4571 MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 4572 Chain = FuncTLVGet.getValue(1); 4573 4574 // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer. 4575 FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT); 4576 4577 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 4578 MFI.setAdjustsStack(true); 4579 4580 // TLS calls preserve all registers except those that absolutely must be 4581 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be 4582 // silly). 4583 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 4584 const uint32_t *Mask = TRI->getTLSCallPreservedMask(); 4585 if (Subtarget->hasCustomCallingConv()) 4586 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); 4587 4588 // Finally, we can make the call. This is just a degenerate version of a 4589 // normal AArch64 call node: x0 takes the address of the descriptor, and 4590 // returns the address of the variable in this thread. 4591 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); 4592 Chain = 4593 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), 4594 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), 4595 DAG.getRegisterMask(Mask), Chain.getValue(1)); 4596 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); 4597 } 4598 4599 /// Convert a thread-local variable reference into a sequence of instructions to 4600 /// compute the variable's address for the local exec TLS model of ELF targets. 4601 /// The sequence depends on the maximum TLS area size. 4602 SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV, 4603 SDValue ThreadBase, 4604 const SDLoc &DL, 4605 SelectionDAG &DAG) const { 4606 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4607 SDValue TPOff, Addr; 4608 4609 switch (DAG.getTarget().Options.TLSSize) { 4610 default: 4611 llvm_unreachable("Unexpected TLS size"); 4612 4613 case 12: { 4614 // mrs x0, TPIDR_EL0 4615 // add x0, x0, :tprel_lo12:a 4616 SDValue Var = DAG.getTargetGlobalAddress( 4617 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF); 4618 return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, 4619 Var, 4620 DAG.getTargetConstant(0, DL, MVT::i32)), 4621 0); 4622 } 4623 4624 case 24: { 4625 // mrs x0, TPIDR_EL0 4626 // add x0, x0, :tprel_hi12:a 4627 // add x0, x0, :tprel_lo12_nc:a 4628 SDValue HiVar = DAG.getTargetGlobalAddress( 4629 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 4630 SDValue LoVar = DAG.getTargetGlobalAddress( 4631 GV, DL, PtrVT, 0, 4632 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 4633 Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, 4634 HiVar, 4635 DAG.getTargetConstant(0, DL, MVT::i32)), 4636 0); 4637 return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr, 4638 LoVar, 4639 DAG.getTargetConstant(0, DL, MVT::i32)), 4640 0); 4641 } 4642 4643 case 32: { 4644 // mrs x1, TPIDR_EL0 4645 // movz x0, #:tprel_g1:a 4646 // movk x0, #:tprel_g0_nc:a 4647 // add x0, x1, x0 4648 SDValue HiVar = DAG.getTargetGlobalAddress( 4649 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); 4650 SDValue LoVar = DAG.getTargetGlobalAddress( 4651 GV, DL, PtrVT, 0, 4652 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); 4653 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, 4654 DAG.getTargetConstant(16, DL, MVT::i32)), 4655 0); 4656 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, 4657 DAG.getTargetConstant(0, DL, MVT::i32)), 4658 0); 4659 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 4660 } 4661 4662 case 48: { 4663 // mrs x1, TPIDR_EL0 4664 // movz x0, #:tprel_g2:a 4665 // movk x0, #:tprel_g1_nc:a 4666 // movk x0, #:tprel_g0_nc:a 4667 // add x0, x1, x0 4668 SDValue HiVar = DAG.getTargetGlobalAddress( 4669 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2); 4670 SDValue MiVar = DAG.getTargetGlobalAddress( 4671 GV, DL, PtrVT, 0, 4672 AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC); 4673 SDValue LoVar = DAG.getTargetGlobalAddress( 4674 GV, DL, PtrVT, 0, 4675 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); 4676 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, 4677 DAG.getTargetConstant(32, DL, MVT::i32)), 4678 0); 4679 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar, 4680 DAG.getTargetConstant(16, DL, MVT::i32)), 4681 0); 4682 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, 4683 DAG.getTargetConstant(0, DL, MVT::i32)), 4684 0); 4685 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 4686 } 4687 } 4688 } 4689 4690 /// When accessing thread-local variables under either the general-dynamic or 4691 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will 4692 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry 4693 /// is a function pointer to carry out the resolution. 4694 /// 4695 /// The sequence is: 4696 /// adrp x0, :tlsdesc:var 4697 /// ldr x1, [x0, #:tlsdesc_lo12:var] 4698 /// add x0, x0, #:tlsdesc_lo12:var 4699 /// .tlsdesccall var 4700 /// blr x1 4701 /// (TPIDR_EL0 offset now in x0) 4702 /// 4703 /// The above sequence must be produced unscheduled, to enable the linker to 4704 /// optimize/relax this sequence. 4705 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the 4706 /// above sequence, and expanded really late in the compilation flow, to ensure 4707 /// the sequence is produced as per above. 4708 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, 4709 const SDLoc &DL, 4710 SelectionDAG &DAG) const { 4711 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4712 4713 SDValue Chain = DAG.getEntryNode(); 4714 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 4715 4716 Chain = 4717 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr}); 4718 SDValue Glue = Chain.getValue(1); 4719 4720 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); 4721 } 4722 4723 SDValue 4724 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, 4725 SelectionDAG &DAG) const { 4726 assert(Subtarget->isTargetELF() && "This function expects an ELF target"); 4727 4728 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4729 4730 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); 4731 4732 if (!EnableAArch64ELFLocalDynamicTLSGeneration) { 4733 if (Model == TLSModel::LocalDynamic) 4734 Model = TLSModel::GeneralDynamic; 4735 } 4736 4737 if (getTargetMachine().getCodeModel() == CodeModel::Large && 4738 Model != TLSModel::LocalExec) 4739 report_fatal_error("ELF TLS only supported in small memory model or " 4740 "in local exec TLS model"); 4741 // Different choices can be made for the maximum size of the TLS area for a 4742 // module. For the small address model, the default TLS size is 16MiB and the 4743 // maximum TLS size is 4GiB. 4744 // FIXME: add tiny and large code model support for TLS access models other 4745 // than local exec. We currently generate the same code as small for tiny, 4746 // which may be larger than needed. 4747 4748 SDValue TPOff; 4749 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4750 SDLoc DL(Op); 4751 const GlobalValue *GV = GA->getGlobal(); 4752 4753 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); 4754 4755 if (Model == TLSModel::LocalExec) { 4756 return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG); 4757 } else if (Model == TLSModel::InitialExec) { 4758 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 4759 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); 4760 } else if (Model == TLSModel::LocalDynamic) { 4761 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS 4762 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate 4763 // the beginning of the module's TLS region, followed by a DTPREL offset 4764 // calculation. 4765 4766 // These accesses will need deduplicating if there's more than one. 4767 AArch64FunctionInfo *MFI = 4768 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 4769 MFI->incNumLocalDynamicTLSAccesses(); 4770 4771 // The call needs a relocation too for linker relaxation. It doesn't make 4772 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of 4773 // the address. 4774 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, 4775 AArch64II::MO_TLS); 4776 4777 // Now we can calculate the offset from TPIDR_EL0 to this module's 4778 // thread-local area. 4779 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); 4780 4781 // Now use :dtprel_whatever: operations to calculate this variable's offset 4782 // in its thread-storage area. 4783 SDValue HiVar = DAG.getTargetGlobalAddress( 4784 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 4785 SDValue LoVar = DAG.getTargetGlobalAddress( 4786 GV, DL, MVT::i64, 0, 4787 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 4788 4789 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, 4790 DAG.getTargetConstant(0, DL, MVT::i32)), 4791 0); 4792 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, 4793 DAG.getTargetConstant(0, DL, MVT::i32)), 4794 0); 4795 } else if (Model == TLSModel::GeneralDynamic) { 4796 // The call needs a relocation too for linker relaxation. It doesn't make 4797 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of 4798 // the address. 4799 SDValue SymAddr = 4800 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 4801 4802 // Finally we can make a call to calculate the offset from tpidr_el0. 4803 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); 4804 } else 4805 llvm_unreachable("Unsupported ELF TLS access model"); 4806 4807 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 4808 } 4809 4810 SDValue 4811 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op, 4812 SelectionDAG &DAG) const { 4813 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); 4814 4815 SDValue Chain = DAG.getEntryNode(); 4816 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4817 SDLoc DL(Op); 4818 4819 SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64); 4820 4821 // Load the ThreadLocalStoragePointer from the TEB 4822 // A pointer to the TLS array is located at offset 0x58 from the TEB. 4823 SDValue TLSArray = 4824 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL)); 4825 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); 4826 Chain = TLSArray.getValue(1); 4827 4828 // Load the TLS index from the C runtime; 4829 // This does the same as getAddr(), but without having a GlobalAddressSDNode. 4830 // This also does the same as LOADgot, but using a generic i32 load, 4831 // while LOADgot only loads i64. 4832 SDValue TLSIndexHi = 4833 DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE); 4834 SDValue TLSIndexLo = DAG.getTargetExternalSymbol( 4835 "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 4836 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi); 4837 SDValue TLSIndex = 4838 DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo); 4839 TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo()); 4840 Chain = TLSIndex.getValue(1); 4841 4842 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8 4843 // offset into the TLSArray. 4844 TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex); 4845 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, 4846 DAG.getConstant(3, DL, PtrVT)); 4847 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, 4848 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), 4849 MachinePointerInfo()); 4850 Chain = TLS.getValue(1); 4851 4852 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4853 const GlobalValue *GV = GA->getGlobal(); 4854 SDValue TGAHi = DAG.getTargetGlobalAddress( 4855 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); 4856 SDValue TGALo = DAG.getTargetGlobalAddress( 4857 GV, DL, PtrVT, 0, 4858 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 4859 4860 // Add the offset from the start of the .tls section (section base). 4861 SDValue Addr = 4862 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi, 4863 DAG.getTargetConstant(0, DL, MVT::i32)), 4864 0); 4865 Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo); 4866 return Addr; 4867 } 4868 4869 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, 4870 SelectionDAG &DAG) const { 4871 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4872 if (DAG.getTarget().useEmulatedTLS()) 4873 return LowerToTLSEmulatedModel(GA, DAG); 4874 4875 if (Subtarget->isTargetDarwin()) 4876 return LowerDarwinGlobalTLSAddress(Op, DAG); 4877 if (Subtarget->isTargetELF()) 4878 return LowerELFGlobalTLSAddress(Op, DAG); 4879 if (Subtarget->isTargetWindows()) 4880 return LowerWindowsGlobalTLSAddress(Op, DAG); 4881 4882 llvm_unreachable("Unexpected platform trying to use TLS"); 4883 } 4884 4885 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 4886 SDValue Chain = Op.getOperand(0); 4887 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 4888 SDValue LHS = Op.getOperand(2); 4889 SDValue RHS = Op.getOperand(3); 4890 SDValue Dest = Op.getOperand(4); 4891 SDLoc dl(Op); 4892 4893 MachineFunction &MF = DAG.getMachineFunction(); 4894 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions 4895 // will not be produced, as they are conditional branch instructions that do 4896 // not set flags. 4897 bool ProduceNonFlagSettingCondBr = 4898 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); 4899 4900 // Handle f128 first, since lowering it will result in comparing the return 4901 // value of a libcall against zero, which is just what the rest of LowerBR_CC 4902 // is expecting to deal with. 4903 if (LHS.getValueType() == MVT::f128) { 4904 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); 4905 4906 // If softenSetCCOperands returned a scalar, we need to compare the result 4907 // against zero to select between true and false values. 4908 if (!RHS.getNode()) { 4909 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 4910 CC = ISD::SETNE; 4911 } 4912 } 4913 4914 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch 4915 // instruction. 4916 if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) && 4917 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 4918 // Only lower legal XALUO ops. 4919 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) 4920 return SDValue(); 4921 4922 // The actual operation with overflow check. 4923 AArch64CC::CondCode OFCC; 4924 SDValue Value, Overflow; 4925 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); 4926 4927 if (CC == ISD::SETNE) 4928 OFCC = getInvertedCondCode(OFCC); 4929 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); 4930 4931 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, 4932 Overflow); 4933 } 4934 4935 if (LHS.getValueType().isInteger()) { 4936 assert((LHS.getValueType() == RHS.getValueType()) && 4937 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); 4938 4939 // If the RHS of the comparison is zero, we can potentially fold this 4940 // to a specialized branch. 4941 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); 4942 if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) { 4943 if (CC == ISD::SETEQ) { 4944 // See if we can use a TBZ to fold in an AND as well. 4945 // TBZ has a smaller branch displacement than CBZ. If the offset is 4946 // out of bounds, a late MI-layer pass rewrites branches. 4947 // 403.gcc is an example that hits this case. 4948 if (LHS.getOpcode() == ISD::AND && 4949 isa<ConstantSDNode>(LHS.getOperand(1)) && 4950 isPowerOf2_64(LHS.getConstantOperandVal(1))) { 4951 SDValue Test = LHS.getOperand(0); 4952 uint64_t Mask = LHS.getConstantOperandVal(1); 4953 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, 4954 DAG.getConstant(Log2_64(Mask), dl, MVT::i64), 4955 Dest); 4956 } 4957 4958 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); 4959 } else if (CC == ISD::SETNE) { 4960 // See if we can use a TBZ to fold in an AND as well. 4961 // TBZ has a smaller branch displacement than CBZ. If the offset is 4962 // out of bounds, a late MI-layer pass rewrites branches. 4963 // 403.gcc is an example that hits this case. 4964 if (LHS.getOpcode() == ISD::AND && 4965 isa<ConstantSDNode>(LHS.getOperand(1)) && 4966 isPowerOf2_64(LHS.getConstantOperandVal(1))) { 4967 SDValue Test = LHS.getOperand(0); 4968 uint64_t Mask = LHS.getConstantOperandVal(1); 4969 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, 4970 DAG.getConstant(Log2_64(Mask), dl, MVT::i64), 4971 Dest); 4972 } 4973 4974 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); 4975 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { 4976 // Don't combine AND since emitComparison converts the AND to an ANDS 4977 // (a.k.a. TST) and the test in the test bit and branch instruction 4978 // becomes redundant. This would also increase register pressure. 4979 uint64_t Mask = LHS.getValueSizeInBits() - 1; 4980 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, 4981 DAG.getConstant(Mask, dl, MVT::i64), Dest); 4982 } 4983 } 4984 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && 4985 LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) { 4986 // Don't combine AND since emitComparison converts the AND to an ANDS 4987 // (a.k.a. TST) and the test in the test bit and branch instruction 4988 // becomes redundant. This would also increase register pressure. 4989 uint64_t Mask = LHS.getValueSizeInBits() - 1; 4990 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, 4991 DAG.getConstant(Mask, dl, MVT::i64), Dest); 4992 } 4993 4994 SDValue CCVal; 4995 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 4996 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, 4997 Cmp); 4998 } 4999 5000 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || 5001 LHS.getValueType() == MVT::f64); 5002 5003 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 5004 // clean. Some of them require two branches to implement. 5005 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5006 AArch64CC::CondCode CC1, CC2; 5007 changeFPCCToAArch64CC(CC, CC1, CC2); 5008 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5009 SDValue BR1 = 5010 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); 5011 if (CC2 != AArch64CC::AL) { 5012 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5013 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, 5014 Cmp); 5015 } 5016 5017 return BR1; 5018 } 5019 5020 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, 5021 SelectionDAG &DAG) const { 5022 EVT VT = Op.getValueType(); 5023 SDLoc DL(Op); 5024 5025 SDValue In1 = Op.getOperand(0); 5026 SDValue In2 = Op.getOperand(1); 5027 EVT SrcVT = In2.getValueType(); 5028 5029 if (SrcVT.bitsLT(VT)) 5030 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); 5031 else if (SrcVT.bitsGT(VT)) 5032 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL)); 5033 5034 EVT VecVT; 5035 uint64_t EltMask; 5036 SDValue VecVal1, VecVal2; 5037 5038 auto setVecVal = [&] (int Idx) { 5039 if (!VT.isVector()) { 5040 VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, 5041 DAG.getUNDEF(VecVT), In1); 5042 VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, 5043 DAG.getUNDEF(VecVT), In2); 5044 } else { 5045 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); 5046 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); 5047 } 5048 }; 5049 5050 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { 5051 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32); 5052 EltMask = 0x80000000ULL; 5053 setVecVal(AArch64::ssub); 5054 } else if (VT == MVT::f64 || VT == MVT::v2f64) { 5055 VecVT = MVT::v2i64; 5056 5057 // We want to materialize a mask with the high bit set, but the AdvSIMD 5058 // immediate moves cannot materialize that in a single instruction for 5059 // 64-bit elements. Instead, materialize zero and then negate it. 5060 EltMask = 0; 5061 5062 setVecVal(AArch64::dsub); 5063 } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) { 5064 VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16); 5065 EltMask = 0x8000ULL; 5066 setVecVal(AArch64::hsub); 5067 } else { 5068 llvm_unreachable("Invalid type for copysign!"); 5069 } 5070 5071 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT); 5072 5073 // If we couldn't materialize the mask above, then the mask vector will be 5074 // the zero vector, and we need to negate it here. 5075 if (VT == MVT::f64 || VT == MVT::v2f64) { 5076 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); 5077 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); 5078 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); 5079 } 5080 5081 SDValue Sel = 5082 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); 5083 5084 if (VT == MVT::f16) 5085 return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel); 5086 if (VT == MVT::f32) 5087 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); 5088 else if (VT == MVT::f64) 5089 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); 5090 else 5091 return DAG.getNode(ISD::BITCAST, DL, VT, Sel); 5092 } 5093 5094 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { 5095 if (DAG.getMachineFunction().getFunction().hasFnAttribute( 5096 Attribute::NoImplicitFloat)) 5097 return SDValue(); 5098 5099 if (!Subtarget->hasNEON()) 5100 return SDValue(); 5101 5102 // While there is no integer popcount instruction, it can 5103 // be more efficiently lowered to the following sequence that uses 5104 // AdvSIMD registers/instructions as long as the copies to/from 5105 // the AdvSIMD registers are cheap. 5106 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd 5107 // CNT V0.8B, V0.8B // 8xbyte pop-counts 5108 // ADDV B0, V0.8B // sum 8xbyte pop-counts 5109 // UMOV X0, V0.B[0] // copy byte result back to integer reg 5110 SDValue Val = Op.getOperand(0); 5111 SDLoc DL(Op); 5112 EVT VT = Op.getValueType(); 5113 5114 if (VT == MVT::i32 || VT == MVT::i64) { 5115 if (VT == MVT::i32) 5116 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); 5117 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); 5118 5119 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); 5120 SDValue UaddLV = DAG.getNode( 5121 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 5122 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); 5123 5124 if (VT == MVT::i64) 5125 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); 5126 return UaddLV; 5127 } 5128 5129 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || 5130 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && 5131 "Unexpected type for custom ctpop lowering"); 5132 5133 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; 5134 Val = DAG.getBitcast(VT8Bit, Val); 5135 Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val); 5136 5137 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds. 5138 unsigned EltSize = 8; 5139 unsigned NumElts = VT.is64BitVector() ? 8 : 16; 5140 while (EltSize != VT.getScalarSizeInBits()) { 5141 EltSize *= 2; 5142 NumElts /= 2; 5143 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); 5144 Val = DAG.getNode( 5145 ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, 5146 DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val); 5147 } 5148 5149 return Val; 5150 } 5151 5152 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 5153 5154 if (Op.getValueType().isVector()) 5155 return LowerVSETCC(Op, DAG); 5156 5157 SDValue LHS = Op.getOperand(0); 5158 SDValue RHS = Op.getOperand(1); 5159 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5160 SDLoc dl(Op); 5161 5162 // We chose ZeroOrOneBooleanContents, so use zero and one. 5163 EVT VT = Op.getValueType(); 5164 SDValue TVal = DAG.getConstant(1, dl, VT); 5165 SDValue FVal = DAG.getConstant(0, dl, VT); 5166 5167 // Handle f128 first, since one possible outcome is a normal integer 5168 // comparison which gets picked up by the next if statement. 5169 if (LHS.getValueType() == MVT::f128) { 5170 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); 5171 5172 // If softenSetCCOperands returned a scalar, use it. 5173 if (!RHS.getNode()) { 5174 assert(LHS.getValueType() == Op.getValueType() && 5175 "Unexpected setcc expansion!"); 5176 return LHS; 5177 } 5178 } 5179 5180 if (LHS.getValueType().isInteger()) { 5181 SDValue CCVal; 5182 SDValue Cmp = getAArch64Cmp( 5183 LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl); 5184 5185 // Note that we inverted the condition above, so we reverse the order of 5186 // the true and false operands here. This will allow the setcc to be 5187 // matched to a single CSINC instruction. 5188 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); 5189 } 5190 5191 // Now we know we're dealing with FP values. 5192 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || 5193 LHS.getValueType() == MVT::f64); 5194 5195 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead 5196 // and do the comparison. 5197 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5198 5199 AArch64CC::CondCode CC1, CC2; 5200 changeFPCCToAArch64CC(CC, CC1, CC2); 5201 if (CC2 == AArch64CC::AL) { 5202 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1, 5203 CC2); 5204 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5205 5206 // Note that we inverted the condition above, so we reverse the order of 5207 // the true and false operands here. This will allow the setcc to be 5208 // matched to a single CSINC instruction. 5209 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); 5210 } else { 5211 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't 5212 // totally clean. Some of them require two CSELs to implement. As is in 5213 // this case, we emit the first CSEL and then emit a second using the output 5214 // of the first as the RHS. We're effectively OR'ing the two CC's together. 5215 5216 // FIXME: It would be nice if we could match the two CSELs to two CSINCs. 5217 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5218 SDValue CS1 = 5219 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); 5220 5221 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5222 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); 5223 } 5224 } 5225 5226 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, 5227 SDValue RHS, SDValue TVal, 5228 SDValue FVal, const SDLoc &dl, 5229 SelectionDAG &DAG) const { 5230 // Handle f128 first, because it will result in a comparison of some RTLIB 5231 // call result against zero. 5232 if (LHS.getValueType() == MVT::f128) { 5233 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); 5234 5235 // If softenSetCCOperands returned a scalar, we need to compare the result 5236 // against zero to select between true and false values. 5237 if (!RHS.getNode()) { 5238 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 5239 CC = ISD::SETNE; 5240 } 5241 } 5242 5243 // Also handle f16, for which we need to do a f32 comparison. 5244 if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { 5245 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); 5246 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); 5247 } 5248 5249 // Next, handle integers. 5250 if (LHS.getValueType().isInteger()) { 5251 assert((LHS.getValueType() == RHS.getValueType()) && 5252 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); 5253 5254 unsigned Opcode = AArch64ISD::CSEL; 5255 5256 // If both the TVal and the FVal are constants, see if we can swap them in 5257 // order to for a CSINV or CSINC out of them. 5258 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); 5259 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); 5260 5261 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { 5262 std::swap(TVal, FVal); 5263 std::swap(CTVal, CFVal); 5264 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5265 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { 5266 std::swap(TVal, FVal); 5267 std::swap(CTVal, CFVal); 5268 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5269 } else if (TVal.getOpcode() == ISD::XOR) { 5270 // If TVal is a NOT we want to swap TVal and FVal so that we can match 5271 // with a CSINV rather than a CSEL. 5272 if (isAllOnesConstant(TVal.getOperand(1))) { 5273 std::swap(TVal, FVal); 5274 std::swap(CTVal, CFVal); 5275 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5276 } 5277 } else if (TVal.getOpcode() == ISD::SUB) { 5278 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so 5279 // that we can match with a CSNEG rather than a CSEL. 5280 if (isNullConstant(TVal.getOperand(0))) { 5281 std::swap(TVal, FVal); 5282 std::swap(CTVal, CFVal); 5283 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5284 } 5285 } else if (CTVal && CFVal) { 5286 const int64_t TrueVal = CTVal->getSExtValue(); 5287 const int64_t FalseVal = CFVal->getSExtValue(); 5288 bool Swap = false; 5289 5290 // If both TVal and FVal are constants, see if FVal is the 5291 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC 5292 // instead of a CSEL in that case. 5293 if (TrueVal == ~FalseVal) { 5294 Opcode = AArch64ISD::CSINV; 5295 } else if (TrueVal == -FalseVal) { 5296 Opcode = AArch64ISD::CSNEG; 5297 } else if (TVal.getValueType() == MVT::i32) { 5298 // If our operands are only 32-bit wide, make sure we use 32-bit 5299 // arithmetic for the check whether we can use CSINC. This ensures that 5300 // the addition in the check will wrap around properly in case there is 5301 // an overflow (which would not be the case if we do the check with 5302 // 64-bit arithmetic). 5303 const uint32_t TrueVal32 = CTVal->getZExtValue(); 5304 const uint32_t FalseVal32 = CFVal->getZExtValue(); 5305 5306 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { 5307 Opcode = AArch64ISD::CSINC; 5308 5309 if (TrueVal32 > FalseVal32) { 5310 Swap = true; 5311 } 5312 } 5313 // 64-bit check whether we can use CSINC. 5314 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { 5315 Opcode = AArch64ISD::CSINC; 5316 5317 if (TrueVal > FalseVal) { 5318 Swap = true; 5319 } 5320 } 5321 5322 // Swap TVal and FVal if necessary. 5323 if (Swap) { 5324 std::swap(TVal, FVal); 5325 std::swap(CTVal, CFVal); 5326 CC = ISD::getSetCCInverse(CC, LHS.getValueType()); 5327 } 5328 5329 if (Opcode != AArch64ISD::CSEL) { 5330 // Drop FVal since we can get its value by simply inverting/negating 5331 // TVal. 5332 FVal = TVal; 5333 } 5334 } 5335 5336 // Avoid materializing a constant when possible by reusing a known value in 5337 // a register. However, don't perform this optimization if the known value 5338 // is one, zero or negative one in the case of a CSEL. We can always 5339 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the 5340 // FVal, respectively. 5341 ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS); 5342 if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() && 5343 !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) { 5344 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 5345 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to 5346 // "a != C ? x : a" to avoid materializing C. 5347 if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ) 5348 TVal = LHS; 5349 else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE) 5350 FVal = LHS; 5351 } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) { 5352 assert (CTVal && CFVal && "Expected constant operands for CSNEG."); 5353 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to 5354 // avoid materializing C. 5355 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 5356 if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) { 5357 Opcode = AArch64ISD::CSINV; 5358 TVal = LHS; 5359 FVal = DAG.getConstant(0, dl, FVal.getValueType()); 5360 } 5361 } 5362 5363 SDValue CCVal; 5364 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 5365 EVT VT = TVal.getValueType(); 5366 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); 5367 } 5368 5369 // Now we know we're dealing with FP values. 5370 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || 5371 LHS.getValueType() == MVT::f64); 5372 assert(LHS.getValueType() == RHS.getValueType()); 5373 EVT VT = TVal.getValueType(); 5374 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 5375 5376 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 5377 // clean. Some of them require two CSELs to implement. 5378 AArch64CC::CondCode CC1, CC2; 5379 changeFPCCToAArch64CC(CC, CC1, CC2); 5380 5381 if (DAG.getTarget().Options.UnsafeFPMath) { 5382 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and 5383 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0. 5384 ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS); 5385 if (RHSVal && RHSVal->isZero()) { 5386 ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal); 5387 ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal); 5388 5389 if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) && 5390 CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType()) 5391 TVal = LHS; 5392 else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) && 5393 CFVal && CFVal->isZero() && 5394 FVal.getValueType() == LHS.getValueType()) 5395 FVal = LHS; 5396 } 5397 } 5398 5399 // Emit first, and possibly only, CSEL. 5400 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); 5401 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); 5402 5403 // If we need a second CSEL, emit it, using the output of the first as the 5404 // RHS. We're effectively OR'ing the two CC's together. 5405 if (CC2 != AArch64CC::AL) { 5406 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); 5407 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); 5408 } 5409 5410 // Otherwise, return the output of the first CSEL. 5411 return CS1; 5412 } 5413 5414 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, 5415 SelectionDAG &DAG) const { 5416 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 5417 SDValue LHS = Op.getOperand(0); 5418 SDValue RHS = Op.getOperand(1); 5419 SDValue TVal = Op.getOperand(2); 5420 SDValue FVal = Op.getOperand(3); 5421 SDLoc DL(Op); 5422 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); 5423 } 5424 5425 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, 5426 SelectionDAG &DAG) const { 5427 SDValue CCVal = Op->getOperand(0); 5428 SDValue TVal = Op->getOperand(1); 5429 SDValue FVal = Op->getOperand(2); 5430 SDLoc DL(Op); 5431 5432 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select 5433 // instruction. 5434 if (isOverflowIntrOpRes(CCVal)) { 5435 // Only lower legal XALUO ops. 5436 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) 5437 return SDValue(); 5438 5439 AArch64CC::CondCode OFCC; 5440 SDValue Value, Overflow; 5441 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); 5442 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); 5443 5444 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, 5445 CCVal, Overflow); 5446 } 5447 5448 // Lower it the same way as we would lower a SELECT_CC node. 5449 ISD::CondCode CC; 5450 SDValue LHS, RHS; 5451 if (CCVal.getOpcode() == ISD::SETCC) { 5452 LHS = CCVal.getOperand(0); 5453 RHS = CCVal.getOperand(1); 5454 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get(); 5455 } else { 5456 LHS = CCVal; 5457 RHS = DAG.getConstant(0, DL, CCVal.getValueType()); 5458 CC = ISD::SETNE; 5459 } 5460 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); 5461 } 5462 5463 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, 5464 SelectionDAG &DAG) const { 5465 // Jump table entries as PC relative offsets. No additional tweaking 5466 // is necessary here. Just get the address of the jump table. 5467 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 5468 5469 if (getTargetMachine().getCodeModel() == CodeModel::Large && 5470 !Subtarget->isTargetMachO()) { 5471 return getAddrLarge(JT, DAG); 5472 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 5473 return getAddrTiny(JT, DAG); 5474 } 5475 return getAddr(JT, DAG); 5476 } 5477 5478 SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op, 5479 SelectionDAG &DAG) const { 5480 // Jump table entries as PC relative offsets. No additional tweaking 5481 // is necessary here. Just get the address of the jump table. 5482 SDLoc DL(Op); 5483 SDValue JT = Op.getOperand(1); 5484 SDValue Entry = Op.getOperand(2); 5485 int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex(); 5486 5487 SDNode *Dest = 5488 DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT, 5489 Entry, DAG.getTargetJumpTable(JTI, MVT::i32)); 5490 return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0), 5491 SDValue(Dest, 0)); 5492 } 5493 5494 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, 5495 SelectionDAG &DAG) const { 5496 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 5497 5498 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 5499 // Use the GOT for the large code model on iOS. 5500 if (Subtarget->isTargetMachO()) { 5501 return getGOT(CP, DAG); 5502 } 5503 return getAddrLarge(CP, DAG); 5504 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 5505 return getAddrTiny(CP, DAG); 5506 } else { 5507 return getAddr(CP, DAG); 5508 } 5509 } 5510 5511 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, 5512 SelectionDAG &DAG) const { 5513 BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op); 5514 if (getTargetMachine().getCodeModel() == CodeModel::Large && 5515 !Subtarget->isTargetMachO()) { 5516 return getAddrLarge(BA, DAG); 5517 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { 5518 return getAddrTiny(BA, DAG); 5519 } 5520 return getAddr(BA, DAG); 5521 } 5522 5523 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, 5524 SelectionDAG &DAG) const { 5525 AArch64FunctionInfo *FuncInfo = 5526 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 5527 5528 SDLoc DL(Op); 5529 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), 5530 getPointerTy(DAG.getDataLayout())); 5531 FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout())); 5532 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5533 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 5534 MachinePointerInfo(SV)); 5535 } 5536 5537 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op, 5538 SelectionDAG &DAG) const { 5539 AArch64FunctionInfo *FuncInfo = 5540 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 5541 5542 SDLoc DL(Op); 5543 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0 5544 ? FuncInfo->getVarArgsGPRIndex() 5545 : FuncInfo->getVarArgsStackIndex(), 5546 getPointerTy(DAG.getDataLayout())); 5547 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5548 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 5549 MachinePointerInfo(SV)); 5550 } 5551 5552 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, 5553 SelectionDAG &DAG) const { 5554 // The layout of the va_list struct is specified in the AArch64 Procedure Call 5555 // Standard, section B.3. 5556 MachineFunction &MF = DAG.getMachineFunction(); 5557 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 5558 auto PtrVT = getPointerTy(DAG.getDataLayout()); 5559 SDLoc DL(Op); 5560 5561 SDValue Chain = Op.getOperand(0); 5562 SDValue VAList = Op.getOperand(1); 5563 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5564 SmallVector<SDValue, 4> MemOps; 5565 5566 // void *__stack at offset 0 5567 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); 5568 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, 5569 MachinePointerInfo(SV), /* Alignment = */ 8)); 5570 5571 // void *__gr_top at offset 8 5572 int GPRSize = FuncInfo->getVarArgsGPRSize(); 5573 if (GPRSize > 0) { 5574 SDValue GRTop, GRTopAddr; 5575 5576 GRTopAddr = 5577 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT)); 5578 5579 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); 5580 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, 5581 DAG.getConstant(GPRSize, DL, PtrVT)); 5582 5583 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, 5584 MachinePointerInfo(SV, 8), 5585 /* Alignment = */ 8)); 5586 } 5587 5588 // void *__vr_top at offset 16 5589 int FPRSize = FuncInfo->getVarArgsFPRSize(); 5590 if (FPRSize > 0) { 5591 SDValue VRTop, VRTopAddr; 5592 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 5593 DAG.getConstant(16, DL, PtrVT)); 5594 5595 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); 5596 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, 5597 DAG.getConstant(FPRSize, DL, PtrVT)); 5598 5599 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, 5600 MachinePointerInfo(SV, 16), 5601 /* Alignment = */ 8)); 5602 } 5603 5604 // int __gr_offs at offset 24 5605 SDValue GROffsAddr = 5606 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT)); 5607 MemOps.push_back(DAG.getStore( 5608 Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr, 5609 MachinePointerInfo(SV, 24), /* Alignment = */ 4)); 5610 5611 // int __vr_offs at offset 28 5612 SDValue VROffsAddr = 5613 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT)); 5614 MemOps.push_back(DAG.getStore( 5615 Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr, 5616 MachinePointerInfo(SV, 28), /* Alignment = */ 4)); 5617 5618 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 5619 } 5620 5621 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, 5622 SelectionDAG &DAG) const { 5623 MachineFunction &MF = DAG.getMachineFunction(); 5624 5625 if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv())) 5626 return LowerWin64_VASTART(Op, DAG); 5627 else if (Subtarget->isTargetDarwin()) 5628 return LowerDarwin_VASTART(Op, DAG); 5629 else 5630 return LowerAAPCS_VASTART(Op, DAG); 5631 } 5632 5633 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, 5634 SelectionDAG &DAG) const { 5635 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single 5636 // pointer. 5637 SDLoc DL(Op); 5638 unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8; 5639 unsigned VaListSize = (Subtarget->isTargetDarwin() || 5640 Subtarget->isTargetWindows()) ? PtrSize : 32; 5641 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 5642 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5643 5644 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2), 5645 DAG.getConstant(VaListSize, DL, MVT::i32), PtrSize, 5646 false, false, false, MachinePointerInfo(DestSV), 5647 MachinePointerInfo(SrcSV)); 5648 } 5649 5650 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 5651 assert(Subtarget->isTargetDarwin() && 5652 "automatic va_arg instruction only works on Darwin"); 5653 5654 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5655 EVT VT = Op.getValueType(); 5656 SDLoc DL(Op); 5657 SDValue Chain = Op.getOperand(0); 5658 SDValue Addr = Op.getOperand(1); 5659 unsigned Align = Op.getConstantOperandVal(3); 5660 unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8; 5661 auto PtrVT = getPointerTy(DAG.getDataLayout()); 5662 auto PtrMemVT = getPointerMemTy(DAG.getDataLayout()); 5663 SDValue VAList = 5664 DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V)); 5665 Chain = VAList.getValue(1); 5666 VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT); 5667 5668 if (Align > MinSlotSize) { 5669 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); 5670 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 5671 DAG.getConstant(Align - 1, DL, PtrVT)); 5672 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, 5673 DAG.getConstant(-(int64_t)Align, DL, PtrVT)); 5674 } 5675 5676 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5677 unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); 5678 5679 // Scalar integer and FP values smaller than 64 bits are implicitly extended 5680 // up to 64 bits. At the very least, we have to increase the striding of the 5681 // vaargs list to match this, and for FP values we need to introduce 5682 // FP_ROUND nodes as well. 5683 if (VT.isInteger() && !VT.isVector()) 5684 ArgSize = std::max(ArgSize, MinSlotSize); 5685 bool NeedFPTrunc = false; 5686 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { 5687 ArgSize = 8; 5688 NeedFPTrunc = true; 5689 } 5690 5691 // Increment the pointer, VAList, to the next vaarg 5692 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 5693 DAG.getConstant(ArgSize, DL, PtrVT)); 5694 VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT); 5695 5696 // Store the incremented VAList to the legalized pointer 5697 SDValue APStore = 5698 DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V)); 5699 5700 // Load the actual argument out of the pointer VAList 5701 if (NeedFPTrunc) { 5702 // Load the value as an f64. 5703 SDValue WideFP = 5704 DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo()); 5705 // Round the value down to an f32. 5706 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), 5707 DAG.getIntPtrConstant(1, DL)); 5708 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; 5709 // Merge the rounded value with the chain output of the load. 5710 return DAG.getMergeValues(Ops, DL); 5711 } 5712 5713 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo()); 5714 } 5715 5716 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, 5717 SelectionDAG &DAG) const { 5718 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5719 MFI.setFrameAddressIsTaken(true); 5720 5721 EVT VT = Op.getValueType(); 5722 SDLoc DL(Op); 5723 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5724 SDValue FrameAddr = 5725 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64); 5726 while (Depth--) 5727 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, 5728 MachinePointerInfo()); 5729 5730 if (Subtarget->isTargetILP32()) 5731 FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr, 5732 DAG.getValueType(VT)); 5733 5734 return FrameAddr; 5735 } 5736 5737 SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op, 5738 SelectionDAG &DAG) const { 5739 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5740 5741 EVT VT = getPointerTy(DAG.getDataLayout()); 5742 SDLoc DL(Op); 5743 int FI = MFI.CreateFixedObject(4, 0, false); 5744 return DAG.getFrameIndex(FI, VT); 5745 } 5746 5747 #define GET_REGISTER_MATCHER 5748 #include "AArch64GenAsmMatcher.inc" 5749 5750 // FIXME? Maybe this could be a TableGen attribute on some registers and 5751 // this table could be generated automatically from RegInfo. 5752 Register AArch64TargetLowering:: 5753 getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { 5754 Register Reg = MatchRegisterName(RegName); 5755 if (AArch64::X1 <= Reg && Reg <= AArch64::X28) { 5756 const MCRegisterInfo *MRI = Subtarget->getRegisterInfo(); 5757 unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false); 5758 if (!Subtarget->isXRegisterReserved(DwarfRegNum)) 5759 Reg = 0; 5760 } 5761 if (Reg) 5762 return Reg; 5763 report_fatal_error(Twine("Invalid register name \"" 5764 + StringRef(RegName) + "\".")); 5765 } 5766 5767 SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op, 5768 SelectionDAG &DAG) const { 5769 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 5770 5771 EVT VT = Op.getValueType(); 5772 SDLoc DL(Op); 5773 5774 SDValue FrameAddr = 5775 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); 5776 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); 5777 5778 return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset); 5779 } 5780 5781 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, 5782 SelectionDAG &DAG) const { 5783 MachineFunction &MF = DAG.getMachineFunction(); 5784 MachineFrameInfo &MFI = MF.getFrameInfo(); 5785 MFI.setReturnAddressIsTaken(true); 5786 5787 EVT VT = Op.getValueType(); 5788 SDLoc DL(Op); 5789 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5790 if (Depth) { 5791 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 5792 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); 5793 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 5794 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 5795 MachinePointerInfo()); 5796 } 5797 5798 // Return LR, which contains the return address. Mark it an implicit live-in. 5799 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); 5800 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 5801 } 5802 5803 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two 5804 /// i64 values and take a 2 x i64 value to shift plus a shift amount. 5805 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, 5806 SelectionDAG &DAG) const { 5807 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 5808 EVT VT = Op.getValueType(); 5809 unsigned VTBits = VT.getSizeInBits(); 5810 SDLoc dl(Op); 5811 SDValue ShOpLo = Op.getOperand(0); 5812 SDValue ShOpHi = Op.getOperand(1); 5813 SDValue ShAmt = Op.getOperand(2); 5814 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 5815 5816 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 5817 5818 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, 5819 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); 5820 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 5821 5822 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which 5823 // is "undef". We wanted 0, so CSEL it directly. 5824 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), 5825 ISD::SETEQ, dl, DAG); 5826 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); 5827 HiBitsForLo = 5828 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), 5829 HiBitsForLo, CCVal, Cmp); 5830 5831 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, 5832 DAG.getConstant(VTBits, dl, MVT::i64)); 5833 5834 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 5835 SDValue LoForNormalShift = 5836 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo); 5837 5838 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, 5839 dl, DAG); 5840 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); 5841 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 5842 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, 5843 LoForNormalShift, CCVal, Cmp); 5844 5845 // AArch64 shifts larger than the register width are wrapped rather than 5846 // clamped, so we can't just emit "hi >> x". 5847 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 5848 SDValue HiForBigShift = 5849 Opc == ISD::SRA 5850 ? DAG.getNode(Opc, dl, VT, ShOpHi, 5851 DAG.getConstant(VTBits - 1, dl, MVT::i64)) 5852 : DAG.getConstant(0, dl, VT); 5853 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, 5854 HiForNormalShift, CCVal, Cmp); 5855 5856 SDValue Ops[2] = { Lo, Hi }; 5857 return DAG.getMergeValues(Ops, dl); 5858 } 5859 5860 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 5861 /// i64 values and take a 2 x i64 value to shift plus a shift amount. 5862 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, 5863 SelectionDAG &DAG) const { 5864 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 5865 EVT VT = Op.getValueType(); 5866 unsigned VTBits = VT.getSizeInBits(); 5867 SDLoc dl(Op); 5868 SDValue ShOpLo = Op.getOperand(0); 5869 SDValue ShOpHi = Op.getOperand(1); 5870 SDValue ShAmt = Op.getOperand(2); 5871 5872 assert(Op.getOpcode() == ISD::SHL_PARTS); 5873 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, 5874 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); 5875 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 5876 5877 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which 5878 // is "undef". We wanted 0, so CSEL it directly. 5879 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), 5880 ISD::SETEQ, dl, DAG); 5881 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); 5882 LoBitsForHi = 5883 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), 5884 LoBitsForHi, CCVal, Cmp); 5885 5886 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, 5887 DAG.getConstant(VTBits, dl, MVT::i64)); 5888 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 5889 SDValue HiForNormalShift = 5890 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); 5891 5892 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 5893 5894 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, 5895 dl, DAG); 5896 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); 5897 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, 5898 HiForNormalShift, CCVal, Cmp); 5899 5900 // AArch64 shifts of larger than register sizes are wrapped rather than 5901 // clamped, so we can't just emit "lo << a" if a is too big. 5902 SDValue LoForBigShift = DAG.getConstant(0, dl, VT); 5903 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 5904 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, 5905 LoForNormalShift, CCVal, Cmp); 5906 5907 SDValue Ops[2] = { Lo, Hi }; 5908 return DAG.getMergeValues(Ops, dl); 5909 } 5910 5911 bool AArch64TargetLowering::isOffsetFoldingLegal( 5912 const GlobalAddressSDNode *GA) const { 5913 // Offsets are folded in the DAG combine rather than here so that we can 5914 // intelligently choose an offset based on the uses. 5915 return false; 5916 } 5917 5918 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 5919 bool OptForSize) const { 5920 bool IsLegal = false; 5921 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and 5922 // 16-bit case when target has full fp16 support. 5923 // FIXME: We should be able to handle f128 as well with a clever lowering. 5924 const APInt ImmInt = Imm.bitcastToAPInt(); 5925 if (VT == MVT::f64) 5926 IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero(); 5927 else if (VT == MVT::f32) 5928 IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero(); 5929 else if (VT == MVT::f16 && Subtarget->hasFullFP16()) 5930 IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero(); 5931 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to 5932 // generate that fmov. 5933 5934 // If we can not materialize in immediate field for fmov, check if the 5935 // value can be encoded as the immediate operand of a logical instruction. 5936 // The immediate value will be created with either MOVZ, MOVN, or ORR. 5937 if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) { 5938 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr; 5939 // however the mov+fmov sequence is always better because of the reduced 5940 // cache pressure. The timings are still the same if you consider 5941 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the 5942 // movw+movk is fused). So we limit up to 2 instrdduction at most. 5943 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 5944 AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(), 5945 Insn); 5946 unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2)); 5947 IsLegal = Insn.size() <= Limit; 5948 } 5949 5950 LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString() 5951 << " imm value: "; Imm.dump();); 5952 return IsLegal; 5953 } 5954 5955 //===----------------------------------------------------------------------===// 5956 // AArch64 Optimization Hooks 5957 //===----------------------------------------------------------------------===// 5958 5959 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode, 5960 SDValue Operand, SelectionDAG &DAG, 5961 int &ExtraSteps) { 5962 EVT VT = Operand.getValueType(); 5963 if (ST->hasNEON() && 5964 (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 || 5965 VT == MVT::f32 || VT == MVT::v1f32 || 5966 VT == MVT::v2f32 || VT == MVT::v4f32)) { 5967 if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) 5968 // For the reciprocal estimates, convergence is quadratic, so the number 5969 // of digits is doubled after each iteration. In ARMv8, the accuracy of 5970 // the initial estimate is 2^-8. Thus the number of extra steps to refine 5971 // the result for float (23 mantissa bits) is 2 and for double (52 5972 // mantissa bits) is 3. 5973 ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2; 5974 5975 return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand); 5976 } 5977 5978 return SDValue(); 5979 } 5980 5981 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand, 5982 SelectionDAG &DAG, int Enabled, 5983 int &ExtraSteps, 5984 bool &UseOneConst, 5985 bool Reciprocal) const { 5986 if (Enabled == ReciprocalEstimate::Enabled || 5987 (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt())) 5988 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand, 5989 DAG, ExtraSteps)) { 5990 SDLoc DL(Operand); 5991 EVT VT = Operand.getValueType(); 5992 5993 SDNodeFlags Flags; 5994 Flags.setAllowReassociation(true); 5995 5996 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2) 5997 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) 5998 for (int i = ExtraSteps; i > 0; --i) { 5999 SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate, 6000 Flags); 6001 Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags); 6002 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); 6003 } 6004 if (!Reciprocal) { 6005 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 6006 VT); 6007 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6008 SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ); 6009 6010 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags); 6011 // Correct the result if the operand is 0.0. 6012 Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, 6013 VT, Eq, Operand, Estimate); 6014 } 6015 6016 ExtraSteps = 0; 6017 return Estimate; 6018 } 6019 6020 return SDValue(); 6021 } 6022 6023 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand, 6024 SelectionDAG &DAG, int Enabled, 6025 int &ExtraSteps) const { 6026 if (Enabled == ReciprocalEstimate::Enabled) 6027 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand, 6028 DAG, ExtraSteps)) { 6029 SDLoc DL(Operand); 6030 EVT VT = Operand.getValueType(); 6031 6032 SDNodeFlags Flags; 6033 Flags.setAllowReassociation(true); 6034 6035 // Newton reciprocal iteration: E * (2 - X * E) 6036 // AArch64 reciprocal iteration instruction: (2 - M * N) 6037 for (int i = ExtraSteps; i > 0; --i) { 6038 SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand, 6039 Estimate, Flags); 6040 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); 6041 } 6042 6043 ExtraSteps = 0; 6044 return Estimate; 6045 } 6046 6047 return SDValue(); 6048 } 6049 6050 //===----------------------------------------------------------------------===// 6051 // AArch64 Inline Assembly Support 6052 //===----------------------------------------------------------------------===// 6053 6054 // Table of Constraints 6055 // TODO: This is the current set of constraints supported by ARM for the 6056 // compiler, not all of them may make sense. 6057 // 6058 // r - A general register 6059 // w - An FP/SIMD register of some size in the range v0-v31 6060 // x - An FP/SIMD register of some size in the range v0-v15 6061 // I - Constant that can be used with an ADD instruction 6062 // J - Constant that can be used with a SUB instruction 6063 // K - Constant that can be used with a 32-bit logical instruction 6064 // L - Constant that can be used with a 64-bit logical instruction 6065 // M - Constant that can be used as a 32-bit MOV immediate 6066 // N - Constant that can be used as a 64-bit MOV immediate 6067 // Q - A memory reference with base register and no offset 6068 // S - A symbolic address 6069 // Y - Floating point constant zero 6070 // Z - Integer constant zero 6071 // 6072 // Note that general register operands will be output using their 64-bit x 6073 // register name, whatever the size of the variable, unless the asm operand 6074 // is prefixed by the %w modifier. Floating-point and SIMD register operands 6075 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or 6076 // %q modifier. 6077 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 6078 // At this point, we have to lower this constraint to something else, so we 6079 // lower it to an "r" or "w". However, by doing this we will force the result 6080 // to be in register, while the X constraint is much more permissive. 6081 // 6082 // Although we are correct (we are free to emit anything, without 6083 // constraints), we might break use cases that would expect us to be more 6084 // efficient and emit something else. 6085 if (!Subtarget->hasFPARMv8()) 6086 return "r"; 6087 6088 if (ConstraintVT.isFloatingPoint()) 6089 return "w"; 6090 6091 if (ConstraintVT.isVector() && 6092 (ConstraintVT.getSizeInBits() == 64 || 6093 ConstraintVT.getSizeInBits() == 128)) 6094 return "w"; 6095 6096 return "r"; 6097 } 6098 6099 enum PredicateConstraint { 6100 Upl, 6101 Upa, 6102 Invalid 6103 }; 6104 6105 static PredicateConstraint parsePredicateConstraint(StringRef Constraint) { 6106 PredicateConstraint P = PredicateConstraint::Invalid; 6107 if (Constraint == "Upa") 6108 P = PredicateConstraint::Upa; 6109 if (Constraint == "Upl") 6110 P = PredicateConstraint::Upl; 6111 return P; 6112 } 6113 6114 /// getConstraintType - Given a constraint letter, return the type of 6115 /// constraint it is for this target. 6116 AArch64TargetLowering::ConstraintType 6117 AArch64TargetLowering::getConstraintType(StringRef Constraint) const { 6118 if (Constraint.size() == 1) { 6119 switch (Constraint[0]) { 6120 default: 6121 break; 6122 case 'x': 6123 case 'w': 6124 case 'y': 6125 return C_RegisterClass; 6126 // An address with a single base register. Due to the way we 6127 // currently handle addresses it is the same as 'r'. 6128 case 'Q': 6129 return C_Memory; 6130 case 'I': 6131 case 'J': 6132 case 'K': 6133 case 'L': 6134 case 'M': 6135 case 'N': 6136 case 'Y': 6137 case 'Z': 6138 return C_Immediate; 6139 case 'z': 6140 case 'S': // A symbolic address 6141 return C_Other; 6142 } 6143 } else if (parsePredicateConstraint(Constraint) != 6144 PredicateConstraint::Invalid) 6145 return C_RegisterClass; 6146 return TargetLowering::getConstraintType(Constraint); 6147 } 6148 6149 /// Examine constraint type and operand type and determine a weight value. 6150 /// This object must already have been set up with the operand type 6151 /// and the current alternative constraint selected. 6152 TargetLowering::ConstraintWeight 6153 AArch64TargetLowering::getSingleConstraintMatchWeight( 6154 AsmOperandInfo &info, const char *constraint) const { 6155 ConstraintWeight weight = CW_Invalid; 6156 Value *CallOperandVal = info.CallOperandVal; 6157 // If we don't have a value, we can't do a match, 6158 // but allow it at the lowest weight. 6159 if (!CallOperandVal) 6160 return CW_Default; 6161 Type *type = CallOperandVal->getType(); 6162 // Look at the constraint type. 6163 switch (*constraint) { 6164 default: 6165 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 6166 break; 6167 case 'x': 6168 case 'w': 6169 case 'y': 6170 if (type->isFloatingPointTy() || type->isVectorTy()) 6171 weight = CW_Register; 6172 break; 6173 case 'z': 6174 weight = CW_Constant; 6175 break; 6176 case 'U': 6177 if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid) 6178 weight = CW_Register; 6179 break; 6180 } 6181 return weight; 6182 } 6183 6184 std::pair<unsigned, const TargetRegisterClass *> 6185 AArch64TargetLowering::getRegForInlineAsmConstraint( 6186 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 6187 if (Constraint.size() == 1) { 6188 switch (Constraint[0]) { 6189 case 'r': 6190 if (VT.getSizeInBits() == 64) 6191 return std::make_pair(0U, &AArch64::GPR64commonRegClass); 6192 return std::make_pair(0U, &AArch64::GPR32commonRegClass); 6193 case 'w': 6194 if (!Subtarget->hasFPARMv8()) 6195 break; 6196 if (VT.isScalableVector()) 6197 return std::make_pair(0U, &AArch64::ZPRRegClass); 6198 if (VT.getSizeInBits() == 16) 6199 return std::make_pair(0U, &AArch64::FPR16RegClass); 6200 if (VT.getSizeInBits() == 32) 6201 return std::make_pair(0U, &AArch64::FPR32RegClass); 6202 if (VT.getSizeInBits() == 64) 6203 return std::make_pair(0U, &AArch64::FPR64RegClass); 6204 if (VT.getSizeInBits() == 128) 6205 return std::make_pair(0U, &AArch64::FPR128RegClass); 6206 break; 6207 // The instructions that this constraint is designed for can 6208 // only take 128-bit registers so just use that regclass. 6209 case 'x': 6210 if (!Subtarget->hasFPARMv8()) 6211 break; 6212 if (VT.isScalableVector()) 6213 return std::make_pair(0U, &AArch64::ZPR_4bRegClass); 6214 if (VT.getSizeInBits() == 128) 6215 return std::make_pair(0U, &AArch64::FPR128_loRegClass); 6216 break; 6217 case 'y': 6218 if (!Subtarget->hasFPARMv8()) 6219 break; 6220 if (VT.isScalableVector()) 6221 return std::make_pair(0U, &AArch64::ZPR_3bRegClass); 6222 break; 6223 } 6224 } else { 6225 PredicateConstraint PC = parsePredicateConstraint(Constraint); 6226 if (PC != PredicateConstraint::Invalid) { 6227 assert(VT.isScalableVector()); 6228 bool restricted = (PC == PredicateConstraint::Upl); 6229 return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass) 6230 : std::make_pair(0U, &AArch64::PPRRegClass); 6231 } 6232 } 6233 if (StringRef("{cc}").equals_lower(Constraint)) 6234 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); 6235 6236 // Use the default implementation in TargetLowering to convert the register 6237 // constraint into a member of a register class. 6238 std::pair<unsigned, const TargetRegisterClass *> Res; 6239 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 6240 6241 // Not found as a standard register? 6242 if (!Res.second) { 6243 unsigned Size = Constraint.size(); 6244 if ((Size == 4 || Size == 5) && Constraint[0] == '{' && 6245 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { 6246 int RegNo; 6247 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); 6248 if (!Failed && RegNo >= 0 && RegNo <= 31) { 6249 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size. 6250 // By default we'll emit v0-v31 for this unless there's a modifier where 6251 // we'll emit the correct register as well. 6252 if (VT != MVT::Other && VT.getSizeInBits() == 64) { 6253 Res.first = AArch64::FPR64RegClass.getRegister(RegNo); 6254 Res.second = &AArch64::FPR64RegClass; 6255 } else { 6256 Res.first = AArch64::FPR128RegClass.getRegister(RegNo); 6257 Res.second = &AArch64::FPR128RegClass; 6258 } 6259 } 6260 } 6261 } 6262 6263 if (Res.second && !Subtarget->hasFPARMv8() && 6264 !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) && 6265 !AArch64::GPR64allRegClass.hasSubClassEq(Res.second)) 6266 return std::make_pair(0U, nullptr); 6267 6268 return Res; 6269 } 6270 6271 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 6272 /// vector. If it is invalid, don't add anything to Ops. 6273 void AArch64TargetLowering::LowerAsmOperandForConstraint( 6274 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 6275 SelectionDAG &DAG) const { 6276 SDValue Result; 6277 6278 // Currently only support length 1 constraints. 6279 if (Constraint.length() != 1) 6280 return; 6281 6282 char ConstraintLetter = Constraint[0]; 6283 switch (ConstraintLetter) { 6284 default: 6285 break; 6286 6287 // This set of constraints deal with valid constants for various instructions. 6288 // Validate and return a target constant for them if we can. 6289 case 'z': { 6290 // 'z' maps to xzr or wzr so it needs an input of 0. 6291 if (!isNullConstant(Op)) 6292 return; 6293 6294 if (Op.getValueType() == MVT::i64) 6295 Result = DAG.getRegister(AArch64::XZR, MVT::i64); 6296 else 6297 Result = DAG.getRegister(AArch64::WZR, MVT::i32); 6298 break; 6299 } 6300 case 'S': { 6301 // An absolute symbolic address or label reference. 6302 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 6303 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 6304 GA->getValueType(0)); 6305 } else if (const BlockAddressSDNode *BA = 6306 dyn_cast<BlockAddressSDNode>(Op)) { 6307 Result = 6308 DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0)); 6309 } else if (const ExternalSymbolSDNode *ES = 6310 dyn_cast<ExternalSymbolSDNode>(Op)) { 6311 Result = 6312 DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0)); 6313 } else 6314 return; 6315 break; 6316 } 6317 6318 case 'I': 6319 case 'J': 6320 case 'K': 6321 case 'L': 6322 case 'M': 6323 case 'N': 6324 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 6325 if (!C) 6326 return; 6327 6328 // Grab the value and do some validation. 6329 uint64_t CVal = C->getZExtValue(); 6330 switch (ConstraintLetter) { 6331 // The I constraint applies only to simple ADD or SUB immediate operands: 6332 // i.e. 0 to 4095 with optional shift by 12 6333 // The J constraint applies only to ADD or SUB immediates that would be 6334 // valid when negated, i.e. if [an add pattern] were to be output as a SUB 6335 // instruction [or vice versa], in other words -1 to -4095 with optional 6336 // left shift by 12. 6337 case 'I': 6338 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) 6339 break; 6340 return; 6341 case 'J': { 6342 uint64_t NVal = -C->getSExtValue(); 6343 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { 6344 CVal = C->getSExtValue(); 6345 break; 6346 } 6347 return; 6348 } 6349 // The K and L constraints apply *only* to logical immediates, including 6350 // what used to be the MOVI alias for ORR (though the MOVI alias has now 6351 // been removed and MOV should be used). So these constraints have to 6352 // distinguish between bit patterns that are valid 32-bit or 64-bit 6353 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but 6354 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice 6355 // versa. 6356 case 'K': 6357 if (AArch64_AM::isLogicalImmediate(CVal, 32)) 6358 break; 6359 return; 6360 case 'L': 6361 if (AArch64_AM::isLogicalImmediate(CVal, 64)) 6362 break; 6363 return; 6364 // The M and N constraints are a superset of K and L respectively, for use 6365 // with the MOV (immediate) alias. As well as the logical immediates they 6366 // also match 32 or 64-bit immediates that can be loaded either using a 6367 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca 6368 // (M) or 64-bit 0x1234000000000000 (N) etc. 6369 // As a note some of this code is liberally stolen from the asm parser. 6370 case 'M': { 6371 if (!isUInt<32>(CVal)) 6372 return; 6373 if (AArch64_AM::isLogicalImmediate(CVal, 32)) 6374 break; 6375 if ((CVal & 0xFFFF) == CVal) 6376 break; 6377 if ((CVal & 0xFFFF0000ULL) == CVal) 6378 break; 6379 uint64_t NCVal = ~(uint32_t)CVal; 6380 if ((NCVal & 0xFFFFULL) == NCVal) 6381 break; 6382 if ((NCVal & 0xFFFF0000ULL) == NCVal) 6383 break; 6384 return; 6385 } 6386 case 'N': { 6387 if (AArch64_AM::isLogicalImmediate(CVal, 64)) 6388 break; 6389 if ((CVal & 0xFFFFULL) == CVal) 6390 break; 6391 if ((CVal & 0xFFFF0000ULL) == CVal) 6392 break; 6393 if ((CVal & 0xFFFF00000000ULL) == CVal) 6394 break; 6395 if ((CVal & 0xFFFF000000000000ULL) == CVal) 6396 break; 6397 uint64_t NCVal = ~CVal; 6398 if ((NCVal & 0xFFFFULL) == NCVal) 6399 break; 6400 if ((NCVal & 0xFFFF0000ULL) == NCVal) 6401 break; 6402 if ((NCVal & 0xFFFF00000000ULL) == NCVal) 6403 break; 6404 if ((NCVal & 0xFFFF000000000000ULL) == NCVal) 6405 break; 6406 return; 6407 } 6408 default: 6409 return; 6410 } 6411 6412 // All assembler immediates are 64-bit integers. 6413 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); 6414 break; 6415 } 6416 6417 if (Result.getNode()) { 6418 Ops.push_back(Result); 6419 return; 6420 } 6421 6422 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 6423 } 6424 6425 //===----------------------------------------------------------------------===// 6426 // AArch64 Advanced SIMD Support 6427 //===----------------------------------------------------------------------===// 6428 6429 /// WidenVector - Given a value in the V64 register class, produce the 6430 /// equivalent value in the V128 register class. 6431 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { 6432 EVT VT = V64Reg.getValueType(); 6433 unsigned NarrowSize = VT.getVectorNumElements(); 6434 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 6435 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); 6436 SDLoc DL(V64Reg); 6437 6438 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), 6439 V64Reg, DAG.getConstant(0, DL, MVT::i32)); 6440 } 6441 6442 /// getExtFactor - Determine the adjustment factor for the position when 6443 /// generating an "extract from vector registers" instruction. 6444 static unsigned getExtFactor(SDValue &V) { 6445 EVT EltType = V.getValueType().getVectorElementType(); 6446 return EltType.getSizeInBits() / 8; 6447 } 6448 6449 /// NarrowVector - Given a value in the V128 register class, produce the 6450 /// equivalent value in the V64 register class. 6451 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { 6452 EVT VT = V128Reg.getValueType(); 6453 unsigned WideSize = VT.getVectorNumElements(); 6454 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 6455 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); 6456 SDLoc DL(V128Reg); 6457 6458 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); 6459 } 6460 6461 // Gather data to see if the operation can be modelled as a 6462 // shuffle in combination with VEXTs. 6463 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, 6464 SelectionDAG &DAG) const { 6465 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 6466 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n"); 6467 SDLoc dl(Op); 6468 EVT VT = Op.getValueType(); 6469 unsigned NumElts = VT.getVectorNumElements(); 6470 6471 struct ShuffleSourceInfo { 6472 SDValue Vec; 6473 unsigned MinElt; 6474 unsigned MaxElt; 6475 6476 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to 6477 // be compatible with the shuffle we intend to construct. As a result 6478 // ShuffleVec will be some sliding window into the original Vec. 6479 SDValue ShuffleVec; 6480 6481 // Code should guarantee that element i in Vec starts at element "WindowBase 6482 // + i * WindowScale in ShuffleVec". 6483 int WindowBase; 6484 int WindowScale; 6485 6486 ShuffleSourceInfo(SDValue Vec) 6487 : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0), 6488 ShuffleVec(Vec), WindowBase(0), WindowScale(1) {} 6489 6490 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } 6491 }; 6492 6493 // First gather all vectors used as an immediate source for this BUILD_VECTOR 6494 // node. 6495 SmallVector<ShuffleSourceInfo, 2> Sources; 6496 for (unsigned i = 0; i < NumElts; ++i) { 6497 SDValue V = Op.getOperand(i); 6498 if (V.isUndef()) 6499 continue; 6500 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 6501 !isa<ConstantSDNode>(V.getOperand(1))) { 6502 LLVM_DEBUG( 6503 dbgs() << "Reshuffle failed: " 6504 "a shuffle can only come from building a vector from " 6505 "various elements of other vectors, provided their " 6506 "indices are constant\n"); 6507 return SDValue(); 6508 } 6509 6510 // Add this element source to the list if it's not already there. 6511 SDValue SourceVec = V.getOperand(0); 6512 auto Source = find(Sources, SourceVec); 6513 if (Source == Sources.end()) 6514 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); 6515 6516 // Update the minimum and maximum lane number seen. 6517 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); 6518 Source->MinElt = std::min(Source->MinElt, EltNo); 6519 Source->MaxElt = std::max(Source->MaxElt, EltNo); 6520 } 6521 6522 if (Sources.size() > 2) { 6523 LLVM_DEBUG( 6524 dbgs() << "Reshuffle failed: currently only do something sane when at " 6525 "most two source vectors are involved\n"); 6526 return SDValue(); 6527 } 6528 6529 // Find out the smallest element size among result and two sources, and use 6530 // it as element size to build the shuffle_vector. 6531 EVT SmallestEltTy = VT.getVectorElementType(); 6532 for (auto &Source : Sources) { 6533 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); 6534 if (SrcEltTy.bitsLT(SmallestEltTy)) { 6535 SmallestEltTy = SrcEltTy; 6536 } 6537 } 6538 unsigned ResMultiplier = 6539 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits(); 6540 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); 6541 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); 6542 6543 // If the source vector is too wide or too narrow, we may nevertheless be able 6544 // to construct a compatible shuffle either by concatenating it with UNDEF or 6545 // extracting a suitable range of elements. 6546 for (auto &Src : Sources) { 6547 EVT SrcVT = Src.ShuffleVec.getValueType(); 6548 6549 if (SrcVT.getSizeInBits() == VT.getSizeInBits()) 6550 continue; 6551 6552 // This stage of the search produces a source with the same element type as 6553 // the original, but with a total width matching the BUILD_VECTOR output. 6554 EVT EltVT = SrcVT.getVectorElementType(); 6555 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); 6556 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); 6557 6558 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { 6559 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits()); 6560 // We can pad out the smaller vector for free, so if it's part of a 6561 // shuffle... 6562 Src.ShuffleVec = 6563 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, 6564 DAG.getUNDEF(Src.ShuffleVec.getValueType())); 6565 continue; 6566 } 6567 6568 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits()); 6569 6570 if (Src.MaxElt - Src.MinElt >= NumSrcElts) { 6571 LLVM_DEBUG( 6572 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n"); 6573 return SDValue(); 6574 } 6575 6576 if (Src.MinElt >= NumSrcElts) { 6577 // The extraction can just take the second half 6578 Src.ShuffleVec = 6579 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 6580 DAG.getConstant(NumSrcElts, dl, MVT::i64)); 6581 Src.WindowBase = -NumSrcElts; 6582 } else if (Src.MaxElt < NumSrcElts) { 6583 // The extraction can just take the first half 6584 Src.ShuffleVec = 6585 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 6586 DAG.getConstant(0, dl, MVT::i64)); 6587 } else { 6588 // An actual VEXT is needed 6589 SDValue VEXTSrc1 = 6590 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 6591 DAG.getConstant(0, dl, MVT::i64)); 6592 SDValue VEXTSrc2 = 6593 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 6594 DAG.getConstant(NumSrcElts, dl, MVT::i64)); 6595 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); 6596 6597 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, 6598 VEXTSrc2, 6599 DAG.getConstant(Imm, dl, MVT::i32)); 6600 Src.WindowBase = -Src.MinElt; 6601 } 6602 } 6603 6604 // Another possible incompatibility occurs from the vector element types. We 6605 // can fix this by bitcasting the source vectors to the same type we intend 6606 // for the shuffle. 6607 for (auto &Src : Sources) { 6608 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); 6609 if (SrcEltTy == SmallestEltTy) 6610 continue; 6611 assert(ShuffleVT.getVectorElementType() == SmallestEltTy); 6612 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); 6613 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); 6614 Src.WindowBase *= Src.WindowScale; 6615 } 6616 6617 // Final sanity check before we try to actually produce a shuffle. 6618 LLVM_DEBUG(for (auto Src 6619 : Sources) 6620 assert(Src.ShuffleVec.getValueType() == ShuffleVT);); 6621 6622 // The stars all align, our next step is to produce the mask for the shuffle. 6623 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); 6624 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); 6625 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 6626 SDValue Entry = Op.getOperand(i); 6627 if (Entry.isUndef()) 6628 continue; 6629 6630 auto Src = find(Sources, Entry.getOperand(0)); 6631 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); 6632 6633 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit 6634 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this 6635 // segment. 6636 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); 6637 int BitsDefined = 6638 std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits()); 6639 int LanesDefined = BitsDefined / BitsPerShuffleLane; 6640 6641 // This source is expected to fill ResMultiplier lanes of the final shuffle, 6642 // starting at the appropriate offset. 6643 int *LaneMask = &Mask[i * ResMultiplier]; 6644 6645 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; 6646 ExtractBase += NumElts * (Src - Sources.begin()); 6647 for (int j = 0; j < LanesDefined; ++j) 6648 LaneMask[j] = ExtractBase + j; 6649 } 6650 6651 // Final check before we try to produce nonsense... 6652 if (!isShuffleMaskLegal(Mask, ShuffleVT)) { 6653 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n"); 6654 return SDValue(); 6655 } 6656 6657 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; 6658 for (unsigned i = 0; i < Sources.size(); ++i) 6659 ShuffleOps[i] = Sources[i].ShuffleVec; 6660 6661 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], 6662 ShuffleOps[1], Mask); 6663 SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); 6664 6665 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump(); 6666 dbgs() << "Reshuffle, creating node: "; V.dump();); 6667 6668 return V; 6669 } 6670 6671 // check if an EXT instruction can handle the shuffle mask when the 6672 // vector sources of the shuffle are the same. 6673 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { 6674 unsigned NumElts = VT.getVectorNumElements(); 6675 6676 // Assume that the first shuffle index is not UNDEF. Fail if it is. 6677 if (M[0] < 0) 6678 return false; 6679 6680 Imm = M[0]; 6681 6682 // If this is a VEXT shuffle, the immediate value is the index of the first 6683 // element. The other shuffle indices must be the successive elements after 6684 // the first one. 6685 unsigned ExpectedElt = Imm; 6686 for (unsigned i = 1; i < NumElts; ++i) { 6687 // Increment the expected index. If it wraps around, just follow it 6688 // back to index zero and keep going. 6689 ++ExpectedElt; 6690 if (ExpectedElt == NumElts) 6691 ExpectedElt = 0; 6692 6693 if (M[i] < 0) 6694 continue; // ignore UNDEF indices 6695 if (ExpectedElt != static_cast<unsigned>(M[i])) 6696 return false; 6697 } 6698 6699 return true; 6700 } 6701 6702 // check if an EXT instruction can handle the shuffle mask when the 6703 // vector sources of the shuffle are different. 6704 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, 6705 unsigned &Imm) { 6706 // Look for the first non-undef element. 6707 const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); 6708 6709 // Benefit form APInt to handle overflow when calculating expected element. 6710 unsigned NumElts = VT.getVectorNumElements(); 6711 unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); 6712 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); 6713 // The following shuffle indices must be the successive elements after the 6714 // first real element. 6715 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), 6716 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); 6717 if (FirstWrongElt != M.end()) 6718 return false; 6719 6720 // The index of an EXT is the first element if it is not UNDEF. 6721 // Watch out for the beginning UNDEFs. The EXT index should be the expected 6722 // value of the first element. E.g. 6723 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. 6724 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. 6725 // ExpectedElt is the last mask index plus 1. 6726 Imm = ExpectedElt.getZExtValue(); 6727 6728 // There are two difference cases requiring to reverse input vectors. 6729 // For example, for vector <4 x i32> we have the following cases, 6730 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) 6731 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) 6732 // For both cases, we finally use mask <5, 6, 7, 0>, which requires 6733 // to reverse two input vectors. 6734 if (Imm < NumElts) 6735 ReverseEXT = true; 6736 else 6737 Imm -= NumElts; 6738 6739 return true; 6740 } 6741 6742 /// isREVMask - Check if a vector shuffle corresponds to a REV 6743 /// instruction with the specified blocksize. (The order of the elements 6744 /// within each block of the vector is reversed.) 6745 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { 6746 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && 6747 "Only possible block sizes for REV are: 16, 32, 64"); 6748 6749 unsigned EltSz = VT.getScalarSizeInBits(); 6750 if (EltSz == 64) 6751 return false; 6752 6753 unsigned NumElts = VT.getVectorNumElements(); 6754 unsigned BlockElts = M[0] + 1; 6755 // If the first shuffle index is UNDEF, be optimistic. 6756 if (M[0] < 0) 6757 BlockElts = BlockSize / EltSz; 6758 6759 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) 6760 return false; 6761 6762 for (unsigned i = 0; i < NumElts; ++i) { 6763 if (M[i] < 0) 6764 continue; // ignore UNDEF indices 6765 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) 6766 return false; 6767 } 6768 6769 return true; 6770 } 6771 6772 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6773 unsigned NumElts = VT.getVectorNumElements(); 6774 if (NumElts % 2 != 0) 6775 return false; 6776 WhichResult = (M[0] == 0 ? 0 : 1); 6777 unsigned Idx = WhichResult * NumElts / 2; 6778 for (unsigned i = 0; i != NumElts; i += 2) { 6779 if ((M[i] >= 0 && (unsigned)M[i] != Idx) || 6780 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) 6781 return false; 6782 Idx += 1; 6783 } 6784 6785 return true; 6786 } 6787 6788 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6789 unsigned NumElts = VT.getVectorNumElements(); 6790 WhichResult = (M[0] == 0 ? 0 : 1); 6791 for (unsigned i = 0; i != NumElts; ++i) { 6792 if (M[i] < 0) 6793 continue; // ignore UNDEF indices 6794 if ((unsigned)M[i] != 2 * i + WhichResult) 6795 return false; 6796 } 6797 6798 return true; 6799 } 6800 6801 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6802 unsigned NumElts = VT.getVectorNumElements(); 6803 if (NumElts % 2 != 0) 6804 return false; 6805 WhichResult = (M[0] == 0 ? 0 : 1); 6806 for (unsigned i = 0; i < NumElts; i += 2) { 6807 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || 6808 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) 6809 return false; 6810 } 6811 return true; 6812 } 6813 6814 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of 6815 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 6816 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 6817 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6818 unsigned NumElts = VT.getVectorNumElements(); 6819 if (NumElts % 2 != 0) 6820 return false; 6821 WhichResult = (M[0] == 0 ? 0 : 1); 6822 unsigned Idx = WhichResult * NumElts / 2; 6823 for (unsigned i = 0; i != NumElts; i += 2) { 6824 if ((M[i] >= 0 && (unsigned)M[i] != Idx) || 6825 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) 6826 return false; 6827 Idx += 1; 6828 } 6829 6830 return true; 6831 } 6832 6833 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of 6834 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 6835 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 6836 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6837 unsigned Half = VT.getVectorNumElements() / 2; 6838 WhichResult = (M[0] == 0 ? 0 : 1); 6839 for (unsigned j = 0; j != 2; ++j) { 6840 unsigned Idx = WhichResult; 6841 for (unsigned i = 0; i != Half; ++i) { 6842 int MIdx = M[i + j * Half]; 6843 if (MIdx >= 0 && (unsigned)MIdx != Idx) 6844 return false; 6845 Idx += 2; 6846 } 6847 } 6848 6849 return true; 6850 } 6851 6852 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of 6853 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 6854 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 6855 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 6856 unsigned NumElts = VT.getVectorNumElements(); 6857 if (NumElts % 2 != 0) 6858 return false; 6859 WhichResult = (M[0] == 0 ? 0 : 1); 6860 for (unsigned i = 0; i < NumElts; i += 2) { 6861 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || 6862 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) 6863 return false; 6864 } 6865 return true; 6866 } 6867 6868 static bool isINSMask(ArrayRef<int> M, int NumInputElements, 6869 bool &DstIsLeft, int &Anomaly) { 6870 if (M.size() != static_cast<size_t>(NumInputElements)) 6871 return false; 6872 6873 int NumLHSMatch = 0, NumRHSMatch = 0; 6874 int LastLHSMismatch = -1, LastRHSMismatch = -1; 6875 6876 for (int i = 0; i < NumInputElements; ++i) { 6877 if (M[i] == -1) { 6878 ++NumLHSMatch; 6879 ++NumRHSMatch; 6880 continue; 6881 } 6882 6883 if (M[i] == i) 6884 ++NumLHSMatch; 6885 else 6886 LastLHSMismatch = i; 6887 6888 if (M[i] == i + NumInputElements) 6889 ++NumRHSMatch; 6890 else 6891 LastRHSMismatch = i; 6892 } 6893 6894 if (NumLHSMatch == NumInputElements - 1) { 6895 DstIsLeft = true; 6896 Anomaly = LastLHSMismatch; 6897 return true; 6898 } else if (NumRHSMatch == NumInputElements - 1) { 6899 DstIsLeft = false; 6900 Anomaly = LastRHSMismatch; 6901 return true; 6902 } 6903 6904 return false; 6905 } 6906 6907 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { 6908 if (VT.getSizeInBits() != 128) 6909 return false; 6910 6911 unsigned NumElts = VT.getVectorNumElements(); 6912 6913 for (int I = 0, E = NumElts / 2; I != E; I++) { 6914 if (Mask[I] != I) 6915 return false; 6916 } 6917 6918 int Offset = NumElts / 2; 6919 for (int I = NumElts / 2, E = NumElts; I != E; I++) { 6920 if (Mask[I] != I + SplitLHS * Offset) 6921 return false; 6922 } 6923 6924 return true; 6925 } 6926 6927 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { 6928 SDLoc DL(Op); 6929 EVT VT = Op.getValueType(); 6930 SDValue V0 = Op.getOperand(0); 6931 SDValue V1 = Op.getOperand(1); 6932 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); 6933 6934 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || 6935 VT.getVectorElementType() != V1.getValueType().getVectorElementType()) 6936 return SDValue(); 6937 6938 bool SplitV0 = V0.getValueSizeInBits() == 128; 6939 6940 if (!isConcatMask(Mask, VT, SplitV0)) 6941 return SDValue(); 6942 6943 EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 6944 if (SplitV0) { 6945 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, 6946 DAG.getConstant(0, DL, MVT::i64)); 6947 } 6948 if (V1.getValueSizeInBits() == 128) { 6949 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, 6950 DAG.getConstant(0, DL, MVT::i64)); 6951 } 6952 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); 6953 } 6954 6955 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 6956 /// the specified operations to build the shuffle. 6957 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 6958 SDValue RHS, SelectionDAG &DAG, 6959 const SDLoc &dl) { 6960 unsigned OpNum = (PFEntry >> 26) & 0x0F; 6961 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); 6962 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); 6963 6964 enum { 6965 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 6966 OP_VREV, 6967 OP_VDUP0, 6968 OP_VDUP1, 6969 OP_VDUP2, 6970 OP_VDUP3, 6971 OP_VEXT1, 6972 OP_VEXT2, 6973 OP_VEXT3, 6974 OP_VUZPL, // VUZP, left result 6975 OP_VUZPR, // VUZP, right result 6976 OP_VZIPL, // VZIP, left result 6977 OP_VZIPR, // VZIP, right result 6978 OP_VTRNL, // VTRN, left result 6979 OP_VTRNR // VTRN, right result 6980 }; 6981 6982 if (OpNum == OP_COPY) { 6983 if (LHSID == (1 * 9 + 2) * 9 + 3) 6984 return LHS; 6985 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); 6986 return RHS; 6987 } 6988 6989 SDValue OpLHS, OpRHS; 6990 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 6991 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 6992 EVT VT = OpLHS.getValueType(); 6993 6994 switch (OpNum) { 6995 default: 6996 llvm_unreachable("Unknown shuffle opcode!"); 6997 case OP_VREV: 6998 // VREV divides the vector in half and swaps within the half. 6999 if (VT.getVectorElementType() == MVT::i32 || 7000 VT.getVectorElementType() == MVT::f32) 7001 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); 7002 // vrev <4 x i16> -> REV32 7003 if (VT.getVectorElementType() == MVT::i16 || 7004 VT.getVectorElementType() == MVT::f16) 7005 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); 7006 // vrev <4 x i8> -> REV16 7007 assert(VT.getVectorElementType() == MVT::i8); 7008 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); 7009 case OP_VDUP0: 7010 case OP_VDUP1: 7011 case OP_VDUP2: 7012 case OP_VDUP3: { 7013 EVT EltTy = VT.getVectorElementType(); 7014 unsigned Opcode; 7015 if (EltTy == MVT::i8) 7016 Opcode = AArch64ISD::DUPLANE8; 7017 else if (EltTy == MVT::i16 || EltTy == MVT::f16) 7018 Opcode = AArch64ISD::DUPLANE16; 7019 else if (EltTy == MVT::i32 || EltTy == MVT::f32) 7020 Opcode = AArch64ISD::DUPLANE32; 7021 else if (EltTy == MVT::i64 || EltTy == MVT::f64) 7022 Opcode = AArch64ISD::DUPLANE64; 7023 else 7024 llvm_unreachable("Invalid vector element type?"); 7025 7026 if (VT.getSizeInBits() == 64) 7027 OpLHS = WidenVector(OpLHS, DAG); 7028 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); 7029 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); 7030 } 7031 case OP_VEXT1: 7032 case OP_VEXT2: 7033 case OP_VEXT3: { 7034 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); 7035 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, 7036 DAG.getConstant(Imm, dl, MVT::i32)); 7037 } 7038 case OP_VUZPL: 7039 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, 7040 OpRHS); 7041 case OP_VUZPR: 7042 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, 7043 OpRHS); 7044 case OP_VZIPL: 7045 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, 7046 OpRHS); 7047 case OP_VZIPR: 7048 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, 7049 OpRHS); 7050 case OP_VTRNL: 7051 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, 7052 OpRHS); 7053 case OP_VTRNR: 7054 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, 7055 OpRHS); 7056 } 7057 } 7058 7059 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, 7060 SelectionDAG &DAG) { 7061 // Check to see if we can use the TBL instruction. 7062 SDValue V1 = Op.getOperand(0); 7063 SDValue V2 = Op.getOperand(1); 7064 SDLoc DL(Op); 7065 7066 EVT EltVT = Op.getValueType().getVectorElementType(); 7067 unsigned BytesPerElt = EltVT.getSizeInBits() / 8; 7068 7069 SmallVector<SDValue, 8> TBLMask; 7070 for (int Val : ShuffleMask) { 7071 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { 7072 unsigned Offset = Byte + Val * BytesPerElt; 7073 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); 7074 } 7075 } 7076 7077 MVT IndexVT = MVT::v8i8; 7078 unsigned IndexLen = 8; 7079 if (Op.getValueSizeInBits() == 128) { 7080 IndexVT = MVT::v16i8; 7081 IndexLen = 16; 7082 } 7083 7084 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); 7085 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); 7086 7087 SDValue Shuffle; 7088 if (V2.getNode()->isUndef()) { 7089 if (IndexLen == 8) 7090 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); 7091 Shuffle = DAG.getNode( 7092 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7093 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, 7094 DAG.getBuildVector(IndexVT, DL, 7095 makeArrayRef(TBLMask.data(), IndexLen))); 7096 } else { 7097 if (IndexLen == 8) { 7098 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); 7099 Shuffle = DAG.getNode( 7100 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7101 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, 7102 DAG.getBuildVector(IndexVT, DL, 7103 makeArrayRef(TBLMask.data(), IndexLen))); 7104 } else { 7105 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we 7106 // cannot currently represent the register constraints on the input 7107 // table registers. 7108 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, 7109 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0], 7110 // IndexLen)); 7111 Shuffle = DAG.getNode( 7112 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 7113 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst, 7114 V2Cst, DAG.getBuildVector(IndexVT, DL, 7115 makeArrayRef(TBLMask.data(), IndexLen))); 7116 } 7117 } 7118 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); 7119 } 7120 7121 static unsigned getDUPLANEOp(EVT EltType) { 7122 if (EltType == MVT::i8) 7123 return AArch64ISD::DUPLANE8; 7124 if (EltType == MVT::i16 || EltType == MVT::f16) 7125 return AArch64ISD::DUPLANE16; 7126 if (EltType == MVT::i32 || EltType == MVT::f32) 7127 return AArch64ISD::DUPLANE32; 7128 if (EltType == MVT::i64 || EltType == MVT::f64) 7129 return AArch64ISD::DUPLANE64; 7130 7131 llvm_unreachable("Invalid vector element type?"); 7132 } 7133 7134 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 7135 SelectionDAG &DAG) const { 7136 SDLoc dl(Op); 7137 EVT VT = Op.getValueType(); 7138 7139 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 7140 7141 // Convert shuffles that are directly supported on NEON to target-specific 7142 // DAG nodes, instead of keeping them as shuffles and matching them again 7143 // during code selection. This is more efficient and avoids the possibility 7144 // of inconsistencies between legalization and selection. 7145 ArrayRef<int> ShuffleMask = SVN->getMask(); 7146 7147 SDValue V1 = Op.getOperand(0); 7148 SDValue V2 = Op.getOperand(1); 7149 7150 if (SVN->isSplat()) { 7151 int Lane = SVN->getSplatIndex(); 7152 // If this is undef splat, generate it via "just" vdup, if possible. 7153 if (Lane == -1) 7154 Lane = 0; 7155 7156 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) 7157 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), 7158 V1.getOperand(0)); 7159 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- 7160 // constant. If so, we can just reference the lane's definition directly. 7161 if (V1.getOpcode() == ISD::BUILD_VECTOR && 7162 !isa<ConstantSDNode>(V1.getOperand(Lane))) 7163 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); 7164 7165 // Otherwise, duplicate from the lane of the input vector. 7166 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); 7167 7168 // Try to eliminate a bitcasted extract subvector before a DUPLANE. 7169 auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) { 7170 // Match: dup (bitcast (extract_subv X, C)), LaneC 7171 if (BitCast.getOpcode() != ISD::BITCAST || 7172 BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR) 7173 return false; 7174 7175 // The extract index must align in the destination type. That may not 7176 // happen if the bitcast is from narrow to wide type. 7177 SDValue Extract = BitCast.getOperand(0); 7178 unsigned ExtIdx = Extract.getConstantOperandVal(1); 7179 unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits(); 7180 unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth; 7181 unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits(); 7182 if (ExtIdxInBits % CastedEltBitWidth != 0) 7183 return false; 7184 7185 // Update the lane value by offsetting with the scaled extract index. 7186 LaneC += ExtIdxInBits / CastedEltBitWidth; 7187 7188 // Determine the casted vector type of the wide vector input. 7189 // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC' 7190 // Examples: 7191 // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3 7192 // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5 7193 unsigned SrcVecNumElts = 7194 Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth; 7195 CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(), 7196 SrcVecNumElts); 7197 return true; 7198 }; 7199 MVT CastVT; 7200 if (getScaledOffsetDup(V1, Lane, CastVT)) { 7201 V1 = DAG.getBitcast(CastVT, V1.getOperand(0).getOperand(0)); 7202 } else if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 7203 // The lane is incremented by the index of the extract. 7204 // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3 7205 Lane += V1.getConstantOperandVal(1); 7206 V1 = V1.getOperand(0); 7207 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { 7208 // The lane is decremented if we are splatting from the 2nd operand. 7209 // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1 7210 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; 7211 Lane -= Idx * VT.getVectorNumElements() / 2; 7212 V1 = WidenVector(V1.getOperand(Idx), DAG); 7213 } else if (VT.getSizeInBits() == 64) { 7214 // Widen the operand to 128-bit register with undef. 7215 V1 = WidenVector(V1, DAG); 7216 } 7217 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64)); 7218 } 7219 7220 if (isREVMask(ShuffleMask, VT, 64)) 7221 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); 7222 if (isREVMask(ShuffleMask, VT, 32)) 7223 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); 7224 if (isREVMask(ShuffleMask, VT, 16)) 7225 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); 7226 7227 bool ReverseEXT = false; 7228 unsigned Imm; 7229 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { 7230 if (ReverseEXT) 7231 std::swap(V1, V2); 7232 Imm *= getExtFactor(V1); 7233 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, 7234 DAG.getConstant(Imm, dl, MVT::i32)); 7235 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) { 7236 Imm *= getExtFactor(V1); 7237 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, 7238 DAG.getConstant(Imm, dl, MVT::i32)); 7239 } 7240 7241 unsigned WhichResult; 7242 if (isZIPMask(ShuffleMask, VT, WhichResult)) { 7243 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; 7244 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7245 } 7246 if (isUZPMask(ShuffleMask, VT, WhichResult)) { 7247 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; 7248 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7249 } 7250 if (isTRNMask(ShuffleMask, VT, WhichResult)) { 7251 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; 7252 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 7253 } 7254 7255 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7256 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; 7257 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7258 } 7259 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7260 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; 7261 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7262 } 7263 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 7264 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; 7265 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 7266 } 7267 7268 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG)) 7269 return Concat; 7270 7271 bool DstIsLeft; 7272 int Anomaly; 7273 int NumInputElements = V1.getValueType().getVectorNumElements(); 7274 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { 7275 SDValue DstVec = DstIsLeft ? V1 : V2; 7276 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); 7277 7278 SDValue SrcVec = V1; 7279 int SrcLane = ShuffleMask[Anomaly]; 7280 if (SrcLane >= NumInputElements) { 7281 SrcVec = V2; 7282 SrcLane -= VT.getVectorNumElements(); 7283 } 7284 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); 7285 7286 EVT ScalarVT = VT.getVectorElementType(); 7287 7288 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger()) 7289 ScalarVT = MVT::i32; 7290 7291 return DAG.getNode( 7292 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, 7293 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), 7294 DstLaneV); 7295 } 7296 7297 // If the shuffle is not directly supported and it has 4 elements, use 7298 // the PerfectShuffle-generated table to synthesize it from other shuffles. 7299 unsigned NumElts = VT.getVectorNumElements(); 7300 if (NumElts == 4) { 7301 unsigned PFIndexes[4]; 7302 for (unsigned i = 0; i != 4; ++i) { 7303 if (ShuffleMask[i] < 0) 7304 PFIndexes[i] = 8; 7305 else 7306 PFIndexes[i] = ShuffleMask[i]; 7307 } 7308 7309 // Compute the index in the perfect shuffle table. 7310 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 7311 PFIndexes[2] * 9 + PFIndexes[3]; 7312 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 7313 unsigned Cost = (PFEntry >> 30); 7314 7315 if (Cost <= 4) 7316 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 7317 } 7318 7319 return GenerateTBL(Op, ShuffleMask, DAG); 7320 } 7321 7322 SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op, 7323 SelectionDAG &DAG) const { 7324 SDLoc dl(Op); 7325 EVT VT = Op.getValueType(); 7326 EVT ElemVT = VT.getScalarType(); 7327 7328 SDValue SplatVal = Op.getOperand(0); 7329 7330 // Extend input splat value where needed to fit into a GPR (32b or 64b only) 7331 // FPRs don't have this restriction. 7332 switch (ElemVT.getSimpleVT().SimpleTy) { 7333 case MVT::i8: 7334 case MVT::i16: 7335 case MVT::i32: 7336 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i32); 7337 return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal); 7338 case MVT::i64: 7339 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64); 7340 return DAG.getNode(AArch64ISD::DUP, dl, VT, SplatVal); 7341 case MVT::i1: { 7342 // The general case of i1. There isn't any natural way to do this, 7343 // so we use some trickery with whilelo. 7344 // TODO: Add special cases for splat of constant true/false. 7345 SplatVal = DAG.getAnyExtOrTrunc(SplatVal, dl, MVT::i64); 7346 SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i64, SplatVal, 7347 DAG.getValueType(MVT::i1)); 7348 SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl, 7349 MVT::i64); 7350 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, ID, 7351 DAG.getConstant(0, dl, MVT::i64), SplatVal); 7352 } 7353 // TODO: we can support float types, but haven't added patterns yet. 7354 case MVT::f16: 7355 case MVT::f32: 7356 case MVT::f64: 7357 default: 7358 report_fatal_error("Unsupported SPLAT_VECTOR input operand type"); 7359 } 7360 } 7361 7362 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, 7363 APInt &UndefBits) { 7364 EVT VT = BVN->getValueType(0); 7365 APInt SplatBits, SplatUndef; 7366 unsigned SplatBitSize; 7367 bool HasAnyUndefs; 7368 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 7369 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; 7370 7371 for (unsigned i = 0; i < NumSplats; ++i) { 7372 CnstBits <<= SplatBitSize; 7373 UndefBits <<= SplatBitSize; 7374 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); 7375 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); 7376 } 7377 7378 return true; 7379 } 7380 7381 return false; 7382 } 7383 7384 // Try 64-bit splatted SIMD immediate. 7385 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7386 const APInt &Bits) { 7387 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7388 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7389 EVT VT = Op.getValueType(); 7390 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64; 7391 7392 if (AArch64_AM::isAdvSIMDModImmType10(Value)) { 7393 Value = AArch64_AM::encodeAdvSIMDModImmType10(Value); 7394 7395 SDLoc dl(Op); 7396 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7397 DAG.getConstant(Value, dl, MVT::i32)); 7398 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7399 } 7400 } 7401 7402 return SDValue(); 7403 } 7404 7405 // Try 32-bit splatted SIMD immediate. 7406 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7407 const APInt &Bits, 7408 const SDValue *LHS = nullptr) { 7409 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7410 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7411 EVT VT = Op.getValueType(); 7412 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 7413 bool isAdvSIMDModImm = false; 7414 uint64_t Shift; 7415 7416 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) { 7417 Value = AArch64_AM::encodeAdvSIMDModImmType1(Value); 7418 Shift = 0; 7419 } 7420 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) { 7421 Value = AArch64_AM::encodeAdvSIMDModImmType2(Value); 7422 Shift = 8; 7423 } 7424 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) { 7425 Value = AArch64_AM::encodeAdvSIMDModImmType3(Value); 7426 Shift = 16; 7427 } 7428 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) { 7429 Value = AArch64_AM::encodeAdvSIMDModImmType4(Value); 7430 Shift = 24; 7431 } 7432 7433 if (isAdvSIMDModImm) { 7434 SDLoc dl(Op); 7435 SDValue Mov; 7436 7437 if (LHS) 7438 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, 7439 DAG.getConstant(Value, dl, MVT::i32), 7440 DAG.getConstant(Shift, dl, MVT::i32)); 7441 else 7442 Mov = DAG.getNode(NewOp, dl, MovTy, 7443 DAG.getConstant(Value, dl, MVT::i32), 7444 DAG.getConstant(Shift, dl, MVT::i32)); 7445 7446 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7447 } 7448 } 7449 7450 return SDValue(); 7451 } 7452 7453 // Try 16-bit splatted SIMD immediate. 7454 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7455 const APInt &Bits, 7456 const SDValue *LHS = nullptr) { 7457 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7458 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7459 EVT VT = Op.getValueType(); 7460 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 7461 bool isAdvSIMDModImm = false; 7462 uint64_t Shift; 7463 7464 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) { 7465 Value = AArch64_AM::encodeAdvSIMDModImmType5(Value); 7466 Shift = 0; 7467 } 7468 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) { 7469 Value = AArch64_AM::encodeAdvSIMDModImmType6(Value); 7470 Shift = 8; 7471 } 7472 7473 if (isAdvSIMDModImm) { 7474 SDLoc dl(Op); 7475 SDValue Mov; 7476 7477 if (LHS) 7478 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, 7479 DAG.getConstant(Value, dl, MVT::i32), 7480 DAG.getConstant(Shift, dl, MVT::i32)); 7481 else 7482 Mov = DAG.getNode(NewOp, dl, MovTy, 7483 DAG.getConstant(Value, dl, MVT::i32), 7484 DAG.getConstant(Shift, dl, MVT::i32)); 7485 7486 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7487 } 7488 } 7489 7490 return SDValue(); 7491 } 7492 7493 // Try 32-bit splatted SIMD immediate with shifted ones. 7494 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op, 7495 SelectionDAG &DAG, const APInt &Bits) { 7496 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7497 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7498 EVT VT = Op.getValueType(); 7499 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 7500 bool isAdvSIMDModImm = false; 7501 uint64_t Shift; 7502 7503 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) { 7504 Value = AArch64_AM::encodeAdvSIMDModImmType7(Value); 7505 Shift = 264; 7506 } 7507 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) { 7508 Value = AArch64_AM::encodeAdvSIMDModImmType8(Value); 7509 Shift = 272; 7510 } 7511 7512 if (isAdvSIMDModImm) { 7513 SDLoc dl(Op); 7514 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7515 DAG.getConstant(Value, dl, MVT::i32), 7516 DAG.getConstant(Shift, dl, MVT::i32)); 7517 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7518 } 7519 } 7520 7521 return SDValue(); 7522 } 7523 7524 // Try 8-bit splatted SIMD immediate. 7525 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7526 const APInt &Bits) { 7527 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7528 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7529 EVT VT = Op.getValueType(); 7530 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; 7531 7532 if (AArch64_AM::isAdvSIMDModImmType9(Value)) { 7533 Value = AArch64_AM::encodeAdvSIMDModImmType9(Value); 7534 7535 SDLoc dl(Op); 7536 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7537 DAG.getConstant(Value, dl, MVT::i32)); 7538 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7539 } 7540 } 7541 7542 return SDValue(); 7543 } 7544 7545 // Try FP splatted SIMD immediate. 7546 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG, 7547 const APInt &Bits) { 7548 if (Bits.getHiBits(64) == Bits.getLoBits(64)) { 7549 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); 7550 EVT VT = Op.getValueType(); 7551 bool isWide = (VT.getSizeInBits() == 128); 7552 MVT MovTy; 7553 bool isAdvSIMDModImm = false; 7554 7555 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) { 7556 Value = AArch64_AM::encodeAdvSIMDModImmType11(Value); 7557 MovTy = isWide ? MVT::v4f32 : MVT::v2f32; 7558 } 7559 else if (isWide && 7560 (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) { 7561 Value = AArch64_AM::encodeAdvSIMDModImmType12(Value); 7562 MovTy = MVT::v2f64; 7563 } 7564 7565 if (isAdvSIMDModImm) { 7566 SDLoc dl(Op); 7567 SDValue Mov = DAG.getNode(NewOp, dl, MovTy, 7568 DAG.getConstant(Value, dl, MVT::i32)); 7569 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 7570 } 7571 } 7572 7573 return SDValue(); 7574 } 7575 7576 // Specialized code to quickly find if PotentialBVec is a BuildVector that 7577 // consists of only the same constant int value, returned in reference arg 7578 // ConstVal 7579 static bool isAllConstantBuildVector(const SDValue &PotentialBVec, 7580 uint64_t &ConstVal) { 7581 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); 7582 if (!Bvec) 7583 return false; 7584 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); 7585 if (!FirstElt) 7586 return false; 7587 EVT VT = Bvec->getValueType(0); 7588 unsigned NumElts = VT.getVectorNumElements(); 7589 for (unsigned i = 1; i < NumElts; ++i) 7590 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) 7591 return false; 7592 ConstVal = FirstElt->getZExtValue(); 7593 return true; 7594 } 7595 7596 static unsigned getIntrinsicID(const SDNode *N) { 7597 unsigned Opcode = N->getOpcode(); 7598 switch (Opcode) { 7599 default: 7600 return Intrinsic::not_intrinsic; 7601 case ISD::INTRINSIC_WO_CHAIN: { 7602 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 7603 if (IID < Intrinsic::num_intrinsics) 7604 return IID; 7605 return Intrinsic::not_intrinsic; 7606 } 7607 } 7608 } 7609 7610 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), 7611 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a 7612 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. 7613 // Also, logical shift right -> sri, with the same structure. 7614 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { 7615 EVT VT = N->getValueType(0); 7616 7617 if (!VT.isVector()) 7618 return SDValue(); 7619 7620 SDLoc DL(N); 7621 7622 // Is the first op an AND? 7623 const SDValue And = N->getOperand(0); 7624 if (And.getOpcode() != ISD::AND) 7625 return SDValue(); 7626 7627 // Is the second op an shl or lshr? 7628 SDValue Shift = N->getOperand(1); 7629 // This will have been turned into: AArch64ISD::VSHL vector, #shift 7630 // or AArch64ISD::VLSHR vector, #shift 7631 unsigned ShiftOpc = Shift.getOpcode(); 7632 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR)) 7633 return SDValue(); 7634 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR; 7635 7636 // Is the shift amount constant? 7637 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 7638 if (!C2node) 7639 return SDValue(); 7640 7641 // Is the and mask vector all constant? 7642 uint64_t C1; 7643 if (!isAllConstantBuildVector(And.getOperand(1), C1)) 7644 return SDValue(); 7645 7646 // Is C1 == ~C2, taking into account how much one can shift elements of a 7647 // particular size? 7648 uint64_t C2 = C2node->getZExtValue(); 7649 unsigned ElemSizeInBits = VT.getScalarSizeInBits(); 7650 if (C2 > ElemSizeInBits) 7651 return SDValue(); 7652 unsigned ElemMask = (1 << ElemSizeInBits) - 1; 7653 if ((C1 & ElemMask) != (~C2 & ElemMask)) 7654 return SDValue(); 7655 7656 SDValue X = And.getOperand(0); 7657 SDValue Y = Shift.getOperand(0); 7658 7659 unsigned Intrin = 7660 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli; 7661 SDValue ResultSLI = 7662 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 7663 DAG.getConstant(Intrin, DL, MVT::i32), X, Y, 7664 Shift.getOperand(1)); 7665 7666 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n"); 7667 LLVM_DEBUG(N->dump(&DAG)); 7668 LLVM_DEBUG(dbgs() << "into: \n"); 7669 LLVM_DEBUG(ResultSLI->dump(&DAG)); 7670 7671 ++NumShiftInserts; 7672 return ResultSLI; 7673 } 7674 7675 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, 7676 SelectionDAG &DAG) const { 7677 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) 7678 if (EnableAArch64SlrGeneration) { 7679 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG)) 7680 return Res; 7681 } 7682 7683 EVT VT = Op.getValueType(); 7684 7685 SDValue LHS = Op.getOperand(0); 7686 BuildVectorSDNode *BVN = 7687 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); 7688 if (!BVN) { 7689 // OR commutes, so try swapping the operands. 7690 LHS = Op.getOperand(1); 7691 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); 7692 } 7693 if (!BVN) 7694 return Op; 7695 7696 APInt DefBits(VT.getSizeInBits(), 0); 7697 APInt UndefBits(VT.getSizeInBits(), 0); 7698 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 7699 SDValue NewOp; 7700 7701 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, 7702 DefBits, &LHS)) || 7703 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, 7704 DefBits, &LHS))) 7705 return NewOp; 7706 7707 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, 7708 UndefBits, &LHS)) || 7709 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, 7710 UndefBits, &LHS))) 7711 return NewOp; 7712 } 7713 7714 // We can always fall back to a non-immediate OR. 7715 return Op; 7716 } 7717 7718 // Normalize the operands of BUILD_VECTOR. The value of constant operands will 7719 // be truncated to fit element width. 7720 static SDValue NormalizeBuildVector(SDValue Op, 7721 SelectionDAG &DAG) { 7722 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 7723 SDLoc dl(Op); 7724 EVT VT = Op.getValueType(); 7725 EVT EltTy= VT.getVectorElementType(); 7726 7727 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) 7728 return Op; 7729 7730 SmallVector<SDValue, 16> Ops; 7731 for (SDValue Lane : Op->ops()) { 7732 // For integer vectors, type legalization would have promoted the 7733 // operands already. Otherwise, if Op is a floating-point splat 7734 // (with operands cast to integers), then the only possibilities 7735 // are constants and UNDEFs. 7736 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) { 7737 APInt LowBits(EltTy.getSizeInBits(), 7738 CstLane->getZExtValue()); 7739 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); 7740 } else if (Lane.getNode()->isUndef()) { 7741 Lane = DAG.getUNDEF(MVT::i32); 7742 } else { 7743 assert(Lane.getValueType() == MVT::i32 && 7744 "Unexpected BUILD_VECTOR operand type"); 7745 } 7746 Ops.push_back(Lane); 7747 } 7748 return DAG.getBuildVector(VT, dl, Ops); 7749 } 7750 7751 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) { 7752 EVT VT = Op.getValueType(); 7753 7754 APInt DefBits(VT.getSizeInBits(), 0); 7755 APInt UndefBits(VT.getSizeInBits(), 0); 7756 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 7757 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 7758 SDValue NewOp; 7759 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || 7760 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 7761 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || 7762 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 7763 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || 7764 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) 7765 return NewOp; 7766 7767 DefBits = ~DefBits; 7768 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || 7769 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || 7770 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) 7771 return NewOp; 7772 7773 DefBits = UndefBits; 7774 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || 7775 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 7776 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || 7777 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || 7778 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || 7779 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) 7780 return NewOp; 7781 7782 DefBits = ~UndefBits; 7783 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || 7784 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || 7785 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) 7786 return NewOp; 7787 } 7788 7789 return SDValue(); 7790 } 7791 7792 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, 7793 SelectionDAG &DAG) const { 7794 EVT VT = Op.getValueType(); 7795 7796 // Try to build a simple constant vector. 7797 Op = NormalizeBuildVector(Op, DAG); 7798 if (VT.isInteger()) { 7799 // Certain vector constants, used to express things like logical NOT and 7800 // arithmetic NEG, are passed through unmodified. This allows special 7801 // patterns for these operations to match, which will lower these constants 7802 // to whatever is proven necessary. 7803 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 7804 if (BVN->isConstant()) 7805 if (ConstantSDNode *Const = BVN->getConstantSplatNode()) { 7806 unsigned BitSize = VT.getVectorElementType().getSizeInBits(); 7807 APInt Val(BitSize, 7808 Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue()); 7809 if (Val.isNullValue() || Val.isAllOnesValue()) 7810 return Op; 7811 } 7812 } 7813 7814 if (SDValue V = ConstantBuildVector(Op, DAG)) 7815 return V; 7816 7817 // Scan through the operands to find some interesting properties we can 7818 // exploit: 7819 // 1) If only one value is used, we can use a DUP, or 7820 // 2) if only the low element is not undef, we can just insert that, or 7821 // 3) if only one constant value is used (w/ some non-constant lanes), 7822 // we can splat the constant value into the whole vector then fill 7823 // in the non-constant lanes. 7824 // 4) FIXME: If different constant values are used, but we can intelligently 7825 // select the values we'll be overwriting for the non-constant 7826 // lanes such that we can directly materialize the vector 7827 // some other way (MOVI, e.g.), we can be sneaky. 7828 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP. 7829 SDLoc dl(Op); 7830 unsigned NumElts = VT.getVectorNumElements(); 7831 bool isOnlyLowElement = true; 7832 bool usesOnlyOneValue = true; 7833 bool usesOnlyOneConstantValue = true; 7834 bool isConstant = true; 7835 bool AllLanesExtractElt = true; 7836 unsigned NumConstantLanes = 0; 7837 SDValue Value; 7838 SDValue ConstantValue; 7839 for (unsigned i = 0; i < NumElts; ++i) { 7840 SDValue V = Op.getOperand(i); 7841 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 7842 AllLanesExtractElt = false; 7843 if (V.isUndef()) 7844 continue; 7845 if (i > 0) 7846 isOnlyLowElement = false; 7847 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 7848 isConstant = false; 7849 7850 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { 7851 ++NumConstantLanes; 7852 if (!ConstantValue.getNode()) 7853 ConstantValue = V; 7854 else if (ConstantValue != V) 7855 usesOnlyOneConstantValue = false; 7856 } 7857 7858 if (!Value.getNode()) 7859 Value = V; 7860 else if (V != Value) 7861 usesOnlyOneValue = false; 7862 } 7863 7864 if (!Value.getNode()) { 7865 LLVM_DEBUG( 7866 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n"); 7867 return DAG.getUNDEF(VT); 7868 } 7869 7870 // Convert BUILD_VECTOR where all elements but the lowest are undef into 7871 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector 7872 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR. 7873 if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) { 7874 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 " 7875 "SCALAR_TO_VECTOR node\n"); 7876 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 7877 } 7878 7879 if (AllLanesExtractElt) { 7880 SDNode *Vector = nullptr; 7881 bool Even = false; 7882 bool Odd = false; 7883 // Check whether the extract elements match the Even pattern <0,2,4,...> or 7884 // the Odd pattern <1,3,5,...>. 7885 for (unsigned i = 0; i < NumElts; ++i) { 7886 SDValue V = Op.getOperand(i); 7887 const SDNode *N = V.getNode(); 7888 if (!isa<ConstantSDNode>(N->getOperand(1))) 7889 break; 7890 SDValue N0 = N->getOperand(0); 7891 7892 // All elements are extracted from the same vector. 7893 if (!Vector) { 7894 Vector = N0.getNode(); 7895 // Check that the type of EXTRACT_VECTOR_ELT matches the type of 7896 // BUILD_VECTOR. 7897 if (VT.getVectorElementType() != 7898 N0.getValueType().getVectorElementType()) 7899 break; 7900 } else if (Vector != N0.getNode()) { 7901 Odd = false; 7902 Even = false; 7903 break; 7904 } 7905 7906 // Extracted values are either at Even indices <0,2,4,...> or at Odd 7907 // indices <1,3,5,...>. 7908 uint64_t Val = N->getConstantOperandVal(1); 7909 if (Val == 2 * i) { 7910 Even = true; 7911 continue; 7912 } 7913 if (Val - 1 == 2 * i) { 7914 Odd = true; 7915 continue; 7916 } 7917 7918 // Something does not match: abort. 7919 Odd = false; 7920 Even = false; 7921 break; 7922 } 7923 if (Even || Odd) { 7924 SDValue LHS = 7925 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), 7926 DAG.getConstant(0, dl, MVT::i64)); 7927 SDValue RHS = 7928 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), 7929 DAG.getConstant(NumElts, dl, MVT::i64)); 7930 7931 if (Even && !Odd) 7932 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS, 7933 RHS); 7934 if (Odd && !Even) 7935 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS, 7936 RHS); 7937 } 7938 } 7939 7940 // Use DUP for non-constant splats. For f32 constant splats, reduce to 7941 // i32 and try again. 7942 if (usesOnlyOneValue) { 7943 if (!isConstant) { 7944 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 7945 Value.getValueType() != VT) { 7946 LLVM_DEBUG( 7947 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n"); 7948 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); 7949 } 7950 7951 // This is actually a DUPLANExx operation, which keeps everything vectory. 7952 7953 SDValue Lane = Value.getOperand(1); 7954 Value = Value.getOperand(0); 7955 if (Value.getValueSizeInBits() == 64) { 7956 LLVM_DEBUG( 7957 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " 7958 "widening it\n"); 7959 Value = WidenVector(Value, DAG); 7960 } 7961 7962 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); 7963 return DAG.getNode(Opcode, dl, VT, Value, Lane); 7964 } 7965 7966 if (VT.getVectorElementType().isFloatingPoint()) { 7967 SmallVector<SDValue, 8> Ops; 7968 EVT EltTy = VT.getVectorElementType(); 7969 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) && 7970 "Unsupported floating-point vector type"); 7971 LLVM_DEBUG( 7972 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " 7973 "BITCASTS, and try again\n"); 7974 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); 7975 for (unsigned i = 0; i < NumElts; ++i) 7976 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); 7977 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); 7978 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); 7979 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: "; 7980 Val.dump();); 7981 Val = LowerBUILD_VECTOR(Val, DAG); 7982 if (Val.getNode()) 7983 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 7984 } 7985 } 7986 7987 // If there was only one constant value used and for more than one lane, 7988 // start by splatting that value, then replace the non-constant lanes. This 7989 // is better than the default, which will perform a separate initialization 7990 // for each lane. 7991 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { 7992 // Firstly, try to materialize the splat constant. 7993 SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue), 7994 Val = ConstantBuildVector(Vec, DAG); 7995 if (!Val) { 7996 // Otherwise, materialize the constant and splat it. 7997 Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); 7998 DAG.ReplaceAllUsesWith(Vec.getNode(), &Val); 7999 } 8000 8001 // Now insert the non-constant lanes. 8002 for (unsigned i = 0; i < NumElts; ++i) { 8003 SDValue V = Op.getOperand(i); 8004 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); 8005 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) 8006 // Note that type legalization likely mucked about with the VT of the 8007 // source operand, so we may have to convert it here before inserting. 8008 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); 8009 } 8010 return Val; 8011 } 8012 8013 // This will generate a load from the constant pool. 8014 if (isConstant) { 8015 LLVM_DEBUG( 8016 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " 8017 "expansion\n"); 8018 return SDValue(); 8019 } 8020 8021 // Empirical tests suggest this is rarely worth it for vectors of length <= 2. 8022 if (NumElts >= 4) { 8023 if (SDValue shuffle = ReconstructShuffle(Op, DAG)) 8024 return shuffle; 8025 } 8026 8027 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we 8028 // know the default expansion would otherwise fall back on something even 8029 // worse. For a vector with one or two non-undef values, that's 8030 // scalar_to_vector for the elements followed by a shuffle (provided the 8031 // shuffle is valid for the target) and materialization element by element 8032 // on the stack followed by a load for everything else. 8033 if (!isConstant && !usesOnlyOneValue) { 8034 LLVM_DEBUG( 8035 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " 8036 "of INSERT_VECTOR_ELT\n"); 8037 8038 SDValue Vec = DAG.getUNDEF(VT); 8039 SDValue Op0 = Op.getOperand(0); 8040 unsigned i = 0; 8041 8042 // Use SCALAR_TO_VECTOR for lane zero to 8043 // a) Avoid a RMW dependency on the full vector register, and 8044 // b) Allow the register coalescer to fold away the copy if the 8045 // value is already in an S or D register, and we're forced to emit an 8046 // INSERT_SUBREG that we can't fold anywhere. 8047 // 8048 // We also allow types like i8 and i16 which are illegal scalar but legal 8049 // vector element types. After type-legalization the inserted value is 8050 // extended (i32) and it is safe to cast them to the vector type by ignoring 8051 // the upper bits of the lowest lane (e.g. v8i8, v4i16). 8052 if (!Op0.isUndef()) { 8053 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n"); 8054 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0); 8055 ++i; 8056 } 8057 LLVM_DEBUG(if (i < NumElts) dbgs() 8058 << "Creating nodes for the other vector elements:\n";); 8059 for (; i < NumElts; ++i) { 8060 SDValue V = Op.getOperand(i); 8061 if (V.isUndef()) 8062 continue; 8063 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); 8064 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); 8065 } 8066 return Vec; 8067 } 8068 8069 LLVM_DEBUG( 8070 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " 8071 "better alternative\n"); 8072 return SDValue(); 8073 } 8074 8075 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 8076 SelectionDAG &DAG) const { 8077 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 8078 8079 // Check for non-constant or out of range lane. 8080 EVT VT = Op.getOperand(0).getValueType(); 8081 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 8082 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) 8083 return SDValue(); 8084 8085 8086 // Insertion/extraction are legal for V128 types. 8087 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 8088 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || 8089 VT == MVT::v8f16) 8090 return Op; 8091 8092 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && 8093 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) 8094 return SDValue(); 8095 8096 // For V64 types, we perform insertion by expanding the value 8097 // to a V128 type and perform the insertion on that. 8098 SDLoc DL(Op); 8099 SDValue WideVec = WidenVector(Op.getOperand(0), DAG); 8100 EVT WideTy = WideVec.getValueType(); 8101 8102 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, 8103 Op.getOperand(1), Op.getOperand(2)); 8104 // Re-narrow the resultant vector. 8105 return NarrowVector(Node, DAG); 8106 } 8107 8108 SDValue 8109 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 8110 SelectionDAG &DAG) const { 8111 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 8112 8113 // Check for non-constant or out of range lane. 8114 EVT VT = Op.getOperand(0).getValueType(); 8115 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8116 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) 8117 return SDValue(); 8118 8119 8120 // Insertion/extraction are legal for V128 types. 8121 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 8122 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || 8123 VT == MVT::v8f16) 8124 return Op; 8125 8126 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && 8127 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) 8128 return SDValue(); 8129 8130 // For V64 types, we perform extraction by expanding the value 8131 // to a V128 type and perform the extraction on that. 8132 SDLoc DL(Op); 8133 SDValue WideVec = WidenVector(Op.getOperand(0), DAG); 8134 EVT WideTy = WideVec.getValueType(); 8135 8136 EVT ExtrTy = WideTy.getVectorElementType(); 8137 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) 8138 ExtrTy = MVT::i32; 8139 8140 // For extractions, we just return the result directly. 8141 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, 8142 Op.getOperand(1)); 8143 } 8144 8145 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 8146 SelectionDAG &DAG) const { 8147 EVT VT = Op.getOperand(0).getValueType(); 8148 SDLoc dl(Op); 8149 // Just in case... 8150 if (!VT.isVector()) 8151 return SDValue(); 8152 8153 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 8154 if (!Cst) 8155 return SDValue(); 8156 unsigned Val = Cst->getZExtValue(); 8157 8158 unsigned Size = Op.getValueSizeInBits(); 8159 8160 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. 8161 if (Val == 0) 8162 return Op; 8163 8164 // If this is extracting the upper 64-bits of a 128-bit vector, we match 8165 // that directly. 8166 if (Size == 64 && Val * VT.getScalarSizeInBits() == 64) 8167 return Op; 8168 8169 return SDValue(); 8170 } 8171 8172 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 8173 if (VT.getVectorNumElements() == 4 && 8174 (VT.is128BitVector() || VT.is64BitVector())) { 8175 unsigned PFIndexes[4]; 8176 for (unsigned i = 0; i != 4; ++i) { 8177 if (M[i] < 0) 8178 PFIndexes[i] = 8; 8179 else 8180 PFIndexes[i] = M[i]; 8181 } 8182 8183 // Compute the index in the perfect shuffle table. 8184 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 8185 PFIndexes[2] * 9 + PFIndexes[3]; 8186 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 8187 unsigned Cost = (PFEntry >> 30); 8188 8189 if (Cost <= 4) 8190 return true; 8191 } 8192 8193 bool DummyBool; 8194 int DummyInt; 8195 unsigned DummyUnsigned; 8196 8197 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || 8198 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || 8199 isEXTMask(M, VT, DummyBool, DummyUnsigned) || 8200 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. 8201 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || 8202 isZIPMask(M, VT, DummyUnsigned) || 8203 isTRN_v_undef_Mask(M, VT, DummyUnsigned) || 8204 isUZP_v_undef_Mask(M, VT, DummyUnsigned) || 8205 isZIP_v_undef_Mask(M, VT, DummyUnsigned) || 8206 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || 8207 isConcatMask(M, VT, VT.getSizeInBits() == 128)); 8208 } 8209 8210 /// getVShiftImm - Check if this is a valid build_vector for the immediate 8211 /// operand of a vector shift operation, where all the elements of the 8212 /// build_vector must have the same constant integer value. 8213 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 8214 // Ignore bit_converts. 8215 while (Op.getOpcode() == ISD::BITCAST) 8216 Op = Op.getOperand(0); 8217 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8218 APInt SplatBits, SplatUndef; 8219 unsigned SplatBitSize; 8220 bool HasAnyUndefs; 8221 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, 8222 HasAnyUndefs, ElementBits) || 8223 SplatBitSize > ElementBits) 8224 return false; 8225 Cnt = SplatBits.getSExtValue(); 8226 return true; 8227 } 8228 8229 /// isVShiftLImm - Check if this is a valid build_vector for the immediate 8230 /// operand of a vector shift left operation. That value must be in the range: 8231 /// 0 <= Value < ElementBits for a left shift; or 8232 /// 0 <= Value <= ElementBits for a long left shift. 8233 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 8234 assert(VT.isVector() && "vector shift count is not a vector type"); 8235 int64_t ElementBits = VT.getScalarSizeInBits(); 8236 if (!getVShiftImm(Op, ElementBits, Cnt)) 8237 return false; 8238 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); 8239 } 8240 8241 /// isVShiftRImm - Check if this is a valid build_vector for the immediate 8242 /// operand of a vector shift right operation. The value must be in the range: 8243 /// 1 <= Value <= ElementBits for a right shift; or 8244 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { 8245 assert(VT.isVector() && "vector shift count is not a vector type"); 8246 int64_t ElementBits = VT.getScalarSizeInBits(); 8247 if (!getVShiftImm(Op, ElementBits, Cnt)) 8248 return false; 8249 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); 8250 } 8251 8252 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, 8253 SelectionDAG &DAG) const { 8254 EVT VT = Op.getValueType(); 8255 SDLoc DL(Op); 8256 int64_t Cnt; 8257 8258 if (!Op.getOperand(1).getValueType().isVector()) 8259 return Op; 8260 unsigned EltSize = VT.getScalarSizeInBits(); 8261 8262 switch (Op.getOpcode()) { 8263 default: 8264 llvm_unreachable("unexpected shift opcode"); 8265 8266 case ISD::SHL: 8267 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) 8268 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), 8269 DAG.getConstant(Cnt, DL, MVT::i32)); 8270 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 8271 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, 8272 MVT::i32), 8273 Op.getOperand(0), Op.getOperand(1)); 8274 case ISD::SRA: 8275 case ISD::SRL: 8276 // Right shift immediate 8277 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { 8278 unsigned Opc = 8279 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; 8280 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), 8281 DAG.getConstant(Cnt, DL, MVT::i32)); 8282 } 8283 8284 // Right shift register. Note, there is not a shift right register 8285 // instruction, but the shift left register instruction takes a signed 8286 // value, where negative numbers specify a right shift. 8287 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl 8288 : Intrinsic::aarch64_neon_ushl; 8289 // negate the shift amount 8290 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); 8291 SDValue NegShiftLeft = 8292 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 8293 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), 8294 NegShift); 8295 return NegShiftLeft; 8296 } 8297 8298 return SDValue(); 8299 } 8300 8301 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, 8302 AArch64CC::CondCode CC, bool NoNans, EVT VT, 8303 const SDLoc &dl, SelectionDAG &DAG) { 8304 EVT SrcVT = LHS.getValueType(); 8305 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() && 8306 "function only supposed to emit natural comparisons"); 8307 8308 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 8309 APInt CnstBits(VT.getSizeInBits(), 0); 8310 APInt UndefBits(VT.getSizeInBits(), 0); 8311 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); 8312 bool IsZero = IsCnst && (CnstBits == 0); 8313 8314 if (SrcVT.getVectorElementType().isFloatingPoint()) { 8315 switch (CC) { 8316 default: 8317 return SDValue(); 8318 case AArch64CC::NE: { 8319 SDValue Fcmeq; 8320 if (IsZero) 8321 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); 8322 else 8323 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); 8324 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); 8325 } 8326 case AArch64CC::EQ: 8327 if (IsZero) 8328 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); 8329 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); 8330 case AArch64CC::GE: 8331 if (IsZero) 8332 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); 8333 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); 8334 case AArch64CC::GT: 8335 if (IsZero) 8336 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); 8337 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); 8338 case AArch64CC::LS: 8339 if (IsZero) 8340 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); 8341 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); 8342 case AArch64CC::LT: 8343 if (!NoNans) 8344 return SDValue(); 8345 // If we ignore NaNs then we can use to the MI implementation. 8346 LLVM_FALLTHROUGH; 8347 case AArch64CC::MI: 8348 if (IsZero) 8349 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); 8350 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); 8351 } 8352 } 8353 8354 switch (CC) { 8355 default: 8356 return SDValue(); 8357 case AArch64CC::NE: { 8358 SDValue Cmeq; 8359 if (IsZero) 8360 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); 8361 else 8362 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); 8363 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); 8364 } 8365 case AArch64CC::EQ: 8366 if (IsZero) 8367 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); 8368 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); 8369 case AArch64CC::GE: 8370 if (IsZero) 8371 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); 8372 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); 8373 case AArch64CC::GT: 8374 if (IsZero) 8375 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); 8376 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); 8377 case AArch64CC::LE: 8378 if (IsZero) 8379 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); 8380 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); 8381 case AArch64CC::LS: 8382 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); 8383 case AArch64CC::LO: 8384 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); 8385 case AArch64CC::LT: 8386 if (IsZero) 8387 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); 8388 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); 8389 case AArch64CC::HI: 8390 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); 8391 case AArch64CC::HS: 8392 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); 8393 } 8394 } 8395 8396 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, 8397 SelectionDAG &DAG) const { 8398 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8399 SDValue LHS = Op.getOperand(0); 8400 SDValue RHS = Op.getOperand(1); 8401 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); 8402 SDLoc dl(Op); 8403 8404 if (LHS.getValueType().getVectorElementType().isInteger()) { 8405 assert(LHS.getValueType() == RHS.getValueType()); 8406 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 8407 SDValue Cmp = 8408 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); 8409 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); 8410 } 8411 8412 const bool FullFP16 = 8413 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); 8414 8415 // Make v4f16 (only) fcmp operations utilise vector instructions 8416 // v8f16 support will be a litle more complicated 8417 if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) { 8418 if (LHS.getValueType().getVectorNumElements() == 4) { 8419 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS); 8420 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS); 8421 SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC); 8422 DAG.ReplaceAllUsesWith(Op, NewSetcc); 8423 CmpVT = MVT::v4i32; 8424 } else 8425 return SDValue(); 8426 } 8427 8428 assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) || 8429 LHS.getValueType().getVectorElementType() != MVT::f128); 8430 8431 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 8432 // clean. Some of them require two branches to implement. 8433 AArch64CC::CondCode CC1, CC2; 8434 bool ShouldInvert; 8435 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); 8436 8437 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; 8438 SDValue Cmp = 8439 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); 8440 if (!Cmp.getNode()) 8441 return SDValue(); 8442 8443 if (CC2 != AArch64CC::AL) { 8444 SDValue Cmp2 = 8445 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); 8446 if (!Cmp2.getNode()) 8447 return SDValue(); 8448 8449 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); 8450 } 8451 8452 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); 8453 8454 if (ShouldInvert) 8455 Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); 8456 8457 return Cmp; 8458 } 8459 8460 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp, 8461 SelectionDAG &DAG) { 8462 SDValue VecOp = ScalarOp.getOperand(0); 8463 auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp); 8464 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx, 8465 DAG.getConstant(0, DL, MVT::i64)); 8466 } 8467 8468 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op, 8469 SelectionDAG &DAG) const { 8470 SDLoc dl(Op); 8471 switch (Op.getOpcode()) { 8472 case ISD::VECREDUCE_ADD: 8473 return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG); 8474 case ISD::VECREDUCE_SMAX: 8475 return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG); 8476 case ISD::VECREDUCE_SMIN: 8477 return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG); 8478 case ISD::VECREDUCE_UMAX: 8479 return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG); 8480 case ISD::VECREDUCE_UMIN: 8481 return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG); 8482 case ISD::VECREDUCE_FMAX: { 8483 assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag"); 8484 return DAG.getNode( 8485 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), 8486 DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32), 8487 Op.getOperand(0)); 8488 } 8489 case ISD::VECREDUCE_FMIN: { 8490 assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag"); 8491 return DAG.getNode( 8492 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), 8493 DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32), 8494 Op.getOperand(0)); 8495 } 8496 default: 8497 llvm_unreachable("Unhandled reduction"); 8498 } 8499 } 8500 8501 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op, 8502 SelectionDAG &DAG) const { 8503 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget()); 8504 if (!Subtarget.hasLSE()) 8505 return SDValue(); 8506 8507 // LSE has an atomic load-add instruction, but not a load-sub. 8508 SDLoc dl(Op); 8509 MVT VT = Op.getSimpleValueType(); 8510 SDValue RHS = Op.getOperand(2); 8511 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); 8512 RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS); 8513 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(), 8514 Op.getOperand(0), Op.getOperand(1), RHS, 8515 AN->getMemOperand()); 8516 } 8517 8518 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op, 8519 SelectionDAG &DAG) const { 8520 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget()); 8521 if (!Subtarget.hasLSE()) 8522 return SDValue(); 8523 8524 // LSE has an atomic load-clear instruction, but not a load-and. 8525 SDLoc dl(Op); 8526 MVT VT = Op.getSimpleValueType(); 8527 SDValue RHS = Op.getOperand(2); 8528 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); 8529 RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS); 8530 return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(), 8531 Op.getOperand(0), Op.getOperand(1), RHS, 8532 AN->getMemOperand()); 8533 } 8534 8535 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC( 8536 SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const { 8537 SDLoc dl(Op); 8538 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8539 SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0); 8540 8541 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 8542 const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask(); 8543 if (Subtarget->hasCustomCallingConv()) 8544 TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); 8545 8546 Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size, 8547 DAG.getConstant(4, dl, MVT::i64)); 8548 Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue()); 8549 Chain = 8550 DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue), 8551 Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64), 8552 DAG.getRegisterMask(Mask), Chain.getValue(1)); 8553 // To match the actual intent better, we should read the output from X15 here 8554 // again (instead of potentially spilling it to the stack), but rereading Size 8555 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined 8556 // here. 8557 8558 Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size, 8559 DAG.getConstant(4, dl, MVT::i64)); 8560 return Chain; 8561 } 8562 8563 SDValue 8564 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 8565 SelectionDAG &DAG) const { 8566 assert(Subtarget->isTargetWindows() && 8567 "Only Windows alloca probing supported"); 8568 SDLoc dl(Op); 8569 // Get the inputs. 8570 SDNode *Node = Op.getNode(); 8571 SDValue Chain = Op.getOperand(0); 8572 SDValue Size = Op.getOperand(1); 8573 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 8574 EVT VT = Node->getValueType(0); 8575 8576 if (DAG.getMachineFunction().getFunction().hasFnAttribute( 8577 "no-stack-arg-probe")) { 8578 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); 8579 Chain = SP.getValue(1); 8580 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); 8581 if (Align) 8582 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), 8583 DAG.getConstant(-(uint64_t)Align, dl, VT)); 8584 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); 8585 SDValue Ops[2] = {SP, Chain}; 8586 return DAG.getMergeValues(Ops, dl); 8587 } 8588 8589 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 8590 8591 Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG); 8592 8593 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); 8594 Chain = SP.getValue(1); 8595 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); 8596 if (Align) 8597 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), 8598 DAG.getConstant(-(uint64_t)Align, dl, VT)); 8599 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); 8600 8601 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 8602 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 8603 8604 SDValue Ops[2] = {SP, Chain}; 8605 return DAG.getMergeValues(Ops, dl); 8606 } 8607 8608 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 8609 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 8610 /// specified in the intrinsic calls. 8611 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 8612 const CallInst &I, 8613 MachineFunction &MF, 8614 unsigned Intrinsic) const { 8615 auto &DL = I.getModule()->getDataLayout(); 8616 switch (Intrinsic) { 8617 case Intrinsic::aarch64_neon_ld2: 8618 case Intrinsic::aarch64_neon_ld3: 8619 case Intrinsic::aarch64_neon_ld4: 8620 case Intrinsic::aarch64_neon_ld1x2: 8621 case Intrinsic::aarch64_neon_ld1x3: 8622 case Intrinsic::aarch64_neon_ld1x4: 8623 case Intrinsic::aarch64_neon_ld2lane: 8624 case Intrinsic::aarch64_neon_ld3lane: 8625 case Intrinsic::aarch64_neon_ld4lane: 8626 case Intrinsic::aarch64_neon_ld2r: 8627 case Intrinsic::aarch64_neon_ld3r: 8628 case Intrinsic::aarch64_neon_ld4r: { 8629 Info.opc = ISD::INTRINSIC_W_CHAIN; 8630 // Conservatively set memVT to the entire set of vectors loaded. 8631 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; 8632 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 8633 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); 8634 Info.offset = 0; 8635 Info.align.reset(); 8636 // volatile loads with NEON intrinsics not supported 8637 Info.flags = MachineMemOperand::MOLoad; 8638 return true; 8639 } 8640 case Intrinsic::aarch64_neon_st2: 8641 case Intrinsic::aarch64_neon_st3: 8642 case Intrinsic::aarch64_neon_st4: 8643 case Intrinsic::aarch64_neon_st1x2: 8644 case Intrinsic::aarch64_neon_st1x3: 8645 case Intrinsic::aarch64_neon_st1x4: 8646 case Intrinsic::aarch64_neon_st2lane: 8647 case Intrinsic::aarch64_neon_st3lane: 8648 case Intrinsic::aarch64_neon_st4lane: { 8649 Info.opc = ISD::INTRINSIC_VOID; 8650 // Conservatively set memVT to the entire set of vectors stored. 8651 unsigned NumElts = 0; 8652 for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { 8653 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 8654 if (!ArgTy->isVectorTy()) 8655 break; 8656 NumElts += DL.getTypeSizeInBits(ArgTy) / 64; 8657 } 8658 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 8659 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); 8660 Info.offset = 0; 8661 Info.align.reset(); 8662 // volatile stores with NEON intrinsics not supported 8663 Info.flags = MachineMemOperand::MOStore; 8664 return true; 8665 } 8666 case Intrinsic::aarch64_ldaxr: 8667 case Intrinsic::aarch64_ldxr: { 8668 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 8669 Info.opc = ISD::INTRINSIC_W_CHAIN; 8670 Info.memVT = MVT::getVT(PtrTy->getElementType()); 8671 Info.ptrVal = I.getArgOperand(0); 8672 Info.offset = 0; 8673 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType())); 8674 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 8675 return true; 8676 } 8677 case Intrinsic::aarch64_stlxr: 8678 case Intrinsic::aarch64_stxr: { 8679 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 8680 Info.opc = ISD::INTRINSIC_W_CHAIN; 8681 Info.memVT = MVT::getVT(PtrTy->getElementType()); 8682 Info.ptrVal = I.getArgOperand(1); 8683 Info.offset = 0; 8684 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType())); 8685 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 8686 return true; 8687 } 8688 case Intrinsic::aarch64_ldaxp: 8689 case Intrinsic::aarch64_ldxp: 8690 Info.opc = ISD::INTRINSIC_W_CHAIN; 8691 Info.memVT = MVT::i128; 8692 Info.ptrVal = I.getArgOperand(0); 8693 Info.offset = 0; 8694 Info.align = Align(16); 8695 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 8696 return true; 8697 case Intrinsic::aarch64_stlxp: 8698 case Intrinsic::aarch64_stxp: 8699 Info.opc = ISD::INTRINSIC_W_CHAIN; 8700 Info.memVT = MVT::i128; 8701 Info.ptrVal = I.getArgOperand(2); 8702 Info.offset = 0; 8703 Info.align = Align(16); 8704 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; 8705 return true; 8706 case Intrinsic::aarch64_sve_ldnt1: { 8707 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 8708 Info.opc = ISD::INTRINSIC_W_CHAIN; 8709 Info.memVT = MVT::getVT(PtrTy->getElementType()); 8710 Info.ptrVal = I.getArgOperand(1); 8711 Info.offset = 0; 8712 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType())); 8713 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal; 8714 return true; 8715 } 8716 case Intrinsic::aarch64_sve_stnt1: { 8717 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(2)->getType()); 8718 Info.opc = ISD::INTRINSIC_W_CHAIN; 8719 Info.memVT = MVT::getVT(PtrTy->getElementType()); 8720 Info.ptrVal = I.getArgOperand(2); 8721 Info.offset = 0; 8722 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType())); 8723 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal; 8724 return true; 8725 } 8726 default: 8727 break; 8728 } 8729 8730 return false; 8731 } 8732 8733 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load, 8734 ISD::LoadExtType ExtTy, 8735 EVT NewVT) const { 8736 // TODO: This may be worth removing. Check regression tests for diffs. 8737 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) 8738 return false; 8739 8740 // If we're reducing the load width in order to avoid having to use an extra 8741 // instruction to do extension then it's probably a good idea. 8742 if (ExtTy != ISD::NON_EXTLOAD) 8743 return true; 8744 // Don't reduce load width if it would prevent us from combining a shift into 8745 // the offset. 8746 MemSDNode *Mem = dyn_cast<MemSDNode>(Load); 8747 assert(Mem); 8748 const SDValue &Base = Mem->getBasePtr(); 8749 if (Base.getOpcode() == ISD::ADD && 8750 Base.getOperand(1).getOpcode() == ISD::SHL && 8751 Base.getOperand(1).hasOneUse() && 8752 Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) { 8753 // The shift can be combined if it matches the size of the value being 8754 // loaded (and so reducing the width would make it not match). 8755 uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1); 8756 uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8; 8757 if (ShiftAmount == Log2_32(LoadBytes)) 8758 return false; 8759 } 8760 // We have no reason to disallow reducing the load width, so allow it. 8761 return true; 8762 } 8763 8764 // Truncations from 64-bit GPR to 32-bit GPR is free. 8765 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 8766 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 8767 return false; 8768 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 8769 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 8770 return NumBits1 > NumBits2; 8771 } 8772 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 8773 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) 8774 return false; 8775 unsigned NumBits1 = VT1.getSizeInBits(); 8776 unsigned NumBits2 = VT2.getSizeInBits(); 8777 return NumBits1 > NumBits2; 8778 } 8779 8780 /// Check if it is profitable to hoist instruction in then/else to if. 8781 /// Not profitable if I and it's user can form a FMA instruction 8782 /// because we prefer FMSUB/FMADD. 8783 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { 8784 if (I->getOpcode() != Instruction::FMul) 8785 return true; 8786 8787 if (!I->hasOneUse()) 8788 return true; 8789 8790 Instruction *User = I->user_back(); 8791 8792 if (User && 8793 !(User->getOpcode() == Instruction::FSub || 8794 User->getOpcode() == Instruction::FAdd)) 8795 return true; 8796 8797 const TargetOptions &Options = getTargetMachine().Options; 8798 const Function *F = I->getFunction(); 8799 const DataLayout &DL = F->getParent()->getDataLayout(); 8800 Type *Ty = User->getOperand(0)->getType(); 8801 8802 return !(isFMAFasterThanFMulAndFAdd(*F, Ty) && 8803 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 8804 (Options.AllowFPOpFusion == FPOpFusion::Fast || 8805 Options.UnsafeFPMath)); 8806 } 8807 8808 // All 32-bit GPR operations implicitly zero the high-half of the corresponding 8809 // 64-bit GPR. 8810 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 8811 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 8812 return false; 8813 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 8814 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 8815 return NumBits1 == 32 && NumBits2 == 64; 8816 } 8817 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 8818 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) 8819 return false; 8820 unsigned NumBits1 = VT1.getSizeInBits(); 8821 unsigned NumBits2 = VT2.getSizeInBits(); 8822 return NumBits1 == 32 && NumBits2 == 64; 8823 } 8824 8825 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 8826 EVT VT1 = Val.getValueType(); 8827 if (isZExtFree(VT1, VT2)) { 8828 return true; 8829 } 8830 8831 if (Val.getOpcode() != ISD::LOAD) 8832 return false; 8833 8834 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. 8835 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && 8836 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && 8837 VT1.getSizeInBits() <= 32); 8838 } 8839 8840 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { 8841 if (isa<FPExtInst>(Ext)) 8842 return false; 8843 8844 // Vector types are not free. 8845 if (Ext->getType()->isVectorTy()) 8846 return false; 8847 8848 for (const Use &U : Ext->uses()) { 8849 // The extension is free if we can fold it with a left shift in an 8850 // addressing mode or an arithmetic operation: add, sub, and cmp. 8851 8852 // Is there a shift? 8853 const Instruction *Instr = cast<Instruction>(U.getUser()); 8854 8855 // Is this a constant shift? 8856 switch (Instr->getOpcode()) { 8857 case Instruction::Shl: 8858 if (!isa<ConstantInt>(Instr->getOperand(1))) 8859 return false; 8860 break; 8861 case Instruction::GetElementPtr: { 8862 gep_type_iterator GTI = gep_type_begin(Instr); 8863 auto &DL = Ext->getModule()->getDataLayout(); 8864 std::advance(GTI, U.getOperandNo()-1); 8865 Type *IdxTy = GTI.getIndexedType(); 8866 // This extension will end up with a shift because of the scaling factor. 8867 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. 8868 // Get the shift amount based on the scaling factor: 8869 // log2(sizeof(IdxTy)) - log2(8). 8870 uint64_t ShiftAmt = 8871 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3; 8872 // Is the constant foldable in the shift of the addressing mode? 8873 // I.e., shift amount is between 1 and 4 inclusive. 8874 if (ShiftAmt == 0 || ShiftAmt > 4) 8875 return false; 8876 break; 8877 } 8878 case Instruction::Trunc: 8879 // Check if this is a noop. 8880 // trunc(sext ty1 to ty2) to ty1. 8881 if (Instr->getType() == Ext->getOperand(0)->getType()) 8882 continue; 8883 LLVM_FALLTHROUGH; 8884 default: 8885 return false; 8886 } 8887 8888 // At this point we can use the bfm family, so this extension is free 8889 // for that use. 8890 } 8891 return true; 8892 } 8893 8894 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower 8895 /// or upper half of the vector elements. 8896 static bool areExtractShuffleVectors(Value *Op1, Value *Op2) { 8897 auto areTypesHalfed = [](Value *FullV, Value *HalfV) { 8898 auto *FullVT = cast<VectorType>(FullV->getType()); 8899 auto *HalfVT = cast<VectorType>(HalfV->getType()); 8900 return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth(); 8901 }; 8902 8903 auto extractHalf = [](Value *FullV, Value *HalfV) { 8904 auto *FullVT = cast<VectorType>(FullV->getType()); 8905 auto *HalfVT = cast<VectorType>(HalfV->getType()); 8906 return FullVT->getNumElements() == 2 * HalfVT->getNumElements(); 8907 }; 8908 8909 Constant *M1, *M2; 8910 Value *S1Op1, *S2Op1; 8911 if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) || 8912 !match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2)))) 8913 return false; 8914 8915 // Check that the operands are half as wide as the result and we extract 8916 // half of the elements of the input vectors. 8917 if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) || 8918 !extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2)) 8919 return false; 8920 8921 // Check the mask extracts either the lower or upper half of vector 8922 // elements. 8923 int M1Start = -1; 8924 int M2Start = -1; 8925 int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2; 8926 if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) || 8927 !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) || 8928 M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2))) 8929 return false; 8930 8931 return true; 8932 } 8933 8934 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth 8935 /// of the vector elements. 8936 static bool areExtractExts(Value *Ext1, Value *Ext2) { 8937 auto areExtDoubled = [](Instruction *Ext) { 8938 return Ext->getType()->getScalarSizeInBits() == 8939 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); 8940 }; 8941 8942 if (!match(Ext1, m_ZExtOrSExt(m_Value())) || 8943 !match(Ext2, m_ZExtOrSExt(m_Value())) || 8944 !areExtDoubled(cast<Instruction>(Ext1)) || 8945 !areExtDoubled(cast<Instruction>(Ext2))) 8946 return false; 8947 8948 return true; 8949 } 8950 8951 /// Check if sinking \p I's operands to I's basic block is profitable, because 8952 /// the operands can be folded into a target instruction, e.g. 8953 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2). 8954 bool AArch64TargetLowering::shouldSinkOperands( 8955 Instruction *I, SmallVectorImpl<Use *> &Ops) const { 8956 if (!I->getType()->isVectorTy()) 8957 return false; 8958 8959 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 8960 switch (II->getIntrinsicID()) { 8961 case Intrinsic::aarch64_neon_umull: 8962 if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1))) 8963 return false; 8964 Ops.push_back(&II->getOperandUse(0)); 8965 Ops.push_back(&II->getOperandUse(1)); 8966 return true; 8967 default: 8968 return false; 8969 } 8970 } 8971 8972 switch (I->getOpcode()) { 8973 case Instruction::Sub: 8974 case Instruction::Add: { 8975 if (!areExtractExts(I->getOperand(0), I->getOperand(1))) 8976 return false; 8977 8978 // If the exts' operands extract either the lower or upper elements, we 8979 // can sink them too. 8980 auto Ext1 = cast<Instruction>(I->getOperand(0)); 8981 auto Ext2 = cast<Instruction>(I->getOperand(1)); 8982 if (areExtractShuffleVectors(Ext1, Ext2)) { 8983 Ops.push_back(&Ext1->getOperandUse(0)); 8984 Ops.push_back(&Ext2->getOperandUse(0)); 8985 } 8986 8987 Ops.push_back(&I->getOperandUse(0)); 8988 Ops.push_back(&I->getOperandUse(1)); 8989 8990 return true; 8991 } 8992 default: 8993 return false; 8994 } 8995 return false; 8996 } 8997 8998 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, 8999 unsigned &RequiredAligment) const { 9000 if (!LoadedType.isSimple() || 9001 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) 9002 return false; 9003 // Cyclone supports unaligned accesses. 9004 RequiredAligment = 0; 9005 unsigned NumBits = LoadedType.getSizeInBits(); 9006 return NumBits == 32 || NumBits == 64; 9007 } 9008 9009 /// A helper function for determining the number of interleaved accesses we 9010 /// will generate when lowering accesses of the given type. 9011 unsigned 9012 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy, 9013 const DataLayout &DL) const { 9014 return (DL.getTypeSizeInBits(VecTy) + 127) / 128; 9015 } 9016 9017 MachineMemOperand::Flags 9018 AArch64TargetLowering::getMMOFlags(const Instruction &I) const { 9019 if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor && 9020 I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr) 9021 return MOStridedAccess; 9022 return MachineMemOperand::MONone; 9023 } 9024 9025 bool AArch64TargetLowering::isLegalInterleavedAccessType( 9026 VectorType *VecTy, const DataLayout &DL) const { 9027 9028 unsigned VecSize = DL.getTypeSizeInBits(VecTy); 9029 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); 9030 9031 // Ensure the number of vector elements is greater than 1. 9032 if (VecTy->getNumElements() < 2) 9033 return false; 9034 9035 // Ensure the element type is legal. 9036 if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64) 9037 return false; 9038 9039 // Ensure the total vector size is 64 or a multiple of 128. Types larger than 9040 // 128 will be split into multiple interleaved accesses. 9041 return VecSize == 64 || VecSize % 128 == 0; 9042 } 9043 9044 /// Lower an interleaved load into a ldN intrinsic. 9045 /// 9046 /// E.g. Lower an interleaved load (Factor = 2): 9047 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr 9048 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements 9049 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements 9050 /// 9051 /// Into: 9052 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) 9053 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 9054 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 9055 bool AArch64TargetLowering::lowerInterleavedLoad( 9056 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, 9057 ArrayRef<unsigned> Indices, unsigned Factor) const { 9058 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 9059 "Invalid interleave factor"); 9060 assert(!Shuffles.empty() && "Empty shufflevector input"); 9061 assert(Shuffles.size() == Indices.size() && 9062 "Unmatched number of shufflevectors and indices"); 9063 9064 const DataLayout &DL = LI->getModule()->getDataLayout(); 9065 9066 VectorType *VecTy = Shuffles[0]->getType(); 9067 9068 // Skip if we do not have NEON and skip illegal vector types. We can 9069 // "legalize" wide vector types into multiple interleaved accesses as long as 9070 // the vector types are divisible by 128. 9071 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL)) 9072 return false; 9073 9074 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL); 9075 9076 // A pointer vector can not be the return type of the ldN intrinsics. Need to 9077 // load integer vectors first and then convert to pointer vectors. 9078 Type *EltTy = VecTy->getVectorElementType(); 9079 if (EltTy->isPointerTy()) 9080 VecTy = 9081 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements()); 9082 9083 IRBuilder<> Builder(LI); 9084 9085 // The base address of the load. 9086 Value *BaseAddr = LI->getPointerOperand(); 9087 9088 if (NumLoads > 1) { 9089 // If we're going to generate more than one load, reset the sub-vector type 9090 // to something legal. 9091 VecTy = VectorType::get(VecTy->getVectorElementType(), 9092 VecTy->getVectorNumElements() / NumLoads); 9093 9094 // We will compute the pointer operand of each load from the original base 9095 // address using GEPs. Cast the base address to a pointer to the scalar 9096 // element type. 9097 BaseAddr = Builder.CreateBitCast( 9098 BaseAddr, VecTy->getVectorElementType()->getPointerTo( 9099 LI->getPointerAddressSpace())); 9100 } 9101 9102 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace()); 9103 Type *Tys[2] = {VecTy, PtrTy}; 9104 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2, 9105 Intrinsic::aarch64_neon_ld3, 9106 Intrinsic::aarch64_neon_ld4}; 9107 Function *LdNFunc = 9108 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); 9109 9110 // Holds sub-vectors extracted from the load intrinsic return values. The 9111 // sub-vectors are associated with the shufflevector instructions they will 9112 // replace. 9113 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs; 9114 9115 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { 9116 9117 // If we're generating more than one load, compute the base address of 9118 // subsequent loads as an offset from the previous. 9119 if (LoadCount > 0) 9120 BaseAddr = 9121 Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr, 9122 VecTy->getVectorNumElements() * Factor); 9123 9124 CallInst *LdN = Builder.CreateCall( 9125 LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN"); 9126 9127 // Extract and store the sub-vectors returned by the load intrinsic. 9128 for (unsigned i = 0; i < Shuffles.size(); i++) { 9129 ShuffleVectorInst *SVI = Shuffles[i]; 9130 unsigned Index = Indices[i]; 9131 9132 Value *SubVec = Builder.CreateExtractValue(LdN, Index); 9133 9134 // Convert the integer vector to pointer vector if the element is pointer. 9135 if (EltTy->isPointerTy()) 9136 SubVec = Builder.CreateIntToPtr( 9137 SubVec, VectorType::get(SVI->getType()->getVectorElementType(), 9138 VecTy->getVectorNumElements())); 9139 SubVecs[SVI].push_back(SubVec); 9140 } 9141 } 9142 9143 // Replace uses of the shufflevector instructions with the sub-vectors 9144 // returned by the load intrinsic. If a shufflevector instruction is 9145 // associated with more than one sub-vector, those sub-vectors will be 9146 // concatenated into a single wide vector. 9147 for (ShuffleVectorInst *SVI : Shuffles) { 9148 auto &SubVec = SubVecs[SVI]; 9149 auto *WideVec = 9150 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; 9151 SVI->replaceAllUsesWith(WideVec); 9152 } 9153 9154 return true; 9155 } 9156 9157 /// Lower an interleaved store into a stN intrinsic. 9158 /// 9159 /// E.g. Lower an interleaved store (Factor = 3): 9160 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 9161 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 9162 /// store <12 x i32> %i.vec, <12 x i32>* %ptr 9163 /// 9164 /// Into: 9165 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> 9166 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> 9167 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> 9168 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) 9169 /// 9170 /// Note that the new shufflevectors will be removed and we'll only generate one 9171 /// st3 instruction in CodeGen. 9172 /// 9173 /// Example for a more general valid mask (Factor 3). Lower: 9174 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, 9175 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> 9176 /// store <12 x i32> %i.vec, <12 x i32>* %ptr 9177 /// 9178 /// Into: 9179 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> 9180 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> 9181 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> 9182 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) 9183 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, 9184 ShuffleVectorInst *SVI, 9185 unsigned Factor) const { 9186 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 9187 "Invalid interleave factor"); 9188 9189 VectorType *VecTy = SVI->getType(); 9190 assert(VecTy->getVectorNumElements() % Factor == 0 && 9191 "Invalid interleaved store"); 9192 9193 unsigned LaneLen = VecTy->getVectorNumElements() / Factor; 9194 Type *EltTy = VecTy->getVectorElementType(); 9195 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen); 9196 9197 const DataLayout &DL = SI->getModule()->getDataLayout(); 9198 9199 // Skip if we do not have NEON and skip illegal vector types. We can 9200 // "legalize" wide vector types into multiple interleaved accesses as long as 9201 // the vector types are divisible by 128. 9202 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL)) 9203 return false; 9204 9205 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL); 9206 9207 Value *Op0 = SVI->getOperand(0); 9208 Value *Op1 = SVI->getOperand(1); 9209 IRBuilder<> Builder(SI); 9210 9211 // StN intrinsics don't support pointer vectors as arguments. Convert pointer 9212 // vectors to integer vectors. 9213 if (EltTy->isPointerTy()) { 9214 Type *IntTy = DL.getIntPtrType(EltTy); 9215 unsigned NumOpElts = Op0->getType()->getVectorNumElements(); 9216 9217 // Convert to the corresponding integer vector. 9218 Type *IntVecTy = VectorType::get(IntTy, NumOpElts); 9219 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); 9220 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); 9221 9222 SubVecTy = VectorType::get(IntTy, LaneLen); 9223 } 9224 9225 // The base address of the store. 9226 Value *BaseAddr = SI->getPointerOperand(); 9227 9228 if (NumStores > 1) { 9229 // If we're going to generate more than one store, reset the lane length 9230 // and sub-vector type to something legal. 9231 LaneLen /= NumStores; 9232 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen); 9233 9234 // We will compute the pointer operand of each store from the original base 9235 // address using GEPs. Cast the base address to a pointer to the scalar 9236 // element type. 9237 BaseAddr = Builder.CreateBitCast( 9238 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo( 9239 SI->getPointerAddressSpace())); 9240 } 9241 9242 auto Mask = SVI->getShuffleMask(); 9243 9244 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace()); 9245 Type *Tys[2] = {SubVecTy, PtrTy}; 9246 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2, 9247 Intrinsic::aarch64_neon_st3, 9248 Intrinsic::aarch64_neon_st4}; 9249 Function *StNFunc = 9250 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys); 9251 9252 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { 9253 9254 SmallVector<Value *, 5> Ops; 9255 9256 // Split the shufflevector operands into sub vectors for the new stN call. 9257 for (unsigned i = 0; i < Factor; i++) { 9258 unsigned IdxI = StoreCount * LaneLen * Factor + i; 9259 if (Mask[IdxI] >= 0) { 9260 Ops.push_back(Builder.CreateShuffleVector( 9261 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0))); 9262 } else { 9263 unsigned StartMask = 0; 9264 for (unsigned j = 1; j < LaneLen; j++) { 9265 unsigned IdxJ = StoreCount * LaneLen * Factor + j; 9266 if (Mask[IdxJ * Factor + IdxI] >= 0) { 9267 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ; 9268 break; 9269 } 9270 } 9271 // Note: Filling undef gaps with random elements is ok, since 9272 // those elements were being written anyway (with undefs). 9273 // In the case of all undefs we're defaulting to using elems from 0 9274 // Note: StartMask cannot be negative, it's checked in 9275 // isReInterleaveMask 9276 Ops.push_back(Builder.CreateShuffleVector( 9277 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0))); 9278 } 9279 } 9280 9281 // If we generating more than one store, we compute the base address of 9282 // subsequent stores as an offset from the previous. 9283 if (StoreCount > 0) 9284 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(), 9285 BaseAddr, LaneLen * Factor); 9286 9287 Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy)); 9288 Builder.CreateCall(StNFunc, Ops); 9289 } 9290 return true; 9291 } 9292 9293 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, 9294 unsigned AlignCheck) { 9295 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && 9296 (DstAlign == 0 || DstAlign % AlignCheck == 0)); 9297 } 9298 9299 EVT AArch64TargetLowering::getOptimalMemOpType( 9300 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 9301 bool ZeroMemset, bool MemcpyStrSrc, 9302 const AttributeList &FuncAttributes) const { 9303 bool CanImplicitFloat = 9304 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat); 9305 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; 9306 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; 9307 // Only use AdvSIMD to implement memset of 32-byte and above. It would have 9308 // taken one instruction to materialize the v2i64 zero and one store (with 9309 // restrictive addressing mode). Just do i64 stores. 9310 bool IsSmallMemset = IsMemset && Size < 32; 9311 auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) { 9312 if (memOpAlign(SrcAlign, DstAlign, AlignCheck)) 9313 return true; 9314 bool Fast; 9315 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone, 9316 &Fast) && 9317 Fast; 9318 }; 9319 9320 if (CanUseNEON && IsMemset && !IsSmallMemset && 9321 AlignmentIsAcceptable(MVT::v2i64, 16)) 9322 return MVT::v2i64; 9323 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16)) 9324 return MVT::f128; 9325 if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8)) 9326 return MVT::i64; 9327 if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4)) 9328 return MVT::i32; 9329 return MVT::Other; 9330 } 9331 9332 LLT AArch64TargetLowering::getOptimalMemOpLLT( 9333 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 9334 bool ZeroMemset, bool MemcpyStrSrc, 9335 const AttributeList &FuncAttributes) const { 9336 bool CanImplicitFloat = 9337 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat); 9338 bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; 9339 bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; 9340 // Only use AdvSIMD to implement memset of 32-byte and above. It would have 9341 // taken one instruction to materialize the v2i64 zero and one store (with 9342 // restrictive addressing mode). Just do i64 stores. 9343 bool IsSmallMemset = IsMemset && Size < 32; 9344 auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) { 9345 if (memOpAlign(SrcAlign, DstAlign, AlignCheck)) 9346 return true; 9347 bool Fast; 9348 return allowsMisalignedMemoryAccesses(VT, 0, 1, MachineMemOperand::MONone, 9349 &Fast) && 9350 Fast; 9351 }; 9352 9353 if (CanUseNEON && IsMemset && !IsSmallMemset && 9354 AlignmentIsAcceptable(MVT::v2i64, 16)) 9355 return LLT::vector(2, 64); 9356 if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16)) 9357 return LLT::scalar(128); 9358 if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8)) 9359 return LLT::scalar(64); 9360 if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4)) 9361 return LLT::scalar(32); 9362 return LLT(); 9363 } 9364 9365 // 12-bit optionally shifted immediates are legal for adds. 9366 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { 9367 if (Immed == std::numeric_limits<int64_t>::min()) { 9368 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed 9369 << ": avoid UB for INT64_MIN\n"); 9370 return false; 9371 } 9372 // Same encoding for add/sub, just flip the sign. 9373 Immed = std::abs(Immed); 9374 bool IsLegal = ((Immed >> 12) == 0 || 9375 ((Immed & 0xfff) == 0 && Immed >> 24 == 0)); 9376 LLVM_DEBUG(dbgs() << "Is " << Immed 9377 << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n"); 9378 return IsLegal; 9379 } 9380 9381 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid 9382 // immediates is the same as for an add or a sub. 9383 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { 9384 return isLegalAddImmediate(Immed); 9385 } 9386 9387 /// isLegalAddressingMode - Return true if the addressing mode represented 9388 /// by AM is legal for this target, for a load/store of the specified type. 9389 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, 9390 const AddrMode &AM, Type *Ty, 9391 unsigned AS, Instruction *I) const { 9392 // AArch64 has five basic addressing modes: 9393 // reg 9394 // reg + 9-bit signed offset 9395 // reg + SIZE_IN_BYTES * 12-bit unsigned offset 9396 // reg1 + reg2 9397 // reg + SIZE_IN_BYTES * reg 9398 9399 // No global is ever allowed as a base. 9400 if (AM.BaseGV) 9401 return false; 9402 9403 // No reg+reg+imm addressing. 9404 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) 9405 return false; 9406 9407 // check reg + imm case: 9408 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 9409 uint64_t NumBytes = 0; 9410 if (Ty->isSized()) { 9411 uint64_t NumBits = DL.getTypeSizeInBits(Ty); 9412 NumBytes = NumBits / 8; 9413 if (!isPowerOf2_64(NumBits)) 9414 NumBytes = 0; 9415 } 9416 9417 if (!AM.Scale) { 9418 int64_t Offset = AM.BaseOffs; 9419 9420 // 9-bit signed offset 9421 if (isInt<9>(Offset)) 9422 return true; 9423 9424 // 12-bit unsigned offset 9425 unsigned shift = Log2_64(NumBytes); 9426 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && 9427 // Must be a multiple of NumBytes (NumBytes is a power of 2) 9428 (Offset >> shift) << shift == Offset) 9429 return true; 9430 return false; 9431 } 9432 9433 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 9434 9435 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes); 9436 } 9437 9438 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const { 9439 // Consider splitting large offset of struct or array. 9440 return true; 9441 } 9442 9443 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL, 9444 const AddrMode &AM, Type *Ty, 9445 unsigned AS) const { 9446 // Scaling factors are not free at all. 9447 // Operands | Rt Latency 9448 // ------------------------------------------- 9449 // Rt, [Xn, Xm] | 4 9450 // ------------------------------------------- 9451 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 9452 // Rt, [Xn, Wm, <extend> #imm] | 9453 if (isLegalAddressingMode(DL, AM, Ty, AS)) 9454 // Scale represents reg2 * scale, thus account for 1 if 9455 // it is not equal to 0 or 1. 9456 return AM.Scale != 0 && AM.Scale != 1; 9457 return -1; 9458 } 9459 9460 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd( 9461 const MachineFunction &MF, EVT VT) const { 9462 VT = VT.getScalarType(); 9463 9464 if (!VT.isSimple()) 9465 return false; 9466 9467 switch (VT.getSimpleVT().SimpleTy) { 9468 case MVT::f32: 9469 case MVT::f64: 9470 return true; 9471 default: 9472 break; 9473 } 9474 9475 return false; 9476 } 9477 9478 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 9479 Type *Ty) const { 9480 switch (Ty->getScalarType()->getTypeID()) { 9481 case Type::FloatTyID: 9482 case Type::DoubleTyID: 9483 return true; 9484 default: 9485 return false; 9486 } 9487 } 9488 9489 const MCPhysReg * 9490 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { 9491 // LR is a callee-save register, but we must treat it as clobbered by any call 9492 // site. Hence we include LR in the scratch registers, which are in turn added 9493 // as implicit-defs for stackmaps and patchpoints. 9494 static const MCPhysReg ScratchRegs[] = { 9495 AArch64::X16, AArch64::X17, AArch64::LR, 0 9496 }; 9497 return ScratchRegs; 9498 } 9499 9500 bool 9501 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N, 9502 CombineLevel Level) const { 9503 N = N->getOperand(0).getNode(); 9504 EVT VT = N->getValueType(0); 9505 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine 9506 // it with shift to let it be lowered to UBFX. 9507 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && 9508 isa<ConstantSDNode>(N->getOperand(1))) { 9509 uint64_t TruncMask = N->getConstantOperandVal(1); 9510 if (isMask_64(TruncMask) && 9511 N->getOperand(0).getOpcode() == ISD::SRL && 9512 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 9513 return false; 9514 } 9515 return true; 9516 } 9517 9518 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 9519 Type *Ty) const { 9520 assert(Ty->isIntegerTy()); 9521 9522 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 9523 if (BitSize == 0) 9524 return false; 9525 9526 int64_t Val = Imm.getSExtValue(); 9527 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) 9528 return true; 9529 9530 if ((int64_t)Val < 0) 9531 Val = ~Val; 9532 if (BitSize == 32) 9533 Val &= (1LL << 32) - 1; 9534 9535 unsigned LZ = countLeadingZeros((uint64_t)Val); 9536 unsigned Shift = (63 - LZ) / 16; 9537 // MOVZ is free so return true for one or fewer MOVK. 9538 return Shift < 3; 9539 } 9540 9541 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, 9542 unsigned Index) const { 9543 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) 9544 return false; 9545 9546 return (Index == 0 || Index == ResVT.getVectorNumElements()); 9547 } 9548 9549 /// Turn vector tests of the signbit in the form of: 9550 /// xor (sra X, elt_size(X)-1), -1 9551 /// into: 9552 /// cmge X, X, #0 9553 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, 9554 const AArch64Subtarget *Subtarget) { 9555 EVT VT = N->getValueType(0); 9556 if (!Subtarget->hasNEON() || !VT.isVector()) 9557 return SDValue(); 9558 9559 // There must be a shift right algebraic before the xor, and the xor must be a 9560 // 'not' operation. 9561 SDValue Shift = N->getOperand(0); 9562 SDValue Ones = N->getOperand(1); 9563 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() || 9564 !ISD::isBuildVectorAllOnes(Ones.getNode())) 9565 return SDValue(); 9566 9567 // The shift should be smearing the sign bit across each vector element. 9568 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 9569 EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); 9570 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) 9571 return SDValue(); 9572 9573 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0)); 9574 } 9575 9576 // Generate SUBS and CSEL for integer abs. 9577 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { 9578 EVT VT = N->getValueType(0); 9579 9580 SDValue N0 = N->getOperand(0); 9581 SDValue N1 = N->getOperand(1); 9582 SDLoc DL(N); 9583 9584 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) 9585 // and change it to SUB and CSEL. 9586 if (VT.isInteger() && N->getOpcode() == ISD::XOR && 9587 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && 9588 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) 9589 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) 9590 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { 9591 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 9592 N0.getOperand(0)); 9593 // Generate SUBS & CSEL. 9594 SDValue Cmp = 9595 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), 9596 N0.getOperand(0), DAG.getConstant(0, DL, VT)); 9597 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, 9598 DAG.getConstant(AArch64CC::PL, DL, MVT::i32), 9599 SDValue(Cmp.getNode(), 1)); 9600 } 9601 return SDValue(); 9602 } 9603 9604 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, 9605 TargetLowering::DAGCombinerInfo &DCI, 9606 const AArch64Subtarget *Subtarget) { 9607 if (DCI.isBeforeLegalizeOps()) 9608 return SDValue(); 9609 9610 if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget)) 9611 return Cmp; 9612 9613 return performIntegerAbsCombine(N, DAG); 9614 } 9615 9616 SDValue 9617 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 9618 SelectionDAG &DAG, 9619 SmallVectorImpl<SDNode *> &Created) const { 9620 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 9621 if (isIntDivCheap(N->getValueType(0), Attr)) 9622 return SDValue(N,0); // Lower SDIV as SDIV 9623 9624 // fold (sdiv X, pow2) 9625 EVT VT = N->getValueType(0); 9626 if ((VT != MVT::i32 && VT != MVT::i64) || 9627 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 9628 return SDValue(); 9629 9630 SDLoc DL(N); 9631 SDValue N0 = N->getOperand(0); 9632 unsigned Lg2 = Divisor.countTrailingZeros(); 9633 SDValue Zero = DAG.getConstant(0, DL, VT); 9634 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); 9635 9636 // Add (N0 < 0) ? Pow2 - 1 : 0; 9637 SDValue CCVal; 9638 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); 9639 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 9640 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); 9641 9642 Created.push_back(Cmp.getNode()); 9643 Created.push_back(Add.getNode()); 9644 Created.push_back(CSel.getNode()); 9645 9646 // Divide by pow2. 9647 SDValue SRA = 9648 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64)); 9649 9650 // If we're dividing by a positive value, we're done. Otherwise, we must 9651 // negate the result. 9652 if (Divisor.isNonNegative()) 9653 return SRA; 9654 9655 Created.push_back(SRA.getNode()); 9656 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 9657 } 9658 9659 static bool IsSVECntIntrinsic(SDValue S) { 9660 switch(getIntrinsicID(S.getNode())) { 9661 default: 9662 break; 9663 case Intrinsic::aarch64_sve_cntb: 9664 case Intrinsic::aarch64_sve_cnth: 9665 case Intrinsic::aarch64_sve_cntw: 9666 case Intrinsic::aarch64_sve_cntd: 9667 return true; 9668 } 9669 return false; 9670 } 9671 9672 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, 9673 TargetLowering::DAGCombinerInfo &DCI, 9674 const AArch64Subtarget *Subtarget) { 9675 if (DCI.isBeforeLegalizeOps()) 9676 return SDValue(); 9677 9678 // The below optimizations require a constant RHS. 9679 if (!isa<ConstantSDNode>(N->getOperand(1))) 9680 return SDValue(); 9681 9682 SDValue N0 = N->getOperand(0); 9683 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1)); 9684 const APInt &ConstValue = C->getAPIntValue(); 9685 9686 // Allow the scaling to be folded into the `cnt` instruction by preventing 9687 // the scaling to be obscured here. This makes it easier to pattern match. 9688 if (IsSVECntIntrinsic(N0) || 9689 (N0->getOpcode() == ISD::TRUNCATE && 9690 (IsSVECntIntrinsic(N0->getOperand(0))))) 9691 if (ConstValue.sge(1) && ConstValue.sle(16)) 9692 return SDValue(); 9693 9694 // Multiplication of a power of two plus/minus one can be done more 9695 // cheaply as as shift+add/sub. For now, this is true unilaterally. If 9696 // future CPUs have a cheaper MADD instruction, this may need to be 9697 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and 9698 // 64-bit is 5 cycles, so this is always a win. 9699 // More aggressively, some multiplications N0 * C can be lowered to 9700 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M, 9701 // e.g. 6=3*2=(2+1)*2. 9702 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45 9703 // which equals to (1+2)*16-(1+2). 9704 // TrailingZeroes is used to test if the mul can be lowered to 9705 // shift+add+shift. 9706 unsigned TrailingZeroes = ConstValue.countTrailingZeros(); 9707 if (TrailingZeroes) { 9708 // Conservatively do not lower to shift+add+shift if the mul might be 9709 // folded into smul or umul. 9710 if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) || 9711 isZeroExtended(N0.getNode(), DAG))) 9712 return SDValue(); 9713 // Conservatively do not lower to shift+add+shift if the mul might be 9714 // folded into madd or msub. 9715 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD || 9716 N->use_begin()->getOpcode() == ISD::SUB)) 9717 return SDValue(); 9718 } 9719 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub 9720 // and shift+add+shift. 9721 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes); 9722 9723 unsigned ShiftAmt, AddSubOpc; 9724 // Is the shifted value the LHS operand of the add/sub? 9725 bool ShiftValUseIsN0 = true; 9726 // Do we need to negate the result? 9727 bool NegateResult = false; 9728 9729 if (ConstValue.isNonNegative()) { 9730 // (mul x, 2^N + 1) => (add (shl x, N), x) 9731 // (mul x, 2^N - 1) => (sub (shl x, N), x) 9732 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M) 9733 APInt SCVMinus1 = ShiftedConstValue - 1; 9734 APInt CVPlus1 = ConstValue + 1; 9735 if (SCVMinus1.isPowerOf2()) { 9736 ShiftAmt = SCVMinus1.logBase2(); 9737 AddSubOpc = ISD::ADD; 9738 } else if (CVPlus1.isPowerOf2()) { 9739 ShiftAmt = CVPlus1.logBase2(); 9740 AddSubOpc = ISD::SUB; 9741 } else 9742 return SDValue(); 9743 } else { 9744 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 9745 // (mul x, -(2^N + 1)) => - (add (shl x, N), x) 9746 APInt CVNegPlus1 = -ConstValue + 1; 9747 APInt CVNegMinus1 = -ConstValue - 1; 9748 if (CVNegPlus1.isPowerOf2()) { 9749 ShiftAmt = CVNegPlus1.logBase2(); 9750 AddSubOpc = ISD::SUB; 9751 ShiftValUseIsN0 = false; 9752 } else if (CVNegMinus1.isPowerOf2()) { 9753 ShiftAmt = CVNegMinus1.logBase2(); 9754 AddSubOpc = ISD::ADD; 9755 NegateResult = true; 9756 } else 9757 return SDValue(); 9758 } 9759 9760 SDLoc DL(N); 9761 EVT VT = N->getValueType(0); 9762 SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0, 9763 DAG.getConstant(ShiftAmt, DL, MVT::i64)); 9764 9765 SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0; 9766 SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal; 9767 SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1); 9768 assert(!(NegateResult && TrailingZeroes) && 9769 "NegateResult and TrailingZeroes cannot both be true for now."); 9770 // Negate the result. 9771 if (NegateResult) 9772 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 9773 // Shift the result. 9774 if (TrailingZeroes) 9775 return DAG.getNode(ISD::SHL, DL, VT, Res, 9776 DAG.getConstant(TrailingZeroes, DL, MVT::i64)); 9777 return Res; 9778 } 9779 9780 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, 9781 SelectionDAG &DAG) { 9782 // Take advantage of vector comparisons producing 0 or -1 in each lane to 9783 // optimize away operation when it's from a constant. 9784 // 9785 // The general transformation is: 9786 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> 9787 // AND(VECTOR_CMP(x,y), constant2) 9788 // constant2 = UNARYOP(constant) 9789 9790 // Early exit if this isn't a vector operation, the operand of the 9791 // unary operation isn't a bitwise AND, or if the sizes of the operations 9792 // aren't the same. 9793 EVT VT = N->getValueType(0); 9794 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || 9795 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || 9796 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) 9797 return SDValue(); 9798 9799 // Now check that the other operand of the AND is a constant. We could 9800 // make the transformation for non-constant splats as well, but it's unclear 9801 // that would be a benefit as it would not eliminate any operations, just 9802 // perform one more step in scalar code before moving to the vector unit. 9803 if (BuildVectorSDNode *BV = 9804 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { 9805 // Bail out if the vector isn't a constant. 9806 if (!BV->isConstant()) 9807 return SDValue(); 9808 9809 // Everything checks out. Build up the new and improved node. 9810 SDLoc DL(N); 9811 EVT IntVT = BV->getValueType(0); 9812 // Create a new constant of the appropriate type for the transformed 9813 // DAG. 9814 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); 9815 // The AND node needs bitcasts to/from an integer vector type around it. 9816 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); 9817 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, 9818 N->getOperand(0)->getOperand(0), MaskConst); 9819 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); 9820 return Res; 9821 } 9822 9823 return SDValue(); 9824 } 9825 9826 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, 9827 const AArch64Subtarget *Subtarget) { 9828 // First try to optimize away the conversion when it's conditionally from 9829 // a constant. Vectors only. 9830 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) 9831 return Res; 9832 9833 EVT VT = N->getValueType(0); 9834 if (VT != MVT::f32 && VT != MVT::f64) 9835 return SDValue(); 9836 9837 // Only optimize when the source and destination types have the same width. 9838 if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) 9839 return SDValue(); 9840 9841 // If the result of an integer load is only used by an integer-to-float 9842 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. 9843 // This eliminates an "integer-to-vector-move" UOP and improves throughput. 9844 SDValue N0 = N->getOperand(0); 9845 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 9846 // Do not change the width of a volatile load. 9847 !cast<LoadSDNode>(N0)->isVolatile()) { 9848 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9849 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 9850 LN0->getPointerInfo(), LN0->getAlignment(), 9851 LN0->getMemOperand()->getFlags()); 9852 9853 // Make sure successors of the original load stay after it by updating them 9854 // to use the new Chain. 9855 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); 9856 9857 unsigned Opcode = 9858 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; 9859 return DAG.getNode(Opcode, SDLoc(N), VT, Load); 9860 } 9861 9862 return SDValue(); 9863 } 9864 9865 /// Fold a floating-point multiply by power of two into floating-point to 9866 /// fixed-point conversion. 9867 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, 9868 TargetLowering::DAGCombinerInfo &DCI, 9869 const AArch64Subtarget *Subtarget) { 9870 if (!Subtarget->hasNEON()) 9871 return SDValue(); 9872 9873 if (!N->getValueType(0).isSimple()) 9874 return SDValue(); 9875 9876 SDValue Op = N->getOperand(0); 9877 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || 9878 Op.getOpcode() != ISD::FMUL) 9879 return SDValue(); 9880 9881 SDValue ConstVec = Op->getOperand(1); 9882 if (!isa<BuildVectorSDNode>(ConstVec)) 9883 return SDValue(); 9884 9885 MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); 9886 uint32_t FloatBits = FloatTy.getSizeInBits(); 9887 if (FloatBits != 32 && FloatBits != 64) 9888 return SDValue(); 9889 9890 MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); 9891 uint32_t IntBits = IntTy.getSizeInBits(); 9892 if (IntBits != 16 && IntBits != 32 && IntBits != 64) 9893 return SDValue(); 9894 9895 // Avoid conversions where iN is larger than the float (e.g., float -> i64). 9896 if (IntBits > FloatBits) 9897 return SDValue(); 9898 9899 BitVector UndefElements; 9900 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 9901 int32_t Bits = IntBits == 64 ? 64 : 32; 9902 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); 9903 if (C == -1 || C == 0 || C > Bits) 9904 return SDValue(); 9905 9906 MVT ResTy; 9907 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 9908 switch (NumLanes) { 9909 default: 9910 return SDValue(); 9911 case 2: 9912 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; 9913 break; 9914 case 4: 9915 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; 9916 break; 9917 } 9918 9919 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) 9920 return SDValue(); 9921 9922 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) && 9923 "Illegal vector type after legalization"); 9924 9925 SDLoc DL(N); 9926 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; 9927 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs 9928 : Intrinsic::aarch64_neon_vcvtfp2fxu; 9929 SDValue FixConv = 9930 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, 9931 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), 9932 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); 9933 // We can handle smaller integers by generating an extra trunc. 9934 if (IntBits < FloatBits) 9935 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); 9936 9937 return FixConv; 9938 } 9939 9940 /// Fold a floating-point divide by power of two into fixed-point to 9941 /// floating-point conversion. 9942 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, 9943 TargetLowering::DAGCombinerInfo &DCI, 9944 const AArch64Subtarget *Subtarget) { 9945 if (!Subtarget->hasNEON()) 9946 return SDValue(); 9947 9948 SDValue Op = N->getOperand(0); 9949 unsigned Opc = Op->getOpcode(); 9950 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || 9951 !Op.getOperand(0).getValueType().isSimple() || 9952 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) 9953 return SDValue(); 9954 9955 SDValue ConstVec = N->getOperand(1); 9956 if (!isa<BuildVectorSDNode>(ConstVec)) 9957 return SDValue(); 9958 9959 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); 9960 int32_t IntBits = IntTy.getSizeInBits(); 9961 if (IntBits != 16 && IntBits != 32 && IntBits != 64) 9962 return SDValue(); 9963 9964 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); 9965 int32_t FloatBits = FloatTy.getSizeInBits(); 9966 if (FloatBits != 32 && FloatBits != 64) 9967 return SDValue(); 9968 9969 // Avoid conversions where iN is larger than the float (e.g., i64 -> float). 9970 if (IntBits > FloatBits) 9971 return SDValue(); 9972 9973 BitVector UndefElements; 9974 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 9975 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); 9976 if (C == -1 || C == 0 || C > FloatBits) 9977 return SDValue(); 9978 9979 MVT ResTy; 9980 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 9981 switch (NumLanes) { 9982 default: 9983 return SDValue(); 9984 case 2: 9985 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; 9986 break; 9987 case 4: 9988 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; 9989 break; 9990 } 9991 9992 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) 9993 return SDValue(); 9994 9995 SDLoc DL(N); 9996 SDValue ConvInput = Op.getOperand(0); 9997 bool IsSigned = Opc == ISD::SINT_TO_FP; 9998 if (IntBits < FloatBits) 9999 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, 10000 ResTy, ConvInput); 10001 10002 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp 10003 : Intrinsic::aarch64_neon_vcvtfxu2fp; 10004 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), 10005 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, 10006 DAG.getConstant(C, DL, MVT::i32)); 10007 } 10008 10009 /// An EXTR instruction is made up of two shifts, ORed together. This helper 10010 /// searches for and classifies those shifts. 10011 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, 10012 bool &FromHi) { 10013 if (N.getOpcode() == ISD::SHL) 10014 FromHi = false; 10015 else if (N.getOpcode() == ISD::SRL) 10016 FromHi = true; 10017 else 10018 return false; 10019 10020 if (!isa<ConstantSDNode>(N.getOperand(1))) 10021 return false; 10022 10023 ShiftAmount = N->getConstantOperandVal(1); 10024 Src = N->getOperand(0); 10025 return true; 10026 } 10027 10028 /// EXTR instruction extracts a contiguous chunk of bits from two existing 10029 /// registers viewed as a high/low pair. This function looks for the pattern: 10030 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it 10031 /// with an EXTR. Can't quite be done in TableGen because the two immediates 10032 /// aren't independent. 10033 static SDValue tryCombineToEXTR(SDNode *N, 10034 TargetLowering::DAGCombinerInfo &DCI) { 10035 SelectionDAG &DAG = DCI.DAG; 10036 SDLoc DL(N); 10037 EVT VT = N->getValueType(0); 10038 10039 assert(N->getOpcode() == ISD::OR && "Unexpected root"); 10040 10041 if (VT != MVT::i32 && VT != MVT::i64) 10042 return SDValue(); 10043 10044 SDValue LHS; 10045 uint32_t ShiftLHS = 0; 10046 bool LHSFromHi = false; 10047 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) 10048 return SDValue(); 10049 10050 SDValue RHS; 10051 uint32_t ShiftRHS = 0; 10052 bool RHSFromHi = false; 10053 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) 10054 return SDValue(); 10055 10056 // If they're both trying to come from the high part of the register, they're 10057 // not really an EXTR. 10058 if (LHSFromHi == RHSFromHi) 10059 return SDValue(); 10060 10061 if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) 10062 return SDValue(); 10063 10064 if (LHSFromHi) { 10065 std::swap(LHS, RHS); 10066 std::swap(ShiftLHS, ShiftRHS); 10067 } 10068 10069 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, 10070 DAG.getConstant(ShiftRHS, DL, MVT::i64)); 10071 } 10072 10073 static SDValue tryCombineToBSL(SDNode *N, 10074 TargetLowering::DAGCombinerInfo &DCI) { 10075 EVT VT = N->getValueType(0); 10076 SelectionDAG &DAG = DCI.DAG; 10077 SDLoc DL(N); 10078 10079 if (!VT.isVector()) 10080 return SDValue(); 10081 10082 SDValue N0 = N->getOperand(0); 10083 if (N0.getOpcode() != ISD::AND) 10084 return SDValue(); 10085 10086 SDValue N1 = N->getOperand(1); 10087 if (N1.getOpcode() != ISD::AND) 10088 return SDValue(); 10089 10090 // We only have to look for constant vectors here since the general, variable 10091 // case can be handled in TableGen. 10092 unsigned Bits = VT.getScalarSizeInBits(); 10093 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); 10094 for (int i = 1; i >= 0; --i) 10095 for (int j = 1; j >= 0; --j) { 10096 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); 10097 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); 10098 if (!BVN0 || !BVN1) 10099 continue; 10100 10101 bool FoundMatch = true; 10102 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { 10103 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); 10104 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); 10105 if (!CN0 || !CN1 || 10106 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { 10107 FoundMatch = false; 10108 break; 10109 } 10110 } 10111 10112 if (FoundMatch) 10113 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0), 10114 N0->getOperand(1 - i), N1->getOperand(1 - j)); 10115 } 10116 10117 return SDValue(); 10118 } 10119 10120 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 10121 const AArch64Subtarget *Subtarget) { 10122 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) 10123 SelectionDAG &DAG = DCI.DAG; 10124 EVT VT = N->getValueType(0); 10125 10126 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 10127 return SDValue(); 10128 10129 if (SDValue Res = tryCombineToEXTR(N, DCI)) 10130 return Res; 10131 10132 if (SDValue Res = tryCombineToBSL(N, DCI)) 10133 return Res; 10134 10135 return SDValue(); 10136 } 10137 10138 static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) { 10139 if (!MemVT.getVectorElementType().isSimple()) 10140 return false; 10141 10142 uint64_t MaskForTy = 0ull; 10143 switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) { 10144 case MVT::i8: 10145 MaskForTy = 0xffull; 10146 break; 10147 case MVT::i16: 10148 MaskForTy = 0xffffull; 10149 break; 10150 case MVT::i32: 10151 MaskForTy = 0xffffffffull; 10152 break; 10153 default: 10154 return false; 10155 break; 10156 } 10157 10158 if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR) 10159 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) 10160 return Op0->getAPIntValue().getLimitedValue() == MaskForTy; 10161 10162 return false; 10163 } 10164 10165 static SDValue performSVEAndCombine(SDNode *N, 10166 TargetLowering::DAGCombinerInfo &DCI) { 10167 if (DCI.isBeforeLegalizeOps()) 10168 return SDValue(); 10169 10170 SDValue Src = N->getOperand(0); 10171 SDValue Mask = N->getOperand(1); 10172 10173 if (!Src.hasOneUse()) 10174 return SDValue(); 10175 10176 // GLD1* instructions perform an implicit zero-extend, which makes them 10177 // perfect candidates for combining. 10178 switch (Src->getOpcode()) { 10179 case AArch64ISD::GLD1: 10180 case AArch64ISD::GLD1_SCALED: 10181 case AArch64ISD::GLD1_SXTW: 10182 case AArch64ISD::GLD1_SXTW_SCALED: 10183 case AArch64ISD::GLD1_UXTW: 10184 case AArch64ISD::GLD1_UXTW_SCALED: 10185 case AArch64ISD::GLD1_IMM: 10186 break; 10187 default: 10188 return SDValue(); 10189 } 10190 10191 EVT MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT(); 10192 10193 if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT)) 10194 return Src; 10195 10196 return SDValue(); 10197 } 10198 10199 static SDValue performANDCombine(SDNode *N, 10200 TargetLowering::DAGCombinerInfo &DCI) { 10201 SelectionDAG &DAG = DCI.DAG; 10202 SDValue LHS = N->getOperand(0); 10203 EVT VT = N->getValueType(0); 10204 if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT)) 10205 return SDValue(); 10206 10207 if (VT.isScalableVector()) 10208 return performSVEAndCombine(N, DCI); 10209 10210 BuildVectorSDNode *BVN = 10211 dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode()); 10212 if (!BVN) 10213 return SDValue(); 10214 10215 // AND does not accept an immediate, so check if we can use a BIC immediate 10216 // instruction instead. We do this here instead of using a (and x, (mvni imm)) 10217 // pattern in isel, because some immediates may be lowered to the preferred 10218 // (and x, (movi imm)) form, even though an mvni representation also exists. 10219 APInt DefBits(VT.getSizeInBits(), 0); 10220 APInt UndefBits(VT.getSizeInBits(), 0); 10221 if (resolveBuildVector(BVN, DefBits, UndefBits)) { 10222 SDValue NewOp; 10223 10224 DefBits = ~DefBits; 10225 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, 10226 DefBits, &LHS)) || 10227 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, 10228 DefBits, &LHS))) 10229 return NewOp; 10230 10231 UndefBits = ~UndefBits; 10232 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, 10233 UndefBits, &LHS)) || 10234 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, 10235 UndefBits, &LHS))) 10236 return NewOp; 10237 } 10238 10239 return SDValue(); 10240 } 10241 10242 static SDValue performSRLCombine(SDNode *N, 10243 TargetLowering::DAGCombinerInfo &DCI) { 10244 SelectionDAG &DAG = DCI.DAG; 10245 EVT VT = N->getValueType(0); 10246 if (VT != MVT::i32 && VT != MVT::i64) 10247 return SDValue(); 10248 10249 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the 10250 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32) 10251 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero. 10252 SDValue N0 = N->getOperand(0); 10253 if (N0.getOpcode() == ISD::BSWAP) { 10254 SDLoc DL(N); 10255 SDValue N1 = N->getOperand(1); 10256 SDValue N00 = N0.getOperand(0); 10257 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 10258 uint64_t ShiftAmt = C->getZExtValue(); 10259 if (VT == MVT::i32 && ShiftAmt == 16 && 10260 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16))) 10261 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); 10262 if (VT == MVT::i64 && ShiftAmt == 32 && 10263 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32))) 10264 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); 10265 } 10266 } 10267 return SDValue(); 10268 } 10269 10270 static SDValue performConcatVectorsCombine(SDNode *N, 10271 TargetLowering::DAGCombinerInfo &DCI, 10272 SelectionDAG &DAG) { 10273 SDLoc dl(N); 10274 EVT VT = N->getValueType(0); 10275 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 10276 10277 // Optimize concat_vectors of truncated vectors, where the intermediate 10278 // type is illegal, to avoid said illegality, e.g., 10279 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), 10280 // (v2i16 (truncate (v2i64))))) 10281 // -> 10282 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), 10283 // (v4i32 (bitcast (v2i64))), 10284 // <0, 2, 4, 6>))) 10285 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed 10286 // on both input and result type, so we might generate worse code. 10287 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. 10288 if (N->getNumOperands() == 2 && 10289 N0->getOpcode() == ISD::TRUNCATE && 10290 N1->getOpcode() == ISD::TRUNCATE) { 10291 SDValue N00 = N0->getOperand(0); 10292 SDValue N10 = N1->getOperand(0); 10293 EVT N00VT = N00.getValueType(); 10294 10295 if (N00VT == N10.getValueType() && 10296 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && 10297 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { 10298 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); 10299 SmallVector<int, 8> Mask(MidVT.getVectorNumElements()); 10300 for (size_t i = 0; i < Mask.size(); ++i) 10301 Mask[i] = i * 2; 10302 return DAG.getNode(ISD::TRUNCATE, dl, VT, 10303 DAG.getVectorShuffle( 10304 MidVT, dl, 10305 DAG.getNode(ISD::BITCAST, dl, MidVT, N00), 10306 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); 10307 } 10308 } 10309 10310 // Wait 'til after everything is legalized to try this. That way we have 10311 // legal vector types and such. 10312 if (DCI.isBeforeLegalizeOps()) 10313 return SDValue(); 10314 10315 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector 10316 // splat. The indexed instructions are going to be expecting a DUPLANE64, so 10317 // canonicalise to that. 10318 if (N0 == N1 && VT.getVectorNumElements() == 2) { 10319 assert(VT.getScalarSizeInBits() == 64); 10320 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), 10321 DAG.getConstant(0, dl, MVT::i64)); 10322 } 10323 10324 // Canonicalise concat_vectors so that the right-hand vector has as few 10325 // bit-casts as possible before its real operation. The primary matching 10326 // destination for these operations will be the narrowing "2" instructions, 10327 // which depend on the operation being performed on this right-hand vector. 10328 // For example, 10329 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) 10330 // becomes 10331 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) 10332 10333 if (N1->getOpcode() != ISD::BITCAST) 10334 return SDValue(); 10335 SDValue RHS = N1->getOperand(0); 10336 MVT RHSTy = RHS.getValueType().getSimpleVT(); 10337 // If the RHS is not a vector, this is not the pattern we're looking for. 10338 if (!RHSTy.isVector()) 10339 return SDValue(); 10340 10341 LLVM_DEBUG( 10342 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); 10343 10344 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), 10345 RHSTy.getVectorNumElements() * 2); 10346 return DAG.getNode(ISD::BITCAST, dl, VT, 10347 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, 10348 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), 10349 RHS)); 10350 } 10351 10352 static SDValue tryCombineFixedPointConvert(SDNode *N, 10353 TargetLowering::DAGCombinerInfo &DCI, 10354 SelectionDAG &DAG) { 10355 // Wait until after everything is legalized to try this. That way we have 10356 // legal vector types and such. 10357 if (DCI.isBeforeLegalizeOps()) 10358 return SDValue(); 10359 // Transform a scalar conversion of a value from a lane extract into a 10360 // lane extract of a vector conversion. E.g., from foo1 to foo2: 10361 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } 10362 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } 10363 // 10364 // The second form interacts better with instruction selection and the 10365 // register allocator to avoid cross-class register copies that aren't 10366 // coalescable due to a lane reference. 10367 10368 // Check the operand and see if it originates from a lane extract. 10369 SDValue Op1 = N->getOperand(1); 10370 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 10371 // Yep, no additional predication needed. Perform the transform. 10372 SDValue IID = N->getOperand(0); 10373 SDValue Shift = N->getOperand(2); 10374 SDValue Vec = Op1.getOperand(0); 10375 SDValue Lane = Op1.getOperand(1); 10376 EVT ResTy = N->getValueType(0); 10377 EVT VecResTy; 10378 SDLoc DL(N); 10379 10380 // The vector width should be 128 bits by the time we get here, even 10381 // if it started as 64 bits (the extract_vector handling will have 10382 // done so). 10383 assert(Vec.getValueSizeInBits() == 128 && 10384 "unexpected vector size on extract_vector_elt!"); 10385 if (Vec.getValueType() == MVT::v4i32) 10386 VecResTy = MVT::v4f32; 10387 else if (Vec.getValueType() == MVT::v2i64) 10388 VecResTy = MVT::v2f64; 10389 else 10390 llvm_unreachable("unexpected vector type!"); 10391 10392 SDValue Convert = 10393 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); 10394 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); 10395 } 10396 return SDValue(); 10397 } 10398 10399 // AArch64 high-vector "long" operations are formed by performing the non-high 10400 // version on an extract_subvector of each operand which gets the high half: 10401 // 10402 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) 10403 // 10404 // However, there are cases which don't have an extract_high explicitly, but 10405 // have another operation that can be made compatible with one for free. For 10406 // example: 10407 // 10408 // (dupv64 scalar) --> (extract_high (dup128 scalar)) 10409 // 10410 // This routine does the actual conversion of such DUPs, once outer routines 10411 // have determined that everything else is in order. 10412 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold 10413 // similarly here. 10414 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { 10415 switch (N.getOpcode()) { 10416 case AArch64ISD::DUP: 10417 case AArch64ISD::DUPLANE8: 10418 case AArch64ISD::DUPLANE16: 10419 case AArch64ISD::DUPLANE32: 10420 case AArch64ISD::DUPLANE64: 10421 case AArch64ISD::MOVI: 10422 case AArch64ISD::MOVIshift: 10423 case AArch64ISD::MOVIedit: 10424 case AArch64ISD::MOVImsl: 10425 case AArch64ISD::MVNIshift: 10426 case AArch64ISD::MVNImsl: 10427 break; 10428 default: 10429 // FMOV could be supported, but isn't very useful, as it would only occur 10430 // if you passed a bitcast' floating point immediate to an eligible long 10431 // integer op (addl, smull, ...). 10432 return SDValue(); 10433 } 10434 10435 MVT NarrowTy = N.getSimpleValueType(); 10436 if (!NarrowTy.is64BitVector()) 10437 return SDValue(); 10438 10439 MVT ElementTy = NarrowTy.getVectorElementType(); 10440 unsigned NumElems = NarrowTy.getVectorNumElements(); 10441 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); 10442 10443 SDLoc dl(N); 10444 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy, 10445 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()), 10446 DAG.getConstant(NumElems, dl, MVT::i64)); 10447 } 10448 10449 static bool isEssentiallyExtractHighSubvector(SDValue N) { 10450 if (N.getOpcode() == ISD::BITCAST) 10451 N = N.getOperand(0); 10452 if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR) 10453 return false; 10454 return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() == 10455 N.getOperand(0).getValueType().getVectorNumElements() / 2; 10456 } 10457 10458 /// Helper structure to keep track of ISD::SET_CC operands. 10459 struct GenericSetCCInfo { 10460 const SDValue *Opnd0; 10461 const SDValue *Opnd1; 10462 ISD::CondCode CC; 10463 }; 10464 10465 /// Helper structure to keep track of a SET_CC lowered into AArch64 code. 10466 struct AArch64SetCCInfo { 10467 const SDValue *Cmp; 10468 AArch64CC::CondCode CC; 10469 }; 10470 10471 /// Helper structure to keep track of SetCC information. 10472 union SetCCInfo { 10473 GenericSetCCInfo Generic; 10474 AArch64SetCCInfo AArch64; 10475 }; 10476 10477 /// Helper structure to be able to read SetCC information. If set to 10478 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a 10479 /// GenericSetCCInfo. 10480 struct SetCCInfoAndKind { 10481 SetCCInfo Info; 10482 bool IsAArch64; 10483 }; 10484 10485 /// Check whether or not \p Op is a SET_CC operation, either a generic or 10486 /// an 10487 /// AArch64 lowered one. 10488 /// \p SetCCInfo is filled accordingly. 10489 /// \post SetCCInfo is meanginfull only when this function returns true. 10490 /// \return True when Op is a kind of SET_CC operation. 10491 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { 10492 // If this is a setcc, this is straight forward. 10493 if (Op.getOpcode() == ISD::SETCC) { 10494 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); 10495 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); 10496 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 10497 SetCCInfo.IsAArch64 = false; 10498 return true; 10499 } 10500 // Otherwise, check if this is a matching csel instruction. 10501 // In other words: 10502 // - csel 1, 0, cc 10503 // - csel 0, 1, !cc 10504 if (Op.getOpcode() != AArch64ISD::CSEL) 10505 return false; 10506 // Set the information about the operands. 10507 // TODO: we want the operands of the Cmp not the csel 10508 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); 10509 SetCCInfo.IsAArch64 = true; 10510 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( 10511 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 10512 10513 // Check that the operands matches the constraints: 10514 // (1) Both operands must be constants. 10515 // (2) One must be 1 and the other must be 0. 10516 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 10517 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 10518 10519 // Check (1). 10520 if (!TValue || !FValue) 10521 return false; 10522 10523 // Check (2). 10524 if (!TValue->isOne()) { 10525 // Update the comparison when we are interested in !cc. 10526 std::swap(TValue, FValue); 10527 SetCCInfo.Info.AArch64.CC = 10528 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); 10529 } 10530 return TValue->isOne() && FValue->isNullValue(); 10531 } 10532 10533 // Returns true if Op is setcc or zext of setcc. 10534 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { 10535 if (isSetCC(Op, Info)) 10536 return true; 10537 return ((Op.getOpcode() == ISD::ZERO_EXTEND) && 10538 isSetCC(Op->getOperand(0), Info)); 10539 } 10540 10541 // The folding we want to perform is: 10542 // (add x, [zext] (setcc cc ...) ) 10543 // --> 10544 // (csel x, (add x, 1), !cc ...) 10545 // 10546 // The latter will get matched to a CSINC instruction. 10547 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { 10548 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); 10549 SDValue LHS = Op->getOperand(0); 10550 SDValue RHS = Op->getOperand(1); 10551 SetCCInfoAndKind InfoAndKind; 10552 10553 // If neither operand is a SET_CC, give up. 10554 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { 10555 std::swap(LHS, RHS); 10556 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) 10557 return SDValue(); 10558 } 10559 10560 // FIXME: This could be generatized to work for FP comparisons. 10561 EVT CmpVT = InfoAndKind.IsAArch64 10562 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() 10563 : InfoAndKind.Info.Generic.Opnd0->getValueType(); 10564 if (CmpVT != MVT::i32 && CmpVT != MVT::i64) 10565 return SDValue(); 10566 10567 SDValue CCVal; 10568 SDValue Cmp; 10569 SDLoc dl(Op); 10570 if (InfoAndKind.IsAArch64) { 10571 CCVal = DAG.getConstant( 10572 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, 10573 MVT::i32); 10574 Cmp = *InfoAndKind.Info.AArch64.Cmp; 10575 } else 10576 Cmp = getAArch64Cmp( 10577 *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1, 10578 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG, 10579 dl); 10580 10581 EVT VT = Op->getValueType(0); 10582 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); 10583 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); 10584 } 10585 10586 // The basic add/sub long vector instructions have variants with "2" on the end 10587 // which act on the high-half of their inputs. They are normally matched by 10588 // patterns like: 10589 // 10590 // (add (zeroext (extract_high LHS)), 10591 // (zeroext (extract_high RHS))) 10592 // -> uaddl2 vD, vN, vM 10593 // 10594 // However, if one of the extracts is something like a duplicate, this 10595 // instruction can still be used profitably. This function puts the DAG into a 10596 // more appropriate form for those patterns to trigger. 10597 static SDValue performAddSubLongCombine(SDNode *N, 10598 TargetLowering::DAGCombinerInfo &DCI, 10599 SelectionDAG &DAG) { 10600 if (DCI.isBeforeLegalizeOps()) 10601 return SDValue(); 10602 10603 MVT VT = N->getSimpleValueType(0); 10604 if (!VT.is128BitVector()) { 10605 if (N->getOpcode() == ISD::ADD) 10606 return performSetccAddFolding(N, DAG); 10607 return SDValue(); 10608 } 10609 10610 // Make sure both branches are extended in the same way. 10611 SDValue LHS = N->getOperand(0); 10612 SDValue RHS = N->getOperand(1); 10613 if ((LHS.getOpcode() != ISD::ZERO_EXTEND && 10614 LHS.getOpcode() != ISD::SIGN_EXTEND) || 10615 LHS.getOpcode() != RHS.getOpcode()) 10616 return SDValue(); 10617 10618 unsigned ExtType = LHS.getOpcode(); 10619 10620 // It's not worth doing if at least one of the inputs isn't already an 10621 // extract, but we don't know which it'll be so we have to try both. 10622 if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) { 10623 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); 10624 if (!RHS.getNode()) 10625 return SDValue(); 10626 10627 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); 10628 } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) { 10629 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); 10630 if (!LHS.getNode()) 10631 return SDValue(); 10632 10633 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); 10634 } 10635 10636 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); 10637 } 10638 10639 // Massage DAGs which we can use the high-half "long" operations on into 10640 // something isel will recognize better. E.g. 10641 // 10642 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> 10643 // (aarch64_neon_umull (extract_high (v2i64 vec))) 10644 // (extract_high (v2i64 (dup128 scalar))))) 10645 // 10646 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, 10647 TargetLowering::DAGCombinerInfo &DCI, 10648 SelectionDAG &DAG) { 10649 if (DCI.isBeforeLegalizeOps()) 10650 return SDValue(); 10651 10652 SDValue LHS = N->getOperand(1); 10653 SDValue RHS = N->getOperand(2); 10654 assert(LHS.getValueType().is64BitVector() && 10655 RHS.getValueType().is64BitVector() && 10656 "unexpected shape for long operation"); 10657 10658 // Either node could be a DUP, but it's not worth doing both of them (you'd 10659 // just as well use the non-high version) so look for a corresponding extract 10660 // operation on the other "wing". 10661 if (isEssentiallyExtractHighSubvector(LHS)) { 10662 RHS = tryExtendDUPToExtractHigh(RHS, DAG); 10663 if (!RHS.getNode()) 10664 return SDValue(); 10665 } else if (isEssentiallyExtractHighSubvector(RHS)) { 10666 LHS = tryExtendDUPToExtractHigh(LHS, DAG); 10667 if (!LHS.getNode()) 10668 return SDValue(); 10669 } 10670 10671 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), 10672 N->getOperand(0), LHS, RHS); 10673 } 10674 10675 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { 10676 MVT ElemTy = N->getSimpleValueType(0).getScalarType(); 10677 unsigned ElemBits = ElemTy.getSizeInBits(); 10678 10679 int64_t ShiftAmount; 10680 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { 10681 APInt SplatValue, SplatUndef; 10682 unsigned SplatBitSize; 10683 bool HasAnyUndefs; 10684 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 10685 HasAnyUndefs, ElemBits) || 10686 SplatBitSize != ElemBits) 10687 return SDValue(); 10688 10689 ShiftAmount = SplatValue.getSExtValue(); 10690 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { 10691 ShiftAmount = CVN->getSExtValue(); 10692 } else 10693 return SDValue(); 10694 10695 unsigned Opcode; 10696 bool IsRightShift; 10697 switch (IID) { 10698 default: 10699 llvm_unreachable("Unknown shift intrinsic"); 10700 case Intrinsic::aarch64_neon_sqshl: 10701 Opcode = AArch64ISD::SQSHL_I; 10702 IsRightShift = false; 10703 break; 10704 case Intrinsic::aarch64_neon_uqshl: 10705 Opcode = AArch64ISD::UQSHL_I; 10706 IsRightShift = false; 10707 break; 10708 case Intrinsic::aarch64_neon_srshl: 10709 Opcode = AArch64ISD::SRSHR_I; 10710 IsRightShift = true; 10711 break; 10712 case Intrinsic::aarch64_neon_urshl: 10713 Opcode = AArch64ISD::URSHR_I; 10714 IsRightShift = true; 10715 break; 10716 case Intrinsic::aarch64_neon_sqshlu: 10717 Opcode = AArch64ISD::SQSHLU_I; 10718 IsRightShift = false; 10719 break; 10720 case Intrinsic::aarch64_neon_sshl: 10721 case Intrinsic::aarch64_neon_ushl: 10722 // For positive shift amounts we can use SHL, as ushl/sshl perform a regular 10723 // left shift for positive shift amounts. Below, we only replace the current 10724 // node with VSHL, if this condition is met. 10725 Opcode = AArch64ISD::VSHL; 10726 IsRightShift = false; 10727 break; 10728 } 10729 10730 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { 10731 SDLoc dl(N); 10732 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), 10733 DAG.getConstant(-ShiftAmount, dl, MVT::i32)); 10734 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { 10735 SDLoc dl(N); 10736 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), 10737 DAG.getConstant(ShiftAmount, dl, MVT::i32)); 10738 } 10739 10740 return SDValue(); 10741 } 10742 10743 // The CRC32[BH] instructions ignore the high bits of their data operand. Since 10744 // the intrinsics must be legal and take an i32, this means there's almost 10745 // certainly going to be a zext in the DAG which we can eliminate. 10746 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { 10747 SDValue AndN = N->getOperand(2); 10748 if (AndN.getOpcode() != ISD::AND) 10749 return SDValue(); 10750 10751 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); 10752 if (!CMask || CMask->getZExtValue() != Mask) 10753 return SDValue(); 10754 10755 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, 10756 N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); 10757 } 10758 10759 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, 10760 SelectionDAG &DAG) { 10761 SDLoc dl(N); 10762 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), 10763 DAG.getNode(Opc, dl, 10764 N->getOperand(1).getSimpleValueType(), 10765 N->getOperand(1)), 10766 DAG.getConstant(0, dl, MVT::i64)); 10767 } 10768 10769 static SDValue LowerSVEIntReduction(SDNode *N, unsigned Opc, 10770 SelectionDAG &DAG) { 10771 SDLoc dl(N); 10772 LLVMContext &Ctx = *DAG.getContext(); 10773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10774 10775 EVT VT = N->getValueType(0); 10776 SDValue Pred = N->getOperand(1); 10777 SDValue Data = N->getOperand(2); 10778 EVT DataVT = Data.getValueType(); 10779 10780 if (DataVT.getVectorElementType().isScalarInteger() && 10781 (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)) { 10782 if (!TLI.isTypeLegal(DataVT)) 10783 return SDValue(); 10784 10785 EVT OutputVT = EVT::getVectorVT(Ctx, VT, 10786 AArch64::NeonBitsPerVector / VT.getSizeInBits()); 10787 SDValue Reduce = DAG.getNode(Opc, dl, OutputVT, Pred, Data); 10788 SDValue Zero = DAG.getConstant(0, dl, MVT::i64); 10789 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Reduce, Zero); 10790 10791 return Result; 10792 } 10793 10794 return SDValue(); 10795 } 10796 10797 static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) { 10798 SDLoc dl(N); 10799 LLVMContext &Ctx = *DAG.getContext(); 10800 EVT VT = N->getValueType(0); 10801 10802 assert(VT.isScalableVector() && "Expected a scalable vector."); 10803 10804 // Current lowering only supports the SVE-ACLE types. 10805 if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock) 10806 return SDValue(); 10807 10808 unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8; 10809 unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8; 10810 EVT ByteVT = EVT::getVectorVT(Ctx, MVT::i8, { ByteSize, true }); 10811 10812 // Convert everything to the domain of EXT (i.e bytes). 10813 SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1)); 10814 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2)); 10815 SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3), 10816 DAG.getConstant(ElemSize, dl, MVT::i32)); 10817 10818 SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2); 10819 return DAG.getNode(ISD::BITCAST, dl, VT, EXT); 10820 } 10821 10822 static SDValue tryConvertSVEWideCompare(SDNode *N, unsigned ReplacementIID, 10823 bool Invert, 10824 TargetLowering::DAGCombinerInfo &DCI, 10825 SelectionDAG &DAG) { 10826 if (DCI.isBeforeLegalize()) 10827 return SDValue(); 10828 10829 SDValue Comparator = N->getOperand(3); 10830 if (Comparator.getOpcode() == AArch64ISD::DUP || 10831 Comparator.getOpcode() == ISD::SPLAT_VECTOR) { 10832 unsigned IID = getIntrinsicID(N); 10833 EVT VT = N->getValueType(0); 10834 EVT CmpVT = N->getOperand(2).getValueType(); 10835 SDValue Pred = N->getOperand(1); 10836 SDValue Imm; 10837 SDLoc DL(N); 10838 10839 switch (IID) { 10840 default: 10841 llvm_unreachable("Called with wrong intrinsic!"); 10842 break; 10843 10844 // Signed comparisons 10845 case Intrinsic::aarch64_sve_cmpeq_wide: 10846 case Intrinsic::aarch64_sve_cmpne_wide: 10847 case Intrinsic::aarch64_sve_cmpge_wide: 10848 case Intrinsic::aarch64_sve_cmpgt_wide: 10849 case Intrinsic::aarch64_sve_cmplt_wide: 10850 case Intrinsic::aarch64_sve_cmple_wide: { 10851 if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) { 10852 int64_t ImmVal = CN->getSExtValue(); 10853 if (ImmVal >= -16 && ImmVal <= 15) 10854 Imm = DAG.getConstant(ImmVal, DL, MVT::i32); 10855 else 10856 return SDValue(); 10857 } 10858 break; 10859 } 10860 // Unsigned comparisons 10861 case Intrinsic::aarch64_sve_cmphs_wide: 10862 case Intrinsic::aarch64_sve_cmphi_wide: 10863 case Intrinsic::aarch64_sve_cmplo_wide: 10864 case Intrinsic::aarch64_sve_cmpls_wide: { 10865 if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) { 10866 uint64_t ImmVal = CN->getZExtValue(); 10867 if (ImmVal <= 127) 10868 Imm = DAG.getConstant(ImmVal, DL, MVT::i32); 10869 else 10870 return SDValue(); 10871 } 10872 break; 10873 } 10874 } 10875 10876 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm); 10877 SDValue ID = DAG.getTargetConstant(ReplacementIID, DL, MVT::i64); 10878 SDValue Op0, Op1; 10879 if (Invert) { 10880 Op0 = Splat; 10881 Op1 = N->getOperand(2); 10882 } else { 10883 Op0 = N->getOperand(2); 10884 Op1 = Splat; 10885 } 10886 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 10887 ID, Pred, Op0, Op1); 10888 } 10889 10890 return SDValue(); 10891 } 10892 10893 static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op, 10894 AArch64CC::CondCode Cond) { 10895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10896 10897 SDLoc DL(Op); 10898 assert(Op.getValueType().isScalableVector() && 10899 TLI.isTypeLegal(Op.getValueType()) && 10900 "Expected legal scalable vector type!"); 10901 10902 // Ensure target specific opcodes are using legal type. 10903 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 10904 SDValue TVal = DAG.getConstant(1, DL, OutVT); 10905 SDValue FVal = DAG.getConstant(0, DL, OutVT); 10906 10907 // Set condition code (CC) flags. 10908 SDValue Test = DAG.getNode(AArch64ISD::PTEST, DL, MVT::Other, Pg, Op); 10909 10910 // Convert CC to integer based on requested condition. 10911 // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare. 10912 SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32); 10913 SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test); 10914 return DAG.getZExtOrTrunc(Res, DL, VT); 10915 } 10916 10917 static SDValue performIntrinsicCombine(SDNode *N, 10918 TargetLowering::DAGCombinerInfo &DCI, 10919 const AArch64Subtarget *Subtarget) { 10920 SelectionDAG &DAG = DCI.DAG; 10921 unsigned IID = getIntrinsicID(N); 10922 switch (IID) { 10923 default: 10924 break; 10925 case Intrinsic::aarch64_neon_vcvtfxs2fp: 10926 case Intrinsic::aarch64_neon_vcvtfxu2fp: 10927 return tryCombineFixedPointConvert(N, DCI, DAG); 10928 case Intrinsic::aarch64_neon_saddv: 10929 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); 10930 case Intrinsic::aarch64_neon_uaddv: 10931 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); 10932 case Intrinsic::aarch64_neon_sminv: 10933 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); 10934 case Intrinsic::aarch64_neon_uminv: 10935 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); 10936 case Intrinsic::aarch64_neon_smaxv: 10937 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); 10938 case Intrinsic::aarch64_neon_umaxv: 10939 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); 10940 case Intrinsic::aarch64_neon_fmax: 10941 return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0), 10942 N->getOperand(1), N->getOperand(2)); 10943 case Intrinsic::aarch64_neon_fmin: 10944 return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0), 10945 N->getOperand(1), N->getOperand(2)); 10946 case Intrinsic::aarch64_neon_fmaxnm: 10947 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), 10948 N->getOperand(1), N->getOperand(2)); 10949 case Intrinsic::aarch64_neon_fminnm: 10950 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), 10951 N->getOperand(1), N->getOperand(2)); 10952 case Intrinsic::aarch64_neon_smull: 10953 case Intrinsic::aarch64_neon_umull: 10954 case Intrinsic::aarch64_neon_pmull: 10955 case Intrinsic::aarch64_neon_sqdmull: 10956 return tryCombineLongOpWithDup(IID, N, DCI, DAG); 10957 case Intrinsic::aarch64_neon_sqshl: 10958 case Intrinsic::aarch64_neon_uqshl: 10959 case Intrinsic::aarch64_neon_sqshlu: 10960 case Intrinsic::aarch64_neon_srshl: 10961 case Intrinsic::aarch64_neon_urshl: 10962 case Intrinsic::aarch64_neon_sshl: 10963 case Intrinsic::aarch64_neon_ushl: 10964 return tryCombineShiftImm(IID, N, DAG); 10965 case Intrinsic::aarch64_crc32b: 10966 case Intrinsic::aarch64_crc32cb: 10967 return tryCombineCRC32(0xff, N, DAG); 10968 case Intrinsic::aarch64_crc32h: 10969 case Intrinsic::aarch64_crc32ch: 10970 return tryCombineCRC32(0xffff, N, DAG); 10971 case Intrinsic::aarch64_sve_smaxv: 10972 return LowerSVEIntReduction(N, AArch64ISD::SMAXV_PRED, DAG); 10973 case Intrinsic::aarch64_sve_umaxv: 10974 return LowerSVEIntReduction(N, AArch64ISD::UMAXV_PRED, DAG); 10975 case Intrinsic::aarch64_sve_sminv: 10976 return LowerSVEIntReduction(N, AArch64ISD::SMINV_PRED, DAG); 10977 case Intrinsic::aarch64_sve_uminv: 10978 return LowerSVEIntReduction(N, AArch64ISD::UMINV_PRED, DAG); 10979 case Intrinsic::aarch64_sve_orv: 10980 return LowerSVEIntReduction(N, AArch64ISD::ORV_PRED, DAG); 10981 case Intrinsic::aarch64_sve_eorv: 10982 return LowerSVEIntReduction(N, AArch64ISD::EORV_PRED, DAG); 10983 case Intrinsic::aarch64_sve_andv: 10984 return LowerSVEIntReduction(N, AArch64ISD::ANDV_PRED, DAG); 10985 case Intrinsic::aarch64_sve_ext: 10986 return LowerSVEIntrinsicEXT(N, DAG); 10987 case Intrinsic::aarch64_sve_cmpeq_wide: 10988 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpeq, 10989 false, DCI, DAG); 10990 case Intrinsic::aarch64_sve_cmpne_wide: 10991 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpne, 10992 false, DCI, DAG); 10993 case Intrinsic::aarch64_sve_cmpge_wide: 10994 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge, 10995 false, DCI, DAG); 10996 case Intrinsic::aarch64_sve_cmpgt_wide: 10997 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt, 10998 false, DCI, DAG); 10999 case Intrinsic::aarch64_sve_cmplt_wide: 11000 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpgt, 11001 true, DCI, DAG); 11002 case Intrinsic::aarch64_sve_cmple_wide: 11003 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmpge, 11004 true, DCI, DAG); 11005 case Intrinsic::aarch64_sve_cmphs_wide: 11006 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs, 11007 false, DCI, DAG); 11008 case Intrinsic::aarch64_sve_cmphi_wide: 11009 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi, 11010 false, DCI, DAG); 11011 case Intrinsic::aarch64_sve_cmplo_wide: 11012 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphi, true, 11013 DCI, DAG); 11014 case Intrinsic::aarch64_sve_cmpls_wide: 11015 return tryConvertSVEWideCompare(N, Intrinsic::aarch64_sve_cmphs, true, 11016 DCI, DAG); 11017 case Intrinsic::aarch64_sve_ptest_any: 11018 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 11019 AArch64CC::ANY_ACTIVE); 11020 case Intrinsic::aarch64_sve_ptest_first: 11021 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 11022 AArch64CC::FIRST_ACTIVE); 11023 case Intrinsic::aarch64_sve_ptest_last: 11024 return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), 11025 AArch64CC::LAST_ACTIVE); 11026 } 11027 return SDValue(); 11028 } 11029 11030 static SDValue performExtendCombine(SDNode *N, 11031 TargetLowering::DAGCombinerInfo &DCI, 11032 SelectionDAG &DAG) { 11033 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then 11034 // we can convert that DUP into another extract_high (of a bigger DUP), which 11035 // helps the backend to decide that an sabdl2 would be useful, saving a real 11036 // extract_high operation. 11037 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && 11038 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 11039 SDNode *ABDNode = N->getOperand(0).getNode(); 11040 unsigned IID = getIntrinsicID(ABDNode); 11041 if (IID == Intrinsic::aarch64_neon_sabd || 11042 IID == Intrinsic::aarch64_neon_uabd) { 11043 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); 11044 if (!NewABD.getNode()) 11045 return SDValue(); 11046 11047 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), 11048 NewABD); 11049 } 11050 } 11051 11052 // This is effectively a custom type legalization for AArch64. 11053 // 11054 // Type legalization will split an extend of a small, legal, type to a larger 11055 // illegal type by first splitting the destination type, often creating 11056 // illegal source types, which then get legalized in isel-confusing ways, 11057 // leading to really terrible codegen. E.g., 11058 // %result = v8i32 sext v8i8 %value 11059 // becomes 11060 // %losrc = extract_subreg %value, ... 11061 // %hisrc = extract_subreg %value, ... 11062 // %lo = v4i32 sext v4i8 %losrc 11063 // %hi = v4i32 sext v4i8 %hisrc 11064 // Things go rapidly downhill from there. 11065 // 11066 // For AArch64, the [sz]ext vector instructions can only go up one element 11067 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 11068 // take two instructions. 11069 // 11070 // This implies that the most efficient way to do the extend from v8i8 11071 // to two v4i32 values is to first extend the v8i8 to v8i16, then do 11072 // the normal splitting to happen for the v8i16->v8i32. 11073 11074 // This is pre-legalization to catch some cases where the default 11075 // type legalization will create ill-tempered code. 11076 if (!DCI.isBeforeLegalizeOps()) 11077 return SDValue(); 11078 11079 // We're only interested in cleaning things up for non-legal vector types 11080 // here. If both the source and destination are legal, things will just 11081 // work naturally without any fiddling. 11082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11083 EVT ResVT = N->getValueType(0); 11084 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) 11085 return SDValue(); 11086 // If the vector type isn't a simple VT, it's beyond the scope of what 11087 // we're worried about here. Let legalization do its thing and hope for 11088 // the best. 11089 SDValue Src = N->getOperand(0); 11090 EVT SrcVT = Src->getValueType(0); 11091 if (!ResVT.isSimple() || !SrcVT.isSimple()) 11092 return SDValue(); 11093 11094 // If the source VT is a 64-bit vector, we can play games and get the 11095 // better results we want. 11096 if (SrcVT.getSizeInBits() != 64) 11097 return SDValue(); 11098 11099 unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); 11100 unsigned ElementCount = SrcVT.getVectorNumElements(); 11101 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); 11102 SDLoc DL(N); 11103 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); 11104 11105 // Now split the rest of the operation into two halves, each with a 64 11106 // bit source. 11107 EVT LoVT, HiVT; 11108 SDValue Lo, Hi; 11109 unsigned NumElements = ResVT.getVectorNumElements(); 11110 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 11111 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), 11112 ResVT.getVectorElementType(), NumElements / 2); 11113 11114 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), 11115 LoVT.getVectorNumElements()); 11116 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, 11117 DAG.getConstant(0, DL, MVT::i64)); 11118 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, 11119 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64)); 11120 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); 11121 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); 11122 11123 // Now combine the parts back together so we still have a single result 11124 // like the combiner expects. 11125 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); 11126 } 11127 11128 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St, 11129 SDValue SplatVal, unsigned NumVecElts) { 11130 assert(!St.isTruncatingStore() && "cannot split truncating vector store"); 11131 unsigned OrigAlignment = St.getAlignment(); 11132 unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8; 11133 11134 // Create scalar stores. This is at least as good as the code sequence for a 11135 // split unaligned store which is a dup.s, ext.b, and two stores. 11136 // Most of the time the three stores should be replaced by store pair 11137 // instructions (stp). 11138 SDLoc DL(&St); 11139 SDValue BasePtr = St.getBasePtr(); 11140 uint64_t BaseOffset = 0; 11141 11142 const MachinePointerInfo &PtrInfo = St.getPointerInfo(); 11143 SDValue NewST1 = 11144 DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo, 11145 OrigAlignment, St.getMemOperand()->getFlags()); 11146 11147 // As this in ISel, we will not merge this add which may degrade results. 11148 if (BasePtr->getOpcode() == ISD::ADD && 11149 isa<ConstantSDNode>(BasePtr->getOperand(1))) { 11150 BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 11151 BasePtr = BasePtr->getOperand(0); 11152 } 11153 11154 unsigned Offset = EltOffset; 11155 while (--NumVecElts) { 11156 unsigned Alignment = MinAlign(OrigAlignment, Offset); 11157 SDValue OffsetPtr = 11158 DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, 11159 DAG.getConstant(BaseOffset + Offset, DL, MVT::i64)); 11160 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, 11161 PtrInfo.getWithOffset(Offset), Alignment, 11162 St.getMemOperand()->getFlags()); 11163 Offset += EltOffset; 11164 } 11165 return NewST1; 11166 } 11167 11168 static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) { 11169 SDLoc DL(N); 11170 EVT VT = N->getValueType(0); 11171 EVT PtrTy = N->getOperand(3).getValueType(); 11172 11173 EVT LoadVT = VT; 11174 if (VT.isFloatingPoint()) 11175 LoadVT = VT.changeTypeToInteger(); 11176 11177 auto *MINode = cast<MemIntrinsicSDNode>(N); 11178 SDValue PassThru = DAG.getConstant(0, DL, LoadVT); 11179 SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(), 11180 MINode->getOperand(3), DAG.getUNDEF(PtrTy), 11181 MINode->getOperand(2), PassThru, 11182 MINode->getMemoryVT(), MINode->getMemOperand(), 11183 ISD::UNINDEXED, ISD::NON_EXTLOAD, false); 11184 11185 if (VT.isFloatingPoint()) { 11186 SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) }; 11187 return DAG.getMergeValues(Ops, DL); 11188 } 11189 11190 return L; 11191 } 11192 11193 static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) { 11194 SDLoc DL(N); 11195 11196 SDValue Data = N->getOperand(2); 11197 EVT DataVT = Data.getValueType(); 11198 EVT PtrTy = N->getOperand(4).getValueType(); 11199 11200 if (DataVT.isFloatingPoint()) 11201 Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data); 11202 11203 auto *MINode = cast<MemIntrinsicSDNode>(N); 11204 return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4), 11205 DAG.getUNDEF(PtrTy), MINode->getOperand(3), 11206 MINode->getMemoryVT(), MINode->getMemOperand(), 11207 ISD::UNINDEXED, false, false); 11208 } 11209 11210 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The 11211 /// load store optimizer pass will merge them to store pair stores. This should 11212 /// be better than a movi to create the vector zero followed by a vector store 11213 /// if the zero constant is not re-used, since one instructions and one register 11214 /// live range will be removed. 11215 /// 11216 /// For example, the final generated code should be: 11217 /// 11218 /// stp xzr, xzr, [x0] 11219 /// 11220 /// instead of: 11221 /// 11222 /// movi v0.2d, #0 11223 /// str q0, [x0] 11224 /// 11225 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) { 11226 SDValue StVal = St.getValue(); 11227 EVT VT = StVal.getValueType(); 11228 11229 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or 11230 // 2, 3 or 4 i32 elements. 11231 int NumVecElts = VT.getVectorNumElements(); 11232 if (!(((NumVecElts == 2 || NumVecElts == 3) && 11233 VT.getVectorElementType().getSizeInBits() == 64) || 11234 ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) && 11235 VT.getVectorElementType().getSizeInBits() == 32))) 11236 return SDValue(); 11237 11238 if (StVal.getOpcode() != ISD::BUILD_VECTOR) 11239 return SDValue(); 11240 11241 // If the zero constant has more than one use then the vector store could be 11242 // better since the constant mov will be amortized and stp q instructions 11243 // should be able to be formed. 11244 if (!StVal.hasOneUse()) 11245 return SDValue(); 11246 11247 // If the store is truncating then it's going down to i16 or smaller, which 11248 // means it can be implemented in a single store anyway. 11249 if (St.isTruncatingStore()) 11250 return SDValue(); 11251 11252 // If the immediate offset of the address operand is too large for the stp 11253 // instruction, then bail out. 11254 if (DAG.isBaseWithConstantOffset(St.getBasePtr())) { 11255 int64_t Offset = St.getBasePtr()->getConstantOperandVal(1); 11256 if (Offset < -512 || Offset > 504) 11257 return SDValue(); 11258 } 11259 11260 for (int I = 0; I < NumVecElts; ++I) { 11261 SDValue EltVal = StVal.getOperand(I); 11262 if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal)) 11263 return SDValue(); 11264 } 11265 11266 // Use a CopyFromReg WZR/XZR here to prevent 11267 // DAGCombiner::MergeConsecutiveStores from undoing this transformation. 11268 SDLoc DL(&St); 11269 unsigned ZeroReg; 11270 EVT ZeroVT; 11271 if (VT.getVectorElementType().getSizeInBits() == 32) { 11272 ZeroReg = AArch64::WZR; 11273 ZeroVT = MVT::i32; 11274 } else { 11275 ZeroReg = AArch64::XZR; 11276 ZeroVT = MVT::i64; 11277 } 11278 SDValue SplatVal = 11279 DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT); 11280 return splitStoreSplat(DAG, St, SplatVal, NumVecElts); 11281 } 11282 11283 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar 11284 /// value. The load store optimizer pass will merge them to store pair stores. 11285 /// This has better performance than a splat of the scalar followed by a split 11286 /// vector store. Even if the stores are not merged it is four stores vs a dup, 11287 /// followed by an ext.b and two stores. 11288 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) { 11289 SDValue StVal = St.getValue(); 11290 EVT VT = StVal.getValueType(); 11291 11292 // Don't replace floating point stores, they possibly won't be transformed to 11293 // stp because of the store pair suppress pass. 11294 if (VT.isFloatingPoint()) 11295 return SDValue(); 11296 11297 // We can express a splat as store pair(s) for 2 or 4 elements. 11298 unsigned NumVecElts = VT.getVectorNumElements(); 11299 if (NumVecElts != 4 && NumVecElts != 2) 11300 return SDValue(); 11301 11302 // If the store is truncating then it's going down to i16 or smaller, which 11303 // means it can be implemented in a single store anyway. 11304 if (St.isTruncatingStore()) 11305 return SDValue(); 11306 11307 // Check that this is a splat. 11308 // Make sure that each of the relevant vector element locations are inserted 11309 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32. 11310 std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1); 11311 SDValue SplatVal; 11312 for (unsigned I = 0; I < NumVecElts; ++I) { 11313 // Check for insert vector elements. 11314 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) 11315 return SDValue(); 11316 11317 // Check that same value is inserted at each vector element. 11318 if (I == 0) 11319 SplatVal = StVal.getOperand(1); 11320 else if (StVal.getOperand(1) != SplatVal) 11321 return SDValue(); 11322 11323 // Check insert element index. 11324 ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2)); 11325 if (!CIndex) 11326 return SDValue(); 11327 uint64_t IndexVal = CIndex->getZExtValue(); 11328 if (IndexVal >= NumVecElts) 11329 return SDValue(); 11330 IndexNotInserted.reset(IndexVal); 11331 11332 StVal = StVal.getOperand(0); 11333 } 11334 // Check that all vector element locations were inserted to. 11335 if (IndexNotInserted.any()) 11336 return SDValue(); 11337 11338 return splitStoreSplat(DAG, St, SplatVal, NumVecElts); 11339 } 11340 11341 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 11342 SelectionDAG &DAG, 11343 const AArch64Subtarget *Subtarget) { 11344 11345 StoreSDNode *S = cast<StoreSDNode>(N); 11346 if (S->isVolatile() || S->isIndexed()) 11347 return SDValue(); 11348 11349 SDValue StVal = S->getValue(); 11350 EVT VT = StVal.getValueType(); 11351 if (!VT.isVector()) 11352 return SDValue(); 11353 11354 // If we get a splat of zeros, convert this vector store to a store of 11355 // scalars. They will be merged into store pairs of xzr thereby removing one 11356 // instruction and one register. 11357 if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S)) 11358 return ReplacedZeroSplat; 11359 11360 // FIXME: The logic for deciding if an unaligned store should be split should 11361 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be 11362 // a call to that function here. 11363 11364 if (!Subtarget->isMisaligned128StoreSlow()) 11365 return SDValue(); 11366 11367 // Don't split at -Oz. 11368 if (DAG.getMachineFunction().getFunction().hasMinSize()) 11369 return SDValue(); 11370 11371 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting 11372 // those up regresses performance on micro-benchmarks and olden/bh. 11373 if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64) 11374 return SDValue(); 11375 11376 // Split unaligned 16B stores. They are terrible for performance. 11377 // Don't split stores with alignment of 1 or 2. Code that uses clang vector 11378 // extensions can use this to mark that it does not want splitting to happen 11379 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of 11380 // eliminating alignment hazards is only 1 in 8 for alignment of 2. 11381 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || 11382 S->getAlignment() <= 2) 11383 return SDValue(); 11384 11385 // If we get a splat of a scalar convert this vector store to a store of 11386 // scalars. They will be merged into store pairs thereby removing two 11387 // instructions. 11388 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S)) 11389 return ReplacedSplat; 11390 11391 SDLoc DL(S); 11392 11393 // Split VT into two. 11394 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 11395 unsigned NumElts = HalfVT.getVectorNumElements(); 11396 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, 11397 DAG.getConstant(0, DL, MVT::i64)); 11398 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, 11399 DAG.getConstant(NumElts, DL, MVT::i64)); 11400 SDValue BasePtr = S->getBasePtr(); 11401 SDValue NewST1 = 11402 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), 11403 S->getAlignment(), S->getMemOperand()->getFlags()); 11404 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, 11405 DAG.getConstant(8, DL, MVT::i64)); 11406 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, 11407 S->getPointerInfo(), S->getAlignment(), 11408 S->getMemOperand()->getFlags()); 11409 } 11410 11411 /// Target-specific DAG combine function for post-increment LD1 (lane) and 11412 /// post-increment LD1R. 11413 static SDValue performPostLD1Combine(SDNode *N, 11414 TargetLowering::DAGCombinerInfo &DCI, 11415 bool IsLaneOp) { 11416 if (DCI.isBeforeLegalizeOps()) 11417 return SDValue(); 11418 11419 SelectionDAG &DAG = DCI.DAG; 11420 EVT VT = N->getValueType(0); 11421 11422 unsigned LoadIdx = IsLaneOp ? 1 : 0; 11423 SDNode *LD = N->getOperand(LoadIdx).getNode(); 11424 // If it is not LOAD, can not do such combine. 11425 if (LD->getOpcode() != ISD::LOAD) 11426 return SDValue(); 11427 11428 // The vector lane must be a constant in the LD1LANE opcode. 11429 SDValue Lane; 11430 if (IsLaneOp) { 11431 Lane = N->getOperand(2); 11432 auto *LaneC = dyn_cast<ConstantSDNode>(Lane); 11433 if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements()) 11434 return SDValue(); 11435 } 11436 11437 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); 11438 EVT MemVT = LoadSDN->getMemoryVT(); 11439 // Check if memory operand is the same type as the vector element. 11440 if (MemVT != VT.getVectorElementType()) 11441 return SDValue(); 11442 11443 // Check if there are other uses. If so, do not combine as it will introduce 11444 // an extra load. 11445 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; 11446 ++UI) { 11447 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. 11448 continue; 11449 if (*UI != N) 11450 return SDValue(); 11451 } 11452 11453 SDValue Addr = LD->getOperand(1); 11454 SDValue Vector = N->getOperand(0); 11455 // Search for a use of the address operand that is an increment. 11456 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = 11457 Addr.getNode()->use_end(); UI != UE; ++UI) { 11458 SDNode *User = *UI; 11459 if (User->getOpcode() != ISD::ADD 11460 || UI.getUse().getResNo() != Addr.getResNo()) 11461 continue; 11462 11463 // If the increment is a constant, it must match the memory ref size. 11464 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 11465 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 11466 uint32_t IncVal = CInc->getZExtValue(); 11467 unsigned NumBytes = VT.getScalarSizeInBits() / 8; 11468 if (IncVal != NumBytes) 11469 continue; 11470 Inc = DAG.getRegister(AArch64::XZR, MVT::i64); 11471 } 11472 11473 // To avoid cycle construction make sure that neither the load nor the add 11474 // are predecessors to each other or the Vector. 11475 SmallPtrSet<const SDNode *, 32> Visited; 11476 SmallVector<const SDNode *, 16> Worklist; 11477 Visited.insert(Addr.getNode()); 11478 Worklist.push_back(User); 11479 Worklist.push_back(LD); 11480 Worklist.push_back(Vector.getNode()); 11481 if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) || 11482 SDNode::hasPredecessorHelper(User, Visited, Worklist)) 11483 continue; 11484 11485 SmallVector<SDValue, 8> Ops; 11486 Ops.push_back(LD->getOperand(0)); // Chain 11487 if (IsLaneOp) { 11488 Ops.push_back(Vector); // The vector to be inserted 11489 Ops.push_back(Lane); // The lane to be inserted in the vector 11490 } 11491 Ops.push_back(Addr); 11492 Ops.push_back(Inc); 11493 11494 EVT Tys[3] = { VT, MVT::i64, MVT::Other }; 11495 SDVTList SDTys = DAG.getVTList(Tys); 11496 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; 11497 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, 11498 MemVT, 11499 LoadSDN->getMemOperand()); 11500 11501 // Update the uses. 11502 SDValue NewResults[] = { 11503 SDValue(LD, 0), // The result of load 11504 SDValue(UpdN.getNode(), 2) // Chain 11505 }; 11506 DCI.CombineTo(LD, NewResults); 11507 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result 11508 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register 11509 11510 break; 11511 } 11512 return SDValue(); 11513 } 11514 11515 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during 11516 /// address translation. 11517 static bool performTBISimplification(SDValue Addr, 11518 TargetLowering::DAGCombinerInfo &DCI, 11519 SelectionDAG &DAG) { 11520 APInt DemandedMask = APInt::getLowBitsSet(64, 56); 11521 KnownBits Known; 11522 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 11523 !DCI.isBeforeLegalizeOps()); 11524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11525 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) { 11526 DCI.CommitTargetLoweringOpt(TLO); 11527 return true; 11528 } 11529 return false; 11530 } 11531 11532 static SDValue performSTORECombine(SDNode *N, 11533 TargetLowering::DAGCombinerInfo &DCI, 11534 SelectionDAG &DAG, 11535 const AArch64Subtarget *Subtarget) { 11536 if (SDValue Split = splitStores(N, DCI, DAG, Subtarget)) 11537 return Split; 11538 11539 if (Subtarget->supportsAddressTopByteIgnored() && 11540 performTBISimplification(N->getOperand(2), DCI, DAG)) 11541 return SDValue(N, 0); 11542 11543 return SDValue(); 11544 } 11545 11546 11547 /// Target-specific DAG combine function for NEON load/store intrinsics 11548 /// to merge base address updates. 11549 static SDValue performNEONPostLDSTCombine(SDNode *N, 11550 TargetLowering::DAGCombinerInfo &DCI, 11551 SelectionDAG &DAG) { 11552 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 11553 return SDValue(); 11554 11555 unsigned AddrOpIdx = N->getNumOperands() - 1; 11556 SDValue Addr = N->getOperand(AddrOpIdx); 11557 11558 // Search for a use of the address operand that is an increment. 11559 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 11560 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 11561 SDNode *User = *UI; 11562 if (User->getOpcode() != ISD::ADD || 11563 UI.getUse().getResNo() != Addr.getResNo()) 11564 continue; 11565 11566 // Check that the add is independent of the load/store. Otherwise, folding 11567 // it would create a cycle. 11568 SmallPtrSet<const SDNode *, 32> Visited; 11569 SmallVector<const SDNode *, 16> Worklist; 11570 Visited.insert(Addr.getNode()); 11571 Worklist.push_back(N); 11572 Worklist.push_back(User); 11573 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || 11574 SDNode::hasPredecessorHelper(User, Visited, Worklist)) 11575 continue; 11576 11577 // Find the new opcode for the updating load/store. 11578 bool IsStore = false; 11579 bool IsLaneOp = false; 11580 bool IsDupOp = false; 11581 unsigned NewOpc = 0; 11582 unsigned NumVecs = 0; 11583 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 11584 switch (IntNo) { 11585 default: llvm_unreachable("unexpected intrinsic for Neon base update"); 11586 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; 11587 NumVecs = 2; break; 11588 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; 11589 NumVecs = 3; break; 11590 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; 11591 NumVecs = 4; break; 11592 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; 11593 NumVecs = 2; IsStore = true; break; 11594 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; 11595 NumVecs = 3; IsStore = true; break; 11596 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; 11597 NumVecs = 4; IsStore = true; break; 11598 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; 11599 NumVecs = 2; break; 11600 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; 11601 NumVecs = 3; break; 11602 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; 11603 NumVecs = 4; break; 11604 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; 11605 NumVecs = 2; IsStore = true; break; 11606 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; 11607 NumVecs = 3; IsStore = true; break; 11608 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; 11609 NumVecs = 4; IsStore = true; break; 11610 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; 11611 NumVecs = 2; IsDupOp = true; break; 11612 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; 11613 NumVecs = 3; IsDupOp = true; break; 11614 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; 11615 NumVecs = 4; IsDupOp = true; break; 11616 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; 11617 NumVecs = 2; IsLaneOp = true; break; 11618 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; 11619 NumVecs = 3; IsLaneOp = true; break; 11620 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; 11621 NumVecs = 4; IsLaneOp = true; break; 11622 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; 11623 NumVecs = 2; IsStore = true; IsLaneOp = true; break; 11624 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; 11625 NumVecs = 3; IsStore = true; IsLaneOp = true; break; 11626 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; 11627 NumVecs = 4; IsStore = true; IsLaneOp = true; break; 11628 } 11629 11630 EVT VecTy; 11631 if (IsStore) 11632 VecTy = N->getOperand(2).getValueType(); 11633 else 11634 VecTy = N->getValueType(0); 11635 11636 // If the increment is a constant, it must match the memory ref size. 11637 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 11638 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 11639 uint32_t IncVal = CInc->getZExtValue(); 11640 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 11641 if (IsLaneOp || IsDupOp) 11642 NumBytes /= VecTy.getVectorNumElements(); 11643 if (IncVal != NumBytes) 11644 continue; 11645 Inc = DAG.getRegister(AArch64::XZR, MVT::i64); 11646 } 11647 SmallVector<SDValue, 8> Ops; 11648 Ops.push_back(N->getOperand(0)); // Incoming chain 11649 // Load lane and store have vector list as input. 11650 if (IsLaneOp || IsStore) 11651 for (unsigned i = 2; i < AddrOpIdx; ++i) 11652 Ops.push_back(N->getOperand(i)); 11653 Ops.push_back(Addr); // Base register 11654 Ops.push_back(Inc); 11655 11656 // Return Types. 11657 EVT Tys[6]; 11658 unsigned NumResultVecs = (IsStore ? 0 : NumVecs); 11659 unsigned n; 11660 for (n = 0; n < NumResultVecs; ++n) 11661 Tys[n] = VecTy; 11662 Tys[n++] = MVT::i64; // Type of write back register 11663 Tys[n] = MVT::Other; // Type of the chain 11664 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); 11665 11666 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); 11667 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, 11668 MemInt->getMemoryVT(), 11669 MemInt->getMemOperand()); 11670 11671 // Update the uses. 11672 std::vector<SDValue> NewResults; 11673 for (unsigned i = 0; i < NumResultVecs; ++i) { 11674 NewResults.push_back(SDValue(UpdN.getNode(), i)); 11675 } 11676 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); 11677 DCI.CombineTo(N, NewResults); 11678 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 11679 11680 break; 11681 } 11682 return SDValue(); 11683 } 11684 11685 // Checks to see if the value is the prescribed width and returns information 11686 // about its extension mode. 11687 static 11688 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { 11689 ExtType = ISD::NON_EXTLOAD; 11690 switch(V.getNode()->getOpcode()) { 11691 default: 11692 return false; 11693 case ISD::LOAD: { 11694 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode()); 11695 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) 11696 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { 11697 ExtType = LoadNode->getExtensionType(); 11698 return true; 11699 } 11700 return false; 11701 } 11702 case ISD::AssertSext: { 11703 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); 11704 if ((TypeNode->getVT() == MVT::i8 && width == 8) 11705 || (TypeNode->getVT() == MVT::i16 && width == 16)) { 11706 ExtType = ISD::SEXTLOAD; 11707 return true; 11708 } 11709 return false; 11710 } 11711 case ISD::AssertZext: { 11712 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); 11713 if ((TypeNode->getVT() == MVT::i8 && width == 8) 11714 || (TypeNode->getVT() == MVT::i16 && width == 16)) { 11715 ExtType = ISD::ZEXTLOAD; 11716 return true; 11717 } 11718 return false; 11719 } 11720 case ISD::Constant: 11721 case ISD::TargetConstant: { 11722 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) < 11723 1LL << (width - 1); 11724 } 11725 } 11726 11727 return true; 11728 } 11729 11730 // This function does a whole lot of voodoo to determine if the tests are 11731 // equivalent without and with a mask. Essentially what happens is that given a 11732 // DAG resembling: 11733 // 11734 // +-------------+ +-------------+ +-------------+ +-------------+ 11735 // | Input | | AddConstant | | CompConstant| | CC | 11736 // +-------------+ +-------------+ +-------------+ +-------------+ 11737 // | | | | 11738 // V V | +----------+ 11739 // +-------------+ +----+ | | 11740 // | ADD | |0xff| | | 11741 // +-------------+ +----+ | | 11742 // | | | | 11743 // V V | | 11744 // +-------------+ | | 11745 // | AND | | | 11746 // +-------------+ | | 11747 // | | | 11748 // +-----+ | | 11749 // | | | 11750 // V V V 11751 // +-------------+ 11752 // | CMP | 11753 // +-------------+ 11754 // 11755 // The AND node may be safely removed for some combinations of inputs. In 11756 // particular we need to take into account the extension type of the Input, 11757 // the exact values of AddConstant, CompConstant, and CC, along with the nominal 11758 // width of the input (this can work for any width inputs, the above graph is 11759 // specific to 8 bits. 11760 // 11761 // The specific equations were worked out by generating output tables for each 11762 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The 11763 // problem was simplified by working with 4 bit inputs, which means we only 11764 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero 11765 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 11766 // patterns present in both extensions (0,7). For every distinct set of 11767 // AddConstant and CompConstants bit patterns we can consider the masked and 11768 // unmasked versions to be equivalent if the result of this function is true for 11769 // all 16 distinct bit patterns of for the current extension type of Input (w0). 11770 // 11771 // sub w8, w0, w1 11772 // and w10, w8, #0x0f 11773 // cmp w8, w2 11774 // cset w9, AArch64CC 11775 // cmp w10, w2 11776 // cset w11, AArch64CC 11777 // cmp w9, w11 11778 // cset w0, eq 11779 // ret 11780 // 11781 // Since the above function shows when the outputs are equivalent it defines 11782 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and 11783 // would be expensive to run during compiles. The equations below were written 11784 // in a test harness that confirmed they gave equivalent outputs to the above 11785 // for all inputs function, so they can be used determine if the removal is 11786 // legal instead. 11787 // 11788 // isEquivalentMaskless() is the code for testing if the AND can be removed 11789 // factored out of the DAG recognition as the DAG can take several forms. 11790 11791 static bool isEquivalentMaskless(unsigned CC, unsigned width, 11792 ISD::LoadExtType ExtType, int AddConstant, 11793 int CompConstant) { 11794 // By being careful about our equations and only writing the in term 11795 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can 11796 // make them generally applicable to all bit widths. 11797 int MaxUInt = (1 << width); 11798 11799 // For the purposes of these comparisons sign extending the type is 11800 // equivalent to zero extending the add and displacing it by half the integer 11801 // width. Provided we are careful and make sure our equations are valid over 11802 // the whole range we can just adjust the input and avoid writing equations 11803 // for sign extended inputs. 11804 if (ExtType == ISD::SEXTLOAD) 11805 AddConstant -= (1 << (width-1)); 11806 11807 switch(CC) { 11808 case AArch64CC::LE: 11809 case AArch64CC::GT: 11810 if ((AddConstant == 0) || 11811 (CompConstant == MaxUInt - 1 && AddConstant < 0) || 11812 (AddConstant >= 0 && CompConstant < 0) || 11813 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) 11814 return true; 11815 break; 11816 case AArch64CC::LT: 11817 case AArch64CC::GE: 11818 if ((AddConstant == 0) || 11819 (AddConstant >= 0 && CompConstant <= 0) || 11820 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) 11821 return true; 11822 break; 11823 case AArch64CC::HI: 11824 case AArch64CC::LS: 11825 if ((AddConstant >= 0 && CompConstant < 0) || 11826 (AddConstant <= 0 && CompConstant >= -1 && 11827 CompConstant < AddConstant + MaxUInt)) 11828 return true; 11829 break; 11830 case AArch64CC::PL: 11831 case AArch64CC::MI: 11832 if ((AddConstant == 0) || 11833 (AddConstant > 0 && CompConstant <= 0) || 11834 (AddConstant < 0 && CompConstant <= AddConstant)) 11835 return true; 11836 break; 11837 case AArch64CC::LO: 11838 case AArch64CC::HS: 11839 if ((AddConstant >= 0 && CompConstant <= 0) || 11840 (AddConstant <= 0 && CompConstant >= 0 && 11841 CompConstant <= AddConstant + MaxUInt)) 11842 return true; 11843 break; 11844 case AArch64CC::EQ: 11845 case AArch64CC::NE: 11846 if ((AddConstant > 0 && CompConstant < 0) || 11847 (AddConstant < 0 && CompConstant >= 0 && 11848 CompConstant < AddConstant + MaxUInt) || 11849 (AddConstant >= 0 && CompConstant >= 0 && 11850 CompConstant >= AddConstant) || 11851 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) 11852 return true; 11853 break; 11854 case AArch64CC::VS: 11855 case AArch64CC::VC: 11856 case AArch64CC::AL: 11857 case AArch64CC::NV: 11858 return true; 11859 case AArch64CC::Invalid: 11860 break; 11861 } 11862 11863 return false; 11864 } 11865 11866 static 11867 SDValue performCONDCombine(SDNode *N, 11868 TargetLowering::DAGCombinerInfo &DCI, 11869 SelectionDAG &DAG, unsigned CCIndex, 11870 unsigned CmpIndex) { 11871 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue(); 11872 SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); 11873 unsigned CondOpcode = SubsNode->getOpcode(); 11874 11875 if (CondOpcode != AArch64ISD::SUBS) 11876 return SDValue(); 11877 11878 // There is a SUBS feeding this condition. Is it fed by a mask we can 11879 // use? 11880 11881 SDNode *AndNode = SubsNode->getOperand(0).getNode(); 11882 unsigned MaskBits = 0; 11883 11884 if (AndNode->getOpcode() != ISD::AND) 11885 return SDValue(); 11886 11887 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) { 11888 uint32_t CNV = CN->getZExtValue(); 11889 if (CNV == 255) 11890 MaskBits = 8; 11891 else if (CNV == 65535) 11892 MaskBits = 16; 11893 } 11894 11895 if (!MaskBits) 11896 return SDValue(); 11897 11898 SDValue AddValue = AndNode->getOperand(0); 11899 11900 if (AddValue.getOpcode() != ISD::ADD) 11901 return SDValue(); 11902 11903 // The basic dag structure is correct, grab the inputs and validate them. 11904 11905 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); 11906 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); 11907 SDValue SubsInputValue = SubsNode->getOperand(1); 11908 11909 // The mask is present and the provenance of all the values is a smaller type, 11910 // lets see if the mask is superfluous. 11911 11912 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) || 11913 !isa<ConstantSDNode>(SubsInputValue.getNode())) 11914 return SDValue(); 11915 11916 ISD::LoadExtType ExtType; 11917 11918 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || 11919 !checkValueWidth(AddInputValue2, MaskBits, ExtType) || 11920 !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) 11921 return SDValue(); 11922 11923 if(!isEquivalentMaskless(CC, MaskBits, ExtType, 11924 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(), 11925 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue())) 11926 return SDValue(); 11927 11928 // The AND is not necessary, remove it. 11929 11930 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), 11931 SubsNode->getValueType(1)); 11932 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; 11933 11934 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); 11935 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); 11936 11937 return SDValue(N, 0); 11938 } 11939 11940 // Optimize compare with zero and branch. 11941 static SDValue performBRCONDCombine(SDNode *N, 11942 TargetLowering::DAGCombinerInfo &DCI, 11943 SelectionDAG &DAG) { 11944 MachineFunction &MF = DAG.getMachineFunction(); 11945 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions 11946 // will not be produced, as they are conditional branch instructions that do 11947 // not set flags. 11948 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) 11949 return SDValue(); 11950 11951 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3)) 11952 N = NV.getNode(); 11953 SDValue Chain = N->getOperand(0); 11954 SDValue Dest = N->getOperand(1); 11955 SDValue CCVal = N->getOperand(2); 11956 SDValue Cmp = N->getOperand(3); 11957 11958 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); 11959 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); 11960 if (CC != AArch64CC::EQ && CC != AArch64CC::NE) 11961 return SDValue(); 11962 11963 unsigned CmpOpc = Cmp.getOpcode(); 11964 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) 11965 return SDValue(); 11966 11967 // Only attempt folding if there is only one use of the flag and no use of the 11968 // value. 11969 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) 11970 return SDValue(); 11971 11972 SDValue LHS = Cmp.getOperand(0); 11973 SDValue RHS = Cmp.getOperand(1); 11974 11975 assert(LHS.getValueType() == RHS.getValueType() && 11976 "Expected the value type to be the same for both operands!"); 11977 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) 11978 return SDValue(); 11979 11980 if (isNullConstant(LHS)) 11981 std::swap(LHS, RHS); 11982 11983 if (!isNullConstant(RHS)) 11984 return SDValue(); 11985 11986 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || 11987 LHS.getOpcode() == ISD::SRL) 11988 return SDValue(); 11989 11990 // Fold the compare into the branch instruction. 11991 SDValue BR; 11992 if (CC == AArch64CC::EQ) 11993 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); 11994 else 11995 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); 11996 11997 // Do not add new nodes to DAG combiner worklist. 11998 DCI.CombineTo(N, BR, false); 11999 12000 return SDValue(); 12001 } 12002 12003 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test 12004 // as well as whether the test should be inverted. This code is required to 12005 // catch these cases (as opposed to standard dag combines) because 12006 // AArch64ISD::TBZ is matched during legalization. 12007 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert, 12008 SelectionDAG &DAG) { 12009 12010 if (!Op->hasOneUse()) 12011 return Op; 12012 12013 // We don't handle undef/constant-fold cases below, as they should have 12014 // already been taken care of (e.g. and of 0, test of undefined shifted bits, 12015 // etc.) 12016 12017 // (tbz (trunc x), b) -> (tbz x, b) 12018 // This case is just here to enable more of the below cases to be caught. 12019 if (Op->getOpcode() == ISD::TRUNCATE && 12020 Bit < Op->getValueType(0).getSizeInBits()) { 12021 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12022 } 12023 12024 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits. 12025 if (Op->getOpcode() == ISD::ANY_EXTEND && 12026 Bit < Op->getOperand(0).getValueSizeInBits()) { 12027 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12028 } 12029 12030 if (Op->getNumOperands() != 2) 12031 return Op; 12032 12033 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 12034 if (!C) 12035 return Op; 12036 12037 switch (Op->getOpcode()) { 12038 default: 12039 return Op; 12040 12041 // (tbz (and x, m), b) -> (tbz x, b) 12042 case ISD::AND: 12043 if ((C->getZExtValue() >> Bit) & 1) 12044 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12045 return Op; 12046 12047 // (tbz (shl x, c), b) -> (tbz x, b-c) 12048 case ISD::SHL: 12049 if (C->getZExtValue() <= Bit && 12050 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { 12051 Bit = Bit - C->getZExtValue(); 12052 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12053 } 12054 return Op; 12055 12056 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x 12057 case ISD::SRA: 12058 Bit = Bit + C->getZExtValue(); 12059 if (Bit >= Op->getValueType(0).getSizeInBits()) 12060 Bit = Op->getValueType(0).getSizeInBits() - 1; 12061 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12062 12063 // (tbz (srl x, c), b) -> (tbz x, b+c) 12064 case ISD::SRL: 12065 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { 12066 Bit = Bit + C->getZExtValue(); 12067 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12068 } 12069 return Op; 12070 12071 // (tbz (xor x, -1), b) -> (tbnz x, b) 12072 case ISD::XOR: 12073 if ((C->getZExtValue() >> Bit) & 1) 12074 Invert = !Invert; 12075 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); 12076 } 12077 } 12078 12079 // Optimize test single bit zero/non-zero and branch. 12080 static SDValue performTBZCombine(SDNode *N, 12081 TargetLowering::DAGCombinerInfo &DCI, 12082 SelectionDAG &DAG) { 12083 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); 12084 bool Invert = false; 12085 SDValue TestSrc = N->getOperand(1); 12086 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG); 12087 12088 if (TestSrc == NewTestSrc) 12089 return SDValue(); 12090 12091 unsigned NewOpc = N->getOpcode(); 12092 if (Invert) { 12093 if (NewOpc == AArch64ISD::TBZ) 12094 NewOpc = AArch64ISD::TBNZ; 12095 else { 12096 assert(NewOpc == AArch64ISD::TBNZ); 12097 NewOpc = AArch64ISD::TBZ; 12098 } 12099 } 12100 12101 SDLoc DL(N); 12102 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc, 12103 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3)); 12104 } 12105 12106 // vselect (v1i1 setcc) -> 12107 // vselect (v1iXX setcc) (XX is the size of the compared operand type) 12108 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as 12109 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine 12110 // such VSELECT. 12111 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { 12112 SDValue N0 = N->getOperand(0); 12113 EVT CCVT = N0.getValueType(); 12114 12115 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || 12116 CCVT.getVectorElementType() != MVT::i1) 12117 return SDValue(); 12118 12119 EVT ResVT = N->getValueType(0); 12120 EVT CmpVT = N0.getOperand(0).getValueType(); 12121 // Only combine when the result type is of the same size as the compared 12122 // operands. 12123 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) 12124 return SDValue(); 12125 12126 SDValue IfTrue = N->getOperand(1); 12127 SDValue IfFalse = N->getOperand(2); 12128 SDValue SetCC = 12129 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), 12130 N0.getOperand(0), N0.getOperand(1), 12131 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 12132 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, 12133 IfTrue, IfFalse); 12134 } 12135 12136 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with 12137 /// the compare-mask instructions rather than going via NZCV, even if LHS and 12138 /// RHS are really scalar. This replaces any scalar setcc in the above pattern 12139 /// with a vector one followed by a DUP shuffle on the result. 12140 static SDValue performSelectCombine(SDNode *N, 12141 TargetLowering::DAGCombinerInfo &DCI) { 12142 SelectionDAG &DAG = DCI.DAG; 12143 SDValue N0 = N->getOperand(0); 12144 EVT ResVT = N->getValueType(0); 12145 12146 if (N0.getOpcode() != ISD::SETCC) 12147 return SDValue(); 12148 12149 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered 12150 // scalar SetCCResultType. We also don't expect vectors, because we assume 12151 // that selects fed by vector SETCCs are canonicalized to VSELECT. 12152 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && 12153 "Scalar-SETCC feeding SELECT has unexpected result type!"); 12154 12155 // If NumMaskElts == 0, the comparison is larger than select result. The 12156 // largest real NEON comparison is 64-bits per lane, which means the result is 12157 // at most 32-bits and an illegal vector. Just bail out for now. 12158 EVT SrcVT = N0.getOperand(0).getValueType(); 12159 12160 // Don't try to do this optimization when the setcc itself has i1 operands. 12161 // There are no legal vectors of i1, so this would be pointless. 12162 if (SrcVT == MVT::i1) 12163 return SDValue(); 12164 12165 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); 12166 if (!ResVT.isVector() || NumMaskElts == 0) 12167 return SDValue(); 12168 12169 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); 12170 EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); 12171 12172 // Also bail out if the vector CCVT isn't the same size as ResVT. 12173 // This can happen if the SETCC operand size doesn't divide the ResVT size 12174 // (e.g., f64 vs v3f32). 12175 if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) 12176 return SDValue(); 12177 12178 // Make sure we didn't create illegal types, if we're not supposed to. 12179 assert(DCI.isBeforeLegalize() || 12180 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)); 12181 12182 // First perform a vector comparison, where lane 0 is the one we're interested 12183 // in. 12184 SDLoc DL(N0); 12185 SDValue LHS = 12186 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); 12187 SDValue RHS = 12188 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); 12189 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); 12190 12191 // Now duplicate the comparison mask we want across all other lanes. 12192 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); 12193 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask); 12194 Mask = DAG.getNode(ISD::BITCAST, DL, 12195 ResVT.changeVectorElementTypeToInteger(), Mask); 12196 12197 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); 12198 } 12199 12200 /// Get rid of unnecessary NVCASTs (that don't change the type). 12201 static SDValue performNVCASTCombine(SDNode *N) { 12202 if (N->getValueType(0) == N->getOperand(0).getValueType()) 12203 return N->getOperand(0); 12204 12205 return SDValue(); 12206 } 12207 12208 // If all users of the globaladdr are of the form (globaladdr + constant), find 12209 // the smallest constant, fold it into the globaladdr's offset and rewrite the 12210 // globaladdr as (globaladdr + constant) - constant. 12211 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG, 12212 const AArch64Subtarget *Subtarget, 12213 const TargetMachine &TM) { 12214 auto *GN = cast<GlobalAddressSDNode>(N); 12215 if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) != 12216 AArch64II::MO_NO_FLAG) 12217 return SDValue(); 12218 12219 uint64_t MinOffset = -1ull; 12220 for (SDNode *N : GN->uses()) { 12221 if (N->getOpcode() != ISD::ADD) 12222 return SDValue(); 12223 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0)); 12224 if (!C) 12225 C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 12226 if (!C) 12227 return SDValue(); 12228 MinOffset = std::min(MinOffset, C->getZExtValue()); 12229 } 12230 uint64_t Offset = MinOffset + GN->getOffset(); 12231 12232 // Require that the new offset is larger than the existing one. Otherwise, we 12233 // can end up oscillating between two possible DAGs, for example, 12234 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1). 12235 if (Offset <= uint64_t(GN->getOffset())) 12236 return SDValue(); 12237 12238 // Check whether folding this offset is legal. It must not go out of bounds of 12239 // the referenced object to avoid violating the code model, and must be 12240 // smaller than 2^21 because this is the largest offset expressible in all 12241 // object formats. 12242 // 12243 // This check also prevents us from folding negative offsets, which will end 12244 // up being treated in the same way as large positive ones. They could also 12245 // cause code model violations, and aren't really common enough to matter. 12246 if (Offset >= (1 << 21)) 12247 return SDValue(); 12248 12249 const GlobalValue *GV = GN->getGlobal(); 12250 Type *T = GV->getValueType(); 12251 if (!T->isSized() || 12252 Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) 12253 return SDValue(); 12254 12255 SDLoc DL(GN); 12256 SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset); 12257 return DAG.getNode(ISD::SUB, DL, MVT::i64, Result, 12258 DAG.getConstant(MinOffset, DL, MVT::i64)); 12259 } 12260 12261 // Returns an SVE type that ContentTy can be trivially sign or zero extended 12262 // into. 12263 static MVT getSVEContainerType(EVT ContentTy) { 12264 assert(ContentTy.isSimple() && "No SVE containers for extended types"); 12265 12266 switch (ContentTy.getSimpleVT().SimpleTy) { 12267 default: 12268 llvm_unreachable("No known SVE container for this MVT type"); 12269 case MVT::nxv2i8: 12270 case MVT::nxv2i16: 12271 case MVT::nxv2i32: 12272 case MVT::nxv2i64: 12273 case MVT::nxv2f32: 12274 case MVT::nxv2f64: 12275 return MVT::nxv2i64; 12276 case MVT::nxv4i8: 12277 case MVT::nxv4i16: 12278 case MVT::nxv4i32: 12279 case MVT::nxv4f32: 12280 return MVT::nxv4i32; 12281 } 12282 } 12283 12284 static SDValue performST1ScatterCombine(SDNode *N, SelectionDAG &DAG, 12285 unsigned Opcode, 12286 bool OnlyPackedOffsets = true) { 12287 const SDValue Src = N->getOperand(2); 12288 const EVT SrcVT = Src->getValueType(0); 12289 assert(SrcVT.isScalableVector() && 12290 "Scatter stores are only possible for SVE vectors"); 12291 12292 SDLoc DL(N); 12293 MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT(); 12294 12295 // Make sure that source data will fit into an SVE register 12296 if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) 12297 return SDValue(); 12298 12299 // For FPs, ACLE only supports _packed_ single and double precision types. 12300 if (SrcElVT.isFloatingPoint()) 12301 if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64)) 12302 return SDValue(); 12303 12304 // Depending on the addressing mode, this is either a pointer or a vector of 12305 // pointers (that fits into one register) 12306 const SDValue Base = N->getOperand(4); 12307 // Depending on the addressing mode, this is either a single offset or a 12308 // vector of offsets (that fits into one register) 12309 SDValue Offset = N->getOperand(5); 12310 12311 auto &TLI = DAG.getTargetLoweringInfo(); 12312 if (!TLI.isTypeLegal(Base.getValueType())) 12313 return SDValue(); 12314 12315 // Some scatter store variants allow unpacked offsets, but only as nxv2i32 12316 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to 12317 // nxv2i64. Legalize accordingly. 12318 if (!OnlyPackedOffsets && 12319 Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) 12320 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); 12321 12322 if (!TLI.isTypeLegal(Offset.getValueType())) 12323 return SDValue(); 12324 12325 // Source value type that is representable in hardware 12326 EVT HwSrcVt = getSVEContainerType(SrcVT); 12327 12328 // Keep the original type of the input data to store - this is needed to 12329 // differentiate between ST1B, ST1H, ST1W and ST1D. For FP values we want the 12330 // integer equivalent, so just use HwSrcVt. 12331 SDValue InputVT = DAG.getValueType(SrcVT); 12332 if (SrcVT.isFloatingPoint()) 12333 InputVT = DAG.getValueType(HwSrcVt); 12334 12335 SDVTList VTs = DAG.getVTList(MVT::Other); 12336 SDValue SrcNew; 12337 12338 if (Src.getValueType().isFloatingPoint()) 12339 SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src); 12340 else 12341 SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src); 12342 12343 SDValue Ops[] = {N->getOperand(0), // Chain 12344 SrcNew, 12345 N->getOperand(3), // Pg 12346 Base, 12347 Offset, 12348 InputVT}; 12349 12350 return DAG.getNode(Opcode, DL, VTs, Ops); 12351 } 12352 12353 static SDValue performLD1GatherCombine(SDNode *N, SelectionDAG &DAG, 12354 unsigned Opcode, 12355 bool OnlyPackedOffsets = true) { 12356 EVT RetVT = N->getValueType(0); 12357 assert(RetVT.isScalableVector() && 12358 "Gather loads are only possible for SVE vectors"); 12359 SDLoc DL(N); 12360 12361 if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) 12362 return SDValue(); 12363 12364 // Depending on the addressing mode, this is either a pointer or a vector of 12365 // pointers (that fits into one register) 12366 const SDValue Base = N->getOperand(3); 12367 // Depending on the addressing mode, this is either a single offset or a 12368 // vector of offsets (that fits into one register) 12369 SDValue Offset = N->getOperand(4); 12370 12371 auto &TLI = DAG.getTargetLoweringInfo(); 12372 if (!TLI.isTypeLegal(Base.getValueType())) 12373 return SDValue(); 12374 12375 // Some gather load variants allow unpacked offsets, but only as nxv2i32 12376 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to 12377 // nxv2i64. Legalize accordingly. 12378 if (!OnlyPackedOffsets && 12379 Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) 12380 Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); 12381 12382 // Return value type that is representable in hardware 12383 EVT HwRetVt = getSVEContainerType(RetVT); 12384 12385 // Keep the original output value type around - this will better inform 12386 // optimisations (e.g. instruction folding when load is followed by 12387 // zext/sext). This will only be used for ints, so the value for FPs 12388 // doesn't matter. 12389 SDValue OutVT = DAG.getValueType(RetVT); 12390 if (RetVT.isFloatingPoint()) 12391 OutVT = DAG.getValueType(HwRetVt); 12392 12393 SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other); 12394 SDValue Ops[] = {N->getOperand(0), // Chain 12395 N->getOperand(2), // Pg 12396 Base, Offset, OutVT}; 12397 12398 SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops); 12399 SDValue LoadChain = SDValue(Load.getNode(), 1); 12400 12401 if (RetVT.isInteger() && (RetVT != HwRetVt)) 12402 Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0)); 12403 12404 // If the original return value was FP, bitcast accordingly. Doing it here 12405 // means that we can avoid adding TableGen patterns for FPs. 12406 if (RetVT.isFloatingPoint()) 12407 Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0)); 12408 12409 return DAG.getMergeValues({Load, LoadChain}, DL); 12410 } 12411 12412 12413 static SDValue 12414 performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 12415 SelectionDAG &DAG) { 12416 if (DCI.isBeforeLegalizeOps()) 12417 return SDValue(); 12418 12419 SDValue Src = N->getOperand(0); 12420 unsigned Opc = Src->getOpcode(); 12421 12422 // Gather load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates 12423 // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes. 12424 unsigned NewOpc; 12425 switch (Opc) { 12426 case AArch64ISD::GLD1: 12427 NewOpc = AArch64ISD::GLD1S; 12428 break; 12429 case AArch64ISD::GLD1_SCALED: 12430 NewOpc = AArch64ISD::GLD1S_SCALED; 12431 break; 12432 case AArch64ISD::GLD1_SXTW: 12433 NewOpc = AArch64ISD::GLD1S_SXTW; 12434 break; 12435 case AArch64ISD::GLD1_SXTW_SCALED: 12436 NewOpc = AArch64ISD::GLD1S_SXTW_SCALED; 12437 break; 12438 case AArch64ISD::GLD1_UXTW: 12439 NewOpc = AArch64ISD::GLD1S_UXTW; 12440 break; 12441 case AArch64ISD::GLD1_UXTW_SCALED: 12442 NewOpc = AArch64ISD::GLD1S_UXTW_SCALED; 12443 break; 12444 case AArch64ISD::GLD1_IMM: 12445 NewOpc = AArch64ISD::GLD1S_IMM; 12446 break; 12447 default: 12448 return SDValue(); 12449 } 12450 12451 EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 12452 EVT GLD1SrcMemVT = cast<VTSDNode>(Src->getOperand(4))->getVT(); 12453 12454 if ((SignExtSrcVT != GLD1SrcMemVT) || !Src.hasOneUse()) 12455 return SDValue(); 12456 12457 EVT DstVT = N->getValueType(0); 12458 SDVTList VTs = DAG.getVTList(DstVT, MVT::Other); 12459 SDValue Ops[] = {Src->getOperand(0), Src->getOperand(1), Src->getOperand(2), 12460 Src->getOperand(3), Src->getOperand(4)}; 12461 12462 SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops); 12463 DCI.CombineTo(N, ExtLoad); 12464 DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1)); 12465 12466 // Return N so it doesn't get rechecked 12467 return SDValue(N, 0); 12468 } 12469 12470 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, 12471 DAGCombinerInfo &DCI) const { 12472 SelectionDAG &DAG = DCI.DAG; 12473 switch (N->getOpcode()) { 12474 default: 12475 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n"); 12476 break; 12477 case ISD::ADD: 12478 case ISD::SUB: 12479 return performAddSubLongCombine(N, DCI, DAG); 12480 case ISD::XOR: 12481 return performXorCombine(N, DAG, DCI, Subtarget); 12482 case ISD::MUL: 12483 return performMulCombine(N, DAG, DCI, Subtarget); 12484 case ISD::SINT_TO_FP: 12485 case ISD::UINT_TO_FP: 12486 return performIntToFpCombine(N, DAG, Subtarget); 12487 case ISD::FP_TO_SINT: 12488 case ISD::FP_TO_UINT: 12489 return performFpToIntCombine(N, DAG, DCI, Subtarget); 12490 case ISD::FDIV: 12491 return performFDivCombine(N, DAG, DCI, Subtarget); 12492 case ISD::OR: 12493 return performORCombine(N, DCI, Subtarget); 12494 case ISD::AND: 12495 return performANDCombine(N, DCI); 12496 case ISD::SRL: 12497 return performSRLCombine(N, DCI); 12498 case ISD::INTRINSIC_WO_CHAIN: 12499 return performIntrinsicCombine(N, DCI, Subtarget); 12500 case ISD::ANY_EXTEND: 12501 case ISD::ZERO_EXTEND: 12502 case ISD::SIGN_EXTEND: 12503 return performExtendCombine(N, DCI, DAG); 12504 case ISD::SIGN_EXTEND_INREG: 12505 return performSignExtendInRegCombine(N, DCI, DAG); 12506 case ISD::CONCAT_VECTORS: 12507 return performConcatVectorsCombine(N, DCI, DAG); 12508 case ISD::SELECT: 12509 return performSelectCombine(N, DCI); 12510 case ISD::VSELECT: 12511 return performVSelectCombine(N, DCI.DAG); 12512 case ISD::LOAD: 12513 if (performTBISimplification(N->getOperand(1), DCI, DAG)) 12514 return SDValue(N, 0); 12515 break; 12516 case ISD::STORE: 12517 return performSTORECombine(N, DCI, DAG, Subtarget); 12518 case AArch64ISD::BRCOND: 12519 return performBRCONDCombine(N, DCI, DAG); 12520 case AArch64ISD::TBNZ: 12521 case AArch64ISD::TBZ: 12522 return performTBZCombine(N, DCI, DAG); 12523 case AArch64ISD::CSEL: 12524 return performCONDCombine(N, DCI, DAG, 2, 3); 12525 case AArch64ISD::DUP: 12526 return performPostLD1Combine(N, DCI, false); 12527 case AArch64ISD::NVCAST: 12528 return performNVCASTCombine(N); 12529 case ISD::INSERT_VECTOR_ELT: 12530 return performPostLD1Combine(N, DCI, true); 12531 case ISD::INTRINSIC_VOID: 12532 case ISD::INTRINSIC_W_CHAIN: 12533 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12534 case Intrinsic::aarch64_neon_ld2: 12535 case Intrinsic::aarch64_neon_ld3: 12536 case Intrinsic::aarch64_neon_ld4: 12537 case Intrinsic::aarch64_neon_ld1x2: 12538 case Intrinsic::aarch64_neon_ld1x3: 12539 case Intrinsic::aarch64_neon_ld1x4: 12540 case Intrinsic::aarch64_neon_ld2lane: 12541 case Intrinsic::aarch64_neon_ld3lane: 12542 case Intrinsic::aarch64_neon_ld4lane: 12543 case Intrinsic::aarch64_neon_ld2r: 12544 case Intrinsic::aarch64_neon_ld3r: 12545 case Intrinsic::aarch64_neon_ld4r: 12546 case Intrinsic::aarch64_neon_st2: 12547 case Intrinsic::aarch64_neon_st3: 12548 case Intrinsic::aarch64_neon_st4: 12549 case Intrinsic::aarch64_neon_st1x2: 12550 case Intrinsic::aarch64_neon_st1x3: 12551 case Intrinsic::aarch64_neon_st1x4: 12552 case Intrinsic::aarch64_neon_st2lane: 12553 case Intrinsic::aarch64_neon_st3lane: 12554 case Intrinsic::aarch64_neon_st4lane: 12555 return performNEONPostLDSTCombine(N, DCI, DAG); 12556 case Intrinsic::aarch64_sve_ldnt1: 12557 return performLDNT1Combine(N, DAG); 12558 case Intrinsic::aarch64_sve_stnt1: 12559 return performSTNT1Combine(N, DAG); 12560 case Intrinsic::aarch64_sve_ld1_gather: 12561 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1); 12562 case Intrinsic::aarch64_sve_ld1_gather_index: 12563 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SCALED); 12564 case Intrinsic::aarch64_sve_ld1_gather_sxtw: 12565 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW, 12566 /*OnlyPackedOffsets=*/false); 12567 case Intrinsic::aarch64_sve_ld1_gather_uxtw: 12568 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW, 12569 /*OnlyPackedOffsets=*/false); 12570 case Intrinsic::aarch64_sve_ld1_gather_sxtw_index: 12571 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_SXTW_SCALED, 12572 /*OnlyPackedOffsets=*/false); 12573 case Intrinsic::aarch64_sve_ld1_gather_uxtw_index: 12574 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_UXTW_SCALED, 12575 /*OnlyPackedOffsets=*/false); 12576 case Intrinsic::aarch64_sve_ld1_gather_imm: 12577 return performLD1GatherCombine(N, DAG, AArch64ISD::GLD1_IMM); 12578 case Intrinsic::aarch64_sve_st1_scatter: 12579 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1); 12580 case Intrinsic::aarch64_sve_st1_scatter_index: 12581 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SCALED); 12582 case Intrinsic::aarch64_sve_st1_scatter_sxtw: 12583 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW, 12584 /*OnlyPackedOffsets=*/false); 12585 case Intrinsic::aarch64_sve_st1_scatter_uxtw: 12586 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW, 12587 /*OnlyPackedOffsets=*/false); 12588 case Intrinsic::aarch64_sve_st1_scatter_sxtw_index: 12589 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_SXTW_SCALED, 12590 /*OnlyPackedOffsets=*/false); 12591 case Intrinsic::aarch64_sve_st1_scatter_uxtw_index: 12592 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_UXTW_SCALED, 12593 /*OnlyPackedOffsets=*/false); 12594 case Intrinsic::aarch64_sve_st1_scatter_imm: 12595 return performST1ScatterCombine(N, DAG, AArch64ISD::SST1_IMM); 12596 default: 12597 break; 12598 } 12599 break; 12600 case ISD::GlobalAddress: 12601 return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine()); 12602 } 12603 return SDValue(); 12604 } 12605 12606 // Check if the return value is used as only a return value, as otherwise 12607 // we can't perform a tail-call. In particular, we need to check for 12608 // target ISD nodes that are returns and any other "odd" constructs 12609 // that the generic analysis code won't necessarily catch. 12610 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, 12611 SDValue &Chain) const { 12612 if (N->getNumValues() != 1) 12613 return false; 12614 if (!N->hasNUsesOfValue(1, 0)) 12615 return false; 12616 12617 SDValue TCChain = Chain; 12618 SDNode *Copy = *N->use_begin(); 12619 if (Copy->getOpcode() == ISD::CopyToReg) { 12620 // If the copy has a glue operand, we conservatively assume it isn't safe to 12621 // perform a tail call. 12622 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == 12623 MVT::Glue) 12624 return false; 12625 TCChain = Copy->getOperand(0); 12626 } else if (Copy->getOpcode() != ISD::FP_EXTEND) 12627 return false; 12628 12629 bool HasRet = false; 12630 for (SDNode *Node : Copy->uses()) { 12631 if (Node->getOpcode() != AArch64ISD::RET_FLAG) 12632 return false; 12633 HasRet = true; 12634 } 12635 12636 if (!HasRet) 12637 return false; 12638 12639 Chain = TCChain; 12640 return true; 12641 } 12642 12643 // Return whether the an instruction can potentially be optimized to a tail 12644 // call. This will cause the optimizers to attempt to move, or duplicate, 12645 // return instructions to help enable tail call optimizations for this 12646 // instruction. 12647 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 12648 return CI->isTailCall(); 12649 } 12650 12651 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, 12652 SDValue &Offset, 12653 ISD::MemIndexedMode &AM, 12654 bool &IsInc, 12655 SelectionDAG &DAG) const { 12656 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) 12657 return false; 12658 12659 Base = Op->getOperand(0); 12660 // All of the indexed addressing mode instructions take a signed 12661 // 9 bit immediate offset. 12662 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 12663 int64_t RHSC = RHS->getSExtValue(); 12664 if (Op->getOpcode() == ISD::SUB) 12665 RHSC = -(uint64_t)RHSC; 12666 if (!isInt<9>(RHSC)) 12667 return false; 12668 IsInc = (Op->getOpcode() == ISD::ADD); 12669 Offset = Op->getOperand(1); 12670 return true; 12671 } 12672 return false; 12673 } 12674 12675 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 12676 SDValue &Offset, 12677 ISD::MemIndexedMode &AM, 12678 SelectionDAG &DAG) const { 12679 EVT VT; 12680 SDValue Ptr; 12681 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 12682 VT = LD->getMemoryVT(); 12683 Ptr = LD->getBasePtr(); 12684 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 12685 VT = ST->getMemoryVT(); 12686 Ptr = ST->getBasePtr(); 12687 } else 12688 return false; 12689 12690 bool IsInc; 12691 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) 12692 return false; 12693 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; 12694 return true; 12695 } 12696 12697 bool AArch64TargetLowering::getPostIndexedAddressParts( 12698 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, 12699 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { 12700 EVT VT; 12701 SDValue Ptr; 12702 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 12703 VT = LD->getMemoryVT(); 12704 Ptr = LD->getBasePtr(); 12705 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 12706 VT = ST->getMemoryVT(); 12707 Ptr = ST->getBasePtr(); 12708 } else 12709 return false; 12710 12711 bool IsInc; 12712 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) 12713 return false; 12714 // Post-indexing updates the base, so it's not a valid transform 12715 // if that's not the same as the load's pointer. 12716 if (Ptr != Base) 12717 return false; 12718 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; 12719 return true; 12720 } 12721 12722 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results, 12723 SelectionDAG &DAG) { 12724 SDLoc DL(N); 12725 SDValue Op = N->getOperand(0); 12726 12727 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16) 12728 return; 12729 12730 Op = SDValue( 12731 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, 12732 DAG.getUNDEF(MVT::i32), Op, 12733 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), 12734 0); 12735 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); 12736 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); 12737 } 12738 12739 static void ReplaceReductionResults(SDNode *N, 12740 SmallVectorImpl<SDValue> &Results, 12741 SelectionDAG &DAG, unsigned InterOp, 12742 unsigned AcrossOp) { 12743 EVT LoVT, HiVT; 12744 SDValue Lo, Hi; 12745 SDLoc dl(N); 12746 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 12747 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); 12748 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); 12749 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); 12750 Results.push_back(SplitVal); 12751 } 12752 12753 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) { 12754 SDLoc DL(N); 12755 SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N); 12756 SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, 12757 DAG.getNode(ISD::SRL, DL, MVT::i128, N, 12758 DAG.getConstant(64, DL, MVT::i64))); 12759 return std::make_pair(Lo, Hi); 12760 } 12761 12762 // Create an even/odd pair of X registers holding integer value V. 12763 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { 12764 SDLoc dl(V.getNode()); 12765 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64); 12766 SDValue VHi = DAG.getAnyExtOrTrunc( 12767 DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)), 12768 dl, MVT::i64); 12769 if (DAG.getDataLayout().isBigEndian()) 12770 std::swap (VLo, VHi); 12771 SDValue RegClass = 12772 DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32); 12773 SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32); 12774 SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32); 12775 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; 12776 return SDValue( 12777 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); 12778 } 12779 12780 static void ReplaceCMP_SWAP_128Results(SDNode *N, 12781 SmallVectorImpl<SDValue> &Results, 12782 SelectionDAG &DAG, 12783 const AArch64Subtarget *Subtarget) { 12784 assert(N->getValueType(0) == MVT::i128 && 12785 "AtomicCmpSwap on types less than 128 should be legal"); 12786 12787 if (Subtarget->hasLSE()) { 12788 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type, 12789 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG. 12790 SDValue Ops[] = { 12791 createGPRPairNode(DAG, N->getOperand(2)), // Compare value 12792 createGPRPairNode(DAG, N->getOperand(3)), // Store value 12793 N->getOperand(1), // Ptr 12794 N->getOperand(0), // Chain in 12795 }; 12796 12797 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 12798 12799 unsigned Opcode; 12800 switch (MemOp->getOrdering()) { 12801 case AtomicOrdering::Monotonic: 12802 Opcode = AArch64::CASPX; 12803 break; 12804 case AtomicOrdering::Acquire: 12805 Opcode = AArch64::CASPAX; 12806 break; 12807 case AtomicOrdering::Release: 12808 Opcode = AArch64::CASPLX; 12809 break; 12810 case AtomicOrdering::AcquireRelease: 12811 case AtomicOrdering::SequentiallyConsistent: 12812 Opcode = AArch64::CASPALX; 12813 break; 12814 default: 12815 llvm_unreachable("Unexpected ordering!"); 12816 } 12817 12818 MachineSDNode *CmpSwap = DAG.getMachineNode( 12819 Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops); 12820 DAG.setNodeMemRefs(CmpSwap, {MemOp}); 12821 12822 unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64; 12823 if (DAG.getDataLayout().isBigEndian()) 12824 std::swap(SubReg1, SubReg2); 12825 Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64, 12826 SDValue(CmpSwap, 0))); 12827 Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64, 12828 SDValue(CmpSwap, 0))); 12829 Results.push_back(SDValue(CmpSwap, 1)); // Chain out 12830 return; 12831 } 12832 12833 auto Desired = splitInt128(N->getOperand(2), DAG); 12834 auto New = splitInt128(N->getOperand(3), DAG); 12835 SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second, 12836 New.first, New.second, N->getOperand(0)}; 12837 SDNode *CmpSwap = DAG.getMachineNode( 12838 AArch64::CMP_SWAP_128, SDLoc(N), 12839 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops); 12840 12841 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 12842 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp}); 12843 12844 Results.push_back(SDValue(CmpSwap, 0)); 12845 Results.push_back(SDValue(CmpSwap, 1)); 12846 Results.push_back(SDValue(CmpSwap, 3)); 12847 } 12848 12849 void AArch64TargetLowering::ReplaceNodeResults( 12850 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 12851 switch (N->getOpcode()) { 12852 default: 12853 llvm_unreachable("Don't know how to custom expand this"); 12854 case ISD::BITCAST: 12855 ReplaceBITCASTResults(N, Results, DAG); 12856 return; 12857 case ISD::VECREDUCE_ADD: 12858 case ISD::VECREDUCE_SMAX: 12859 case ISD::VECREDUCE_SMIN: 12860 case ISD::VECREDUCE_UMAX: 12861 case ISD::VECREDUCE_UMIN: 12862 Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG)); 12863 return; 12864 12865 case AArch64ISD::SADDV: 12866 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); 12867 return; 12868 case AArch64ISD::UADDV: 12869 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); 12870 return; 12871 case AArch64ISD::SMINV: 12872 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); 12873 return; 12874 case AArch64ISD::UMINV: 12875 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); 12876 return; 12877 case AArch64ISD::SMAXV: 12878 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); 12879 return; 12880 case AArch64ISD::UMAXV: 12881 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); 12882 return; 12883 case ISD::FP_TO_UINT: 12884 case ISD::FP_TO_SINT: 12885 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); 12886 // Let normal code take care of it by not adding anything to Results. 12887 return; 12888 case ISD::ATOMIC_CMP_SWAP: 12889 ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget); 12890 return; 12891 case ISD::LOAD: { 12892 assert(SDValue(N, 0).getValueType() == MVT::i128 && 12893 "unexpected load's value type"); 12894 LoadSDNode *LoadNode = cast<LoadSDNode>(N); 12895 if (!LoadNode->isVolatile() || LoadNode->getMemoryVT() != MVT::i128) { 12896 // Non-volatile loads are optimized later in AArch64's load/store 12897 // optimizer. 12898 return; 12899 } 12900 12901 SDValue Result = DAG.getMemIntrinsicNode( 12902 AArch64ISD::LDP, SDLoc(N), 12903 DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}), 12904 {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(), 12905 LoadNode->getMemOperand()); 12906 12907 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, 12908 Result.getValue(0), Result.getValue(1)); 12909 Results.append({Pair, Result.getValue(2) /* Chain */}); 12910 return; 12911 } 12912 case ISD::INTRINSIC_WO_CHAIN: { 12913 EVT VT = N->getValueType(0); 12914 assert((VT == MVT::i8 || VT == MVT::i16) && 12915 "custom lowering for unexpected type"); 12916 12917 ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0)); 12918 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 12919 switch (IntID) { 12920 default: 12921 return; 12922 case Intrinsic::aarch64_sve_clasta_n: { 12923 SDLoc DL(N); 12924 auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); 12925 auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32, 12926 N->getOperand(1), Op2, N->getOperand(3)); 12927 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 12928 return; 12929 } 12930 case Intrinsic::aarch64_sve_clastb_n: { 12931 SDLoc DL(N); 12932 auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); 12933 auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32, 12934 N->getOperand(1), Op2, N->getOperand(3)); 12935 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 12936 return; 12937 } 12938 case Intrinsic::aarch64_sve_lasta: { 12939 SDLoc DL(N); 12940 auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32, 12941 N->getOperand(1), N->getOperand(2)); 12942 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 12943 return; 12944 } 12945 case Intrinsic::aarch64_sve_lastb: { 12946 SDLoc DL(N); 12947 auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32, 12948 N->getOperand(1), N->getOperand(2)); 12949 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); 12950 return; 12951 } 12952 } 12953 } 12954 } 12955 } 12956 12957 bool AArch64TargetLowering::useLoadStackGuardNode() const { 12958 if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia()) 12959 return TargetLowering::useLoadStackGuardNode(); 12960 return true; 12961 } 12962 12963 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { 12964 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12965 // reciprocal if there are three or more FDIVs. 12966 return 3; 12967 } 12968 12969 TargetLoweringBase::LegalizeTypeAction 12970 AArch64TargetLowering::getPreferredVectorAction(MVT VT) const { 12971 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, 12972 // v4i16, v2i32 instead of to promote. 12973 if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 || 12974 VT == MVT::v1f32) 12975 return TypeWidenVector; 12976 12977 return TargetLoweringBase::getPreferredVectorAction(VT); 12978 } 12979 12980 // Loads and stores less than 128-bits are already atomic; ones above that 12981 // are doomed anyway, so defer to the default libcall and blame the OS when 12982 // things go wrong. 12983 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 12984 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); 12985 return Size == 128; 12986 } 12987 12988 // Loads and stores less than 128-bits are already atomic; ones above that 12989 // are doomed anyway, so defer to the default libcall and blame the OS when 12990 // things go wrong. 12991 TargetLowering::AtomicExpansionKind 12992 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 12993 unsigned Size = LI->getType()->getPrimitiveSizeInBits(); 12994 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; 12995 } 12996 12997 // For the real atomic operations, we have ldxr/stxr up to 128 bits, 12998 TargetLowering::AtomicExpansionKind 12999 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 13000 if (AI->isFloatingPointOperation()) 13001 return AtomicExpansionKind::CmpXChg; 13002 13003 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 13004 if (Size > 128) return AtomicExpansionKind::None; 13005 // Nand not supported in LSE. 13006 if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC; 13007 // Leave 128 bits to LLSC. 13008 return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC; 13009 } 13010 13011 TargetLowering::AtomicExpansionKind 13012 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( 13013 AtomicCmpXchgInst *AI) const { 13014 // If subtarget has LSE, leave cmpxchg intact for codegen. 13015 if (Subtarget->hasLSE()) 13016 return AtomicExpansionKind::None; 13017 // At -O0, fast-regalloc cannot cope with the live vregs necessary to 13018 // implement cmpxchg without spilling. If the address being exchanged is also 13019 // on the stack and close enough to the spill slot, this can lead to a 13020 // situation where the monitor always gets cleared and the atomic operation 13021 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. 13022 if (getTargetMachine().getOptLevel() == 0) 13023 return AtomicExpansionKind::None; 13024 return AtomicExpansionKind::LLSC; 13025 } 13026 13027 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 13028 AtomicOrdering Ord) const { 13029 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 13030 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); 13031 bool IsAcquire = isAcquireOrStronger(Ord); 13032 13033 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd 13034 // intrinsic must return {i64, i64} and we have to recombine them into a 13035 // single i128 here. 13036 if (ValTy->getPrimitiveSizeInBits() == 128) { 13037 Intrinsic::ID Int = 13038 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; 13039 Function *Ldxr = Intrinsic::getDeclaration(M, Int); 13040 13041 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 13042 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); 13043 13044 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 13045 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 13046 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 13047 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 13048 return Builder.CreateOr( 13049 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 13050 } 13051 13052 Type *Tys[] = { Addr->getType() }; 13053 Intrinsic::ID Int = 13054 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; 13055 Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys); 13056 13057 Type *EltTy = cast<PointerType>(Addr->getType())->getElementType(); 13058 13059 const DataLayout &DL = M->getDataLayout(); 13060 IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy)); 13061 Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy); 13062 13063 return Builder.CreateBitCast(Trunc, EltTy); 13064 } 13065 13066 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( 13067 IRBuilder<> &Builder) const { 13068 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 13069 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); 13070 } 13071 13072 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, 13073 Value *Val, Value *Addr, 13074 AtomicOrdering Ord) const { 13075 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 13076 bool IsRelease = isReleaseOrStronger(Ord); 13077 13078 // Since the intrinsics must have legal type, the i128 intrinsics take two 13079 // parameters: "i64, i64". We must marshal Val into the appropriate form 13080 // before the call. 13081 if (Val->getType()->getPrimitiveSizeInBits() == 128) { 13082 Intrinsic::ID Int = 13083 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; 13084 Function *Stxr = Intrinsic::getDeclaration(M, Int); 13085 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 13086 13087 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); 13088 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); 13089 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 13090 return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); 13091 } 13092 13093 Intrinsic::ID Int = 13094 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; 13095 Type *Tys[] = { Addr->getType() }; 13096 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); 13097 13098 const DataLayout &DL = M->getDataLayout(); 13099 IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType())); 13100 Val = Builder.CreateBitCast(Val, IntValTy); 13101 13102 return Builder.CreateCall(Stxr, 13103 {Builder.CreateZExtOrBitCast( 13104 Val, Stxr->getFunctionType()->getParamType(0)), 13105 Addr}); 13106 } 13107 13108 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( 13109 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { 13110 return Ty->isArrayTy(); 13111 } 13112 13113 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, 13114 EVT) const { 13115 return false; 13116 } 13117 13118 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) { 13119 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 13120 Function *ThreadPointerFunc = 13121 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); 13122 return IRB.CreatePointerCast( 13123 IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc), 13124 Offset), 13125 IRB.getInt8PtrTy()->getPointerTo(0)); 13126 } 13127 13128 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const { 13129 // Android provides a fixed TLS slot for the stack cookie. See the definition 13130 // of TLS_SLOT_STACK_GUARD in 13131 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h 13132 if (Subtarget->isTargetAndroid()) 13133 return UseTlsOffset(IRB, 0x28); 13134 13135 // Fuchsia is similar. 13136 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. 13137 if (Subtarget->isTargetFuchsia()) 13138 return UseTlsOffset(IRB, -0x10); 13139 13140 return TargetLowering::getIRStackGuard(IRB); 13141 } 13142 13143 void AArch64TargetLowering::insertSSPDeclarations(Module &M) const { 13144 // MSVC CRT provides functionalities for stack protection. 13145 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) { 13146 // MSVC CRT has a global variable holding security cookie. 13147 M.getOrInsertGlobal("__security_cookie", 13148 Type::getInt8PtrTy(M.getContext())); 13149 13150 // MSVC CRT has a function to validate security cookie. 13151 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction( 13152 "__security_check_cookie", Type::getVoidTy(M.getContext()), 13153 Type::getInt8PtrTy(M.getContext())); 13154 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) { 13155 F->setCallingConv(CallingConv::Win64); 13156 F->addAttribute(1, Attribute::AttrKind::InReg); 13157 } 13158 return; 13159 } 13160 TargetLowering::insertSSPDeclarations(M); 13161 } 13162 13163 Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const { 13164 // MSVC CRT has a global variable holding security cookie. 13165 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 13166 return M.getGlobalVariable("__security_cookie"); 13167 return TargetLowering::getSDagStackGuard(M); 13168 } 13169 13170 Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const { 13171 // MSVC CRT has a function to validate security cookie. 13172 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) 13173 return M.getFunction("__security_check_cookie"); 13174 return TargetLowering::getSSPStackGuardCheck(M); 13175 } 13176 13177 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 13178 // Android provides a fixed TLS slot for the SafeStack pointer. See the 13179 // definition of TLS_SLOT_SAFESTACK in 13180 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h 13181 if (Subtarget->isTargetAndroid()) 13182 return UseTlsOffset(IRB, 0x48); 13183 13184 // Fuchsia is similar. 13185 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value. 13186 if (Subtarget->isTargetFuchsia()) 13187 return UseTlsOffset(IRB, -0x8); 13188 13189 return TargetLowering::getSafeStackPointerLocation(IRB); 13190 } 13191 13192 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial( 13193 const Instruction &AndI) const { 13194 // Only sink 'and' mask to cmp use block if it is masking a single bit, since 13195 // this is likely to be fold the and/cmp/br into a single tbz instruction. It 13196 // may be beneficial to sink in other cases, but we would have to check that 13197 // the cmp would not get folded into the br to form a cbz for these to be 13198 // beneficial. 13199 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1)); 13200 if (!Mask) 13201 return false; 13202 return Mask->getValue().isPowerOf2(); 13203 } 13204 13205 bool AArch64TargetLowering:: 13206 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 13207 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, 13208 unsigned OldShiftOpcode, unsigned NewShiftOpcode, 13209 SelectionDAG &DAG) const { 13210 // Does baseline recommend not to perform the fold by default? 13211 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 13212 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG)) 13213 return false; 13214 // Else, if this is a vector shift, prefer 'shl'. 13215 return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL; 13216 } 13217 13218 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG, 13219 SDNode *N) const { 13220 if (DAG.getMachineFunction().getFunction().hasMinSize() && 13221 !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin()) 13222 return false; 13223 return true; 13224 } 13225 13226 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 13227 // Update IsSplitCSR in AArch64unctionInfo. 13228 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>(); 13229 AFI->setIsSplitCSR(true); 13230 } 13231 13232 void AArch64TargetLowering::insertCopiesSplitCSR( 13233 MachineBasicBlock *Entry, 13234 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 13235 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); 13236 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 13237 if (!IStart) 13238 return; 13239 13240 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 13241 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 13242 MachineBasicBlock::iterator MBBI = Entry->begin(); 13243 for (const MCPhysReg *I = IStart; *I; ++I) { 13244 const TargetRegisterClass *RC = nullptr; 13245 if (AArch64::GPR64RegClass.contains(*I)) 13246 RC = &AArch64::GPR64RegClass; 13247 else if (AArch64::FPR64RegClass.contains(*I)) 13248 RC = &AArch64::FPR64RegClass; 13249 else 13250 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 13251 13252 Register NewVR = MRI->createVirtualRegister(RC); 13253 // Create copy from CSR to a virtual register. 13254 // FIXME: this currently does not emit CFI pseudo-instructions, it works 13255 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 13256 // nounwind. If we want to generalize this later, we may need to emit 13257 // CFI pseudo-instructions. 13258 assert(Entry->getParent()->getFunction().hasFnAttribute( 13259 Attribute::NoUnwind) && 13260 "Function should be nounwind in insertCopiesSplitCSR!"); 13261 Entry->addLiveIn(*I); 13262 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 13263 .addReg(*I); 13264 13265 // Insert the copy-back instructions right before the terminator. 13266 for (auto *Exit : Exits) 13267 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 13268 TII->get(TargetOpcode::COPY), *I) 13269 .addReg(NewVR); 13270 } 13271 } 13272 13273 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { 13274 // Integer division on AArch64 is expensive. However, when aggressively 13275 // optimizing for code size, we prefer to use a div instruction, as it is 13276 // usually smaller than the alternative sequence. 13277 // The exception to this is vector division. Since AArch64 doesn't have vector 13278 // integer division, leaving the division as-is is a loss even in terms of 13279 // size, because it will have to be scalarized, while the alternative code 13280 // sequence can be performed in vector form. 13281 bool OptSize = 13282 Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize); 13283 return OptSize && !VT.isVector(); 13284 } 13285 13286 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 13287 // We want inc-of-add for scalars and sub-of-not for vectors. 13288 return VT.isScalarInteger(); 13289 } 13290 13291 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const { 13292 return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint(); 13293 } 13294 13295 unsigned 13296 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const { 13297 if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) 13298 return getPointerTy(DL).getSizeInBits(); 13299 13300 return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32; 13301 } 13302 13303 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const { 13304 MF.getFrameInfo().computeMaxCallFrameSize(MF); 13305 TargetLoweringBase::finalizeLowering(MF); 13306 } 13307 13308 // Unlike X86, we let frame lowering assign offsets to all catch objects. 13309 bool AArch64TargetLowering::needsFixedCatchObjects() const { 13310 return false; 13311 } 13312