1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an instruction selector for the AArch64 target. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64TargetMachine.h" 14 #include "MCTargetDesc/AArch64AddressingModes.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/CodeGen/SelectionDAGISel.h" 17 #include "llvm/IR/Function.h" // To access function attributes. 18 #include "llvm/IR/GlobalValue.h" 19 #include "llvm/IR/Intrinsics.h" 20 #include "llvm/IR/IntrinsicsAArch64.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/KnownBits.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "aarch64-isel" 30 31 //===--------------------------------------------------------------------===// 32 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine 33 /// instructions for SelectionDAG operations. 34 /// 35 namespace { 36 37 class AArch64DAGToDAGISel : public SelectionDAGISel { 38 39 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can 40 /// make the right decision when generating code for different targets. 41 const AArch64Subtarget *Subtarget; 42 43 public: 44 explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm, 45 CodeGenOpt::Level OptLevel) 46 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr) {} 47 48 StringRef getPassName() const override { 49 return "AArch64 Instruction Selection"; 50 } 51 52 bool runOnMachineFunction(MachineFunction &MF) override { 53 Subtarget = &MF.getSubtarget<AArch64Subtarget>(); 54 return SelectionDAGISel::runOnMachineFunction(MF); 55 } 56 57 void Select(SDNode *Node) override; 58 59 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 60 /// inline asm expressions. 61 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 62 unsigned ConstraintID, 63 std::vector<SDValue> &OutOps) override; 64 65 bool tryMLAV64LaneV128(SDNode *N); 66 bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N); 67 bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift); 68 bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift); 69 bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift); 70 bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) { 71 return SelectShiftedRegister(N, false, Reg, Shift); 72 } 73 bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) { 74 return SelectShiftedRegister(N, true, Reg, Shift); 75 } 76 bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) { 77 return SelectAddrModeIndexed7S(N, 1, Base, OffImm); 78 } 79 bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) { 80 return SelectAddrModeIndexed7S(N, 2, Base, OffImm); 81 } 82 bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) { 83 return SelectAddrModeIndexed7S(N, 4, Base, OffImm); 84 } 85 bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) { 86 return SelectAddrModeIndexed7S(N, 8, Base, OffImm); 87 } 88 bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) { 89 return SelectAddrModeIndexed7S(N, 16, Base, OffImm); 90 } 91 bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) { 92 return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm); 93 } 94 bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) { 95 return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm); 96 } 97 bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) { 98 return SelectAddrModeIndexed(N, 1, Base, OffImm); 99 } 100 bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) { 101 return SelectAddrModeIndexed(N, 2, Base, OffImm); 102 } 103 bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) { 104 return SelectAddrModeIndexed(N, 4, Base, OffImm); 105 } 106 bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) { 107 return SelectAddrModeIndexed(N, 8, Base, OffImm); 108 } 109 bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) { 110 return SelectAddrModeIndexed(N, 16, Base, OffImm); 111 } 112 bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) { 113 return SelectAddrModeUnscaled(N, 1, Base, OffImm); 114 } 115 bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) { 116 return SelectAddrModeUnscaled(N, 2, Base, OffImm); 117 } 118 bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) { 119 return SelectAddrModeUnscaled(N, 4, Base, OffImm); 120 } 121 bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) { 122 return SelectAddrModeUnscaled(N, 8, Base, OffImm); 123 } 124 bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) { 125 return SelectAddrModeUnscaled(N, 16, Base, OffImm); 126 } 127 128 template<int Width> 129 bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset, 130 SDValue &SignExtend, SDValue &DoShift) { 131 return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift); 132 } 133 134 template<int Width> 135 bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset, 136 SDValue &SignExtend, SDValue &DoShift) { 137 return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift); 138 } 139 140 bool SelectDupZeroOrUndef(SDValue N) { 141 switch(N->getOpcode()) { 142 case ISD::UNDEF: 143 return true; 144 case AArch64ISD::DUP: 145 case ISD::SPLAT_VECTOR: { 146 auto Opnd0 = N->getOperand(0); 147 if (auto CN = dyn_cast<ConstantSDNode>(Opnd0)) 148 if (CN->isNullValue()) 149 return true; 150 if (auto CN = dyn_cast<ConstantFPSDNode>(Opnd0)) 151 if (CN->isZero()) 152 return true; 153 break; 154 } 155 default: 156 break; 157 } 158 159 return false; 160 } 161 162 template<MVT::SimpleValueType VT> 163 bool SelectSVEAddSubImm(SDValue N, SDValue &Imm, SDValue &Shift) { 164 return SelectSVEAddSubImm(N, VT, Imm, Shift); 165 } 166 167 template<MVT::SimpleValueType VT> 168 bool SelectSVELogicalImm(SDValue N, SDValue &Imm) { 169 return SelectSVELogicalImm(N, VT, Imm); 170 } 171 172 // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N. 173 template<signed Min, signed Max, signed Scale, bool Shift> 174 bool SelectCntImm(SDValue N, SDValue &Imm) { 175 if (!isa<ConstantSDNode>(N)) 176 return false; 177 178 int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue(); 179 if (Shift) 180 MulImm = 1LL << MulImm; 181 182 if ((MulImm % std::abs(Scale)) != 0) 183 return false; 184 185 MulImm /= Scale; 186 if ((MulImm >= Min) && (MulImm <= Max)) { 187 Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32); 188 return true; 189 } 190 191 return false; 192 } 193 194 /// Form sequences of consecutive 64/128-bit registers for use in NEON 195 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have 196 /// between 1 and 4 elements. If it contains a single element that is returned 197 /// unchanged; otherwise a REG_SEQUENCE value is returned. 198 SDValue createDTuple(ArrayRef<SDValue> Vecs); 199 SDValue createQTuple(ArrayRef<SDValue> Vecs); 200 201 /// Generic helper for the createDTuple/createQTuple 202 /// functions. Those should almost always be called instead. 203 SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[], 204 const unsigned SubRegs[]); 205 206 void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt); 207 208 bool tryIndexedLoad(SDNode *N); 209 210 bool trySelectStackSlotTagP(SDNode *N); 211 void SelectTagP(SDNode *N); 212 213 void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc, 214 unsigned SubRegIdx); 215 void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc, 216 unsigned SubRegIdx); 217 void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc); 218 void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc); 219 220 void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc); 221 void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc); 222 void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc); 223 void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc); 224 225 bool tryBitfieldExtractOp(SDNode *N); 226 bool tryBitfieldExtractOpFromSExt(SDNode *N); 227 bool tryBitfieldInsertOp(SDNode *N); 228 bool tryBitfieldInsertInZeroOp(SDNode *N); 229 bool tryShiftAmountMod(SDNode *N); 230 bool tryHighFPExt(SDNode *N); 231 232 bool tryReadRegister(SDNode *N); 233 bool tryWriteRegister(SDNode *N); 234 235 // Include the pieces autogenerated from the target description. 236 #include "AArch64GenDAGISel.inc" 237 238 private: 239 bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg, 240 SDValue &Shift); 241 bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base, 242 SDValue &OffImm) { 243 return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm); 244 } 245 bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW, 246 unsigned Size, SDValue &Base, 247 SDValue &OffImm); 248 bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base, 249 SDValue &OffImm); 250 bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base, 251 SDValue &OffImm); 252 bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base, 253 SDValue &Offset, SDValue &SignExtend, 254 SDValue &DoShift); 255 bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base, 256 SDValue &Offset, SDValue &SignExtend, 257 SDValue &DoShift); 258 bool isWorthFolding(SDValue V) const; 259 bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend, 260 SDValue &Offset, SDValue &SignExtend); 261 262 template<unsigned RegWidth> 263 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) { 264 return SelectCVTFixedPosOperand(N, FixedPos, RegWidth); 265 } 266 267 bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width); 268 269 bool SelectCMP_SWAP(SDNode *N); 270 271 bool SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift); 272 273 bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm); 274 275 bool SelectSVESignedArithImm(SDValue N, SDValue &Imm); 276 277 bool SelectSVEArithImm(SDValue N, SDValue &Imm); 278 }; 279 } // end anonymous namespace 280 281 /// isIntImmediate - This method tests to see if the node is a constant 282 /// operand. If so Imm will receive the 32-bit value. 283 static bool isIntImmediate(const SDNode *N, uint64_t &Imm) { 284 if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) { 285 Imm = C->getZExtValue(); 286 return true; 287 } 288 return false; 289 } 290 291 // isIntImmediate - This method tests to see if a constant operand. 292 // If so Imm will receive the value. 293 static bool isIntImmediate(SDValue N, uint64_t &Imm) { 294 return isIntImmediate(N.getNode(), Imm); 295 } 296 297 // isOpcWithIntImmediate - This method tests to see if the node is a specific 298 // opcode and that it has a immediate integer right operand. 299 // If so Imm will receive the 32 bit value. 300 static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc, 301 uint64_t &Imm) { 302 return N->getOpcode() == Opc && 303 isIntImmediate(N->getOperand(1).getNode(), Imm); 304 } 305 306 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand( 307 const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) { 308 switch(ConstraintID) { 309 default: 310 llvm_unreachable("Unexpected asm memory constraint"); 311 case InlineAsm::Constraint_m: 312 case InlineAsm::Constraint_Q: 313 // We need to make sure that this one operand does not end up in XZR, thus 314 // require the address to be in a PointerRegClass register. 315 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); 316 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF); 317 SDLoc dl(Op); 318 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64); 319 SDValue NewOp = 320 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 321 dl, Op.getValueType(), 322 Op, RC), 0); 323 OutOps.push_back(NewOp); 324 return false; 325 } 326 return true; 327 } 328 329 /// SelectArithImmed - Select an immediate value that can be represented as 330 /// a 12-bit value shifted left by either 0 or 12. If so, return true with 331 /// Val set to the 12-bit value and Shift set to the shifter operand. 332 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val, 333 SDValue &Shift) { 334 // This function is called from the addsub_shifted_imm ComplexPattern, 335 // which lists [imm] as the list of opcode it's interested in, however 336 // we still need to check whether the operand is actually an immediate 337 // here because the ComplexPattern opcode list is only used in 338 // root-level opcode matching. 339 if (!isa<ConstantSDNode>(N.getNode())) 340 return false; 341 342 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue(); 343 unsigned ShiftAmt; 344 345 if (Immed >> 12 == 0) { 346 ShiftAmt = 0; 347 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) { 348 ShiftAmt = 12; 349 Immed = Immed >> 12; 350 } else 351 return false; 352 353 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt); 354 SDLoc dl(N); 355 Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32); 356 Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32); 357 return true; 358 } 359 360 /// SelectNegArithImmed - As above, but negates the value before trying to 361 /// select it. 362 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val, 363 SDValue &Shift) { 364 // This function is called from the addsub_shifted_imm ComplexPattern, 365 // which lists [imm] as the list of opcode it's interested in, however 366 // we still need to check whether the operand is actually an immediate 367 // here because the ComplexPattern opcode list is only used in 368 // root-level opcode matching. 369 if (!isa<ConstantSDNode>(N.getNode())) 370 return false; 371 372 // The immediate operand must be a 24-bit zero-extended immediate. 373 uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue(); 374 375 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0" 376 // have the opposite effect on the C flag, so this pattern mustn't match under 377 // those circumstances. 378 if (Immed == 0) 379 return false; 380 381 if (N.getValueType() == MVT::i32) 382 Immed = ~((uint32_t)Immed) + 1; 383 else 384 Immed = ~Immed + 1ULL; 385 if (Immed & 0xFFFFFFFFFF000000ULL) 386 return false; 387 388 Immed &= 0xFFFFFFULL; 389 return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val, 390 Shift); 391 } 392 393 /// getShiftTypeForNode - Translate a shift node to the corresponding 394 /// ShiftType value. 395 static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) { 396 switch (N.getOpcode()) { 397 default: 398 return AArch64_AM::InvalidShiftExtend; 399 case ISD::SHL: 400 return AArch64_AM::LSL; 401 case ISD::SRL: 402 return AArch64_AM::LSR; 403 case ISD::SRA: 404 return AArch64_AM::ASR; 405 case ISD::ROTR: 406 return AArch64_AM::ROR; 407 } 408 } 409 410 /// Determine whether it is worth it to fold SHL into the addressing 411 /// mode. 412 static bool isWorthFoldingSHL(SDValue V) { 413 assert(V.getOpcode() == ISD::SHL && "invalid opcode"); 414 // It is worth folding logical shift of up to three places. 415 auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1)); 416 if (!CSD) 417 return false; 418 unsigned ShiftVal = CSD->getZExtValue(); 419 if (ShiftVal > 3) 420 return false; 421 422 // Check if this particular node is reused in any non-memory related 423 // operation. If yes, do not try to fold this node into the address 424 // computation, since the computation will be kept. 425 const SDNode *Node = V.getNode(); 426 for (SDNode *UI : Node->uses()) 427 if (!isa<MemSDNode>(*UI)) 428 for (SDNode *UII : UI->uses()) 429 if (!isa<MemSDNode>(*UII)) 430 return false; 431 return true; 432 } 433 434 /// Determine whether it is worth to fold V into an extended register. 435 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const { 436 // Trivial if we are optimizing for code size or if there is only 437 // one use of the value. 438 if (CurDAG->shouldOptForSize() || V.hasOneUse()) 439 return true; 440 // If a subtarget has a fastpath LSL we can fold a logical shift into 441 // the addressing mode and save a cycle. 442 if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::SHL && 443 isWorthFoldingSHL(V)) 444 return true; 445 if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::ADD) { 446 const SDValue LHS = V.getOperand(0); 447 const SDValue RHS = V.getOperand(1); 448 if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS)) 449 return true; 450 if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS)) 451 return true; 452 } 453 454 // It hurts otherwise, since the value will be reused. 455 return false; 456 } 457 458 /// SelectShiftedRegister - Select a "shifted register" operand. If the value 459 /// is not shifted, set the Shift operand to default of "LSL 0". The logical 460 /// instructions allow the shifted register to be rotated, but the arithmetic 461 /// instructions do not. The AllowROR parameter specifies whether ROR is 462 /// supported. 463 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR, 464 SDValue &Reg, SDValue &Shift) { 465 AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N); 466 if (ShType == AArch64_AM::InvalidShiftExtend) 467 return false; 468 if (!AllowROR && ShType == AArch64_AM::ROR) 469 return false; 470 471 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 472 unsigned BitSize = N.getValueSizeInBits(); 473 unsigned Val = RHS->getZExtValue() & (BitSize - 1); 474 unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val); 475 476 Reg = N.getOperand(0); 477 Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32); 478 return isWorthFolding(N); 479 } 480 481 return false; 482 } 483 484 /// getExtendTypeForNode - Translate an extend node to the corresponding 485 /// ExtendType value. 486 static AArch64_AM::ShiftExtendType 487 getExtendTypeForNode(SDValue N, bool IsLoadStore = false) { 488 if (N.getOpcode() == ISD::SIGN_EXTEND || 489 N.getOpcode() == ISD::SIGN_EXTEND_INREG) { 490 EVT SrcVT; 491 if (N.getOpcode() == ISD::SIGN_EXTEND_INREG) 492 SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT(); 493 else 494 SrcVT = N.getOperand(0).getValueType(); 495 496 if (!IsLoadStore && SrcVT == MVT::i8) 497 return AArch64_AM::SXTB; 498 else if (!IsLoadStore && SrcVT == MVT::i16) 499 return AArch64_AM::SXTH; 500 else if (SrcVT == MVT::i32) 501 return AArch64_AM::SXTW; 502 assert(SrcVT != MVT::i64 && "extend from 64-bits?"); 503 504 return AArch64_AM::InvalidShiftExtend; 505 } else if (N.getOpcode() == ISD::ZERO_EXTEND || 506 N.getOpcode() == ISD::ANY_EXTEND) { 507 EVT SrcVT = N.getOperand(0).getValueType(); 508 if (!IsLoadStore && SrcVT == MVT::i8) 509 return AArch64_AM::UXTB; 510 else if (!IsLoadStore && SrcVT == MVT::i16) 511 return AArch64_AM::UXTH; 512 else if (SrcVT == MVT::i32) 513 return AArch64_AM::UXTW; 514 assert(SrcVT != MVT::i64 && "extend from 64-bits?"); 515 516 return AArch64_AM::InvalidShiftExtend; 517 } else if (N.getOpcode() == ISD::AND) { 518 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); 519 if (!CSD) 520 return AArch64_AM::InvalidShiftExtend; 521 uint64_t AndMask = CSD->getZExtValue(); 522 523 switch (AndMask) { 524 default: 525 return AArch64_AM::InvalidShiftExtend; 526 case 0xFF: 527 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend; 528 case 0xFFFF: 529 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend; 530 case 0xFFFFFFFF: 531 return AArch64_AM::UXTW; 532 } 533 } 534 535 return AArch64_AM::InvalidShiftExtend; 536 } 537 538 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts. 539 static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) { 540 if (DL->getOpcode() != AArch64ISD::DUPLANE16 && 541 DL->getOpcode() != AArch64ISD::DUPLANE32) 542 return false; 543 544 SDValue SV = DL->getOperand(0); 545 if (SV.getOpcode() != ISD::INSERT_SUBVECTOR) 546 return false; 547 548 SDValue EV = SV.getOperand(1); 549 if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR) 550 return false; 551 552 ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode()); 553 ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode()); 554 LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue(); 555 LaneOp = EV.getOperand(0); 556 557 return true; 558 } 559 560 // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a 561 // high lane extract. 562 static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp, 563 SDValue &LaneOp, int &LaneIdx) { 564 565 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) { 566 std::swap(Op0, Op1); 567 if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) 568 return false; 569 } 570 StdOp = Op1; 571 return true; 572 } 573 574 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand 575 /// is a lane in the upper half of a 128-bit vector. Recognize and select this 576 /// so that we don't emit unnecessary lane extracts. 577 bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) { 578 SDLoc dl(N); 579 SDValue Op0 = N->getOperand(0); 580 SDValue Op1 = N->getOperand(1); 581 SDValue MLAOp1; // Will hold ordinary multiplicand for MLA. 582 SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA. 583 int LaneIdx = -1; // Will hold the lane index. 584 585 if (Op1.getOpcode() != ISD::MUL || 586 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2, 587 LaneIdx)) { 588 std::swap(Op0, Op1); 589 if (Op1.getOpcode() != ISD::MUL || 590 !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2, 591 LaneIdx)) 592 return false; 593 } 594 595 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64); 596 597 SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal }; 598 599 unsigned MLAOpc = ~0U; 600 601 switch (N->getSimpleValueType(0).SimpleTy) { 602 default: 603 llvm_unreachable("Unrecognized MLA."); 604 case MVT::v4i16: 605 MLAOpc = AArch64::MLAv4i16_indexed; 606 break; 607 case MVT::v8i16: 608 MLAOpc = AArch64::MLAv8i16_indexed; 609 break; 610 case MVT::v2i32: 611 MLAOpc = AArch64::MLAv2i32_indexed; 612 break; 613 case MVT::v4i32: 614 MLAOpc = AArch64::MLAv4i32_indexed; 615 break; 616 } 617 618 ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops)); 619 return true; 620 } 621 622 bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) { 623 SDLoc dl(N); 624 SDValue SMULLOp0; 625 SDValue SMULLOp1; 626 int LaneIdx; 627 628 if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1, 629 LaneIdx)) 630 return false; 631 632 SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64); 633 634 SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal }; 635 636 unsigned SMULLOpc = ~0U; 637 638 if (IntNo == Intrinsic::aarch64_neon_smull) { 639 switch (N->getSimpleValueType(0).SimpleTy) { 640 default: 641 llvm_unreachable("Unrecognized SMULL."); 642 case MVT::v4i32: 643 SMULLOpc = AArch64::SMULLv4i16_indexed; 644 break; 645 case MVT::v2i64: 646 SMULLOpc = AArch64::SMULLv2i32_indexed; 647 break; 648 } 649 } else if (IntNo == Intrinsic::aarch64_neon_umull) { 650 switch (N->getSimpleValueType(0).SimpleTy) { 651 default: 652 llvm_unreachable("Unrecognized SMULL."); 653 case MVT::v4i32: 654 SMULLOpc = AArch64::UMULLv4i16_indexed; 655 break; 656 case MVT::v2i64: 657 SMULLOpc = AArch64::UMULLv2i32_indexed; 658 break; 659 } 660 } else 661 llvm_unreachable("Unrecognized intrinsic."); 662 663 ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops)); 664 return true; 665 } 666 667 /// Instructions that accept extend modifiers like UXTW expect the register 668 /// being extended to be a GPR32, but the incoming DAG might be acting on a 669 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if 670 /// this is the case. 671 static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) { 672 if (N.getValueType() == MVT::i32) 673 return N; 674 675 SDLoc dl(N); 676 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); 677 MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 678 dl, MVT::i32, N, SubReg); 679 return SDValue(Node, 0); 680 } 681 682 683 /// SelectArithExtendedRegister - Select a "extended register" operand. This 684 /// operand folds in an extend followed by an optional left shift. 685 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg, 686 SDValue &Shift) { 687 unsigned ShiftVal = 0; 688 AArch64_AM::ShiftExtendType Ext; 689 690 if (N.getOpcode() == ISD::SHL) { 691 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); 692 if (!CSD) 693 return false; 694 ShiftVal = CSD->getZExtValue(); 695 if (ShiftVal > 4) 696 return false; 697 698 Ext = getExtendTypeForNode(N.getOperand(0)); 699 if (Ext == AArch64_AM::InvalidShiftExtend) 700 return false; 701 702 Reg = N.getOperand(0).getOperand(0); 703 } else { 704 Ext = getExtendTypeForNode(N); 705 if (Ext == AArch64_AM::InvalidShiftExtend) 706 return false; 707 708 Reg = N.getOperand(0); 709 710 // Don't match if free 32-bit -> 64-bit zext can be used instead. 711 if (Ext == AArch64_AM::UXTW && 712 Reg->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg.getNode())) 713 return false; 714 } 715 716 // AArch64 mandates that the RHS of the operation must use the smallest 717 // register class that could contain the size being extended from. Thus, 718 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though 719 // there might not be an actual 32-bit value in the program. We can 720 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here. 721 assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX); 722 Reg = narrowIfNeeded(CurDAG, Reg); 723 Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N), 724 MVT::i32); 725 return isWorthFolding(N); 726 } 727 728 /// If there's a use of this ADDlow that's not itself a load/store then we'll 729 /// need to create a real ADD instruction from it anyway and there's no point in 730 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's 731 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding 732 /// leads to duplicated ADRP instructions. 733 static bool isWorthFoldingADDlow(SDValue N) { 734 for (auto Use : N->uses()) { 735 if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE && 736 Use->getOpcode() != ISD::ATOMIC_LOAD && 737 Use->getOpcode() != ISD::ATOMIC_STORE) 738 return false; 739 740 // ldar and stlr have much more restrictive addressing modes (just a 741 // register). 742 if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getOrdering())) 743 return false; 744 } 745 746 return true; 747 } 748 749 /// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit 750 /// immediate" address. The "Size" argument is the size in bytes of the memory 751 /// reference, which determines the scale. 752 bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, 753 unsigned BW, unsigned Size, 754 SDValue &Base, 755 SDValue &OffImm) { 756 SDLoc dl(N); 757 const DataLayout &DL = CurDAG->getDataLayout(); 758 const TargetLowering *TLI = getTargetLowering(); 759 if (N.getOpcode() == ISD::FrameIndex) { 760 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 761 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 762 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 763 return true; 764 } 765 766 // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed 767 // selected here doesn't support labels/immediates, only base+offset. 768 if (CurDAG->isBaseWithConstantOffset(N)) { 769 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 770 if (IsSignedImm) { 771 int64_t RHSC = RHS->getSExtValue(); 772 unsigned Scale = Log2_32(Size); 773 int64_t Range = 0x1LL << (BW - 1); 774 775 if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) && 776 RHSC < (Range << Scale)) { 777 Base = N.getOperand(0); 778 if (Base.getOpcode() == ISD::FrameIndex) { 779 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 780 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 781 } 782 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); 783 return true; 784 } 785 } else { 786 // unsigned Immediate 787 uint64_t RHSC = RHS->getZExtValue(); 788 unsigned Scale = Log2_32(Size); 789 uint64_t Range = 0x1ULL << BW; 790 791 if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) { 792 Base = N.getOperand(0); 793 if (Base.getOpcode() == ISD::FrameIndex) { 794 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 795 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 796 } 797 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); 798 return true; 799 } 800 } 801 } 802 } 803 // Base only. The address will be materialized into a register before 804 // the memory is accessed. 805 // add x0, Xbase, #offset 806 // stp x1, x2, [x0] 807 Base = N; 808 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 809 return true; 810 } 811 812 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit 813 /// immediate" address. The "Size" argument is the size in bytes of the memory 814 /// reference, which determines the scale. 815 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size, 816 SDValue &Base, SDValue &OffImm) { 817 SDLoc dl(N); 818 const DataLayout &DL = CurDAG->getDataLayout(); 819 const TargetLowering *TLI = getTargetLowering(); 820 if (N.getOpcode() == ISD::FrameIndex) { 821 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 822 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 823 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 824 return true; 825 } 826 827 if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) { 828 GlobalAddressSDNode *GAN = 829 dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode()); 830 Base = N.getOperand(0); 831 OffImm = N.getOperand(1); 832 if (!GAN) 833 return true; 834 835 if (GAN->getOffset() % Size == 0) { 836 const GlobalValue *GV = GAN->getGlobal(); 837 unsigned Alignment = GV->getAlignment(); 838 Type *Ty = GV->getValueType(); 839 if (Alignment == 0 && Ty->isSized()) 840 Alignment = DL.getABITypeAlignment(Ty); 841 842 if (Alignment >= Size) 843 return true; 844 } 845 } 846 847 if (CurDAG->isBaseWithConstantOffset(N)) { 848 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 849 int64_t RHSC = (int64_t)RHS->getZExtValue(); 850 unsigned Scale = Log2_32(Size); 851 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) { 852 Base = N.getOperand(0); 853 if (Base.getOpcode() == ISD::FrameIndex) { 854 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 855 Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL)); 856 } 857 OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64); 858 return true; 859 } 860 } 861 } 862 863 // Before falling back to our general case, check if the unscaled 864 // instructions can handle this. If so, that's preferable. 865 if (SelectAddrModeUnscaled(N, Size, Base, OffImm)) 866 return false; 867 868 // Base only. The address will be materialized into a register before 869 // the memory is accessed. 870 // add x0, Xbase, #offset 871 // ldr x0, [x0] 872 Base = N; 873 OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64); 874 return true; 875 } 876 877 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit 878 /// immediate" address. This should only match when there is an offset that 879 /// is not valid for a scaled immediate addressing mode. The "Size" argument 880 /// is the size in bytes of the memory reference, which is needed here to know 881 /// what is valid for a scaled immediate. 882 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size, 883 SDValue &Base, 884 SDValue &OffImm) { 885 if (!CurDAG->isBaseWithConstantOffset(N)) 886 return false; 887 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 888 int64_t RHSC = RHS->getSExtValue(); 889 // If the offset is valid as a scaled immediate, don't match here. 890 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && 891 RHSC < (0x1000 << Log2_32(Size))) 892 return false; 893 if (RHSC >= -256 && RHSC < 256) { 894 Base = N.getOperand(0); 895 if (Base.getOpcode() == ISD::FrameIndex) { 896 int FI = cast<FrameIndexSDNode>(Base)->getIndex(); 897 const TargetLowering *TLI = getTargetLowering(); 898 Base = CurDAG->getTargetFrameIndex( 899 FI, TLI->getPointerTy(CurDAG->getDataLayout())); 900 } 901 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64); 902 return true; 903 } 904 } 905 return false; 906 } 907 908 static SDValue Widen(SelectionDAG *CurDAG, SDValue N) { 909 SDLoc dl(N); 910 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); 911 SDValue ImpDef = SDValue( 912 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0); 913 MachineSDNode *Node = CurDAG->getMachineNode( 914 TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg); 915 return SDValue(Node, 0); 916 } 917 918 /// Check if the given SHL node (\p N), can be used to form an 919 /// extended register for an addressing mode. 920 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size, 921 bool WantExtend, SDValue &Offset, 922 SDValue &SignExtend) { 923 assert(N.getOpcode() == ISD::SHL && "Invalid opcode."); 924 ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); 925 if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue()) 926 return false; 927 928 SDLoc dl(N); 929 if (WantExtend) { 930 AArch64_AM::ShiftExtendType Ext = 931 getExtendTypeForNode(N.getOperand(0), true); 932 if (Ext == AArch64_AM::InvalidShiftExtend) 933 return false; 934 935 Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0)); 936 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, 937 MVT::i32); 938 } else { 939 Offset = N.getOperand(0); 940 SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32); 941 } 942 943 unsigned LegalShiftVal = Log2_32(Size); 944 unsigned ShiftVal = CSD->getZExtValue(); 945 946 if (ShiftVal != 0 && ShiftVal != LegalShiftVal) 947 return false; 948 949 return isWorthFolding(N); 950 } 951 952 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size, 953 SDValue &Base, SDValue &Offset, 954 SDValue &SignExtend, 955 SDValue &DoShift) { 956 if (N.getOpcode() != ISD::ADD) 957 return false; 958 SDValue LHS = N.getOperand(0); 959 SDValue RHS = N.getOperand(1); 960 SDLoc dl(N); 961 962 // We don't want to match immediate adds here, because they are better lowered 963 // to the register-immediate addressing modes. 964 if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS)) 965 return false; 966 967 // Check if this particular node is reused in any non-memory related 968 // operation. If yes, do not try to fold this node into the address 969 // computation, since the computation will be kept. 970 const SDNode *Node = N.getNode(); 971 for (SDNode *UI : Node->uses()) { 972 if (!isa<MemSDNode>(*UI)) 973 return false; 974 } 975 976 // Remember if it is worth folding N when it produces extended register. 977 bool IsExtendedRegisterWorthFolding = isWorthFolding(N); 978 979 // Try to match a shifted extend on the RHS. 980 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL && 981 SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) { 982 Base = LHS; 983 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32); 984 return true; 985 } 986 987 // Try to match a shifted extend on the LHS. 988 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL && 989 SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) { 990 Base = RHS; 991 DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32); 992 return true; 993 } 994 995 // There was no shift, whatever else we find. 996 DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32); 997 998 AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend; 999 // Try to match an unshifted extend on the LHS. 1000 if (IsExtendedRegisterWorthFolding && 1001 (Ext = getExtendTypeForNode(LHS, true)) != 1002 AArch64_AM::InvalidShiftExtend) { 1003 Base = RHS; 1004 Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0)); 1005 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, 1006 MVT::i32); 1007 if (isWorthFolding(LHS)) 1008 return true; 1009 } 1010 1011 // Try to match an unshifted extend on the RHS. 1012 if (IsExtendedRegisterWorthFolding && 1013 (Ext = getExtendTypeForNode(RHS, true)) != 1014 AArch64_AM::InvalidShiftExtend) { 1015 Base = LHS; 1016 Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0)); 1017 SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl, 1018 MVT::i32); 1019 if (isWorthFolding(RHS)) 1020 return true; 1021 } 1022 1023 return false; 1024 } 1025 1026 // Check if the given immediate is preferred by ADD. If an immediate can be 1027 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be 1028 // encoded by one MOVZ, return true. 1029 static bool isPreferredADD(int64_t ImmOff) { 1030 // Constant in [0x0, 0xfff] can be encoded in ADD. 1031 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL) 1032 return true; 1033 // Check if it can be encoded in an "ADD LSL #12". 1034 if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL) 1035 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant. 1036 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL && 1037 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL; 1038 return false; 1039 } 1040 1041 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size, 1042 SDValue &Base, SDValue &Offset, 1043 SDValue &SignExtend, 1044 SDValue &DoShift) { 1045 if (N.getOpcode() != ISD::ADD) 1046 return false; 1047 SDValue LHS = N.getOperand(0); 1048 SDValue RHS = N.getOperand(1); 1049 SDLoc DL(N); 1050 1051 // Check if this particular node is reused in any non-memory related 1052 // operation. If yes, do not try to fold this node into the address 1053 // computation, since the computation will be kept. 1054 const SDNode *Node = N.getNode(); 1055 for (SDNode *UI : Node->uses()) { 1056 if (!isa<MemSDNode>(*UI)) 1057 return false; 1058 } 1059 1060 // Watch out if RHS is a wide immediate, it can not be selected into 1061 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into 1062 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate 1063 // instructions like: 1064 // MOV X0, WideImmediate 1065 // ADD X1, BaseReg, X0 1066 // LDR X2, [X1, 0] 1067 // For such situation, using [BaseReg, XReg] addressing mode can save one 1068 // ADD/SUB: 1069 // MOV X0, WideImmediate 1070 // LDR X2, [BaseReg, X0] 1071 if (isa<ConstantSDNode>(RHS)) { 1072 int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue(); 1073 unsigned Scale = Log2_32(Size); 1074 // Skip the immediate can be selected by load/store addressing mode. 1075 // Also skip the immediate can be encoded by a single ADD (SUB is also 1076 // checked by using -ImmOff). 1077 if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) || 1078 isPreferredADD(ImmOff) || isPreferredADD(-ImmOff)) 1079 return false; 1080 1081 SDValue Ops[] = { RHS }; 1082 SDNode *MOVI = 1083 CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops); 1084 SDValue MOVIV = SDValue(MOVI, 0); 1085 // This ADD of two X register will be selected into [Reg+Reg] mode. 1086 N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV); 1087 } 1088 1089 // Remember if it is worth folding N when it produces extended register. 1090 bool IsExtendedRegisterWorthFolding = isWorthFolding(N); 1091 1092 // Try to match a shifted extend on the RHS. 1093 if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL && 1094 SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) { 1095 Base = LHS; 1096 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32); 1097 return true; 1098 } 1099 1100 // Try to match a shifted extend on the LHS. 1101 if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL && 1102 SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) { 1103 Base = RHS; 1104 DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32); 1105 return true; 1106 } 1107 1108 // Match any non-shifted, non-extend, non-immediate add expression. 1109 Base = LHS; 1110 Offset = RHS; 1111 SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32); 1112 DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32); 1113 // Reg1 + Reg2 is free: no check needed. 1114 return true; 1115 } 1116 1117 SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) { 1118 static const unsigned RegClassIDs[] = { 1119 AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID}; 1120 static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1, 1121 AArch64::dsub2, AArch64::dsub3}; 1122 1123 return createTuple(Regs, RegClassIDs, SubRegs); 1124 } 1125 1126 SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) { 1127 static const unsigned RegClassIDs[] = { 1128 AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID}; 1129 static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1, 1130 AArch64::qsub2, AArch64::qsub3}; 1131 1132 return createTuple(Regs, RegClassIDs, SubRegs); 1133 } 1134 1135 SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs, 1136 const unsigned RegClassIDs[], 1137 const unsigned SubRegs[]) { 1138 // There's no special register-class for a vector-list of 1 element: it's just 1139 // a vector. 1140 if (Regs.size() == 1) 1141 return Regs[0]; 1142 1143 assert(Regs.size() >= 2 && Regs.size() <= 4); 1144 1145 SDLoc DL(Regs[0]); 1146 1147 SmallVector<SDValue, 4> Ops; 1148 1149 // First operand of REG_SEQUENCE is the desired RegClass. 1150 Ops.push_back( 1151 CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32)); 1152 1153 // Then we get pairs of source & subregister-position for the components. 1154 for (unsigned i = 0; i < Regs.size(); ++i) { 1155 Ops.push_back(Regs[i]); 1156 Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32)); 1157 } 1158 1159 SDNode *N = 1160 CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops); 1161 return SDValue(N, 0); 1162 } 1163 1164 void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, 1165 bool isExt) { 1166 SDLoc dl(N); 1167 EVT VT = N->getValueType(0); 1168 1169 unsigned ExtOff = isExt; 1170 1171 // Form a REG_SEQUENCE to force register allocation. 1172 unsigned Vec0Off = ExtOff + 1; 1173 SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off, 1174 N->op_begin() + Vec0Off + NumVecs); 1175 SDValue RegSeq = createQTuple(Regs); 1176 1177 SmallVector<SDValue, 6> Ops; 1178 if (isExt) 1179 Ops.push_back(N->getOperand(1)); 1180 Ops.push_back(RegSeq); 1181 Ops.push_back(N->getOperand(NumVecs + ExtOff + 1)); 1182 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops)); 1183 } 1184 1185 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) { 1186 LoadSDNode *LD = cast<LoadSDNode>(N); 1187 if (LD->isUnindexed()) 1188 return false; 1189 EVT VT = LD->getMemoryVT(); 1190 EVT DstVT = N->getValueType(0); 1191 ISD::MemIndexedMode AM = LD->getAddressingMode(); 1192 bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC; 1193 1194 // We're not doing validity checking here. That was done when checking 1195 // if we should mark the load as indexed or not. We're just selecting 1196 // the right instruction. 1197 unsigned Opcode = 0; 1198 1199 ISD::LoadExtType ExtType = LD->getExtensionType(); 1200 bool InsertTo64 = false; 1201 if (VT == MVT::i64) 1202 Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost; 1203 else if (VT == MVT::i32) { 1204 if (ExtType == ISD::NON_EXTLOAD) 1205 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost; 1206 else if (ExtType == ISD::SEXTLOAD) 1207 Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost; 1208 else { 1209 Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost; 1210 InsertTo64 = true; 1211 // The result of the load is only i32. It's the subreg_to_reg that makes 1212 // it into an i64. 1213 DstVT = MVT::i32; 1214 } 1215 } else if (VT == MVT::i16) { 1216 if (ExtType == ISD::SEXTLOAD) { 1217 if (DstVT == MVT::i64) 1218 Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost; 1219 else 1220 Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost; 1221 } else { 1222 Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost; 1223 InsertTo64 = DstVT == MVT::i64; 1224 // The result of the load is only i32. It's the subreg_to_reg that makes 1225 // it into an i64. 1226 DstVT = MVT::i32; 1227 } 1228 } else if (VT == MVT::i8) { 1229 if (ExtType == ISD::SEXTLOAD) { 1230 if (DstVT == MVT::i64) 1231 Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost; 1232 else 1233 Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost; 1234 } else { 1235 Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost; 1236 InsertTo64 = DstVT == MVT::i64; 1237 // The result of the load is only i32. It's the subreg_to_reg that makes 1238 // it into an i64. 1239 DstVT = MVT::i32; 1240 } 1241 } else if (VT == MVT::f16) { 1242 Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost; 1243 } else if (VT == MVT::f32) { 1244 Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost; 1245 } else if (VT == MVT::f64 || VT.is64BitVector()) { 1246 Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost; 1247 } else if (VT.is128BitVector()) { 1248 Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost; 1249 } else 1250 return false; 1251 SDValue Chain = LD->getChain(); 1252 SDValue Base = LD->getBasePtr(); 1253 ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset()); 1254 int OffsetVal = (int)OffsetOp->getZExtValue(); 1255 SDLoc dl(N); 1256 SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64); 1257 SDValue Ops[] = { Base, Offset, Chain }; 1258 SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT, 1259 MVT::Other, Ops); 1260 // Either way, we're replacing the node, so tell the caller that. 1261 SDValue LoadedVal = SDValue(Res, 1); 1262 if (InsertTo64) { 1263 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); 1264 LoadedVal = 1265 SDValue(CurDAG->getMachineNode( 1266 AArch64::SUBREG_TO_REG, dl, MVT::i64, 1267 CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal, 1268 SubReg), 1269 0); 1270 } 1271 1272 ReplaceUses(SDValue(N, 0), LoadedVal); 1273 ReplaceUses(SDValue(N, 1), SDValue(Res, 0)); 1274 ReplaceUses(SDValue(N, 2), SDValue(Res, 2)); 1275 CurDAG->RemoveDeadNode(N); 1276 return true; 1277 } 1278 1279 void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc, 1280 unsigned SubRegIdx) { 1281 SDLoc dl(N); 1282 EVT VT = N->getValueType(0); 1283 SDValue Chain = N->getOperand(0); 1284 1285 SDValue Ops[] = {N->getOperand(2), // Mem operand; 1286 Chain}; 1287 1288 const EVT ResTys[] = {MVT::Untyped, MVT::Other}; 1289 1290 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 1291 SDValue SuperReg = SDValue(Ld, 0); 1292 for (unsigned i = 0; i < NumVecs; ++i) 1293 ReplaceUses(SDValue(N, i), 1294 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg)); 1295 1296 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1)); 1297 1298 // Transfer memoperands. 1299 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 1300 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp}); 1301 1302 CurDAG->RemoveDeadNode(N); 1303 } 1304 1305 void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs, 1306 unsigned Opc, unsigned SubRegIdx) { 1307 SDLoc dl(N); 1308 EVT VT = N->getValueType(0); 1309 SDValue Chain = N->getOperand(0); 1310 1311 SDValue Ops[] = {N->getOperand(1), // Mem operand 1312 N->getOperand(2), // Incremental 1313 Chain}; 1314 1315 const EVT ResTys[] = {MVT::i64, // Type of the write back register 1316 MVT::Untyped, MVT::Other}; 1317 1318 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 1319 1320 // Update uses of write back register 1321 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0)); 1322 1323 // Update uses of vector list 1324 SDValue SuperReg = SDValue(Ld, 1); 1325 if (NumVecs == 1) 1326 ReplaceUses(SDValue(N, 0), SuperReg); 1327 else 1328 for (unsigned i = 0; i < NumVecs; ++i) 1329 ReplaceUses(SDValue(N, i), 1330 CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg)); 1331 1332 // Update the chain 1333 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2)); 1334 CurDAG->RemoveDeadNode(N); 1335 } 1336 1337 void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs, 1338 unsigned Opc) { 1339 SDLoc dl(N); 1340 EVT VT = N->getOperand(2)->getValueType(0); 1341 1342 // Form a REG_SEQUENCE to force register allocation. 1343 bool Is128Bit = VT.getSizeInBits() == 128; 1344 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); 1345 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs); 1346 1347 SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)}; 1348 SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops); 1349 1350 // Transfer memoperands. 1351 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 1352 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); 1353 1354 ReplaceNode(N, St); 1355 } 1356 1357 void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs, 1358 unsigned Opc) { 1359 SDLoc dl(N); 1360 EVT VT = N->getOperand(2)->getValueType(0); 1361 const EVT ResTys[] = {MVT::i64, // Type of the write back register 1362 MVT::Other}; // Type for the Chain 1363 1364 // Form a REG_SEQUENCE to force register allocation. 1365 bool Is128Bit = VT.getSizeInBits() == 128; 1366 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); 1367 SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs); 1368 1369 SDValue Ops[] = {RegSeq, 1370 N->getOperand(NumVecs + 1), // base register 1371 N->getOperand(NumVecs + 2), // Incremental 1372 N->getOperand(0)}; // Chain 1373 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 1374 1375 ReplaceNode(N, St); 1376 } 1377 1378 namespace { 1379 /// WidenVector - Given a value in the V64 register class, produce the 1380 /// equivalent value in the V128 register class. 1381 class WidenVector { 1382 SelectionDAG &DAG; 1383 1384 public: 1385 WidenVector(SelectionDAG &DAG) : DAG(DAG) {} 1386 1387 SDValue operator()(SDValue V64Reg) { 1388 EVT VT = V64Reg.getValueType(); 1389 unsigned NarrowSize = VT.getVectorNumElements(); 1390 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 1391 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); 1392 SDLoc DL(V64Reg); 1393 1394 SDValue Undef = 1395 SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0); 1396 return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg); 1397 } 1398 }; 1399 } // namespace 1400 1401 /// NarrowVector - Given a value in the V128 register class, produce the 1402 /// equivalent value in the V64 register class. 1403 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { 1404 EVT VT = V128Reg.getValueType(); 1405 unsigned WideSize = VT.getVectorNumElements(); 1406 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 1407 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); 1408 1409 return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy, 1410 V128Reg); 1411 } 1412 1413 void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs, 1414 unsigned Opc) { 1415 SDLoc dl(N); 1416 EVT VT = N->getValueType(0); 1417 bool Narrow = VT.getSizeInBits() == 64; 1418 1419 // Form a REG_SEQUENCE to force register allocation. 1420 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); 1421 1422 if (Narrow) 1423 transform(Regs, Regs.begin(), 1424 WidenVector(*CurDAG)); 1425 1426 SDValue RegSeq = createQTuple(Regs); 1427 1428 const EVT ResTys[] = {MVT::Untyped, MVT::Other}; 1429 1430 unsigned LaneNo = 1431 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue(); 1432 1433 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), 1434 N->getOperand(NumVecs + 3), N->getOperand(0)}; 1435 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 1436 SDValue SuperReg = SDValue(Ld, 0); 1437 1438 EVT WideVT = RegSeq.getOperand(1)->getValueType(0); 1439 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, 1440 AArch64::qsub2, AArch64::qsub3 }; 1441 for (unsigned i = 0; i < NumVecs; ++i) { 1442 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg); 1443 if (Narrow) 1444 NV = NarrowVector(NV, *CurDAG); 1445 ReplaceUses(SDValue(N, i), NV); 1446 } 1447 1448 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1)); 1449 CurDAG->RemoveDeadNode(N); 1450 } 1451 1452 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs, 1453 unsigned Opc) { 1454 SDLoc dl(N); 1455 EVT VT = N->getValueType(0); 1456 bool Narrow = VT.getSizeInBits() == 64; 1457 1458 // Form a REG_SEQUENCE to force register allocation. 1459 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); 1460 1461 if (Narrow) 1462 transform(Regs, Regs.begin(), 1463 WidenVector(*CurDAG)); 1464 1465 SDValue RegSeq = createQTuple(Regs); 1466 1467 const EVT ResTys[] = {MVT::i64, // Type of the write back register 1468 RegSeq->getValueType(0), MVT::Other}; 1469 1470 unsigned LaneNo = 1471 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue(); 1472 1473 SDValue Ops[] = {RegSeq, 1474 CurDAG->getTargetConstant(LaneNo, dl, 1475 MVT::i64), // Lane Number 1476 N->getOperand(NumVecs + 2), // Base register 1477 N->getOperand(NumVecs + 3), // Incremental 1478 N->getOperand(0)}; 1479 SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 1480 1481 // Update uses of the write back register 1482 ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0)); 1483 1484 // Update uses of the vector list 1485 SDValue SuperReg = SDValue(Ld, 1); 1486 if (NumVecs == 1) { 1487 ReplaceUses(SDValue(N, 0), 1488 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg); 1489 } else { 1490 EVT WideVT = RegSeq.getOperand(1)->getValueType(0); 1491 static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1, 1492 AArch64::qsub2, AArch64::qsub3 }; 1493 for (unsigned i = 0; i < NumVecs; ++i) { 1494 SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, 1495 SuperReg); 1496 if (Narrow) 1497 NV = NarrowVector(NV, *CurDAG); 1498 ReplaceUses(SDValue(N, i), NV); 1499 } 1500 } 1501 1502 // Update the Chain 1503 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2)); 1504 CurDAG->RemoveDeadNode(N); 1505 } 1506 1507 void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs, 1508 unsigned Opc) { 1509 SDLoc dl(N); 1510 EVT VT = N->getOperand(2)->getValueType(0); 1511 bool Narrow = VT.getSizeInBits() == 64; 1512 1513 // Form a REG_SEQUENCE to force register allocation. 1514 SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs); 1515 1516 if (Narrow) 1517 transform(Regs, Regs.begin(), 1518 WidenVector(*CurDAG)); 1519 1520 SDValue RegSeq = createQTuple(Regs); 1521 1522 unsigned LaneNo = 1523 cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue(); 1524 1525 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), 1526 N->getOperand(NumVecs + 3), N->getOperand(0)}; 1527 SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); 1528 1529 // Transfer memoperands. 1530 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 1531 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); 1532 1533 ReplaceNode(N, St); 1534 } 1535 1536 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs, 1537 unsigned Opc) { 1538 SDLoc dl(N); 1539 EVT VT = N->getOperand(2)->getValueType(0); 1540 bool Narrow = VT.getSizeInBits() == 64; 1541 1542 // Form a REG_SEQUENCE to force register allocation. 1543 SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs); 1544 1545 if (Narrow) 1546 transform(Regs, Regs.begin(), 1547 WidenVector(*CurDAG)); 1548 1549 SDValue RegSeq = createQTuple(Regs); 1550 1551 const EVT ResTys[] = {MVT::i64, // Type of the write back register 1552 MVT::Other}; 1553 1554 unsigned LaneNo = 1555 cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue(); 1556 1557 SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64), 1558 N->getOperand(NumVecs + 2), // Base Register 1559 N->getOperand(NumVecs + 3), // Incremental 1560 N->getOperand(0)}; 1561 SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); 1562 1563 // Transfer memoperands. 1564 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 1565 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); 1566 1567 ReplaceNode(N, St); 1568 } 1569 1570 static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N, 1571 unsigned &Opc, SDValue &Opd0, 1572 unsigned &LSB, unsigned &MSB, 1573 unsigned NumberOfIgnoredLowBits, 1574 bool BiggerPattern) { 1575 assert(N->getOpcode() == ISD::AND && 1576 "N must be a AND operation to call this function"); 1577 1578 EVT VT = N->getValueType(0); 1579 1580 // Here we can test the type of VT and return false when the type does not 1581 // match, but since it is done prior to that call in the current context 1582 // we turned that into an assert to avoid redundant code. 1583 assert((VT == MVT::i32 || VT == MVT::i64) && 1584 "Type checking must have been done before calling this function"); 1585 1586 // FIXME: simplify-demanded-bits in DAGCombine will probably have 1587 // changed the AND node to a 32-bit mask operation. We'll have to 1588 // undo that as part of the transform here if we want to catch all 1589 // the opportunities. 1590 // Currently the NumberOfIgnoredLowBits argument helps to recover 1591 // form these situations when matching bigger pattern (bitfield insert). 1592 1593 // For unsigned extracts, check for a shift right and mask 1594 uint64_t AndImm = 0; 1595 if (!isOpcWithIntImmediate(N, ISD::AND, AndImm)) 1596 return false; 1597 1598 const SDNode *Op0 = N->getOperand(0).getNode(); 1599 1600 // Because of simplify-demanded-bits in DAGCombine, the mask may have been 1601 // simplified. Try to undo that 1602 AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits); 1603 1604 // The immediate is a mask of the low bits iff imm & (imm+1) == 0 1605 if (AndImm & (AndImm + 1)) 1606 return false; 1607 1608 bool ClampMSB = false; 1609 uint64_t SrlImm = 0; 1610 // Handle the SRL + ANY_EXTEND case. 1611 if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND && 1612 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) { 1613 // Extend the incoming operand of the SRL to 64-bit. 1614 Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0)); 1615 // Make sure to clamp the MSB so that we preserve the semantics of the 1616 // original operations. 1617 ClampMSB = true; 1618 } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE && 1619 isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, 1620 SrlImm)) { 1621 // If the shift result was truncated, we can still combine them. 1622 Opd0 = Op0->getOperand(0).getOperand(0); 1623 1624 // Use the type of SRL node. 1625 VT = Opd0->getValueType(0); 1626 } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) { 1627 Opd0 = Op0->getOperand(0); 1628 } else if (BiggerPattern) { 1629 // Let's pretend a 0 shift right has been performed. 1630 // The resulting code will be at least as good as the original one 1631 // plus it may expose more opportunities for bitfield insert pattern. 1632 // FIXME: Currently we limit this to the bigger pattern, because 1633 // some optimizations expect AND and not UBFM. 1634 Opd0 = N->getOperand(0); 1635 } else 1636 return false; 1637 1638 // Bail out on large immediates. This happens when no proper 1639 // combining/constant folding was performed. 1640 if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) { 1641 LLVM_DEBUG( 1642 (dbgs() << N 1643 << ": Found large shift immediate, this should not happen\n")); 1644 return false; 1645 } 1646 1647 LSB = SrlImm; 1648 MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm) 1649 : countTrailingOnes<uint64_t>(AndImm)) - 1650 1; 1651 if (ClampMSB) 1652 // Since we're moving the extend before the right shift operation, we need 1653 // to clamp the MSB to make sure we don't shift in undefined bits instead of 1654 // the zeros which would get shifted in with the original right shift 1655 // operation. 1656 MSB = MSB > 31 ? 31 : MSB; 1657 1658 Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri; 1659 return true; 1660 } 1661 1662 static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc, 1663 SDValue &Opd0, unsigned &Immr, 1664 unsigned &Imms) { 1665 assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG); 1666 1667 EVT VT = N->getValueType(0); 1668 unsigned BitWidth = VT.getSizeInBits(); 1669 assert((VT == MVT::i32 || VT == MVT::i64) && 1670 "Type checking must have been done before calling this function"); 1671 1672 SDValue Op = N->getOperand(0); 1673 if (Op->getOpcode() == ISD::TRUNCATE) { 1674 Op = Op->getOperand(0); 1675 VT = Op->getValueType(0); 1676 BitWidth = VT.getSizeInBits(); 1677 } 1678 1679 uint64_t ShiftImm; 1680 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) && 1681 !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm)) 1682 return false; 1683 1684 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 1685 if (ShiftImm + Width > BitWidth) 1686 return false; 1687 1688 Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri; 1689 Opd0 = Op.getOperand(0); 1690 Immr = ShiftImm; 1691 Imms = ShiftImm + Width - 1; 1692 return true; 1693 } 1694 1695 static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc, 1696 SDValue &Opd0, unsigned &LSB, 1697 unsigned &MSB) { 1698 // We are looking for the following pattern which basically extracts several 1699 // continuous bits from the source value and places it from the LSB of the 1700 // destination value, all other bits of the destination value or set to zero: 1701 // 1702 // Value2 = AND Value, MaskImm 1703 // SRL Value2, ShiftImm 1704 // 1705 // with MaskImm >> ShiftImm to search for the bit width. 1706 // 1707 // This gets selected into a single UBFM: 1708 // 1709 // UBFM Value, ShiftImm, BitWide + SrlImm -1 1710 // 1711 1712 if (N->getOpcode() != ISD::SRL) 1713 return false; 1714 1715 uint64_t AndMask = 0; 1716 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask)) 1717 return false; 1718 1719 Opd0 = N->getOperand(0).getOperand(0); 1720 1721 uint64_t SrlImm = 0; 1722 if (!isIntImmediate(N->getOperand(1), SrlImm)) 1723 return false; 1724 1725 // Check whether we really have several bits extract here. 1726 unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm)); 1727 if (BitWide && isMask_64(AndMask >> SrlImm)) { 1728 if (N->getValueType(0) == MVT::i32) 1729 Opc = AArch64::UBFMWri; 1730 else 1731 Opc = AArch64::UBFMXri; 1732 1733 LSB = SrlImm; 1734 MSB = BitWide + SrlImm - 1; 1735 return true; 1736 } 1737 1738 return false; 1739 } 1740 1741 static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0, 1742 unsigned &Immr, unsigned &Imms, 1743 bool BiggerPattern) { 1744 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && 1745 "N must be a SHR/SRA operation to call this function"); 1746 1747 EVT VT = N->getValueType(0); 1748 1749 // Here we can test the type of VT and return false when the type does not 1750 // match, but since it is done prior to that call in the current context 1751 // we turned that into an assert to avoid redundant code. 1752 assert((VT == MVT::i32 || VT == MVT::i64) && 1753 "Type checking must have been done before calling this function"); 1754 1755 // Check for AND + SRL doing several bits extract. 1756 if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms)) 1757 return true; 1758 1759 // We're looking for a shift of a shift. 1760 uint64_t ShlImm = 0; 1761 uint64_t TruncBits = 0; 1762 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) { 1763 Opd0 = N->getOperand(0).getOperand(0); 1764 } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL && 1765 N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) { 1766 // We are looking for a shift of truncate. Truncate from i64 to i32 could 1767 // be considered as setting high 32 bits as zero. Our strategy here is to 1768 // always generate 64bit UBFM. This consistency will help the CSE pass 1769 // later find more redundancy. 1770 Opd0 = N->getOperand(0).getOperand(0); 1771 TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits(); 1772 VT = Opd0.getValueType(); 1773 assert(VT == MVT::i64 && "the promoted type should be i64"); 1774 } else if (BiggerPattern) { 1775 // Let's pretend a 0 shift left has been performed. 1776 // FIXME: Currently we limit this to the bigger pattern case, 1777 // because some optimizations expect AND and not UBFM 1778 Opd0 = N->getOperand(0); 1779 } else 1780 return false; 1781 1782 // Missing combines/constant folding may have left us with strange 1783 // constants. 1784 if (ShlImm >= VT.getSizeInBits()) { 1785 LLVM_DEBUG( 1786 (dbgs() << N 1787 << ": Found large shift immediate, this should not happen\n")); 1788 return false; 1789 } 1790 1791 uint64_t SrlImm = 0; 1792 if (!isIntImmediate(N->getOperand(1), SrlImm)) 1793 return false; 1794 1795 assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() && 1796 "bad amount in shift node!"); 1797 int immr = SrlImm - ShlImm; 1798 Immr = immr < 0 ? immr + VT.getSizeInBits() : immr; 1799 Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1; 1800 // SRA requires a signed extraction 1801 if (VT == MVT::i32) 1802 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri; 1803 else 1804 Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri; 1805 return true; 1806 } 1807 1808 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) { 1809 assert(N->getOpcode() == ISD::SIGN_EXTEND); 1810 1811 EVT VT = N->getValueType(0); 1812 EVT NarrowVT = N->getOperand(0)->getValueType(0); 1813 if (VT != MVT::i64 || NarrowVT != MVT::i32) 1814 return false; 1815 1816 uint64_t ShiftImm; 1817 SDValue Op = N->getOperand(0); 1818 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm)) 1819 return false; 1820 1821 SDLoc dl(N); 1822 // Extend the incoming operand of the shift to 64-bits. 1823 SDValue Opd0 = Widen(CurDAG, Op.getOperand(0)); 1824 unsigned Immr = ShiftImm; 1825 unsigned Imms = NarrowVT.getSizeInBits() - 1; 1826 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT), 1827 CurDAG->getTargetConstant(Imms, dl, VT)}; 1828 CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops); 1829 return true; 1830 } 1831 1832 /// Try to form fcvtl2 instructions from a floating-point extend of a high-half 1833 /// extract of a subvector. 1834 bool AArch64DAGToDAGISel::tryHighFPExt(SDNode *N) { 1835 assert(N->getOpcode() == ISD::FP_EXTEND); 1836 1837 // There are 2 forms of fcvtl2 - extend to double or extend to float. 1838 SDValue Extract = N->getOperand(0); 1839 EVT VT = N->getValueType(0); 1840 EVT NarrowVT = Extract.getValueType(); 1841 if ((VT != MVT::v2f64 || NarrowVT != MVT::v2f32) && 1842 (VT != MVT::v4f32 || NarrowVT != MVT::v4f16)) 1843 return false; 1844 1845 // Optionally look past a bitcast. 1846 Extract = peekThroughBitcasts(Extract); 1847 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) 1848 return false; 1849 1850 // Match extract from start of high half index. 1851 // Example: v8i16 -> v4i16 means the extract must begin at index 4. 1852 unsigned ExtractIndex = Extract.getConstantOperandVal(1); 1853 if (ExtractIndex != Extract.getValueType().getVectorNumElements()) 1854 return false; 1855 1856 auto Opcode = VT == MVT::v2f64 ? AArch64::FCVTLv4i32 : AArch64::FCVTLv8i16; 1857 CurDAG->SelectNodeTo(N, Opcode, VT, Extract.getOperand(0)); 1858 return true; 1859 } 1860 1861 static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc, 1862 SDValue &Opd0, unsigned &Immr, unsigned &Imms, 1863 unsigned NumberOfIgnoredLowBits = 0, 1864 bool BiggerPattern = false) { 1865 if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) 1866 return false; 1867 1868 switch (N->getOpcode()) { 1869 default: 1870 if (!N->isMachineOpcode()) 1871 return false; 1872 break; 1873 case ISD::AND: 1874 return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms, 1875 NumberOfIgnoredLowBits, BiggerPattern); 1876 case ISD::SRL: 1877 case ISD::SRA: 1878 return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern); 1879 1880 case ISD::SIGN_EXTEND_INREG: 1881 return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms); 1882 } 1883 1884 unsigned NOpc = N->getMachineOpcode(); 1885 switch (NOpc) { 1886 default: 1887 return false; 1888 case AArch64::SBFMWri: 1889 case AArch64::UBFMWri: 1890 case AArch64::SBFMXri: 1891 case AArch64::UBFMXri: 1892 Opc = NOpc; 1893 Opd0 = N->getOperand(0); 1894 Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); 1895 Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); 1896 return true; 1897 } 1898 // Unreachable 1899 return false; 1900 } 1901 1902 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) { 1903 unsigned Opc, Immr, Imms; 1904 SDValue Opd0; 1905 if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms)) 1906 return false; 1907 1908 EVT VT = N->getValueType(0); 1909 SDLoc dl(N); 1910 1911 // If the bit extract operation is 64bit but the original type is 32bit, we 1912 // need to add one EXTRACT_SUBREG. 1913 if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) { 1914 SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64), 1915 CurDAG->getTargetConstant(Imms, dl, MVT::i64)}; 1916 1917 SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64); 1918 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32); 1919 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, 1920 MVT::i32, SDValue(BFM, 0), SubReg)); 1921 return true; 1922 } 1923 1924 SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT), 1925 CurDAG->getTargetConstant(Imms, dl, VT)}; 1926 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 1927 return true; 1928 } 1929 1930 /// Does DstMask form a complementary pair with the mask provided by 1931 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking, 1932 /// this asks whether DstMask zeroes precisely those bits that will be set by 1933 /// the other half. 1934 static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted, 1935 unsigned NumberOfIgnoredHighBits, EVT VT) { 1936 assert((VT == MVT::i32 || VT == MVT::i64) && 1937 "i32 or i64 mask type expected!"); 1938 unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits; 1939 1940 APInt SignificantDstMask = APInt(BitWidth, DstMask); 1941 APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth); 1942 1943 return (SignificantDstMask & SignificantBitsToBeInserted) == 0 && 1944 (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue(); 1945 } 1946 1947 // Look for bits that will be useful for later uses. 1948 // A bit is consider useless as soon as it is dropped and never used 1949 // before it as been dropped. 1950 // E.g., looking for useful bit of x 1951 // 1. y = x & 0x7 1952 // 2. z = y >> 2 1953 // After #1, x useful bits are 0x7, then the useful bits of x, live through 1954 // y. 1955 // After #2, the useful bits of x are 0x4. 1956 // However, if x is used on an unpredicatable instruction, then all its bits 1957 // are useful. 1958 // E.g. 1959 // 1. y = x & 0x7 1960 // 2. z = y >> 2 1961 // 3. str x, [@x] 1962 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0); 1963 1964 static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits, 1965 unsigned Depth) { 1966 uint64_t Imm = 1967 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue(); 1968 Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth()); 1969 UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm); 1970 getUsefulBits(Op, UsefulBits, Depth + 1); 1971 } 1972 1973 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits, 1974 uint64_t Imm, uint64_t MSB, 1975 unsigned Depth) { 1976 // inherit the bitwidth value 1977 APInt OpUsefulBits(UsefulBits); 1978 OpUsefulBits = 1; 1979 1980 if (MSB >= Imm) { 1981 OpUsefulBits <<= MSB - Imm + 1; 1982 --OpUsefulBits; 1983 // The interesting part will be in the lower part of the result 1984 getUsefulBits(Op, OpUsefulBits, Depth + 1); 1985 // The interesting part was starting at Imm in the argument 1986 OpUsefulBits <<= Imm; 1987 } else { 1988 OpUsefulBits <<= MSB + 1; 1989 --OpUsefulBits; 1990 // The interesting part will be shifted in the result 1991 OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm; 1992 getUsefulBits(Op, OpUsefulBits, Depth + 1); 1993 // The interesting part was at zero in the argument 1994 OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm); 1995 } 1996 1997 UsefulBits &= OpUsefulBits; 1998 } 1999 2000 static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits, 2001 unsigned Depth) { 2002 uint64_t Imm = 2003 cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue(); 2004 uint64_t MSB = 2005 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 2006 2007 getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth); 2008 } 2009 2010 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits, 2011 unsigned Depth) { 2012 uint64_t ShiftTypeAndValue = 2013 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 2014 APInt Mask(UsefulBits); 2015 Mask.clearAllBits(); 2016 Mask.flipAllBits(); 2017 2018 if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) { 2019 // Shift Left 2020 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue); 2021 Mask <<= ShiftAmt; 2022 getUsefulBits(Op, Mask, Depth + 1); 2023 Mask.lshrInPlace(ShiftAmt); 2024 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) { 2025 // Shift Right 2026 // We do not handle AArch64_AM::ASR, because the sign will change the 2027 // number of useful bits 2028 uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue); 2029 Mask.lshrInPlace(ShiftAmt); 2030 getUsefulBits(Op, Mask, Depth + 1); 2031 Mask <<= ShiftAmt; 2032 } else 2033 return; 2034 2035 UsefulBits &= Mask; 2036 } 2037 2038 static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits, 2039 unsigned Depth) { 2040 uint64_t Imm = 2041 cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 2042 uint64_t MSB = 2043 cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue(); 2044 2045 APInt OpUsefulBits(UsefulBits); 2046 OpUsefulBits = 1; 2047 2048 APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0); 2049 ResultUsefulBits.flipAllBits(); 2050 APInt Mask(UsefulBits.getBitWidth(), 0); 2051 2052 getUsefulBits(Op, ResultUsefulBits, Depth + 1); 2053 2054 if (MSB >= Imm) { 2055 // The instruction is a BFXIL. 2056 uint64_t Width = MSB - Imm + 1; 2057 uint64_t LSB = Imm; 2058 2059 OpUsefulBits <<= Width; 2060 --OpUsefulBits; 2061 2062 if (Op.getOperand(1) == Orig) { 2063 // Copy the low bits from the result to bits starting from LSB. 2064 Mask = ResultUsefulBits & OpUsefulBits; 2065 Mask <<= LSB; 2066 } 2067 2068 if (Op.getOperand(0) == Orig) 2069 // Bits starting from LSB in the input contribute to the result. 2070 Mask |= (ResultUsefulBits & ~OpUsefulBits); 2071 } else { 2072 // The instruction is a BFI. 2073 uint64_t Width = MSB + 1; 2074 uint64_t LSB = UsefulBits.getBitWidth() - Imm; 2075 2076 OpUsefulBits <<= Width; 2077 --OpUsefulBits; 2078 OpUsefulBits <<= LSB; 2079 2080 if (Op.getOperand(1) == Orig) { 2081 // Copy the bits from the result to the zero bits. 2082 Mask = ResultUsefulBits & OpUsefulBits; 2083 Mask.lshrInPlace(LSB); 2084 } 2085 2086 if (Op.getOperand(0) == Orig) 2087 Mask |= (ResultUsefulBits & ~OpUsefulBits); 2088 } 2089 2090 UsefulBits &= Mask; 2091 } 2092 2093 static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits, 2094 SDValue Orig, unsigned Depth) { 2095 2096 // Users of this node should have already been instruction selected 2097 // FIXME: Can we turn that into an assert? 2098 if (!UserNode->isMachineOpcode()) 2099 return; 2100 2101 switch (UserNode->getMachineOpcode()) { 2102 default: 2103 return; 2104 case AArch64::ANDSWri: 2105 case AArch64::ANDSXri: 2106 case AArch64::ANDWri: 2107 case AArch64::ANDXri: 2108 // We increment Depth only when we call the getUsefulBits 2109 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits, 2110 Depth); 2111 case AArch64::UBFMWri: 2112 case AArch64::UBFMXri: 2113 return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth); 2114 2115 case AArch64::ORRWrs: 2116 case AArch64::ORRXrs: 2117 if (UserNode->getOperand(1) != Orig) 2118 return; 2119 return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits, 2120 Depth); 2121 case AArch64::BFMWri: 2122 case AArch64::BFMXri: 2123 return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth); 2124 2125 case AArch64::STRBBui: 2126 case AArch64::STURBBi: 2127 if (UserNode->getOperand(0) != Orig) 2128 return; 2129 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff); 2130 return; 2131 2132 case AArch64::STRHHui: 2133 case AArch64::STURHHi: 2134 if (UserNode->getOperand(0) != Orig) 2135 return; 2136 UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff); 2137 return; 2138 } 2139 } 2140 2141 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) { 2142 if (Depth >= SelectionDAG::MaxRecursionDepth) 2143 return; 2144 // Initialize UsefulBits 2145 if (!Depth) { 2146 unsigned Bitwidth = Op.getScalarValueSizeInBits(); 2147 // At the beginning, assume every produced bits is useful 2148 UsefulBits = APInt(Bitwidth, 0); 2149 UsefulBits.flipAllBits(); 2150 } 2151 APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0); 2152 2153 for (SDNode *Node : Op.getNode()->uses()) { 2154 // A use cannot produce useful bits 2155 APInt UsefulBitsForUse = APInt(UsefulBits); 2156 getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth); 2157 UsersUsefulBits |= UsefulBitsForUse; 2158 } 2159 // UsefulBits contains the produced bits that are meaningful for the 2160 // current definition, thus a user cannot make a bit meaningful at 2161 // this point 2162 UsefulBits &= UsersUsefulBits; 2163 } 2164 2165 /// Create a machine node performing a notional SHL of Op by ShlAmount. If 2166 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is 2167 /// 0, return Op unchanged. 2168 static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) { 2169 if (ShlAmount == 0) 2170 return Op; 2171 2172 EVT VT = Op.getValueType(); 2173 SDLoc dl(Op); 2174 unsigned BitWidth = VT.getSizeInBits(); 2175 unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri; 2176 2177 SDNode *ShiftNode; 2178 if (ShlAmount > 0) { 2179 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt 2180 ShiftNode = CurDAG->getMachineNode( 2181 UBFMOpc, dl, VT, Op, 2182 CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT), 2183 CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT)); 2184 } else { 2185 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1 2186 assert(ShlAmount < 0 && "expected right shift"); 2187 int ShrAmount = -ShlAmount; 2188 ShiftNode = CurDAG->getMachineNode( 2189 UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT), 2190 CurDAG->getTargetConstant(BitWidth - 1, dl, VT)); 2191 } 2192 2193 return SDValue(ShiftNode, 0); 2194 } 2195 2196 /// Does this tree qualify as an attempt to move a bitfield into position, 2197 /// essentially "(and (shl VAL, N), Mask)". 2198 static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op, 2199 bool BiggerPattern, 2200 SDValue &Src, int &ShiftAmount, 2201 int &MaskWidth) { 2202 EVT VT = Op.getValueType(); 2203 unsigned BitWidth = VT.getSizeInBits(); 2204 (void)BitWidth; 2205 assert(BitWidth == 32 || BitWidth == 64); 2206 2207 KnownBits Known = CurDAG->computeKnownBits(Op); 2208 2209 // Non-zero in the sense that they're not provably zero, which is the key 2210 // point if we want to use this value 2211 uint64_t NonZeroBits = (~Known.Zero).getZExtValue(); 2212 2213 // Discard a constant AND mask if present. It's safe because the node will 2214 // already have been factored into the computeKnownBits calculation above. 2215 uint64_t AndImm; 2216 if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) { 2217 assert((~APInt(BitWidth, AndImm) & ~Known.Zero) == 0); 2218 Op = Op.getOperand(0); 2219 } 2220 2221 // Don't match if the SHL has more than one use, since then we'll end up 2222 // generating SHL+UBFIZ instead of just keeping SHL+AND. 2223 if (!BiggerPattern && !Op.hasOneUse()) 2224 return false; 2225 2226 uint64_t ShlImm; 2227 if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm)) 2228 return false; 2229 Op = Op.getOperand(0); 2230 2231 if (!isShiftedMask_64(NonZeroBits)) 2232 return false; 2233 2234 ShiftAmount = countTrailingZeros(NonZeroBits); 2235 MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount); 2236 2237 // BFI encompasses sufficiently many nodes that it's worth inserting an extra 2238 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL 2239 // amount. BiggerPattern is true when this pattern is being matched for BFI, 2240 // BiggerPattern is false when this pattern is being matched for UBFIZ, in 2241 // which case it is not profitable to insert an extra shift. 2242 if (ShlImm - ShiftAmount != 0 && !BiggerPattern) 2243 return false; 2244 Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount); 2245 2246 return true; 2247 } 2248 2249 static bool isShiftedMask(uint64_t Mask, EVT VT) { 2250 assert(VT == MVT::i32 || VT == MVT::i64); 2251 if (VT == MVT::i32) 2252 return isShiftedMask_32(Mask); 2253 return isShiftedMask_64(Mask); 2254 } 2255 2256 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being 2257 // inserted only sets known zero bits. 2258 static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) { 2259 assert(N->getOpcode() == ISD::OR && "Expect a OR operation"); 2260 2261 EVT VT = N->getValueType(0); 2262 if (VT != MVT::i32 && VT != MVT::i64) 2263 return false; 2264 2265 unsigned BitWidth = VT.getSizeInBits(); 2266 2267 uint64_t OrImm; 2268 if (!isOpcWithIntImmediate(N, ISD::OR, OrImm)) 2269 return false; 2270 2271 // Skip this transformation if the ORR immediate can be encoded in the ORR. 2272 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely 2273 // performance neutral. 2274 if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth)) 2275 return false; 2276 2277 uint64_t MaskImm; 2278 SDValue And = N->getOperand(0); 2279 // Must be a single use AND with an immediate operand. 2280 if (!And.hasOneUse() || 2281 !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm)) 2282 return false; 2283 2284 // Compute the Known Zero for the AND as this allows us to catch more general 2285 // cases than just looking for AND with imm. 2286 KnownBits Known = CurDAG->computeKnownBits(And); 2287 2288 // Non-zero in the sense that they're not provably zero, which is the key 2289 // point if we want to use this value. 2290 uint64_t NotKnownZero = (~Known.Zero).getZExtValue(); 2291 2292 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00). 2293 if (!isShiftedMask(Known.Zero.getZExtValue(), VT)) 2294 return false; 2295 2296 // The bits being inserted must only set those bits that are known to be zero. 2297 if ((OrImm & NotKnownZero) != 0) { 2298 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't 2299 // currently handle this case. 2300 return false; 2301 } 2302 2303 // BFI/BFXIL dst, src, #lsb, #width. 2304 int LSB = countTrailingOnes(NotKnownZero); 2305 int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation(); 2306 2307 // BFI/BFXIL is an alias of BFM, so translate to BFM operands. 2308 unsigned ImmR = (BitWidth - LSB) % BitWidth; 2309 unsigned ImmS = Width - 1; 2310 2311 // If we're creating a BFI instruction avoid cases where we need more 2312 // instructions to materialize the BFI constant as compared to the original 2313 // ORR. A BFXIL will use the same constant as the original ORR, so the code 2314 // should be no worse in this case. 2315 bool IsBFI = LSB != 0; 2316 uint64_t BFIImm = OrImm >> LSB; 2317 if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) { 2318 // We have a BFI instruction and we know the constant can't be materialized 2319 // with a ORR-immediate with the zero register. 2320 unsigned OrChunks = 0, BFIChunks = 0; 2321 for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) { 2322 if (((OrImm >> Shift) & 0xFFFF) != 0) 2323 ++OrChunks; 2324 if (((BFIImm >> Shift) & 0xFFFF) != 0) 2325 ++BFIChunks; 2326 } 2327 if (BFIChunks > OrChunks) 2328 return false; 2329 } 2330 2331 // Materialize the constant to be inserted. 2332 SDLoc DL(N); 2333 unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm; 2334 SDNode *MOVI = CurDAG->getMachineNode( 2335 MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT)); 2336 2337 // Create the BFI/BFXIL instruction. 2338 SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0), 2339 CurDAG->getTargetConstant(ImmR, DL, VT), 2340 CurDAG->getTargetConstant(ImmS, DL, VT)}; 2341 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; 2342 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 2343 return true; 2344 } 2345 2346 static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits, 2347 SelectionDAG *CurDAG) { 2348 assert(N->getOpcode() == ISD::OR && "Expect a OR operation"); 2349 2350 EVT VT = N->getValueType(0); 2351 if (VT != MVT::i32 && VT != MVT::i64) 2352 return false; 2353 2354 unsigned BitWidth = VT.getSizeInBits(); 2355 2356 // Because of simplify-demanded-bits in DAGCombine, involved masks may not 2357 // have the expected shape. Try to undo that. 2358 2359 unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros(); 2360 unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros(); 2361 2362 // Given a OR operation, check if we have the following pattern 2363 // ubfm c, b, imm, imm2 (or something that does the same jobs, see 2364 // isBitfieldExtractOp) 2365 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and 2366 // countTrailingZeros(mask2) == imm2 - imm + 1 2367 // f = d | c 2368 // if yes, replace the OR instruction with: 2369 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2 2370 2371 // OR is commutative, check all combinations of operand order and values of 2372 // BiggerPattern, i.e. 2373 // Opd0, Opd1, BiggerPattern=false 2374 // Opd1, Opd0, BiggerPattern=false 2375 // Opd0, Opd1, BiggerPattern=true 2376 // Opd1, Opd0, BiggerPattern=true 2377 // Several of these combinations may match, so check with BiggerPattern=false 2378 // first since that will produce better results by matching more instructions 2379 // and/or inserting fewer extra instructions. 2380 for (int I = 0; I < 4; ++I) { 2381 2382 SDValue Dst, Src; 2383 unsigned ImmR, ImmS; 2384 bool BiggerPattern = I / 2; 2385 SDValue OrOpd0Val = N->getOperand(I % 2); 2386 SDNode *OrOpd0 = OrOpd0Val.getNode(); 2387 SDValue OrOpd1Val = N->getOperand((I + 1) % 2); 2388 SDNode *OrOpd1 = OrOpd1Val.getNode(); 2389 2390 unsigned BFXOpc; 2391 int DstLSB, Width; 2392 if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS, 2393 NumberOfIgnoredLowBits, BiggerPattern)) { 2394 // Check that the returned opcode is compatible with the pattern, 2395 // i.e., same type and zero extended (U and not S) 2396 if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) || 2397 (BFXOpc != AArch64::UBFMWri && VT == MVT::i32)) 2398 continue; 2399 2400 // Compute the width of the bitfield insertion 2401 DstLSB = 0; 2402 Width = ImmS - ImmR + 1; 2403 // FIXME: This constraint is to catch bitfield insertion we may 2404 // want to widen the pattern if we want to grab general bitfied 2405 // move case 2406 if (Width <= 0) 2407 continue; 2408 2409 // If the mask on the insertee is correct, we have a BFXIL operation. We 2410 // can share the ImmR and ImmS values from the already-computed UBFM. 2411 } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val, 2412 BiggerPattern, 2413 Src, DstLSB, Width)) { 2414 ImmR = (BitWidth - DstLSB) % BitWidth; 2415 ImmS = Width - 1; 2416 } else 2417 continue; 2418 2419 // Check the second part of the pattern 2420 EVT VT = OrOpd1Val.getValueType(); 2421 assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand"); 2422 2423 // Compute the Known Zero for the candidate of the first operand. 2424 // This allows to catch more general case than just looking for 2425 // AND with imm. Indeed, simplify-demanded-bits may have removed 2426 // the AND instruction because it proves it was useless. 2427 KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val); 2428 2429 // Check if there is enough room for the second operand to appear 2430 // in the first one 2431 APInt BitsToBeInserted = 2432 APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width); 2433 2434 if ((BitsToBeInserted & ~Known.Zero) != 0) 2435 continue; 2436 2437 // Set the first operand 2438 uint64_t Imm; 2439 if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) && 2440 isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT)) 2441 // In that case, we can eliminate the AND 2442 Dst = OrOpd1->getOperand(0); 2443 else 2444 // Maybe the AND has been removed by simplify-demanded-bits 2445 // or is useful because it discards more bits 2446 Dst = OrOpd1Val; 2447 2448 // both parts match 2449 SDLoc DL(N); 2450 SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT), 2451 CurDAG->getTargetConstant(ImmS, DL, VT)}; 2452 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; 2453 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 2454 return true; 2455 } 2456 2457 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff 2458 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted 2459 // mask (e.g., 0x000ffff0). 2460 uint64_t Mask0Imm, Mask1Imm; 2461 SDValue And0 = N->getOperand(0); 2462 SDValue And1 = N->getOperand(1); 2463 if (And0.hasOneUse() && And1.hasOneUse() && 2464 isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) && 2465 isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) && 2466 APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) && 2467 (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) { 2468 2469 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm), 2470 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the 2471 // bits to be inserted. 2472 if (isShiftedMask(Mask0Imm, VT)) { 2473 std::swap(And0, And1); 2474 std::swap(Mask0Imm, Mask1Imm); 2475 } 2476 2477 SDValue Src = And1->getOperand(0); 2478 SDValue Dst = And0->getOperand(0); 2479 unsigned LSB = countTrailingZeros(Mask1Imm); 2480 int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation(); 2481 2482 // The BFXIL inserts the low-order bits from a source register, so right 2483 // shift the needed bits into place. 2484 SDLoc DL(N); 2485 unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri; 2486 SDNode *LSR = CurDAG->getMachineNode( 2487 ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT), 2488 CurDAG->getTargetConstant(BitWidth - 1, DL, VT)); 2489 2490 // BFXIL is an alias of BFM, so translate to BFM operands. 2491 unsigned ImmR = (BitWidth - LSB) % BitWidth; 2492 unsigned ImmS = Width - 1; 2493 2494 // Create the BFXIL instruction. 2495 SDValue Ops[] = {Dst, SDValue(LSR, 0), 2496 CurDAG->getTargetConstant(ImmR, DL, VT), 2497 CurDAG->getTargetConstant(ImmS, DL, VT)}; 2498 unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri; 2499 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 2500 return true; 2501 } 2502 2503 return false; 2504 } 2505 2506 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) { 2507 if (N->getOpcode() != ISD::OR) 2508 return false; 2509 2510 APInt NUsefulBits; 2511 getUsefulBits(SDValue(N, 0), NUsefulBits); 2512 2513 // If all bits are not useful, just return UNDEF. 2514 if (!NUsefulBits) { 2515 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2516 return true; 2517 } 2518 2519 if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG)) 2520 return true; 2521 2522 return tryBitfieldInsertOpFromOrAndImm(N, CurDAG); 2523 } 2524 2525 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the 2526 /// equivalent of a left shift by a constant amount followed by an and masking 2527 /// out a contiguous set of bits. 2528 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) { 2529 if (N->getOpcode() != ISD::AND) 2530 return false; 2531 2532 EVT VT = N->getValueType(0); 2533 if (VT != MVT::i32 && VT != MVT::i64) 2534 return false; 2535 2536 SDValue Op0; 2537 int DstLSB, Width; 2538 if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false, 2539 Op0, DstLSB, Width)) 2540 return false; 2541 2542 // ImmR is the rotate right amount. 2543 unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits(); 2544 // ImmS is the most significant bit of the source to be moved. 2545 unsigned ImmS = Width - 1; 2546 2547 SDLoc DL(N); 2548 SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT), 2549 CurDAG->getTargetConstant(ImmS, DL, VT)}; 2550 unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri; 2551 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 2552 return true; 2553 } 2554 2555 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in 2556 /// variable shift/rotate instructions. 2557 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) { 2558 EVT VT = N->getValueType(0); 2559 2560 unsigned Opc; 2561 switch (N->getOpcode()) { 2562 case ISD::ROTR: 2563 Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr; 2564 break; 2565 case ISD::SHL: 2566 Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr; 2567 break; 2568 case ISD::SRL: 2569 Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr; 2570 break; 2571 case ISD::SRA: 2572 Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr; 2573 break; 2574 default: 2575 return false; 2576 } 2577 2578 uint64_t Size; 2579 uint64_t Bits; 2580 if (VT == MVT::i32) { 2581 Bits = 5; 2582 Size = 32; 2583 } else if (VT == MVT::i64) { 2584 Bits = 6; 2585 Size = 64; 2586 } else 2587 return false; 2588 2589 SDValue ShiftAmt = N->getOperand(1); 2590 SDLoc DL(N); 2591 SDValue NewShiftAmt; 2592 2593 // Skip over an extend of the shift amount. 2594 if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND || 2595 ShiftAmt->getOpcode() == ISD::ANY_EXTEND) 2596 ShiftAmt = ShiftAmt->getOperand(0); 2597 2598 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) { 2599 SDValue Add0 = ShiftAmt->getOperand(0); 2600 SDValue Add1 = ShiftAmt->getOperand(1); 2601 uint64_t Add0Imm; 2602 uint64_t Add1Imm; 2603 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X 2604 // to avoid the ADD/SUB. 2605 if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0)) 2606 NewShiftAmt = Add0; 2607 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to 2608 // generate a NEG instead of a SUB of a constant. 2609 else if (ShiftAmt->getOpcode() == ISD::SUB && 2610 isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 && 2611 (Add0Imm % Size == 0)) { 2612 unsigned NegOpc; 2613 unsigned ZeroReg; 2614 EVT SubVT = ShiftAmt->getValueType(0); 2615 if (SubVT == MVT::i32) { 2616 NegOpc = AArch64::SUBWrr; 2617 ZeroReg = AArch64::WZR; 2618 } else { 2619 assert(SubVT == MVT::i64); 2620 NegOpc = AArch64::SUBXrr; 2621 ZeroReg = AArch64::XZR; 2622 } 2623 SDValue Zero = 2624 CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT); 2625 MachineSDNode *Neg = 2626 CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1); 2627 NewShiftAmt = SDValue(Neg, 0); 2628 } else 2629 return false; 2630 } else { 2631 // If the shift amount is masked with an AND, check that the mask covers the 2632 // bits that are implicitly ANDed off by the above opcodes and if so, skip 2633 // the AND. 2634 uint64_t MaskImm; 2635 if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm)) 2636 return false; 2637 2638 if (countTrailingOnes(MaskImm) < Bits) 2639 return false; 2640 2641 NewShiftAmt = ShiftAmt->getOperand(0); 2642 } 2643 2644 // Narrow/widen the shift amount to match the size of the shift operation. 2645 if (VT == MVT::i32) 2646 NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt); 2647 else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) { 2648 SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32); 2649 MachineSDNode *Ext = CurDAG->getMachineNode( 2650 AArch64::SUBREG_TO_REG, DL, VT, 2651 CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg); 2652 NewShiftAmt = SDValue(Ext, 0); 2653 } 2654 2655 SDValue Ops[] = {N->getOperand(0), NewShiftAmt}; 2656 CurDAG->SelectNodeTo(N, Opc, VT, Ops); 2657 return true; 2658 } 2659 2660 bool 2661 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, 2662 unsigned RegWidth) { 2663 APFloat FVal(0.0); 2664 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 2665 FVal = CN->getValueAPF(); 2666 else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) { 2667 // Some otherwise illegal constants are allowed in this case. 2668 if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow || 2669 !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1))) 2670 return false; 2671 2672 ConstantPoolSDNode *CN = 2673 dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)); 2674 FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF(); 2675 } else 2676 return false; 2677 2678 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits 2679 // is between 1 and 32 for a destination w-register, or 1 and 64 for an 2680 // x-register. 2681 // 2682 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we 2683 // want THIS_NODE to be 2^fbits. This is much easier to deal with using 2684 // integers. 2685 bool IsExact; 2686 2687 // fbits is between 1 and 64 in the worst-case, which means the fmul 2688 // could have 2^64 as an actual operand. Need 65 bits of precision. 2689 APSInt IntVal(65, true); 2690 FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact); 2691 2692 // N.b. isPowerOf2 also checks for > 0. 2693 if (!IsExact || !IntVal.isPowerOf2()) return false; 2694 unsigned FBits = IntVal.logBase2(); 2695 2696 // Checks above should have guaranteed that we haven't lost information in 2697 // finding FBits, but it must still be in range. 2698 if (FBits == 0 || FBits > RegWidth) return false; 2699 2700 FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32); 2701 return true; 2702 } 2703 2704 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields 2705 // of the string and obtains the integer values from them and combines these 2706 // into a single value to be used in the MRS/MSR instruction. 2707 static int getIntOperandFromRegisterString(StringRef RegString) { 2708 SmallVector<StringRef, 5> Fields; 2709 RegString.split(Fields, ':'); 2710 2711 if (Fields.size() == 1) 2712 return -1; 2713 2714 assert(Fields.size() == 5 2715 && "Invalid number of fields in read register string"); 2716 2717 SmallVector<int, 5> Ops; 2718 bool AllIntFields = true; 2719 2720 for (StringRef Field : Fields) { 2721 unsigned IntField; 2722 AllIntFields &= !Field.getAsInteger(10, IntField); 2723 Ops.push_back(IntField); 2724 } 2725 2726 assert(AllIntFields && 2727 "Unexpected non-integer value in special register string."); 2728 2729 // Need to combine the integer fields of the string into a single value 2730 // based on the bit encoding of MRS/MSR instruction. 2731 return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) | 2732 (Ops[3] << 3) | (Ops[4]); 2733 } 2734 2735 // Lower the read_register intrinsic to an MRS instruction node if the special 2736 // register string argument is either of the form detailed in the ALCE (the 2737 // form described in getIntOperandsFromRegsterString) or is a named register 2738 // known by the MRS SysReg mapper. 2739 bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) { 2740 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1)); 2741 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2742 SDLoc DL(N); 2743 2744 int Reg = getIntOperandFromRegisterString(RegString->getString()); 2745 if (Reg != -1) { 2746 ReplaceNode(N, CurDAG->getMachineNode( 2747 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other, 2748 CurDAG->getTargetConstant(Reg, DL, MVT::i32), 2749 N->getOperand(0))); 2750 return true; 2751 } 2752 2753 // Use the sysreg mapper to map the remaining possible strings to the 2754 // value for the register to be used for the instruction operand. 2755 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString()); 2756 if (TheReg && TheReg->Readable && 2757 TheReg->haveFeatures(Subtarget->getFeatureBits())) 2758 Reg = TheReg->Encoding; 2759 else 2760 Reg = AArch64SysReg::parseGenericRegister(RegString->getString()); 2761 2762 if (Reg != -1) { 2763 ReplaceNode(N, CurDAG->getMachineNode( 2764 AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other, 2765 CurDAG->getTargetConstant(Reg, DL, MVT::i32), 2766 N->getOperand(0))); 2767 return true; 2768 } 2769 2770 if (RegString->getString() == "pc") { 2771 ReplaceNode(N, CurDAG->getMachineNode( 2772 AArch64::ADR, DL, N->getSimpleValueType(0), MVT::Other, 2773 CurDAG->getTargetConstant(0, DL, MVT::i32), 2774 N->getOperand(0))); 2775 return true; 2776 } 2777 2778 return false; 2779 } 2780 2781 // Lower the write_register intrinsic to an MSR instruction node if the special 2782 // register string argument is either of the form detailed in the ALCE (the 2783 // form described in getIntOperandsFromRegsterString) or is a named register 2784 // known by the MSR SysReg mapper. 2785 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) { 2786 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1)); 2787 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2788 SDLoc DL(N); 2789 2790 int Reg = getIntOperandFromRegisterString(RegString->getString()); 2791 if (Reg != -1) { 2792 ReplaceNode( 2793 N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other, 2794 CurDAG->getTargetConstant(Reg, DL, MVT::i32), 2795 N->getOperand(2), N->getOperand(0))); 2796 return true; 2797 } 2798 2799 // Check if the register was one of those allowed as the pstatefield value in 2800 // the MSR (immediate) instruction. To accept the values allowed in the 2801 // pstatefield for the MSR (immediate) instruction, we also require that an 2802 // immediate value has been provided as an argument, we know that this is 2803 // the case as it has been ensured by semantic checking. 2804 auto PMapper = AArch64PState::lookupPStateByName(RegString->getString()); 2805 if (PMapper) { 2806 assert (isa<ConstantSDNode>(N->getOperand(2)) 2807 && "Expected a constant integer expression."); 2808 unsigned Reg = PMapper->Encoding; 2809 uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); 2810 unsigned State; 2811 if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO || Reg == AArch64PState::SSBS) { 2812 assert(Immed < 2 && "Bad imm"); 2813 State = AArch64::MSRpstateImm1; 2814 } else { 2815 assert(Immed < 16 && "Bad imm"); 2816 State = AArch64::MSRpstateImm4; 2817 } 2818 ReplaceNode(N, CurDAG->getMachineNode( 2819 State, DL, MVT::Other, 2820 CurDAG->getTargetConstant(Reg, DL, MVT::i32), 2821 CurDAG->getTargetConstant(Immed, DL, MVT::i16), 2822 N->getOperand(0))); 2823 return true; 2824 } 2825 2826 // Use the sysreg mapper to attempt to map the remaining possible strings 2827 // to the value for the register to be used for the MSR (register) 2828 // instruction operand. 2829 auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString()); 2830 if (TheReg && TheReg->Writeable && 2831 TheReg->haveFeatures(Subtarget->getFeatureBits())) 2832 Reg = TheReg->Encoding; 2833 else 2834 Reg = AArch64SysReg::parseGenericRegister(RegString->getString()); 2835 if (Reg != -1) { 2836 ReplaceNode(N, CurDAG->getMachineNode( 2837 AArch64::MSR, DL, MVT::Other, 2838 CurDAG->getTargetConstant(Reg, DL, MVT::i32), 2839 N->getOperand(2), N->getOperand(0))); 2840 return true; 2841 } 2842 2843 return false; 2844 } 2845 2846 /// We've got special pseudo-instructions for these 2847 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) { 2848 unsigned Opcode; 2849 EVT MemTy = cast<MemSDNode>(N)->getMemoryVT(); 2850 2851 // Leave IR for LSE if subtarget supports it. 2852 if (Subtarget->hasLSE()) return false; 2853 2854 if (MemTy == MVT::i8) 2855 Opcode = AArch64::CMP_SWAP_8; 2856 else if (MemTy == MVT::i16) 2857 Opcode = AArch64::CMP_SWAP_16; 2858 else if (MemTy == MVT::i32) 2859 Opcode = AArch64::CMP_SWAP_32; 2860 else if (MemTy == MVT::i64) 2861 Opcode = AArch64::CMP_SWAP_64; 2862 else 2863 llvm_unreachable("Unknown AtomicCmpSwap type"); 2864 2865 MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32; 2866 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3), 2867 N->getOperand(0)}; 2868 SDNode *CmpSwap = CurDAG->getMachineNode( 2869 Opcode, SDLoc(N), 2870 CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops); 2871 2872 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); 2873 CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp}); 2874 2875 ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0)); 2876 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2)); 2877 CurDAG->RemoveDeadNode(N); 2878 2879 return true; 2880 } 2881 2882 bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift) { 2883 if (auto CNode = dyn_cast<ConstantSDNode>(N)) { 2884 const int64_t ImmVal = CNode->getZExtValue(); 2885 SDLoc DL(N); 2886 2887 switch (VT.SimpleTy) { 2888 case MVT::i8: 2889 if ((ImmVal & 0xFF) == ImmVal) { 2890 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); 2891 Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32); 2892 return true; 2893 } 2894 break; 2895 case MVT::i16: 2896 case MVT::i32: 2897 case MVT::i64: 2898 if ((ImmVal & 0xFF) == ImmVal) { 2899 Shift = CurDAG->getTargetConstant(0, DL, MVT::i32); 2900 Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32); 2901 return true; 2902 } else if ((ImmVal & 0xFF00) == ImmVal) { 2903 Shift = CurDAG->getTargetConstant(8, DL, MVT::i32); 2904 Imm = CurDAG->getTargetConstant(ImmVal >> 8, DL, MVT::i32); 2905 return true; 2906 } 2907 break; 2908 default: 2909 break; 2910 } 2911 } 2912 2913 return false; 2914 } 2915 2916 bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N, SDValue &Imm) { 2917 if (auto CNode = dyn_cast<ConstantSDNode>(N)) { 2918 int64_t ImmVal = CNode->getSExtValue(); 2919 SDLoc DL(N); 2920 if (ImmVal >= -127 && ImmVal < 127) { 2921 Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32); 2922 return true; 2923 } 2924 } 2925 return false; 2926 } 2927 2928 bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N, SDValue &Imm) { 2929 if (auto CNode = dyn_cast<ConstantSDNode>(N)) { 2930 uint64_t ImmVal = CNode->getSExtValue(); 2931 SDLoc DL(N); 2932 ImmVal = ImmVal & 0xFF; 2933 if (ImmVal < 256) { 2934 Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32); 2935 return true; 2936 } 2937 } 2938 return false; 2939 } 2940 2941 bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm) { 2942 if (auto CNode = dyn_cast<ConstantSDNode>(N)) { 2943 uint64_t ImmVal = CNode->getZExtValue(); 2944 SDLoc DL(N); 2945 2946 // Shift mask depending on type size. 2947 switch (VT.SimpleTy) { 2948 case MVT::i8: 2949 ImmVal &= 0xFF; 2950 ImmVal |= ImmVal << 8; 2951 ImmVal |= ImmVal << 16; 2952 ImmVal |= ImmVal << 32; 2953 break; 2954 case MVT::i16: 2955 ImmVal &= 0xFFFF; 2956 ImmVal |= ImmVal << 16; 2957 ImmVal |= ImmVal << 32; 2958 break; 2959 case MVT::i32: 2960 ImmVal &= 0xFFFFFFFF; 2961 ImmVal |= ImmVal << 32; 2962 break; 2963 case MVT::i64: 2964 break; 2965 default: 2966 llvm_unreachable("Unexpected type"); 2967 } 2968 2969 uint64_t encoding; 2970 if (AArch64_AM::processLogicalImmediate(ImmVal, 64, encoding)) { 2971 Imm = CurDAG->getTargetConstant(encoding, DL, MVT::i64); 2972 return true; 2973 } 2974 } 2975 return false; 2976 } 2977 2978 bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) { 2979 // tagp(FrameIndex, IRGstack, tag_offset): 2980 // since the offset between FrameIndex and IRGstack is a compile-time 2981 // constant, this can be lowered to a single ADDG instruction. 2982 if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) { 2983 return false; 2984 } 2985 2986 SDValue IRG_SP = N->getOperand(2); 2987 if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN || 2988 cast<ConstantSDNode>(IRG_SP->getOperand(1))->getZExtValue() != 2989 Intrinsic::aarch64_irg_sp) { 2990 return false; 2991 } 2992 2993 const TargetLowering *TLI = getTargetLowering(); 2994 SDLoc DL(N); 2995 int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex(); 2996 SDValue FiOp = CurDAG->getTargetFrameIndex( 2997 FI, TLI->getPointerTy(CurDAG->getDataLayout())); 2998 int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(); 2999 3000 SDNode *Out = CurDAG->getMachineNode( 3001 AArch64::TAGPstack, DL, MVT::i64, 3002 {FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2), 3003 CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)}); 3004 ReplaceNode(N, Out); 3005 return true; 3006 } 3007 3008 void AArch64DAGToDAGISel::SelectTagP(SDNode *N) { 3009 assert(isa<ConstantSDNode>(N->getOperand(3)) && 3010 "llvm.aarch64.tagp third argument must be an immediate"); 3011 if (trySelectStackSlotTagP(N)) 3012 return; 3013 // FIXME: above applies in any case when offset between Op1 and Op2 is a 3014 // compile-time constant, not just for stack allocations. 3015 3016 // General case for unrelated pointers in Op1 and Op2. 3017 SDLoc DL(N); 3018 int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(); 3019 SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64, 3020 {N->getOperand(1), N->getOperand(2)}); 3021 SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64, 3022 {SDValue(N1, 0), N->getOperand(2)}); 3023 SDNode *N3 = CurDAG->getMachineNode( 3024 AArch64::ADDG, DL, MVT::i64, 3025 {SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64), 3026 CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)}); 3027 ReplaceNode(N, N3); 3028 } 3029 3030 void AArch64DAGToDAGISel::Select(SDNode *Node) { 3031 // If we have a custom node, we already have selected! 3032 if (Node->isMachineOpcode()) { 3033 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); 3034 Node->setNodeId(-1); 3035 return; 3036 } 3037 3038 // Few custom selection stuff. 3039 EVT VT = Node->getValueType(0); 3040 3041 switch (Node->getOpcode()) { 3042 default: 3043 break; 3044 3045 case ISD::ATOMIC_CMP_SWAP: 3046 if (SelectCMP_SWAP(Node)) 3047 return; 3048 break; 3049 3050 case ISD::READ_REGISTER: 3051 if (tryReadRegister(Node)) 3052 return; 3053 break; 3054 3055 case ISD::WRITE_REGISTER: 3056 if (tryWriteRegister(Node)) 3057 return; 3058 break; 3059 3060 case ISD::ADD: 3061 if (tryMLAV64LaneV128(Node)) 3062 return; 3063 break; 3064 3065 case ISD::LOAD: { 3066 // Try to select as an indexed load. Fall through to normal processing 3067 // if we can't. 3068 if (tryIndexedLoad(Node)) 3069 return; 3070 break; 3071 } 3072 3073 case ISD::SRL: 3074 case ISD::AND: 3075 case ISD::SRA: 3076 case ISD::SIGN_EXTEND_INREG: 3077 if (tryBitfieldExtractOp(Node)) 3078 return; 3079 if (tryBitfieldInsertInZeroOp(Node)) 3080 return; 3081 LLVM_FALLTHROUGH; 3082 case ISD::ROTR: 3083 case ISD::SHL: 3084 if (tryShiftAmountMod(Node)) 3085 return; 3086 break; 3087 3088 case ISD::SIGN_EXTEND: 3089 if (tryBitfieldExtractOpFromSExt(Node)) 3090 return; 3091 break; 3092 3093 case ISD::FP_EXTEND: 3094 if (tryHighFPExt(Node)) 3095 return; 3096 break; 3097 3098 case ISD::OR: 3099 if (tryBitfieldInsertOp(Node)) 3100 return; 3101 break; 3102 3103 case ISD::Constant: { 3104 // Materialize zero constants as copies from WZR/XZR. This allows 3105 // the coalescer to propagate these into other instructions. 3106 ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node); 3107 if (ConstNode->isNullValue()) { 3108 if (VT == MVT::i32) { 3109 SDValue New = CurDAG->getCopyFromReg( 3110 CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32); 3111 ReplaceNode(Node, New.getNode()); 3112 return; 3113 } else if (VT == MVT::i64) { 3114 SDValue New = CurDAG->getCopyFromReg( 3115 CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64); 3116 ReplaceNode(Node, New.getNode()); 3117 return; 3118 } 3119 } 3120 break; 3121 } 3122 3123 case ISD::FrameIndex: { 3124 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm. 3125 int FI = cast<FrameIndexSDNode>(Node)->getIndex(); 3126 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0); 3127 const TargetLowering *TLI = getTargetLowering(); 3128 SDValue TFI = CurDAG->getTargetFrameIndex( 3129 FI, TLI->getPointerTy(CurDAG->getDataLayout())); 3130 SDLoc DL(Node); 3131 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32), 3132 CurDAG->getTargetConstant(Shifter, DL, MVT::i32) }; 3133 CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops); 3134 return; 3135 } 3136 case ISD::INTRINSIC_W_CHAIN: { 3137 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 3138 switch (IntNo) { 3139 default: 3140 break; 3141 case Intrinsic::aarch64_ldaxp: 3142 case Intrinsic::aarch64_ldxp: { 3143 unsigned Op = 3144 IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX; 3145 SDValue MemAddr = Node->getOperand(2); 3146 SDLoc DL(Node); 3147 SDValue Chain = Node->getOperand(0); 3148 3149 SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64, 3150 MVT::Other, MemAddr, Chain); 3151 3152 // Transfer memoperands. 3153 MachineMemOperand *MemOp = 3154 cast<MemIntrinsicSDNode>(Node)->getMemOperand(); 3155 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp}); 3156 ReplaceNode(Node, Ld); 3157 return; 3158 } 3159 case Intrinsic::aarch64_stlxp: 3160 case Intrinsic::aarch64_stxp: { 3161 unsigned Op = 3162 IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX; 3163 SDLoc DL(Node); 3164 SDValue Chain = Node->getOperand(0); 3165 SDValue ValLo = Node->getOperand(2); 3166 SDValue ValHi = Node->getOperand(3); 3167 SDValue MemAddr = Node->getOperand(4); 3168 3169 // Place arguments in the right order. 3170 SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain}; 3171 3172 SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops); 3173 // Transfer memoperands. 3174 MachineMemOperand *MemOp = 3175 cast<MemIntrinsicSDNode>(Node)->getMemOperand(); 3176 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp}); 3177 3178 ReplaceNode(Node, St); 3179 return; 3180 } 3181 case Intrinsic::aarch64_neon_ld1x2: 3182 if (VT == MVT::v8i8) { 3183 SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0); 3184 return; 3185 } else if (VT == MVT::v16i8) { 3186 SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0); 3187 return; 3188 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3189 SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0); 3190 return; 3191 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3192 SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0); 3193 return; 3194 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3195 SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0); 3196 return; 3197 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3198 SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0); 3199 return; 3200 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3201 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0); 3202 return; 3203 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3204 SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0); 3205 return; 3206 } 3207 break; 3208 case Intrinsic::aarch64_neon_ld1x3: 3209 if (VT == MVT::v8i8) { 3210 SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0); 3211 return; 3212 } else if (VT == MVT::v16i8) { 3213 SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0); 3214 return; 3215 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3216 SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0); 3217 return; 3218 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3219 SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0); 3220 return; 3221 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3222 SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0); 3223 return; 3224 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3225 SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0); 3226 return; 3227 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3228 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0); 3229 return; 3230 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3231 SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0); 3232 return; 3233 } 3234 break; 3235 case Intrinsic::aarch64_neon_ld1x4: 3236 if (VT == MVT::v8i8) { 3237 SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0); 3238 return; 3239 } else if (VT == MVT::v16i8) { 3240 SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0); 3241 return; 3242 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3243 SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0); 3244 return; 3245 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3246 SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0); 3247 return; 3248 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3249 SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0); 3250 return; 3251 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3252 SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0); 3253 return; 3254 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3255 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0); 3256 return; 3257 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3258 SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0); 3259 return; 3260 } 3261 break; 3262 case Intrinsic::aarch64_neon_ld2: 3263 if (VT == MVT::v8i8) { 3264 SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0); 3265 return; 3266 } else if (VT == MVT::v16i8) { 3267 SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0); 3268 return; 3269 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3270 SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0); 3271 return; 3272 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3273 SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0); 3274 return; 3275 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3276 SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0); 3277 return; 3278 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3279 SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0); 3280 return; 3281 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3282 SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0); 3283 return; 3284 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3285 SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0); 3286 return; 3287 } 3288 break; 3289 case Intrinsic::aarch64_neon_ld3: 3290 if (VT == MVT::v8i8) { 3291 SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0); 3292 return; 3293 } else if (VT == MVT::v16i8) { 3294 SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0); 3295 return; 3296 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3297 SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0); 3298 return; 3299 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3300 SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0); 3301 return; 3302 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3303 SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0); 3304 return; 3305 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3306 SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0); 3307 return; 3308 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3309 SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0); 3310 return; 3311 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3312 SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0); 3313 return; 3314 } 3315 break; 3316 case Intrinsic::aarch64_neon_ld4: 3317 if (VT == MVT::v8i8) { 3318 SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0); 3319 return; 3320 } else if (VT == MVT::v16i8) { 3321 SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0); 3322 return; 3323 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3324 SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0); 3325 return; 3326 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3327 SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0); 3328 return; 3329 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3330 SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0); 3331 return; 3332 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3333 SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0); 3334 return; 3335 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3336 SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0); 3337 return; 3338 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3339 SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0); 3340 return; 3341 } 3342 break; 3343 case Intrinsic::aarch64_neon_ld2r: 3344 if (VT == MVT::v8i8) { 3345 SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0); 3346 return; 3347 } else if (VT == MVT::v16i8) { 3348 SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0); 3349 return; 3350 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3351 SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0); 3352 return; 3353 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3354 SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0); 3355 return; 3356 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3357 SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0); 3358 return; 3359 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3360 SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0); 3361 return; 3362 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3363 SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0); 3364 return; 3365 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3366 SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0); 3367 return; 3368 } 3369 break; 3370 case Intrinsic::aarch64_neon_ld3r: 3371 if (VT == MVT::v8i8) { 3372 SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0); 3373 return; 3374 } else if (VT == MVT::v16i8) { 3375 SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0); 3376 return; 3377 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3378 SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0); 3379 return; 3380 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3381 SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0); 3382 return; 3383 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3384 SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0); 3385 return; 3386 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3387 SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0); 3388 return; 3389 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3390 SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0); 3391 return; 3392 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3393 SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0); 3394 return; 3395 } 3396 break; 3397 case Intrinsic::aarch64_neon_ld4r: 3398 if (VT == MVT::v8i8) { 3399 SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0); 3400 return; 3401 } else if (VT == MVT::v16i8) { 3402 SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0); 3403 return; 3404 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3405 SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0); 3406 return; 3407 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3408 SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0); 3409 return; 3410 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3411 SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0); 3412 return; 3413 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3414 SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0); 3415 return; 3416 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3417 SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0); 3418 return; 3419 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3420 SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0); 3421 return; 3422 } 3423 break; 3424 case Intrinsic::aarch64_neon_ld2lane: 3425 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 3426 SelectLoadLane(Node, 2, AArch64::LD2i8); 3427 return; 3428 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 3429 VT == MVT::v8f16) { 3430 SelectLoadLane(Node, 2, AArch64::LD2i16); 3431 return; 3432 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 3433 VT == MVT::v2f32) { 3434 SelectLoadLane(Node, 2, AArch64::LD2i32); 3435 return; 3436 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 3437 VT == MVT::v1f64) { 3438 SelectLoadLane(Node, 2, AArch64::LD2i64); 3439 return; 3440 } 3441 break; 3442 case Intrinsic::aarch64_neon_ld3lane: 3443 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 3444 SelectLoadLane(Node, 3, AArch64::LD3i8); 3445 return; 3446 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 3447 VT == MVT::v8f16) { 3448 SelectLoadLane(Node, 3, AArch64::LD3i16); 3449 return; 3450 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 3451 VT == MVT::v2f32) { 3452 SelectLoadLane(Node, 3, AArch64::LD3i32); 3453 return; 3454 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 3455 VT == MVT::v1f64) { 3456 SelectLoadLane(Node, 3, AArch64::LD3i64); 3457 return; 3458 } 3459 break; 3460 case Intrinsic::aarch64_neon_ld4lane: 3461 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 3462 SelectLoadLane(Node, 4, AArch64::LD4i8); 3463 return; 3464 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 3465 VT == MVT::v8f16) { 3466 SelectLoadLane(Node, 4, AArch64::LD4i16); 3467 return; 3468 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 3469 VT == MVT::v2f32) { 3470 SelectLoadLane(Node, 4, AArch64::LD4i32); 3471 return; 3472 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 3473 VT == MVT::v1f64) { 3474 SelectLoadLane(Node, 4, AArch64::LD4i64); 3475 return; 3476 } 3477 break; 3478 } 3479 } break; 3480 case ISD::INTRINSIC_WO_CHAIN: { 3481 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 3482 switch (IntNo) { 3483 default: 3484 break; 3485 case Intrinsic::aarch64_tagp: 3486 SelectTagP(Node); 3487 return; 3488 case Intrinsic::aarch64_neon_tbl2: 3489 SelectTable(Node, 2, 3490 VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two, 3491 false); 3492 return; 3493 case Intrinsic::aarch64_neon_tbl3: 3494 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three 3495 : AArch64::TBLv16i8Three, 3496 false); 3497 return; 3498 case Intrinsic::aarch64_neon_tbl4: 3499 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four 3500 : AArch64::TBLv16i8Four, 3501 false); 3502 return; 3503 case Intrinsic::aarch64_neon_tbx2: 3504 SelectTable(Node, 2, 3505 VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two, 3506 true); 3507 return; 3508 case Intrinsic::aarch64_neon_tbx3: 3509 SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three 3510 : AArch64::TBXv16i8Three, 3511 true); 3512 return; 3513 case Intrinsic::aarch64_neon_tbx4: 3514 SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four 3515 : AArch64::TBXv16i8Four, 3516 true); 3517 return; 3518 case Intrinsic::aarch64_neon_smull: 3519 case Intrinsic::aarch64_neon_umull: 3520 if (tryMULLV64LaneV128(IntNo, Node)) 3521 return; 3522 break; 3523 } 3524 break; 3525 } 3526 case ISD::INTRINSIC_VOID: { 3527 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 3528 if (Node->getNumOperands() >= 3) 3529 VT = Node->getOperand(2)->getValueType(0); 3530 switch (IntNo) { 3531 default: 3532 break; 3533 case Intrinsic::aarch64_neon_st1x2: { 3534 if (VT == MVT::v8i8) { 3535 SelectStore(Node, 2, AArch64::ST1Twov8b); 3536 return; 3537 } else if (VT == MVT::v16i8) { 3538 SelectStore(Node, 2, AArch64::ST1Twov16b); 3539 return; 3540 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3541 SelectStore(Node, 2, AArch64::ST1Twov4h); 3542 return; 3543 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3544 SelectStore(Node, 2, AArch64::ST1Twov8h); 3545 return; 3546 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3547 SelectStore(Node, 2, AArch64::ST1Twov2s); 3548 return; 3549 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3550 SelectStore(Node, 2, AArch64::ST1Twov4s); 3551 return; 3552 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3553 SelectStore(Node, 2, AArch64::ST1Twov2d); 3554 return; 3555 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3556 SelectStore(Node, 2, AArch64::ST1Twov1d); 3557 return; 3558 } 3559 break; 3560 } 3561 case Intrinsic::aarch64_neon_st1x3: { 3562 if (VT == MVT::v8i8) { 3563 SelectStore(Node, 3, AArch64::ST1Threev8b); 3564 return; 3565 } else if (VT == MVT::v16i8) { 3566 SelectStore(Node, 3, AArch64::ST1Threev16b); 3567 return; 3568 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3569 SelectStore(Node, 3, AArch64::ST1Threev4h); 3570 return; 3571 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3572 SelectStore(Node, 3, AArch64::ST1Threev8h); 3573 return; 3574 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3575 SelectStore(Node, 3, AArch64::ST1Threev2s); 3576 return; 3577 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3578 SelectStore(Node, 3, AArch64::ST1Threev4s); 3579 return; 3580 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3581 SelectStore(Node, 3, AArch64::ST1Threev2d); 3582 return; 3583 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3584 SelectStore(Node, 3, AArch64::ST1Threev1d); 3585 return; 3586 } 3587 break; 3588 } 3589 case Intrinsic::aarch64_neon_st1x4: { 3590 if (VT == MVT::v8i8) { 3591 SelectStore(Node, 4, AArch64::ST1Fourv8b); 3592 return; 3593 } else if (VT == MVT::v16i8) { 3594 SelectStore(Node, 4, AArch64::ST1Fourv16b); 3595 return; 3596 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3597 SelectStore(Node, 4, AArch64::ST1Fourv4h); 3598 return; 3599 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3600 SelectStore(Node, 4, AArch64::ST1Fourv8h); 3601 return; 3602 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3603 SelectStore(Node, 4, AArch64::ST1Fourv2s); 3604 return; 3605 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3606 SelectStore(Node, 4, AArch64::ST1Fourv4s); 3607 return; 3608 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3609 SelectStore(Node, 4, AArch64::ST1Fourv2d); 3610 return; 3611 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3612 SelectStore(Node, 4, AArch64::ST1Fourv1d); 3613 return; 3614 } 3615 break; 3616 } 3617 case Intrinsic::aarch64_neon_st2: { 3618 if (VT == MVT::v8i8) { 3619 SelectStore(Node, 2, AArch64::ST2Twov8b); 3620 return; 3621 } else if (VT == MVT::v16i8) { 3622 SelectStore(Node, 2, AArch64::ST2Twov16b); 3623 return; 3624 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3625 SelectStore(Node, 2, AArch64::ST2Twov4h); 3626 return; 3627 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3628 SelectStore(Node, 2, AArch64::ST2Twov8h); 3629 return; 3630 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3631 SelectStore(Node, 2, AArch64::ST2Twov2s); 3632 return; 3633 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3634 SelectStore(Node, 2, AArch64::ST2Twov4s); 3635 return; 3636 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3637 SelectStore(Node, 2, AArch64::ST2Twov2d); 3638 return; 3639 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3640 SelectStore(Node, 2, AArch64::ST1Twov1d); 3641 return; 3642 } 3643 break; 3644 } 3645 case Intrinsic::aarch64_neon_st3: { 3646 if (VT == MVT::v8i8) { 3647 SelectStore(Node, 3, AArch64::ST3Threev8b); 3648 return; 3649 } else if (VT == MVT::v16i8) { 3650 SelectStore(Node, 3, AArch64::ST3Threev16b); 3651 return; 3652 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3653 SelectStore(Node, 3, AArch64::ST3Threev4h); 3654 return; 3655 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3656 SelectStore(Node, 3, AArch64::ST3Threev8h); 3657 return; 3658 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3659 SelectStore(Node, 3, AArch64::ST3Threev2s); 3660 return; 3661 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3662 SelectStore(Node, 3, AArch64::ST3Threev4s); 3663 return; 3664 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3665 SelectStore(Node, 3, AArch64::ST3Threev2d); 3666 return; 3667 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3668 SelectStore(Node, 3, AArch64::ST1Threev1d); 3669 return; 3670 } 3671 break; 3672 } 3673 case Intrinsic::aarch64_neon_st4: { 3674 if (VT == MVT::v8i8) { 3675 SelectStore(Node, 4, AArch64::ST4Fourv8b); 3676 return; 3677 } else if (VT == MVT::v16i8) { 3678 SelectStore(Node, 4, AArch64::ST4Fourv16b); 3679 return; 3680 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3681 SelectStore(Node, 4, AArch64::ST4Fourv4h); 3682 return; 3683 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3684 SelectStore(Node, 4, AArch64::ST4Fourv8h); 3685 return; 3686 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3687 SelectStore(Node, 4, AArch64::ST4Fourv2s); 3688 return; 3689 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3690 SelectStore(Node, 4, AArch64::ST4Fourv4s); 3691 return; 3692 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3693 SelectStore(Node, 4, AArch64::ST4Fourv2d); 3694 return; 3695 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3696 SelectStore(Node, 4, AArch64::ST1Fourv1d); 3697 return; 3698 } 3699 break; 3700 } 3701 case Intrinsic::aarch64_neon_st2lane: { 3702 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 3703 SelectStoreLane(Node, 2, AArch64::ST2i8); 3704 return; 3705 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 3706 VT == MVT::v8f16) { 3707 SelectStoreLane(Node, 2, AArch64::ST2i16); 3708 return; 3709 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 3710 VT == MVT::v2f32) { 3711 SelectStoreLane(Node, 2, AArch64::ST2i32); 3712 return; 3713 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 3714 VT == MVT::v1f64) { 3715 SelectStoreLane(Node, 2, AArch64::ST2i64); 3716 return; 3717 } 3718 break; 3719 } 3720 case Intrinsic::aarch64_neon_st3lane: { 3721 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 3722 SelectStoreLane(Node, 3, AArch64::ST3i8); 3723 return; 3724 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 3725 VT == MVT::v8f16) { 3726 SelectStoreLane(Node, 3, AArch64::ST3i16); 3727 return; 3728 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 3729 VT == MVT::v2f32) { 3730 SelectStoreLane(Node, 3, AArch64::ST3i32); 3731 return; 3732 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 3733 VT == MVT::v1f64) { 3734 SelectStoreLane(Node, 3, AArch64::ST3i64); 3735 return; 3736 } 3737 break; 3738 } 3739 case Intrinsic::aarch64_neon_st4lane: { 3740 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 3741 SelectStoreLane(Node, 4, AArch64::ST4i8); 3742 return; 3743 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 3744 VT == MVT::v8f16) { 3745 SelectStoreLane(Node, 4, AArch64::ST4i16); 3746 return; 3747 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 3748 VT == MVT::v2f32) { 3749 SelectStoreLane(Node, 4, AArch64::ST4i32); 3750 return; 3751 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 3752 VT == MVT::v1f64) { 3753 SelectStoreLane(Node, 4, AArch64::ST4i64); 3754 return; 3755 } 3756 break; 3757 } 3758 } 3759 break; 3760 } 3761 case AArch64ISD::LD2post: { 3762 if (VT == MVT::v8i8) { 3763 SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0); 3764 return; 3765 } else if (VT == MVT::v16i8) { 3766 SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0); 3767 return; 3768 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3769 SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0); 3770 return; 3771 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3772 SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0); 3773 return; 3774 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3775 SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0); 3776 return; 3777 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3778 SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0); 3779 return; 3780 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3781 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0); 3782 return; 3783 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3784 SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0); 3785 return; 3786 } 3787 break; 3788 } 3789 case AArch64ISD::LD3post: { 3790 if (VT == MVT::v8i8) { 3791 SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0); 3792 return; 3793 } else if (VT == MVT::v16i8) { 3794 SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0); 3795 return; 3796 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3797 SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0); 3798 return; 3799 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3800 SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0); 3801 return; 3802 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3803 SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0); 3804 return; 3805 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3806 SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0); 3807 return; 3808 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3809 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0); 3810 return; 3811 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3812 SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0); 3813 return; 3814 } 3815 break; 3816 } 3817 case AArch64ISD::LD4post: { 3818 if (VT == MVT::v8i8) { 3819 SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0); 3820 return; 3821 } else if (VT == MVT::v16i8) { 3822 SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0); 3823 return; 3824 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3825 SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0); 3826 return; 3827 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3828 SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0); 3829 return; 3830 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3831 SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0); 3832 return; 3833 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3834 SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0); 3835 return; 3836 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3837 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0); 3838 return; 3839 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3840 SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0); 3841 return; 3842 } 3843 break; 3844 } 3845 case AArch64ISD::LD1x2post: { 3846 if (VT == MVT::v8i8) { 3847 SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0); 3848 return; 3849 } else if (VT == MVT::v16i8) { 3850 SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0); 3851 return; 3852 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3853 SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0); 3854 return; 3855 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3856 SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0); 3857 return; 3858 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3859 SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0); 3860 return; 3861 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3862 SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0); 3863 return; 3864 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3865 SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0); 3866 return; 3867 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3868 SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0); 3869 return; 3870 } 3871 break; 3872 } 3873 case AArch64ISD::LD1x3post: { 3874 if (VT == MVT::v8i8) { 3875 SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0); 3876 return; 3877 } else if (VT == MVT::v16i8) { 3878 SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0); 3879 return; 3880 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3881 SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0); 3882 return; 3883 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3884 SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0); 3885 return; 3886 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3887 SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0); 3888 return; 3889 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3890 SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0); 3891 return; 3892 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3893 SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0); 3894 return; 3895 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3896 SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0); 3897 return; 3898 } 3899 break; 3900 } 3901 case AArch64ISD::LD1x4post: { 3902 if (VT == MVT::v8i8) { 3903 SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0); 3904 return; 3905 } else if (VT == MVT::v16i8) { 3906 SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0); 3907 return; 3908 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3909 SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0); 3910 return; 3911 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3912 SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0); 3913 return; 3914 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3915 SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0); 3916 return; 3917 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3918 SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0); 3919 return; 3920 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3921 SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0); 3922 return; 3923 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3924 SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0); 3925 return; 3926 } 3927 break; 3928 } 3929 case AArch64ISD::LD1DUPpost: { 3930 if (VT == MVT::v8i8) { 3931 SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0); 3932 return; 3933 } else if (VT == MVT::v16i8) { 3934 SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0); 3935 return; 3936 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3937 SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0); 3938 return; 3939 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3940 SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0); 3941 return; 3942 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3943 SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0); 3944 return; 3945 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3946 SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0); 3947 return; 3948 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3949 SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0); 3950 return; 3951 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3952 SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0); 3953 return; 3954 } 3955 break; 3956 } 3957 case AArch64ISD::LD2DUPpost: { 3958 if (VT == MVT::v8i8) { 3959 SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0); 3960 return; 3961 } else if (VT == MVT::v16i8) { 3962 SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0); 3963 return; 3964 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3965 SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0); 3966 return; 3967 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3968 SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0); 3969 return; 3970 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3971 SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0); 3972 return; 3973 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 3974 SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0); 3975 return; 3976 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 3977 SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0); 3978 return; 3979 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 3980 SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0); 3981 return; 3982 } 3983 break; 3984 } 3985 case AArch64ISD::LD3DUPpost: { 3986 if (VT == MVT::v8i8) { 3987 SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0); 3988 return; 3989 } else if (VT == MVT::v16i8) { 3990 SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0); 3991 return; 3992 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 3993 SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0); 3994 return; 3995 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 3996 SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0); 3997 return; 3998 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 3999 SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0); 4000 return; 4001 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4002 SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0); 4003 return; 4004 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4005 SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0); 4006 return; 4007 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4008 SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0); 4009 return; 4010 } 4011 break; 4012 } 4013 case AArch64ISD::LD4DUPpost: { 4014 if (VT == MVT::v8i8) { 4015 SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0); 4016 return; 4017 } else if (VT == MVT::v16i8) { 4018 SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0); 4019 return; 4020 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4021 SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0); 4022 return; 4023 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 4024 SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0); 4025 return; 4026 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4027 SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0); 4028 return; 4029 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4030 SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0); 4031 return; 4032 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4033 SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0); 4034 return; 4035 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4036 SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0); 4037 return; 4038 } 4039 break; 4040 } 4041 case AArch64ISD::LD1LANEpost: { 4042 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 4043 SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST); 4044 return; 4045 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 4046 VT == MVT::v8f16) { 4047 SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST); 4048 return; 4049 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 4050 VT == MVT::v2f32) { 4051 SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST); 4052 return; 4053 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 4054 VT == MVT::v1f64) { 4055 SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST); 4056 return; 4057 } 4058 break; 4059 } 4060 case AArch64ISD::LD2LANEpost: { 4061 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 4062 SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST); 4063 return; 4064 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 4065 VT == MVT::v8f16) { 4066 SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST); 4067 return; 4068 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 4069 VT == MVT::v2f32) { 4070 SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST); 4071 return; 4072 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 4073 VT == MVT::v1f64) { 4074 SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST); 4075 return; 4076 } 4077 break; 4078 } 4079 case AArch64ISD::LD3LANEpost: { 4080 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 4081 SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST); 4082 return; 4083 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 4084 VT == MVT::v8f16) { 4085 SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST); 4086 return; 4087 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 4088 VT == MVT::v2f32) { 4089 SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST); 4090 return; 4091 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 4092 VT == MVT::v1f64) { 4093 SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST); 4094 return; 4095 } 4096 break; 4097 } 4098 case AArch64ISD::LD4LANEpost: { 4099 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 4100 SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST); 4101 return; 4102 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 4103 VT == MVT::v8f16) { 4104 SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST); 4105 return; 4106 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 4107 VT == MVT::v2f32) { 4108 SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST); 4109 return; 4110 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 4111 VT == MVT::v1f64) { 4112 SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST); 4113 return; 4114 } 4115 break; 4116 } 4117 case AArch64ISD::ST2post: { 4118 VT = Node->getOperand(1).getValueType(); 4119 if (VT == MVT::v8i8) { 4120 SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST); 4121 return; 4122 } else if (VT == MVT::v16i8) { 4123 SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST); 4124 return; 4125 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4126 SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST); 4127 return; 4128 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 4129 SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST); 4130 return; 4131 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4132 SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST); 4133 return; 4134 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4135 SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST); 4136 return; 4137 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4138 SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST); 4139 return; 4140 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4141 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST); 4142 return; 4143 } 4144 break; 4145 } 4146 case AArch64ISD::ST3post: { 4147 VT = Node->getOperand(1).getValueType(); 4148 if (VT == MVT::v8i8) { 4149 SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST); 4150 return; 4151 } else if (VT == MVT::v16i8) { 4152 SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST); 4153 return; 4154 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4155 SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST); 4156 return; 4157 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 4158 SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST); 4159 return; 4160 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4161 SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST); 4162 return; 4163 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4164 SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST); 4165 return; 4166 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4167 SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST); 4168 return; 4169 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4170 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST); 4171 return; 4172 } 4173 break; 4174 } 4175 case AArch64ISD::ST4post: { 4176 VT = Node->getOperand(1).getValueType(); 4177 if (VT == MVT::v8i8) { 4178 SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST); 4179 return; 4180 } else if (VT == MVT::v16i8) { 4181 SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST); 4182 return; 4183 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4184 SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST); 4185 return; 4186 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 4187 SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST); 4188 return; 4189 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4190 SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST); 4191 return; 4192 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4193 SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST); 4194 return; 4195 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4196 SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST); 4197 return; 4198 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4199 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST); 4200 return; 4201 } 4202 break; 4203 } 4204 case AArch64ISD::ST1x2post: { 4205 VT = Node->getOperand(1).getValueType(); 4206 if (VT == MVT::v8i8) { 4207 SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST); 4208 return; 4209 } else if (VT == MVT::v16i8) { 4210 SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST); 4211 return; 4212 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4213 SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST); 4214 return; 4215 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 4216 SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST); 4217 return; 4218 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4219 SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST); 4220 return; 4221 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4222 SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST); 4223 return; 4224 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4225 SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST); 4226 return; 4227 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4228 SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST); 4229 return; 4230 } 4231 break; 4232 } 4233 case AArch64ISD::ST1x3post: { 4234 VT = Node->getOperand(1).getValueType(); 4235 if (VT == MVT::v8i8) { 4236 SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST); 4237 return; 4238 } else if (VT == MVT::v16i8) { 4239 SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST); 4240 return; 4241 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4242 SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST); 4243 return; 4244 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 4245 SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST); 4246 return; 4247 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4248 SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST); 4249 return; 4250 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4251 SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST); 4252 return; 4253 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4254 SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST); 4255 return; 4256 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4257 SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST); 4258 return; 4259 } 4260 break; 4261 } 4262 case AArch64ISD::ST1x4post: { 4263 VT = Node->getOperand(1).getValueType(); 4264 if (VT == MVT::v8i8) { 4265 SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST); 4266 return; 4267 } else if (VT == MVT::v16i8) { 4268 SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST); 4269 return; 4270 } else if (VT == MVT::v4i16 || VT == MVT::v4f16) { 4271 SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST); 4272 return; 4273 } else if (VT == MVT::v8i16 || VT == MVT::v8f16) { 4274 SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST); 4275 return; 4276 } else if (VT == MVT::v2i32 || VT == MVT::v2f32) { 4277 SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST); 4278 return; 4279 } else if (VT == MVT::v4i32 || VT == MVT::v4f32) { 4280 SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST); 4281 return; 4282 } else if (VT == MVT::v1i64 || VT == MVT::v1f64) { 4283 SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST); 4284 return; 4285 } else if (VT == MVT::v2i64 || VT == MVT::v2f64) { 4286 SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST); 4287 return; 4288 } 4289 break; 4290 } 4291 case AArch64ISD::ST2LANEpost: { 4292 VT = Node->getOperand(1).getValueType(); 4293 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 4294 SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST); 4295 return; 4296 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 4297 VT == MVT::v8f16) { 4298 SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST); 4299 return; 4300 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 4301 VT == MVT::v2f32) { 4302 SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST); 4303 return; 4304 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 4305 VT == MVT::v1f64) { 4306 SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST); 4307 return; 4308 } 4309 break; 4310 } 4311 case AArch64ISD::ST3LANEpost: { 4312 VT = Node->getOperand(1).getValueType(); 4313 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 4314 SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST); 4315 return; 4316 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 4317 VT == MVT::v8f16) { 4318 SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST); 4319 return; 4320 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 4321 VT == MVT::v2f32) { 4322 SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST); 4323 return; 4324 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 4325 VT == MVT::v1f64) { 4326 SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST); 4327 return; 4328 } 4329 break; 4330 } 4331 case AArch64ISD::ST4LANEpost: { 4332 VT = Node->getOperand(1).getValueType(); 4333 if (VT == MVT::v16i8 || VT == MVT::v8i8) { 4334 SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST); 4335 return; 4336 } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 || 4337 VT == MVT::v8f16) { 4338 SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST); 4339 return; 4340 } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 || 4341 VT == MVT::v2f32) { 4342 SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST); 4343 return; 4344 } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 || 4345 VT == MVT::v1f64) { 4346 SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST); 4347 return; 4348 } 4349 break; 4350 } 4351 } 4352 4353 // Select the default instruction 4354 SelectCode(Node); 4355 } 4356 4357 /// createAArch64ISelDag - This pass converts a legalized DAG into a 4358 /// AArch64-specific DAG, ready for instruction scheduling. 4359 FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM, 4360 CodeGenOpt::Level OptLevel) { 4361 return new AArch64DAGToDAGISel(TM, OptLevel); 4362 } 4363