xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp (revision 5b56413d04e608379c9a306373554a8e4d321bc0)
1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the AArch64 target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AArch64MachineFunctionInfo.h"
14 #include "AArch64TargetMachine.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/CodeGen/ISDOpcodes.h"
18 #include "llvm/CodeGen/SelectionDAGISel.h"
19 #include "llvm/IR/Function.h" // To access function attributes.
20 #include "llvm/IR/GlobalValue.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/IR/IntrinsicsAArch64.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "aarch64-isel"
32 #define PASS_NAME "AArch64 Instruction Selection"
33 
34 //===--------------------------------------------------------------------===//
35 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
36 /// instructions for SelectionDAG operations.
37 ///
38 namespace {
39 
40 class AArch64DAGToDAGISel : public SelectionDAGISel {
41 
42   /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
43   /// make the right decision when generating code for different targets.
44   const AArch64Subtarget *Subtarget;
45 
46 public:
47   static char ID;
48 
49   AArch64DAGToDAGISel() = delete;
50 
51   explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
52                                CodeGenOptLevel OptLevel)
53       : SelectionDAGISel(ID, tm, OptLevel), Subtarget(nullptr) {}
54 
55   bool runOnMachineFunction(MachineFunction &MF) override {
56     Subtarget = &MF.getSubtarget<AArch64Subtarget>();
57     return SelectionDAGISel::runOnMachineFunction(MF);
58   }
59 
60   void Select(SDNode *Node) override;
61 
62   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
63   /// inline asm expressions.
64   bool SelectInlineAsmMemoryOperand(const SDValue &Op,
65                                     InlineAsm::ConstraintCode ConstraintID,
66                                     std::vector<SDValue> &OutOps) override;
67 
68   template <signed Low, signed High, signed Scale>
69   bool SelectRDVLImm(SDValue N, SDValue &Imm);
70 
71   bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
72   bool SelectArithUXTXRegister(SDValue N, SDValue &Reg, SDValue &Shift);
73   bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
74   bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
75   bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
76     return SelectShiftedRegister(N, false, Reg, Shift);
77   }
78   bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
79     return SelectShiftedRegister(N, true, Reg, Shift);
80   }
81   bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
82     return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
83   }
84   bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
85     return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
86   }
87   bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
88     return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
89   }
90   bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
91     return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
92   }
93   bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
94     return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
95   }
96   bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) {
97     return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm);
98   }
99   bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) {
100     return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm);
101   }
102   bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
103     return SelectAddrModeIndexed(N, 1, Base, OffImm);
104   }
105   bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
106     return SelectAddrModeIndexed(N, 2, Base, OffImm);
107   }
108   bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
109     return SelectAddrModeIndexed(N, 4, Base, OffImm);
110   }
111   bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
112     return SelectAddrModeIndexed(N, 8, Base, OffImm);
113   }
114   bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
115     return SelectAddrModeIndexed(N, 16, Base, OffImm);
116   }
117   bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
118     return SelectAddrModeUnscaled(N, 1, Base, OffImm);
119   }
120   bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
121     return SelectAddrModeUnscaled(N, 2, Base, OffImm);
122   }
123   bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
124     return SelectAddrModeUnscaled(N, 4, Base, OffImm);
125   }
126   bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
127     return SelectAddrModeUnscaled(N, 8, Base, OffImm);
128   }
129   bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
130     return SelectAddrModeUnscaled(N, 16, Base, OffImm);
131   }
132   template <unsigned Size, unsigned Max>
133   bool SelectAddrModeIndexedUImm(SDValue N, SDValue &Base, SDValue &OffImm) {
134     // Test if there is an appropriate addressing mode and check if the
135     // immediate fits.
136     bool Found = SelectAddrModeIndexed(N, Size, Base, OffImm);
137     if (Found) {
138       if (auto *CI = dyn_cast<ConstantSDNode>(OffImm)) {
139         int64_t C = CI->getSExtValue();
140         if (C <= Max)
141           return true;
142       }
143     }
144 
145     // Otherwise, base only, materialize address in register.
146     Base = N;
147     OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
148     return true;
149   }
150 
151   template<int Width>
152   bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
153                          SDValue &SignExtend, SDValue &DoShift) {
154     return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
155   }
156 
157   template<int Width>
158   bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
159                          SDValue &SignExtend, SDValue &DoShift) {
160     return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
161   }
162 
163   bool SelectExtractHigh(SDValue N, SDValue &Res) {
164     if (Subtarget->isLittleEndian() && N->getOpcode() == ISD::BITCAST)
165       N = N->getOperand(0);
166     if (N->getOpcode() != ISD::EXTRACT_SUBVECTOR ||
167         !isa<ConstantSDNode>(N->getOperand(1)))
168       return false;
169     EVT VT = N->getValueType(0);
170     EVT LVT = N->getOperand(0).getValueType();
171     unsigned Index = N->getConstantOperandVal(1);
172     if (!VT.is64BitVector() || !LVT.is128BitVector() ||
173         Index != VT.getVectorNumElements())
174       return false;
175     Res = N->getOperand(0);
176     return true;
177   }
178 
179   bool SelectRoundingVLShr(SDValue N, SDValue &Res1, SDValue &Res2) {
180     if (N.getOpcode() != AArch64ISD::VLSHR)
181       return false;
182     SDValue Op = N->getOperand(0);
183     EVT VT = Op.getValueType();
184     unsigned ShtAmt = N->getConstantOperandVal(1);
185     if (ShtAmt > VT.getScalarSizeInBits() / 2 || Op.getOpcode() != ISD::ADD)
186       return false;
187 
188     APInt Imm;
189     if (Op.getOperand(1).getOpcode() == AArch64ISD::MOVIshift)
190       Imm = APInt(VT.getScalarSizeInBits(),
191                   Op.getOperand(1).getConstantOperandVal(0)
192                       << Op.getOperand(1).getConstantOperandVal(1));
193     else if (Op.getOperand(1).getOpcode() == AArch64ISD::DUP &&
194              isa<ConstantSDNode>(Op.getOperand(1).getOperand(0)))
195       Imm = APInt(VT.getScalarSizeInBits(),
196                   Op.getOperand(1).getConstantOperandVal(0));
197     else
198       return false;
199 
200     if (Imm != 1ULL << (ShtAmt - 1))
201       return false;
202 
203     Res1 = Op.getOperand(0);
204     Res2 = CurDAG->getTargetConstant(ShtAmt, SDLoc(N), MVT::i32);
205     return true;
206   }
207 
208   bool SelectDupZeroOrUndef(SDValue N) {
209     switch(N->getOpcode()) {
210     case ISD::UNDEF:
211       return true;
212     case AArch64ISD::DUP:
213     case ISD::SPLAT_VECTOR: {
214       auto Opnd0 = N->getOperand(0);
215       if (isNullConstant(Opnd0))
216         return true;
217       if (isNullFPConstant(Opnd0))
218         return true;
219       break;
220     }
221     default:
222       break;
223     }
224 
225     return false;
226   }
227 
228   bool SelectDupZero(SDValue N) {
229     switch(N->getOpcode()) {
230     case AArch64ISD::DUP:
231     case ISD::SPLAT_VECTOR: {
232       auto Opnd0 = N->getOperand(0);
233       if (isNullConstant(Opnd0))
234         return true;
235       if (isNullFPConstant(Opnd0))
236         return true;
237       break;
238     }
239     }
240 
241     return false;
242   }
243 
244   bool SelectDupNegativeZero(SDValue N) {
245     switch(N->getOpcode()) {
246     case AArch64ISD::DUP:
247     case ISD::SPLAT_VECTOR: {
248       ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
249       return Const && Const->isZero() && Const->isNegative();
250     }
251     }
252 
253     return false;
254   }
255 
256   template<MVT::SimpleValueType VT>
257   bool SelectSVEAddSubImm(SDValue N, SDValue &Imm, SDValue &Shift) {
258     return SelectSVEAddSubImm(N, VT, Imm, Shift);
259   }
260 
261   template <MVT::SimpleValueType VT>
262   bool SelectSVECpyDupImm(SDValue N, SDValue &Imm, SDValue &Shift) {
263     return SelectSVECpyDupImm(N, VT, Imm, Shift);
264   }
265 
266   template <MVT::SimpleValueType VT, bool Invert = false>
267   bool SelectSVELogicalImm(SDValue N, SDValue &Imm) {
268     return SelectSVELogicalImm(N, VT, Imm, Invert);
269   }
270 
271   template <MVT::SimpleValueType VT>
272   bool SelectSVEArithImm(SDValue N, SDValue &Imm) {
273     return SelectSVEArithImm(N, VT, Imm);
274   }
275 
276   template <unsigned Low, unsigned High, bool AllowSaturation = false>
277   bool SelectSVEShiftImm(SDValue N, SDValue &Imm) {
278     return SelectSVEShiftImm(N, Low, High, AllowSaturation, Imm);
279   }
280 
281   bool SelectSVEShiftSplatImmR(SDValue N, SDValue &Imm) {
282     if (N->getOpcode() != ISD::SPLAT_VECTOR)
283       return false;
284 
285     EVT EltVT = N->getValueType(0).getVectorElementType();
286     return SelectSVEShiftImm(N->getOperand(0), /* Low */ 1,
287                              /* High */ EltVT.getFixedSizeInBits(),
288                              /* AllowSaturation */ true, Imm);
289   }
290 
291   // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
292   template<signed Min, signed Max, signed Scale, bool Shift>
293   bool SelectCntImm(SDValue N, SDValue &Imm) {
294     if (!isa<ConstantSDNode>(N))
295       return false;
296 
297     int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
298     if (Shift)
299       MulImm = 1LL << MulImm;
300 
301     if ((MulImm % std::abs(Scale)) != 0)
302       return false;
303 
304     MulImm /= Scale;
305     if ((MulImm >= Min) && (MulImm <= Max)) {
306       Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
307       return true;
308     }
309 
310     return false;
311   }
312 
313   template <signed Max, signed Scale>
314   bool SelectEXTImm(SDValue N, SDValue &Imm) {
315     if (!isa<ConstantSDNode>(N))
316       return false;
317 
318     int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
319 
320     if (MulImm >= 0 && MulImm <= Max) {
321       MulImm *= Scale;
322       Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
323       return true;
324     }
325 
326     return false;
327   }
328 
329   template <unsigned BaseReg, unsigned Max>
330   bool ImmToReg(SDValue N, SDValue &Imm) {
331     if (auto *CI = dyn_cast<ConstantSDNode>(N)) {
332       uint64_t C = CI->getZExtValue();
333 
334       if (C > Max)
335         return false;
336 
337       Imm = CurDAG->getRegister(BaseReg + C, MVT::Other);
338       return true;
339     }
340     return false;
341   }
342 
343   /// Form sequences of consecutive 64/128-bit registers for use in NEON
344   /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
345   /// between 1 and 4 elements. If it contains a single element that is returned
346   /// unchanged; otherwise a REG_SEQUENCE value is returned.
347   SDValue createDTuple(ArrayRef<SDValue> Vecs);
348   SDValue createQTuple(ArrayRef<SDValue> Vecs);
349   // Form a sequence of SVE registers for instructions using list of vectors,
350   // e.g. structured loads and stores (ldN, stN).
351   SDValue createZTuple(ArrayRef<SDValue> Vecs);
352 
353   // Similar to above, except the register must start at a multiple of the
354   // tuple, e.g. z2 for a 2-tuple, or z8 for a 4-tuple.
355   SDValue createZMulTuple(ArrayRef<SDValue> Regs);
356 
357   /// Generic helper for the createDTuple/createQTuple
358   /// functions. Those should almost always be called instead.
359   SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
360                       const unsigned SubRegs[]);
361 
362   void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
363 
364   bool tryIndexedLoad(SDNode *N);
365 
366   bool trySelectStackSlotTagP(SDNode *N);
367   void SelectTagP(SDNode *N);
368 
369   void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
370                      unsigned SubRegIdx);
371   void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
372                          unsigned SubRegIdx);
373   void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
374   void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
375   void SelectPredicatedLoad(SDNode *N, unsigned NumVecs, unsigned Scale,
376                             unsigned Opc_rr, unsigned Opc_ri,
377                             bool IsIntr = false);
378   void SelectContiguousMultiVectorLoad(SDNode *N, unsigned NumVecs,
379                                        unsigned Scale, unsigned Opc_ri,
380                                        unsigned Opc_rr);
381   void SelectDestructiveMultiIntrinsic(SDNode *N, unsigned NumVecs,
382                                        bool IsZmMulti, unsigned Opcode,
383                                        bool HasPred = false);
384   void SelectPExtPair(SDNode *N, unsigned Opc);
385   void SelectWhilePair(SDNode *N, unsigned Opc);
386   void SelectCVTIntrinsic(SDNode *N, unsigned NumVecs, unsigned Opcode);
387   void SelectClamp(SDNode *N, unsigned NumVecs, unsigned Opcode);
388   void SelectUnaryMultiIntrinsic(SDNode *N, unsigned NumOutVecs,
389                                  bool IsTupleInput, unsigned Opc);
390   void SelectFrintFromVT(SDNode *N, unsigned NumVecs, unsigned Opcode);
391 
392   template <unsigned MaxIdx, unsigned Scale>
393   void SelectMultiVectorMove(SDNode *N, unsigned NumVecs, unsigned BaseReg,
394                              unsigned Op);
395 
396   bool SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, SDValue &OffImm);
397   /// SVE Reg+Imm addressing mode.
398   template <int64_t Min, int64_t Max>
399   bool SelectAddrModeIndexedSVE(SDNode *Root, SDValue N, SDValue &Base,
400                                 SDValue &OffImm);
401   /// SVE Reg+Reg address mode.
402   template <unsigned Scale>
403   bool SelectSVERegRegAddrMode(SDValue N, SDValue &Base, SDValue &Offset) {
404     return SelectSVERegRegAddrMode(N, Scale, Base, Offset);
405   }
406 
407   void SelectMultiVectorLuti(SDNode *Node, unsigned NumOutVecs, unsigned Opc,
408                              uint32_t MaxImm);
409 
410   template <unsigned MaxIdx, unsigned Scale>
411   bool SelectSMETileSlice(SDValue N, SDValue &Vector, SDValue &Offset) {
412     return SelectSMETileSlice(N, MaxIdx, Vector, Offset, Scale);
413   }
414 
415   void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
416   void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
417   void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
418   void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
419   void SelectPredicatedStore(SDNode *N, unsigned NumVecs, unsigned Scale,
420                              unsigned Opc_rr, unsigned Opc_ri);
421   std::tuple<unsigned, SDValue, SDValue>
422   findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr, unsigned Opc_ri,
423                            const SDValue &OldBase, const SDValue &OldOffset,
424                            unsigned Scale);
425 
426   bool tryBitfieldExtractOp(SDNode *N);
427   bool tryBitfieldExtractOpFromSExt(SDNode *N);
428   bool tryBitfieldInsertOp(SDNode *N);
429   bool tryBitfieldInsertInZeroOp(SDNode *N);
430   bool tryShiftAmountMod(SDNode *N);
431 
432   bool tryReadRegister(SDNode *N);
433   bool tryWriteRegister(SDNode *N);
434 
435   bool trySelectCastFixedLengthToScalableVector(SDNode *N);
436   bool trySelectCastScalableToFixedLengthVector(SDNode *N);
437 
438   bool trySelectXAR(SDNode *N);
439 
440 // Include the pieces autogenerated from the target description.
441 #include "AArch64GenDAGISel.inc"
442 
443 private:
444   bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
445                              SDValue &Shift);
446   bool SelectShiftedRegisterFromAnd(SDValue N, SDValue &Reg, SDValue &Shift);
447   bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
448                                SDValue &OffImm) {
449     return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm);
450   }
451   bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW,
452                                      unsigned Size, SDValue &Base,
453                                      SDValue &OffImm);
454   bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
455                              SDValue &OffImm);
456   bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
457                               SDValue &OffImm);
458   bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
459                          SDValue &Offset, SDValue &SignExtend,
460                          SDValue &DoShift);
461   bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
462                          SDValue &Offset, SDValue &SignExtend,
463                          SDValue &DoShift);
464   bool isWorthFoldingALU(SDValue V, bool LSL = false) const;
465   bool isWorthFoldingAddr(SDValue V) const;
466   bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
467                          SDValue &Offset, SDValue &SignExtend);
468 
469   template<unsigned RegWidth>
470   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
471     return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
472   }
473 
474   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
475 
476   template<unsigned RegWidth>
477   bool SelectCVTFixedPosRecipOperand(SDValue N, SDValue &FixedPos) {
478     return SelectCVTFixedPosRecipOperand(N, FixedPos, RegWidth);
479   }
480 
481   bool SelectCVTFixedPosRecipOperand(SDValue N, SDValue &FixedPos,
482                                      unsigned Width);
483 
484   bool SelectCMP_SWAP(SDNode *N);
485 
486   bool SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift);
487   bool SelectSVECpyDupImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift);
488   bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm, bool Invert);
489 
490   bool SelectSVESignedArithImm(SDValue N, SDValue &Imm);
491   bool SelectSVEShiftImm(SDValue N, uint64_t Low, uint64_t High,
492                          bool AllowSaturation, SDValue &Imm);
493 
494   bool SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm);
495   bool SelectSVERegRegAddrMode(SDValue N, unsigned Scale, SDValue &Base,
496                                SDValue &Offset);
497   bool SelectSMETileSlice(SDValue N, unsigned MaxSize, SDValue &Vector,
498                           SDValue &Offset, unsigned Scale = 1);
499 
500   bool SelectAllActivePredicate(SDValue N);
501   bool SelectAnyPredicate(SDValue N);
502 };
503 } // end anonymous namespace
504 
505 char AArch64DAGToDAGISel::ID = 0;
506 
507 INITIALIZE_PASS(AArch64DAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
508 
509 /// isIntImmediate - This method tests to see if the node is a constant
510 /// operand. If so Imm will receive the 32-bit value.
511 static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
512   if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
513     Imm = C->getZExtValue();
514     return true;
515   }
516   return false;
517 }
518 
519 // isIntImmediate - This method tests to see if a constant operand.
520 // If so Imm will receive the value.
521 static bool isIntImmediate(SDValue N, uint64_t &Imm) {
522   return isIntImmediate(N.getNode(), Imm);
523 }
524 
525 // isOpcWithIntImmediate - This method tests to see if the node is a specific
526 // opcode and that it has a immediate integer right operand.
527 // If so Imm will receive the 32 bit value.
528 static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
529                                   uint64_t &Imm) {
530   return N->getOpcode() == Opc &&
531          isIntImmediate(N->getOperand(1).getNode(), Imm);
532 }
533 
534 // isIntImmediateEq - This method tests to see if N is a constant operand that
535 // is equivalent to 'ImmExpected'.
536 #ifndef NDEBUG
537 static bool isIntImmediateEq(SDValue N, const uint64_t ImmExpected) {
538   uint64_t Imm;
539   if (!isIntImmediate(N.getNode(), Imm))
540     return false;
541   return Imm == ImmExpected;
542 }
543 #endif
544 
545 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
546     const SDValue &Op, const InlineAsm::ConstraintCode ConstraintID,
547     std::vector<SDValue> &OutOps) {
548   switch(ConstraintID) {
549   default:
550     llvm_unreachable("Unexpected asm memory constraint");
551   case InlineAsm::ConstraintCode::m:
552   case InlineAsm::ConstraintCode::o:
553   case InlineAsm::ConstraintCode::Q:
554     // We need to make sure that this one operand does not end up in XZR, thus
555     // require the address to be in a PointerRegClass register.
556     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
557     const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
558     SDLoc dl(Op);
559     SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
560     SDValue NewOp =
561         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
562                                        dl, Op.getValueType(),
563                                        Op, RC), 0);
564     OutOps.push_back(NewOp);
565     return false;
566   }
567   return true;
568 }
569 
570 /// SelectArithImmed - Select an immediate value that can be represented as
571 /// a 12-bit value shifted left by either 0 or 12.  If so, return true with
572 /// Val set to the 12-bit value and Shift set to the shifter operand.
573 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
574                                            SDValue &Shift) {
575   // This function is called from the addsub_shifted_imm ComplexPattern,
576   // which lists [imm] as the list of opcode it's interested in, however
577   // we still need to check whether the operand is actually an immediate
578   // here because the ComplexPattern opcode list is only used in
579   // root-level opcode matching.
580   if (!isa<ConstantSDNode>(N.getNode()))
581     return false;
582 
583   uint64_t Immed = N.getNode()->getAsZExtVal();
584   unsigned ShiftAmt;
585 
586   if (Immed >> 12 == 0) {
587     ShiftAmt = 0;
588   } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
589     ShiftAmt = 12;
590     Immed = Immed >> 12;
591   } else
592     return false;
593 
594   unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
595   SDLoc dl(N);
596   Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
597   Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
598   return true;
599 }
600 
601 /// SelectNegArithImmed - As above, but negates the value before trying to
602 /// select it.
603 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
604                                               SDValue &Shift) {
605   // This function is called from the addsub_shifted_imm ComplexPattern,
606   // which lists [imm] as the list of opcode it's interested in, however
607   // we still need to check whether the operand is actually an immediate
608   // here because the ComplexPattern opcode list is only used in
609   // root-level opcode matching.
610   if (!isa<ConstantSDNode>(N.getNode()))
611     return false;
612 
613   // The immediate operand must be a 24-bit zero-extended immediate.
614   uint64_t Immed = N.getNode()->getAsZExtVal();
615 
616   // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
617   // have the opposite effect on the C flag, so this pattern mustn't match under
618   // those circumstances.
619   if (Immed == 0)
620     return false;
621 
622   if (N.getValueType() == MVT::i32)
623     Immed = ~((uint32_t)Immed) + 1;
624   else
625     Immed = ~Immed + 1ULL;
626   if (Immed & 0xFFFFFFFFFF000000ULL)
627     return false;
628 
629   Immed &= 0xFFFFFFULL;
630   return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
631                           Shift);
632 }
633 
634 /// getShiftTypeForNode - Translate a shift node to the corresponding
635 /// ShiftType value.
636 static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
637   switch (N.getOpcode()) {
638   default:
639     return AArch64_AM::InvalidShiftExtend;
640   case ISD::SHL:
641     return AArch64_AM::LSL;
642   case ISD::SRL:
643     return AArch64_AM::LSR;
644   case ISD::SRA:
645     return AArch64_AM::ASR;
646   case ISD::ROTR:
647     return AArch64_AM::ROR;
648   }
649 }
650 
651 /// Determine whether it is worth it to fold SHL into the addressing
652 /// mode.
653 static bool isWorthFoldingSHL(SDValue V) {
654   assert(V.getOpcode() == ISD::SHL && "invalid opcode");
655   // It is worth folding logical shift of up to three places.
656   auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
657   if (!CSD)
658     return false;
659   unsigned ShiftVal = CSD->getZExtValue();
660   if (ShiftVal > 3)
661     return false;
662 
663   // Check if this particular node is reused in any non-memory related
664   // operation.  If yes, do not try to fold this node into the address
665   // computation, since the computation will be kept.
666   const SDNode *Node = V.getNode();
667   for (SDNode *UI : Node->uses())
668     if (!isa<MemSDNode>(*UI))
669       for (SDNode *UII : UI->uses())
670         if (!isa<MemSDNode>(*UII))
671           return false;
672   return true;
673 }
674 
675 /// Determine whether it is worth to fold V into an extended register addressing
676 /// mode.
677 bool AArch64DAGToDAGISel::isWorthFoldingAddr(SDValue V) const {
678   // Trivial if we are optimizing for code size or if there is only
679   // one use of the value.
680   if (CurDAG->shouldOptForSize() || V.hasOneUse())
681     return true;
682   // If a subtarget has a fastpath LSL we can fold a logical shift into
683   // the addressing mode and save a cycle.
684   if (Subtarget->hasAddrLSLFast() && V.getOpcode() == ISD::SHL &&
685       isWorthFoldingSHL(V))
686     return true;
687   if (Subtarget->hasAddrLSLFast() && V.getOpcode() == ISD::ADD) {
688     const SDValue LHS = V.getOperand(0);
689     const SDValue RHS = V.getOperand(1);
690     if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
691       return true;
692     if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
693       return true;
694   }
695 
696   // It hurts otherwise, since the value will be reused.
697   return false;
698 }
699 
700 /// and (shl/srl/sra, x, c), mask --> shl (srl/sra, x, c1), c2
701 /// to select more shifted register
702 bool AArch64DAGToDAGISel::SelectShiftedRegisterFromAnd(SDValue N, SDValue &Reg,
703                                                        SDValue &Shift) {
704   EVT VT = N.getValueType();
705   if (VT != MVT::i32 && VT != MVT::i64)
706     return false;
707 
708   if (N->getOpcode() != ISD::AND || !N->hasOneUse())
709     return false;
710   SDValue LHS = N.getOperand(0);
711   if (!LHS->hasOneUse())
712     return false;
713 
714   unsigned LHSOpcode = LHS->getOpcode();
715   if (LHSOpcode != ISD::SHL && LHSOpcode != ISD::SRL && LHSOpcode != ISD::SRA)
716     return false;
717 
718   ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
719   if (!ShiftAmtNode)
720     return false;
721 
722   uint64_t ShiftAmtC = ShiftAmtNode->getZExtValue();
723   ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N.getOperand(1));
724   if (!RHSC)
725     return false;
726 
727   APInt AndMask = RHSC->getAPIntValue();
728   unsigned LowZBits, MaskLen;
729   if (!AndMask.isShiftedMask(LowZBits, MaskLen))
730     return false;
731 
732   unsigned BitWidth = N.getValueSizeInBits();
733   SDLoc DL(LHS);
734   uint64_t NewShiftC;
735   unsigned NewShiftOp;
736   if (LHSOpcode == ISD::SHL) {
737     // LowZBits <= ShiftAmtC will fall into isBitfieldPositioningOp
738     // BitWidth != LowZBits + MaskLen doesn't match the pattern
739     if (LowZBits <= ShiftAmtC || (BitWidth != LowZBits + MaskLen))
740       return false;
741 
742     NewShiftC = LowZBits - ShiftAmtC;
743     NewShiftOp = VT == MVT::i64 ? AArch64::UBFMXri : AArch64::UBFMWri;
744   } else {
745     if (LowZBits == 0)
746       return false;
747 
748     // NewShiftC >= BitWidth will fall into isBitfieldExtractOp
749     NewShiftC = LowZBits + ShiftAmtC;
750     if (NewShiftC >= BitWidth)
751       return false;
752 
753     // SRA need all high bits
754     if (LHSOpcode == ISD::SRA && (BitWidth != (LowZBits + MaskLen)))
755       return false;
756 
757     // SRL high bits can be 0 or 1
758     if (LHSOpcode == ISD::SRL && (BitWidth > (NewShiftC + MaskLen)))
759       return false;
760 
761     if (LHSOpcode == ISD::SRL)
762       NewShiftOp = VT == MVT::i64 ? AArch64::UBFMXri : AArch64::UBFMWri;
763     else
764       NewShiftOp = VT == MVT::i64 ? AArch64::SBFMXri : AArch64::SBFMWri;
765   }
766 
767   assert(NewShiftC < BitWidth && "Invalid shift amount");
768   SDValue NewShiftAmt = CurDAG->getTargetConstant(NewShiftC, DL, VT);
769   SDValue BitWidthMinus1 = CurDAG->getTargetConstant(BitWidth - 1, DL, VT);
770   Reg = SDValue(CurDAG->getMachineNode(NewShiftOp, DL, VT, LHS->getOperand(0),
771                                        NewShiftAmt, BitWidthMinus1),
772                 0);
773   unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, LowZBits);
774   Shift = CurDAG->getTargetConstant(ShVal, DL, MVT::i32);
775   return true;
776 }
777 
778 /// getExtendTypeForNode - Translate an extend node to the corresponding
779 /// ExtendType value.
780 static AArch64_AM::ShiftExtendType
781 getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
782   if (N.getOpcode() == ISD::SIGN_EXTEND ||
783       N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
784     EVT SrcVT;
785     if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
786       SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
787     else
788       SrcVT = N.getOperand(0).getValueType();
789 
790     if (!IsLoadStore && SrcVT == MVT::i8)
791       return AArch64_AM::SXTB;
792     else if (!IsLoadStore && SrcVT == MVT::i16)
793       return AArch64_AM::SXTH;
794     else if (SrcVT == MVT::i32)
795       return AArch64_AM::SXTW;
796     assert(SrcVT != MVT::i64 && "extend from 64-bits?");
797 
798     return AArch64_AM::InvalidShiftExtend;
799   } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
800              N.getOpcode() == ISD::ANY_EXTEND) {
801     EVT SrcVT = N.getOperand(0).getValueType();
802     if (!IsLoadStore && SrcVT == MVT::i8)
803       return AArch64_AM::UXTB;
804     else if (!IsLoadStore && SrcVT == MVT::i16)
805       return AArch64_AM::UXTH;
806     else if (SrcVT == MVT::i32)
807       return AArch64_AM::UXTW;
808     assert(SrcVT != MVT::i64 && "extend from 64-bits?");
809 
810     return AArch64_AM::InvalidShiftExtend;
811   } else if (N.getOpcode() == ISD::AND) {
812     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
813     if (!CSD)
814       return AArch64_AM::InvalidShiftExtend;
815     uint64_t AndMask = CSD->getZExtValue();
816 
817     switch (AndMask) {
818     default:
819       return AArch64_AM::InvalidShiftExtend;
820     case 0xFF:
821       return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
822     case 0xFFFF:
823       return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
824     case 0xFFFFFFFF:
825       return AArch64_AM::UXTW;
826     }
827   }
828 
829   return AArch64_AM::InvalidShiftExtend;
830 }
831 
832 /// Determine whether it is worth to fold V into an extended register of an
833 /// Add/Sub. LSL means we are folding into an `add w0, w1, w2, lsl #N`
834 /// instruction, and the shift should be treated as worth folding even if has
835 /// multiple uses.
836 bool AArch64DAGToDAGISel::isWorthFoldingALU(SDValue V, bool LSL) const {
837   // Trivial if we are optimizing for code size or if there is only
838   // one use of the value.
839   if (CurDAG->shouldOptForSize() || V.hasOneUse())
840     return true;
841 
842   // If a subtarget has a fastpath LSL we can fold a logical shift into
843   // the add/sub and save a cycle.
844   if (LSL && Subtarget->hasALULSLFast() && V.getOpcode() == ISD::SHL &&
845       V.getConstantOperandVal(1) <= 4 &&
846       getExtendTypeForNode(V.getOperand(0)) == AArch64_AM::InvalidShiftExtend)
847     return true;
848 
849   // It hurts otherwise, since the value will be reused.
850   return false;
851 }
852 
853 /// SelectShiftedRegister - Select a "shifted register" operand.  If the value
854 /// is not shifted, set the Shift operand to default of "LSL 0".  The logical
855 /// instructions allow the shifted register to be rotated, but the arithmetic
856 /// instructions do not.  The AllowROR parameter specifies whether ROR is
857 /// supported.
858 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
859                                                 SDValue &Reg, SDValue &Shift) {
860   if (SelectShiftedRegisterFromAnd(N, Reg, Shift))
861     return true;
862 
863   AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
864   if (ShType == AArch64_AM::InvalidShiftExtend)
865     return false;
866   if (!AllowROR && ShType == AArch64_AM::ROR)
867     return false;
868 
869   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
870     unsigned BitSize = N.getValueSizeInBits();
871     unsigned Val = RHS->getZExtValue() & (BitSize - 1);
872     unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
873 
874     Reg = N.getOperand(0);
875     Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
876     return isWorthFoldingALU(N, true);
877   }
878 
879   return false;
880 }
881 
882 /// Instructions that accept extend modifiers like UXTW expect the register
883 /// being extended to be a GPR32, but the incoming DAG might be acting on a
884 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
885 /// this is the case.
886 static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
887   if (N.getValueType() == MVT::i32)
888     return N;
889 
890   SDLoc dl(N);
891   return CurDAG->getTargetExtractSubreg(AArch64::sub_32, dl, MVT::i32, N);
892 }
893 
894 // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
895 template<signed Low, signed High, signed Scale>
896 bool AArch64DAGToDAGISel::SelectRDVLImm(SDValue N, SDValue &Imm) {
897   if (!isa<ConstantSDNode>(N))
898     return false;
899 
900   int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
901   if ((MulImm % std::abs(Scale)) == 0) {
902     int64_t RDVLImm = MulImm / Scale;
903     if ((RDVLImm >= Low) && (RDVLImm <= High)) {
904       Imm = CurDAG->getTargetConstant(RDVLImm, SDLoc(N), MVT::i32);
905       return true;
906     }
907   }
908 
909   return false;
910 }
911 
912 /// SelectArithExtendedRegister - Select a "extended register" operand.  This
913 /// operand folds in an extend followed by an optional left shift.
914 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
915                                                       SDValue &Shift) {
916   unsigned ShiftVal = 0;
917   AArch64_AM::ShiftExtendType Ext;
918 
919   if (N.getOpcode() == ISD::SHL) {
920     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
921     if (!CSD)
922       return false;
923     ShiftVal = CSD->getZExtValue();
924     if (ShiftVal > 4)
925       return false;
926 
927     Ext = getExtendTypeForNode(N.getOperand(0));
928     if (Ext == AArch64_AM::InvalidShiftExtend)
929       return false;
930 
931     Reg = N.getOperand(0).getOperand(0);
932   } else {
933     Ext = getExtendTypeForNode(N);
934     if (Ext == AArch64_AM::InvalidShiftExtend)
935       return false;
936 
937     Reg = N.getOperand(0);
938 
939     // Don't match if free 32-bit -> 64-bit zext can be used instead. Use the
940     // isDef32 as a heuristic for when the operand is likely to be a 32bit def.
941     auto isDef32 = [](SDValue N) {
942       unsigned Opc = N.getOpcode();
943       return Opc != ISD::TRUNCATE && Opc != TargetOpcode::EXTRACT_SUBREG &&
944              Opc != ISD::CopyFromReg && Opc != ISD::AssertSext &&
945              Opc != ISD::AssertZext && Opc != ISD::AssertAlign &&
946              Opc != ISD::FREEZE;
947     };
948     if (Ext == AArch64_AM::UXTW && Reg->getValueType(0).getSizeInBits() == 32 &&
949         isDef32(Reg))
950       return false;
951   }
952 
953   // AArch64 mandates that the RHS of the operation must use the smallest
954   // register class that could contain the size being extended from.  Thus,
955   // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
956   // there might not be an actual 32-bit value in the program.  We can
957   // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
958   assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
959   Reg = narrowIfNeeded(CurDAG, Reg);
960   Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
961                                     MVT::i32);
962   return isWorthFoldingALU(N);
963 }
964 
965 /// SelectArithUXTXRegister - Select a "UXTX register" operand. This
966 /// operand is refered by the instructions have SP operand
967 bool AArch64DAGToDAGISel::SelectArithUXTXRegister(SDValue N, SDValue &Reg,
968                                                   SDValue &Shift) {
969   unsigned ShiftVal = 0;
970   AArch64_AM::ShiftExtendType Ext;
971 
972   if (N.getOpcode() != ISD::SHL)
973     return false;
974 
975   ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
976   if (!CSD)
977     return false;
978   ShiftVal = CSD->getZExtValue();
979   if (ShiftVal > 4)
980     return false;
981 
982   Ext = AArch64_AM::UXTX;
983   Reg = N.getOperand(0);
984   Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
985                                     MVT::i32);
986   return isWorthFoldingALU(N);
987 }
988 
989 /// If there's a use of this ADDlow that's not itself a load/store then we'll
990 /// need to create a real ADD instruction from it anyway and there's no point in
991 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
992 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
993 /// leads to duplicated ADRP instructions.
994 static bool isWorthFoldingADDlow(SDValue N) {
995   for (auto *Use : N->uses()) {
996     if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
997         Use->getOpcode() != ISD::ATOMIC_LOAD &&
998         Use->getOpcode() != ISD::ATOMIC_STORE)
999       return false;
1000 
1001     // ldar and stlr have much more restrictive addressing modes (just a
1002     // register).
1003     if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getSuccessOrdering()))
1004       return false;
1005   }
1006 
1007   return true;
1008 }
1009 
1010 /// Check if the immediate offset is valid as a scaled immediate.
1011 static bool isValidAsScaledImmediate(int64_t Offset, unsigned Range,
1012                                      unsigned Size) {
1013   if ((Offset & (Size - 1)) == 0 && Offset >= 0 &&
1014       Offset < (Range << Log2_32(Size)))
1015     return true;
1016   return false;
1017 }
1018 
1019 /// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit
1020 /// immediate" address.  The "Size" argument is the size in bytes of the memory
1021 /// reference, which determines the scale.
1022 bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm,
1023                                                         unsigned BW, unsigned Size,
1024                                                         SDValue &Base,
1025                                                         SDValue &OffImm) {
1026   SDLoc dl(N);
1027   const DataLayout &DL = CurDAG->getDataLayout();
1028   const TargetLowering *TLI = getTargetLowering();
1029   if (N.getOpcode() == ISD::FrameIndex) {
1030     int FI = cast<FrameIndexSDNode>(N)->getIndex();
1031     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1032     OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1033     return true;
1034   }
1035 
1036   // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed
1037   // selected here doesn't support labels/immediates, only base+offset.
1038   if (CurDAG->isBaseWithConstantOffset(N)) {
1039     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1040       if (IsSignedImm) {
1041         int64_t RHSC = RHS->getSExtValue();
1042         unsigned Scale = Log2_32(Size);
1043         int64_t Range = 0x1LL << (BW - 1);
1044 
1045         if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) &&
1046             RHSC < (Range << Scale)) {
1047           Base = N.getOperand(0);
1048           if (Base.getOpcode() == ISD::FrameIndex) {
1049             int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1050             Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1051           }
1052           OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1053           return true;
1054         }
1055       } else {
1056         // unsigned Immediate
1057         uint64_t RHSC = RHS->getZExtValue();
1058         unsigned Scale = Log2_32(Size);
1059         uint64_t Range = 0x1ULL << BW;
1060 
1061         if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) {
1062           Base = N.getOperand(0);
1063           if (Base.getOpcode() == ISD::FrameIndex) {
1064             int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1065             Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1066           }
1067           OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1068           return true;
1069         }
1070       }
1071     }
1072   }
1073   // Base only. The address will be materialized into a register before
1074   // the memory is accessed.
1075   //    add x0, Xbase, #offset
1076   //    stp x1, x2, [x0]
1077   Base = N;
1078   OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1079   return true;
1080 }
1081 
1082 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
1083 /// immediate" address.  The "Size" argument is the size in bytes of the memory
1084 /// reference, which determines the scale.
1085 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
1086                                               SDValue &Base, SDValue &OffImm) {
1087   SDLoc dl(N);
1088   const DataLayout &DL = CurDAG->getDataLayout();
1089   const TargetLowering *TLI = getTargetLowering();
1090   if (N.getOpcode() == ISD::FrameIndex) {
1091     int FI = cast<FrameIndexSDNode>(N)->getIndex();
1092     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1093     OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1094     return true;
1095   }
1096 
1097   if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
1098     GlobalAddressSDNode *GAN =
1099         dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
1100     Base = N.getOperand(0);
1101     OffImm = N.getOperand(1);
1102     if (!GAN)
1103       return true;
1104 
1105     if (GAN->getOffset() % Size == 0 &&
1106         GAN->getGlobal()->getPointerAlignment(DL) >= Size)
1107       return true;
1108   }
1109 
1110   if (CurDAG->isBaseWithConstantOffset(N)) {
1111     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1112       int64_t RHSC = (int64_t)RHS->getZExtValue();
1113       unsigned Scale = Log2_32(Size);
1114       if (isValidAsScaledImmediate(RHSC, 0x1000, Size)) {
1115         Base = N.getOperand(0);
1116         if (Base.getOpcode() == ISD::FrameIndex) {
1117           int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1118           Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1119         }
1120         OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1121         return true;
1122       }
1123     }
1124   }
1125 
1126   // Before falling back to our general case, check if the unscaled
1127   // instructions can handle this. If so, that's preferable.
1128   if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
1129     return false;
1130 
1131   // Base only. The address will be materialized into a register before
1132   // the memory is accessed.
1133   //    add x0, Xbase, #offset
1134   //    ldr x0, [x0]
1135   Base = N;
1136   OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1137   return true;
1138 }
1139 
1140 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
1141 /// immediate" address.  This should only match when there is an offset that
1142 /// is not valid for a scaled immediate addressing mode.  The "Size" argument
1143 /// is the size in bytes of the memory reference, which is needed here to know
1144 /// what is valid for a scaled immediate.
1145 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
1146                                                  SDValue &Base,
1147                                                  SDValue &OffImm) {
1148   if (!CurDAG->isBaseWithConstantOffset(N))
1149     return false;
1150   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1151     int64_t RHSC = RHS->getSExtValue();
1152     if (RHSC >= -256 && RHSC < 256) {
1153       Base = N.getOperand(0);
1154       if (Base.getOpcode() == ISD::FrameIndex) {
1155         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1156         const TargetLowering *TLI = getTargetLowering();
1157         Base = CurDAG->getTargetFrameIndex(
1158             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1159       }
1160       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
1161       return true;
1162     }
1163   }
1164   return false;
1165 }
1166 
1167 static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
1168   SDLoc dl(N);
1169   SDValue ImpDef = SDValue(
1170       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
1171   return CurDAG->getTargetInsertSubreg(AArch64::sub_32, dl, MVT::i64, ImpDef,
1172                                        N);
1173 }
1174 
1175 /// Check if the given SHL node (\p N), can be used to form an
1176 /// extended register for an addressing mode.
1177 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
1178                                             bool WantExtend, SDValue &Offset,
1179                                             SDValue &SignExtend) {
1180   assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
1181   ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
1182   if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
1183     return false;
1184 
1185   SDLoc dl(N);
1186   if (WantExtend) {
1187     AArch64_AM::ShiftExtendType Ext =
1188         getExtendTypeForNode(N.getOperand(0), true);
1189     if (Ext == AArch64_AM::InvalidShiftExtend)
1190       return false;
1191 
1192     Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
1193     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1194                                            MVT::i32);
1195   } else {
1196     Offset = N.getOperand(0);
1197     SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
1198   }
1199 
1200   unsigned LegalShiftVal = Log2_32(Size);
1201   unsigned ShiftVal = CSD->getZExtValue();
1202 
1203   if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
1204     return false;
1205 
1206   return isWorthFoldingAddr(N);
1207 }
1208 
1209 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
1210                                             SDValue &Base, SDValue &Offset,
1211                                             SDValue &SignExtend,
1212                                             SDValue &DoShift) {
1213   if (N.getOpcode() != ISD::ADD)
1214     return false;
1215   SDValue LHS = N.getOperand(0);
1216   SDValue RHS = N.getOperand(1);
1217   SDLoc dl(N);
1218 
1219   // We don't want to match immediate adds here, because they are better lowered
1220   // to the register-immediate addressing modes.
1221   if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
1222     return false;
1223 
1224   // Check if this particular node is reused in any non-memory related
1225   // operation.  If yes, do not try to fold this node into the address
1226   // computation, since the computation will be kept.
1227   const SDNode *Node = N.getNode();
1228   for (SDNode *UI : Node->uses()) {
1229     if (!isa<MemSDNode>(*UI))
1230       return false;
1231   }
1232 
1233   // Remember if it is worth folding N when it produces extended register.
1234   bool IsExtendedRegisterWorthFolding = isWorthFoldingAddr(N);
1235 
1236   // Try to match a shifted extend on the RHS.
1237   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1238       SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
1239     Base = LHS;
1240     DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
1241     return true;
1242   }
1243 
1244   // Try to match a shifted extend on the LHS.
1245   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1246       SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
1247     Base = RHS;
1248     DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
1249     return true;
1250   }
1251 
1252   // There was no shift, whatever else we find.
1253   DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
1254 
1255   AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
1256   // Try to match an unshifted extend on the LHS.
1257   if (IsExtendedRegisterWorthFolding &&
1258       (Ext = getExtendTypeForNode(LHS, true)) !=
1259           AArch64_AM::InvalidShiftExtend) {
1260     Base = RHS;
1261     Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
1262     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1263                                            MVT::i32);
1264     if (isWorthFoldingAddr(LHS))
1265       return true;
1266   }
1267 
1268   // Try to match an unshifted extend on the RHS.
1269   if (IsExtendedRegisterWorthFolding &&
1270       (Ext = getExtendTypeForNode(RHS, true)) !=
1271           AArch64_AM::InvalidShiftExtend) {
1272     Base = LHS;
1273     Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
1274     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1275                                            MVT::i32);
1276     if (isWorthFoldingAddr(RHS))
1277       return true;
1278   }
1279 
1280   return false;
1281 }
1282 
1283 // Check if the given immediate is preferred by ADD. If an immediate can be
1284 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
1285 // encoded by one MOVZ, return true.
1286 static bool isPreferredADD(int64_t ImmOff) {
1287   // Constant in [0x0, 0xfff] can be encoded in ADD.
1288   if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
1289     return true;
1290   // Check if it can be encoded in an "ADD LSL #12".
1291   if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
1292     // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
1293     return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
1294            (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
1295   return false;
1296 }
1297 
1298 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
1299                                             SDValue &Base, SDValue &Offset,
1300                                             SDValue &SignExtend,
1301                                             SDValue &DoShift) {
1302   if (N.getOpcode() != ISD::ADD)
1303     return false;
1304   SDValue LHS = N.getOperand(0);
1305   SDValue RHS = N.getOperand(1);
1306   SDLoc DL(N);
1307 
1308   // Check if this particular node is reused in any non-memory related
1309   // operation.  If yes, do not try to fold this node into the address
1310   // computation, since the computation will be kept.
1311   const SDNode *Node = N.getNode();
1312   for (SDNode *UI : Node->uses()) {
1313     if (!isa<MemSDNode>(*UI))
1314       return false;
1315   }
1316 
1317   // Watch out if RHS is a wide immediate, it can not be selected into
1318   // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
1319   // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
1320   // instructions like:
1321   //     MOV  X0, WideImmediate
1322   //     ADD  X1, BaseReg, X0
1323   //     LDR  X2, [X1, 0]
1324   // For such situation, using [BaseReg, XReg] addressing mode can save one
1325   // ADD/SUB:
1326   //     MOV  X0, WideImmediate
1327   //     LDR  X2, [BaseReg, X0]
1328   if (isa<ConstantSDNode>(RHS)) {
1329     int64_t ImmOff = (int64_t)RHS->getAsZExtVal();
1330     // Skip the immediate can be selected by load/store addressing mode.
1331     // Also skip the immediate can be encoded by a single ADD (SUB is also
1332     // checked by using -ImmOff).
1333     if (isValidAsScaledImmediate(ImmOff, 0x1000, Size) ||
1334         isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
1335       return false;
1336 
1337     SDValue Ops[] = { RHS };
1338     SDNode *MOVI =
1339         CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
1340     SDValue MOVIV = SDValue(MOVI, 0);
1341     // This ADD of two X register will be selected into [Reg+Reg] mode.
1342     N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
1343   }
1344 
1345   // Remember if it is worth folding N when it produces extended register.
1346   bool IsExtendedRegisterWorthFolding = isWorthFoldingAddr(N);
1347 
1348   // Try to match a shifted extend on the RHS.
1349   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1350       SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
1351     Base = LHS;
1352     DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1353     return true;
1354   }
1355 
1356   // Try to match a shifted extend on the LHS.
1357   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1358       SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
1359     Base = RHS;
1360     DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1361     return true;
1362   }
1363 
1364   // Match any non-shifted, non-extend, non-immediate add expression.
1365   Base = LHS;
1366   Offset = RHS;
1367   SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
1368   DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
1369   // Reg1 + Reg2 is free: no check needed.
1370   return true;
1371 }
1372 
1373 SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
1374   static const unsigned RegClassIDs[] = {
1375       AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
1376   static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
1377                                      AArch64::dsub2, AArch64::dsub3};
1378 
1379   return createTuple(Regs, RegClassIDs, SubRegs);
1380 }
1381 
1382 SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
1383   static const unsigned RegClassIDs[] = {
1384       AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
1385   static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
1386                                      AArch64::qsub2, AArch64::qsub3};
1387 
1388   return createTuple(Regs, RegClassIDs, SubRegs);
1389 }
1390 
1391 SDValue AArch64DAGToDAGISel::createZTuple(ArrayRef<SDValue> Regs) {
1392   static const unsigned RegClassIDs[] = {AArch64::ZPR2RegClassID,
1393                                          AArch64::ZPR3RegClassID,
1394                                          AArch64::ZPR4RegClassID};
1395   static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1,
1396                                      AArch64::zsub2, AArch64::zsub3};
1397 
1398   return createTuple(Regs, RegClassIDs, SubRegs);
1399 }
1400 
1401 SDValue AArch64DAGToDAGISel::createZMulTuple(ArrayRef<SDValue> Regs) {
1402   assert(Regs.size() == 2 || Regs.size() == 4);
1403 
1404   // The createTuple interface requires 3 RegClassIDs for each possible
1405   // tuple type even though we only have them for ZPR2 and ZPR4.
1406   static const unsigned RegClassIDs[] = {AArch64::ZPR2Mul2RegClassID, 0,
1407                                          AArch64::ZPR4Mul4RegClassID};
1408   static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1,
1409                                      AArch64::zsub2, AArch64::zsub3};
1410   return createTuple(Regs, RegClassIDs, SubRegs);
1411 }
1412 
1413 SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
1414                                          const unsigned RegClassIDs[],
1415                                          const unsigned SubRegs[]) {
1416   // There's no special register-class for a vector-list of 1 element: it's just
1417   // a vector.
1418   if (Regs.size() == 1)
1419     return Regs[0];
1420 
1421   assert(Regs.size() >= 2 && Regs.size() <= 4);
1422 
1423   SDLoc DL(Regs[0]);
1424 
1425   SmallVector<SDValue, 4> Ops;
1426 
1427   // First operand of REG_SEQUENCE is the desired RegClass.
1428   Ops.push_back(
1429       CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
1430 
1431   // Then we get pairs of source & subregister-position for the components.
1432   for (unsigned i = 0; i < Regs.size(); ++i) {
1433     Ops.push_back(Regs[i]);
1434     Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
1435   }
1436 
1437   SDNode *N =
1438       CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
1439   return SDValue(N, 0);
1440 }
1441 
1442 void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
1443                                       bool isExt) {
1444   SDLoc dl(N);
1445   EVT VT = N->getValueType(0);
1446 
1447   unsigned ExtOff = isExt;
1448 
1449   // Form a REG_SEQUENCE to force register allocation.
1450   unsigned Vec0Off = ExtOff + 1;
1451   SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
1452                                N->op_begin() + Vec0Off + NumVecs);
1453   SDValue RegSeq = createQTuple(Regs);
1454 
1455   SmallVector<SDValue, 6> Ops;
1456   if (isExt)
1457     Ops.push_back(N->getOperand(1));
1458   Ops.push_back(RegSeq);
1459   Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
1460   ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
1461 }
1462 
1463 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
1464   LoadSDNode *LD = cast<LoadSDNode>(N);
1465   if (LD->isUnindexed())
1466     return false;
1467   EVT VT = LD->getMemoryVT();
1468   EVT DstVT = N->getValueType(0);
1469   ISD::MemIndexedMode AM = LD->getAddressingMode();
1470   bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
1471 
1472   // We're not doing validity checking here. That was done when checking
1473   // if we should mark the load as indexed or not. We're just selecting
1474   // the right instruction.
1475   unsigned Opcode = 0;
1476 
1477   ISD::LoadExtType ExtType = LD->getExtensionType();
1478   bool InsertTo64 = false;
1479   if (VT == MVT::i64)
1480     Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
1481   else if (VT == MVT::i32) {
1482     if (ExtType == ISD::NON_EXTLOAD)
1483       Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1484     else if (ExtType == ISD::SEXTLOAD)
1485       Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
1486     else {
1487       Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1488       InsertTo64 = true;
1489       // The result of the load is only i32. It's the subreg_to_reg that makes
1490       // it into an i64.
1491       DstVT = MVT::i32;
1492     }
1493   } else if (VT == MVT::i16) {
1494     if (ExtType == ISD::SEXTLOAD) {
1495       if (DstVT == MVT::i64)
1496         Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
1497       else
1498         Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
1499     } else {
1500       Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
1501       InsertTo64 = DstVT == MVT::i64;
1502       // The result of the load is only i32. It's the subreg_to_reg that makes
1503       // it into an i64.
1504       DstVT = MVT::i32;
1505     }
1506   } else if (VT == MVT::i8) {
1507     if (ExtType == ISD::SEXTLOAD) {
1508       if (DstVT == MVT::i64)
1509         Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
1510       else
1511         Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
1512     } else {
1513       Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
1514       InsertTo64 = DstVT == MVT::i64;
1515       // The result of the load is only i32. It's the subreg_to_reg that makes
1516       // it into an i64.
1517       DstVT = MVT::i32;
1518     }
1519   } else if (VT == MVT::f16) {
1520     Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1521   } else if (VT == MVT::bf16) {
1522     Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1523   } else if (VT == MVT::f32) {
1524     Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
1525   } else if (VT == MVT::f64 || VT.is64BitVector()) {
1526     Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
1527   } else if (VT.is128BitVector()) {
1528     Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
1529   } else
1530     return false;
1531   SDValue Chain = LD->getChain();
1532   SDValue Base = LD->getBasePtr();
1533   ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
1534   int OffsetVal = (int)OffsetOp->getZExtValue();
1535   SDLoc dl(N);
1536   SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
1537   SDValue Ops[] = { Base, Offset, Chain };
1538   SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
1539                                        MVT::Other, Ops);
1540 
1541   // Transfer memoperands.
1542   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
1543   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Res), {MemOp});
1544 
1545   // Either way, we're replacing the node, so tell the caller that.
1546   SDValue LoadedVal = SDValue(Res, 1);
1547   if (InsertTo64) {
1548     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1549     LoadedVal =
1550         SDValue(CurDAG->getMachineNode(
1551                     AArch64::SUBREG_TO_REG, dl, MVT::i64,
1552                     CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
1553                     SubReg),
1554                 0);
1555   }
1556 
1557   ReplaceUses(SDValue(N, 0), LoadedVal);
1558   ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
1559   ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
1560   CurDAG->RemoveDeadNode(N);
1561   return true;
1562 }
1563 
1564 void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
1565                                      unsigned SubRegIdx) {
1566   SDLoc dl(N);
1567   EVT VT = N->getValueType(0);
1568   SDValue Chain = N->getOperand(0);
1569 
1570   SDValue Ops[] = {N->getOperand(2), // Mem operand;
1571                    Chain};
1572 
1573   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1574 
1575   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1576   SDValue SuperReg = SDValue(Ld, 0);
1577   for (unsigned i = 0; i < NumVecs; ++i)
1578     ReplaceUses(SDValue(N, i),
1579         CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1580 
1581   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1582 
1583   // Transfer memoperands. In the case of AArch64::LD64B, there won't be one,
1584   // because it's too simple to have needed special treatment during lowering.
1585   if (auto *MemIntr = dyn_cast<MemIntrinsicSDNode>(N)) {
1586     MachineMemOperand *MemOp = MemIntr->getMemOperand();
1587     CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
1588   }
1589 
1590   CurDAG->RemoveDeadNode(N);
1591 }
1592 
1593 void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
1594                                          unsigned Opc, unsigned SubRegIdx) {
1595   SDLoc dl(N);
1596   EVT VT = N->getValueType(0);
1597   SDValue Chain = N->getOperand(0);
1598 
1599   SDValue Ops[] = {N->getOperand(1), // Mem operand
1600                    N->getOperand(2), // Incremental
1601                    Chain};
1602 
1603   const EVT ResTys[] = {MVT::i64, // Type of the write back register
1604                         MVT::Untyped, MVT::Other};
1605 
1606   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1607 
1608   // Update uses of write back register
1609   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1610 
1611   // Update uses of vector list
1612   SDValue SuperReg = SDValue(Ld, 1);
1613   if (NumVecs == 1)
1614     ReplaceUses(SDValue(N, 0), SuperReg);
1615   else
1616     for (unsigned i = 0; i < NumVecs; ++i)
1617       ReplaceUses(SDValue(N, i),
1618           CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1619 
1620   // Update the chain
1621   ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1622   CurDAG->RemoveDeadNode(N);
1623 }
1624 
1625 /// Optimize \param OldBase and \param OldOffset selecting the best addressing
1626 /// mode. Returns a tuple consisting of an Opcode, an SDValue representing the
1627 /// new Base and an SDValue representing the new offset.
1628 std::tuple<unsigned, SDValue, SDValue>
1629 AArch64DAGToDAGISel::findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr,
1630                                               unsigned Opc_ri,
1631                                               const SDValue &OldBase,
1632                                               const SDValue &OldOffset,
1633                                               unsigned Scale) {
1634   SDValue NewBase = OldBase;
1635   SDValue NewOffset = OldOffset;
1636   // Detect a possible Reg+Imm addressing mode.
1637   const bool IsRegImm = SelectAddrModeIndexedSVE</*Min=*/-8, /*Max=*/7>(
1638       N, OldBase, NewBase, NewOffset);
1639 
1640   // Detect a possible reg+reg addressing mode, but only if we haven't already
1641   // detected a Reg+Imm one.
1642   const bool IsRegReg =
1643       !IsRegImm && SelectSVERegRegAddrMode(OldBase, Scale, NewBase, NewOffset);
1644 
1645   // Select the instruction.
1646   return std::make_tuple(IsRegReg ? Opc_rr : Opc_ri, NewBase, NewOffset);
1647 }
1648 
1649 enum class SelectTypeKind {
1650   Int1 = 0,
1651   Int = 1,
1652   FP = 2,
1653   AnyType = 3,
1654 };
1655 
1656 /// This function selects an opcode from a list of opcodes, which is
1657 /// expected to be the opcode for { 8-bit, 16-bit, 32-bit, 64-bit }
1658 /// element types, in this order.
1659 template <SelectTypeKind Kind>
1660 static unsigned SelectOpcodeFromVT(EVT VT, ArrayRef<unsigned> Opcodes) {
1661   // Only match scalable vector VTs
1662   if (!VT.isScalableVector())
1663     return 0;
1664 
1665   EVT EltVT = VT.getVectorElementType();
1666   switch (Kind) {
1667   case SelectTypeKind::AnyType:
1668     break;
1669   case SelectTypeKind::Int:
1670     if (EltVT != MVT::i8 && EltVT != MVT::i16 && EltVT != MVT::i32 &&
1671         EltVT != MVT::i64)
1672       return 0;
1673     break;
1674   case SelectTypeKind::Int1:
1675     if (EltVT != MVT::i1)
1676       return 0;
1677     break;
1678   case SelectTypeKind::FP:
1679     if (EltVT != MVT::f16 && EltVT != MVT::f32 && EltVT != MVT::f64)
1680       return 0;
1681     break;
1682   }
1683 
1684   unsigned Offset;
1685   switch (VT.getVectorMinNumElements()) {
1686   case 16: // 8-bit
1687     Offset = 0;
1688     break;
1689   case 8: // 16-bit
1690     Offset = 1;
1691     break;
1692   case 4: // 32-bit
1693     Offset = 2;
1694     break;
1695   case 2: // 64-bit
1696     Offset = 3;
1697     break;
1698   default:
1699     return 0;
1700   }
1701 
1702   return (Opcodes.size() <= Offset) ? 0 : Opcodes[Offset];
1703 }
1704 
1705 // This function is almost identical to SelectWhilePair, but has an
1706 // extra check on the range of the immediate operand.
1707 // TODO: Merge these two functions together at some point?
1708 void AArch64DAGToDAGISel::SelectPExtPair(SDNode *N, unsigned Opc) {
1709   // Immediate can be either 0 or 1.
1710   if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1711     if (Imm->getZExtValue() > 1)
1712       return;
1713 
1714   SDLoc DL(N);
1715   EVT VT = N->getValueType(0);
1716   SDValue Ops[] = {N->getOperand(1), N->getOperand(2)};
1717   SDNode *WhilePair = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
1718   SDValue SuperReg = SDValue(WhilePair, 0);
1719 
1720   for (unsigned I = 0; I < 2; ++I)
1721     ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
1722                                    AArch64::psub0 + I, DL, VT, SuperReg));
1723 
1724   CurDAG->RemoveDeadNode(N);
1725 }
1726 
1727 void AArch64DAGToDAGISel::SelectWhilePair(SDNode *N, unsigned Opc) {
1728   SDLoc DL(N);
1729   EVT VT = N->getValueType(0);
1730 
1731   SDValue Ops[] = {N->getOperand(1), N->getOperand(2)};
1732 
1733   SDNode *WhilePair = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
1734   SDValue SuperReg = SDValue(WhilePair, 0);
1735 
1736   for (unsigned I = 0; I < 2; ++I)
1737     ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
1738                                    AArch64::psub0 + I, DL, VT, SuperReg));
1739 
1740   CurDAG->RemoveDeadNode(N);
1741 }
1742 
1743 void AArch64DAGToDAGISel::SelectCVTIntrinsic(SDNode *N, unsigned NumVecs,
1744                                              unsigned Opcode) {
1745   EVT VT = N->getValueType(0);
1746   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1747   SDValue Ops = createZTuple(Regs);
1748   SDLoc DL(N);
1749   SDNode *Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, Ops);
1750   SDValue SuperReg = SDValue(Intrinsic, 0);
1751   for (unsigned i = 0; i < NumVecs; ++i)
1752     ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1753                                    AArch64::zsub0 + i, DL, VT, SuperReg));
1754 
1755   CurDAG->RemoveDeadNode(N);
1756 }
1757 
1758 void AArch64DAGToDAGISel::SelectDestructiveMultiIntrinsic(SDNode *N,
1759                                                           unsigned NumVecs,
1760                                                           bool IsZmMulti,
1761                                                           unsigned Opcode,
1762                                                           bool HasPred) {
1763   assert(Opcode != 0 && "Unexpected opcode");
1764 
1765   SDLoc DL(N);
1766   EVT VT = N->getValueType(0);
1767   unsigned FirstVecIdx = HasPred ? 2 : 1;
1768 
1769   auto GetMultiVecOperand = [=](unsigned StartIdx) {
1770     SmallVector<SDValue, 4> Regs(N->op_begin() + StartIdx,
1771                                  N->op_begin() + StartIdx + NumVecs);
1772     return createZMulTuple(Regs);
1773   };
1774 
1775   SDValue Zdn = GetMultiVecOperand(FirstVecIdx);
1776 
1777   SDValue Zm;
1778   if (IsZmMulti)
1779     Zm = GetMultiVecOperand(NumVecs + FirstVecIdx);
1780   else
1781     Zm = N->getOperand(NumVecs + FirstVecIdx);
1782 
1783   SDNode *Intrinsic;
1784   if (HasPred)
1785     Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped,
1786                                        N->getOperand(1), Zdn, Zm);
1787   else
1788     Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, Zdn, Zm);
1789   SDValue SuperReg = SDValue(Intrinsic, 0);
1790   for (unsigned i = 0; i < NumVecs; ++i)
1791     ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1792                                    AArch64::zsub0 + i, DL, VT, SuperReg));
1793 
1794   CurDAG->RemoveDeadNode(N);
1795 }
1796 
1797 void AArch64DAGToDAGISel::SelectPredicatedLoad(SDNode *N, unsigned NumVecs,
1798                                                unsigned Scale, unsigned Opc_ri,
1799                                                unsigned Opc_rr, bool IsIntr) {
1800   assert(Scale < 5 && "Invalid scaling value.");
1801   SDLoc DL(N);
1802   EVT VT = N->getValueType(0);
1803   SDValue Chain = N->getOperand(0);
1804 
1805   // Optimize addressing mode.
1806   SDValue Base, Offset;
1807   unsigned Opc;
1808   std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore(
1809       N, Opc_rr, Opc_ri, N->getOperand(IsIntr ? 3 : 2),
1810       CurDAG->getTargetConstant(0, DL, MVT::i64), Scale);
1811 
1812   SDValue Ops[] = {N->getOperand(IsIntr ? 2 : 1), // Predicate
1813                    Base,                          // Memory operand
1814                    Offset, Chain};
1815 
1816   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1817 
1818   SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops);
1819   SDValue SuperReg = SDValue(Load, 0);
1820   for (unsigned i = 0; i < NumVecs; ++i)
1821     ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1822                                    AArch64::zsub0 + i, DL, VT, SuperReg));
1823 
1824   // Copy chain
1825   unsigned ChainIdx = NumVecs;
1826   ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1));
1827   CurDAG->RemoveDeadNode(N);
1828 }
1829 
1830 void AArch64DAGToDAGISel::SelectContiguousMultiVectorLoad(SDNode *N,
1831                                                           unsigned NumVecs,
1832                                                           unsigned Scale,
1833                                                           unsigned Opc_ri,
1834                                                           unsigned Opc_rr) {
1835   assert(Scale < 4 && "Invalid scaling value.");
1836   SDLoc DL(N);
1837   EVT VT = N->getValueType(0);
1838   SDValue Chain = N->getOperand(0);
1839 
1840   SDValue PNg = N->getOperand(2);
1841   SDValue Base = N->getOperand(3);
1842   SDValue Offset = CurDAG->getTargetConstant(0, DL, MVT::i64);
1843   unsigned Opc;
1844   std::tie(Opc, Base, Offset) =
1845       findAddrModeSVELoadStore(N, Opc_rr, Opc_ri, Base, Offset, Scale);
1846 
1847   SDValue Ops[] = {PNg,            // Predicate-as-counter
1848                    Base,           // Memory operand
1849                    Offset, Chain};
1850 
1851   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1852 
1853   SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops);
1854   SDValue SuperReg = SDValue(Load, 0);
1855   for (unsigned i = 0; i < NumVecs; ++i)
1856     ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1857                                    AArch64::zsub0 + i, DL, VT, SuperReg));
1858 
1859   // Copy chain
1860   unsigned ChainIdx = NumVecs;
1861   ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1));
1862   CurDAG->RemoveDeadNode(N);
1863 }
1864 
1865 void AArch64DAGToDAGISel::SelectFrintFromVT(SDNode *N, unsigned NumVecs,
1866                                             unsigned Opcode) {
1867   if (N->getValueType(0) != MVT::nxv4f32)
1868     return;
1869   SelectUnaryMultiIntrinsic(N, NumVecs, true, Opcode);
1870 }
1871 
1872 void AArch64DAGToDAGISel::SelectMultiVectorLuti(SDNode *Node,
1873                                                 unsigned NumOutVecs,
1874                                                 unsigned Opc, uint32_t MaxImm) {
1875   if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Node->getOperand(4)))
1876     if (Imm->getZExtValue() > MaxImm)
1877       return;
1878 
1879   SDValue ZtValue;
1880   if (!ImmToReg<AArch64::ZT0, 0>(Node->getOperand(2), ZtValue))
1881     return;
1882   SDValue Ops[] = {ZtValue, Node->getOperand(3), Node->getOperand(4)};
1883   SDLoc DL(Node);
1884   EVT VT = Node->getValueType(0);
1885 
1886   SDNode *Instruction =
1887       CurDAG->getMachineNode(Opc, DL, {MVT::Untyped, MVT::Other}, Ops);
1888   SDValue SuperReg = SDValue(Instruction, 0);
1889 
1890   for (unsigned I = 0; I < NumOutVecs; ++I)
1891     ReplaceUses(SDValue(Node, I), CurDAG->getTargetExtractSubreg(
1892                                       AArch64::zsub0 + I, DL, VT, SuperReg));
1893 
1894   // Copy chain
1895   unsigned ChainIdx = NumOutVecs;
1896   ReplaceUses(SDValue(Node, ChainIdx), SDValue(Instruction, 1));
1897   CurDAG->RemoveDeadNode(Node);
1898 }
1899 
1900 void AArch64DAGToDAGISel::SelectClamp(SDNode *N, unsigned NumVecs,
1901                                       unsigned Op) {
1902   SDLoc DL(N);
1903   EVT VT = N->getValueType(0);
1904 
1905   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1906   SDValue Zd = createZMulTuple(Regs);
1907   SDValue Zn = N->getOperand(1 + NumVecs);
1908   SDValue Zm = N->getOperand(2 + NumVecs);
1909 
1910   SDValue Ops[] = {Zd, Zn, Zm};
1911 
1912   SDNode *Intrinsic = CurDAG->getMachineNode(Op, DL, MVT::Untyped, Ops);
1913   SDValue SuperReg = SDValue(Intrinsic, 0);
1914   for (unsigned i = 0; i < NumVecs; ++i)
1915     ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1916                                    AArch64::zsub0 + i, DL, VT, SuperReg));
1917 
1918   CurDAG->RemoveDeadNode(N);
1919 }
1920 
1921 bool SelectSMETile(unsigned &BaseReg, unsigned TileNum) {
1922   switch (BaseReg) {
1923   default:
1924     return false;
1925   case AArch64::ZA:
1926   case AArch64::ZAB0:
1927     if (TileNum == 0)
1928       break;
1929     return false;
1930   case AArch64::ZAH0:
1931     if (TileNum <= 1)
1932       break;
1933     return false;
1934   case AArch64::ZAS0:
1935     if (TileNum <= 3)
1936       break;
1937     return false;
1938   case AArch64::ZAD0:
1939     if (TileNum <= 7)
1940       break;
1941     return false;
1942   }
1943 
1944   BaseReg += TileNum;
1945   return true;
1946 }
1947 
1948 template <unsigned MaxIdx, unsigned Scale>
1949 void AArch64DAGToDAGISel::SelectMultiVectorMove(SDNode *N, unsigned NumVecs,
1950                                                 unsigned BaseReg, unsigned Op) {
1951   unsigned TileNum = 0;
1952   if (BaseReg != AArch64::ZA)
1953     TileNum = N->getConstantOperandVal(2);
1954 
1955   if (!SelectSMETile(BaseReg, TileNum))
1956     return;
1957 
1958   SDValue SliceBase, Base, Offset;
1959   if (BaseReg == AArch64::ZA)
1960     SliceBase = N->getOperand(2);
1961   else
1962     SliceBase = N->getOperand(3);
1963 
1964   if (!SelectSMETileSlice(SliceBase, MaxIdx, Base, Offset, Scale))
1965     return;
1966 
1967   SDLoc DL(N);
1968   SDValue SubReg = CurDAG->getRegister(BaseReg, MVT::Other);
1969   SDValue Ops[] = {SubReg, Base, Offset, /*Chain*/ N->getOperand(0)};
1970   SDNode *Mov = CurDAG->getMachineNode(Op, DL, {MVT::Untyped, MVT::Other}, Ops);
1971 
1972   EVT VT = N->getValueType(0);
1973   for (unsigned I = 0; I < NumVecs; ++I)
1974     ReplaceUses(SDValue(N, I),
1975                 CurDAG->getTargetExtractSubreg(AArch64::zsub0 + I, DL, VT,
1976                                                SDValue(Mov, 0)));
1977   // Copy chain
1978   unsigned ChainIdx = NumVecs;
1979   ReplaceUses(SDValue(N, ChainIdx), SDValue(Mov, 1));
1980   CurDAG->RemoveDeadNode(N);
1981 }
1982 
1983 void AArch64DAGToDAGISel::SelectUnaryMultiIntrinsic(SDNode *N,
1984                                                     unsigned NumOutVecs,
1985                                                     bool IsTupleInput,
1986                                                     unsigned Opc) {
1987   SDLoc DL(N);
1988   EVT VT = N->getValueType(0);
1989   unsigned NumInVecs = N->getNumOperands() - 1;
1990 
1991   SmallVector<SDValue, 6> Ops;
1992   if (IsTupleInput) {
1993     assert((NumInVecs == 2 || NumInVecs == 4) &&
1994            "Don't know how to handle multi-register input!");
1995     SmallVector<SDValue, 4> Regs(N->op_begin() + 1,
1996                                  N->op_begin() + 1 + NumInVecs);
1997     Ops.push_back(createZMulTuple(Regs));
1998   } else {
1999     // All intrinsic nodes have the ID as the first operand, hence the "1 + I".
2000     for (unsigned I = 0; I < NumInVecs; I++)
2001       Ops.push_back(N->getOperand(1 + I));
2002   }
2003 
2004   SDNode *Res = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
2005   SDValue SuperReg = SDValue(Res, 0);
2006 
2007   for (unsigned I = 0; I < NumOutVecs; I++)
2008     ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
2009                                    AArch64::zsub0 + I, DL, VT, SuperReg));
2010   CurDAG->RemoveDeadNode(N);
2011 }
2012 
2013 void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
2014                                       unsigned Opc) {
2015   SDLoc dl(N);
2016   EVT VT = N->getOperand(2)->getValueType(0);
2017 
2018   // Form a REG_SEQUENCE to force register allocation.
2019   bool Is128Bit = VT.getSizeInBits() == 128;
2020   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2021   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
2022 
2023   SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
2024   SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
2025 
2026   // Transfer memoperands.
2027   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2028   CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2029 
2030   ReplaceNode(N, St);
2031 }
2032 
2033 void AArch64DAGToDAGISel::SelectPredicatedStore(SDNode *N, unsigned NumVecs,
2034                                                 unsigned Scale, unsigned Opc_rr,
2035                                                 unsigned Opc_ri) {
2036   SDLoc dl(N);
2037 
2038   // Form a REG_SEQUENCE to force register allocation.
2039   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2040   SDValue RegSeq = createZTuple(Regs);
2041 
2042   // Optimize addressing mode.
2043   unsigned Opc;
2044   SDValue Offset, Base;
2045   std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore(
2046       N, Opc_rr, Opc_ri, N->getOperand(NumVecs + 3),
2047       CurDAG->getTargetConstant(0, dl, MVT::i64), Scale);
2048 
2049   SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), // predicate
2050                    Base,                               // address
2051                    Offset,                             // offset
2052                    N->getOperand(0)};                  // chain
2053   SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
2054 
2055   ReplaceNode(N, St);
2056 }
2057 
2058 bool AArch64DAGToDAGISel::SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base,
2059                                                       SDValue &OffImm) {
2060   SDLoc dl(N);
2061   const DataLayout &DL = CurDAG->getDataLayout();
2062   const TargetLowering *TLI = getTargetLowering();
2063 
2064   // Try to match it for the frame address
2065   if (auto FINode = dyn_cast<FrameIndexSDNode>(N)) {
2066     int FI = FINode->getIndex();
2067     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
2068     OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
2069     return true;
2070   }
2071 
2072   return false;
2073 }
2074 
2075 void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
2076                                           unsigned Opc) {
2077   SDLoc dl(N);
2078   EVT VT = N->getOperand(2)->getValueType(0);
2079   const EVT ResTys[] = {MVT::i64,    // Type of the write back register
2080                         MVT::Other}; // Type for the Chain
2081 
2082   // Form a REG_SEQUENCE to force register allocation.
2083   bool Is128Bit = VT.getSizeInBits() == 128;
2084   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2085   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
2086 
2087   SDValue Ops[] = {RegSeq,
2088                    N->getOperand(NumVecs + 1), // base register
2089                    N->getOperand(NumVecs + 2), // Incremental
2090                    N->getOperand(0)};          // Chain
2091   SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2092 
2093   ReplaceNode(N, St);
2094 }
2095 
2096 namespace {
2097 /// WidenVector - Given a value in the V64 register class, produce the
2098 /// equivalent value in the V128 register class.
2099 class WidenVector {
2100   SelectionDAG &DAG;
2101 
2102 public:
2103   WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
2104 
2105   SDValue operator()(SDValue V64Reg) {
2106     EVT VT = V64Reg.getValueType();
2107     unsigned NarrowSize = VT.getVectorNumElements();
2108     MVT EltTy = VT.getVectorElementType().getSimpleVT();
2109     MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
2110     SDLoc DL(V64Reg);
2111 
2112     SDValue Undef =
2113         SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
2114     return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
2115   }
2116 };
2117 } // namespace
2118 
2119 /// NarrowVector - Given a value in the V128 register class, produce the
2120 /// equivalent value in the V64 register class.
2121 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
2122   EVT VT = V128Reg.getValueType();
2123   unsigned WideSize = VT.getVectorNumElements();
2124   MVT EltTy = VT.getVectorElementType().getSimpleVT();
2125   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
2126 
2127   return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
2128                                     V128Reg);
2129 }
2130 
2131 void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
2132                                          unsigned Opc) {
2133   SDLoc dl(N);
2134   EVT VT = N->getValueType(0);
2135   bool Narrow = VT.getSizeInBits() == 64;
2136 
2137   // Form a REG_SEQUENCE to force register allocation.
2138   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2139 
2140   if (Narrow)
2141     transform(Regs, Regs.begin(),
2142                    WidenVector(*CurDAG));
2143 
2144   SDValue RegSeq = createQTuple(Regs);
2145 
2146   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
2147 
2148   unsigned LaneNo = N->getConstantOperandVal(NumVecs + 2);
2149 
2150   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2151                    N->getOperand(NumVecs + 3), N->getOperand(0)};
2152   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2153   SDValue SuperReg = SDValue(Ld, 0);
2154 
2155   EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
2156   static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
2157                                     AArch64::qsub2, AArch64::qsub3 };
2158   for (unsigned i = 0; i < NumVecs; ++i) {
2159     SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
2160     if (Narrow)
2161       NV = NarrowVector(NV, *CurDAG);
2162     ReplaceUses(SDValue(N, i), NV);
2163   }
2164 
2165   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
2166   CurDAG->RemoveDeadNode(N);
2167 }
2168 
2169 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
2170                                              unsigned Opc) {
2171   SDLoc dl(N);
2172   EVT VT = N->getValueType(0);
2173   bool Narrow = VT.getSizeInBits() == 64;
2174 
2175   // Form a REG_SEQUENCE to force register allocation.
2176   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2177 
2178   if (Narrow)
2179     transform(Regs, Regs.begin(),
2180                    WidenVector(*CurDAG));
2181 
2182   SDValue RegSeq = createQTuple(Regs);
2183 
2184   const EVT ResTys[] = {MVT::i64, // Type of the write back register
2185                         RegSeq->getValueType(0), MVT::Other};
2186 
2187   unsigned LaneNo = N->getConstantOperandVal(NumVecs + 1);
2188 
2189   SDValue Ops[] = {RegSeq,
2190                    CurDAG->getTargetConstant(LaneNo, dl,
2191                                              MVT::i64),         // Lane Number
2192                    N->getOperand(NumVecs + 2),                  // Base register
2193                    N->getOperand(NumVecs + 3),                  // Incremental
2194                    N->getOperand(0)};
2195   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2196 
2197   // Update uses of the write back register
2198   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
2199 
2200   // Update uses of the vector list
2201   SDValue SuperReg = SDValue(Ld, 1);
2202   if (NumVecs == 1) {
2203     ReplaceUses(SDValue(N, 0),
2204                 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
2205   } else {
2206     EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
2207     static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
2208                                       AArch64::qsub2, AArch64::qsub3 };
2209     for (unsigned i = 0; i < NumVecs; ++i) {
2210       SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
2211                                                   SuperReg);
2212       if (Narrow)
2213         NV = NarrowVector(NV, *CurDAG);
2214       ReplaceUses(SDValue(N, i), NV);
2215     }
2216   }
2217 
2218   // Update the Chain
2219   ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
2220   CurDAG->RemoveDeadNode(N);
2221 }
2222 
2223 void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
2224                                           unsigned Opc) {
2225   SDLoc dl(N);
2226   EVT VT = N->getOperand(2)->getValueType(0);
2227   bool Narrow = VT.getSizeInBits() == 64;
2228 
2229   // Form a REG_SEQUENCE to force register allocation.
2230   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2231 
2232   if (Narrow)
2233     transform(Regs, Regs.begin(),
2234                    WidenVector(*CurDAG));
2235 
2236   SDValue RegSeq = createQTuple(Regs);
2237 
2238   unsigned LaneNo = N->getConstantOperandVal(NumVecs + 2);
2239 
2240   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2241                    N->getOperand(NumVecs + 3), N->getOperand(0)};
2242   SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
2243 
2244   // Transfer memoperands.
2245   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2246   CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2247 
2248   ReplaceNode(N, St);
2249 }
2250 
2251 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
2252                                               unsigned Opc) {
2253   SDLoc dl(N);
2254   EVT VT = N->getOperand(2)->getValueType(0);
2255   bool Narrow = VT.getSizeInBits() == 64;
2256 
2257   // Form a REG_SEQUENCE to force register allocation.
2258   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2259 
2260   if (Narrow)
2261     transform(Regs, Regs.begin(),
2262                    WidenVector(*CurDAG));
2263 
2264   SDValue RegSeq = createQTuple(Regs);
2265 
2266   const EVT ResTys[] = {MVT::i64, // Type of the write back register
2267                         MVT::Other};
2268 
2269   unsigned LaneNo = N->getConstantOperandVal(NumVecs + 1);
2270 
2271   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2272                    N->getOperand(NumVecs + 2), // Base Register
2273                    N->getOperand(NumVecs + 3), // Incremental
2274                    N->getOperand(0)};
2275   SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2276 
2277   // Transfer memoperands.
2278   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2279   CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2280 
2281   ReplaceNode(N, St);
2282 }
2283 
2284 static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
2285                                        unsigned &Opc, SDValue &Opd0,
2286                                        unsigned &LSB, unsigned &MSB,
2287                                        unsigned NumberOfIgnoredLowBits,
2288                                        bool BiggerPattern) {
2289   assert(N->getOpcode() == ISD::AND &&
2290          "N must be a AND operation to call this function");
2291 
2292   EVT VT = N->getValueType(0);
2293 
2294   // Here we can test the type of VT and return false when the type does not
2295   // match, but since it is done prior to that call in the current context
2296   // we turned that into an assert to avoid redundant code.
2297   assert((VT == MVT::i32 || VT == MVT::i64) &&
2298          "Type checking must have been done before calling this function");
2299 
2300   // FIXME: simplify-demanded-bits in DAGCombine will probably have
2301   // changed the AND node to a 32-bit mask operation. We'll have to
2302   // undo that as part of the transform here if we want to catch all
2303   // the opportunities.
2304   // Currently the NumberOfIgnoredLowBits argument helps to recover
2305   // from these situations when matching bigger pattern (bitfield insert).
2306 
2307   // For unsigned extracts, check for a shift right and mask
2308   uint64_t AndImm = 0;
2309   if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
2310     return false;
2311 
2312   const SDNode *Op0 = N->getOperand(0).getNode();
2313 
2314   // Because of simplify-demanded-bits in DAGCombine, the mask may have been
2315   // simplified. Try to undo that
2316   AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits);
2317 
2318   // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2319   if (AndImm & (AndImm + 1))
2320     return false;
2321 
2322   bool ClampMSB = false;
2323   uint64_t SrlImm = 0;
2324   // Handle the SRL + ANY_EXTEND case.
2325   if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
2326       isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
2327     // Extend the incoming operand of the SRL to 64-bit.
2328     Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
2329     // Make sure to clamp the MSB so that we preserve the semantics of the
2330     // original operations.
2331     ClampMSB = true;
2332   } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
2333              isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
2334                                    SrlImm)) {
2335     // If the shift result was truncated, we can still combine them.
2336     Opd0 = Op0->getOperand(0).getOperand(0);
2337 
2338     // Use the type of SRL node.
2339     VT = Opd0->getValueType(0);
2340   } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
2341     Opd0 = Op0->getOperand(0);
2342     ClampMSB = (VT == MVT::i32);
2343   } else if (BiggerPattern) {
2344     // Let's pretend a 0 shift right has been performed.
2345     // The resulting code will be at least as good as the original one
2346     // plus it may expose more opportunities for bitfield insert pattern.
2347     // FIXME: Currently we limit this to the bigger pattern, because
2348     // some optimizations expect AND and not UBFM.
2349     Opd0 = N->getOperand(0);
2350   } else
2351     return false;
2352 
2353   // Bail out on large immediates. This happens when no proper
2354   // combining/constant folding was performed.
2355   if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
2356     LLVM_DEBUG(
2357         (dbgs() << N
2358                 << ": Found large shift immediate, this should not happen\n"));
2359     return false;
2360   }
2361 
2362   LSB = SrlImm;
2363   MSB = SrlImm +
2364         (VT == MVT::i32 ? llvm::countr_one<uint32_t>(AndImm)
2365                         : llvm::countr_one<uint64_t>(AndImm)) -
2366         1;
2367   if (ClampMSB)
2368     // Since we're moving the extend before the right shift operation, we need
2369     // to clamp the MSB to make sure we don't shift in undefined bits instead of
2370     // the zeros which would get shifted in with the original right shift
2371     // operation.
2372     MSB = MSB > 31 ? 31 : MSB;
2373 
2374   Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2375   return true;
2376 }
2377 
2378 static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
2379                                              SDValue &Opd0, unsigned &Immr,
2380                                              unsigned &Imms) {
2381   assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
2382 
2383   EVT VT = N->getValueType(0);
2384   unsigned BitWidth = VT.getSizeInBits();
2385   assert((VT == MVT::i32 || VT == MVT::i64) &&
2386          "Type checking must have been done before calling this function");
2387 
2388   SDValue Op = N->getOperand(0);
2389   if (Op->getOpcode() == ISD::TRUNCATE) {
2390     Op = Op->getOperand(0);
2391     VT = Op->getValueType(0);
2392     BitWidth = VT.getSizeInBits();
2393   }
2394 
2395   uint64_t ShiftImm;
2396   if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
2397       !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
2398     return false;
2399 
2400   unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2401   if (ShiftImm + Width > BitWidth)
2402     return false;
2403 
2404   Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
2405   Opd0 = Op.getOperand(0);
2406   Immr = ShiftImm;
2407   Imms = ShiftImm + Width - 1;
2408   return true;
2409 }
2410 
2411 static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
2412                                           SDValue &Opd0, unsigned &LSB,
2413                                           unsigned &MSB) {
2414   // We are looking for the following pattern which basically extracts several
2415   // continuous bits from the source value and places it from the LSB of the
2416   // destination value, all other bits of the destination value or set to zero:
2417   //
2418   // Value2 = AND Value, MaskImm
2419   // SRL Value2, ShiftImm
2420   //
2421   // with MaskImm >> ShiftImm to search for the bit width.
2422   //
2423   // This gets selected into a single UBFM:
2424   //
2425   // UBFM Value, ShiftImm, Log2_64(MaskImm)
2426   //
2427 
2428   if (N->getOpcode() != ISD::SRL)
2429     return false;
2430 
2431   uint64_t AndMask = 0;
2432   if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
2433     return false;
2434 
2435   Opd0 = N->getOperand(0).getOperand(0);
2436 
2437   uint64_t SrlImm = 0;
2438   if (!isIntImmediate(N->getOperand(1), SrlImm))
2439     return false;
2440 
2441   // Check whether we really have several bits extract here.
2442   if (!isMask_64(AndMask >> SrlImm))
2443     return false;
2444 
2445   Opc = N->getValueType(0) == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2446   LSB = SrlImm;
2447   MSB = llvm::Log2_64(AndMask);
2448   return true;
2449 }
2450 
2451 static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
2452                                        unsigned &Immr, unsigned &Imms,
2453                                        bool BiggerPattern) {
2454   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
2455          "N must be a SHR/SRA operation to call this function");
2456 
2457   EVT VT = N->getValueType(0);
2458 
2459   // Here we can test the type of VT and return false when the type does not
2460   // match, but since it is done prior to that call in the current context
2461   // we turned that into an assert to avoid redundant code.
2462   assert((VT == MVT::i32 || VT == MVT::i64) &&
2463          "Type checking must have been done before calling this function");
2464 
2465   // Check for AND + SRL doing several bits extract.
2466   if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
2467     return true;
2468 
2469   // We're looking for a shift of a shift.
2470   uint64_t ShlImm = 0;
2471   uint64_t TruncBits = 0;
2472   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
2473     Opd0 = N->getOperand(0).getOperand(0);
2474   } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
2475              N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
2476     // We are looking for a shift of truncate. Truncate from i64 to i32 could
2477     // be considered as setting high 32 bits as zero. Our strategy here is to
2478     // always generate 64bit UBFM. This consistency will help the CSE pass
2479     // later find more redundancy.
2480     Opd0 = N->getOperand(0).getOperand(0);
2481     TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
2482     VT = Opd0.getValueType();
2483     assert(VT == MVT::i64 && "the promoted type should be i64");
2484   } else if (BiggerPattern) {
2485     // Let's pretend a 0 shift left has been performed.
2486     // FIXME: Currently we limit this to the bigger pattern case,
2487     // because some optimizations expect AND and not UBFM
2488     Opd0 = N->getOperand(0);
2489   } else
2490     return false;
2491 
2492   // Missing combines/constant folding may have left us with strange
2493   // constants.
2494   if (ShlImm >= VT.getSizeInBits()) {
2495     LLVM_DEBUG(
2496         (dbgs() << N
2497                 << ": Found large shift immediate, this should not happen\n"));
2498     return false;
2499   }
2500 
2501   uint64_t SrlImm = 0;
2502   if (!isIntImmediate(N->getOperand(1), SrlImm))
2503     return false;
2504 
2505   assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
2506          "bad amount in shift node!");
2507   int immr = SrlImm - ShlImm;
2508   Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
2509   Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
2510   // SRA requires a signed extraction
2511   if (VT == MVT::i32)
2512     Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
2513   else
2514     Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
2515   return true;
2516 }
2517 
2518 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
2519   assert(N->getOpcode() == ISD::SIGN_EXTEND);
2520 
2521   EVT VT = N->getValueType(0);
2522   EVT NarrowVT = N->getOperand(0)->getValueType(0);
2523   if (VT != MVT::i64 || NarrowVT != MVT::i32)
2524     return false;
2525 
2526   uint64_t ShiftImm;
2527   SDValue Op = N->getOperand(0);
2528   if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
2529     return false;
2530 
2531   SDLoc dl(N);
2532   // Extend the incoming operand of the shift to 64-bits.
2533   SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
2534   unsigned Immr = ShiftImm;
2535   unsigned Imms = NarrowVT.getSizeInBits() - 1;
2536   SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
2537                    CurDAG->getTargetConstant(Imms, dl, VT)};
2538   CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
2539   return true;
2540 }
2541 
2542 static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
2543                                 SDValue &Opd0, unsigned &Immr, unsigned &Imms,
2544                                 unsigned NumberOfIgnoredLowBits = 0,
2545                                 bool BiggerPattern = false) {
2546   if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
2547     return false;
2548 
2549   switch (N->getOpcode()) {
2550   default:
2551     if (!N->isMachineOpcode())
2552       return false;
2553     break;
2554   case ISD::AND:
2555     return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
2556                                       NumberOfIgnoredLowBits, BiggerPattern);
2557   case ISD::SRL:
2558   case ISD::SRA:
2559     return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
2560 
2561   case ISD::SIGN_EXTEND_INREG:
2562     return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
2563   }
2564 
2565   unsigned NOpc = N->getMachineOpcode();
2566   switch (NOpc) {
2567   default:
2568     return false;
2569   case AArch64::SBFMWri:
2570   case AArch64::UBFMWri:
2571   case AArch64::SBFMXri:
2572   case AArch64::UBFMXri:
2573     Opc = NOpc;
2574     Opd0 = N->getOperand(0);
2575     Immr = N->getConstantOperandVal(1);
2576     Imms = N->getConstantOperandVal(2);
2577     return true;
2578   }
2579   // Unreachable
2580   return false;
2581 }
2582 
2583 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
2584   unsigned Opc, Immr, Imms;
2585   SDValue Opd0;
2586   if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
2587     return false;
2588 
2589   EVT VT = N->getValueType(0);
2590   SDLoc dl(N);
2591 
2592   // If the bit extract operation is 64bit but the original type is 32bit, we
2593   // need to add one EXTRACT_SUBREG.
2594   if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
2595     SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
2596                        CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
2597 
2598     SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
2599     SDValue Inner = CurDAG->getTargetExtractSubreg(AArch64::sub_32, dl,
2600                                                    MVT::i32, SDValue(BFM, 0));
2601     ReplaceNode(N, Inner.getNode());
2602     return true;
2603   }
2604 
2605   SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
2606                    CurDAG->getTargetConstant(Imms, dl, VT)};
2607   CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2608   return true;
2609 }
2610 
2611 /// Does DstMask form a complementary pair with the mask provided by
2612 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
2613 /// this asks whether DstMask zeroes precisely those bits that will be set by
2614 /// the other half.
2615 static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
2616                               unsigned NumberOfIgnoredHighBits, EVT VT) {
2617   assert((VT == MVT::i32 || VT == MVT::i64) &&
2618          "i32 or i64 mask type expected!");
2619   unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
2620 
2621   APInt SignificantDstMask = APInt(BitWidth, DstMask);
2622   APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
2623 
2624   return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
2625          (SignificantDstMask | SignificantBitsToBeInserted).isAllOnes();
2626 }
2627 
2628 // Look for bits that will be useful for later uses.
2629 // A bit is consider useless as soon as it is dropped and never used
2630 // before it as been dropped.
2631 // E.g., looking for useful bit of x
2632 // 1. y = x & 0x7
2633 // 2. z = y >> 2
2634 // After #1, x useful bits are 0x7, then the useful bits of x, live through
2635 // y.
2636 // After #2, the useful bits of x are 0x4.
2637 // However, if x is used on an unpredicatable instruction, then all its bits
2638 // are useful.
2639 // E.g.
2640 // 1. y = x & 0x7
2641 // 2. z = y >> 2
2642 // 3. str x, [@x]
2643 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
2644 
2645 static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
2646                                               unsigned Depth) {
2647   uint64_t Imm =
2648       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
2649   Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
2650   UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
2651   getUsefulBits(Op, UsefulBits, Depth + 1);
2652 }
2653 
2654 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
2655                                              uint64_t Imm, uint64_t MSB,
2656                                              unsigned Depth) {
2657   // inherit the bitwidth value
2658   APInt OpUsefulBits(UsefulBits);
2659   OpUsefulBits = 1;
2660 
2661   if (MSB >= Imm) {
2662     OpUsefulBits <<= MSB - Imm + 1;
2663     --OpUsefulBits;
2664     // The interesting part will be in the lower part of the result
2665     getUsefulBits(Op, OpUsefulBits, Depth + 1);
2666     // The interesting part was starting at Imm in the argument
2667     OpUsefulBits <<= Imm;
2668   } else {
2669     OpUsefulBits <<= MSB + 1;
2670     --OpUsefulBits;
2671     // The interesting part will be shifted in the result
2672     OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
2673     getUsefulBits(Op, OpUsefulBits, Depth + 1);
2674     // The interesting part was at zero in the argument
2675     OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
2676   }
2677 
2678   UsefulBits &= OpUsefulBits;
2679 }
2680 
2681 static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
2682                                   unsigned Depth) {
2683   uint64_t Imm =
2684       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
2685   uint64_t MSB =
2686       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2687 
2688   getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
2689 }
2690 
2691 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
2692                                               unsigned Depth) {
2693   uint64_t ShiftTypeAndValue =
2694       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2695   APInt Mask(UsefulBits);
2696   Mask.clearAllBits();
2697   Mask.flipAllBits();
2698 
2699   if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
2700     // Shift Left
2701     uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
2702     Mask <<= ShiftAmt;
2703     getUsefulBits(Op, Mask, Depth + 1);
2704     Mask.lshrInPlace(ShiftAmt);
2705   } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
2706     // Shift Right
2707     // We do not handle AArch64_AM::ASR, because the sign will change the
2708     // number of useful bits
2709     uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
2710     Mask.lshrInPlace(ShiftAmt);
2711     getUsefulBits(Op, Mask, Depth + 1);
2712     Mask <<= ShiftAmt;
2713   } else
2714     return;
2715 
2716   UsefulBits &= Mask;
2717 }
2718 
2719 static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
2720                                  unsigned Depth) {
2721   uint64_t Imm =
2722       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2723   uint64_t MSB =
2724       cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
2725 
2726   APInt OpUsefulBits(UsefulBits);
2727   OpUsefulBits = 1;
2728 
2729   APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
2730   ResultUsefulBits.flipAllBits();
2731   APInt Mask(UsefulBits.getBitWidth(), 0);
2732 
2733   getUsefulBits(Op, ResultUsefulBits, Depth + 1);
2734 
2735   if (MSB >= Imm) {
2736     // The instruction is a BFXIL.
2737     uint64_t Width = MSB - Imm + 1;
2738     uint64_t LSB = Imm;
2739 
2740     OpUsefulBits <<= Width;
2741     --OpUsefulBits;
2742 
2743     if (Op.getOperand(1) == Orig) {
2744       // Copy the low bits from the result to bits starting from LSB.
2745       Mask = ResultUsefulBits & OpUsefulBits;
2746       Mask <<= LSB;
2747     }
2748 
2749     if (Op.getOperand(0) == Orig)
2750       // Bits starting from LSB in the input contribute to the result.
2751       Mask |= (ResultUsefulBits & ~OpUsefulBits);
2752   } else {
2753     // The instruction is a BFI.
2754     uint64_t Width = MSB + 1;
2755     uint64_t LSB = UsefulBits.getBitWidth() - Imm;
2756 
2757     OpUsefulBits <<= Width;
2758     --OpUsefulBits;
2759     OpUsefulBits <<= LSB;
2760 
2761     if (Op.getOperand(1) == Orig) {
2762       // Copy the bits from the result to the zero bits.
2763       Mask = ResultUsefulBits & OpUsefulBits;
2764       Mask.lshrInPlace(LSB);
2765     }
2766 
2767     if (Op.getOperand(0) == Orig)
2768       Mask |= (ResultUsefulBits & ~OpUsefulBits);
2769   }
2770 
2771   UsefulBits &= Mask;
2772 }
2773 
2774 static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
2775                                 SDValue Orig, unsigned Depth) {
2776 
2777   // Users of this node should have already been instruction selected
2778   // FIXME: Can we turn that into an assert?
2779   if (!UserNode->isMachineOpcode())
2780     return;
2781 
2782   switch (UserNode->getMachineOpcode()) {
2783   default:
2784     return;
2785   case AArch64::ANDSWri:
2786   case AArch64::ANDSXri:
2787   case AArch64::ANDWri:
2788   case AArch64::ANDXri:
2789     // We increment Depth only when we call the getUsefulBits
2790     return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
2791                                              Depth);
2792   case AArch64::UBFMWri:
2793   case AArch64::UBFMXri:
2794     return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
2795 
2796   case AArch64::ORRWrs:
2797   case AArch64::ORRXrs:
2798     if (UserNode->getOperand(0) != Orig && UserNode->getOperand(1) == Orig)
2799       getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
2800                                         Depth);
2801     return;
2802   case AArch64::BFMWri:
2803   case AArch64::BFMXri:
2804     return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
2805 
2806   case AArch64::STRBBui:
2807   case AArch64::STURBBi:
2808     if (UserNode->getOperand(0) != Orig)
2809       return;
2810     UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
2811     return;
2812 
2813   case AArch64::STRHHui:
2814   case AArch64::STURHHi:
2815     if (UserNode->getOperand(0) != Orig)
2816       return;
2817     UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
2818     return;
2819   }
2820 }
2821 
2822 static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
2823   if (Depth >= SelectionDAG::MaxRecursionDepth)
2824     return;
2825   // Initialize UsefulBits
2826   if (!Depth) {
2827     unsigned Bitwidth = Op.getScalarValueSizeInBits();
2828     // At the beginning, assume every produced bits is useful
2829     UsefulBits = APInt(Bitwidth, 0);
2830     UsefulBits.flipAllBits();
2831   }
2832   APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
2833 
2834   for (SDNode *Node : Op.getNode()->uses()) {
2835     // A use cannot produce useful bits
2836     APInt UsefulBitsForUse = APInt(UsefulBits);
2837     getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
2838     UsersUsefulBits |= UsefulBitsForUse;
2839   }
2840   // UsefulBits contains the produced bits that are meaningful for the
2841   // current definition, thus a user cannot make a bit meaningful at
2842   // this point
2843   UsefulBits &= UsersUsefulBits;
2844 }
2845 
2846 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
2847 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
2848 /// 0, return Op unchanged.
2849 static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
2850   if (ShlAmount == 0)
2851     return Op;
2852 
2853   EVT VT = Op.getValueType();
2854   SDLoc dl(Op);
2855   unsigned BitWidth = VT.getSizeInBits();
2856   unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2857 
2858   SDNode *ShiftNode;
2859   if (ShlAmount > 0) {
2860     // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
2861     ShiftNode = CurDAG->getMachineNode(
2862         UBFMOpc, dl, VT, Op,
2863         CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
2864         CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
2865   } else {
2866     // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
2867     assert(ShlAmount < 0 && "expected right shift");
2868     int ShrAmount = -ShlAmount;
2869     ShiftNode = CurDAG->getMachineNode(
2870         UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
2871         CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
2872   }
2873 
2874   return SDValue(ShiftNode, 0);
2875 }
2876 
2877 // For bit-field-positioning pattern "(and (shl VAL, N), ShiftedMask)".
2878 static bool isBitfieldPositioningOpFromAnd(SelectionDAG *CurDAG, SDValue Op,
2879                                            bool BiggerPattern,
2880                                            const uint64_t NonZeroBits,
2881                                            SDValue &Src, int &DstLSB,
2882                                            int &Width);
2883 
2884 // For bit-field-positioning pattern "shl VAL, N)".
2885 static bool isBitfieldPositioningOpFromShl(SelectionDAG *CurDAG, SDValue Op,
2886                                            bool BiggerPattern,
2887                                            const uint64_t NonZeroBits,
2888                                            SDValue &Src, int &DstLSB,
2889                                            int &Width);
2890 
2891 /// Does this tree qualify as an attempt to move a bitfield into position,
2892 /// essentially "(and (shl VAL, N), Mask)" or (shl VAL, N).
2893 static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
2894                                     bool BiggerPattern, SDValue &Src,
2895                                     int &DstLSB, int &Width) {
2896   EVT VT = Op.getValueType();
2897   unsigned BitWidth = VT.getSizeInBits();
2898   (void)BitWidth;
2899   assert(BitWidth == 32 || BitWidth == 64);
2900 
2901   KnownBits Known = CurDAG->computeKnownBits(Op);
2902 
2903   // Non-zero in the sense that they're not provably zero, which is the key
2904   // point if we want to use this value
2905   const uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
2906   if (!isShiftedMask_64(NonZeroBits))
2907     return false;
2908 
2909   switch (Op.getOpcode()) {
2910   default:
2911     break;
2912   case ISD::AND:
2913     return isBitfieldPositioningOpFromAnd(CurDAG, Op, BiggerPattern,
2914                                           NonZeroBits, Src, DstLSB, Width);
2915   case ISD::SHL:
2916     return isBitfieldPositioningOpFromShl(CurDAG, Op, BiggerPattern,
2917                                           NonZeroBits, Src, DstLSB, Width);
2918   }
2919 
2920   return false;
2921 }
2922 
2923 static bool isBitfieldPositioningOpFromAnd(SelectionDAG *CurDAG, SDValue Op,
2924                                            bool BiggerPattern,
2925                                            const uint64_t NonZeroBits,
2926                                            SDValue &Src, int &DstLSB,
2927                                            int &Width) {
2928   assert(isShiftedMask_64(NonZeroBits) && "Caller guaranteed");
2929 
2930   EVT VT = Op.getValueType();
2931   assert((VT == MVT::i32 || VT == MVT::i64) &&
2932          "Caller guarantees VT is one of i32 or i64");
2933   (void)VT;
2934 
2935   uint64_t AndImm;
2936   if (!isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm))
2937     return false;
2938 
2939   // If (~AndImm & NonZeroBits) is not zero at POS, we know that
2940   //   1) (AndImm & (1 << POS) == 0)
2941   //   2) the result of AND is not zero at POS bit (according to NonZeroBits)
2942   //
2943   // 1) and 2) don't agree so something must be wrong (e.g., in
2944   // 'SelectionDAG::computeKnownBits')
2945   assert((~AndImm & NonZeroBits) == 0 &&
2946          "Something must be wrong (e.g., in SelectionDAG::computeKnownBits)");
2947 
2948   SDValue AndOp0 = Op.getOperand(0);
2949 
2950   uint64_t ShlImm;
2951   SDValue ShlOp0;
2952   if (isOpcWithIntImmediate(AndOp0.getNode(), ISD::SHL, ShlImm)) {
2953     // For pattern "and(shl(val, N), shifted-mask)", 'ShlOp0' is set to 'val'.
2954     ShlOp0 = AndOp0.getOperand(0);
2955   } else if (VT == MVT::i64 && AndOp0.getOpcode() == ISD::ANY_EXTEND &&
2956              isOpcWithIntImmediate(AndOp0.getOperand(0).getNode(), ISD::SHL,
2957                                    ShlImm)) {
2958     // For pattern "and(any_extend(shl(val, N)), shifted-mask)"
2959 
2960     // ShlVal == shl(val, N), which is a left shift on a smaller type.
2961     SDValue ShlVal = AndOp0.getOperand(0);
2962 
2963     // Since this is after type legalization and ShlVal is extended to MVT::i64,
2964     // expect VT to be MVT::i32.
2965     assert((ShlVal.getValueType() == MVT::i32) && "Expect VT to be MVT::i32.");
2966 
2967     // Widens 'val' to MVT::i64 as the source of bit field positioning.
2968     ShlOp0 = Widen(CurDAG, ShlVal.getOperand(0));
2969   } else
2970     return false;
2971 
2972   // For !BiggerPattern, bail out if the AndOp0 has more than one use, since
2973   // then we'll end up generating AndOp0+UBFIZ instead of just keeping
2974   // AndOp0+AND.
2975   if (!BiggerPattern && !AndOp0.hasOneUse())
2976     return false;
2977 
2978   DstLSB = llvm::countr_zero(NonZeroBits);
2979   Width = llvm::countr_one(NonZeroBits >> DstLSB);
2980 
2981   // Bail out on large Width. This happens when no proper combining / constant
2982   // folding was performed.
2983   if (Width >= (int)VT.getSizeInBits()) {
2984     // If VT is i64, Width > 64 is insensible since NonZeroBits is uint64_t, and
2985     // Width == 64 indicates a missed dag-combine from "(and val, AllOnes)" to
2986     // "val".
2987     // If VT is i32, what Width >= 32 means:
2988     // - For "(and (any_extend(shl val, N)), shifted-mask)", the`and` Op
2989     //   demands at least 'Width' bits (after dag-combiner). This together with
2990     //   `any_extend` Op (undefined higher bits) indicates missed combination
2991     //   when lowering the 'and' IR instruction to an machine IR instruction.
2992     LLVM_DEBUG(
2993         dbgs()
2994         << "Found large Width in bit-field-positioning -- this indicates no "
2995            "proper combining / constant folding was performed\n");
2996     return false;
2997   }
2998 
2999   // BFI encompasses sufficiently many nodes that it's worth inserting an extra
3000   // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
3001   // amount.  BiggerPattern is true when this pattern is being matched for BFI,
3002   // BiggerPattern is false when this pattern is being matched for UBFIZ, in
3003   // which case it is not profitable to insert an extra shift.
3004   if (ShlImm != uint64_t(DstLSB) && !BiggerPattern)
3005     return false;
3006 
3007   Src = getLeftShift(CurDAG, ShlOp0, ShlImm - DstLSB);
3008   return true;
3009 }
3010 
3011 // For node (shl (and val, mask), N)), returns true if the node is equivalent to
3012 // UBFIZ.
3013 static bool isSeveralBitsPositioningOpFromShl(const uint64_t ShlImm, SDValue Op,
3014                                               SDValue &Src, int &DstLSB,
3015                                               int &Width) {
3016   // Caller should have verified that N is a left shift with constant shift
3017   // amount; asserts that.
3018   assert(Op.getOpcode() == ISD::SHL &&
3019          "Op.getNode() should be a SHL node to call this function");
3020   assert(isIntImmediateEq(Op.getOperand(1), ShlImm) &&
3021          "Op.getNode() should shift ShlImm to call this function");
3022 
3023   uint64_t AndImm = 0;
3024   SDValue Op0 = Op.getOperand(0);
3025   if (!isOpcWithIntImmediate(Op0.getNode(), ISD::AND, AndImm))
3026     return false;
3027 
3028   const uint64_t ShiftedAndImm = ((AndImm << ShlImm) >> ShlImm);
3029   if (isMask_64(ShiftedAndImm)) {
3030     // AndImm is a superset of (AllOnes >> ShlImm); in other words, AndImm
3031     // should end with Mask, and could be prefixed with random bits if those
3032     // bits are shifted out.
3033     //
3034     // For example, xyz11111 (with {x,y,z} being 0 or 1) is fine if ShlImm >= 3;
3035     // the AND result corresponding to those bits are shifted out, so it's fine
3036     // to not extract them.
3037     Width = llvm::countr_one(ShiftedAndImm);
3038     DstLSB = ShlImm;
3039     Src = Op0.getOperand(0);
3040     return true;
3041   }
3042   return false;
3043 }
3044 
3045 static bool isBitfieldPositioningOpFromShl(SelectionDAG *CurDAG, SDValue Op,
3046                                            bool BiggerPattern,
3047                                            const uint64_t NonZeroBits,
3048                                            SDValue &Src, int &DstLSB,
3049                                            int &Width) {
3050   assert(isShiftedMask_64(NonZeroBits) && "Caller guaranteed");
3051 
3052   EVT VT = Op.getValueType();
3053   assert((VT == MVT::i32 || VT == MVT::i64) &&
3054          "Caller guarantees that type is i32 or i64");
3055   (void)VT;
3056 
3057   uint64_t ShlImm;
3058   if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
3059     return false;
3060 
3061   if (!BiggerPattern && !Op.hasOneUse())
3062     return false;
3063 
3064   if (isSeveralBitsPositioningOpFromShl(ShlImm, Op, Src, DstLSB, Width))
3065     return true;
3066 
3067   DstLSB = llvm::countr_zero(NonZeroBits);
3068   Width = llvm::countr_one(NonZeroBits >> DstLSB);
3069 
3070   if (ShlImm != uint64_t(DstLSB) && !BiggerPattern)
3071     return false;
3072 
3073   Src = getLeftShift(CurDAG, Op.getOperand(0), ShlImm - DstLSB);
3074   return true;
3075 }
3076 
3077 static bool isShiftedMask(uint64_t Mask, EVT VT) {
3078   assert(VT == MVT::i32 || VT == MVT::i64);
3079   if (VT == MVT::i32)
3080     return isShiftedMask_32(Mask);
3081   return isShiftedMask_64(Mask);
3082 }
3083 
3084 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
3085 // inserted only sets known zero bits.
3086 static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
3087   assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
3088 
3089   EVT VT = N->getValueType(0);
3090   if (VT != MVT::i32 && VT != MVT::i64)
3091     return false;
3092 
3093   unsigned BitWidth = VT.getSizeInBits();
3094 
3095   uint64_t OrImm;
3096   if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
3097     return false;
3098 
3099   // Skip this transformation if the ORR immediate can be encoded in the ORR.
3100   // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
3101   // performance neutral.
3102   if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
3103     return false;
3104 
3105   uint64_t MaskImm;
3106   SDValue And = N->getOperand(0);
3107   // Must be a single use AND with an immediate operand.
3108   if (!And.hasOneUse() ||
3109       !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
3110     return false;
3111 
3112   // Compute the Known Zero for the AND as this allows us to catch more general
3113   // cases than just looking for AND with imm.
3114   KnownBits Known = CurDAG->computeKnownBits(And);
3115 
3116   // Non-zero in the sense that they're not provably zero, which is the key
3117   // point if we want to use this value.
3118   uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
3119 
3120   // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
3121   if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
3122     return false;
3123 
3124   // The bits being inserted must only set those bits that are known to be zero.
3125   if ((OrImm & NotKnownZero) != 0) {
3126     // FIXME:  It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
3127     // currently handle this case.
3128     return false;
3129   }
3130 
3131   // BFI/BFXIL dst, src, #lsb, #width.
3132   int LSB = llvm::countr_one(NotKnownZero);
3133   int Width = BitWidth - APInt(BitWidth, NotKnownZero).popcount();
3134 
3135   // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
3136   unsigned ImmR = (BitWidth - LSB) % BitWidth;
3137   unsigned ImmS = Width - 1;
3138 
3139   // If we're creating a BFI instruction avoid cases where we need more
3140   // instructions to materialize the BFI constant as compared to the original
3141   // ORR.  A BFXIL will use the same constant as the original ORR, so the code
3142   // should be no worse in this case.
3143   bool IsBFI = LSB != 0;
3144   uint64_t BFIImm = OrImm >> LSB;
3145   if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
3146     // We have a BFI instruction and we know the constant can't be materialized
3147     // with a ORR-immediate with the zero register.
3148     unsigned OrChunks = 0, BFIChunks = 0;
3149     for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
3150       if (((OrImm >> Shift) & 0xFFFF) != 0)
3151         ++OrChunks;
3152       if (((BFIImm >> Shift) & 0xFFFF) != 0)
3153         ++BFIChunks;
3154     }
3155     if (BFIChunks > OrChunks)
3156       return false;
3157   }
3158 
3159   // Materialize the constant to be inserted.
3160   SDLoc DL(N);
3161   unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
3162   SDNode *MOVI = CurDAG->getMachineNode(
3163       MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
3164 
3165   // Create the BFI/BFXIL instruction.
3166   SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
3167                    CurDAG->getTargetConstant(ImmR, DL, VT),
3168                    CurDAG->getTargetConstant(ImmS, DL, VT)};
3169   unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3170   CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3171   return true;
3172 }
3173 
3174 static bool isWorthFoldingIntoOrrWithShift(SDValue Dst, SelectionDAG *CurDAG,
3175                                            SDValue &ShiftedOperand,
3176                                            uint64_t &EncodedShiftImm) {
3177   // Avoid folding Dst into ORR-with-shift if Dst has other uses than ORR.
3178   if (!Dst.hasOneUse())
3179     return false;
3180 
3181   EVT VT = Dst.getValueType();
3182   assert((VT == MVT::i32 || VT == MVT::i64) &&
3183          "Caller should guarantee that VT is one of i32 or i64");
3184   const unsigned SizeInBits = VT.getSizeInBits();
3185 
3186   SDLoc DL(Dst.getNode());
3187   uint64_t AndImm, ShlImm;
3188   if (isOpcWithIntImmediate(Dst.getNode(), ISD::AND, AndImm) &&
3189       isShiftedMask_64(AndImm)) {
3190     // Avoid transforming 'DstOp0' if it has other uses than the AND node.
3191     SDValue DstOp0 = Dst.getOperand(0);
3192     if (!DstOp0.hasOneUse())
3193       return false;
3194 
3195     // An example to illustrate the transformation
3196     // From:
3197     //    lsr     x8, x1, #1
3198     //    and     x8, x8, #0x3f80
3199     //    bfxil   x8, x1, #0, #7
3200     // To:
3201     //    and    x8, x23, #0x7f
3202     //    ubfx   x9, x23, #8, #7
3203     //    orr    x23, x8, x9, lsl #7
3204     //
3205     // The number of instructions remains the same, but ORR is faster than BFXIL
3206     // on many AArch64 processors (or as good as BFXIL if not faster). Besides,
3207     // the dependency chain is improved after the transformation.
3208     uint64_t SrlImm;
3209     if (isOpcWithIntImmediate(DstOp0.getNode(), ISD::SRL, SrlImm)) {
3210       uint64_t NumTrailingZeroInShiftedMask = llvm::countr_zero(AndImm);
3211       if ((SrlImm + NumTrailingZeroInShiftedMask) < SizeInBits) {
3212         unsigned MaskWidth =
3213             llvm::countr_one(AndImm >> NumTrailingZeroInShiftedMask);
3214         unsigned UBFMOpc =
3215             (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3216         SDNode *UBFMNode = CurDAG->getMachineNode(
3217             UBFMOpc, DL, VT, DstOp0.getOperand(0),
3218             CurDAG->getTargetConstant(SrlImm + NumTrailingZeroInShiftedMask, DL,
3219                                       VT),
3220             CurDAG->getTargetConstant(
3221                 SrlImm + NumTrailingZeroInShiftedMask + MaskWidth - 1, DL, VT));
3222         ShiftedOperand = SDValue(UBFMNode, 0);
3223         EncodedShiftImm = AArch64_AM::getShifterImm(
3224             AArch64_AM::LSL, NumTrailingZeroInShiftedMask);
3225         return true;
3226       }
3227     }
3228     return false;
3229   }
3230 
3231   if (isOpcWithIntImmediate(Dst.getNode(), ISD::SHL, ShlImm)) {
3232     ShiftedOperand = Dst.getOperand(0);
3233     EncodedShiftImm = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm);
3234     return true;
3235   }
3236 
3237   uint64_t SrlImm;
3238   if (isOpcWithIntImmediate(Dst.getNode(), ISD::SRL, SrlImm)) {
3239     ShiftedOperand = Dst.getOperand(0);
3240     EncodedShiftImm = AArch64_AM::getShifterImm(AArch64_AM::LSR, SrlImm);
3241     return true;
3242   }
3243   return false;
3244 }
3245 
3246 // Given an 'ISD::OR' node that is going to be selected as BFM, analyze
3247 // the operands and select it to AArch64::ORR with shifted registers if
3248 // that's more efficient. Returns true iff selection to AArch64::ORR happens.
3249 static bool tryOrrWithShift(SDNode *N, SDValue OrOpd0, SDValue OrOpd1,
3250                             SDValue Src, SDValue Dst, SelectionDAG *CurDAG,
3251                             const bool BiggerPattern) {
3252   EVT VT = N->getValueType(0);
3253   assert(N->getOpcode() == ISD::OR && "Expect N to be an OR node");
3254   assert(((N->getOperand(0) == OrOpd0 && N->getOperand(1) == OrOpd1) ||
3255           (N->getOperand(1) == OrOpd0 && N->getOperand(0) == OrOpd1)) &&
3256          "Expect OrOpd0 and OrOpd1 to be operands of ISD::OR");
3257   assert((VT == MVT::i32 || VT == MVT::i64) &&
3258          "Expect result type to be i32 or i64 since N is combinable to BFM");
3259   SDLoc DL(N);
3260 
3261   // Bail out if BFM simplifies away one node in BFM Dst.
3262   if (OrOpd1 != Dst)
3263     return false;
3264 
3265   const unsigned OrrOpc = (VT == MVT::i32) ? AArch64::ORRWrs : AArch64::ORRXrs;
3266   // For "BFM Rd, Rn, #immr, #imms", it's known that BFM simplifies away fewer
3267   // nodes from Rn (or inserts additional shift node) if BiggerPattern is true.
3268   if (BiggerPattern) {
3269     uint64_t SrcAndImm;
3270     if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::AND, SrcAndImm) &&
3271         isMask_64(SrcAndImm) && OrOpd0.getOperand(0) == Src) {
3272       // OrOpd0 = AND Src, #Mask
3273       // So BFM simplifies away one AND node from Src and doesn't simplify away
3274       // nodes from Dst. If ORR with left-shifted operand also simplifies away
3275       // one node (from Rd), ORR is better since it has higher throughput and
3276       // smaller latency than BFM on many AArch64 processors (and for the rest
3277       // ORR is at least as good as BFM).
3278       SDValue ShiftedOperand;
3279       uint64_t EncodedShiftImm;
3280       if (isWorthFoldingIntoOrrWithShift(Dst, CurDAG, ShiftedOperand,
3281                                          EncodedShiftImm)) {
3282         SDValue Ops[] = {OrOpd0, ShiftedOperand,
3283                          CurDAG->getTargetConstant(EncodedShiftImm, DL, VT)};
3284         CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3285         return true;
3286       }
3287     }
3288     return false;
3289   }
3290 
3291   assert((!BiggerPattern) && "BiggerPattern should be handled above");
3292 
3293   uint64_t ShlImm;
3294   if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::SHL, ShlImm)) {
3295     if (OrOpd0.getOperand(0) == Src && OrOpd0.hasOneUse()) {
3296       SDValue Ops[] = {
3297           Dst, Src,
3298           CurDAG->getTargetConstant(
3299               AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm), DL, VT)};
3300       CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3301       return true;
3302     }
3303 
3304     // Select the following pattern to left-shifted operand rather than BFI.
3305     // %val1 = op ..
3306     // %val2 = shl %val1, #imm
3307     // %res = or %val1, %val2
3308     //
3309     // If N is selected to be BFI, we know that
3310     // 1) OrOpd0 would be the operand from which extract bits (i.e., folded into
3311     // BFI) 2) OrOpd1 would be the destination operand (i.e., preserved)
3312     //
3313     // Instead of selecting N to BFI, fold OrOpd0 as a left shift directly.
3314     if (OrOpd0.getOperand(0) == OrOpd1) {
3315       SDValue Ops[] = {
3316           OrOpd1, OrOpd1,
3317           CurDAG->getTargetConstant(
3318               AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm), DL, VT)};
3319       CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3320       return true;
3321     }
3322   }
3323 
3324   uint64_t SrlImm;
3325   if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::SRL, SrlImm)) {
3326     // Select the following pattern to right-shifted operand rather than BFXIL.
3327     // %val1 = op ..
3328     // %val2 = lshr %val1, #imm
3329     // %res = or %val1, %val2
3330     //
3331     // If N is selected to be BFXIL, we know that
3332     // 1) OrOpd0 would be the operand from which extract bits (i.e., folded into
3333     // BFXIL) 2) OrOpd1 would be the destination operand (i.e., preserved)
3334     //
3335     // Instead of selecting N to BFXIL, fold OrOpd0 as a right shift directly.
3336     if (OrOpd0.getOperand(0) == OrOpd1) {
3337       SDValue Ops[] = {
3338           OrOpd1, OrOpd1,
3339           CurDAG->getTargetConstant(
3340               AArch64_AM::getShifterImm(AArch64_AM::LSR, SrlImm), DL, VT)};
3341       CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3342       return true;
3343     }
3344   }
3345 
3346   return false;
3347 }
3348 
3349 static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
3350                                       SelectionDAG *CurDAG) {
3351   assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
3352 
3353   EVT VT = N->getValueType(0);
3354   if (VT != MVT::i32 && VT != MVT::i64)
3355     return false;
3356 
3357   unsigned BitWidth = VT.getSizeInBits();
3358 
3359   // Because of simplify-demanded-bits in DAGCombine, involved masks may not
3360   // have the expected shape. Try to undo that.
3361 
3362   unsigned NumberOfIgnoredLowBits = UsefulBits.countr_zero();
3363   unsigned NumberOfIgnoredHighBits = UsefulBits.countl_zero();
3364 
3365   // Given a OR operation, check if we have the following pattern
3366   // ubfm c, b, imm, imm2 (or something that does the same jobs, see
3367   //                       isBitfieldExtractOp)
3368   // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
3369   //                 countTrailingZeros(mask2) == imm2 - imm + 1
3370   // f = d | c
3371   // if yes, replace the OR instruction with:
3372   // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
3373 
3374   // OR is commutative, check all combinations of operand order and values of
3375   // BiggerPattern, i.e.
3376   //     Opd0, Opd1, BiggerPattern=false
3377   //     Opd1, Opd0, BiggerPattern=false
3378   //     Opd0, Opd1, BiggerPattern=true
3379   //     Opd1, Opd0, BiggerPattern=true
3380   // Several of these combinations may match, so check with BiggerPattern=false
3381   // first since that will produce better results by matching more instructions
3382   // and/or inserting fewer extra instructions.
3383   for (int I = 0; I < 4; ++I) {
3384 
3385     SDValue Dst, Src;
3386     unsigned ImmR, ImmS;
3387     bool BiggerPattern = I / 2;
3388     SDValue OrOpd0Val = N->getOperand(I % 2);
3389     SDNode *OrOpd0 = OrOpd0Val.getNode();
3390     SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
3391     SDNode *OrOpd1 = OrOpd1Val.getNode();
3392 
3393     unsigned BFXOpc;
3394     int DstLSB, Width;
3395     if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
3396                             NumberOfIgnoredLowBits, BiggerPattern)) {
3397       // Check that the returned opcode is compatible with the pattern,
3398       // i.e., same type and zero extended (U and not S)
3399       if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
3400           (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
3401         continue;
3402 
3403       // Compute the width of the bitfield insertion
3404       DstLSB = 0;
3405       Width = ImmS - ImmR + 1;
3406       // FIXME: This constraint is to catch bitfield insertion we may
3407       // want to widen the pattern if we want to grab general bitfied
3408       // move case
3409       if (Width <= 0)
3410         continue;
3411 
3412       // If the mask on the insertee is correct, we have a BFXIL operation. We
3413       // can share the ImmR and ImmS values from the already-computed UBFM.
3414     } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
3415                                        BiggerPattern,
3416                                        Src, DstLSB, Width)) {
3417       ImmR = (BitWidth - DstLSB) % BitWidth;
3418       ImmS = Width - 1;
3419     } else
3420       continue;
3421 
3422     // Check the second part of the pattern
3423     EVT VT = OrOpd1Val.getValueType();
3424     assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
3425 
3426     // Compute the Known Zero for the candidate of the first operand.
3427     // This allows to catch more general case than just looking for
3428     // AND with imm. Indeed, simplify-demanded-bits may have removed
3429     // the AND instruction because it proves it was useless.
3430     KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val);
3431 
3432     // Check if there is enough room for the second operand to appear
3433     // in the first one
3434     APInt BitsToBeInserted =
3435         APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
3436 
3437     if ((BitsToBeInserted & ~Known.Zero) != 0)
3438       continue;
3439 
3440     // Set the first operand
3441     uint64_t Imm;
3442     if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
3443         isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
3444       // In that case, we can eliminate the AND
3445       Dst = OrOpd1->getOperand(0);
3446     else
3447       // Maybe the AND has been removed by simplify-demanded-bits
3448       // or is useful because it discards more bits
3449       Dst = OrOpd1Val;
3450 
3451     // Before selecting ISD::OR node to AArch64::BFM, see if an AArch64::ORR
3452     // with shifted operand is more efficient.
3453     if (tryOrrWithShift(N, OrOpd0Val, OrOpd1Val, Src, Dst, CurDAG,
3454                         BiggerPattern))
3455       return true;
3456 
3457     // both parts match
3458     SDLoc DL(N);
3459     SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
3460                      CurDAG->getTargetConstant(ImmS, DL, VT)};
3461     unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3462     CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3463     return true;
3464   }
3465 
3466   // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
3467   // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
3468   // mask (e.g., 0x000ffff0).
3469   uint64_t Mask0Imm, Mask1Imm;
3470   SDValue And0 = N->getOperand(0);
3471   SDValue And1 = N->getOperand(1);
3472   if (And0.hasOneUse() && And1.hasOneUse() &&
3473       isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
3474       isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
3475       APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
3476       (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
3477 
3478     // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
3479     // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
3480     // bits to be inserted.
3481     if (isShiftedMask(Mask0Imm, VT)) {
3482       std::swap(And0, And1);
3483       std::swap(Mask0Imm, Mask1Imm);
3484     }
3485 
3486     SDValue Src = And1->getOperand(0);
3487     SDValue Dst = And0->getOperand(0);
3488     unsigned LSB = llvm::countr_zero(Mask1Imm);
3489     int Width = BitWidth - APInt(BitWidth, Mask0Imm).popcount();
3490 
3491     // The BFXIL inserts the low-order bits from a source register, so right
3492     // shift the needed bits into place.
3493     SDLoc DL(N);
3494     unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3495     uint64_t LsrImm = LSB;
3496     if (Src->hasOneUse() &&
3497         isOpcWithIntImmediate(Src.getNode(), ISD::SRL, LsrImm) &&
3498         (LsrImm + LSB) < BitWidth) {
3499       Src = Src->getOperand(0);
3500       LsrImm += LSB;
3501     }
3502 
3503     SDNode *LSR = CurDAG->getMachineNode(
3504         ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LsrImm, DL, VT),
3505         CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
3506 
3507     // BFXIL is an alias of BFM, so translate to BFM operands.
3508     unsigned ImmR = (BitWidth - LSB) % BitWidth;
3509     unsigned ImmS = Width - 1;
3510 
3511     // Create the BFXIL instruction.
3512     SDValue Ops[] = {Dst, SDValue(LSR, 0),
3513                      CurDAG->getTargetConstant(ImmR, DL, VT),
3514                      CurDAG->getTargetConstant(ImmS, DL, VT)};
3515     unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3516     CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3517     return true;
3518   }
3519 
3520   return false;
3521 }
3522 
3523 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
3524   if (N->getOpcode() != ISD::OR)
3525     return false;
3526 
3527   APInt NUsefulBits;
3528   getUsefulBits(SDValue(N, 0), NUsefulBits);
3529 
3530   // If all bits are not useful, just return UNDEF.
3531   if (!NUsefulBits) {
3532     CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
3533     return true;
3534   }
3535 
3536   if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
3537     return true;
3538 
3539   return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
3540 }
3541 
3542 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
3543 /// equivalent of a left shift by a constant amount followed by an and masking
3544 /// out a contiguous set of bits.
3545 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
3546   if (N->getOpcode() != ISD::AND)
3547     return false;
3548 
3549   EVT VT = N->getValueType(0);
3550   if (VT != MVT::i32 && VT != MVT::i64)
3551     return false;
3552 
3553   SDValue Op0;
3554   int DstLSB, Width;
3555   if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
3556                                Op0, DstLSB, Width))
3557     return false;
3558 
3559   // ImmR is the rotate right amount.
3560   unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
3561   // ImmS is the most significant bit of the source to be moved.
3562   unsigned ImmS = Width - 1;
3563 
3564   SDLoc DL(N);
3565   SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
3566                    CurDAG->getTargetConstant(ImmS, DL, VT)};
3567   unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3568   CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3569   return true;
3570 }
3571 
3572 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
3573 /// variable shift/rotate instructions.
3574 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3575   EVT VT = N->getValueType(0);
3576 
3577   unsigned Opc;
3578   switch (N->getOpcode()) {
3579   case ISD::ROTR:
3580     Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr;
3581     break;
3582   case ISD::SHL:
3583     Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr;
3584     break;
3585   case ISD::SRL:
3586     Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr;
3587     break;
3588   case ISD::SRA:
3589     Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr;
3590     break;
3591   default:
3592     return false;
3593   }
3594 
3595   uint64_t Size;
3596   uint64_t Bits;
3597   if (VT == MVT::i32) {
3598     Bits = 5;
3599     Size = 32;
3600   } else if (VT == MVT::i64) {
3601     Bits = 6;
3602     Size = 64;
3603   } else
3604     return false;
3605 
3606   SDValue ShiftAmt = N->getOperand(1);
3607   SDLoc DL(N);
3608   SDValue NewShiftAmt;
3609 
3610   // Skip over an extend of the shift amount.
3611   if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND ||
3612       ShiftAmt->getOpcode() == ISD::ANY_EXTEND)
3613     ShiftAmt = ShiftAmt->getOperand(0);
3614 
3615   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3616     SDValue Add0 = ShiftAmt->getOperand(0);
3617     SDValue Add1 = ShiftAmt->getOperand(1);
3618     uint64_t Add0Imm;
3619     uint64_t Add1Imm;
3620     if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0)) {
3621       // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3622       // to avoid the ADD/SUB.
3623       NewShiftAmt = Add0;
3624     } else if (ShiftAmt->getOpcode() == ISD::SUB &&
3625                isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 &&
3626                (Add0Imm % Size == 0)) {
3627       // If we are shifting by N-X where N == 0 mod Size, then just shift by -X
3628       // to generate a NEG instead of a SUB from a constant.
3629       unsigned NegOpc;
3630       unsigned ZeroReg;
3631       EVT SubVT = ShiftAmt->getValueType(0);
3632       if (SubVT == MVT::i32) {
3633         NegOpc = AArch64::SUBWrr;
3634         ZeroReg = AArch64::WZR;
3635       } else {
3636         assert(SubVT == MVT::i64);
3637         NegOpc = AArch64::SUBXrr;
3638         ZeroReg = AArch64::XZR;
3639       }
3640       SDValue Zero =
3641           CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
3642       MachineSDNode *Neg =
3643           CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1);
3644       NewShiftAmt = SDValue(Neg, 0);
3645     } else if (ShiftAmt->getOpcode() == ISD::SUB &&
3646                isIntImmediate(Add0, Add0Imm) && (Add0Imm % Size == Size - 1)) {
3647       // If we are shifting by N-X where N == -1 mod Size, then just shift by ~X
3648       // to generate a NOT instead of a SUB from a constant.
3649       unsigned NotOpc;
3650       unsigned ZeroReg;
3651       EVT SubVT = ShiftAmt->getValueType(0);
3652       if (SubVT == MVT::i32) {
3653         NotOpc = AArch64::ORNWrr;
3654         ZeroReg = AArch64::WZR;
3655       } else {
3656         assert(SubVT == MVT::i64);
3657         NotOpc = AArch64::ORNXrr;
3658         ZeroReg = AArch64::XZR;
3659       }
3660       SDValue Zero =
3661           CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
3662       MachineSDNode *Not =
3663           CurDAG->getMachineNode(NotOpc, DL, SubVT, Zero, Add1);
3664       NewShiftAmt = SDValue(Not, 0);
3665     } else
3666       return false;
3667   } else {
3668     // If the shift amount is masked with an AND, check that the mask covers the
3669     // bits that are implicitly ANDed off by the above opcodes and if so, skip
3670     // the AND.
3671     uint64_t MaskImm;
3672     if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm) &&
3673         !isOpcWithIntImmediate(ShiftAmt.getNode(), AArch64ISD::ANDS, MaskImm))
3674       return false;
3675 
3676     if ((unsigned)llvm::countr_one(MaskImm) < Bits)
3677       return false;
3678 
3679     NewShiftAmt = ShiftAmt->getOperand(0);
3680   }
3681 
3682   // Narrow/widen the shift amount to match the size of the shift operation.
3683   if (VT == MVT::i32)
3684     NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt);
3685   else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) {
3686     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32);
3687     MachineSDNode *Ext = CurDAG->getMachineNode(
3688         AArch64::SUBREG_TO_REG, DL, VT,
3689         CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg);
3690     NewShiftAmt = SDValue(Ext, 0);
3691   }
3692 
3693   SDValue Ops[] = {N->getOperand(0), NewShiftAmt};
3694   CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3695   return true;
3696 }
3697 
3698 static bool checkCVTFixedPointOperandWithFBits(SelectionDAG *CurDAG, SDValue N,
3699                                                SDValue &FixedPos,
3700                                                unsigned RegWidth,
3701                                                bool isReciprocal) {
3702   APFloat FVal(0.0);
3703   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
3704     FVal = CN->getValueAPF();
3705   else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
3706     // Some otherwise illegal constants are allowed in this case.
3707     if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
3708         !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
3709       return false;
3710 
3711     ConstantPoolSDNode *CN =
3712         dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
3713     FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
3714   } else
3715     return false;
3716 
3717   // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
3718   // is between 1 and 32 for a destination w-register, or 1 and 64 for an
3719   // x-register.
3720   //
3721   // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
3722   // want THIS_NODE to be 2^fbits. This is much easier to deal with using
3723   // integers.
3724   bool IsExact;
3725 
3726   if (isReciprocal)
3727     if (!FVal.getExactInverse(&FVal))
3728       return false;
3729 
3730   // fbits is between 1 and 64 in the worst-case, which means the fmul
3731   // could have 2^64 as an actual operand. Need 65 bits of precision.
3732   APSInt IntVal(65, true);
3733   FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
3734 
3735   // N.b. isPowerOf2 also checks for > 0.
3736   if (!IsExact || !IntVal.isPowerOf2())
3737     return false;
3738   unsigned FBits = IntVal.logBase2();
3739 
3740   // Checks above should have guaranteed that we haven't lost information in
3741   // finding FBits, but it must still be in range.
3742   if (FBits == 0 || FBits > RegWidth) return false;
3743 
3744   FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
3745   return true;
3746 }
3747 
3748 bool AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
3749                                                    unsigned RegWidth) {
3750   return checkCVTFixedPointOperandWithFBits(CurDAG, N, FixedPos, RegWidth,
3751                                             false);
3752 }
3753 
3754 bool AArch64DAGToDAGISel::SelectCVTFixedPosRecipOperand(SDValue N,
3755                                                         SDValue &FixedPos,
3756                                                         unsigned RegWidth) {
3757   return checkCVTFixedPointOperandWithFBits(CurDAG, N, FixedPos, RegWidth,
3758                                             true);
3759 }
3760 
3761 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
3762 // of the string and obtains the integer values from them and combines these
3763 // into a single value to be used in the MRS/MSR instruction.
3764 static int getIntOperandFromRegisterString(StringRef RegString) {
3765   SmallVector<StringRef, 5> Fields;
3766   RegString.split(Fields, ':');
3767 
3768   if (Fields.size() == 1)
3769     return -1;
3770 
3771   assert(Fields.size() == 5
3772             && "Invalid number of fields in read register string");
3773 
3774   SmallVector<int, 5> Ops;
3775   bool AllIntFields = true;
3776 
3777   for (StringRef Field : Fields) {
3778     unsigned IntField;
3779     AllIntFields &= !Field.getAsInteger(10, IntField);
3780     Ops.push_back(IntField);
3781   }
3782 
3783   assert(AllIntFields &&
3784           "Unexpected non-integer value in special register string.");
3785   (void)AllIntFields;
3786 
3787   // Need to combine the integer fields of the string into a single value
3788   // based on the bit encoding of MRS/MSR instruction.
3789   return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
3790          (Ops[3] << 3) | (Ops[4]);
3791 }
3792 
3793 // Lower the read_register intrinsic to an MRS instruction node if the special
3794 // register string argument is either of the form detailed in the ALCE (the
3795 // form described in getIntOperandsFromRegsterString) or is a named register
3796 // known by the MRS SysReg mapper.
3797 bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
3798   const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
3799   const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
3800   SDLoc DL(N);
3801 
3802   bool ReadIs128Bit = N->getOpcode() == AArch64ISD::MRRS;
3803 
3804   unsigned Opcode64Bit = AArch64::MRS;
3805   int Imm = getIntOperandFromRegisterString(RegString->getString());
3806   if (Imm == -1) {
3807     // No match, Use the sysreg mapper to map the remaining possible strings to
3808     // the value for the register to be used for the instruction operand.
3809     const auto *TheReg =
3810         AArch64SysReg::lookupSysRegByName(RegString->getString());
3811     if (TheReg && TheReg->Readable &&
3812         TheReg->haveFeatures(Subtarget->getFeatureBits()))
3813       Imm = TheReg->Encoding;
3814     else
3815       Imm = AArch64SysReg::parseGenericRegister(RegString->getString());
3816 
3817     if (Imm == -1) {
3818       // Still no match, see if this is "pc" or give up.
3819       if (!ReadIs128Bit && RegString->getString() == "pc") {
3820         Opcode64Bit = AArch64::ADR;
3821         Imm = 0;
3822       } else {
3823         return false;
3824       }
3825     }
3826   }
3827 
3828   SDValue InChain = N->getOperand(0);
3829   SDValue SysRegImm = CurDAG->getTargetConstant(Imm, DL, MVT::i32);
3830   if (!ReadIs128Bit) {
3831     CurDAG->SelectNodeTo(N, Opcode64Bit, MVT::i64, MVT::Other /* Chain */,
3832                          {SysRegImm, InChain});
3833   } else {
3834     SDNode *MRRS = CurDAG->getMachineNode(
3835         AArch64::MRRS, DL,
3836         {MVT::Untyped /* XSeqPair */, MVT::Other /* Chain */},
3837         {SysRegImm, InChain});
3838 
3839     // Sysregs are not endian. The even register always contains the low half
3840     // of the register.
3841     SDValue Lo = CurDAG->getTargetExtractSubreg(AArch64::sube64, DL, MVT::i64,
3842                                                 SDValue(MRRS, 0));
3843     SDValue Hi = CurDAG->getTargetExtractSubreg(AArch64::subo64, DL, MVT::i64,
3844                                                 SDValue(MRRS, 0));
3845     SDValue OutChain = SDValue(MRRS, 1);
3846 
3847     ReplaceUses(SDValue(N, 0), Lo);
3848     ReplaceUses(SDValue(N, 1), Hi);
3849     ReplaceUses(SDValue(N, 2), OutChain);
3850   };
3851   return true;
3852 }
3853 
3854 // Lower the write_register intrinsic to an MSR instruction node if the special
3855 // register string argument is either of the form detailed in the ALCE (the
3856 // form described in getIntOperandsFromRegsterString) or is a named register
3857 // known by the MSR SysReg mapper.
3858 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
3859   const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
3860   const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
3861   SDLoc DL(N);
3862 
3863   bool WriteIs128Bit = N->getOpcode() == AArch64ISD::MSRR;
3864 
3865   if (!WriteIs128Bit) {
3866     // Check if the register was one of those allowed as the pstatefield value
3867     // in the MSR (immediate) instruction. To accept the values allowed in the
3868     // pstatefield for the MSR (immediate) instruction, we also require that an
3869     // immediate value has been provided as an argument, we know that this is
3870     // the case as it has been ensured by semantic checking.
3871     auto trySelectPState = [&](auto PMapper, unsigned State) {
3872       if (PMapper) {
3873         assert(isa<ConstantSDNode>(N->getOperand(2)) &&
3874                "Expected a constant integer expression.");
3875         unsigned Reg = PMapper->Encoding;
3876         uint64_t Immed = N->getConstantOperandVal(2);
3877         CurDAG->SelectNodeTo(
3878             N, State, MVT::Other, CurDAG->getTargetConstant(Reg, DL, MVT::i32),
3879             CurDAG->getTargetConstant(Immed, DL, MVT::i16), N->getOperand(0));
3880         return true;
3881       }
3882       return false;
3883     };
3884 
3885     if (trySelectPState(
3886             AArch64PState::lookupPStateImm0_15ByName(RegString->getString()),
3887             AArch64::MSRpstateImm4))
3888       return true;
3889     if (trySelectPState(
3890             AArch64PState::lookupPStateImm0_1ByName(RegString->getString()),
3891             AArch64::MSRpstateImm1))
3892       return true;
3893   }
3894 
3895   int Imm = getIntOperandFromRegisterString(RegString->getString());
3896   if (Imm == -1) {
3897     // Use the sysreg mapper to attempt to map the remaining possible strings
3898     // to the value for the register to be used for the MSR (register)
3899     // instruction operand.
3900     auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
3901     if (TheReg && TheReg->Writeable &&
3902         TheReg->haveFeatures(Subtarget->getFeatureBits()))
3903       Imm = TheReg->Encoding;
3904     else
3905       Imm = AArch64SysReg::parseGenericRegister(RegString->getString());
3906 
3907     if (Imm == -1)
3908       return false;
3909   }
3910 
3911   SDValue InChain = N->getOperand(0);
3912   if (!WriteIs128Bit) {
3913     CurDAG->SelectNodeTo(N, AArch64::MSR, MVT::Other,
3914                          CurDAG->getTargetConstant(Imm, DL, MVT::i32),
3915                          N->getOperand(2), InChain);
3916   } else {
3917     // No endian swap. The lower half always goes into the even subreg, and the
3918     // higher half always into the odd supreg.
3919     SDNode *Pair = CurDAG->getMachineNode(
3920         TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped /* XSeqPair */,
3921         {CurDAG->getTargetConstant(AArch64::XSeqPairsClassRegClass.getID(), DL,
3922                                    MVT::i32),
3923          N->getOperand(2),
3924          CurDAG->getTargetConstant(AArch64::sube64, DL, MVT::i32),
3925          N->getOperand(3),
3926          CurDAG->getTargetConstant(AArch64::subo64, DL, MVT::i32)});
3927 
3928     CurDAG->SelectNodeTo(N, AArch64::MSRR, MVT::Other,
3929                          CurDAG->getTargetConstant(Imm, DL, MVT::i32),
3930                          SDValue(Pair, 0), InChain);
3931   }
3932 
3933   return true;
3934 }
3935 
3936 /// We've got special pseudo-instructions for these
3937 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
3938   unsigned Opcode;
3939   EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
3940 
3941   // Leave IR for LSE if subtarget supports it.
3942   if (Subtarget->hasLSE()) return false;
3943 
3944   if (MemTy == MVT::i8)
3945     Opcode = AArch64::CMP_SWAP_8;
3946   else if (MemTy == MVT::i16)
3947     Opcode = AArch64::CMP_SWAP_16;
3948   else if (MemTy == MVT::i32)
3949     Opcode = AArch64::CMP_SWAP_32;
3950   else if (MemTy == MVT::i64)
3951     Opcode = AArch64::CMP_SWAP_64;
3952   else
3953     llvm_unreachable("Unknown AtomicCmpSwap type");
3954 
3955   MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
3956   SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
3957                    N->getOperand(0)};
3958   SDNode *CmpSwap = CurDAG->getMachineNode(
3959       Opcode, SDLoc(N),
3960       CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
3961 
3962   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
3963   CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
3964 
3965   ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
3966   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
3967   CurDAG->RemoveDeadNode(N);
3968 
3969   return true;
3970 }
3971 
3972 bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm,
3973                                              SDValue &Shift) {
3974   if (!isa<ConstantSDNode>(N))
3975     return false;
3976 
3977   SDLoc DL(N);
3978   uint64_t Val = cast<ConstantSDNode>(N)
3979                      ->getAPIntValue()
3980                      .trunc(VT.getFixedSizeInBits())
3981                      .getZExtValue();
3982 
3983   switch (VT.SimpleTy) {
3984   case MVT::i8:
3985     // All immediates are supported.
3986     Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
3987     Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32);
3988     return true;
3989   case MVT::i16:
3990   case MVT::i32:
3991   case MVT::i64:
3992     // Support 8bit unsigned immediates.
3993     if (Val <= 255) {
3994       Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
3995       Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32);
3996       return true;
3997     }
3998     // Support 16bit unsigned immediates that are a multiple of 256.
3999     if (Val <= 65280 && Val % 256 == 0) {
4000       Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
4001       Imm = CurDAG->getTargetConstant(Val >> 8, DL, MVT::i32);
4002       return true;
4003     }
4004     break;
4005   default:
4006     break;
4007   }
4008 
4009   return false;
4010 }
4011 
4012 bool AArch64DAGToDAGISel::SelectSVECpyDupImm(SDValue N, MVT VT, SDValue &Imm,
4013                                              SDValue &Shift) {
4014   if (!isa<ConstantSDNode>(N))
4015     return false;
4016 
4017   SDLoc DL(N);
4018   int64_t Val = cast<ConstantSDNode>(N)
4019                     ->getAPIntValue()
4020                     .trunc(VT.getFixedSizeInBits())
4021                     .getSExtValue();
4022 
4023   switch (VT.SimpleTy) {
4024   case MVT::i8:
4025     // All immediates are supported.
4026     Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4027     Imm = CurDAG->getTargetConstant(Val & 0xFF, DL, MVT::i32);
4028     return true;
4029   case MVT::i16:
4030   case MVT::i32:
4031   case MVT::i64:
4032     // Support 8bit signed immediates.
4033     if (Val >= -128 && Val <= 127) {
4034       Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4035       Imm = CurDAG->getTargetConstant(Val & 0xFF, DL, MVT::i32);
4036       return true;
4037     }
4038     // Support 16bit signed immediates that are a multiple of 256.
4039     if (Val >= -32768 && Val <= 32512 && Val % 256 == 0) {
4040       Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
4041       Imm = CurDAG->getTargetConstant((Val >> 8) & 0xFF, DL, MVT::i32);
4042       return true;
4043     }
4044     break;
4045   default:
4046     break;
4047   }
4048 
4049   return false;
4050 }
4051 
4052 bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N, SDValue &Imm) {
4053   if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4054     int64_t ImmVal = CNode->getSExtValue();
4055     SDLoc DL(N);
4056     if (ImmVal >= -128 && ImmVal < 128) {
4057       Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
4058       return true;
4059     }
4060   }
4061   return false;
4062 }
4063 
4064 bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm) {
4065   if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4066     uint64_t ImmVal = CNode->getZExtValue();
4067 
4068     switch (VT.SimpleTy) {
4069     case MVT::i8:
4070       ImmVal &= 0xFF;
4071       break;
4072     case MVT::i16:
4073       ImmVal &= 0xFFFF;
4074       break;
4075     case MVT::i32:
4076       ImmVal &= 0xFFFFFFFF;
4077       break;
4078     case MVT::i64:
4079       break;
4080     default:
4081       llvm_unreachable("Unexpected type");
4082     }
4083 
4084     if (ImmVal < 256) {
4085       Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32);
4086       return true;
4087     }
4088   }
4089   return false;
4090 }
4091 
4092 bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm,
4093                                               bool Invert) {
4094   if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4095     uint64_t ImmVal = CNode->getZExtValue();
4096     SDLoc DL(N);
4097 
4098     if (Invert)
4099       ImmVal = ~ImmVal;
4100 
4101     // Shift mask depending on type size.
4102     switch (VT.SimpleTy) {
4103     case MVT::i8:
4104       ImmVal &= 0xFF;
4105       ImmVal |= ImmVal << 8;
4106       ImmVal |= ImmVal << 16;
4107       ImmVal |= ImmVal << 32;
4108       break;
4109     case MVT::i16:
4110       ImmVal &= 0xFFFF;
4111       ImmVal |= ImmVal << 16;
4112       ImmVal |= ImmVal << 32;
4113       break;
4114     case MVT::i32:
4115       ImmVal &= 0xFFFFFFFF;
4116       ImmVal |= ImmVal << 32;
4117       break;
4118     case MVT::i64:
4119       break;
4120     default:
4121       llvm_unreachable("Unexpected type");
4122     }
4123 
4124     uint64_t encoding;
4125     if (AArch64_AM::processLogicalImmediate(ImmVal, 64, encoding)) {
4126       Imm = CurDAG->getTargetConstant(encoding, DL, MVT::i64);
4127       return true;
4128     }
4129   }
4130   return false;
4131 }
4132 
4133 // SVE shift intrinsics allow shift amounts larger than the element's bitwidth.
4134 // Rather than attempt to normalise everything we can sometimes saturate the
4135 // shift amount during selection. This function also allows for consistent
4136 // isel patterns by ensuring the resulting "Imm" node is of the i32 type
4137 // required by the instructions.
4138 bool AArch64DAGToDAGISel::SelectSVEShiftImm(SDValue N, uint64_t Low,
4139                                             uint64_t High, bool AllowSaturation,
4140                                             SDValue &Imm) {
4141   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
4142     uint64_t ImmVal = CN->getZExtValue();
4143 
4144     // Reject shift amounts that are too small.
4145     if (ImmVal < Low)
4146       return false;
4147 
4148     // Reject or saturate shift amounts that are too big.
4149     if (ImmVal > High) {
4150       if (!AllowSaturation)
4151         return false;
4152       ImmVal = High;
4153     }
4154 
4155     Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32);
4156     return true;
4157   }
4158 
4159   return false;
4160 }
4161 
4162 bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) {
4163   // tagp(FrameIndex, IRGstack, tag_offset):
4164   // since the offset between FrameIndex and IRGstack is a compile-time
4165   // constant, this can be lowered to a single ADDG instruction.
4166   if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) {
4167     return false;
4168   }
4169 
4170   SDValue IRG_SP = N->getOperand(2);
4171   if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4172       IRG_SP->getConstantOperandVal(1) != Intrinsic::aarch64_irg_sp) {
4173     return false;
4174   }
4175 
4176   const TargetLowering *TLI = getTargetLowering();
4177   SDLoc DL(N);
4178   int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex();
4179   SDValue FiOp = CurDAG->getTargetFrameIndex(
4180       FI, TLI->getPointerTy(CurDAG->getDataLayout()));
4181   int TagOffset = N->getConstantOperandVal(3);
4182 
4183   SDNode *Out = CurDAG->getMachineNode(
4184       AArch64::TAGPstack, DL, MVT::i64,
4185       {FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2),
4186        CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
4187   ReplaceNode(N, Out);
4188   return true;
4189 }
4190 
4191 void AArch64DAGToDAGISel::SelectTagP(SDNode *N) {
4192   assert(isa<ConstantSDNode>(N->getOperand(3)) &&
4193          "llvm.aarch64.tagp third argument must be an immediate");
4194   if (trySelectStackSlotTagP(N))
4195     return;
4196   // FIXME: above applies in any case when offset between Op1 and Op2 is a
4197   // compile-time constant, not just for stack allocations.
4198 
4199   // General case for unrelated pointers in Op1 and Op2.
4200   SDLoc DL(N);
4201   int TagOffset = N->getConstantOperandVal(3);
4202   SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64,
4203                                       {N->getOperand(1), N->getOperand(2)});
4204   SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64,
4205                                       {SDValue(N1, 0), N->getOperand(2)});
4206   SDNode *N3 = CurDAG->getMachineNode(
4207       AArch64::ADDG, DL, MVT::i64,
4208       {SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64),
4209        CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
4210   ReplaceNode(N, N3);
4211 }
4212 
4213 bool AArch64DAGToDAGISel::trySelectCastFixedLengthToScalableVector(SDNode *N) {
4214   assert(N->getOpcode() == ISD::INSERT_SUBVECTOR && "Invalid Node!");
4215 
4216   // Bail when not a "cast" like insert_subvector.
4217   if (N->getConstantOperandVal(2) != 0)
4218     return false;
4219   if (!N->getOperand(0).isUndef())
4220     return false;
4221 
4222   // Bail when normal isel should do the job.
4223   EVT VT = N->getValueType(0);
4224   EVT InVT = N->getOperand(1).getValueType();
4225   if (VT.isFixedLengthVector() || InVT.isScalableVector())
4226     return false;
4227   if (InVT.getSizeInBits() <= 128)
4228     return false;
4229 
4230   // NOTE: We can only get here when doing fixed length SVE code generation.
4231   // We do manual selection because the types involved are not linked to real
4232   // registers (despite being legal) and must be coerced into SVE registers.
4233 
4234   assert(VT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock &&
4235          "Expected to insert into a packed scalable vector!");
4236 
4237   SDLoc DL(N);
4238   auto RC = CurDAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64);
4239   ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT,
4240                                         N->getOperand(1), RC));
4241   return true;
4242 }
4243 
4244 bool AArch64DAGToDAGISel::trySelectCastScalableToFixedLengthVector(SDNode *N) {
4245   assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && "Invalid Node!");
4246 
4247   // Bail when not a "cast" like extract_subvector.
4248   if (N->getConstantOperandVal(1) != 0)
4249     return false;
4250 
4251   // Bail when normal isel can do the job.
4252   EVT VT = N->getValueType(0);
4253   EVT InVT = N->getOperand(0).getValueType();
4254   if (VT.isScalableVector() || InVT.isFixedLengthVector())
4255     return false;
4256   if (VT.getSizeInBits() <= 128)
4257     return false;
4258 
4259   // NOTE: We can only get here when doing fixed length SVE code generation.
4260   // We do manual selection because the types involved are not linked to real
4261   // registers (despite being legal) and must be coerced into SVE registers.
4262 
4263   assert(InVT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock &&
4264          "Expected to extract from a packed scalable vector!");
4265 
4266   SDLoc DL(N);
4267   auto RC = CurDAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64);
4268   ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT,
4269                                         N->getOperand(0), RC));
4270   return true;
4271 }
4272 
4273 bool AArch64DAGToDAGISel::trySelectXAR(SDNode *N) {
4274   assert(N->getOpcode() == ISD::OR && "Expected OR instruction");
4275 
4276   SDValue N0 = N->getOperand(0);
4277   SDValue N1 = N->getOperand(1);
4278   EVT VT = N->getValueType(0);
4279 
4280   // Essentially: rotr (xor(x, y), imm) -> xar (x, y, imm)
4281   // Rotate by a constant is a funnel shift in IR which is exanded to
4282   // an OR with shifted operands.
4283   // We do the following transform:
4284   //   OR N0, N1 -> xar (x, y, imm)
4285   // Where:
4286   //   N1 = SRL_PRED true, V, splat(imm)  --> rotr amount
4287   //   N0 = SHL_PRED true, V, splat(bits-imm)
4288   //   V = (xor x, y)
4289   if (VT.isScalableVector() && Subtarget->hasSVE2orSME()) {
4290     if (N0.getOpcode() != AArch64ISD::SHL_PRED ||
4291         N1.getOpcode() != AArch64ISD::SRL_PRED)
4292       std::swap(N0, N1);
4293     if (N0.getOpcode() != AArch64ISD::SHL_PRED ||
4294         N1.getOpcode() != AArch64ISD::SRL_PRED)
4295       return false;
4296 
4297     auto *TLI = static_cast<const AArch64TargetLowering *>(getTargetLowering());
4298     if (!TLI->isAllActivePredicate(*CurDAG, N0.getOperand(0)) ||
4299         !TLI->isAllActivePredicate(*CurDAG, N1.getOperand(0)))
4300       return false;
4301 
4302     SDValue XOR = N0.getOperand(1);
4303     if (XOR.getOpcode() != ISD::XOR || XOR != N1.getOperand(1))
4304       return false;
4305 
4306     APInt ShlAmt, ShrAmt;
4307     if (!ISD::isConstantSplatVector(N0.getOperand(2).getNode(), ShlAmt) ||
4308         !ISD::isConstantSplatVector(N1.getOperand(2).getNode(), ShrAmt))
4309       return false;
4310 
4311     if (ShlAmt + ShrAmt != VT.getScalarSizeInBits())
4312       return false;
4313 
4314     SDLoc DL(N);
4315     SDValue Imm =
4316         CurDAG->getTargetConstant(ShrAmt.getZExtValue(), DL, MVT::i32);
4317 
4318     SDValue Ops[] = {XOR.getOperand(0), XOR.getOperand(1), Imm};
4319     if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::Int>(
4320             VT, {AArch64::XAR_ZZZI_B, AArch64::XAR_ZZZI_H, AArch64::XAR_ZZZI_S,
4321                  AArch64::XAR_ZZZI_D})) {
4322       CurDAG->SelectNodeTo(N, Opc, VT, Ops);
4323       return true;
4324     }
4325     return false;
4326   }
4327 
4328   if (!Subtarget->hasSHA3())
4329     return false;
4330 
4331   if (N0->getOpcode() != AArch64ISD::VSHL ||
4332       N1->getOpcode() != AArch64ISD::VLSHR)
4333     return false;
4334 
4335   if (N0->getOperand(0) != N1->getOperand(0) ||
4336       N1->getOperand(0)->getOpcode() != ISD::XOR)
4337     return false;
4338 
4339   SDValue XOR = N0.getOperand(0);
4340   SDValue R1 = XOR.getOperand(0);
4341   SDValue R2 = XOR.getOperand(1);
4342 
4343   unsigned HsAmt = N0.getConstantOperandVal(1);
4344   unsigned ShAmt = N1.getConstantOperandVal(1);
4345 
4346   SDLoc DL = SDLoc(N0.getOperand(1));
4347   SDValue Imm = CurDAG->getTargetConstant(
4348       ShAmt, DL, N0.getOperand(1).getValueType(), false);
4349 
4350   if (ShAmt + HsAmt != 64)
4351     return false;
4352 
4353   SDValue Ops[] = {R1, R2, Imm};
4354   CurDAG->SelectNodeTo(N, AArch64::XAR, N0.getValueType(), Ops);
4355 
4356   return true;
4357 }
4358 
4359 void AArch64DAGToDAGISel::Select(SDNode *Node) {
4360   // If we have a custom node, we already have selected!
4361   if (Node->isMachineOpcode()) {
4362     LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
4363     Node->setNodeId(-1);
4364     return;
4365   }
4366 
4367   // Few custom selection stuff.
4368   EVT VT = Node->getValueType(0);
4369 
4370   switch (Node->getOpcode()) {
4371   default:
4372     break;
4373 
4374   case ISD::ATOMIC_CMP_SWAP:
4375     if (SelectCMP_SWAP(Node))
4376       return;
4377     break;
4378 
4379   case ISD::READ_REGISTER:
4380   case AArch64ISD::MRRS:
4381     if (tryReadRegister(Node))
4382       return;
4383     break;
4384 
4385   case ISD::WRITE_REGISTER:
4386   case AArch64ISD::MSRR:
4387     if (tryWriteRegister(Node))
4388       return;
4389     break;
4390 
4391   case ISD::LOAD: {
4392     // Try to select as an indexed load. Fall through to normal processing
4393     // if we can't.
4394     if (tryIndexedLoad(Node))
4395       return;
4396     break;
4397   }
4398 
4399   case ISD::SRL:
4400   case ISD::AND:
4401   case ISD::SRA:
4402   case ISD::SIGN_EXTEND_INREG:
4403     if (tryBitfieldExtractOp(Node))
4404       return;
4405     if (tryBitfieldInsertInZeroOp(Node))
4406       return;
4407     [[fallthrough]];
4408   case ISD::ROTR:
4409   case ISD::SHL:
4410     if (tryShiftAmountMod(Node))
4411       return;
4412     break;
4413 
4414   case ISD::SIGN_EXTEND:
4415     if (tryBitfieldExtractOpFromSExt(Node))
4416       return;
4417     break;
4418 
4419   case ISD::OR:
4420     if (tryBitfieldInsertOp(Node))
4421       return;
4422     if (trySelectXAR(Node))
4423       return;
4424     break;
4425 
4426   case ISD::EXTRACT_SUBVECTOR: {
4427     if (trySelectCastScalableToFixedLengthVector(Node))
4428       return;
4429     break;
4430   }
4431 
4432   case ISD::INSERT_SUBVECTOR: {
4433     if (trySelectCastFixedLengthToScalableVector(Node))
4434       return;
4435     break;
4436   }
4437 
4438   case ISD::Constant: {
4439     // Materialize zero constants as copies from WZR/XZR.  This allows
4440     // the coalescer to propagate these into other instructions.
4441     ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
4442     if (ConstNode->isZero()) {
4443       if (VT == MVT::i32) {
4444         SDValue New = CurDAG->getCopyFromReg(
4445             CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
4446         ReplaceNode(Node, New.getNode());
4447         return;
4448       } else if (VT == MVT::i64) {
4449         SDValue New = CurDAG->getCopyFromReg(
4450             CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
4451         ReplaceNode(Node, New.getNode());
4452         return;
4453       }
4454     }
4455     break;
4456   }
4457 
4458   case ISD::FrameIndex: {
4459     // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
4460     int FI = cast<FrameIndexSDNode>(Node)->getIndex();
4461     unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
4462     const TargetLowering *TLI = getTargetLowering();
4463     SDValue TFI = CurDAG->getTargetFrameIndex(
4464         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
4465     SDLoc DL(Node);
4466     SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
4467                       CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
4468     CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
4469     return;
4470   }
4471   case ISD::INTRINSIC_W_CHAIN: {
4472     unsigned IntNo = Node->getConstantOperandVal(1);
4473     switch (IntNo) {
4474     default:
4475       break;
4476     case Intrinsic::aarch64_ldaxp:
4477     case Intrinsic::aarch64_ldxp: {
4478       unsigned Op =
4479           IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
4480       SDValue MemAddr = Node->getOperand(2);
4481       SDLoc DL(Node);
4482       SDValue Chain = Node->getOperand(0);
4483 
4484       SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
4485                                           MVT::Other, MemAddr, Chain);
4486 
4487       // Transfer memoperands.
4488       MachineMemOperand *MemOp =
4489           cast<MemIntrinsicSDNode>(Node)->getMemOperand();
4490       CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
4491       ReplaceNode(Node, Ld);
4492       return;
4493     }
4494     case Intrinsic::aarch64_stlxp:
4495     case Intrinsic::aarch64_stxp: {
4496       unsigned Op =
4497           IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
4498       SDLoc DL(Node);
4499       SDValue Chain = Node->getOperand(0);
4500       SDValue ValLo = Node->getOperand(2);
4501       SDValue ValHi = Node->getOperand(3);
4502       SDValue MemAddr = Node->getOperand(4);
4503 
4504       // Place arguments in the right order.
4505       SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
4506 
4507       SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
4508       // Transfer memoperands.
4509       MachineMemOperand *MemOp =
4510           cast<MemIntrinsicSDNode>(Node)->getMemOperand();
4511       CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
4512 
4513       ReplaceNode(Node, St);
4514       return;
4515     }
4516     case Intrinsic::aarch64_neon_ld1x2:
4517       if (VT == MVT::v8i8) {
4518         SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
4519         return;
4520       } else if (VT == MVT::v16i8) {
4521         SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
4522         return;
4523       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4524         SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
4525         return;
4526       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4527         SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
4528         return;
4529       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4530         SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
4531         return;
4532       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4533         SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
4534         return;
4535       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4536         SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
4537         return;
4538       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4539         SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
4540         return;
4541       }
4542       break;
4543     case Intrinsic::aarch64_neon_ld1x3:
4544       if (VT == MVT::v8i8) {
4545         SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
4546         return;
4547       } else if (VT == MVT::v16i8) {
4548         SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
4549         return;
4550       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4551         SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
4552         return;
4553       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4554         SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
4555         return;
4556       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4557         SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
4558         return;
4559       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4560         SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
4561         return;
4562       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4563         SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
4564         return;
4565       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4566         SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
4567         return;
4568       }
4569       break;
4570     case Intrinsic::aarch64_neon_ld1x4:
4571       if (VT == MVT::v8i8) {
4572         SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
4573         return;
4574       } else if (VT == MVT::v16i8) {
4575         SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
4576         return;
4577       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4578         SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
4579         return;
4580       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4581         SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
4582         return;
4583       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4584         SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
4585         return;
4586       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4587         SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
4588         return;
4589       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4590         SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
4591         return;
4592       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4593         SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
4594         return;
4595       }
4596       break;
4597     case Intrinsic::aarch64_neon_ld2:
4598       if (VT == MVT::v8i8) {
4599         SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
4600         return;
4601       } else if (VT == MVT::v16i8) {
4602         SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
4603         return;
4604       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4605         SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
4606         return;
4607       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4608         SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
4609         return;
4610       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4611         SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
4612         return;
4613       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4614         SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
4615         return;
4616       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4617         SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
4618         return;
4619       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4620         SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
4621         return;
4622       }
4623       break;
4624     case Intrinsic::aarch64_neon_ld3:
4625       if (VT == MVT::v8i8) {
4626         SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
4627         return;
4628       } else if (VT == MVT::v16i8) {
4629         SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
4630         return;
4631       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4632         SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
4633         return;
4634       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4635         SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
4636         return;
4637       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4638         SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
4639         return;
4640       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4641         SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
4642         return;
4643       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4644         SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
4645         return;
4646       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4647         SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
4648         return;
4649       }
4650       break;
4651     case Intrinsic::aarch64_neon_ld4:
4652       if (VT == MVT::v8i8) {
4653         SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
4654         return;
4655       } else if (VT == MVT::v16i8) {
4656         SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
4657         return;
4658       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4659         SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
4660         return;
4661       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4662         SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
4663         return;
4664       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4665         SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
4666         return;
4667       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4668         SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
4669         return;
4670       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4671         SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
4672         return;
4673       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4674         SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
4675         return;
4676       }
4677       break;
4678     case Intrinsic::aarch64_neon_ld2r:
4679       if (VT == MVT::v8i8) {
4680         SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
4681         return;
4682       } else if (VT == MVT::v16i8) {
4683         SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
4684         return;
4685       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4686         SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
4687         return;
4688       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4689         SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
4690         return;
4691       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4692         SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
4693         return;
4694       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4695         SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
4696         return;
4697       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4698         SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
4699         return;
4700       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4701         SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
4702         return;
4703       }
4704       break;
4705     case Intrinsic::aarch64_neon_ld3r:
4706       if (VT == MVT::v8i8) {
4707         SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
4708         return;
4709       } else if (VT == MVT::v16i8) {
4710         SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
4711         return;
4712       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4713         SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
4714         return;
4715       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4716         SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
4717         return;
4718       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4719         SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
4720         return;
4721       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4722         SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
4723         return;
4724       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4725         SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
4726         return;
4727       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4728         SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
4729         return;
4730       }
4731       break;
4732     case Intrinsic::aarch64_neon_ld4r:
4733       if (VT == MVT::v8i8) {
4734         SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
4735         return;
4736       } else if (VT == MVT::v16i8) {
4737         SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
4738         return;
4739       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4740         SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
4741         return;
4742       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4743         SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
4744         return;
4745       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4746         SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
4747         return;
4748       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4749         SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
4750         return;
4751       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4752         SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
4753         return;
4754       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4755         SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
4756         return;
4757       }
4758       break;
4759     case Intrinsic::aarch64_neon_ld2lane:
4760       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4761         SelectLoadLane(Node, 2, AArch64::LD2i8);
4762         return;
4763       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4764                  VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
4765         SelectLoadLane(Node, 2, AArch64::LD2i16);
4766         return;
4767       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4768                  VT == MVT::v2f32) {
4769         SelectLoadLane(Node, 2, AArch64::LD2i32);
4770         return;
4771       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4772                  VT == MVT::v1f64) {
4773         SelectLoadLane(Node, 2, AArch64::LD2i64);
4774         return;
4775       }
4776       break;
4777     case Intrinsic::aarch64_neon_ld3lane:
4778       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4779         SelectLoadLane(Node, 3, AArch64::LD3i8);
4780         return;
4781       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4782                  VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
4783         SelectLoadLane(Node, 3, AArch64::LD3i16);
4784         return;
4785       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4786                  VT == MVT::v2f32) {
4787         SelectLoadLane(Node, 3, AArch64::LD3i32);
4788         return;
4789       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4790                  VT == MVT::v1f64) {
4791         SelectLoadLane(Node, 3, AArch64::LD3i64);
4792         return;
4793       }
4794       break;
4795     case Intrinsic::aarch64_neon_ld4lane:
4796       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4797         SelectLoadLane(Node, 4, AArch64::LD4i8);
4798         return;
4799       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4800                  VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
4801         SelectLoadLane(Node, 4, AArch64::LD4i16);
4802         return;
4803       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4804                  VT == MVT::v2f32) {
4805         SelectLoadLane(Node, 4, AArch64::LD4i32);
4806         return;
4807       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4808                  VT == MVT::v1f64) {
4809         SelectLoadLane(Node, 4, AArch64::LD4i64);
4810         return;
4811       }
4812       break;
4813     case Intrinsic::aarch64_ld64b:
4814       SelectLoad(Node, 8, AArch64::LD64B, AArch64::x8sub_0);
4815       return;
4816     case Intrinsic::aarch64_sve_ld2q_sret: {
4817       SelectPredicatedLoad(Node, 2, 4, AArch64::LD2Q_IMM, AArch64::LD2Q, true);
4818       return;
4819     }
4820     case Intrinsic::aarch64_sve_ld3q_sret: {
4821       SelectPredicatedLoad(Node, 3, 4, AArch64::LD3Q_IMM, AArch64::LD3Q, true);
4822       return;
4823     }
4824     case Intrinsic::aarch64_sve_ld4q_sret: {
4825       SelectPredicatedLoad(Node, 4, 4, AArch64::LD4Q_IMM, AArch64::LD4Q, true);
4826       return;
4827     }
4828     case Intrinsic::aarch64_sve_ld2_sret: {
4829       if (VT == MVT::nxv16i8) {
4830         SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B,
4831                              true);
4832         return;
4833       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
4834                  VT == MVT::nxv8bf16) {
4835         SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H,
4836                              true);
4837         return;
4838       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
4839         SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W,
4840                              true);
4841         return;
4842       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
4843         SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D,
4844                              true);
4845         return;
4846       }
4847       break;
4848     }
4849     case Intrinsic::aarch64_sve_ld1_pn_x2: {
4850       if (VT == MVT::nxv16i8) {
4851         if (Subtarget->hasSME2())
4852           SelectContiguousMultiVectorLoad(
4853               Node, 2, 0, AArch64::LD1B_2Z_IMM_PSEUDO, AArch64::LD1B_2Z_PSEUDO);
4854         else if (Subtarget->hasSVE2p1())
4855           SelectContiguousMultiVectorLoad(Node, 2, 0, AArch64::LD1B_2Z_IMM,
4856                                           AArch64::LD1B_2Z);
4857         else
4858           break;
4859         return;
4860       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
4861                  VT == MVT::nxv8bf16) {
4862         if (Subtarget->hasSME2())
4863           SelectContiguousMultiVectorLoad(
4864               Node, 2, 1, AArch64::LD1H_2Z_IMM_PSEUDO, AArch64::LD1H_2Z_PSEUDO);
4865         else if (Subtarget->hasSVE2p1())
4866           SelectContiguousMultiVectorLoad(Node, 2, 1, AArch64::LD1H_2Z_IMM,
4867                                           AArch64::LD1H_2Z);
4868         else
4869           break;
4870         return;
4871       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
4872         if (Subtarget->hasSME2())
4873           SelectContiguousMultiVectorLoad(
4874               Node, 2, 2, AArch64::LD1W_2Z_IMM_PSEUDO, AArch64::LD1W_2Z_PSEUDO);
4875         else if (Subtarget->hasSVE2p1())
4876           SelectContiguousMultiVectorLoad(Node, 2, 2, AArch64::LD1W_2Z_IMM,
4877                                           AArch64::LD1W_2Z);
4878         else
4879           break;
4880         return;
4881       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
4882         if (Subtarget->hasSME2())
4883           SelectContiguousMultiVectorLoad(
4884               Node, 2, 3, AArch64::LD1D_2Z_IMM_PSEUDO, AArch64::LD1D_2Z_PSEUDO);
4885         else if (Subtarget->hasSVE2p1())
4886           SelectContiguousMultiVectorLoad(Node, 2, 3, AArch64::LD1D_2Z_IMM,
4887                                           AArch64::LD1D_2Z);
4888         else
4889           break;
4890         return;
4891       }
4892       break;
4893     }
4894     case Intrinsic::aarch64_sve_ld1_pn_x4: {
4895       if (VT == MVT::nxv16i8) {
4896         if (Subtarget->hasSME2())
4897           SelectContiguousMultiVectorLoad(
4898               Node, 4, 0, AArch64::LD1B_4Z_IMM_PSEUDO, AArch64::LD1B_4Z_PSEUDO);
4899         else if (Subtarget->hasSVE2p1())
4900           SelectContiguousMultiVectorLoad(Node, 4, 0, AArch64::LD1B_4Z_IMM,
4901                                           AArch64::LD1B_4Z);
4902         else
4903           break;
4904         return;
4905       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
4906                  VT == MVT::nxv8bf16) {
4907         if (Subtarget->hasSME2())
4908           SelectContiguousMultiVectorLoad(
4909               Node, 4, 1, AArch64::LD1H_4Z_IMM_PSEUDO, AArch64::LD1H_4Z_PSEUDO);
4910         else if (Subtarget->hasSVE2p1())
4911           SelectContiguousMultiVectorLoad(Node, 4, 1, AArch64::LD1H_4Z_IMM,
4912                                           AArch64::LD1H_4Z);
4913         else
4914           break;
4915         return;
4916       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
4917         if (Subtarget->hasSME2())
4918           SelectContiguousMultiVectorLoad(
4919               Node, 4, 2, AArch64::LD1W_4Z_IMM_PSEUDO, AArch64::LD1W_4Z_PSEUDO);
4920         else if (Subtarget->hasSVE2p1())
4921           SelectContiguousMultiVectorLoad(Node, 4, 2, AArch64::LD1W_4Z_IMM,
4922                                           AArch64::LD1W_4Z);
4923         else
4924           break;
4925         return;
4926       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
4927         if (Subtarget->hasSME2())
4928           SelectContiguousMultiVectorLoad(
4929               Node, 4, 3, AArch64::LD1D_4Z_IMM_PSEUDO, AArch64::LD1D_4Z_PSEUDO);
4930         else if (Subtarget->hasSVE2p1())
4931           SelectContiguousMultiVectorLoad(Node, 4, 3, AArch64::LD1D_4Z_IMM,
4932                                           AArch64::LD1D_4Z);
4933         else
4934           break;
4935         return;
4936       }
4937       break;
4938     }
4939     case Intrinsic::aarch64_sve_ldnt1_pn_x2: {
4940       if (VT == MVT::nxv16i8) {
4941         if (Subtarget->hasSME2())
4942           SelectContiguousMultiVectorLoad(Node, 2, 0,
4943                                           AArch64::LDNT1B_2Z_IMM_PSEUDO,
4944                                           AArch64::LDNT1B_2Z_PSEUDO);
4945         else if (Subtarget->hasSVE2p1())
4946           SelectContiguousMultiVectorLoad(Node, 2, 0, AArch64::LDNT1B_2Z_IMM,
4947                                           AArch64::LDNT1B_2Z);
4948         else
4949           break;
4950         return;
4951       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
4952                  VT == MVT::nxv8bf16) {
4953         if (Subtarget->hasSME2())
4954           SelectContiguousMultiVectorLoad(Node, 2, 1,
4955                                           AArch64::LDNT1H_2Z_IMM_PSEUDO,
4956                                           AArch64::LDNT1H_2Z_PSEUDO);
4957         else if (Subtarget->hasSVE2p1())
4958           SelectContiguousMultiVectorLoad(Node, 2, 1, AArch64::LDNT1H_2Z_IMM,
4959                                           AArch64::LDNT1H_2Z);
4960         else
4961           break;
4962         return;
4963       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
4964         if (Subtarget->hasSME2())
4965           SelectContiguousMultiVectorLoad(Node, 2, 2,
4966                                           AArch64::LDNT1W_2Z_IMM_PSEUDO,
4967                                           AArch64::LDNT1W_2Z_PSEUDO);
4968         else if (Subtarget->hasSVE2p1())
4969           SelectContiguousMultiVectorLoad(Node, 2, 2, AArch64::LDNT1W_2Z_IMM,
4970                                           AArch64::LDNT1W_2Z);
4971         else
4972           break;
4973         return;
4974       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
4975         if (Subtarget->hasSME2())
4976           SelectContiguousMultiVectorLoad(Node, 2, 3,
4977                                           AArch64::LDNT1D_2Z_IMM_PSEUDO,
4978                                           AArch64::LDNT1D_2Z_PSEUDO);
4979         else if (Subtarget->hasSVE2p1())
4980           SelectContiguousMultiVectorLoad(Node, 2, 3, AArch64::LDNT1D_2Z_IMM,
4981                                           AArch64::LDNT1D_2Z);
4982         else
4983           break;
4984         return;
4985       }
4986       break;
4987     }
4988     case Intrinsic::aarch64_sve_ldnt1_pn_x4: {
4989       if (VT == MVT::nxv16i8) {
4990         if (Subtarget->hasSME2())
4991           SelectContiguousMultiVectorLoad(Node, 4, 0,
4992                                           AArch64::LDNT1B_4Z_IMM_PSEUDO,
4993                                           AArch64::LDNT1B_4Z_PSEUDO);
4994         else if (Subtarget->hasSVE2p1())
4995           SelectContiguousMultiVectorLoad(Node, 4, 0, AArch64::LDNT1B_4Z_IMM,
4996                                           AArch64::LDNT1B_4Z);
4997         else
4998           break;
4999         return;
5000       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5001                  VT == MVT::nxv8bf16) {
5002         if (Subtarget->hasSME2())
5003           SelectContiguousMultiVectorLoad(Node, 4, 1,
5004                                           AArch64::LDNT1H_4Z_IMM_PSEUDO,
5005                                           AArch64::LDNT1H_4Z_PSEUDO);
5006         else if (Subtarget->hasSVE2p1())
5007           SelectContiguousMultiVectorLoad(Node, 4, 1, AArch64::LDNT1H_4Z_IMM,
5008                                           AArch64::LDNT1H_4Z);
5009         else
5010           break;
5011         return;
5012       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5013         if (Subtarget->hasSME2())
5014           SelectContiguousMultiVectorLoad(Node, 4, 2,
5015                                           AArch64::LDNT1W_4Z_IMM_PSEUDO,
5016                                           AArch64::LDNT1W_4Z_PSEUDO);
5017         else if (Subtarget->hasSVE2p1())
5018           SelectContiguousMultiVectorLoad(Node, 4, 2, AArch64::LDNT1W_4Z_IMM,
5019                                           AArch64::LDNT1W_4Z);
5020         else
5021           break;
5022         return;
5023       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5024         if (Subtarget->hasSME2())
5025           SelectContiguousMultiVectorLoad(Node, 4, 3,
5026                                           AArch64::LDNT1D_4Z_IMM_PSEUDO,
5027                                           AArch64::LDNT1D_4Z_PSEUDO);
5028         else if (Subtarget->hasSVE2p1())
5029           SelectContiguousMultiVectorLoad(Node, 4, 3, AArch64::LDNT1D_4Z_IMM,
5030                                           AArch64::LDNT1D_4Z);
5031         else
5032           break;
5033         return;
5034       }
5035       break;
5036     }
5037     case Intrinsic::aarch64_sve_ld3_sret: {
5038       if (VT == MVT::nxv16i8) {
5039         SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B,
5040                              true);
5041         return;
5042       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5043                  VT == MVT::nxv8bf16) {
5044         SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H,
5045                              true);
5046         return;
5047       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5048         SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W,
5049                              true);
5050         return;
5051       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5052         SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D,
5053                              true);
5054         return;
5055       }
5056       break;
5057     }
5058     case Intrinsic::aarch64_sve_ld4_sret: {
5059       if (VT == MVT::nxv16i8) {
5060         SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B,
5061                              true);
5062         return;
5063       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5064                  VT == MVT::nxv8bf16) {
5065         SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H,
5066                              true);
5067         return;
5068       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5069         SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W,
5070                              true);
5071         return;
5072       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5073         SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D,
5074                              true);
5075         return;
5076       }
5077       break;
5078     }
5079     case Intrinsic::aarch64_sme_read_hor_vg2: {
5080       if (VT == MVT::nxv16i8) {
5081         SelectMultiVectorMove<14, 2>(Node, 2, AArch64::ZAB0,
5082                                      AArch64::MOVA_2ZMXI_H_B);
5083         return;
5084       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5085                  VT == MVT::nxv8bf16) {
5086         SelectMultiVectorMove<6, 2>(Node, 2, AArch64::ZAH0,
5087                                     AArch64::MOVA_2ZMXI_H_H);
5088         return;
5089       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5090         SelectMultiVectorMove<2, 2>(Node, 2, AArch64::ZAS0,
5091                                     AArch64::MOVA_2ZMXI_H_S);
5092         return;
5093       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5094         SelectMultiVectorMove<0, 2>(Node, 2, AArch64::ZAD0,
5095                                     AArch64::MOVA_2ZMXI_H_D);
5096         return;
5097       }
5098       break;
5099     }
5100     case Intrinsic::aarch64_sme_read_ver_vg2: {
5101       if (VT == MVT::nxv16i8) {
5102         SelectMultiVectorMove<14, 2>(Node, 2, AArch64::ZAB0,
5103                                      AArch64::MOVA_2ZMXI_V_B);
5104         return;
5105       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5106                  VT == MVT::nxv8bf16) {
5107         SelectMultiVectorMove<6, 2>(Node, 2, AArch64::ZAH0,
5108                                     AArch64::MOVA_2ZMXI_V_H);
5109         return;
5110       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5111         SelectMultiVectorMove<2, 2>(Node, 2, AArch64::ZAS0,
5112                                     AArch64::MOVA_2ZMXI_V_S);
5113         return;
5114       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5115         SelectMultiVectorMove<0, 2>(Node, 2, AArch64::ZAD0,
5116                                     AArch64::MOVA_2ZMXI_V_D);
5117         return;
5118       }
5119       break;
5120     }
5121     case Intrinsic::aarch64_sme_read_hor_vg4: {
5122       if (VT == MVT::nxv16i8) {
5123         SelectMultiVectorMove<12, 4>(Node, 4, AArch64::ZAB0,
5124                                      AArch64::MOVA_4ZMXI_H_B);
5125         return;
5126       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5127                  VT == MVT::nxv8bf16) {
5128         SelectMultiVectorMove<4, 4>(Node, 4, AArch64::ZAH0,
5129                                     AArch64::MOVA_4ZMXI_H_H);
5130         return;
5131       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5132         SelectMultiVectorMove<0, 2>(Node, 4, AArch64::ZAS0,
5133                                     AArch64::MOVA_4ZMXI_H_S);
5134         return;
5135       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5136         SelectMultiVectorMove<0, 2>(Node, 4, AArch64::ZAD0,
5137                                     AArch64::MOVA_4ZMXI_H_D);
5138         return;
5139       }
5140       break;
5141     }
5142     case Intrinsic::aarch64_sme_read_ver_vg4: {
5143       if (VT == MVT::nxv16i8) {
5144         SelectMultiVectorMove<12, 4>(Node, 4, AArch64::ZAB0,
5145                                      AArch64::MOVA_4ZMXI_V_B);
5146         return;
5147       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5148                  VT == MVT::nxv8bf16) {
5149         SelectMultiVectorMove<4, 4>(Node, 4, AArch64::ZAH0,
5150                                     AArch64::MOVA_4ZMXI_V_H);
5151         return;
5152       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5153         SelectMultiVectorMove<0, 4>(Node, 4, AArch64::ZAS0,
5154                                     AArch64::MOVA_4ZMXI_V_S);
5155         return;
5156       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5157         SelectMultiVectorMove<0, 4>(Node, 4, AArch64::ZAD0,
5158                                     AArch64::MOVA_4ZMXI_V_D);
5159         return;
5160       }
5161       break;
5162     }
5163     case Intrinsic::aarch64_sme_read_vg1x2: {
5164       SelectMultiVectorMove<7, 1>(Node, 2, AArch64::ZA,
5165                                   AArch64::MOVA_VG2_2ZMXI);
5166       return;
5167     }
5168     case Intrinsic::aarch64_sme_read_vg1x4: {
5169       SelectMultiVectorMove<7, 1>(Node, 4, AArch64::ZA,
5170                                   AArch64::MOVA_VG4_4ZMXI);
5171       return;
5172     }
5173     case Intrinsic::swift_async_context_addr: {
5174       SDLoc DL(Node);
5175       SDValue Chain = Node->getOperand(0);
5176       SDValue CopyFP = CurDAG->getCopyFromReg(Chain, DL, AArch64::FP, MVT::i64);
5177       SDValue Res = SDValue(
5178           CurDAG->getMachineNode(AArch64::SUBXri, DL, MVT::i64, CopyFP,
5179                                  CurDAG->getTargetConstant(8, DL, MVT::i32),
5180                                  CurDAG->getTargetConstant(0, DL, MVT::i32)),
5181           0);
5182       ReplaceUses(SDValue(Node, 0), Res);
5183       ReplaceUses(SDValue(Node, 1), CopyFP.getValue(1));
5184       CurDAG->RemoveDeadNode(Node);
5185 
5186       auto &MF = CurDAG->getMachineFunction();
5187       MF.getFrameInfo().setFrameAddressIsTaken(true);
5188       MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
5189       return;
5190     }
5191     case Intrinsic::aarch64_sme_luti2_lane_zt_x4: {
5192       if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5193               Node->getValueType(0),
5194               {AArch64::LUTI2_4ZTZI_B, AArch64::LUTI2_4ZTZI_H,
5195                AArch64::LUTI2_4ZTZI_S}))
5196         // Second Immediate must be <= 3:
5197         SelectMultiVectorLuti(Node, 4, Opc, 3);
5198       return;
5199     }
5200     case Intrinsic::aarch64_sme_luti4_lane_zt_x4: {
5201       if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5202               Node->getValueType(0),
5203               {0, AArch64::LUTI4_4ZTZI_H, AArch64::LUTI4_4ZTZI_S}))
5204         // Second Immediate must be <= 1:
5205         SelectMultiVectorLuti(Node, 4, Opc, 1);
5206       return;
5207     }
5208     case Intrinsic::aarch64_sme_luti2_lane_zt_x2: {
5209       if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5210               Node->getValueType(0),
5211               {AArch64::LUTI2_2ZTZI_B, AArch64::LUTI2_2ZTZI_H,
5212                AArch64::LUTI2_2ZTZI_S}))
5213         // Second Immediate must be <= 7:
5214         SelectMultiVectorLuti(Node, 2, Opc, 7);
5215       return;
5216     }
5217     case Intrinsic::aarch64_sme_luti4_lane_zt_x2: {
5218       if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5219               Node->getValueType(0),
5220               {AArch64::LUTI4_2ZTZI_B, AArch64::LUTI4_2ZTZI_H,
5221                AArch64::LUTI4_2ZTZI_S}))
5222         // Second Immediate must be <= 3:
5223         SelectMultiVectorLuti(Node, 2, Opc, 3);
5224       return;
5225     }
5226     }
5227   } break;
5228   case ISD::INTRINSIC_WO_CHAIN: {
5229     unsigned IntNo = Node->getConstantOperandVal(0);
5230     switch (IntNo) {
5231     default:
5232       break;
5233     case Intrinsic::aarch64_tagp:
5234       SelectTagP(Node);
5235       return;
5236     case Intrinsic::aarch64_neon_tbl2:
5237       SelectTable(Node, 2,
5238                   VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
5239                   false);
5240       return;
5241     case Intrinsic::aarch64_neon_tbl3:
5242       SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
5243                                            : AArch64::TBLv16i8Three,
5244                   false);
5245       return;
5246     case Intrinsic::aarch64_neon_tbl4:
5247       SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
5248                                            : AArch64::TBLv16i8Four,
5249                   false);
5250       return;
5251     case Intrinsic::aarch64_neon_tbx2:
5252       SelectTable(Node, 2,
5253                   VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
5254                   true);
5255       return;
5256     case Intrinsic::aarch64_neon_tbx3:
5257       SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
5258                                            : AArch64::TBXv16i8Three,
5259                   true);
5260       return;
5261     case Intrinsic::aarch64_neon_tbx4:
5262       SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
5263                                            : AArch64::TBXv16i8Four,
5264                   true);
5265       return;
5266     case Intrinsic::aarch64_sve_srshl_single_x2:
5267       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5268               Node->getValueType(0),
5269               {AArch64::SRSHL_VG2_2ZZ_B, AArch64::SRSHL_VG2_2ZZ_H,
5270                AArch64::SRSHL_VG2_2ZZ_S, AArch64::SRSHL_VG2_2ZZ_D}))
5271         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5272       return;
5273     case Intrinsic::aarch64_sve_srshl_single_x4:
5274       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5275               Node->getValueType(0),
5276               {AArch64::SRSHL_VG4_4ZZ_B, AArch64::SRSHL_VG4_4ZZ_H,
5277                AArch64::SRSHL_VG4_4ZZ_S, AArch64::SRSHL_VG4_4ZZ_D}))
5278         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5279       return;
5280     case Intrinsic::aarch64_sve_urshl_single_x2:
5281       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5282               Node->getValueType(0),
5283               {AArch64::URSHL_VG2_2ZZ_B, AArch64::URSHL_VG2_2ZZ_H,
5284                AArch64::URSHL_VG2_2ZZ_S, AArch64::URSHL_VG2_2ZZ_D}))
5285         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5286       return;
5287     case Intrinsic::aarch64_sve_urshl_single_x4:
5288       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5289               Node->getValueType(0),
5290               {AArch64::URSHL_VG4_4ZZ_B, AArch64::URSHL_VG4_4ZZ_H,
5291                AArch64::URSHL_VG4_4ZZ_S, AArch64::URSHL_VG4_4ZZ_D}))
5292         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5293       return;
5294     case Intrinsic::aarch64_sve_srshl_x2:
5295       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5296               Node->getValueType(0),
5297               {AArch64::SRSHL_VG2_2Z2Z_B, AArch64::SRSHL_VG2_2Z2Z_H,
5298                AArch64::SRSHL_VG2_2Z2Z_S, AArch64::SRSHL_VG2_2Z2Z_D}))
5299         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5300       return;
5301     case Intrinsic::aarch64_sve_srshl_x4:
5302       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5303               Node->getValueType(0),
5304               {AArch64::SRSHL_VG4_4Z4Z_B, AArch64::SRSHL_VG4_4Z4Z_H,
5305                AArch64::SRSHL_VG4_4Z4Z_S, AArch64::SRSHL_VG4_4Z4Z_D}))
5306         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5307       return;
5308     case Intrinsic::aarch64_sve_urshl_x2:
5309       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5310               Node->getValueType(0),
5311               {AArch64::URSHL_VG2_2Z2Z_B, AArch64::URSHL_VG2_2Z2Z_H,
5312                AArch64::URSHL_VG2_2Z2Z_S, AArch64::URSHL_VG2_2Z2Z_D}))
5313         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5314       return;
5315     case Intrinsic::aarch64_sve_urshl_x4:
5316       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5317               Node->getValueType(0),
5318               {AArch64::URSHL_VG4_4Z4Z_B, AArch64::URSHL_VG4_4Z4Z_H,
5319                AArch64::URSHL_VG4_4Z4Z_S, AArch64::URSHL_VG4_4Z4Z_D}))
5320         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5321       return;
5322     case Intrinsic::aarch64_sve_sqdmulh_single_vgx2:
5323       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5324               Node->getValueType(0),
5325               {AArch64::SQDMULH_VG2_2ZZ_B, AArch64::SQDMULH_VG2_2ZZ_H,
5326                AArch64::SQDMULH_VG2_2ZZ_S, AArch64::SQDMULH_VG2_2ZZ_D}))
5327         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5328       return;
5329     case Intrinsic::aarch64_sve_sqdmulh_single_vgx4:
5330       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5331               Node->getValueType(0),
5332               {AArch64::SQDMULH_VG4_4ZZ_B, AArch64::SQDMULH_VG4_4ZZ_H,
5333                AArch64::SQDMULH_VG4_4ZZ_S, AArch64::SQDMULH_VG4_4ZZ_D}))
5334         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5335       return;
5336     case Intrinsic::aarch64_sve_sqdmulh_vgx2:
5337       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5338               Node->getValueType(0),
5339               {AArch64::SQDMULH_VG2_2Z2Z_B, AArch64::SQDMULH_VG2_2Z2Z_H,
5340                AArch64::SQDMULH_VG2_2Z2Z_S, AArch64::SQDMULH_VG2_2Z2Z_D}))
5341         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5342       return;
5343     case Intrinsic::aarch64_sve_sqdmulh_vgx4:
5344       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5345               Node->getValueType(0),
5346               {AArch64::SQDMULH_VG4_4Z4Z_B, AArch64::SQDMULH_VG4_4Z4Z_H,
5347                AArch64::SQDMULH_VG4_4Z4Z_S, AArch64::SQDMULH_VG4_4Z4Z_D}))
5348         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5349       return;
5350     case Intrinsic::aarch64_sve_whilege_x2:
5351       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5352               Node->getValueType(0),
5353               {AArch64::WHILEGE_2PXX_B, AArch64::WHILEGE_2PXX_H,
5354                AArch64::WHILEGE_2PXX_S, AArch64::WHILEGE_2PXX_D}))
5355         SelectWhilePair(Node, Op);
5356       return;
5357     case Intrinsic::aarch64_sve_whilegt_x2:
5358       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5359               Node->getValueType(0),
5360               {AArch64::WHILEGT_2PXX_B, AArch64::WHILEGT_2PXX_H,
5361                AArch64::WHILEGT_2PXX_S, AArch64::WHILEGT_2PXX_D}))
5362         SelectWhilePair(Node, Op);
5363       return;
5364     case Intrinsic::aarch64_sve_whilehi_x2:
5365       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5366               Node->getValueType(0),
5367               {AArch64::WHILEHI_2PXX_B, AArch64::WHILEHI_2PXX_H,
5368                AArch64::WHILEHI_2PXX_S, AArch64::WHILEHI_2PXX_D}))
5369         SelectWhilePair(Node, Op);
5370       return;
5371     case Intrinsic::aarch64_sve_whilehs_x2:
5372       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5373               Node->getValueType(0),
5374               {AArch64::WHILEHS_2PXX_B, AArch64::WHILEHS_2PXX_H,
5375                AArch64::WHILEHS_2PXX_S, AArch64::WHILEHS_2PXX_D}))
5376         SelectWhilePair(Node, Op);
5377       return;
5378     case Intrinsic::aarch64_sve_whilele_x2:
5379       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5380               Node->getValueType(0),
5381               {AArch64::WHILELE_2PXX_B, AArch64::WHILELE_2PXX_H,
5382                AArch64::WHILELE_2PXX_S, AArch64::WHILELE_2PXX_D}))
5383       SelectWhilePair(Node, Op);
5384       return;
5385     case Intrinsic::aarch64_sve_whilelo_x2:
5386       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5387               Node->getValueType(0),
5388               {AArch64::WHILELO_2PXX_B, AArch64::WHILELO_2PXX_H,
5389                AArch64::WHILELO_2PXX_S, AArch64::WHILELO_2PXX_D}))
5390       SelectWhilePair(Node, Op);
5391       return;
5392     case Intrinsic::aarch64_sve_whilels_x2:
5393       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5394               Node->getValueType(0),
5395               {AArch64::WHILELS_2PXX_B, AArch64::WHILELS_2PXX_H,
5396                AArch64::WHILELS_2PXX_S, AArch64::WHILELS_2PXX_D}))
5397         SelectWhilePair(Node, Op);
5398       return;
5399     case Intrinsic::aarch64_sve_whilelt_x2:
5400       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5401               Node->getValueType(0),
5402               {AArch64::WHILELT_2PXX_B, AArch64::WHILELT_2PXX_H,
5403                AArch64::WHILELT_2PXX_S, AArch64::WHILELT_2PXX_D}))
5404         SelectWhilePair(Node, Op);
5405       return;
5406     case Intrinsic::aarch64_sve_smax_single_x2:
5407       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5408               Node->getValueType(0),
5409               {AArch64::SMAX_VG2_2ZZ_B, AArch64::SMAX_VG2_2ZZ_H,
5410                AArch64::SMAX_VG2_2ZZ_S, AArch64::SMAX_VG2_2ZZ_D}))
5411         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5412       return;
5413     case Intrinsic::aarch64_sve_umax_single_x2:
5414       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5415               Node->getValueType(0),
5416               {AArch64::UMAX_VG2_2ZZ_B, AArch64::UMAX_VG2_2ZZ_H,
5417                AArch64::UMAX_VG2_2ZZ_S, AArch64::UMAX_VG2_2ZZ_D}))
5418         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5419       return;
5420     case Intrinsic::aarch64_sve_fmax_single_x2:
5421       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5422               Node->getValueType(0),
5423               {0, AArch64::FMAX_VG2_2ZZ_H, AArch64::FMAX_VG2_2ZZ_S,
5424                AArch64::FMAX_VG2_2ZZ_D}))
5425         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5426       return;
5427     case Intrinsic::aarch64_sve_smax_single_x4:
5428       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5429               Node->getValueType(0),
5430               {AArch64::SMAX_VG4_4ZZ_B, AArch64::SMAX_VG4_4ZZ_H,
5431                AArch64::SMAX_VG4_4ZZ_S, AArch64::SMAX_VG4_4ZZ_D}))
5432         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5433       return;
5434     case Intrinsic::aarch64_sve_umax_single_x4:
5435       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5436               Node->getValueType(0),
5437               {AArch64::UMAX_VG4_4ZZ_B, AArch64::UMAX_VG4_4ZZ_H,
5438                AArch64::UMAX_VG4_4ZZ_S, AArch64::UMAX_VG4_4ZZ_D}))
5439         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5440       return;
5441     case Intrinsic::aarch64_sve_fmax_single_x4:
5442       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5443               Node->getValueType(0),
5444               {0, AArch64::FMAX_VG4_4ZZ_H, AArch64::FMAX_VG4_4ZZ_S,
5445                AArch64::FMAX_VG4_4ZZ_D}))
5446         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5447       return;
5448     case Intrinsic::aarch64_sve_smin_single_x2:
5449       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5450               Node->getValueType(0),
5451               {AArch64::SMIN_VG2_2ZZ_B, AArch64::SMIN_VG2_2ZZ_H,
5452                AArch64::SMIN_VG2_2ZZ_S, AArch64::SMIN_VG2_2ZZ_D}))
5453         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5454       return;
5455     case Intrinsic::aarch64_sve_umin_single_x2:
5456       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5457               Node->getValueType(0),
5458               {AArch64::UMIN_VG2_2ZZ_B, AArch64::UMIN_VG2_2ZZ_H,
5459                AArch64::UMIN_VG2_2ZZ_S, AArch64::UMIN_VG2_2ZZ_D}))
5460         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5461       return;
5462     case Intrinsic::aarch64_sve_fmin_single_x2:
5463       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5464               Node->getValueType(0),
5465               {0, AArch64::FMIN_VG2_2ZZ_H, AArch64::FMIN_VG2_2ZZ_S,
5466                AArch64::FMIN_VG2_2ZZ_D}))
5467         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5468       return;
5469     case Intrinsic::aarch64_sve_smin_single_x4:
5470       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5471               Node->getValueType(0),
5472               {AArch64::SMIN_VG4_4ZZ_B, AArch64::SMIN_VG4_4ZZ_H,
5473                AArch64::SMIN_VG4_4ZZ_S, AArch64::SMIN_VG4_4ZZ_D}))
5474         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5475       return;
5476     case Intrinsic::aarch64_sve_umin_single_x4:
5477       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5478               Node->getValueType(0),
5479               {AArch64::UMIN_VG4_4ZZ_B, AArch64::UMIN_VG4_4ZZ_H,
5480                AArch64::UMIN_VG4_4ZZ_S, AArch64::UMIN_VG4_4ZZ_D}))
5481         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5482       return;
5483     case Intrinsic::aarch64_sve_fmin_single_x4:
5484       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5485               Node->getValueType(0),
5486               {0, AArch64::FMIN_VG4_4ZZ_H, AArch64::FMIN_VG4_4ZZ_S,
5487                AArch64::FMIN_VG4_4ZZ_D}))
5488         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5489       return;
5490     case Intrinsic::aarch64_sve_smax_x2:
5491       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5492               Node->getValueType(0),
5493               {AArch64::SMAX_VG2_2Z2Z_B, AArch64::SMAX_VG2_2Z2Z_H,
5494                AArch64::SMAX_VG2_2Z2Z_S, AArch64::SMAX_VG2_2Z2Z_D}))
5495         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5496       return;
5497     case Intrinsic::aarch64_sve_umax_x2:
5498       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5499               Node->getValueType(0),
5500               {AArch64::UMAX_VG2_2Z2Z_B, AArch64::UMAX_VG2_2Z2Z_H,
5501                AArch64::UMAX_VG2_2Z2Z_S, AArch64::UMAX_VG2_2Z2Z_D}))
5502         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5503       return;
5504     case Intrinsic::aarch64_sve_fmax_x2:
5505       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5506               Node->getValueType(0),
5507               {0, AArch64::FMAX_VG2_2Z2Z_H, AArch64::FMAX_VG2_2Z2Z_S,
5508                AArch64::FMAX_VG2_2Z2Z_D}))
5509         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5510       return;
5511     case Intrinsic::aarch64_sve_smax_x4:
5512       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5513               Node->getValueType(0),
5514               {AArch64::SMAX_VG4_4Z4Z_B, AArch64::SMAX_VG4_4Z4Z_H,
5515                AArch64::SMAX_VG4_4Z4Z_S, AArch64::SMAX_VG4_4Z4Z_D}))
5516         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5517       return;
5518     case Intrinsic::aarch64_sve_umax_x4:
5519       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5520               Node->getValueType(0),
5521               {AArch64::UMAX_VG4_4Z4Z_B, AArch64::UMAX_VG4_4Z4Z_H,
5522                AArch64::UMAX_VG4_4Z4Z_S, AArch64::UMAX_VG4_4Z4Z_D}))
5523         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5524       return;
5525     case Intrinsic::aarch64_sve_fmax_x4:
5526       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5527               Node->getValueType(0),
5528               {0, AArch64::FMAX_VG4_4Z4Z_H, AArch64::FMAX_VG4_4Z4Z_S,
5529                AArch64::FMAX_VG4_4Z4Z_D}))
5530         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5531       return;
5532     case Intrinsic::aarch64_sve_smin_x2:
5533       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5534               Node->getValueType(0),
5535               {AArch64::SMIN_VG2_2Z2Z_B, AArch64::SMIN_VG2_2Z2Z_H,
5536                AArch64::SMIN_VG2_2Z2Z_S, AArch64::SMIN_VG2_2Z2Z_D}))
5537         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5538       return;
5539     case Intrinsic::aarch64_sve_umin_x2:
5540       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5541               Node->getValueType(0),
5542               {AArch64::UMIN_VG2_2Z2Z_B, AArch64::UMIN_VG2_2Z2Z_H,
5543                AArch64::UMIN_VG2_2Z2Z_S, AArch64::UMIN_VG2_2Z2Z_D}))
5544         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5545       return;
5546     case Intrinsic::aarch64_sve_fmin_x2:
5547       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5548               Node->getValueType(0),
5549               {0, AArch64::FMIN_VG2_2Z2Z_H, AArch64::FMIN_VG2_2Z2Z_S,
5550                AArch64::FMIN_VG2_2Z2Z_D}))
5551         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5552       return;
5553     case Intrinsic::aarch64_sve_smin_x4:
5554       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5555               Node->getValueType(0),
5556               {AArch64::SMIN_VG4_4Z4Z_B, AArch64::SMIN_VG4_4Z4Z_H,
5557                AArch64::SMIN_VG4_4Z4Z_S, AArch64::SMIN_VG4_4Z4Z_D}))
5558         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5559       return;
5560     case Intrinsic::aarch64_sve_umin_x4:
5561       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5562               Node->getValueType(0),
5563               {AArch64::UMIN_VG4_4Z4Z_B, AArch64::UMIN_VG4_4Z4Z_H,
5564                AArch64::UMIN_VG4_4Z4Z_S, AArch64::UMIN_VG4_4Z4Z_D}))
5565         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5566       return;
5567     case Intrinsic::aarch64_sve_fmin_x4:
5568       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5569               Node->getValueType(0),
5570               {0, AArch64::FMIN_VG4_4Z4Z_H, AArch64::FMIN_VG4_4Z4Z_S,
5571                AArch64::FMIN_VG4_4Z4Z_D}))
5572         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5573       return;
5574     case Intrinsic::aarch64_sve_fmaxnm_single_x2 :
5575       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5576               Node->getValueType(0),
5577               {0, AArch64::FMAXNM_VG2_2ZZ_H, AArch64::FMAXNM_VG2_2ZZ_S,
5578                AArch64::FMAXNM_VG2_2ZZ_D}))
5579         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5580       return;
5581     case Intrinsic::aarch64_sve_fmaxnm_single_x4 :
5582       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5583               Node->getValueType(0),
5584               {0, AArch64::FMAXNM_VG4_4ZZ_H, AArch64::FMAXNM_VG4_4ZZ_S,
5585                AArch64::FMAXNM_VG4_4ZZ_D}))
5586         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5587       return;
5588     case Intrinsic::aarch64_sve_fminnm_single_x2:
5589       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5590               Node->getValueType(0),
5591               {0, AArch64::FMINNM_VG2_2ZZ_H, AArch64::FMINNM_VG2_2ZZ_S,
5592                AArch64::FMINNM_VG2_2ZZ_D}))
5593         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5594       return;
5595     case Intrinsic::aarch64_sve_fminnm_single_x4:
5596       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5597               Node->getValueType(0),
5598               {0, AArch64::FMINNM_VG4_4ZZ_H, AArch64::FMINNM_VG4_4ZZ_S,
5599                AArch64::FMINNM_VG4_4ZZ_D}))
5600         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5601       return;
5602     case Intrinsic::aarch64_sve_fmaxnm_x2:
5603       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5604               Node->getValueType(0),
5605               {0, AArch64::FMAXNM_VG2_2Z2Z_H, AArch64::FMAXNM_VG2_2Z2Z_S,
5606                AArch64::FMAXNM_VG2_2Z2Z_D}))
5607         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5608       return;
5609     case Intrinsic::aarch64_sve_fmaxnm_x4:
5610       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5611               Node->getValueType(0),
5612               {0, AArch64::FMAXNM_VG4_4Z4Z_H, AArch64::FMAXNM_VG4_4Z4Z_S,
5613                AArch64::FMAXNM_VG4_4Z4Z_D}))
5614         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5615       return;
5616     case Intrinsic::aarch64_sve_fminnm_x2:
5617       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5618               Node->getValueType(0),
5619               {0, AArch64::FMINNM_VG2_2Z2Z_H, AArch64::FMINNM_VG2_2Z2Z_S,
5620                AArch64::FMINNM_VG2_2Z2Z_D}))
5621         SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5622       return;
5623     case Intrinsic::aarch64_sve_fminnm_x4:
5624       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5625               Node->getValueType(0),
5626               {0, AArch64::FMINNM_VG4_4Z4Z_H, AArch64::FMINNM_VG4_4Z4Z_S,
5627                AArch64::FMINNM_VG4_4Z4Z_D}))
5628         SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5629       return;
5630     case Intrinsic::aarch64_sve_fcvtzs_x2:
5631       SelectCVTIntrinsic(Node, 2, AArch64::FCVTZS_2Z2Z_StoS);
5632       return;
5633     case Intrinsic::aarch64_sve_scvtf_x2:
5634       SelectCVTIntrinsic(Node, 2, AArch64::SCVTF_2Z2Z_StoS);
5635       return;
5636     case Intrinsic::aarch64_sve_fcvtzu_x2:
5637       SelectCVTIntrinsic(Node, 2, AArch64::FCVTZU_2Z2Z_StoS);
5638       return;
5639     case Intrinsic::aarch64_sve_ucvtf_x2:
5640       SelectCVTIntrinsic(Node, 2, AArch64::UCVTF_2Z2Z_StoS);
5641       return;
5642     case Intrinsic::aarch64_sve_fcvtzs_x4:
5643       SelectCVTIntrinsic(Node, 4, AArch64::FCVTZS_4Z4Z_StoS);
5644       return;
5645     case Intrinsic::aarch64_sve_scvtf_x4:
5646       SelectCVTIntrinsic(Node, 4, AArch64::SCVTF_4Z4Z_StoS);
5647       return;
5648     case Intrinsic::aarch64_sve_fcvtzu_x4:
5649       SelectCVTIntrinsic(Node, 4, AArch64::FCVTZU_4Z4Z_StoS);
5650       return;
5651     case Intrinsic::aarch64_sve_ucvtf_x4:
5652       SelectCVTIntrinsic(Node, 4, AArch64::UCVTF_4Z4Z_StoS);
5653       return;
5654     case Intrinsic::aarch64_sve_sclamp_single_x2:
5655       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5656               Node->getValueType(0),
5657               {AArch64::SCLAMP_VG2_2Z2Z_B, AArch64::SCLAMP_VG2_2Z2Z_H,
5658                AArch64::SCLAMP_VG2_2Z2Z_S, AArch64::SCLAMP_VG2_2Z2Z_D}))
5659         SelectClamp(Node, 2, Op);
5660       return;
5661     case Intrinsic::aarch64_sve_uclamp_single_x2:
5662       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5663               Node->getValueType(0),
5664               {AArch64::UCLAMP_VG2_2Z2Z_B, AArch64::UCLAMP_VG2_2Z2Z_H,
5665                AArch64::UCLAMP_VG2_2Z2Z_S, AArch64::UCLAMP_VG2_2Z2Z_D}))
5666         SelectClamp(Node, 2, Op);
5667       return;
5668     case Intrinsic::aarch64_sve_fclamp_single_x2:
5669       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5670               Node->getValueType(0),
5671               {0, AArch64::FCLAMP_VG2_2Z2Z_H, AArch64::FCLAMP_VG2_2Z2Z_S,
5672                AArch64::FCLAMP_VG2_2Z2Z_D}))
5673         SelectClamp(Node, 2, Op);
5674       return;
5675     case Intrinsic::aarch64_sve_sclamp_single_x4:
5676       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5677               Node->getValueType(0),
5678               {AArch64::SCLAMP_VG4_4Z4Z_B, AArch64::SCLAMP_VG4_4Z4Z_H,
5679                AArch64::SCLAMP_VG4_4Z4Z_S, AArch64::SCLAMP_VG4_4Z4Z_D}))
5680         SelectClamp(Node, 4, Op);
5681       return;
5682     case Intrinsic::aarch64_sve_uclamp_single_x4:
5683       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5684               Node->getValueType(0),
5685               {AArch64::UCLAMP_VG4_4Z4Z_B, AArch64::UCLAMP_VG4_4Z4Z_H,
5686                AArch64::UCLAMP_VG4_4Z4Z_S, AArch64::UCLAMP_VG4_4Z4Z_D}))
5687         SelectClamp(Node, 4, Op);
5688       return;
5689     case Intrinsic::aarch64_sve_fclamp_single_x4:
5690       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5691               Node->getValueType(0),
5692               {0, AArch64::FCLAMP_VG4_4Z4Z_H, AArch64::FCLAMP_VG4_4Z4Z_S,
5693                AArch64::FCLAMP_VG4_4Z4Z_D}))
5694         SelectClamp(Node, 4, Op);
5695       return;
5696     case Intrinsic::aarch64_sve_add_single_x2:
5697       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5698               Node->getValueType(0),
5699               {AArch64::ADD_VG2_2ZZ_B, AArch64::ADD_VG2_2ZZ_H,
5700                AArch64::ADD_VG2_2ZZ_S, AArch64::ADD_VG2_2ZZ_D}))
5701         SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5702       return;
5703     case Intrinsic::aarch64_sve_add_single_x4:
5704       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5705               Node->getValueType(0),
5706               {AArch64::ADD_VG4_4ZZ_B, AArch64::ADD_VG4_4ZZ_H,
5707                AArch64::ADD_VG4_4ZZ_S, AArch64::ADD_VG4_4ZZ_D}))
5708         SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5709       return;
5710     case Intrinsic::aarch64_sve_zip_x2:
5711       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5712               Node->getValueType(0),
5713               {AArch64::ZIP_VG2_2ZZZ_B, AArch64::ZIP_VG2_2ZZZ_H,
5714                AArch64::ZIP_VG2_2ZZZ_S, AArch64::ZIP_VG2_2ZZZ_D}))
5715         SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
5716       return;
5717     case Intrinsic::aarch64_sve_zipq_x2:
5718       SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false,
5719                                 AArch64::ZIP_VG2_2ZZZ_Q);
5720       return;
5721     case Intrinsic::aarch64_sve_zip_x4:
5722       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5723               Node->getValueType(0),
5724               {AArch64::ZIP_VG4_4Z4Z_B, AArch64::ZIP_VG4_4Z4Z_H,
5725                AArch64::ZIP_VG4_4Z4Z_S, AArch64::ZIP_VG4_4Z4Z_D}))
5726         SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
5727       return;
5728     case Intrinsic::aarch64_sve_zipq_x4:
5729       SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true,
5730                                 AArch64::ZIP_VG4_4Z4Z_Q);
5731       return;
5732     case Intrinsic::aarch64_sve_uzp_x2:
5733       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5734               Node->getValueType(0),
5735               {AArch64::UZP_VG2_2ZZZ_B, AArch64::UZP_VG2_2ZZZ_H,
5736                AArch64::UZP_VG2_2ZZZ_S, AArch64::UZP_VG2_2ZZZ_D}))
5737         SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
5738       return;
5739     case Intrinsic::aarch64_sve_uzpq_x2:
5740       SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false,
5741                                 AArch64::UZP_VG2_2ZZZ_Q);
5742       return;
5743     case Intrinsic::aarch64_sve_uzp_x4:
5744       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5745               Node->getValueType(0),
5746               {AArch64::UZP_VG4_4Z4Z_B, AArch64::UZP_VG4_4Z4Z_H,
5747                AArch64::UZP_VG4_4Z4Z_S, AArch64::UZP_VG4_4Z4Z_D}))
5748         SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
5749       return;
5750     case Intrinsic::aarch64_sve_uzpq_x4:
5751       SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true,
5752                                 AArch64::UZP_VG4_4Z4Z_Q);
5753       return;
5754     case Intrinsic::aarch64_sve_sel_x2:
5755       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5756               Node->getValueType(0),
5757               {AArch64::SEL_VG2_2ZC2Z2Z_B, AArch64::SEL_VG2_2ZC2Z2Z_H,
5758                AArch64::SEL_VG2_2ZC2Z2Z_S, AArch64::SEL_VG2_2ZC2Z2Z_D}))
5759         SelectDestructiveMultiIntrinsic(Node, 2, true, Op, /*HasPred=*/true);
5760       return;
5761     case Intrinsic::aarch64_sve_sel_x4:
5762       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5763               Node->getValueType(0),
5764               {AArch64::SEL_VG4_4ZC4Z4Z_B, AArch64::SEL_VG4_4ZC4Z4Z_H,
5765                AArch64::SEL_VG4_4ZC4Z4Z_S, AArch64::SEL_VG4_4ZC4Z4Z_D}))
5766         SelectDestructiveMultiIntrinsic(Node, 4, true, Op, /*HasPred=*/true);
5767       return;
5768     case Intrinsic::aarch64_sve_frinta_x2:
5769       SelectFrintFromVT(Node, 2, AArch64::FRINTA_2Z2Z_S);
5770       return;
5771     case Intrinsic::aarch64_sve_frinta_x4:
5772       SelectFrintFromVT(Node, 4, AArch64::FRINTA_4Z4Z_S);
5773       return;
5774     case Intrinsic::aarch64_sve_frintm_x2:
5775       SelectFrintFromVT(Node, 2, AArch64::FRINTM_2Z2Z_S);
5776       return;
5777     case Intrinsic::aarch64_sve_frintm_x4:
5778       SelectFrintFromVT(Node, 4, AArch64::FRINTM_4Z4Z_S);
5779       return;
5780     case Intrinsic::aarch64_sve_frintn_x2:
5781       SelectFrintFromVT(Node, 2, AArch64::FRINTN_2Z2Z_S);
5782       return;
5783     case Intrinsic::aarch64_sve_frintn_x4:
5784       SelectFrintFromVT(Node, 4, AArch64::FRINTN_4Z4Z_S);
5785       return;
5786     case Intrinsic::aarch64_sve_frintp_x2:
5787       SelectFrintFromVT(Node, 2, AArch64::FRINTP_2Z2Z_S);
5788       return;
5789     case Intrinsic::aarch64_sve_frintp_x4:
5790       SelectFrintFromVT(Node, 4, AArch64::FRINTP_4Z4Z_S);
5791       return;
5792     case Intrinsic::aarch64_sve_sunpk_x2:
5793       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5794               Node->getValueType(0),
5795               {0, AArch64::SUNPK_VG2_2ZZ_H, AArch64::SUNPK_VG2_2ZZ_S,
5796                AArch64::SUNPK_VG2_2ZZ_D}))
5797         SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
5798       return;
5799     case Intrinsic::aarch64_sve_uunpk_x2:
5800       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5801               Node->getValueType(0),
5802               {0, AArch64::UUNPK_VG2_2ZZ_H, AArch64::UUNPK_VG2_2ZZ_S,
5803                AArch64::UUNPK_VG2_2ZZ_D}))
5804         SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
5805       return;
5806     case Intrinsic::aarch64_sve_sunpk_x4:
5807       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5808               Node->getValueType(0),
5809               {0, AArch64::SUNPK_VG4_4Z2Z_H, AArch64::SUNPK_VG4_4Z2Z_S,
5810                AArch64::SUNPK_VG4_4Z2Z_D}))
5811         SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
5812       return;
5813     case Intrinsic::aarch64_sve_uunpk_x4:
5814       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5815               Node->getValueType(0),
5816               {0, AArch64::UUNPK_VG4_4Z2Z_H, AArch64::UUNPK_VG4_4Z2Z_S,
5817                AArch64::UUNPK_VG4_4Z2Z_D}))
5818         SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
5819       return;
5820     case Intrinsic::aarch64_sve_pext_x2: {
5821       if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5822               Node->getValueType(0),
5823               {AArch64::PEXT_2PCI_B, AArch64::PEXT_2PCI_H, AArch64::PEXT_2PCI_S,
5824                AArch64::PEXT_2PCI_D}))
5825         SelectPExtPair(Node, Op);
5826       return;
5827     }
5828     }
5829     break;
5830   }
5831   case ISD::INTRINSIC_VOID: {
5832     unsigned IntNo = Node->getConstantOperandVal(1);
5833     if (Node->getNumOperands() >= 3)
5834       VT = Node->getOperand(2)->getValueType(0);
5835     switch (IntNo) {
5836     default:
5837       break;
5838     case Intrinsic::aarch64_neon_st1x2: {
5839       if (VT == MVT::v8i8) {
5840         SelectStore(Node, 2, AArch64::ST1Twov8b);
5841         return;
5842       } else if (VT == MVT::v16i8) {
5843         SelectStore(Node, 2, AArch64::ST1Twov16b);
5844         return;
5845       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5846                  VT == MVT::v4bf16) {
5847         SelectStore(Node, 2, AArch64::ST1Twov4h);
5848         return;
5849       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5850                  VT == MVT::v8bf16) {
5851         SelectStore(Node, 2, AArch64::ST1Twov8h);
5852         return;
5853       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5854         SelectStore(Node, 2, AArch64::ST1Twov2s);
5855         return;
5856       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5857         SelectStore(Node, 2, AArch64::ST1Twov4s);
5858         return;
5859       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5860         SelectStore(Node, 2, AArch64::ST1Twov2d);
5861         return;
5862       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5863         SelectStore(Node, 2, AArch64::ST1Twov1d);
5864         return;
5865       }
5866       break;
5867     }
5868     case Intrinsic::aarch64_neon_st1x3: {
5869       if (VT == MVT::v8i8) {
5870         SelectStore(Node, 3, AArch64::ST1Threev8b);
5871         return;
5872       } else if (VT == MVT::v16i8) {
5873         SelectStore(Node, 3, AArch64::ST1Threev16b);
5874         return;
5875       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5876                  VT == MVT::v4bf16) {
5877         SelectStore(Node, 3, AArch64::ST1Threev4h);
5878         return;
5879       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5880                  VT == MVT::v8bf16) {
5881         SelectStore(Node, 3, AArch64::ST1Threev8h);
5882         return;
5883       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5884         SelectStore(Node, 3, AArch64::ST1Threev2s);
5885         return;
5886       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5887         SelectStore(Node, 3, AArch64::ST1Threev4s);
5888         return;
5889       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5890         SelectStore(Node, 3, AArch64::ST1Threev2d);
5891         return;
5892       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5893         SelectStore(Node, 3, AArch64::ST1Threev1d);
5894         return;
5895       }
5896       break;
5897     }
5898     case Intrinsic::aarch64_neon_st1x4: {
5899       if (VT == MVT::v8i8) {
5900         SelectStore(Node, 4, AArch64::ST1Fourv8b);
5901         return;
5902       } else if (VT == MVT::v16i8) {
5903         SelectStore(Node, 4, AArch64::ST1Fourv16b);
5904         return;
5905       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5906                  VT == MVT::v4bf16) {
5907         SelectStore(Node, 4, AArch64::ST1Fourv4h);
5908         return;
5909       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5910                  VT == MVT::v8bf16) {
5911         SelectStore(Node, 4, AArch64::ST1Fourv8h);
5912         return;
5913       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5914         SelectStore(Node, 4, AArch64::ST1Fourv2s);
5915         return;
5916       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5917         SelectStore(Node, 4, AArch64::ST1Fourv4s);
5918         return;
5919       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5920         SelectStore(Node, 4, AArch64::ST1Fourv2d);
5921         return;
5922       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5923         SelectStore(Node, 4, AArch64::ST1Fourv1d);
5924         return;
5925       }
5926       break;
5927     }
5928     case Intrinsic::aarch64_neon_st2: {
5929       if (VT == MVT::v8i8) {
5930         SelectStore(Node, 2, AArch64::ST2Twov8b);
5931         return;
5932       } else if (VT == MVT::v16i8) {
5933         SelectStore(Node, 2, AArch64::ST2Twov16b);
5934         return;
5935       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5936                  VT == MVT::v4bf16) {
5937         SelectStore(Node, 2, AArch64::ST2Twov4h);
5938         return;
5939       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5940                  VT == MVT::v8bf16) {
5941         SelectStore(Node, 2, AArch64::ST2Twov8h);
5942         return;
5943       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5944         SelectStore(Node, 2, AArch64::ST2Twov2s);
5945         return;
5946       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5947         SelectStore(Node, 2, AArch64::ST2Twov4s);
5948         return;
5949       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5950         SelectStore(Node, 2, AArch64::ST2Twov2d);
5951         return;
5952       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5953         SelectStore(Node, 2, AArch64::ST1Twov1d);
5954         return;
5955       }
5956       break;
5957     }
5958     case Intrinsic::aarch64_neon_st3: {
5959       if (VT == MVT::v8i8) {
5960         SelectStore(Node, 3, AArch64::ST3Threev8b);
5961         return;
5962       } else if (VT == MVT::v16i8) {
5963         SelectStore(Node, 3, AArch64::ST3Threev16b);
5964         return;
5965       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5966                  VT == MVT::v4bf16) {
5967         SelectStore(Node, 3, AArch64::ST3Threev4h);
5968         return;
5969       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
5970                  VT == MVT::v8bf16) {
5971         SelectStore(Node, 3, AArch64::ST3Threev8h);
5972         return;
5973       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
5974         SelectStore(Node, 3, AArch64::ST3Threev2s);
5975         return;
5976       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
5977         SelectStore(Node, 3, AArch64::ST3Threev4s);
5978         return;
5979       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
5980         SelectStore(Node, 3, AArch64::ST3Threev2d);
5981         return;
5982       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
5983         SelectStore(Node, 3, AArch64::ST1Threev1d);
5984         return;
5985       }
5986       break;
5987     }
5988     case Intrinsic::aarch64_neon_st4: {
5989       if (VT == MVT::v8i8) {
5990         SelectStore(Node, 4, AArch64::ST4Fourv8b);
5991         return;
5992       } else if (VT == MVT::v16i8) {
5993         SelectStore(Node, 4, AArch64::ST4Fourv16b);
5994         return;
5995       } else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
5996                  VT == MVT::v4bf16) {
5997         SelectStore(Node, 4, AArch64::ST4Fourv4h);
5998         return;
5999       } else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
6000                  VT == MVT::v8bf16) {
6001         SelectStore(Node, 4, AArch64::ST4Fourv8h);
6002         return;
6003       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6004         SelectStore(Node, 4, AArch64::ST4Fourv2s);
6005         return;
6006       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6007         SelectStore(Node, 4, AArch64::ST4Fourv4s);
6008         return;
6009       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6010         SelectStore(Node, 4, AArch64::ST4Fourv2d);
6011         return;
6012       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6013         SelectStore(Node, 4, AArch64::ST1Fourv1d);
6014         return;
6015       }
6016       break;
6017     }
6018     case Intrinsic::aarch64_neon_st2lane: {
6019       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6020         SelectStoreLane(Node, 2, AArch64::ST2i8);
6021         return;
6022       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6023                  VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6024         SelectStoreLane(Node, 2, AArch64::ST2i16);
6025         return;
6026       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6027                  VT == MVT::v2f32) {
6028         SelectStoreLane(Node, 2, AArch64::ST2i32);
6029         return;
6030       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6031                  VT == MVT::v1f64) {
6032         SelectStoreLane(Node, 2, AArch64::ST2i64);
6033         return;
6034       }
6035       break;
6036     }
6037     case Intrinsic::aarch64_neon_st3lane: {
6038       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6039         SelectStoreLane(Node, 3, AArch64::ST3i8);
6040         return;
6041       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6042                  VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6043         SelectStoreLane(Node, 3, AArch64::ST3i16);
6044         return;
6045       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6046                  VT == MVT::v2f32) {
6047         SelectStoreLane(Node, 3, AArch64::ST3i32);
6048         return;
6049       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6050                  VT == MVT::v1f64) {
6051         SelectStoreLane(Node, 3, AArch64::ST3i64);
6052         return;
6053       }
6054       break;
6055     }
6056     case Intrinsic::aarch64_neon_st4lane: {
6057       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6058         SelectStoreLane(Node, 4, AArch64::ST4i8);
6059         return;
6060       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6061                  VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6062         SelectStoreLane(Node, 4, AArch64::ST4i16);
6063         return;
6064       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6065                  VT == MVT::v2f32) {
6066         SelectStoreLane(Node, 4, AArch64::ST4i32);
6067         return;
6068       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6069                  VT == MVT::v1f64) {
6070         SelectStoreLane(Node, 4, AArch64::ST4i64);
6071         return;
6072       }
6073       break;
6074     }
6075     case Intrinsic::aarch64_sve_st2q: {
6076       SelectPredicatedStore(Node, 2, 4, AArch64::ST2Q, AArch64::ST2Q_IMM);
6077       return;
6078     }
6079     case Intrinsic::aarch64_sve_st3q: {
6080       SelectPredicatedStore(Node, 3, 4, AArch64::ST3Q, AArch64::ST3Q_IMM);
6081       return;
6082     }
6083     case Intrinsic::aarch64_sve_st4q: {
6084       SelectPredicatedStore(Node, 4, 4, AArch64::ST4Q, AArch64::ST4Q_IMM);
6085       return;
6086     }
6087     case Intrinsic::aarch64_sve_st2: {
6088       if (VT == MVT::nxv16i8) {
6089         SelectPredicatedStore(Node, 2, 0, AArch64::ST2B, AArch64::ST2B_IMM);
6090         return;
6091       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6092                  VT == MVT::nxv8bf16) {
6093         SelectPredicatedStore(Node, 2, 1, AArch64::ST2H, AArch64::ST2H_IMM);
6094         return;
6095       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6096         SelectPredicatedStore(Node, 2, 2, AArch64::ST2W, AArch64::ST2W_IMM);
6097         return;
6098       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6099         SelectPredicatedStore(Node, 2, 3, AArch64::ST2D, AArch64::ST2D_IMM);
6100         return;
6101       }
6102       break;
6103     }
6104     case Intrinsic::aarch64_sve_st3: {
6105       if (VT == MVT::nxv16i8) {
6106         SelectPredicatedStore(Node, 3, 0, AArch64::ST3B, AArch64::ST3B_IMM);
6107         return;
6108       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6109                  VT == MVT::nxv8bf16) {
6110         SelectPredicatedStore(Node, 3, 1, AArch64::ST3H, AArch64::ST3H_IMM);
6111         return;
6112       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6113         SelectPredicatedStore(Node, 3, 2, AArch64::ST3W, AArch64::ST3W_IMM);
6114         return;
6115       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6116         SelectPredicatedStore(Node, 3, 3, AArch64::ST3D, AArch64::ST3D_IMM);
6117         return;
6118       }
6119       break;
6120     }
6121     case Intrinsic::aarch64_sve_st4: {
6122       if (VT == MVT::nxv16i8) {
6123         SelectPredicatedStore(Node, 4, 0, AArch64::ST4B, AArch64::ST4B_IMM);
6124         return;
6125       } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6126                  VT == MVT::nxv8bf16) {
6127         SelectPredicatedStore(Node, 4, 1, AArch64::ST4H, AArch64::ST4H_IMM);
6128         return;
6129       } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6130         SelectPredicatedStore(Node, 4, 2, AArch64::ST4W, AArch64::ST4W_IMM);
6131         return;
6132       } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6133         SelectPredicatedStore(Node, 4, 3, AArch64::ST4D, AArch64::ST4D_IMM);
6134         return;
6135       }
6136       break;
6137     }
6138     }
6139     break;
6140   }
6141   case AArch64ISD::LD2post: {
6142     if (VT == MVT::v8i8) {
6143       SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
6144       return;
6145     } else if (VT == MVT::v16i8) {
6146       SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
6147       return;
6148     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6149       SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
6150       return;
6151     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6152       SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
6153       return;
6154     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6155       SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
6156       return;
6157     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6158       SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
6159       return;
6160     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6161       SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
6162       return;
6163     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6164       SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
6165       return;
6166     }
6167     break;
6168   }
6169   case AArch64ISD::LD3post: {
6170     if (VT == MVT::v8i8) {
6171       SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
6172       return;
6173     } else if (VT == MVT::v16i8) {
6174       SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
6175       return;
6176     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6177       SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
6178       return;
6179     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6180       SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
6181       return;
6182     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6183       SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
6184       return;
6185     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6186       SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
6187       return;
6188     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6189       SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
6190       return;
6191     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6192       SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
6193       return;
6194     }
6195     break;
6196   }
6197   case AArch64ISD::LD4post: {
6198     if (VT == MVT::v8i8) {
6199       SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
6200       return;
6201     } else if (VT == MVT::v16i8) {
6202       SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
6203       return;
6204     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6205       SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
6206       return;
6207     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6208       SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
6209       return;
6210     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6211       SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
6212       return;
6213     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6214       SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
6215       return;
6216     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6217       SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
6218       return;
6219     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6220       SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
6221       return;
6222     }
6223     break;
6224   }
6225   case AArch64ISD::LD1x2post: {
6226     if (VT == MVT::v8i8) {
6227       SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
6228       return;
6229     } else if (VT == MVT::v16i8) {
6230       SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
6231       return;
6232     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6233       SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
6234       return;
6235     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6236       SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
6237       return;
6238     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6239       SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
6240       return;
6241     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6242       SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
6243       return;
6244     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6245       SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
6246       return;
6247     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6248       SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
6249       return;
6250     }
6251     break;
6252   }
6253   case AArch64ISD::LD1x3post: {
6254     if (VT == MVT::v8i8) {
6255       SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
6256       return;
6257     } else if (VT == MVT::v16i8) {
6258       SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
6259       return;
6260     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6261       SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
6262       return;
6263     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6264       SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
6265       return;
6266     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6267       SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
6268       return;
6269     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6270       SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
6271       return;
6272     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6273       SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
6274       return;
6275     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6276       SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
6277       return;
6278     }
6279     break;
6280   }
6281   case AArch64ISD::LD1x4post: {
6282     if (VT == MVT::v8i8) {
6283       SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
6284       return;
6285     } else if (VT == MVT::v16i8) {
6286       SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
6287       return;
6288     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6289       SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
6290       return;
6291     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6292       SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
6293       return;
6294     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6295       SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
6296       return;
6297     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6298       SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
6299       return;
6300     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6301       SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
6302       return;
6303     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6304       SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
6305       return;
6306     }
6307     break;
6308   }
6309   case AArch64ISD::LD1DUPpost: {
6310     if (VT == MVT::v8i8) {
6311       SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
6312       return;
6313     } else if (VT == MVT::v16i8) {
6314       SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
6315       return;
6316     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6317       SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
6318       return;
6319     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6320       SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
6321       return;
6322     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6323       SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
6324       return;
6325     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6326       SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
6327       return;
6328     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6329       SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
6330       return;
6331     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6332       SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
6333       return;
6334     }
6335     break;
6336   }
6337   case AArch64ISD::LD2DUPpost: {
6338     if (VT == MVT::v8i8) {
6339       SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
6340       return;
6341     } else if (VT == MVT::v16i8) {
6342       SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
6343       return;
6344     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6345       SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
6346       return;
6347     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6348       SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
6349       return;
6350     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6351       SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
6352       return;
6353     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6354       SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
6355       return;
6356     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6357       SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
6358       return;
6359     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6360       SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
6361       return;
6362     }
6363     break;
6364   }
6365   case AArch64ISD::LD3DUPpost: {
6366     if (VT == MVT::v8i8) {
6367       SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
6368       return;
6369     } else if (VT == MVT::v16i8) {
6370       SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
6371       return;
6372     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6373       SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
6374       return;
6375     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6376       SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
6377       return;
6378     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6379       SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
6380       return;
6381     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6382       SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
6383       return;
6384     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6385       SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
6386       return;
6387     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6388       SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
6389       return;
6390     }
6391     break;
6392   }
6393   case AArch64ISD::LD4DUPpost: {
6394     if (VT == MVT::v8i8) {
6395       SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
6396       return;
6397     } else if (VT == MVT::v16i8) {
6398       SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
6399       return;
6400     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6401       SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
6402       return;
6403     } else if (VT == MVT::v8i16 || VT == MVT::v8f16  || VT == MVT::v8bf16) {
6404       SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
6405       return;
6406     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6407       SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
6408       return;
6409     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6410       SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
6411       return;
6412     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6413       SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
6414       return;
6415     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6416       SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
6417       return;
6418     }
6419     break;
6420   }
6421   case AArch64ISD::LD1LANEpost: {
6422     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6423       SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
6424       return;
6425     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6426                VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6427       SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
6428       return;
6429     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6430                VT == MVT::v2f32) {
6431       SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
6432       return;
6433     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6434                VT == MVT::v1f64) {
6435       SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
6436       return;
6437     }
6438     break;
6439   }
6440   case AArch64ISD::LD2LANEpost: {
6441     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6442       SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
6443       return;
6444     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6445                VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6446       SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
6447       return;
6448     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6449                VT == MVT::v2f32) {
6450       SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
6451       return;
6452     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6453                VT == MVT::v1f64) {
6454       SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
6455       return;
6456     }
6457     break;
6458   }
6459   case AArch64ISD::LD3LANEpost: {
6460     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6461       SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
6462       return;
6463     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6464                VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6465       SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
6466       return;
6467     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6468                VT == MVT::v2f32) {
6469       SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
6470       return;
6471     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6472                VT == MVT::v1f64) {
6473       SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
6474       return;
6475     }
6476     break;
6477   }
6478   case AArch64ISD::LD4LANEpost: {
6479     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6480       SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
6481       return;
6482     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6483                VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6484       SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
6485       return;
6486     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6487                VT == MVT::v2f32) {
6488       SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
6489       return;
6490     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6491                VT == MVT::v1f64) {
6492       SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
6493       return;
6494     }
6495     break;
6496   }
6497   case AArch64ISD::ST2post: {
6498     VT = Node->getOperand(1).getValueType();
6499     if (VT == MVT::v8i8) {
6500       SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
6501       return;
6502     } else if (VT == MVT::v16i8) {
6503       SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
6504       return;
6505     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6506       SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
6507       return;
6508     } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6509       SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
6510       return;
6511     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6512       SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
6513       return;
6514     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6515       SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
6516       return;
6517     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6518       SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
6519       return;
6520     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6521       SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
6522       return;
6523     }
6524     break;
6525   }
6526   case AArch64ISD::ST3post: {
6527     VT = Node->getOperand(1).getValueType();
6528     if (VT == MVT::v8i8) {
6529       SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
6530       return;
6531     } else if (VT == MVT::v16i8) {
6532       SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
6533       return;
6534     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6535       SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
6536       return;
6537     } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6538       SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
6539       return;
6540     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6541       SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
6542       return;
6543     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6544       SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
6545       return;
6546     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6547       SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
6548       return;
6549     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6550       SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
6551       return;
6552     }
6553     break;
6554   }
6555   case AArch64ISD::ST4post: {
6556     VT = Node->getOperand(1).getValueType();
6557     if (VT == MVT::v8i8) {
6558       SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
6559       return;
6560     } else if (VT == MVT::v16i8) {
6561       SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
6562       return;
6563     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6564       SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
6565       return;
6566     } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6567       SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
6568       return;
6569     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6570       SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
6571       return;
6572     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6573       SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
6574       return;
6575     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6576       SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
6577       return;
6578     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6579       SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
6580       return;
6581     }
6582     break;
6583   }
6584   case AArch64ISD::ST1x2post: {
6585     VT = Node->getOperand(1).getValueType();
6586     if (VT == MVT::v8i8) {
6587       SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
6588       return;
6589     } else if (VT == MVT::v16i8) {
6590       SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
6591       return;
6592     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6593       SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
6594       return;
6595     } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6596       SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
6597       return;
6598     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6599       SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
6600       return;
6601     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6602       SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
6603       return;
6604     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6605       SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
6606       return;
6607     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6608       SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
6609       return;
6610     }
6611     break;
6612   }
6613   case AArch64ISD::ST1x3post: {
6614     VT = Node->getOperand(1).getValueType();
6615     if (VT == MVT::v8i8) {
6616       SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
6617       return;
6618     } else if (VT == MVT::v16i8) {
6619       SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
6620       return;
6621     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6622       SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
6623       return;
6624     } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16 ) {
6625       SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
6626       return;
6627     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6628       SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
6629       return;
6630     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6631       SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
6632       return;
6633     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6634       SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
6635       return;
6636     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6637       SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
6638       return;
6639     }
6640     break;
6641   }
6642   case AArch64ISD::ST1x4post: {
6643     VT = Node->getOperand(1).getValueType();
6644     if (VT == MVT::v8i8) {
6645       SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
6646       return;
6647     } else if (VT == MVT::v16i8) {
6648       SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
6649       return;
6650     } else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6651       SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
6652       return;
6653     } else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6654       SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
6655       return;
6656     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6657       SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
6658       return;
6659     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6660       SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
6661       return;
6662     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6663       SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
6664       return;
6665     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6666       SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
6667       return;
6668     }
6669     break;
6670   }
6671   case AArch64ISD::ST2LANEpost: {
6672     VT = Node->getOperand(1).getValueType();
6673     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6674       SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
6675       return;
6676     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6677                VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6678       SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
6679       return;
6680     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6681                VT == MVT::v2f32) {
6682       SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
6683       return;
6684     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6685                VT == MVT::v1f64) {
6686       SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
6687       return;
6688     }
6689     break;
6690   }
6691   case AArch64ISD::ST3LANEpost: {
6692     VT = Node->getOperand(1).getValueType();
6693     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6694       SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
6695       return;
6696     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6697                VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6698       SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
6699       return;
6700     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6701                VT == MVT::v2f32) {
6702       SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
6703       return;
6704     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6705                VT == MVT::v1f64) {
6706       SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
6707       return;
6708     }
6709     break;
6710   }
6711   case AArch64ISD::ST4LANEpost: {
6712     VT = Node->getOperand(1).getValueType();
6713     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6714       SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
6715       return;
6716     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6717                VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6718       SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
6719       return;
6720     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6721                VT == MVT::v2f32) {
6722       SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
6723       return;
6724     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6725                VT == MVT::v1f64) {
6726       SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
6727       return;
6728     }
6729     break;
6730   }
6731   case AArch64ISD::SVE_LD2_MERGE_ZERO: {
6732     if (VT == MVT::nxv16i8) {
6733       SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B);
6734       return;
6735     } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6736                VT == MVT::nxv8bf16) {
6737       SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H);
6738       return;
6739     } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6740       SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W);
6741       return;
6742     } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6743       SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D);
6744       return;
6745     }
6746     break;
6747   }
6748   case AArch64ISD::SVE_LD3_MERGE_ZERO: {
6749     if (VT == MVT::nxv16i8) {
6750       SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B);
6751       return;
6752     } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6753                VT == MVT::nxv8bf16) {
6754       SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H);
6755       return;
6756     } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6757       SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W);
6758       return;
6759     } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6760       SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D);
6761       return;
6762     }
6763     break;
6764   }
6765   case AArch64ISD::SVE_LD4_MERGE_ZERO: {
6766     if (VT == MVT::nxv16i8) {
6767       SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B);
6768       return;
6769     } else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6770                VT == MVT::nxv8bf16) {
6771       SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H);
6772       return;
6773     } else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6774       SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W);
6775       return;
6776     } else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6777       SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D);
6778       return;
6779     }
6780     break;
6781   }
6782   }
6783 
6784   // Select the default instruction
6785   SelectCode(Node);
6786 }
6787 
6788 /// createAArch64ISelDag - This pass converts a legalized DAG into a
6789 /// AArch64-specific DAG, ready for instruction scheduling.
6790 FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
6791                                          CodeGenOptLevel OptLevel) {
6792   return new AArch64DAGToDAGISel(TM, OptLevel);
6793 }
6794 
6795 /// When \p PredVT is a scalable vector predicate in the form
6796 /// MVT::nx<M>xi1, it builds the correspondent scalable vector of
6797 /// integers MVT::nx<M>xi<bits> s.t. M x bits = 128. When targeting
6798 /// structured vectors (NumVec >1), the output data type is
6799 /// MVT::nx<M*NumVec>xi<bits> s.t. M x bits = 128. If the input
6800 /// PredVT is not in the form MVT::nx<M>xi1, it returns an invalid
6801 /// EVT.
6802 static EVT getPackedVectorTypeFromPredicateType(LLVMContext &Ctx, EVT PredVT,
6803                                                 unsigned NumVec) {
6804   assert(NumVec > 0 && NumVec < 5 && "Invalid number of vectors.");
6805   if (!PredVT.isScalableVector() || PredVT.getVectorElementType() != MVT::i1)
6806     return EVT();
6807 
6808   if (PredVT != MVT::nxv16i1 && PredVT != MVT::nxv8i1 &&
6809       PredVT != MVT::nxv4i1 && PredVT != MVT::nxv2i1)
6810     return EVT();
6811 
6812   ElementCount EC = PredVT.getVectorElementCount();
6813   EVT ScalarVT =
6814       EVT::getIntegerVT(Ctx, AArch64::SVEBitsPerBlock / EC.getKnownMinValue());
6815   EVT MemVT = EVT::getVectorVT(Ctx, ScalarVT, EC * NumVec);
6816 
6817   return MemVT;
6818 }
6819 
6820 /// Return the EVT of the data associated to a memory operation in \p
6821 /// Root. If such EVT cannot be retrived, it returns an invalid EVT.
6822 static EVT getMemVTFromNode(LLVMContext &Ctx, SDNode *Root) {
6823   if (isa<MemSDNode>(Root))
6824     return cast<MemSDNode>(Root)->getMemoryVT();
6825 
6826   if (isa<MemIntrinsicSDNode>(Root))
6827     return cast<MemIntrinsicSDNode>(Root)->getMemoryVT();
6828 
6829   const unsigned Opcode = Root->getOpcode();
6830   // For custom ISD nodes, we have to look at them individually to extract the
6831   // type of the data moved to/from memory.
6832   switch (Opcode) {
6833   case AArch64ISD::LD1_MERGE_ZERO:
6834   case AArch64ISD::LD1S_MERGE_ZERO:
6835   case AArch64ISD::LDNF1_MERGE_ZERO:
6836   case AArch64ISD::LDNF1S_MERGE_ZERO:
6837     return cast<VTSDNode>(Root->getOperand(3))->getVT();
6838   case AArch64ISD::ST1_PRED:
6839     return cast<VTSDNode>(Root->getOperand(4))->getVT();
6840   case AArch64ISD::SVE_LD2_MERGE_ZERO:
6841     return getPackedVectorTypeFromPredicateType(
6842         Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/2);
6843   case AArch64ISD::SVE_LD3_MERGE_ZERO:
6844     return getPackedVectorTypeFromPredicateType(
6845         Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/3);
6846   case AArch64ISD::SVE_LD4_MERGE_ZERO:
6847     return getPackedVectorTypeFromPredicateType(
6848         Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/4);
6849   default:
6850     break;
6851   }
6852 
6853   if (Opcode != ISD::INTRINSIC_VOID && Opcode != ISD::INTRINSIC_W_CHAIN)
6854     return EVT();
6855 
6856   switch (Root->getConstantOperandVal(1)) {
6857   default:
6858     return EVT();
6859   case Intrinsic::aarch64_sme_ldr:
6860   case Intrinsic::aarch64_sme_str:
6861     return MVT::nxv16i8;
6862   case Intrinsic::aarch64_sve_prf:
6863     // We are using an SVE prefetch intrinsic. Type must be inferred from the
6864     // width of the predicate.
6865     return getPackedVectorTypeFromPredicateType(
6866         Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/1);
6867   case Intrinsic::aarch64_sve_ld2_sret:
6868   case Intrinsic::aarch64_sve_ld2q_sret:
6869     return getPackedVectorTypeFromPredicateType(
6870         Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/2);
6871   case Intrinsic::aarch64_sve_st2q:
6872     return getPackedVectorTypeFromPredicateType(
6873         Ctx, Root->getOperand(4)->getValueType(0), /*NumVec=*/2);
6874   case Intrinsic::aarch64_sve_ld3_sret:
6875   case Intrinsic::aarch64_sve_ld3q_sret:
6876     return getPackedVectorTypeFromPredicateType(
6877         Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/3);
6878   case Intrinsic::aarch64_sve_st3q:
6879     return getPackedVectorTypeFromPredicateType(
6880         Ctx, Root->getOperand(5)->getValueType(0), /*NumVec=*/3);
6881   case Intrinsic::aarch64_sve_ld4_sret:
6882   case Intrinsic::aarch64_sve_ld4q_sret:
6883     return getPackedVectorTypeFromPredicateType(
6884         Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/4);
6885   case Intrinsic::aarch64_sve_st4q:
6886     return getPackedVectorTypeFromPredicateType(
6887         Ctx, Root->getOperand(6)->getValueType(0), /*NumVec=*/4);
6888   case Intrinsic::aarch64_sve_ld1udq:
6889   case Intrinsic::aarch64_sve_st1dq:
6890     return EVT(MVT::nxv1i64);
6891   case Intrinsic::aarch64_sve_ld1uwq:
6892   case Intrinsic::aarch64_sve_st1wq:
6893     return EVT(MVT::nxv1i32);
6894   }
6895 }
6896 
6897 /// SelectAddrModeIndexedSVE - Attempt selection of the addressing mode:
6898 /// Base + OffImm * sizeof(MemVT) for Min >= OffImm <= Max
6899 /// where Root is the memory access using N for its address.
6900 template <int64_t Min, int64_t Max>
6901 bool AArch64DAGToDAGISel::SelectAddrModeIndexedSVE(SDNode *Root, SDValue N,
6902                                                    SDValue &Base,
6903                                                    SDValue &OffImm) {
6904   const EVT MemVT = getMemVTFromNode(*(CurDAG->getContext()), Root);
6905   const DataLayout &DL = CurDAG->getDataLayout();
6906   const MachineFrameInfo &MFI = MF->getFrameInfo();
6907 
6908   if (N.getOpcode() == ISD::FrameIndex) {
6909     int FI = cast<FrameIndexSDNode>(N)->getIndex();
6910     // We can only encode VL scaled offsets, so only fold in frame indexes
6911     // referencing SVE objects.
6912     if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
6913       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
6914       OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
6915       return true;
6916     }
6917 
6918     return false;
6919   }
6920 
6921   if (MemVT == EVT())
6922     return false;
6923 
6924   if (N.getOpcode() != ISD::ADD)
6925     return false;
6926 
6927   SDValue VScale = N.getOperand(1);
6928   if (VScale.getOpcode() != ISD::VSCALE)
6929     return false;
6930 
6931   TypeSize TS = MemVT.getSizeInBits();
6932   int64_t MemWidthBytes = static_cast<int64_t>(TS.getKnownMinValue()) / 8;
6933   int64_t MulImm = cast<ConstantSDNode>(VScale.getOperand(0))->getSExtValue();
6934 
6935   if ((MulImm % MemWidthBytes) != 0)
6936     return false;
6937 
6938   int64_t Offset = MulImm / MemWidthBytes;
6939   if (Offset < Min || Offset > Max)
6940     return false;
6941 
6942   Base = N.getOperand(0);
6943   if (Base.getOpcode() == ISD::FrameIndex) {
6944     int FI = cast<FrameIndexSDNode>(Base)->getIndex();
6945     // We can only encode VL scaled offsets, so only fold in frame indexes
6946     // referencing SVE objects.
6947     if (MFI.getStackID(FI) == TargetStackID::ScalableVector)
6948       Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
6949   }
6950 
6951   OffImm = CurDAG->getTargetConstant(Offset, SDLoc(N), MVT::i64);
6952   return true;
6953 }
6954 
6955 /// Select register plus register addressing mode for SVE, with scaled
6956 /// offset.
6957 bool AArch64DAGToDAGISel::SelectSVERegRegAddrMode(SDValue N, unsigned Scale,
6958                                                   SDValue &Base,
6959                                                   SDValue &Offset) {
6960   if (N.getOpcode() != ISD::ADD)
6961     return false;
6962 
6963   // Process an ADD node.
6964   const SDValue LHS = N.getOperand(0);
6965   const SDValue RHS = N.getOperand(1);
6966 
6967   // 8 bit data does not come with the SHL node, so it is treated
6968   // separately.
6969   if (Scale == 0) {
6970     Base = LHS;
6971     Offset = RHS;
6972     return true;
6973   }
6974 
6975   if (auto C = dyn_cast<ConstantSDNode>(RHS)) {
6976     int64_t ImmOff = C->getSExtValue();
6977     unsigned Size = 1 << Scale;
6978 
6979     // To use the reg+reg addressing mode, the immediate must be a multiple of
6980     // the vector element's byte size.
6981     if (ImmOff % Size)
6982       return false;
6983 
6984     SDLoc DL(N);
6985     Base = LHS;
6986     Offset = CurDAG->getTargetConstant(ImmOff >> Scale, DL, MVT::i64);
6987     SDValue Ops[] = {Offset};
6988     SDNode *MI = CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
6989     Offset = SDValue(MI, 0);
6990     return true;
6991   }
6992 
6993   // Check if the RHS is a shift node with a constant.
6994   if (RHS.getOpcode() != ISD::SHL)
6995     return false;
6996 
6997   const SDValue ShiftRHS = RHS.getOperand(1);
6998   if (auto *C = dyn_cast<ConstantSDNode>(ShiftRHS))
6999     if (C->getZExtValue() == Scale) {
7000       Base = LHS;
7001       Offset = RHS.getOperand(0);
7002       return true;
7003     }
7004 
7005   return false;
7006 }
7007 
7008 bool AArch64DAGToDAGISel::SelectAllActivePredicate(SDValue N) {
7009   const AArch64TargetLowering *TLI =
7010       static_cast<const AArch64TargetLowering *>(getTargetLowering());
7011 
7012   return TLI->isAllActivePredicate(*CurDAG, N);
7013 }
7014 
7015 bool AArch64DAGToDAGISel::SelectAnyPredicate(SDValue N) {
7016   EVT VT = N.getValueType();
7017   return VT.isScalableVector() && VT.getVectorElementType() == MVT::i1;
7018 }
7019 
7020 bool AArch64DAGToDAGISel::SelectSMETileSlice(SDValue N, unsigned MaxSize,
7021                                              SDValue &Base, SDValue &Offset,
7022                                              unsigned Scale) {
7023   // Try to untangle an ADD node into a 'reg + offset'
7024   if (N.getOpcode() == ISD::ADD)
7025     if (auto C = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
7026       int64_t ImmOff = C->getSExtValue();
7027       if ((ImmOff > 0 && ImmOff <= MaxSize && (ImmOff % Scale == 0))) {
7028         Base = N.getOperand(0);
7029         Offset = CurDAG->getTargetConstant(ImmOff / Scale, SDLoc(N), MVT::i64);
7030         return true;
7031       }
7032     }
7033 
7034   // By default, just match reg + 0.
7035   Base = N;
7036   Offset = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
7037   return true;
7038 }
7039