1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | | | (frame record first) 51 // | prev_fp, prev_lr | <--' 52 // | (a.k.a. "frame record") | 53 // |-----------------------------------| <- fp(=x29) 54 // | | 55 // | callee-saved fp/simd/SVE regs | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | SVE stack objects | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.16-byte.alignment....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- bp(not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses X19) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 92 // callee-saved area, since the unwind encoding does not allow for encoding 93 // this dynamically and existing tools depend on this layout. For other 94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 95 // area to allow SVE stack objects (allocated directly below the callee-saves, 96 // if available) to be accessed directly from the framepointer. 97 // The SVE spill/fill instructions have VL-scaled addressing modes such 98 // as: 99 // ldr z8, [fp, #-7 mul vl] 100 // For SVE the size of the vector length (VL) is not known at compile-time, so 101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 102 // layout, we don't need to add an unscaled offset to the framepointer before 103 // accessing the SVE object in the frame. 104 // 105 // In some cases when a base pointer is not strictly needed, it is generated 106 // anyway when offsets from the frame pointer to access local variables become 107 // so large that the offset can't be encoded in the immediate fields of loads 108 // or stores. 109 // 110 // FIXME: also explain the redzone concept. 111 // FIXME: also explain the concept of reserved call frames. 112 // 113 //===----------------------------------------------------------------------===// 114 115 #include "AArch64FrameLowering.h" 116 #include "AArch64InstrInfo.h" 117 #include "AArch64MachineFunctionInfo.h" 118 #include "AArch64RegisterInfo.h" 119 #include "AArch64StackOffset.h" 120 #include "AArch64Subtarget.h" 121 #include "AArch64TargetMachine.h" 122 #include "MCTargetDesc/AArch64AddressingModes.h" 123 #include "llvm/ADT/ScopeExit.h" 124 #include "llvm/ADT/SmallVector.h" 125 #include "llvm/ADT/Statistic.h" 126 #include "llvm/CodeGen/LivePhysRegs.h" 127 #include "llvm/CodeGen/MachineBasicBlock.h" 128 #include "llvm/CodeGen/MachineFrameInfo.h" 129 #include "llvm/CodeGen/MachineFunction.h" 130 #include "llvm/CodeGen/MachineInstr.h" 131 #include "llvm/CodeGen/MachineInstrBuilder.h" 132 #include "llvm/CodeGen/MachineMemOperand.h" 133 #include "llvm/CodeGen/MachineModuleInfo.h" 134 #include "llvm/CodeGen/MachineOperand.h" 135 #include "llvm/CodeGen/MachineRegisterInfo.h" 136 #include "llvm/CodeGen/RegisterScavenging.h" 137 #include "llvm/CodeGen/TargetInstrInfo.h" 138 #include "llvm/CodeGen/TargetRegisterInfo.h" 139 #include "llvm/CodeGen/TargetSubtargetInfo.h" 140 #include "llvm/CodeGen/WinEHFuncInfo.h" 141 #include "llvm/IR/Attributes.h" 142 #include "llvm/IR/CallingConv.h" 143 #include "llvm/IR/DataLayout.h" 144 #include "llvm/IR/DebugLoc.h" 145 #include "llvm/IR/Function.h" 146 #include "llvm/MC/MCAsmInfo.h" 147 #include "llvm/MC/MCDwarf.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Debug.h" 150 #include "llvm/Support/ErrorHandling.h" 151 #include "llvm/Support/LEB128.h" 152 #include "llvm/Support/MathExtras.h" 153 #include "llvm/Support/raw_ostream.h" 154 #include "llvm/Target/TargetMachine.h" 155 #include "llvm/Target/TargetOptions.h" 156 #include <cassert> 157 #include <cstdint> 158 #include <iterator> 159 #include <vector> 160 161 using namespace llvm; 162 163 #define DEBUG_TYPE "frame-info" 164 165 static cl::opt<bool> EnableRedZone("aarch64-redzone", 166 cl::desc("enable use of redzone on AArch64"), 167 cl::init(false), cl::Hidden); 168 169 static cl::opt<bool> 170 ReverseCSRRestoreSeq("reverse-csr-restore-seq", 171 cl::desc("reverse the CSR restore sequence"), 172 cl::init(false), cl::Hidden); 173 174 static cl::opt<bool> StackTaggingMergeSetTag( 175 "stack-tagging-merge-settag", 176 cl::desc("merge settag instruction in function epilog"), cl::init(true), 177 cl::Hidden); 178 179 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 180 181 /// Returns the argument pop size. 182 static uint64_t getArgumentPopSize(MachineFunction &MF, 183 MachineBasicBlock &MBB) { 184 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 185 bool IsTailCallReturn = false; 186 if (MBB.end() != MBBI) { 187 unsigned RetOpcode = MBBI->getOpcode(); 188 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi || 189 RetOpcode == AArch64::TCRETURNri || 190 RetOpcode == AArch64::TCRETURNriBTI; 191 } 192 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 193 194 uint64_t ArgumentPopSize = 0; 195 if (IsTailCallReturn) { 196 MachineOperand &StackAdjust = MBBI->getOperand(1); 197 198 // For a tail-call in a callee-pops-arguments environment, some or all of 199 // the stack may actually be in use for the call's arguments, this is 200 // calculated during LowerCall and consumed here... 201 ArgumentPopSize = StackAdjust.getImm(); 202 } else { 203 // ... otherwise the amount to pop is *all* of the argument space, 204 // conveniently stored in the MachineFunctionInfo by 205 // LowerFormalArguments. This will, of course, be zero for the C calling 206 // convention. 207 ArgumentPopSize = AFI->getArgumentStackToRestore(); 208 } 209 210 return ArgumentPopSize; 211 } 212 213 /// This is the biggest offset to the stack pointer we can encode in aarch64 214 /// instructions (without using a separate calculation and a temp register). 215 /// Note that the exception here are vector stores/loads which cannot encode any 216 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 217 static const unsigned DefaultSafeSPDisplacement = 255; 218 219 /// Look at each instruction that references stack frames and return the stack 220 /// size limit beyond which some of these instructions will require a scratch 221 /// register during their expansion later. 222 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 223 // FIXME: For now, just conservatively guestimate based on unscaled indexing 224 // range. We'll end up allocating an unnecessary spill slot a lot, but 225 // realistically that's not a big deal at this stage of the game. 226 for (MachineBasicBlock &MBB : MF) { 227 for (MachineInstr &MI : MBB) { 228 if (MI.isDebugInstr() || MI.isPseudo() || 229 MI.getOpcode() == AArch64::ADDXri || 230 MI.getOpcode() == AArch64::ADDSXri) 231 continue; 232 233 for (const MachineOperand &MO : MI.operands()) { 234 if (!MO.isFI()) 235 continue; 236 237 StackOffset Offset; 238 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 239 AArch64FrameOffsetCannotUpdate) 240 return 0; 241 } 242 } 243 } 244 return DefaultSafeSPDisplacement; 245 } 246 247 TargetStackID::Value 248 AArch64FrameLowering::getStackIDForScalableVectors() const { 249 return TargetStackID::SVEVector; 250 } 251 252 /// Returns the size of the fixed object area (allocated next to sp on entry) 253 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 254 static unsigned getFixedObjectSize(const MachineFunction &MF, 255 const AArch64FunctionInfo *AFI, bool IsWin64, 256 bool IsFunclet) { 257 if (!IsWin64 || IsFunclet) { 258 // Only Win64 uses fixed objects, and then only for the function (not 259 // funclets) 260 return 0; 261 } else { 262 // Var args are stored here in the primary function. 263 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 264 // To support EH funclets we allocate an UnwindHelp object 265 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 266 return alignTo(VarArgsArea + UnwindHelpObject, 16); 267 } 268 } 269 270 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 271 static StackOffset getSVEStackSize(const MachineFunction &MF) { 272 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 273 return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8}; 274 } 275 276 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 277 if (!EnableRedZone) 278 return false; 279 // Don't use the red zone if the function explicitly asks us not to. 280 // This is typically used for kernel code. 281 if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone)) 282 return false; 283 284 const MachineFrameInfo &MFI = MF.getFrameInfo(); 285 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 286 uint64_t NumBytes = AFI->getLocalStackSize(); 287 288 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 || 289 getSVEStackSize(MF)); 290 } 291 292 /// hasFP - Return true if the specified function should have a dedicated frame 293 /// pointer register. 294 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { 295 const MachineFrameInfo &MFI = MF.getFrameInfo(); 296 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 297 // Win64 EH requires a frame pointer if funclets are present, as the locals 298 // are accessed off the frame pointer in both the parent function and the 299 // funclets. 300 if (MF.hasEHFunclets()) 301 return true; 302 // Retain behavior of always omitting the FP for leaf functions when possible. 303 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 304 return true; 305 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 306 MFI.hasStackMap() || MFI.hasPatchPoint() || 307 RegInfo->needsStackRealignment(MF)) 308 return true; 309 // With large callframes around we may need to use FP to access the scavenging 310 // emergency spillslot. 311 // 312 // Unfortunately some calls to hasFP() like machine verifier -> 313 // getReservedReg() -> hasFP in the middle of global isel are too early 314 // to know the max call frame size. Hopefully conservatively returning "true" 315 // in those cases is fine. 316 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 317 if (!MFI.isMaxCallFrameSizeComputed() || 318 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 319 return true; 320 321 return false; 322 } 323 324 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 325 /// not required, we reserve argument space for call sites in the function 326 /// immediately on entry to the current function. This eliminates the need for 327 /// add/sub sp brackets around call sites. Returns true if the call frame is 328 /// included as part of the stack frame. 329 bool 330 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 331 return !MF.getFrameInfo().hasVarSizedObjects(); 332 } 333 334 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 335 MachineFunction &MF, MachineBasicBlock &MBB, 336 MachineBasicBlock::iterator I) const { 337 const AArch64InstrInfo *TII = 338 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 339 DebugLoc DL = I->getDebugLoc(); 340 unsigned Opc = I->getOpcode(); 341 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 342 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 343 344 if (!hasReservedCallFrame(MF)) { 345 int64_t Amount = I->getOperand(0).getImm(); 346 Amount = alignTo(Amount, getStackAlign()); 347 if (!IsDestroy) 348 Amount = -Amount; 349 350 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 351 // doesn't have to pop anything), then the first operand will be zero too so 352 // this adjustment is a no-op. 353 if (CalleePopAmount == 0) { 354 // FIXME: in-function stack adjustment for calls is limited to 24-bits 355 // because there's no guaranteed temporary register available. 356 // 357 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 358 // 1) For offset <= 12-bit, we use LSL #0 359 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 360 // LSL #0, and the other uses LSL #12. 361 // 362 // Most call frames will be allocated at the start of a function so 363 // this is OK, but it is a limitation that needs dealing with. 364 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 365 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8}, 366 TII); 367 } 368 } else if (CalleePopAmount != 0) { 369 // If the calling convention demands that the callee pops arguments from the 370 // stack, we want to add it back if we have a reserved call frame. 371 assert(CalleePopAmount < 0xffffff && "call frame too large"); 372 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 373 {-(int64_t)CalleePopAmount, MVT::i8}, TII); 374 } 375 return MBB.erase(I); 376 } 377 378 static bool ShouldSignReturnAddress(MachineFunction &MF) { 379 // The function should be signed in the following situations: 380 // - sign-return-address=all 381 // - sign-return-address=non-leaf and the functions spills the LR 382 383 const Function &F = MF.getFunction(); 384 if (!F.hasFnAttribute("sign-return-address")) 385 return false; 386 387 StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString(); 388 if (Scope.equals("none")) 389 return false; 390 391 if (Scope.equals("all")) 392 return true; 393 394 assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf"); 395 396 for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo()) 397 if (Info.getReg() == AArch64::LR) 398 return true; 399 400 return false; 401 } 402 403 // Convenience function to create a DWARF expression for 404 // Expr + NumBytes + NumVGScaledBytes * AArch64::VG 405 static void appendVGScaledOffsetExpr(SmallVectorImpl<char> &Expr, 406 int NumBytes, int NumVGScaledBytes, unsigned VG, 407 llvm::raw_string_ostream &Comment) { 408 uint8_t buffer[16]; 409 410 if (NumBytes) { 411 Expr.push_back(dwarf::DW_OP_consts); 412 Expr.append(buffer, buffer + encodeSLEB128(NumBytes, buffer)); 413 Expr.push_back((uint8_t)dwarf::DW_OP_plus); 414 Comment << (NumBytes < 0 ? " - " : " + ") << std::abs(NumBytes); 415 } 416 417 if (NumVGScaledBytes) { 418 Expr.push_back((uint8_t)dwarf::DW_OP_consts); 419 Expr.append(buffer, buffer + encodeSLEB128(NumVGScaledBytes, buffer)); 420 421 Expr.push_back((uint8_t)dwarf::DW_OP_bregx); 422 Expr.append(buffer, buffer + encodeULEB128(VG, buffer)); 423 Expr.push_back(0); 424 425 Expr.push_back((uint8_t)dwarf::DW_OP_mul); 426 Expr.push_back((uint8_t)dwarf::DW_OP_plus); 427 428 Comment << (NumVGScaledBytes < 0 ? " - " : " + ") 429 << std::abs(NumVGScaledBytes) << " * VG"; 430 } 431 } 432 433 // Creates an MCCFIInstruction: 434 // { DW_CFA_def_cfa_expression, ULEB128 (sizeof expr), expr } 435 MCCFIInstruction AArch64FrameLowering::createDefCFAExpressionFromSP( 436 const TargetRegisterInfo &TRI, const StackOffset &OffsetFromSP) const { 437 int64_t NumBytes, NumVGScaledBytes; 438 OffsetFromSP.getForDwarfOffset(NumBytes, NumVGScaledBytes); 439 440 std::string CommentBuffer = "sp"; 441 llvm::raw_string_ostream Comment(CommentBuffer); 442 443 // Build up the expression (SP + NumBytes + NumVGScaledBytes * AArch64::VG) 444 SmallString<64> Expr; 445 Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + /*SP*/ 31)); 446 Expr.push_back(0); 447 appendVGScaledOffsetExpr(Expr, NumBytes, NumVGScaledBytes, 448 TRI.getDwarfRegNum(AArch64::VG, true), Comment); 449 450 // Wrap this into DW_CFA_def_cfa. 451 SmallString<64> DefCfaExpr; 452 DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression); 453 uint8_t buffer[16]; 454 DefCfaExpr.append(buffer, 455 buffer + encodeULEB128(Expr.size(), buffer)); 456 DefCfaExpr.append(Expr.str()); 457 return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), 458 Comment.str()); 459 } 460 461 MCCFIInstruction AArch64FrameLowering::createCfaOffset( 462 const TargetRegisterInfo &TRI, unsigned Reg, 463 const StackOffset &OffsetFromDefCFA) const { 464 int64_t NumBytes, NumVGScaledBytes; 465 OffsetFromDefCFA.getForDwarfOffset(NumBytes, NumVGScaledBytes); 466 467 unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true); 468 469 // Non-scalable offsets can use DW_CFA_offset directly. 470 if (!NumVGScaledBytes) 471 return MCCFIInstruction::createOffset(nullptr, DwarfReg, NumBytes); 472 473 std::string CommentBuffer; 474 llvm::raw_string_ostream Comment(CommentBuffer); 475 Comment << printReg(Reg, &TRI) << " @ cfa"; 476 477 // Build up expression (NumBytes + NumVGScaledBytes * AArch64::VG) 478 SmallString<64> OffsetExpr; 479 appendVGScaledOffsetExpr(OffsetExpr, NumBytes, NumVGScaledBytes, 480 TRI.getDwarfRegNum(AArch64::VG, true), Comment); 481 482 // Wrap this into DW_CFA_expression 483 SmallString<64> CfaExpr; 484 CfaExpr.push_back(dwarf::DW_CFA_expression); 485 uint8_t buffer[16]; 486 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 487 CfaExpr.append(buffer, buffer + encodeULEB128(OffsetExpr.size(), buffer)); 488 CfaExpr.append(OffsetExpr.str()); 489 490 return MCCFIInstruction::createEscape(nullptr, CfaExpr.str(), Comment.str()); 491 } 492 493 void AArch64FrameLowering::emitCalleeSavedFrameMoves( 494 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 495 MachineFunction &MF = *MBB.getParent(); 496 MachineFrameInfo &MFI = MF.getFrameInfo(); 497 const TargetSubtargetInfo &STI = MF.getSubtarget(); 498 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 499 const TargetInstrInfo *TII = STI.getInstrInfo(); 500 DebugLoc DL = MBB.findDebugLoc(MBBI); 501 502 // Add callee saved registers to move list. 503 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 504 if (CSI.empty()) 505 return; 506 507 for (const auto &Info : CSI) { 508 unsigned Reg = Info.getReg(); 509 510 // Not all unwinders may know about SVE registers, so assume the lowest 511 // common demoninator. 512 unsigned NewReg; 513 if (static_cast<const AArch64RegisterInfo *>(TRI)->regNeedsCFI(Reg, NewReg)) 514 Reg = NewReg; 515 else 516 continue; 517 518 StackOffset Offset; 519 if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::SVEVector) { 520 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 521 Offset = StackOffset(MFI.getObjectOffset(Info.getFrameIdx()), MVT::nxv1i8) - 522 StackOffset(AFI->getCalleeSavedStackSize(MFI), MVT::i8); 523 } else { 524 Offset = {MFI.getObjectOffset(Info.getFrameIdx()) - 525 getOffsetOfLocalArea(), 526 MVT::i8}; 527 } 528 unsigned CFIIndex = MF.addFrameInst(createCfaOffset(*TRI, Reg, Offset)); 529 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 530 .addCFIIndex(CFIIndex) 531 .setMIFlags(MachineInstr::FrameSetup); 532 } 533 } 534 535 // Find a scratch register that we can use at the start of the prologue to 536 // re-align the stack pointer. We avoid using callee-save registers since they 537 // may appear to be free when this is called from canUseAsPrologue (during 538 // shrink wrapping), but then no longer be free when this is called from 539 // emitPrologue. 540 // 541 // FIXME: This is a bit conservative, since in the above case we could use one 542 // of the callee-save registers as a scratch temp to re-align the stack pointer, 543 // but we would then have to make sure that we were in fact saving at least one 544 // callee-save register in the prologue, which is additional complexity that 545 // doesn't seem worth the benefit. 546 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 547 MachineFunction *MF = MBB->getParent(); 548 549 // If MBB is an entry block, use X9 as the scratch register 550 if (&MF->front() == MBB) 551 return AArch64::X9; 552 553 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 554 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 555 LivePhysRegs LiveRegs(TRI); 556 LiveRegs.addLiveIns(*MBB); 557 558 // Mark callee saved registers as used so we will not choose them. 559 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 560 for (unsigned i = 0; CSRegs[i]; ++i) 561 LiveRegs.addReg(CSRegs[i]); 562 563 // Prefer X9 since it was historically used for the prologue scratch reg. 564 const MachineRegisterInfo &MRI = MF->getRegInfo(); 565 if (LiveRegs.available(MRI, AArch64::X9)) 566 return AArch64::X9; 567 568 for (unsigned Reg : AArch64::GPR64RegClass) { 569 if (LiveRegs.available(MRI, Reg)) 570 return Reg; 571 } 572 return AArch64::NoRegister; 573 } 574 575 bool AArch64FrameLowering::canUseAsPrologue( 576 const MachineBasicBlock &MBB) const { 577 const MachineFunction *MF = MBB.getParent(); 578 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 579 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 580 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 581 582 // Don't need a scratch register if we're not going to re-align the stack. 583 if (!RegInfo->needsStackRealignment(*MF)) 584 return true; 585 // Otherwise, we can use any block as long as it has a scratch register 586 // available. 587 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 588 } 589 590 static bool windowsRequiresStackProbe(MachineFunction &MF, 591 uint64_t StackSizeInBytes) { 592 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 593 if (!Subtarget.isTargetWindows()) 594 return false; 595 const Function &F = MF.getFunction(); 596 // TODO: When implementing stack protectors, take that into account 597 // for the probe threshold. 598 unsigned StackProbeSize = 4096; 599 if (F.hasFnAttribute("stack-probe-size")) 600 F.getFnAttribute("stack-probe-size") 601 .getValueAsString() 602 .getAsInteger(0, StackProbeSize); 603 return (StackSizeInBytes >= StackProbeSize) && 604 !F.hasFnAttribute("no-stack-arg-probe"); 605 } 606 607 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 608 MachineFunction &MF, uint64_t StackBumpBytes) const { 609 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 610 const MachineFrameInfo &MFI = MF.getFrameInfo(); 611 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 612 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 613 614 if (AFI->getLocalStackSize() == 0) 615 return false; 616 617 // 512 is the maximum immediate for stp/ldp that will be used for 618 // callee-save save/restores 619 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 620 return false; 621 622 if (MFI.hasVarSizedObjects()) 623 return false; 624 625 if (RegInfo->needsStackRealignment(MF)) 626 return false; 627 628 // This isn't strictly necessary, but it simplifies things a bit since the 629 // current RedZone handling code assumes the SP is adjusted by the 630 // callee-save save/restore code. 631 if (canUseRedZone(MF)) 632 return false; 633 634 // When there is an SVE area on the stack, always allocate the 635 // callee-saves and spills/locals separately. 636 if (getSVEStackSize(MF)) 637 return false; 638 639 return true; 640 } 641 642 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( 643 MachineBasicBlock &MBB, unsigned StackBumpBytes) const { 644 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) 645 return false; 646 647 if (MBB.empty()) 648 return true; 649 650 // Disable combined SP bump if the last instruction is an MTE tag store. It 651 // is almost always better to merge SP adjustment into those instructions. 652 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); 653 MachineBasicBlock::iterator Begin = MBB.begin(); 654 while (LastI != Begin) { 655 --LastI; 656 if (LastI->isTransient()) 657 continue; 658 if (!LastI->getFlag(MachineInstr::FrameDestroy)) 659 break; 660 } 661 switch (LastI->getOpcode()) { 662 case AArch64::STGloop: 663 case AArch64::STZGloop: 664 case AArch64::STGOffset: 665 case AArch64::STZGOffset: 666 case AArch64::ST2GOffset: 667 case AArch64::STZ2GOffset: 668 return false; 669 default: 670 return true; 671 } 672 llvm_unreachable("unreachable"); 673 } 674 675 // Given a load or a store instruction, generate an appropriate unwinding SEH 676 // code on Windows. 677 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 678 const TargetInstrInfo &TII, 679 MachineInstr::MIFlag Flag) { 680 unsigned Opc = MBBI->getOpcode(); 681 MachineBasicBlock *MBB = MBBI->getParent(); 682 MachineFunction &MF = *MBB->getParent(); 683 DebugLoc DL = MBBI->getDebugLoc(); 684 unsigned ImmIdx = MBBI->getNumOperands() - 1; 685 int Imm = MBBI->getOperand(ImmIdx).getImm(); 686 MachineInstrBuilder MIB; 687 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 688 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 689 690 switch (Opc) { 691 default: 692 llvm_unreachable("No SEH Opcode for this instruction"); 693 case AArch64::LDPDpost: 694 Imm = -Imm; 695 LLVM_FALLTHROUGH; 696 case AArch64::STPDpre: { 697 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 698 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 699 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 700 .addImm(Reg0) 701 .addImm(Reg1) 702 .addImm(Imm * 8) 703 .setMIFlag(Flag); 704 break; 705 } 706 case AArch64::LDPXpost: 707 Imm = -Imm; 708 LLVM_FALLTHROUGH; 709 case AArch64::STPXpre: { 710 Register Reg0 = MBBI->getOperand(1).getReg(); 711 Register Reg1 = MBBI->getOperand(2).getReg(); 712 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 713 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 714 .addImm(Imm * 8) 715 .setMIFlag(Flag); 716 else 717 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 718 .addImm(RegInfo->getSEHRegNum(Reg0)) 719 .addImm(RegInfo->getSEHRegNum(Reg1)) 720 .addImm(Imm * 8) 721 .setMIFlag(Flag); 722 break; 723 } 724 case AArch64::LDRDpost: 725 Imm = -Imm; 726 LLVM_FALLTHROUGH; 727 case AArch64::STRDpre: { 728 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 729 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 730 .addImm(Reg) 731 .addImm(Imm) 732 .setMIFlag(Flag); 733 break; 734 } 735 case AArch64::LDRXpost: 736 Imm = -Imm; 737 LLVM_FALLTHROUGH; 738 case AArch64::STRXpre: { 739 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 740 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 741 .addImm(Reg) 742 .addImm(Imm) 743 .setMIFlag(Flag); 744 break; 745 } 746 case AArch64::STPDi: 747 case AArch64::LDPDi: { 748 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 749 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 750 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 751 .addImm(Reg0) 752 .addImm(Reg1) 753 .addImm(Imm * 8) 754 .setMIFlag(Flag); 755 break; 756 } 757 case AArch64::STPXi: 758 case AArch64::LDPXi: { 759 Register Reg0 = MBBI->getOperand(0).getReg(); 760 Register Reg1 = MBBI->getOperand(1).getReg(); 761 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 762 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 763 .addImm(Imm * 8) 764 .setMIFlag(Flag); 765 else 766 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 767 .addImm(RegInfo->getSEHRegNum(Reg0)) 768 .addImm(RegInfo->getSEHRegNum(Reg1)) 769 .addImm(Imm * 8) 770 .setMIFlag(Flag); 771 break; 772 } 773 case AArch64::STRXui: 774 case AArch64::LDRXui: { 775 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 776 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 777 .addImm(Reg) 778 .addImm(Imm * 8) 779 .setMIFlag(Flag); 780 break; 781 } 782 case AArch64::STRDui: 783 case AArch64::LDRDui: { 784 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 785 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 786 .addImm(Reg) 787 .addImm(Imm * 8) 788 .setMIFlag(Flag); 789 break; 790 } 791 } 792 auto I = MBB->insertAfter(MBBI, MIB); 793 return I; 794 } 795 796 // Fix up the SEH opcode associated with the save/restore instruction. 797 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 798 unsigned LocalStackSize) { 799 MachineOperand *ImmOpnd = nullptr; 800 unsigned ImmIdx = MBBI->getNumOperands() - 1; 801 switch (MBBI->getOpcode()) { 802 default: 803 llvm_unreachable("Fix the offset in the SEH instruction"); 804 case AArch64::SEH_SaveFPLR: 805 case AArch64::SEH_SaveRegP: 806 case AArch64::SEH_SaveReg: 807 case AArch64::SEH_SaveFRegP: 808 case AArch64::SEH_SaveFReg: 809 ImmOpnd = &MBBI->getOperand(ImmIdx); 810 break; 811 } 812 if (ImmOpnd) 813 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 814 } 815 816 // Convert callee-save register save/restore instruction to do stack pointer 817 // decrement/increment to allocate/deallocate the callee-save stack area by 818 // converting store/load to use pre/post increment version. 819 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 820 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 821 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 822 bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) { 823 // Ignore instructions that do not operate on SP, i.e. shadow call stack 824 // instructions and associated CFI instruction. 825 while (MBBI->getOpcode() == AArch64::STRXpost || 826 MBBI->getOpcode() == AArch64::LDRXpre || 827 MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) { 828 if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION) 829 assert(MBBI->getOperand(0).getReg() != AArch64::SP); 830 ++MBBI; 831 } 832 unsigned NewOpc; 833 int Scale = 1; 834 switch (MBBI->getOpcode()) { 835 default: 836 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 837 case AArch64::STPXi: 838 NewOpc = AArch64::STPXpre; 839 Scale = 8; 840 break; 841 case AArch64::STPDi: 842 NewOpc = AArch64::STPDpre; 843 Scale = 8; 844 break; 845 case AArch64::STPQi: 846 NewOpc = AArch64::STPQpre; 847 Scale = 16; 848 break; 849 case AArch64::STRXui: 850 NewOpc = AArch64::STRXpre; 851 break; 852 case AArch64::STRDui: 853 NewOpc = AArch64::STRDpre; 854 break; 855 case AArch64::STRQui: 856 NewOpc = AArch64::STRQpre; 857 break; 858 case AArch64::LDPXi: 859 NewOpc = AArch64::LDPXpost; 860 Scale = 8; 861 break; 862 case AArch64::LDPDi: 863 NewOpc = AArch64::LDPDpost; 864 Scale = 8; 865 break; 866 case AArch64::LDPQi: 867 NewOpc = AArch64::LDPQpost; 868 Scale = 16; 869 break; 870 case AArch64::LDRXui: 871 NewOpc = AArch64::LDRXpost; 872 break; 873 case AArch64::LDRDui: 874 NewOpc = AArch64::LDRDpost; 875 break; 876 case AArch64::LDRQui: 877 NewOpc = AArch64::LDRQpost; 878 break; 879 } 880 // Get rid of the SEH code associated with the old instruction. 881 if (NeedsWinCFI) { 882 auto SEH = std::next(MBBI); 883 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 884 SEH->eraseFromParent(); 885 } 886 887 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 888 MIB.addReg(AArch64::SP, RegState::Define); 889 890 // Copy all operands other than the immediate offset. 891 unsigned OpndIdx = 0; 892 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 893 ++OpndIdx) 894 MIB.add(MBBI->getOperand(OpndIdx)); 895 896 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 897 "Unexpected immediate offset in first/last callee-save save/restore " 898 "instruction!"); 899 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 900 "Unexpected base register in callee-save save/restore instruction!"); 901 assert(CSStackSizeInc % Scale == 0); 902 MIB.addImm(CSStackSizeInc / Scale); 903 904 MIB.setMIFlags(MBBI->getFlags()); 905 MIB.setMemRefs(MBBI->memoperands()); 906 907 // Generate a new SEH code that corresponds to the new instruction. 908 if (NeedsWinCFI) { 909 *HasWinCFI = true; 910 InsertSEH(*MIB, *TII, 911 InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy); 912 } 913 914 return std::prev(MBB.erase(MBBI)); 915 } 916 917 // Fixup callee-save register save/restore instructions to take into account 918 // combined SP bump by adding the local stack size to the stack offsets. 919 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 920 uint64_t LocalStackSize, 921 bool NeedsWinCFI, 922 bool *HasWinCFI) { 923 if (AArch64InstrInfo::isSEHInstruction(MI)) 924 return; 925 926 unsigned Opc = MI.getOpcode(); 927 928 // Ignore instructions that do not operate on SP, i.e. shadow call stack 929 // instructions and associated CFI instruction. 930 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre || 931 Opc == AArch64::CFI_INSTRUCTION) { 932 if (Opc != AArch64::CFI_INSTRUCTION) 933 assert(MI.getOperand(0).getReg() != AArch64::SP); 934 return; 935 } 936 937 unsigned Scale; 938 switch (Opc) { 939 case AArch64::STPXi: 940 case AArch64::STRXui: 941 case AArch64::STPDi: 942 case AArch64::STRDui: 943 case AArch64::LDPXi: 944 case AArch64::LDRXui: 945 case AArch64::LDPDi: 946 case AArch64::LDRDui: 947 Scale = 8; 948 break; 949 case AArch64::STPQi: 950 case AArch64::STRQui: 951 case AArch64::LDPQi: 952 case AArch64::LDRQui: 953 Scale = 16; 954 break; 955 default: 956 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 957 } 958 959 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 960 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 961 "Unexpected base register in callee-save save/restore instruction!"); 962 // Last operand is immediate offset that needs fixing. 963 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 964 // All generated opcodes have scaled offsets. 965 assert(LocalStackSize % Scale == 0); 966 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 967 968 if (NeedsWinCFI) { 969 *HasWinCFI = true; 970 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 971 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 972 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 973 "Expecting a SEH instruction"); 974 fixupSEHOpcode(MBBI, LocalStackSize); 975 } 976 } 977 978 static void adaptForLdStOpt(MachineBasicBlock &MBB, 979 MachineBasicBlock::iterator FirstSPPopI, 980 MachineBasicBlock::iterator LastPopI) { 981 // Sometimes (when we restore in the same order as we save), we can end up 982 // with code like this: 983 // 984 // ldp x26, x25, [sp] 985 // ldp x24, x23, [sp, #16] 986 // ldp x22, x21, [sp, #32] 987 // ldp x20, x19, [sp, #48] 988 // add sp, sp, #64 989 // 990 // In this case, it is always better to put the first ldp at the end, so 991 // that the load-store optimizer can run and merge the ldp and the add into 992 // a post-index ldp. 993 // If we managed to grab the first pop instruction, move it to the end. 994 if (ReverseCSRRestoreSeq) 995 MBB.splice(FirstSPPopI, &MBB, LastPopI); 996 // We should end up with something like this now: 997 // 998 // ldp x24, x23, [sp, #16] 999 // ldp x22, x21, [sp, #32] 1000 // ldp x20, x19, [sp, #48] 1001 // ldp x26, x25, [sp] 1002 // add sp, sp, #64 1003 // 1004 // and the load-store optimizer can merge the last two instructions into: 1005 // 1006 // ldp x26, x25, [sp], #64 1007 // 1008 } 1009 1010 static bool ShouldSignWithAKey(MachineFunction &MF) { 1011 const Function &F = MF.getFunction(); 1012 if (!F.hasFnAttribute("sign-return-address-key")) 1013 return true; 1014 1015 const StringRef Key = 1016 F.getFnAttribute("sign-return-address-key").getValueAsString(); 1017 assert(Key.equals_lower("a_key") || Key.equals_lower("b_key")); 1018 return Key.equals_lower("a_key"); 1019 } 1020 1021 static bool needsWinCFI(const MachineFunction &MF) { 1022 const Function &F = MF.getFunction(); 1023 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 1024 F.needsUnwindTableEntry(); 1025 } 1026 1027 static bool isTargetDarwin(const MachineFunction &MF) { 1028 return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin(); 1029 } 1030 1031 static bool isTargetWindows(const MachineFunction &MF) { 1032 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 1033 } 1034 1035 // Convenience function to determine whether I is an SVE callee save. 1036 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 1037 switch (I->getOpcode()) { 1038 default: 1039 return false; 1040 case AArch64::STR_ZXI: 1041 case AArch64::STR_PXI: 1042 case AArch64::LDR_ZXI: 1043 case AArch64::LDR_PXI: 1044 return I->getFlag(MachineInstr::FrameSetup) || 1045 I->getFlag(MachineInstr::FrameDestroy); 1046 } 1047 } 1048 1049 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 1050 MachineBasicBlock &MBB) const { 1051 MachineBasicBlock::iterator MBBI = MBB.begin(); 1052 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1053 const Function &F = MF.getFunction(); 1054 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1055 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1056 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1057 MachineModuleInfo &MMI = MF.getMMI(); 1058 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1059 bool needsFrameMoves = 1060 MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1061 bool HasFP = hasFP(MF); 1062 bool NeedsWinCFI = needsWinCFI(MF); 1063 bool HasWinCFI = false; 1064 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 1065 1066 bool IsFunclet = MBB.isEHFuncletEntry(); 1067 1068 // At this point, we're going to decide whether or not the function uses a 1069 // redzone. In most cases, the function doesn't have a redzone so let's 1070 // assume that's false and set it to true in the case that there's a redzone. 1071 AFI->setHasRedZone(false); 1072 1073 // Debug location must be unknown since the first debug location is used 1074 // to determine the end of the prologue. 1075 DebugLoc DL; 1076 1077 if (ShouldSignReturnAddress(MF)) { 1078 if (ShouldSignWithAKey(MF)) 1079 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP)) 1080 .setMIFlag(MachineInstr::FrameSetup); 1081 else { 1082 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY)) 1083 .setMIFlag(MachineInstr::FrameSetup); 1084 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP)) 1085 .setMIFlag(MachineInstr::FrameSetup); 1086 } 1087 1088 unsigned CFIIndex = 1089 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 1090 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1091 .addCFIIndex(CFIIndex) 1092 .setMIFlags(MachineInstr::FrameSetup); 1093 } 1094 1095 // All calls are tail calls in GHC calling conv, and functions have no 1096 // prologue/epilogue. 1097 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1098 return; 1099 1100 // Set tagged base pointer to the bottom of the stack frame. 1101 // Ideally it should match SP value after prologue. 1102 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 1103 1104 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1105 1106 // getStackSize() includes all the locals in its size calculation. We don't 1107 // include these locals when computing the stack size of a funclet, as they 1108 // are allocated in the parent's stack frame and accessed via the frame 1109 // pointer from the funclet. We only save the callee saved registers in the 1110 // funclet, which are really the callee saved registers of the parent 1111 // function, including the funclet. 1112 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1113 : MFI.getStackSize(); 1114 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 1115 assert(!HasFP && "unexpected function without stack frame but with FP"); 1116 assert(!SVEStackSize && 1117 "unexpected function without stack frame but with SVE objects"); 1118 // All of the stack allocation is for locals. 1119 AFI->setLocalStackSize(NumBytes); 1120 if (!NumBytes) 1121 return; 1122 // REDZONE: If the stack size is less than 128 bytes, we don't need 1123 // to actually allocate. 1124 if (canUseRedZone(MF)) { 1125 AFI->setHasRedZone(true); 1126 ++NumRedZoneFunctions; 1127 } else { 1128 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1129 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, 1130 false, NeedsWinCFI, &HasWinCFI); 1131 if (!NeedsWinCFI && needsFrameMoves) { 1132 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 1133 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 1134 // Encode the stack size of the leaf function. 1135 unsigned CFIIndex = MF.addFrameInst( 1136 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); 1137 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1138 .addCFIIndex(CFIIndex) 1139 .setMIFlags(MachineInstr::FrameSetup); 1140 } 1141 } 1142 1143 if (NeedsWinCFI) { 1144 HasWinCFI = true; 1145 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1146 .setMIFlag(MachineInstr::FrameSetup); 1147 } 1148 1149 return; 1150 } 1151 1152 bool IsWin64 = 1153 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1154 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1155 1156 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1157 // All of the remaining stack allocations are for locals. 1158 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1159 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1160 if (CombineSPBump) { 1161 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1162 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1163 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false, 1164 NeedsWinCFI, &HasWinCFI); 1165 NumBytes = 0; 1166 } else if (PrologueSaveSize != 0) { 1167 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 1168 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI); 1169 NumBytes -= PrologueSaveSize; 1170 } 1171 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1172 1173 // Move past the saves of the callee-saved registers, fixing up the offsets 1174 // and pre-inc if we decided to combine the callee-save and local stack 1175 // pointer bump above. 1176 MachineBasicBlock::iterator End = MBB.end(); 1177 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1178 !IsSVECalleeSave(MBBI)) { 1179 if (CombineSPBump) 1180 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1181 NeedsWinCFI, &HasWinCFI); 1182 ++MBBI; 1183 } 1184 1185 // For funclets the FP belongs to the containing function. 1186 if (!IsFunclet && HasFP) { 1187 // Only set up FP if we actually need to. 1188 int64_t FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0; 1189 1190 if (CombineSPBump) 1191 FPOffset += AFI->getLocalStackSize(); 1192 1193 // Issue sub fp, sp, FPOffset or 1194 // mov fp,sp when FPOffset is zero. 1195 // Note: All stores of callee-saved registers are marked as "FrameSetup". 1196 // This code marks the instruction(s) that set the FP also. 1197 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 1198 {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false, 1199 NeedsWinCFI, &HasWinCFI); 1200 } 1201 1202 if (windowsRequiresStackProbe(MF, NumBytes)) { 1203 uint64_t NumWords = NumBytes >> 4; 1204 if (NeedsWinCFI) { 1205 HasWinCFI = true; 1206 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 1207 // exceed this amount. We need to move at most 2^24 - 1 into x15. 1208 // This is at most two instructions, MOVZ follwed by MOVK. 1209 // TODO: Fix to use multiple stack alloc unwind codes for stacks 1210 // exceeding 256MB in size. 1211 if (NumBytes >= (1 << 28)) 1212 report_fatal_error("Stack size cannot exceed 256MB for stack " 1213 "unwinding purposes"); 1214 1215 uint32_t LowNumWords = NumWords & 0xFFFF; 1216 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 1217 .addImm(LowNumWords) 1218 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1219 .setMIFlag(MachineInstr::FrameSetup); 1220 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1221 .setMIFlag(MachineInstr::FrameSetup); 1222 if ((NumWords & 0xFFFF0000) != 0) { 1223 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 1224 .addReg(AArch64::X15) 1225 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 1226 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 1227 .setMIFlag(MachineInstr::FrameSetup); 1228 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1229 .setMIFlag(MachineInstr::FrameSetup); 1230 } 1231 } else { 1232 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 1233 .addImm(NumWords) 1234 .setMIFlags(MachineInstr::FrameSetup); 1235 } 1236 1237 switch (MF.getTarget().getCodeModel()) { 1238 case CodeModel::Tiny: 1239 case CodeModel::Small: 1240 case CodeModel::Medium: 1241 case CodeModel::Kernel: 1242 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 1243 .addExternalSymbol("__chkstk") 1244 .addReg(AArch64::X15, RegState::Implicit) 1245 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1246 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1247 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1248 .setMIFlags(MachineInstr::FrameSetup); 1249 if (NeedsWinCFI) { 1250 HasWinCFI = true; 1251 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1252 .setMIFlag(MachineInstr::FrameSetup); 1253 } 1254 break; 1255 case CodeModel::Large: 1256 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 1257 .addReg(AArch64::X16, RegState::Define) 1258 .addExternalSymbol("__chkstk") 1259 .addExternalSymbol("__chkstk") 1260 .setMIFlags(MachineInstr::FrameSetup); 1261 if (NeedsWinCFI) { 1262 HasWinCFI = true; 1263 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1264 .setMIFlag(MachineInstr::FrameSetup); 1265 } 1266 1267 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF))) 1268 .addReg(AArch64::X16, RegState::Kill) 1269 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 1270 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1271 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1272 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1273 .setMIFlags(MachineInstr::FrameSetup); 1274 if (NeedsWinCFI) { 1275 HasWinCFI = true; 1276 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1277 .setMIFlag(MachineInstr::FrameSetup); 1278 } 1279 break; 1280 } 1281 1282 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 1283 .addReg(AArch64::SP, RegState::Kill) 1284 .addReg(AArch64::X15, RegState::Kill) 1285 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 1286 .setMIFlags(MachineInstr::FrameSetup); 1287 if (NeedsWinCFI) { 1288 HasWinCFI = true; 1289 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1290 .addImm(NumBytes) 1291 .setMIFlag(MachineInstr::FrameSetup); 1292 } 1293 NumBytes = 0; 1294 } 1295 1296 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {}; 1297 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 1298 1299 // Process the SVE callee-saves to determine what space needs to be 1300 // allocated. 1301 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 1302 // Find callee save instructions in frame. 1303 CalleeSavesBegin = MBBI; 1304 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 1305 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 1306 ++MBBI; 1307 CalleeSavesEnd = MBBI; 1308 1309 AllocateBefore = {CalleeSavedSize, MVT::nxv1i8}; 1310 AllocateAfter = SVEStackSize - AllocateBefore; 1311 } 1312 1313 // Allocate space for the callee saves (if any). 1314 emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, 1315 -AllocateBefore, TII, 1316 MachineInstr::FrameSetup); 1317 1318 // Finally allocate remaining SVE stack space. 1319 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP, 1320 -AllocateAfter, TII, 1321 MachineInstr::FrameSetup); 1322 1323 // Allocate space for the rest of the frame. 1324 if (NumBytes) { 1325 // Alignment is required for the parent frame, not the funclet 1326 const bool NeedsRealignment = 1327 !IsFunclet && RegInfo->needsStackRealignment(MF); 1328 unsigned scratchSPReg = AArch64::SP; 1329 1330 if (NeedsRealignment) { 1331 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB); 1332 assert(scratchSPReg != AArch64::NoRegister); 1333 } 1334 1335 // If we're a leaf function, try using the red zone. 1336 if (!canUseRedZone(MF)) 1337 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 1338 // the correct value here, as NumBytes also includes padding bytes, 1339 // which shouldn't be counted here. 1340 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, 1341 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, 1342 false, NeedsWinCFI, &HasWinCFI); 1343 1344 if (NeedsRealignment) { 1345 const unsigned NrBitsToZero = Log2(MFI.getMaxAlign()); 1346 assert(NrBitsToZero > 1); 1347 assert(scratchSPReg != AArch64::SP); 1348 1349 // SUB X9, SP, NumBytes 1350 // -- X9 is temporary register, so shouldn't contain any live data here, 1351 // -- free to use. This is already produced by emitFrameOffset above. 1352 // AND SP, X9, 0b11111...0000 1353 // The logical immediates have a non-trivial encoding. The following 1354 // formula computes the encoded immediate with all ones but 1355 // NrBitsToZero zero bits as least significant bits. 1356 uint32_t andMaskEncoded = (1 << 12) // = N 1357 | ((64 - NrBitsToZero) << 6) // immr 1358 | ((64 - NrBitsToZero - 1) << 0); // imms 1359 1360 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 1361 .addReg(scratchSPReg, RegState::Kill) 1362 .addImm(andMaskEncoded); 1363 AFI->setStackRealigned(true); 1364 if (NeedsWinCFI) { 1365 HasWinCFI = true; 1366 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1367 .addImm(NumBytes & andMaskEncoded) 1368 .setMIFlag(MachineInstr::FrameSetup); 1369 } 1370 } 1371 } 1372 1373 // If we need a base pointer, set it up here. It's whatever the value of the 1374 // stack pointer is at this point. Any variable size objects will be allocated 1375 // after this, so we can still use the base pointer to reference locals. 1376 // 1377 // FIXME: Clarify FrameSetup flags here. 1378 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 1379 // needed. 1380 // For funclets the BP belongs to the containing function. 1381 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 1382 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 1383 false); 1384 if (NeedsWinCFI) { 1385 HasWinCFI = true; 1386 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1387 .setMIFlag(MachineInstr::FrameSetup); 1388 } 1389 } 1390 1391 // The very last FrameSetup instruction indicates the end of prologue. Emit a 1392 // SEH opcode indicating the prologue end. 1393 if (NeedsWinCFI && HasWinCFI) { 1394 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1395 .setMIFlag(MachineInstr::FrameSetup); 1396 } 1397 1398 // SEH funclets are passed the frame pointer in X1. If the parent 1399 // function uses the base register, then the base register is used 1400 // directly, and is not retrieved from X1. 1401 if (IsFunclet && F.hasPersonalityFn()) { 1402 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 1403 if (isAsynchronousEHPersonality(Per)) { 1404 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 1405 .addReg(AArch64::X1) 1406 .setMIFlag(MachineInstr::FrameSetup); 1407 MBB.addLiveIn(AArch64::X1); 1408 } 1409 } 1410 1411 if (needsFrameMoves) { 1412 const DataLayout &TD = MF.getDataLayout(); 1413 const int StackGrowth = isTargetDarwin(MF) 1414 ? (2 * -TD.getPointerSize(0)) 1415 : -AFI->getCalleeSavedStackSize(); 1416 Register FramePtr = RegInfo->getFrameRegister(MF); 1417 // An example of the prologue: 1418 // 1419 // .globl __foo 1420 // .align 2 1421 // __foo: 1422 // Ltmp0: 1423 // .cfi_startproc 1424 // .cfi_personality 155, ___gxx_personality_v0 1425 // Leh_func_begin: 1426 // .cfi_lsda 16, Lexception33 1427 // 1428 // stp xa,bx, [sp, -#offset]! 1429 // ... 1430 // stp x28, x27, [sp, #offset-32] 1431 // stp fp, lr, [sp, #offset-16] 1432 // add fp, sp, #offset - 16 1433 // sub sp, sp, #1360 1434 // 1435 // The Stack: 1436 // +-------------------------------------------+ 1437 // 10000 | ........ | ........ | ........ | ........ | 1438 // 10004 | ........ | ........ | ........ | ........ | 1439 // +-------------------------------------------+ 1440 // 10008 | ........ | ........ | ........ | ........ | 1441 // 1000c | ........ | ........ | ........ | ........ | 1442 // +===========================================+ 1443 // 10010 | X28 Register | 1444 // 10014 | X28 Register | 1445 // +-------------------------------------------+ 1446 // 10018 | X27 Register | 1447 // 1001c | X27 Register | 1448 // +===========================================+ 1449 // 10020 | Frame Pointer | 1450 // 10024 | Frame Pointer | 1451 // +-------------------------------------------+ 1452 // 10028 | Link Register | 1453 // 1002c | Link Register | 1454 // +===========================================+ 1455 // 10030 | ........ | ........ | ........ | ........ | 1456 // 10034 | ........ | ........ | ........ | ........ | 1457 // +-------------------------------------------+ 1458 // 10038 | ........ | ........ | ........ | ........ | 1459 // 1003c | ........ | ........ | ........ | ........ | 1460 // +-------------------------------------------+ 1461 // 1462 // [sp] = 10030 :: >>initial value<< 1463 // sp = 10020 :: stp fp, lr, [sp, #-16]! 1464 // fp = sp == 10020 :: mov fp, sp 1465 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 1466 // sp == 10010 :: >>final value<< 1467 // 1468 // The frame pointer (w29) points to address 10020. If we use an offset of 1469 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 1470 // for w27, and -32 for w28: 1471 // 1472 // Ltmp1: 1473 // .cfi_def_cfa w29, 16 1474 // Ltmp2: 1475 // .cfi_offset w30, -8 1476 // Ltmp3: 1477 // .cfi_offset w29, -16 1478 // Ltmp4: 1479 // .cfi_offset w27, -24 1480 // Ltmp5: 1481 // .cfi_offset w28, -32 1482 1483 if (HasFP) { 1484 // Define the current CFA rule to use the provided FP. 1485 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true); 1486 unsigned CFIIndex = MF.addFrameInst( 1487 MCCFIInstruction::cfiDefCfa(nullptr, Reg, FixedObject - StackGrowth)); 1488 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1489 .addCFIIndex(CFIIndex) 1490 .setMIFlags(MachineInstr::FrameSetup); 1491 } else { 1492 unsigned CFIIndex; 1493 if (SVEStackSize) { 1494 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1495 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1496 StackOffset TotalSize = 1497 SVEStackSize + StackOffset((int64_t)MFI.getStackSize(), MVT::i8); 1498 CFIIndex = MF.addFrameInst(createDefCFAExpressionFromSP(TRI, TotalSize)); 1499 } else { 1500 // Encode the stack size of the leaf function. 1501 CFIIndex = MF.addFrameInst( 1502 MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize())); 1503 } 1504 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1505 .addCFIIndex(CFIIndex) 1506 .setMIFlags(MachineInstr::FrameSetup); 1507 } 1508 1509 // Now emit the moves for whatever callee saved regs we have (including FP, 1510 // LR if those are saved). 1511 emitCalleeSavedFrameMoves(MBB, MBBI); 1512 } 1513 } 1514 1515 static void InsertReturnAddressAuth(MachineFunction &MF, 1516 MachineBasicBlock &MBB) { 1517 if (!ShouldSignReturnAddress(MF)) 1518 return; 1519 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1520 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1521 1522 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1523 DebugLoc DL; 1524 if (MBBI != MBB.end()) 1525 DL = MBBI->getDebugLoc(); 1526 1527 // The AUTIASP instruction assembles to a hint instruction before v8.3a so 1528 // this instruction can safely used for any v8a architecture. 1529 // From v8.3a onwards there are optimised authenticate LR and return 1530 // instructions, namely RETA{A,B}, that can be used instead. 1531 if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() && 1532 MBBI->getOpcode() == AArch64::RET_ReallyLR) { 1533 BuildMI(MBB, MBBI, DL, 1534 TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB)) 1535 .copyImplicitOps(*MBBI); 1536 MBB.erase(MBBI); 1537 } else { 1538 BuildMI( 1539 MBB, MBBI, DL, 1540 TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP)) 1541 .setMIFlag(MachineInstr::FrameDestroy); 1542 } 1543 } 1544 1545 static bool isFuncletReturnInstr(const MachineInstr &MI) { 1546 switch (MI.getOpcode()) { 1547 default: 1548 return false; 1549 case AArch64::CATCHRET: 1550 case AArch64::CLEANUPRET: 1551 return true; 1552 } 1553 } 1554 1555 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 1556 MachineBasicBlock &MBB) const { 1557 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 1558 MachineFrameInfo &MFI = MF.getFrameInfo(); 1559 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1560 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1561 DebugLoc DL; 1562 bool NeedsWinCFI = needsWinCFI(MF); 1563 bool HasWinCFI = false; 1564 bool IsFunclet = false; 1565 auto WinCFI = make_scope_exit([&]() { 1566 if (!MF.hasWinCFI()) 1567 MF.setHasWinCFI(HasWinCFI); 1568 }); 1569 1570 if (MBB.end() != MBBI) { 1571 DL = MBBI->getDebugLoc(); 1572 IsFunclet = isFuncletReturnInstr(*MBBI); 1573 } 1574 1575 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1576 : MFI.getStackSize(); 1577 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1578 1579 // All calls are tail calls in GHC calling conv, and functions have no 1580 // prologue/epilogue. 1581 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1582 return; 1583 1584 // Initial and residual are named for consistency with the prologue. Note that 1585 // in the epilogue, the residual adjustment is executed first. 1586 uint64_t ArgumentPopSize = getArgumentPopSize(MF, MBB); 1587 1588 // The stack frame should be like below, 1589 // 1590 // ---------------------- --- 1591 // | | | 1592 // | BytesInStackArgArea| CalleeArgStackSize 1593 // | (NumReusableBytes) | (of tail call) 1594 // | | --- 1595 // | | | 1596 // ---------------------| --- | 1597 // | | | | 1598 // | CalleeSavedReg | | | 1599 // | (CalleeSavedStackSize)| | | 1600 // | | | | 1601 // ---------------------| | NumBytes 1602 // | | StackSize (StackAdjustUp) 1603 // | LocalStackSize | | | 1604 // | (covering callee | | | 1605 // | args) | | | 1606 // | | | | 1607 // ---------------------- --- --- 1608 // 1609 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize 1610 // = StackSize + ArgumentPopSize 1611 // 1612 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps 1613 // it as the 2nd argument of AArch64ISD::TC_RETURN. 1614 1615 auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); }); 1616 1617 bool IsWin64 = 1618 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1619 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1620 1621 uint64_t AfterCSRPopSize = ArgumentPopSize; 1622 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1623 // We cannot rely on the local stack size set in emitPrologue if the function 1624 // has funclets, as funclets have different local stack size requirements, and 1625 // the current value set in emitPrologue may be that of the containing 1626 // function. 1627 if (MF.hasEHFunclets()) 1628 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1629 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); 1630 // Assume we can't combine the last pop with the sp restore. 1631 1632 if (!CombineSPBump && PrologueSaveSize != 0) { 1633 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 1634 while (AArch64InstrInfo::isSEHInstruction(*Pop)) 1635 Pop = std::prev(Pop); 1636 // Converting the last ldp to a post-index ldp is valid only if the last 1637 // ldp's offset is 0. 1638 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 1639 // If the offset is 0, convert it to a post-index ldp. 1640 if (OffsetOp.getImm() == 0) 1641 convertCalleeSaveRestoreToSPPrePostIncDec( 1642 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false); 1643 else { 1644 // If not, make sure to emit an add after the last ldp. 1645 // We're doing this by transfering the size to be restored from the 1646 // adjustment *before* the CSR pops to the adjustment *after* the CSR 1647 // pops. 1648 AfterCSRPopSize += PrologueSaveSize; 1649 } 1650 } 1651 1652 // Move past the restores of the callee-saved registers. 1653 // If we plan on combining the sp bump of the local stack size and the callee 1654 // save stack size, we might need to adjust the CSR save and restore offsets. 1655 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 1656 MachineBasicBlock::iterator Begin = MBB.begin(); 1657 while (LastPopI != Begin) { 1658 --LastPopI; 1659 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 1660 IsSVECalleeSave(LastPopI)) { 1661 ++LastPopI; 1662 break; 1663 } else if (CombineSPBump) 1664 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 1665 NeedsWinCFI, &HasWinCFI); 1666 } 1667 1668 if (NeedsWinCFI) { 1669 HasWinCFI = true; 1670 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 1671 .setMIFlag(MachineInstr::FrameDestroy); 1672 } 1673 1674 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1675 1676 // If there is a single SP update, insert it before the ret and we're done. 1677 if (CombineSPBump) { 1678 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1679 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 1680 {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII, 1681 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1682 if (NeedsWinCFI && HasWinCFI) 1683 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1684 TII->get(AArch64::SEH_EpilogEnd)) 1685 .setMIFlag(MachineInstr::FrameDestroy); 1686 return; 1687 } 1688 1689 NumBytes -= PrologueSaveSize; 1690 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1691 1692 // Process the SVE callee-saves to determine what space needs to be 1693 // deallocated. 1694 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 1695 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 1696 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 1697 RestoreBegin = std::prev(RestoreEnd); 1698 while (RestoreBegin != MBB.begin() && 1699 IsSVECalleeSave(std::prev(RestoreBegin))) 1700 --RestoreBegin; 1701 1702 assert(IsSVECalleeSave(RestoreBegin) && 1703 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 1704 1705 StackOffset CalleeSavedSizeAsOffset = {CalleeSavedSize, MVT::nxv1i8}; 1706 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset; 1707 DeallocateAfter = CalleeSavedSizeAsOffset; 1708 } 1709 1710 // Deallocate the SVE area. 1711 if (SVEStackSize) { 1712 if (AFI->isStackRealigned()) { 1713 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) 1714 // Set SP to start of SVE callee-save area from which they can 1715 // be reloaded. The code below will deallocate the stack space 1716 // space by moving FP -> SP. 1717 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 1718 {-CalleeSavedSize, MVT::nxv1i8}, TII, 1719 MachineInstr::FrameDestroy); 1720 } else { 1721 if (AFI->getSVECalleeSavedStackSize()) { 1722 // Deallocate the non-SVE locals first before we can deallocate (and 1723 // restore callee saves) from the SVE area. 1724 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1725 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy); 1726 NumBytes = 0; 1727 } 1728 1729 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1730 DeallocateBefore, TII, MachineInstr::FrameDestroy); 1731 1732 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 1733 DeallocateAfter, TII, MachineInstr::FrameDestroy); 1734 } 1735 } 1736 1737 if (!hasFP(MF)) { 1738 bool RedZone = canUseRedZone(MF); 1739 // If this was a redzone leaf function, we don't need to restore the 1740 // stack pointer (but we may need to pop stack args for fastcc). 1741 if (RedZone && AfterCSRPopSize == 0) 1742 return; 1743 1744 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 1745 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 1746 if (NoCalleeSaveRestore) 1747 StackRestoreBytes += AfterCSRPopSize; 1748 1749 // If we were able to combine the local stack pop with the argument pop, 1750 // then we're done. 1751 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0; 1752 1753 // If we're done after this, make sure to help the load store optimizer. 1754 if (Done) 1755 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI); 1756 1757 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1758 {StackRestoreBytes, MVT::i8}, TII, 1759 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1760 if (Done) { 1761 if (NeedsWinCFI) { 1762 HasWinCFI = true; 1763 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1764 TII->get(AArch64::SEH_EpilogEnd)) 1765 .setMIFlag(MachineInstr::FrameDestroy); 1766 } 1767 return; 1768 } 1769 1770 NumBytes = 0; 1771 } 1772 1773 // Restore the original stack pointer. 1774 // FIXME: Rather than doing the math here, we should instead just use 1775 // non-post-indexed loads for the restores if we aren't actually going to 1776 // be able to save any instructions. 1777 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 1778 int64_t OffsetToFrameRecord = 1779 isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0; 1780 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 1781 {OffsetToFrameRecord, MVT::i8}, 1782 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI); 1783 } else if (NumBytes) 1784 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1785 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false, 1786 NeedsWinCFI); 1787 1788 // This must be placed after the callee-save restore code because that code 1789 // assumes the SP is at the same location as it was after the callee-save save 1790 // code in the prologue. 1791 if (AfterCSRPopSize) { 1792 // Find an insertion point for the first ldp so that it goes before the 1793 // shadow call stack epilog instruction. This ensures that the restore of 1794 // lr from x18 is placed after the restore from sp. 1795 auto FirstSPPopI = MBB.getFirstTerminator(); 1796 while (FirstSPPopI != Begin) { 1797 auto Prev = std::prev(FirstSPPopI); 1798 if (Prev->getOpcode() != AArch64::LDRXpre || 1799 Prev->getOperand(0).getReg() == AArch64::SP) 1800 break; 1801 FirstSPPopI = Prev; 1802 } 1803 1804 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI); 1805 1806 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP, 1807 {(int64_t)AfterCSRPopSize, MVT::i8}, TII, 1808 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1809 } 1810 if (NeedsWinCFI && HasWinCFI) 1811 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd)) 1812 .setMIFlag(MachineInstr::FrameDestroy); 1813 1814 MF.setHasWinCFI(HasWinCFI); 1815 } 1816 1817 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1818 /// debug info. It's the same as what we use for resolving the code-gen 1819 /// references for now. FIXME: This can go wrong when references are 1820 /// SP-relative and simple call frames aren't used. 1821 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, 1822 int FI, 1823 Register &FrameReg) const { 1824 return resolveFrameIndexReference( 1825 MF, FI, FrameReg, 1826 /*PreferFP=*/ 1827 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress), 1828 /*ForSimm=*/false) 1829 .getBytes(); 1830 } 1831 1832 int AArch64FrameLowering::getNonLocalFrameIndexReference( 1833 const MachineFunction &MF, int FI) const { 1834 return getSEHFrameIndexOffset(MF, FI); 1835 } 1836 1837 static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) { 1838 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1839 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1840 bool IsWin64 = 1841 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1842 1843 unsigned FixedObject = 1844 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 1845 unsigned FPAdjust = isTargetDarwin(MF) 1846 ? 16 : AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 1847 return {ObjectOffset + FixedObject + FPAdjust, MVT::i8}; 1848 } 1849 1850 static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) { 1851 const auto &MFI = MF.getFrameInfo(); 1852 return {ObjectOffset + (int64_t)MFI.getStackSize(), MVT::i8}; 1853 } 1854 1855 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 1856 int FI) const { 1857 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1858 MF.getSubtarget().getRegisterInfo()); 1859 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 1860 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 1861 ? getFPOffset(MF, ObjectOffset).getBytes() 1862 : getStackOffset(MF, ObjectOffset).getBytes(); 1863 } 1864 1865 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 1866 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, 1867 bool ForSimm) const { 1868 const auto &MFI = MF.getFrameInfo(); 1869 int64_t ObjectOffset = MFI.getObjectOffset(FI); 1870 bool isFixed = MFI.isFixedObjectIndex(FI); 1871 bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector; 1872 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 1873 PreferFP, ForSimm); 1874 } 1875 1876 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 1877 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 1878 Register &FrameReg, bool PreferFP, bool ForSimm) const { 1879 const auto &MFI = MF.getFrameInfo(); 1880 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1881 MF.getSubtarget().getRegisterInfo()); 1882 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1883 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1884 1885 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getBytes(); 1886 int64_t Offset = getStackOffset(MF, ObjectOffset).getBytes(); 1887 bool isCSR = 1888 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 1889 1890 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1891 1892 // Use frame pointer to reference fixed objects. Use it for locals if 1893 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 1894 // reliable as a base). Make sure useFPForScavengingIndex() does the 1895 // right thing for the emergency spill slot. 1896 bool UseFP = false; 1897 if (AFI->hasStackFrame() && !isSVE) { 1898 // We shouldn't prefer using the FP when there is an SVE area 1899 // in between the FP and the non-SVE locals/spills. 1900 PreferFP &= !SVEStackSize; 1901 1902 // Note: Keeping the following as multiple 'if' statements rather than 1903 // merging to a single expression for readability. 1904 // 1905 // Argument access should always use the FP. 1906 if (isFixed) { 1907 UseFP = hasFP(MF); 1908 } else if (isCSR && RegInfo->needsStackRealignment(MF)) { 1909 // References to the CSR area must use FP if we're re-aligning the stack 1910 // since the dynamically-sized alignment padding is between the SP/BP and 1911 // the CSR area. 1912 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 1913 UseFP = true; 1914 } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) { 1915 // If the FPOffset is negative and we're producing a signed immediate, we 1916 // have to keep in mind that the available offset range for negative 1917 // offsets is smaller than for positive ones. If an offset is available 1918 // via the FP and the SP, use whichever is closest. 1919 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 1920 PreferFP |= Offset > -FPOffset; 1921 1922 if (MFI.hasVarSizedObjects()) { 1923 // If we have variable sized objects, we can use either FP or BP, as the 1924 // SP offset is unknown. We can use the base pointer if we have one and 1925 // FP is not preferred. If not, we're stuck with using FP. 1926 bool CanUseBP = RegInfo->hasBasePointer(MF); 1927 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 1928 UseFP = PreferFP; 1929 else if (!CanUseBP) // Can't use BP. Forced to use FP. 1930 UseFP = true; 1931 // else we can use BP and FP, but the offset from FP won't fit. 1932 // That will make us scavenge registers which we can probably avoid by 1933 // using BP. If it won't fit for BP either, we'll scavenge anyway. 1934 } else if (FPOffset >= 0) { 1935 // Use SP or FP, whichever gives us the best chance of the offset 1936 // being in range for direct access. If the FPOffset is positive, 1937 // that'll always be best, as the SP will be even further away. 1938 UseFP = true; 1939 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 1940 // Funclets access the locals contained in the parent's stack frame 1941 // via the frame pointer, so we have to use the FP in the parent 1942 // function. 1943 (void) Subtarget; 1944 assert( 1945 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) && 1946 "Funclets should only be present on Win64"); 1947 UseFP = true; 1948 } else { 1949 // We have the choice between FP and (SP or BP). 1950 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 1951 UseFP = true; 1952 } 1953 } 1954 } 1955 1956 assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) && 1957 "In the presence of dynamic stack pointer realignment, " 1958 "non-argument/CSR objects cannot be accessed through the frame pointer"); 1959 1960 if (isSVE) { 1961 int64_t OffsetToSVEArea = 1962 MFI.getStackSize() - AFI->getCalleeSavedStackSize(); 1963 StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8}; 1964 StackOffset SPOffset = SVEStackSize + 1965 StackOffset(ObjectOffset, MVT::nxv1i8) + 1966 StackOffset(OffsetToSVEArea, MVT::i8); 1967 // Always use the FP for SVE spills if available and beneficial. 1968 if (hasFP(MF) && 1969 (SPOffset.getBytes() || 1970 FPOffset.getScalableBytes() < SPOffset.getScalableBytes() || 1971 RegInfo->needsStackRealignment(MF))) { 1972 FrameReg = RegInfo->getFrameRegister(MF); 1973 return FPOffset; 1974 } 1975 1976 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 1977 : (unsigned)AArch64::SP; 1978 return SPOffset; 1979 } 1980 1981 StackOffset ScalableOffset = {}; 1982 if (UseFP && !(isFixed || isCSR)) 1983 ScalableOffset = -SVEStackSize; 1984 if (!UseFP && (isFixed || isCSR)) 1985 ScalableOffset = SVEStackSize; 1986 1987 if (UseFP) { 1988 FrameReg = RegInfo->getFrameRegister(MF); 1989 return StackOffset(FPOffset, MVT::i8) + ScalableOffset; 1990 } 1991 1992 // Use the base pointer if we have one. 1993 if (RegInfo->hasBasePointer(MF)) 1994 FrameReg = RegInfo->getBaseRegister(); 1995 else { 1996 assert(!MFI.hasVarSizedObjects() && 1997 "Can't use SP when we have var sized objects."); 1998 FrameReg = AArch64::SP; 1999 // If we're using the red zone for this function, the SP won't actually 2000 // be adjusted, so the offsets will be negative. They're also all 2001 // within range of the signed 9-bit immediate instructions. 2002 if (canUseRedZone(MF)) 2003 Offset -= AFI->getLocalStackSize(); 2004 } 2005 2006 return StackOffset(Offset, MVT::i8) + ScalableOffset; 2007 } 2008 2009 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 2010 // Do not set a kill flag on values that are also marked as live-in. This 2011 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 2012 // callee saved registers. 2013 // Omitting the kill flags is conservatively correct even if the live-in 2014 // is not used after all. 2015 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 2016 return getKillRegState(!IsLiveIn); 2017 } 2018 2019 static bool produceCompactUnwindFrame(MachineFunction &MF) { 2020 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2021 AttributeList Attrs = MF.getFunction().getAttributes(); 2022 return Subtarget.isTargetMachO() && 2023 !(Subtarget.getTargetLowering()->supportSwiftError() && 2024 Attrs.hasAttrSomewhere(Attribute::SwiftError)); 2025 } 2026 2027 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 2028 bool NeedsWinCFI) { 2029 // If we are generating register pairs for a Windows function that requires 2030 // EH support, then pair consecutive registers only. There are no unwind 2031 // opcodes for saves/restores of non-consectuve register pairs. 2032 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x. 2033 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 2034 2035 // TODO: LR can be paired with any register. We don't support this yet in 2036 // the MCLayer. We need to add support for the save_lrpair unwind code. 2037 if (Reg2 == AArch64::FP) 2038 return true; 2039 if (!NeedsWinCFI) 2040 return false; 2041 if (Reg2 == Reg1 + 1) 2042 return false; 2043 return true; 2044 } 2045 2046 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 2047 /// WindowsCFI requires that only consecutive registers can be paired. 2048 /// LR and FP need to be allocated together when the frame needs to save 2049 /// the frame-record. This means any other register pairing with LR is invalid. 2050 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 2051 bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord) { 2052 if (UsesWinAAPCS) 2053 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI); 2054 2055 // If we need to store the frame record, don't pair any register 2056 // with LR other than FP. 2057 if (NeedsFrameRecord) 2058 return Reg2 == AArch64::LR; 2059 2060 return false; 2061 } 2062 2063 namespace { 2064 2065 struct RegPairInfo { 2066 unsigned Reg1 = AArch64::NoRegister; 2067 unsigned Reg2 = AArch64::NoRegister; 2068 int FrameIdx; 2069 int Offset; 2070 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type; 2071 2072 RegPairInfo() = default; 2073 2074 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 2075 2076 unsigned getScale() const { 2077 switch (Type) { 2078 case PPR: 2079 return 2; 2080 case GPR: 2081 case FPR64: 2082 return 8; 2083 case ZPR: 2084 case FPR128: 2085 return 16; 2086 } 2087 llvm_unreachable("Unsupported type"); 2088 } 2089 2090 bool isScalable() const { return Type == PPR || Type == ZPR; } 2091 }; 2092 2093 } // end anonymous namespace 2094 2095 static void computeCalleeSaveRegisterPairs( 2096 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI, 2097 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 2098 bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) { 2099 2100 if (CSI.empty()) 2101 return; 2102 2103 bool IsWindows = isTargetWindows(MF); 2104 bool NeedsWinCFI = needsWinCFI(MF); 2105 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2106 MachineFrameInfo &MFI = MF.getFrameInfo(); 2107 CallingConv::ID CC = MF.getFunction().getCallingConv(); 2108 unsigned Count = CSI.size(); 2109 (void)CC; 2110 // MachO's compact unwind format relies on all registers being stored in 2111 // pairs. 2112 assert((!produceCompactUnwindFrame(MF) || 2113 CC == CallingConv::PreserveMost || 2114 (Count & 1) == 0) && 2115 "Odd number of callee-saved regs to spill!"); 2116 int ByteOffset = AFI->getCalleeSavedStackSize(); 2117 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 2118 // On Linux, we will have either one or zero non-paired register. On Windows 2119 // with CFI, we can have multiple unpaired registers in order to utilize the 2120 // available unwind codes. This flag assures that the alignment fixup is done 2121 // only once, as intened. 2122 bool FixupDone = false; 2123 2124 for (unsigned i = 0; i < Count; ++i) { 2125 RegPairInfo RPI; 2126 RPI.Reg1 = CSI[i].getReg(); 2127 2128 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) 2129 RPI.Type = RegPairInfo::GPR; 2130 else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) 2131 RPI.Type = RegPairInfo::FPR64; 2132 else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) 2133 RPI.Type = RegPairInfo::FPR128; 2134 else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) 2135 RPI.Type = RegPairInfo::ZPR; 2136 else if (AArch64::PPRRegClass.contains(RPI.Reg1)) 2137 RPI.Type = RegPairInfo::PPR; 2138 else 2139 llvm_unreachable("Unsupported register class."); 2140 2141 // Add the next reg to the pair if it is in the same register class. 2142 if (i + 1 < Count) { 2143 unsigned NextReg = CSI[i + 1].getReg(); 2144 switch (RPI.Type) { 2145 case RegPairInfo::GPR: 2146 if (AArch64::GPR64RegClass.contains(NextReg) && 2147 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI, 2148 NeedsFrameRecord)) 2149 RPI.Reg2 = NextReg; 2150 break; 2151 case RegPairInfo::FPR64: 2152 if (AArch64::FPR64RegClass.contains(NextReg) && 2153 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI)) 2154 RPI.Reg2 = NextReg; 2155 break; 2156 case RegPairInfo::FPR128: 2157 if (AArch64::FPR128RegClass.contains(NextReg)) 2158 RPI.Reg2 = NextReg; 2159 break; 2160 case RegPairInfo::PPR: 2161 case RegPairInfo::ZPR: 2162 break; 2163 } 2164 } 2165 2166 // If either of the registers to be saved is the lr register, it means that 2167 // we also need to save lr in the shadow call stack. 2168 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) && 2169 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) { 2170 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18)) 2171 report_fatal_error("Must reserve x18 to use shadow call stack"); 2172 NeedShadowCallStackProlog = true; 2173 } 2174 2175 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 2176 // list to come in sorted by frame index so that we can issue the store 2177 // pair instructions directly. Assert if we see anything otherwise. 2178 // 2179 // The order of the registers in the list is controlled by 2180 // getCalleeSavedRegs(), so they will always be in-order, as well. 2181 assert((!RPI.isPaired() || 2182 (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) && 2183 "Out of order callee saved regs!"); 2184 2185 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 2186 RPI.Reg1 == AArch64::LR) && 2187 "FrameRecord must be allocated together with LR"); 2188 2189 // Windows AAPCS has FP and LR reversed. 2190 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 2191 RPI.Reg2 == AArch64::LR) && 2192 "FrameRecord must be allocated together with LR"); 2193 2194 // MachO's compact unwind format relies on all registers being stored in 2195 // adjacent register pairs. 2196 assert((!produceCompactUnwindFrame(MF) || 2197 CC == CallingConv::PreserveMost || 2198 (RPI.isPaired() && 2199 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 2200 RPI.Reg1 + 1 == RPI.Reg2))) && 2201 "Callee-save registers not saved as adjacent register pair!"); 2202 2203 RPI.FrameIdx = CSI[i].getFrameIdx(); 2204 2205 int Scale = RPI.getScale(); 2206 if (RPI.isScalable()) 2207 ScalableByteOffset -= Scale; 2208 else 2209 ByteOffset -= RPI.isPaired() ? 2 * Scale : Scale; 2210 2211 assert(!(RPI.isScalable() && RPI.isPaired()) && 2212 "Paired spill/fill instructions don't exist for SVE vectors"); 2213 2214 // Round up size of non-pair to pair size if we need to pad the 2215 // callee-save area to ensure 16-byte alignment. 2216 if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone && 2217 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 && 2218 !RPI.isPaired()) { 2219 FixupDone = true; 2220 ByteOffset -= 8; 2221 assert(ByteOffset % 16 == 0); 2222 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); 2223 MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); 2224 } 2225 2226 int Offset = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2227 assert(Offset % Scale == 0); 2228 RPI.Offset = Offset / Scale; 2229 2230 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 2231 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 2232 "Offset out of bounds for LDP/STP immediate"); 2233 2234 RegPairs.push_back(RPI); 2235 if (RPI.isPaired()) 2236 ++i; 2237 } 2238 } 2239 2240 bool AArch64FrameLowering::spillCalleeSavedRegisters( 2241 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2242 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2243 MachineFunction &MF = *MBB.getParent(); 2244 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2245 bool NeedsWinCFI = needsWinCFI(MF); 2246 DebugLoc DL; 2247 SmallVector<RegPairInfo, 8> RegPairs; 2248 2249 bool NeedShadowCallStackProlog = false; 2250 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2251 NeedShadowCallStackProlog, hasFP(MF)); 2252 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2253 2254 if (NeedShadowCallStackProlog) { 2255 // Shadow call stack prolog: str x30, [x18], #8 2256 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost)) 2257 .addReg(AArch64::X18, RegState::Define) 2258 .addReg(AArch64::LR) 2259 .addReg(AArch64::X18) 2260 .addImm(8) 2261 .setMIFlag(MachineInstr::FrameSetup); 2262 2263 if (NeedsWinCFI) 2264 BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop)) 2265 .setMIFlag(MachineInstr::FrameSetup); 2266 2267 if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) { 2268 // Emit a CFI instruction that causes 8 to be subtracted from the value of 2269 // x18 when unwinding past this frame. 2270 static const char CFIInst[] = { 2271 dwarf::DW_CFA_val_expression, 2272 18, // register 2273 2, // length 2274 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 2275 static_cast<char>(-8) & 0x7f, // addend (sleb128) 2276 }; 2277 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 2278 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 2279 BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 2280 .addCFIIndex(CFIIndex) 2281 .setMIFlag(MachineInstr::FrameSetup); 2282 } 2283 2284 // This instruction also makes x18 live-in to the entry block. 2285 MBB.addLiveIn(AArch64::X18); 2286 } 2287 2288 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE; 2289 ++RPII) { 2290 RegPairInfo RPI = *RPII; 2291 unsigned Reg1 = RPI.Reg1; 2292 unsigned Reg2 = RPI.Reg2; 2293 unsigned StrOpc; 2294 2295 // Issue sequence of spills for cs regs. The first spill may be converted 2296 // to a pre-decrement store later by emitPrologue if the callee-save stack 2297 // area allocation can't be combined with the local stack area allocation. 2298 // For example: 2299 // stp x22, x21, [sp, #0] // addImm(+0) 2300 // stp x20, x19, [sp, #16] // addImm(+2) 2301 // stp fp, lr, [sp, #32] // addImm(+4) 2302 // Rationale: This sequence saves uop updates compared to a sequence of 2303 // pre-increment spills like stp xi,xj,[sp,#-16]! 2304 // Note: Similar rationale and sequence for restores in epilog. 2305 unsigned Size; 2306 Align Alignment; 2307 switch (RPI.Type) { 2308 case RegPairInfo::GPR: 2309 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 2310 Size = 8; 2311 Alignment = Align(8); 2312 break; 2313 case RegPairInfo::FPR64: 2314 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 2315 Size = 8; 2316 Alignment = Align(8); 2317 break; 2318 case RegPairInfo::FPR128: 2319 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 2320 Size = 16; 2321 Alignment = Align(16); 2322 break; 2323 case RegPairInfo::ZPR: 2324 StrOpc = AArch64::STR_ZXI; 2325 Size = 16; 2326 Alignment = Align(16); 2327 break; 2328 case RegPairInfo::PPR: 2329 StrOpc = AArch64::STR_PXI; 2330 Size = 2; 2331 Alignment = Align(2); 2332 break; 2333 } 2334 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 2335 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2336 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2337 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2338 dbgs() << ")\n"); 2339 2340 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 2341 "Windows unwdinding requires a consecutive (FP,LR) pair"); 2342 // Windows unwind codes require consecutive registers if registers are 2343 // paired. Make the switch here, so that the code below will save (x,x+1) 2344 // and not (x+1,x). 2345 unsigned FrameIdxReg1 = RPI.FrameIdx; 2346 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2347 if (NeedsWinCFI && RPI.isPaired()) { 2348 std::swap(Reg1, Reg2); 2349 std::swap(FrameIdxReg1, FrameIdxReg2); 2350 } 2351 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 2352 if (!MRI.isReserved(Reg1)) 2353 MBB.addLiveIn(Reg1); 2354 if (RPI.isPaired()) { 2355 if (!MRI.isReserved(Reg2)) 2356 MBB.addLiveIn(Reg2); 2357 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 2358 MIB.addMemOperand(MF.getMachineMemOperand( 2359 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2360 MachineMemOperand::MOStore, Size, Alignment)); 2361 } 2362 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 2363 .addReg(AArch64::SP) 2364 .addImm(RPI.Offset) // [sp, #offset*scale], 2365 // where factor*scale is implicit 2366 .setMIFlag(MachineInstr::FrameSetup); 2367 MIB.addMemOperand(MF.getMachineMemOperand( 2368 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2369 MachineMemOperand::MOStore, Size, Alignment)); 2370 if (NeedsWinCFI) 2371 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 2372 2373 // Update the StackIDs of the SVE stack slots. 2374 MachineFrameInfo &MFI = MF.getFrameInfo(); 2375 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) 2376 MFI.setStackID(RPI.FrameIdx, TargetStackID::SVEVector); 2377 2378 } 2379 return true; 2380 } 2381 2382 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 2383 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2384 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2385 MachineFunction &MF = *MBB.getParent(); 2386 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2387 DebugLoc DL; 2388 SmallVector<RegPairInfo, 8> RegPairs; 2389 bool NeedsWinCFI = needsWinCFI(MF); 2390 2391 if (MI != MBB.end()) 2392 DL = MI->getDebugLoc(); 2393 2394 bool NeedShadowCallStackProlog = false; 2395 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2396 NeedShadowCallStackProlog, hasFP(MF)); 2397 2398 auto EmitMI = [&](const RegPairInfo &RPI) { 2399 unsigned Reg1 = RPI.Reg1; 2400 unsigned Reg2 = RPI.Reg2; 2401 2402 // Issue sequence of restores for cs regs. The last restore may be converted 2403 // to a post-increment load later by emitEpilogue if the callee-save stack 2404 // area allocation can't be combined with the local stack area allocation. 2405 // For example: 2406 // ldp fp, lr, [sp, #32] // addImm(+4) 2407 // ldp x20, x19, [sp, #16] // addImm(+2) 2408 // ldp x22, x21, [sp, #0] // addImm(+0) 2409 // Note: see comment in spillCalleeSavedRegisters() 2410 unsigned LdrOpc; 2411 unsigned Size; 2412 Align Alignment; 2413 switch (RPI.Type) { 2414 case RegPairInfo::GPR: 2415 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 2416 Size = 8; 2417 Alignment = Align(8); 2418 break; 2419 case RegPairInfo::FPR64: 2420 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 2421 Size = 8; 2422 Alignment = Align(8); 2423 break; 2424 case RegPairInfo::FPR128: 2425 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 2426 Size = 16; 2427 Alignment = Align(16); 2428 break; 2429 case RegPairInfo::ZPR: 2430 LdrOpc = AArch64::LDR_ZXI; 2431 Size = 16; 2432 Alignment = Align(16); 2433 break; 2434 case RegPairInfo::PPR: 2435 LdrOpc = AArch64::LDR_PXI; 2436 Size = 2; 2437 Alignment = Align(2); 2438 break; 2439 } 2440 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 2441 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2442 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2443 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2444 dbgs() << ")\n"); 2445 2446 // Windows unwind codes require consecutive registers if registers are 2447 // paired. Make the switch here, so that the code below will save (x,x+1) 2448 // and not (x+1,x). 2449 unsigned FrameIdxReg1 = RPI.FrameIdx; 2450 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2451 if (NeedsWinCFI && RPI.isPaired()) { 2452 std::swap(Reg1, Reg2); 2453 std::swap(FrameIdxReg1, FrameIdxReg2); 2454 } 2455 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc)); 2456 if (RPI.isPaired()) { 2457 MIB.addReg(Reg2, getDefRegState(true)); 2458 MIB.addMemOperand(MF.getMachineMemOperand( 2459 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2460 MachineMemOperand::MOLoad, Size, Alignment)); 2461 } 2462 MIB.addReg(Reg1, getDefRegState(true)) 2463 .addReg(AArch64::SP) 2464 .addImm(RPI.Offset) // [sp, #offset*scale] 2465 // where factor*scale is implicit 2466 .setMIFlag(MachineInstr::FrameDestroy); 2467 MIB.addMemOperand(MF.getMachineMemOperand( 2468 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2469 MachineMemOperand::MOLoad, Size, Alignment)); 2470 if (NeedsWinCFI) 2471 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 2472 }; 2473 2474 // SVE objects are always restored in reverse order. 2475 for (const RegPairInfo &RPI : reverse(RegPairs)) 2476 if (RPI.isScalable()) 2477 EmitMI(RPI); 2478 2479 if (ReverseCSRRestoreSeq) { 2480 for (const RegPairInfo &RPI : reverse(RegPairs)) 2481 if (!RPI.isScalable()) 2482 EmitMI(RPI); 2483 } else 2484 for (const RegPairInfo &RPI : RegPairs) 2485 if (!RPI.isScalable()) 2486 EmitMI(RPI); 2487 2488 if (NeedShadowCallStackProlog) { 2489 // Shadow call stack epilog: ldr x30, [x18, #-8]! 2490 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre)) 2491 .addReg(AArch64::X18, RegState::Define) 2492 .addReg(AArch64::LR, RegState::Define) 2493 .addReg(AArch64::X18) 2494 .addImm(-8) 2495 .setMIFlag(MachineInstr::FrameDestroy); 2496 } 2497 2498 return true; 2499 } 2500 2501 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 2502 BitVector &SavedRegs, 2503 RegScavenger *RS) const { 2504 // All calls are tail calls in GHC calling conv, and functions have no 2505 // prologue/epilogue. 2506 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2507 return; 2508 2509 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2510 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 2511 MF.getSubtarget().getRegisterInfo()); 2512 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2513 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2514 unsigned UnspilledCSGPR = AArch64::NoRegister; 2515 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 2516 2517 MachineFrameInfo &MFI = MF.getFrameInfo(); 2518 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 2519 2520 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 2521 ? RegInfo->getBaseRegister() 2522 : (unsigned)AArch64::NoRegister; 2523 2524 unsigned ExtraCSSpill = 0; 2525 // Figure out which callee-saved registers to save/restore. 2526 for (unsigned i = 0; CSRegs[i]; ++i) { 2527 const unsigned Reg = CSRegs[i]; 2528 2529 // Add the base pointer register to SavedRegs if it is callee-save. 2530 if (Reg == BasePointerReg) 2531 SavedRegs.set(Reg); 2532 2533 bool RegUsed = SavedRegs.test(Reg); 2534 unsigned PairedReg = AArch64::NoRegister; 2535 if (AArch64::GPR64RegClass.contains(Reg) || 2536 AArch64::FPR64RegClass.contains(Reg) || 2537 AArch64::FPR128RegClass.contains(Reg)) 2538 PairedReg = CSRegs[i ^ 1]; 2539 2540 if (!RegUsed) { 2541 if (AArch64::GPR64RegClass.contains(Reg) && 2542 !RegInfo->isReservedReg(MF, Reg)) { 2543 UnspilledCSGPR = Reg; 2544 UnspilledCSGPRPaired = PairedReg; 2545 } 2546 continue; 2547 } 2548 2549 // MachO's compact unwind format relies on all registers being stored in 2550 // pairs. 2551 // FIXME: the usual format is actually better if unwinding isn't needed. 2552 if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister && 2553 !SavedRegs.test(PairedReg)) { 2554 SavedRegs.set(PairedReg); 2555 if (AArch64::GPR64RegClass.contains(PairedReg) && 2556 !RegInfo->isReservedReg(MF, PairedReg)) 2557 ExtraCSSpill = PairedReg; 2558 } 2559 } 2560 2561 if (MF.getFunction().getCallingConv() == CallingConv::Win64 && 2562 !Subtarget.isTargetWindows()) { 2563 // For Windows calling convention on a non-windows OS, where X18 is treated 2564 // as reserved, back up X18 when entering non-windows code (marked with the 2565 // Windows calling convention) and restore when returning regardless of 2566 // whether the individual function uses it - it might call other functions 2567 // that clobber it. 2568 SavedRegs.set(AArch64::X18); 2569 } 2570 2571 // Calculates the callee saved stack size. 2572 unsigned CSStackSize = 0; 2573 unsigned SVECSStackSize = 0; 2574 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2575 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2576 for (unsigned Reg : SavedRegs.set_bits()) { 2577 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; 2578 if (AArch64::PPRRegClass.contains(Reg) || 2579 AArch64::ZPRRegClass.contains(Reg)) 2580 SVECSStackSize += RegSize; 2581 else 2582 CSStackSize += RegSize; 2583 } 2584 2585 // Save number of saved regs, so we can easily update CSStackSize later. 2586 unsigned NumSavedRegs = SavedRegs.count(); 2587 2588 // The frame record needs to be created by saving the appropriate registers 2589 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 2590 if (hasFP(MF) || 2591 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 2592 SavedRegs.set(AArch64::FP); 2593 SavedRegs.set(AArch64::LR); 2594 } 2595 2596 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 2597 for (unsigned Reg 2598 : SavedRegs.set_bits()) dbgs() 2599 << ' ' << printReg(Reg, RegInfo); 2600 dbgs() << "\n";); 2601 2602 // If any callee-saved registers are used, the frame cannot be eliminated. 2603 int64_t SVEStackSize = 2604 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 2605 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 2606 2607 // The CSR spill slots have not been allocated yet, so estimateStackSize 2608 // won't include them. 2609 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 2610 2611 // Conservatively always assume BigStack when there are SVE spills. 2612 bool BigStack = SVEStackSize || 2613 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit; 2614 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 2615 AFI->setHasStackFrame(true); 2616 2617 // Estimate if we might need to scavenge a register at some point in order 2618 // to materialize a stack offset. If so, either spill one additional 2619 // callee-saved register or reserve a special spill slot to facilitate 2620 // register scavenging. If we already spilled an extra callee-saved register 2621 // above to keep the number of spills even, we don't need to do anything else 2622 // here. 2623 if (BigStack) { 2624 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 2625 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 2626 << " to get a scratch register.\n"); 2627 SavedRegs.set(UnspilledCSGPR); 2628 // MachO's compact unwind format relies on all registers being stored in 2629 // pairs, so if we need to spill one extra for BigStack, then we need to 2630 // store the pair. 2631 if (produceCompactUnwindFrame(MF)) 2632 SavedRegs.set(UnspilledCSGPRPaired); 2633 ExtraCSSpill = UnspilledCSGPR; 2634 } 2635 2636 // If we didn't find an extra callee-saved register to spill, create 2637 // an emergency spill slot. 2638 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 2639 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2640 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 2641 unsigned Size = TRI->getSpillSize(RC); 2642 Align Alignment = TRI->getSpillAlign(RC); 2643 int FI = MFI.CreateStackObject(Size, Alignment, false); 2644 RS->addScavengingFrameIndex(FI); 2645 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 2646 << " as the emergency spill slot.\n"); 2647 } 2648 } 2649 2650 // Adding the size of additional 64bit GPR saves. 2651 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 2652 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 2653 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 2654 << EstimatedStackSize + AlignedCSStackSize 2655 << " bytes.\n"); 2656 2657 assert((!MFI.isCalleeSavedInfoValid() || 2658 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 2659 "Should not invalidate callee saved info"); 2660 2661 // Round up to register pair alignment to avoid additional SP adjustment 2662 // instructions. 2663 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 2664 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 2665 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 2666 } 2667 2668 bool AArch64FrameLowering::enableStackSlotScavenging( 2669 const MachineFunction &MF) const { 2670 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2671 return AFI->hasCalleeSaveStackFreeSpace(); 2672 } 2673 2674 /// returns true if there are any SVE callee saves. 2675 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 2676 int &Min, int &Max) { 2677 Min = std::numeric_limits<int>::max(); 2678 Max = std::numeric_limits<int>::min(); 2679 2680 if (!MFI.isCalleeSavedInfoValid()) 2681 return false; 2682 2683 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2684 for (auto &CS : CSI) { 2685 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 2686 AArch64::PPRRegClass.contains(CS.getReg())) { 2687 assert((Max == std::numeric_limits<int>::min() || 2688 Max + 1 == CS.getFrameIdx()) && 2689 "SVE CalleeSaves are not consecutive"); 2690 2691 Min = std::min(Min, CS.getFrameIdx()); 2692 Max = std::max(Max, CS.getFrameIdx()); 2693 } 2694 } 2695 return Min != std::numeric_limits<int>::max(); 2696 } 2697 2698 // Process all the SVE stack objects and determine offsets for each 2699 // object. If AssignOffsets is true, the offsets get assigned. 2700 // Fills in the first and last callee-saved frame indices into 2701 // Min/MaxCSFrameIndex, respectively. 2702 // Returns the size of the stack. 2703 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 2704 int &MinCSFrameIndex, 2705 int &MaxCSFrameIndex, 2706 bool AssignOffsets) { 2707 #ifndef NDEBUG 2708 // First process all fixed stack objects. 2709 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 2710 assert(MFI.getStackID(I) != TargetStackID::SVEVector && 2711 "SVE vectors should never be passed on the stack by value, only by " 2712 "reference."); 2713 #endif 2714 2715 auto Assign = [&MFI](int FI, int64_t Offset) { 2716 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 2717 MFI.setObjectOffset(FI, Offset); 2718 }; 2719 2720 int64_t Offset = 0; 2721 2722 // Then process all callee saved slots. 2723 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 2724 // Assign offsets to the callee save slots. 2725 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 2726 Offset += MFI.getObjectSize(I); 2727 Offset = alignTo(Offset, MFI.getObjectAlign(I)); 2728 if (AssignOffsets) 2729 Assign(I, -Offset); 2730 } 2731 } 2732 2733 // Ensure that the Callee-save area is aligned to 16bytes. 2734 Offset = alignTo(Offset, Align(16U)); 2735 2736 // Create a buffer of SVE objects to allocate and sort it. 2737 SmallVector<int, 8> ObjectsToAllocate; 2738 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 2739 unsigned StackID = MFI.getStackID(I); 2740 if (StackID != TargetStackID::SVEVector) 2741 continue; 2742 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 2743 continue; 2744 if (MFI.isDeadObjectIndex(I)) 2745 continue; 2746 2747 ObjectsToAllocate.push_back(I); 2748 } 2749 2750 // Allocate all SVE locals and spills 2751 for (unsigned FI : ObjectsToAllocate) { 2752 Align Alignment = MFI.getObjectAlign(FI); 2753 // FIXME: Given that the length of SVE vectors is not necessarily a power of 2754 // two, we'd need to align every object dynamically at runtime if the 2755 // alignment is larger than 16. This is not yet supported. 2756 if (Alignment > Align(16)) 2757 report_fatal_error( 2758 "Alignment of scalable vectors > 16 bytes is not yet supported"); 2759 2760 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); 2761 if (AssignOffsets) 2762 Assign(FI, -Offset); 2763 } 2764 2765 return Offset; 2766 } 2767 2768 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 2769 MachineFrameInfo &MFI) const { 2770 int MinCSFrameIndex, MaxCSFrameIndex; 2771 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 2772 } 2773 2774 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 2775 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 2776 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 2777 true); 2778 } 2779 2780 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 2781 MachineFunction &MF, RegScavenger *RS) const { 2782 MachineFrameInfo &MFI = MF.getFrameInfo(); 2783 2784 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 2785 "Upwards growing stack unsupported"); 2786 2787 int MinCSFrameIndex, MaxCSFrameIndex; 2788 int64_t SVEStackSize = 2789 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 2790 2791 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2792 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 2793 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 2794 2795 // If this function isn't doing Win64-style C++ EH, we don't need to do 2796 // anything. 2797 if (!MF.hasEHFunclets()) 2798 return; 2799 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2800 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 2801 2802 MachineBasicBlock &MBB = MF.front(); 2803 auto MBBI = MBB.begin(); 2804 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 2805 ++MBBI; 2806 2807 // Create an UnwindHelp object. 2808 // The UnwindHelp object is allocated at the start of the fixed object area 2809 int64_t FixedObject = 2810 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 2811 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 2812 /*SPOffset*/ -FixedObject, 2813 /*IsImmutable=*/false); 2814 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 2815 2816 // We need to store -2 into the UnwindHelp object at the start of the 2817 // function. 2818 DebugLoc DL; 2819 RS->enterBasicBlockEnd(MBB); 2820 RS->backward(std::prev(MBBI)); 2821 unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 2822 assert(DstReg && "There must be a free register after frame setup"); 2823 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 2824 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 2825 .addReg(DstReg, getKillRegState(true)) 2826 .addFrameIndex(UnwindHelpFI) 2827 .addImm(0); 2828 } 2829 2830 namespace { 2831 struct TagStoreInstr { 2832 MachineInstr *MI; 2833 int64_t Offset, Size; 2834 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) 2835 : MI(MI), Offset(Offset), Size(Size) {} 2836 }; 2837 2838 class TagStoreEdit { 2839 MachineFunction *MF; 2840 MachineBasicBlock *MBB; 2841 MachineRegisterInfo *MRI; 2842 // Tag store instructions that are being replaced. 2843 SmallVector<TagStoreInstr, 8> TagStores; 2844 // Combined memref arguments of the above instructions. 2845 SmallVector<MachineMemOperand *, 8> CombinedMemRefs; 2846 2847 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + 2848 // FrameRegOffset + Size) with the address tag of SP. 2849 Register FrameReg; 2850 StackOffset FrameRegOffset; 2851 int64_t Size; 2852 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end. 2853 Optional<int64_t> FrameRegUpdate; 2854 // MIFlags for any FrameReg updating instructions. 2855 unsigned FrameRegUpdateFlags; 2856 2857 // Use zeroing instruction variants. 2858 bool ZeroData; 2859 DebugLoc DL; 2860 2861 void emitUnrolled(MachineBasicBlock::iterator InsertI); 2862 void emitLoop(MachineBasicBlock::iterator InsertI); 2863 2864 public: 2865 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) 2866 : MBB(MBB), ZeroData(ZeroData) { 2867 MF = MBB->getParent(); 2868 MRI = &MF->getRegInfo(); 2869 } 2870 // Add an instruction to be replaced. Instructions must be added in the 2871 // ascending order of Offset, and have to be adjacent. 2872 void addInstruction(TagStoreInstr I) { 2873 assert((TagStores.empty() || 2874 TagStores.back().Offset + TagStores.back().Size == I.Offset) && 2875 "Non-adjacent tag store instructions."); 2876 TagStores.push_back(I); 2877 } 2878 void clear() { TagStores.clear(); } 2879 // Emit equivalent code at the given location, and erase the current set of 2880 // instructions. May skip if the replacement is not profitable. May invalidate 2881 // the input iterator and replace it with a valid one. 2882 void emitCode(MachineBasicBlock::iterator &InsertI, 2883 const AArch64FrameLowering *TFI, bool IsLast); 2884 }; 2885 2886 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { 2887 const AArch64InstrInfo *TII = 2888 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 2889 2890 const int64_t kMinOffset = -256 * 16; 2891 const int64_t kMaxOffset = 255 * 16; 2892 2893 Register BaseReg = FrameReg; 2894 int64_t BaseRegOffsetBytes = FrameRegOffset.getBytes(); 2895 if (BaseRegOffsetBytes < kMinOffset || 2896 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) { 2897 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2898 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, 2899 {BaseRegOffsetBytes, MVT::i8}, TII); 2900 BaseReg = ScratchReg; 2901 BaseRegOffsetBytes = 0; 2902 } 2903 2904 MachineInstr *LastI = nullptr; 2905 while (Size) { 2906 int64_t InstrSize = (Size > 16) ? 32 : 16; 2907 unsigned Opcode = 2908 InstrSize == 16 2909 ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset) 2910 : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset); 2911 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) 2912 .addReg(AArch64::SP) 2913 .addReg(BaseReg) 2914 .addImm(BaseRegOffsetBytes / 16) 2915 .setMemRefs(CombinedMemRefs); 2916 // A store to [BaseReg, #0] should go last for an opportunity to fold the 2917 // final SP adjustment in the epilogue. 2918 if (BaseRegOffsetBytes == 0) 2919 LastI = I; 2920 BaseRegOffsetBytes += InstrSize; 2921 Size -= InstrSize; 2922 } 2923 2924 if (LastI) 2925 MBB->splice(InsertI, MBB, LastI); 2926 } 2927 2928 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { 2929 const AArch64InstrInfo *TII = 2930 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 2931 2932 Register BaseReg = FrameRegUpdate 2933 ? FrameReg 2934 : MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2935 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2936 2937 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); 2938 2939 int64_t LoopSize = Size; 2940 // If the loop size is not a multiple of 32, split off one 16-byte store at 2941 // the end to fold BaseReg update into. 2942 if (FrameRegUpdate && *FrameRegUpdate) 2943 LoopSize -= LoopSize % 32; 2944 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, 2945 TII->get(ZeroData ? AArch64::STZGloop_wback 2946 : AArch64::STGloop_wback)) 2947 .addDef(SizeReg) 2948 .addDef(BaseReg) 2949 .addImm(LoopSize) 2950 .addReg(BaseReg) 2951 .setMemRefs(CombinedMemRefs); 2952 if (FrameRegUpdate) 2953 LoopI->setFlags(FrameRegUpdateFlags); 2954 2955 int64_t ExtraBaseRegUpdate = 2956 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getBytes() - Size) : 0; 2957 if (LoopSize < Size) { 2958 assert(FrameRegUpdate); 2959 assert(Size - LoopSize == 16); 2960 // Tag 16 more bytes at BaseReg and update BaseReg. 2961 BuildMI(*MBB, InsertI, DL, 2962 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) 2963 .addDef(BaseReg) 2964 .addReg(BaseReg) 2965 .addReg(BaseReg) 2966 .addImm(1 + ExtraBaseRegUpdate / 16) 2967 .setMemRefs(CombinedMemRefs) 2968 .setMIFlags(FrameRegUpdateFlags); 2969 } else if (ExtraBaseRegUpdate) { 2970 // Update BaseReg. 2971 BuildMI( 2972 *MBB, InsertI, DL, 2973 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) 2974 .addDef(BaseReg) 2975 .addReg(BaseReg) 2976 .addImm(std::abs(ExtraBaseRegUpdate)) 2977 .addImm(0) 2978 .setMIFlags(FrameRegUpdateFlags); 2979 } 2980 } 2981 2982 // Check if *II is a register update that can be merged into STGloop that ends 2983 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the 2984 // end of the loop. 2985 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, 2986 int64_t Size, int64_t *TotalOffset) { 2987 MachineInstr &MI = *II; 2988 if ((MI.getOpcode() == AArch64::ADDXri || 2989 MI.getOpcode() == AArch64::SUBXri) && 2990 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { 2991 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); 2992 int64_t Offset = MI.getOperand(2).getImm() << Shift; 2993 if (MI.getOpcode() == AArch64::SUBXri) 2994 Offset = -Offset; 2995 int64_t AbsPostOffset = std::abs(Offset - Size); 2996 const int64_t kMaxOffset = 2997 0xFFF; // Max encoding for unshifted ADDXri / SUBXri 2998 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) { 2999 *TotalOffset = Offset; 3000 return true; 3001 } 3002 } 3003 return false; 3004 } 3005 3006 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE, 3007 SmallVectorImpl<MachineMemOperand *> &MemRefs) { 3008 MemRefs.clear(); 3009 for (auto &TS : TSE) { 3010 MachineInstr *MI = TS.MI; 3011 // An instruction without memory operands may access anything. Be 3012 // conservative and return an empty list. 3013 if (MI->memoperands_empty()) { 3014 MemRefs.clear(); 3015 return; 3016 } 3017 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); 3018 } 3019 } 3020 3021 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, 3022 const AArch64FrameLowering *TFI, bool IsLast) { 3023 if (TagStores.empty()) 3024 return; 3025 TagStoreInstr &FirstTagStore = TagStores[0]; 3026 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; 3027 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; 3028 DL = TagStores[0].MI->getDebugLoc(); 3029 3030 Register Reg; 3031 FrameRegOffset = TFI->resolveFrameOffsetReference( 3032 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, 3033 /*PreferFP=*/false, /*ForSimm=*/true); 3034 FrameReg = Reg; 3035 FrameRegUpdate = None; 3036 3037 mergeMemRefs(TagStores, CombinedMemRefs); 3038 3039 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n"; 3040 for (const auto &Instr 3041 : TagStores) { dbgs() << " " << *Instr.MI; }); 3042 3043 // Size threshold where a loop becomes shorter than a linear sequence of 3044 // tagging instructions. 3045 const int kSetTagLoopThreshold = 176; 3046 if (Size < kSetTagLoopThreshold) { 3047 if (TagStores.size() < 2) 3048 return; 3049 emitUnrolled(InsertI); 3050 } else { 3051 MachineInstr *UpdateInstr = nullptr; 3052 int64_t TotalOffset; 3053 if (IsLast) { 3054 // See if we can merge base register update into the STGloop. 3055 // This is done in AArch64LoadStoreOptimizer for "normal" stores, 3056 // but STGloop is way too unusual for that, and also it only 3057 // realistically happens in function epilogue. Also, STGloop is expanded 3058 // before that pass. 3059 if (InsertI != MBB->end() && 3060 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getBytes() + Size, 3061 &TotalOffset)) { 3062 UpdateInstr = &*InsertI++; 3063 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " 3064 << *UpdateInstr); 3065 } 3066 } 3067 3068 if (!UpdateInstr && TagStores.size() < 2) 3069 return; 3070 3071 if (UpdateInstr) { 3072 FrameRegUpdate = TotalOffset; 3073 FrameRegUpdateFlags = UpdateInstr->getFlags(); 3074 } 3075 emitLoop(InsertI); 3076 if (UpdateInstr) 3077 UpdateInstr->eraseFromParent(); 3078 } 3079 3080 for (auto &TS : TagStores) 3081 TS.MI->eraseFromParent(); 3082 } 3083 3084 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, 3085 int64_t &Size, bool &ZeroData) { 3086 MachineFunction &MF = *MI.getParent()->getParent(); 3087 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3088 3089 unsigned Opcode = MI.getOpcode(); 3090 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset || 3091 Opcode == AArch64::STZ2GOffset); 3092 3093 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { 3094 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) 3095 return false; 3096 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) 3097 return false; 3098 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); 3099 Size = MI.getOperand(2).getImm(); 3100 return true; 3101 } 3102 3103 if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset) 3104 Size = 16; 3105 else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset) 3106 Size = 32; 3107 else 3108 return false; 3109 3110 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) 3111 return false; 3112 3113 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 3114 16 * MI.getOperand(2).getImm(); 3115 return true; 3116 } 3117 3118 // Detect a run of memory tagging instructions for adjacent stack frame slots, 3119 // and replace them with a shorter instruction sequence: 3120 // * replace STG + STG with ST2G 3121 // * replace STGloop + STGloop with STGloop 3122 // This code needs to run when stack slot offsets are already known, but before 3123 // FrameIndex operands in STG instructions are eliminated. 3124 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, 3125 const AArch64FrameLowering *TFI, 3126 RegScavenger *RS) { 3127 bool FirstZeroData; 3128 int64_t Size, Offset; 3129 MachineInstr &MI = *II; 3130 MachineBasicBlock *MBB = MI.getParent(); 3131 MachineBasicBlock::iterator NextI = ++II; 3132 if (&MI == &MBB->instr_back()) 3133 return II; 3134 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) 3135 return II; 3136 3137 SmallVector<TagStoreInstr, 4> Instrs; 3138 Instrs.emplace_back(&MI, Offset, Size); 3139 3140 constexpr int kScanLimit = 10; 3141 int Count = 0; 3142 for (MachineBasicBlock::iterator E = MBB->end(); 3143 NextI != E && Count < kScanLimit; ++NextI) { 3144 MachineInstr &MI = *NextI; 3145 bool ZeroData; 3146 int64_t Size, Offset; 3147 // Collect instructions that update memory tags with a FrameIndex operand 3148 // and (when applicable) constant size, and whose output registers are dead 3149 // (the latter is almost always the case in practice). Since these 3150 // instructions effectively have no inputs or outputs, we are free to skip 3151 // any non-aliasing instructions in between without tracking used registers. 3152 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { 3153 if (ZeroData != FirstZeroData) 3154 break; 3155 Instrs.emplace_back(&MI, Offset, Size); 3156 continue; 3157 } 3158 3159 // Only count non-transient, non-tagging instructions toward the scan 3160 // limit. 3161 if (!MI.isTransient()) 3162 ++Count; 3163 3164 // Just in case, stop before the epilogue code starts. 3165 if (MI.getFlag(MachineInstr::FrameSetup) || 3166 MI.getFlag(MachineInstr::FrameDestroy)) 3167 break; 3168 3169 // Reject anything that may alias the collected instructions. 3170 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects()) 3171 break; 3172 } 3173 3174 // New code will be inserted after the last tagging instruction we've found. 3175 MachineBasicBlock::iterator InsertI = Instrs.back().MI; 3176 InsertI++; 3177 3178 llvm::stable_sort(Instrs, 3179 [](const TagStoreInstr &Left, const TagStoreInstr &Right) { 3180 return Left.Offset < Right.Offset; 3181 }); 3182 3183 // Make sure that we don't have any overlapping stores. 3184 int64_t CurOffset = Instrs[0].Offset; 3185 for (auto &Instr : Instrs) { 3186 if (CurOffset > Instr.Offset) 3187 return NextI; 3188 CurOffset = Instr.Offset + Instr.Size; 3189 } 3190 3191 // Find contiguous runs of tagged memory and emit shorter instruction 3192 // sequencies for them when possible. 3193 TagStoreEdit TSE(MBB, FirstZeroData); 3194 Optional<int64_t> EndOffset; 3195 for (auto &Instr : Instrs) { 3196 if (EndOffset && *EndOffset != Instr.Offset) { 3197 // Found a gap. 3198 TSE.emitCode(InsertI, TFI, /*IsLast = */ false); 3199 TSE.clear(); 3200 } 3201 3202 TSE.addInstruction(Instr); 3203 EndOffset = Instr.Offset + Instr.Size; 3204 } 3205 3206 TSE.emitCode(InsertI, TFI, /*IsLast = */ true); 3207 3208 return InsertI; 3209 } 3210 } // namespace 3211 3212 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3213 MachineFunction &MF, RegScavenger *RS = nullptr) const { 3214 if (StackTaggingMergeSetTag) 3215 for (auto &BB : MF) 3216 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) 3217 II = tryMergeAdjacentSTG(II, this, RS); 3218 } 3219 3220 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP 3221 /// before the update. This is easily retrieved as it is exactly the offset 3222 /// that is set in processFunctionBeforeFrameFinalized. 3223 int AArch64FrameLowering::getFrameIndexReferencePreferSP( 3224 const MachineFunction &MF, int FI, Register &FrameReg, 3225 bool IgnoreSPUpdates) const { 3226 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3227 if (IgnoreSPUpdates) { 3228 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 3229 << MFI.getObjectOffset(FI) << "\n"); 3230 FrameReg = AArch64::SP; 3231 return MFI.getObjectOffset(FI); 3232 } 3233 3234 return getFrameIndexReference(MF, FI, FrameReg); 3235 } 3236 3237 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 3238 /// the parent's frame pointer 3239 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 3240 const MachineFunction &MF) const { 3241 return 0; 3242 } 3243 3244 /// Funclets only need to account for space for the callee saved registers, 3245 /// as the locals are accounted for in the parent's stack frame. 3246 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 3247 const MachineFunction &MF) const { 3248 // This is the size of the pushed CSRs. 3249 unsigned CSSize = 3250 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 3251 // This is the amount of stack a funclet needs to allocate. 3252 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 3253 getStackAlign()); 3254 } 3255