xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // |                                   | Higher address
22 // |-----------------------------------|
23 // |                                   |
24 // | arguments passed on the stack     |
25 // |                                   |
26 // |-----------------------------------| <- sp
27 // |                                   | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // |                                   | Higher address
37 // |-----------------------------------|
38 // |                                   |
39 // | arguments passed on the stack     |
40 // |                                   |
41 // |-----------------------------------|
42 // |                                   |
43 // | (Win64 only) varargs from reg     |
44 // |                                   |
45 // |-----------------------------------|
46 // |                                   |
47 // | callee-saved gpr registers        | <--.
48 // |                                   |    | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -|    | callee saves are swapped,
50 // |                                   |    | (frame record first)
51 // | prev_fp, prev_lr                  | <--'
52 // | (a.k.a. "frame record")           |
53 // |-----------------------------------| <- fp(=x29)
54 // |                                   |
55 // | callee-saved fp/simd/SVE regs     |
56 // |                                   |
57 // |-----------------------------------|
58 // |                                   |
59 // |        SVE stack objects          |
60 // |                                   |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.16-byte.alignment....|  compile time; if present)
65 // |-----------------------------------|
66 // |                                   |
67 // | local variables of fixed size     |
68 // | including spill slots             |
69 // |-----------------------------------| <- bp(not defined by ABI,
70 // |.variable-sized.local.variables....|       LLVM chooses X19)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................|  compile time)
73 // |-----------------------------------| <- sp
74 // |                                   | Lower address
75 //
76 //
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
83 //
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 //   variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 //   more-than-default alignment requirements.
90 //
91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
92 // callee-saved area, since the unwind encoding does not allow for encoding
93 // this dynamically and existing tools depend on this layout. For other
94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
95 // area to allow SVE stack objects (allocated directly below the callee-saves,
96 // if available) to be accessed directly from the framepointer.
97 // The SVE spill/fill instructions have VL-scaled addressing modes such
98 // as:
99 //    ldr z8, [fp, #-7 mul vl]
100 // For SVE the size of the vector length (VL) is not known at compile-time, so
101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
102 // layout, we don't need to add an unscaled offset to the framepointer before
103 // accessing the SVE object in the frame.
104 //
105 // In some cases when a base pointer is not strictly needed, it is generated
106 // anyway when offsets from the frame pointer to access local variables become
107 // so large that the offset can't be encoded in the immediate fields of loads
108 // or stores.
109 //
110 // FIXME: also explain the redzone concept.
111 // FIXME: also explain the concept of reserved call frames.
112 //
113 //===----------------------------------------------------------------------===//
114 
115 #include "AArch64FrameLowering.h"
116 #include "AArch64InstrInfo.h"
117 #include "AArch64MachineFunctionInfo.h"
118 #include "AArch64RegisterInfo.h"
119 #include "AArch64StackOffset.h"
120 #include "AArch64Subtarget.h"
121 #include "AArch64TargetMachine.h"
122 #include "MCTargetDesc/AArch64AddressingModes.h"
123 #include "llvm/ADT/ScopeExit.h"
124 #include "llvm/ADT/SmallVector.h"
125 #include "llvm/ADT/Statistic.h"
126 #include "llvm/CodeGen/LivePhysRegs.h"
127 #include "llvm/CodeGen/MachineBasicBlock.h"
128 #include "llvm/CodeGen/MachineFrameInfo.h"
129 #include "llvm/CodeGen/MachineFunction.h"
130 #include "llvm/CodeGen/MachineInstr.h"
131 #include "llvm/CodeGen/MachineInstrBuilder.h"
132 #include "llvm/CodeGen/MachineMemOperand.h"
133 #include "llvm/CodeGen/MachineModuleInfo.h"
134 #include "llvm/CodeGen/MachineOperand.h"
135 #include "llvm/CodeGen/MachineRegisterInfo.h"
136 #include "llvm/CodeGen/RegisterScavenging.h"
137 #include "llvm/CodeGen/TargetInstrInfo.h"
138 #include "llvm/CodeGen/TargetRegisterInfo.h"
139 #include "llvm/CodeGen/TargetSubtargetInfo.h"
140 #include "llvm/CodeGen/WinEHFuncInfo.h"
141 #include "llvm/IR/Attributes.h"
142 #include "llvm/IR/CallingConv.h"
143 #include "llvm/IR/DataLayout.h"
144 #include "llvm/IR/DebugLoc.h"
145 #include "llvm/IR/Function.h"
146 #include "llvm/MC/MCAsmInfo.h"
147 #include "llvm/MC/MCDwarf.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Debug.h"
150 #include "llvm/Support/ErrorHandling.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <cassert>
156 #include <cstdint>
157 #include <iterator>
158 #include <vector>
159 
160 using namespace llvm;
161 
162 #define DEBUG_TYPE "frame-info"
163 
164 static cl::opt<bool> EnableRedZone("aarch64-redzone",
165                                    cl::desc("enable use of redzone on AArch64"),
166                                    cl::init(false), cl::Hidden);
167 
168 static cl::opt<bool>
169     ReverseCSRRestoreSeq("reverse-csr-restore-seq",
170                          cl::desc("reverse the CSR restore sequence"),
171                          cl::init(false), cl::Hidden);
172 
173 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
174 
175 /// This is the biggest offset to the stack pointer we can encode in aarch64
176 /// instructions (without using a separate calculation and a temp register).
177 /// Note that the exception here are vector stores/loads which cannot encode any
178 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
179 static const unsigned DefaultSafeSPDisplacement = 255;
180 
181 /// Look at each instruction that references stack frames and return the stack
182 /// size limit beyond which some of these instructions will require a scratch
183 /// register during their expansion later.
184 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
185   // FIXME: For now, just conservatively guestimate based on unscaled indexing
186   // range. We'll end up allocating an unnecessary spill slot a lot, but
187   // realistically that's not a big deal at this stage of the game.
188   for (MachineBasicBlock &MBB : MF) {
189     for (MachineInstr &MI : MBB) {
190       if (MI.isDebugInstr() || MI.isPseudo() ||
191           MI.getOpcode() == AArch64::ADDXri ||
192           MI.getOpcode() == AArch64::ADDSXri)
193         continue;
194 
195       for (const MachineOperand &MO : MI.operands()) {
196         if (!MO.isFI())
197           continue;
198 
199         StackOffset Offset;
200         if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
201             AArch64FrameOffsetCannotUpdate)
202           return 0;
203       }
204     }
205   }
206   return DefaultSafeSPDisplacement;
207 }
208 
209 TargetStackID::Value
210 AArch64FrameLowering::getStackIDForScalableVectors() const {
211   return TargetStackID::SVEVector;
212 }
213 
214 /// Returns the size of the fixed object area (allocated next to sp on entry)
215 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
216 static unsigned getFixedObjectSize(const MachineFunction &MF,
217                                    const AArch64FunctionInfo *AFI, bool IsWin64,
218                                    bool IsFunclet) {
219   if (!IsWin64 || IsFunclet) {
220     // Only Win64 uses fixed objects, and then only for the function (not
221     // funclets)
222     return 0;
223   } else {
224     // Var args are stored here in the primary function.
225     const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
226     // To support EH funclets we allocate an UnwindHelp object
227     const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
228     return alignTo(VarArgsArea + UnwindHelpObject, 16);
229   }
230 }
231 
232 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
233 static StackOffset getSVEStackSize(const MachineFunction &MF) {
234   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
235   return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8};
236 }
237 
238 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
239   if (!EnableRedZone)
240     return false;
241   // Don't use the red zone if the function explicitly asks us not to.
242   // This is typically used for kernel code.
243   if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
244     return false;
245 
246   const MachineFrameInfo &MFI = MF.getFrameInfo();
247   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
248   uint64_t NumBytes = AFI->getLocalStackSize();
249 
250   return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 ||
251            getSVEStackSize(MF));
252 }
253 
254 /// hasFP - Return true if the specified function should have a dedicated frame
255 /// pointer register.
256 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
257   const MachineFrameInfo &MFI = MF.getFrameInfo();
258   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
259   // Win64 EH requires a frame pointer if funclets are present, as the locals
260   // are accessed off the frame pointer in both the parent function and the
261   // funclets.
262   if (MF.hasEHFunclets())
263     return true;
264   // Retain behavior of always omitting the FP for leaf functions when possible.
265   if (MF.getTarget().Options.DisableFramePointerElim(MF))
266     return true;
267   if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
268       MFI.hasStackMap() || MFI.hasPatchPoint() ||
269       RegInfo->needsStackRealignment(MF))
270     return true;
271   // With large callframes around we may need to use FP to access the scavenging
272   // emergency spillslot.
273   //
274   // Unfortunately some calls to hasFP() like machine verifier ->
275   // getReservedReg() -> hasFP in the middle of global isel are too early
276   // to know the max call frame size. Hopefully conservatively returning "true"
277   // in those cases is fine.
278   // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
279   if (!MFI.isMaxCallFrameSizeComputed() ||
280       MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
281     return true;
282 
283   return false;
284 }
285 
286 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
287 /// not required, we reserve argument space for call sites in the function
288 /// immediately on entry to the current function.  This eliminates the need for
289 /// add/sub sp brackets around call sites.  Returns true if the call frame is
290 /// included as part of the stack frame.
291 bool
292 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
293   return !MF.getFrameInfo().hasVarSizedObjects();
294 }
295 
296 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
297     MachineFunction &MF, MachineBasicBlock &MBB,
298     MachineBasicBlock::iterator I) const {
299   const AArch64InstrInfo *TII =
300       static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
301   DebugLoc DL = I->getDebugLoc();
302   unsigned Opc = I->getOpcode();
303   bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
304   uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
305 
306   if (!hasReservedCallFrame(MF)) {
307     unsigned Align = getStackAlignment();
308 
309     int64_t Amount = I->getOperand(0).getImm();
310     Amount = alignTo(Amount, Align);
311     if (!IsDestroy)
312       Amount = -Amount;
313 
314     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
315     // doesn't have to pop anything), then the first operand will be zero too so
316     // this adjustment is a no-op.
317     if (CalleePopAmount == 0) {
318       // FIXME: in-function stack adjustment for calls is limited to 24-bits
319       // because there's no guaranteed temporary register available.
320       //
321       // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
322       // 1) For offset <= 12-bit, we use LSL #0
323       // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
324       // LSL #0, and the other uses LSL #12.
325       //
326       // Most call frames will be allocated at the start of a function so
327       // this is OK, but it is a limitation that needs dealing with.
328       assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
329       emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8},
330                       TII);
331     }
332   } else if (CalleePopAmount != 0) {
333     // If the calling convention demands that the callee pops arguments from the
334     // stack, we want to add it back if we have a reserved call frame.
335     assert(CalleePopAmount < 0xffffff && "call frame too large");
336     emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
337                     {-(int64_t)CalleePopAmount, MVT::i8}, TII);
338   }
339   return MBB.erase(I);
340 }
341 
342 static bool ShouldSignReturnAddress(MachineFunction &MF) {
343   // The function should be signed in the following situations:
344   // - sign-return-address=all
345   // - sign-return-address=non-leaf and the functions spills the LR
346 
347   const Function &F = MF.getFunction();
348   if (!F.hasFnAttribute("sign-return-address"))
349     return false;
350 
351   StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString();
352   if (Scope.equals("none"))
353     return false;
354 
355   if (Scope.equals("all"))
356     return true;
357 
358   assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf");
359 
360   for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo())
361     if (Info.getReg() == AArch64::LR)
362       return true;
363 
364   return false;
365 }
366 
367 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
368     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
369   MachineFunction &MF = *MBB.getParent();
370   MachineFrameInfo &MFI = MF.getFrameInfo();
371   const TargetSubtargetInfo &STI = MF.getSubtarget();
372   const MCRegisterInfo *MRI = STI.getRegisterInfo();
373   const TargetInstrInfo *TII = STI.getInstrInfo();
374   DebugLoc DL = MBB.findDebugLoc(MBBI);
375 
376   // Add callee saved registers to move list.
377   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
378   if (CSI.empty())
379     return;
380 
381   for (const auto &Info : CSI) {
382     unsigned Reg = Info.getReg();
383     int64_t Offset =
384         MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
385     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
386     unsigned CFIIndex = MF.addFrameInst(
387         MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
388     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
389         .addCFIIndex(CFIIndex)
390         .setMIFlags(MachineInstr::FrameSetup);
391   }
392 }
393 
394 // Find a scratch register that we can use at the start of the prologue to
395 // re-align the stack pointer.  We avoid using callee-save registers since they
396 // may appear to be free when this is called from canUseAsPrologue (during
397 // shrink wrapping), but then no longer be free when this is called from
398 // emitPrologue.
399 //
400 // FIXME: This is a bit conservative, since in the above case we could use one
401 // of the callee-save registers as a scratch temp to re-align the stack pointer,
402 // but we would then have to make sure that we were in fact saving at least one
403 // callee-save register in the prologue, which is additional complexity that
404 // doesn't seem worth the benefit.
405 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
406   MachineFunction *MF = MBB->getParent();
407 
408   // If MBB is an entry block, use X9 as the scratch register
409   if (&MF->front() == MBB)
410     return AArch64::X9;
411 
412   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
413   const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
414   LivePhysRegs LiveRegs(TRI);
415   LiveRegs.addLiveIns(*MBB);
416 
417   // Mark callee saved registers as used so we will not choose them.
418   const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
419   for (unsigned i = 0; CSRegs[i]; ++i)
420     LiveRegs.addReg(CSRegs[i]);
421 
422   // Prefer X9 since it was historically used for the prologue scratch reg.
423   const MachineRegisterInfo &MRI = MF->getRegInfo();
424   if (LiveRegs.available(MRI, AArch64::X9))
425     return AArch64::X9;
426 
427   for (unsigned Reg : AArch64::GPR64RegClass) {
428     if (LiveRegs.available(MRI, Reg))
429       return Reg;
430   }
431   return AArch64::NoRegister;
432 }
433 
434 bool AArch64FrameLowering::canUseAsPrologue(
435     const MachineBasicBlock &MBB) const {
436   const MachineFunction *MF = MBB.getParent();
437   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
438   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
439   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
440 
441   // Don't need a scratch register if we're not going to re-align the stack.
442   if (!RegInfo->needsStackRealignment(*MF))
443     return true;
444   // Otherwise, we can use any block as long as it has a scratch register
445   // available.
446   return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
447 }
448 
449 static bool windowsRequiresStackProbe(MachineFunction &MF,
450                                       uint64_t StackSizeInBytes) {
451   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
452   if (!Subtarget.isTargetWindows())
453     return false;
454   const Function &F = MF.getFunction();
455   // TODO: When implementing stack protectors, take that into account
456   // for the probe threshold.
457   unsigned StackProbeSize = 4096;
458   if (F.hasFnAttribute("stack-probe-size"))
459     F.getFnAttribute("stack-probe-size")
460         .getValueAsString()
461         .getAsInteger(0, StackProbeSize);
462   return (StackSizeInBytes >= StackProbeSize) &&
463          !F.hasFnAttribute("no-stack-arg-probe");
464 }
465 
466 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
467     MachineFunction &MF, uint64_t StackBumpBytes) const {
468   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
469   const MachineFrameInfo &MFI = MF.getFrameInfo();
470   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
471   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
472 
473   if (AFI->getLocalStackSize() == 0)
474     return false;
475 
476   // 512 is the maximum immediate for stp/ldp that will be used for
477   // callee-save save/restores
478   if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
479     return false;
480 
481   if (MFI.hasVarSizedObjects())
482     return false;
483 
484   if (RegInfo->needsStackRealignment(MF))
485     return false;
486 
487   // This isn't strictly necessary, but it simplifies things a bit since the
488   // current RedZone handling code assumes the SP is adjusted by the
489   // callee-save save/restore code.
490   if (canUseRedZone(MF))
491     return false;
492 
493   // When there is an SVE area on the stack, always allocate the
494   // callee-saves and spills/locals separately.
495   if (getSVEStackSize(MF))
496     return false;
497 
498   return true;
499 }
500 
501 // Given a load or a store instruction, generate an appropriate unwinding SEH
502 // code on Windows.
503 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
504                                              const TargetInstrInfo &TII,
505                                              MachineInstr::MIFlag Flag) {
506   unsigned Opc = MBBI->getOpcode();
507   MachineBasicBlock *MBB = MBBI->getParent();
508   MachineFunction &MF = *MBB->getParent();
509   DebugLoc DL = MBBI->getDebugLoc();
510   unsigned ImmIdx = MBBI->getNumOperands() - 1;
511   int Imm = MBBI->getOperand(ImmIdx).getImm();
512   MachineInstrBuilder MIB;
513   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
514   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
515 
516   switch (Opc) {
517   default:
518     llvm_unreachable("No SEH Opcode for this instruction");
519   case AArch64::LDPDpost:
520     Imm = -Imm;
521     LLVM_FALLTHROUGH;
522   case AArch64::STPDpre: {
523     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
524     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
525     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
526               .addImm(Reg0)
527               .addImm(Reg1)
528               .addImm(Imm * 8)
529               .setMIFlag(Flag);
530     break;
531   }
532   case AArch64::LDPXpost:
533     Imm = -Imm;
534     LLVM_FALLTHROUGH;
535   case AArch64::STPXpre: {
536     Register Reg0 = MBBI->getOperand(1).getReg();
537     Register Reg1 = MBBI->getOperand(2).getReg();
538     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
539       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
540                 .addImm(Imm * 8)
541                 .setMIFlag(Flag);
542     else
543       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
544                 .addImm(RegInfo->getSEHRegNum(Reg0))
545                 .addImm(RegInfo->getSEHRegNum(Reg1))
546                 .addImm(Imm * 8)
547                 .setMIFlag(Flag);
548     break;
549   }
550   case AArch64::LDRDpost:
551     Imm = -Imm;
552     LLVM_FALLTHROUGH;
553   case AArch64::STRDpre: {
554     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
555     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
556               .addImm(Reg)
557               .addImm(Imm)
558               .setMIFlag(Flag);
559     break;
560   }
561   case AArch64::LDRXpost:
562     Imm = -Imm;
563     LLVM_FALLTHROUGH;
564   case AArch64::STRXpre: {
565     unsigned Reg =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
566     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
567               .addImm(Reg)
568               .addImm(Imm)
569               .setMIFlag(Flag);
570     break;
571   }
572   case AArch64::STPDi:
573   case AArch64::LDPDi: {
574     unsigned Reg0 =  RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
575     unsigned Reg1 =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
576     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
577               .addImm(Reg0)
578               .addImm(Reg1)
579               .addImm(Imm * 8)
580               .setMIFlag(Flag);
581     break;
582   }
583   case AArch64::STPXi:
584   case AArch64::LDPXi: {
585     Register Reg0 = MBBI->getOperand(0).getReg();
586     Register Reg1 = MBBI->getOperand(1).getReg();
587     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
588       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
589                 .addImm(Imm * 8)
590                 .setMIFlag(Flag);
591     else
592       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
593                 .addImm(RegInfo->getSEHRegNum(Reg0))
594                 .addImm(RegInfo->getSEHRegNum(Reg1))
595                 .addImm(Imm * 8)
596                 .setMIFlag(Flag);
597     break;
598   }
599   case AArch64::STRXui:
600   case AArch64::LDRXui: {
601     int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
602     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
603               .addImm(Reg)
604               .addImm(Imm * 8)
605               .setMIFlag(Flag);
606     break;
607   }
608   case AArch64::STRDui:
609   case AArch64::LDRDui: {
610     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
611     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
612               .addImm(Reg)
613               .addImm(Imm * 8)
614               .setMIFlag(Flag);
615     break;
616   }
617   }
618   auto I = MBB->insertAfter(MBBI, MIB);
619   return I;
620 }
621 
622 // Fix up the SEH opcode associated with the save/restore instruction.
623 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
624                            unsigned LocalStackSize) {
625   MachineOperand *ImmOpnd = nullptr;
626   unsigned ImmIdx = MBBI->getNumOperands() - 1;
627   switch (MBBI->getOpcode()) {
628   default:
629     llvm_unreachable("Fix the offset in the SEH instruction");
630   case AArch64::SEH_SaveFPLR:
631   case AArch64::SEH_SaveRegP:
632   case AArch64::SEH_SaveReg:
633   case AArch64::SEH_SaveFRegP:
634   case AArch64::SEH_SaveFReg:
635     ImmOpnd = &MBBI->getOperand(ImmIdx);
636     break;
637   }
638   if (ImmOpnd)
639     ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
640 }
641 
642 // Convert callee-save register save/restore instruction to do stack pointer
643 // decrement/increment to allocate/deallocate the callee-save stack area by
644 // converting store/load to use pre/post increment version.
645 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
646     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
647     const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
648     bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) {
649   // Ignore instructions that do not operate on SP, i.e. shadow call stack
650   // instructions and associated CFI instruction.
651   while (MBBI->getOpcode() == AArch64::STRXpost ||
652          MBBI->getOpcode() == AArch64::LDRXpre ||
653          MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) {
654     if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION)
655       assert(MBBI->getOperand(0).getReg() != AArch64::SP);
656     ++MBBI;
657   }
658   unsigned NewOpc;
659   int Scale = 1;
660   switch (MBBI->getOpcode()) {
661   default:
662     llvm_unreachable("Unexpected callee-save save/restore opcode!");
663   case AArch64::STPXi:
664     NewOpc = AArch64::STPXpre;
665     Scale = 8;
666     break;
667   case AArch64::STPDi:
668     NewOpc = AArch64::STPDpre;
669     Scale = 8;
670     break;
671   case AArch64::STPQi:
672     NewOpc = AArch64::STPQpre;
673     Scale = 16;
674     break;
675   case AArch64::STRXui:
676     NewOpc = AArch64::STRXpre;
677     break;
678   case AArch64::STRDui:
679     NewOpc = AArch64::STRDpre;
680     break;
681   case AArch64::STRQui:
682     NewOpc = AArch64::STRQpre;
683     break;
684   case AArch64::LDPXi:
685     NewOpc = AArch64::LDPXpost;
686     Scale = 8;
687     break;
688   case AArch64::LDPDi:
689     NewOpc = AArch64::LDPDpost;
690     Scale = 8;
691     break;
692   case AArch64::LDPQi:
693     NewOpc = AArch64::LDPQpost;
694     Scale = 16;
695     break;
696   case AArch64::LDRXui:
697     NewOpc = AArch64::LDRXpost;
698     break;
699   case AArch64::LDRDui:
700     NewOpc = AArch64::LDRDpost;
701     break;
702   case AArch64::LDRQui:
703     NewOpc = AArch64::LDRQpost;
704     break;
705   }
706   // Get rid of the SEH code associated with the old instruction.
707   if (NeedsWinCFI) {
708     auto SEH = std::next(MBBI);
709     if (AArch64InstrInfo::isSEHInstruction(*SEH))
710       SEH->eraseFromParent();
711   }
712 
713   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
714   MIB.addReg(AArch64::SP, RegState::Define);
715 
716   // Copy all operands other than the immediate offset.
717   unsigned OpndIdx = 0;
718   for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
719        ++OpndIdx)
720     MIB.add(MBBI->getOperand(OpndIdx));
721 
722   assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
723          "Unexpected immediate offset in first/last callee-save save/restore "
724          "instruction!");
725   assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
726          "Unexpected base register in callee-save save/restore instruction!");
727   assert(CSStackSizeInc % Scale == 0);
728   MIB.addImm(CSStackSizeInc / Scale);
729 
730   MIB.setMIFlags(MBBI->getFlags());
731   MIB.setMemRefs(MBBI->memoperands());
732 
733   // Generate a new SEH code that corresponds to the new instruction.
734   if (NeedsWinCFI) {
735     *HasWinCFI = true;
736     InsertSEH(*MIB, *TII,
737               InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy);
738   }
739 
740   return std::prev(MBB.erase(MBBI));
741 }
742 
743 // Fixup callee-save register save/restore instructions to take into account
744 // combined SP bump by adding the local stack size to the stack offsets.
745 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
746                                               uint64_t LocalStackSize,
747                                               bool NeedsWinCFI,
748                                               bool *HasWinCFI) {
749   if (AArch64InstrInfo::isSEHInstruction(MI))
750     return;
751 
752   unsigned Opc = MI.getOpcode();
753 
754   // Ignore instructions that do not operate on SP, i.e. shadow call stack
755   // instructions and associated CFI instruction.
756   if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre ||
757       Opc == AArch64::CFI_INSTRUCTION) {
758     if (Opc != AArch64::CFI_INSTRUCTION)
759       assert(MI.getOperand(0).getReg() != AArch64::SP);
760     return;
761   }
762 
763   unsigned Scale;
764   switch (Opc) {
765   case AArch64::STPXi:
766   case AArch64::STRXui:
767   case AArch64::STPDi:
768   case AArch64::STRDui:
769   case AArch64::LDPXi:
770   case AArch64::LDRXui:
771   case AArch64::LDPDi:
772   case AArch64::LDRDui:
773     Scale = 8;
774     break;
775   case AArch64::STPQi:
776   case AArch64::STRQui:
777   case AArch64::LDPQi:
778   case AArch64::LDRQui:
779     Scale = 16;
780     break;
781   default:
782     llvm_unreachable("Unexpected callee-save save/restore opcode!");
783   }
784 
785   unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
786   assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
787          "Unexpected base register in callee-save save/restore instruction!");
788   // Last operand is immediate offset that needs fixing.
789   MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
790   // All generated opcodes have scaled offsets.
791   assert(LocalStackSize % Scale == 0);
792   OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
793 
794   if (NeedsWinCFI) {
795     *HasWinCFI = true;
796     auto MBBI = std::next(MachineBasicBlock::iterator(MI));
797     assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
798     assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
799            "Expecting a SEH instruction");
800     fixupSEHOpcode(MBBI, LocalStackSize);
801   }
802 }
803 
804 static void adaptForLdStOpt(MachineBasicBlock &MBB,
805                             MachineBasicBlock::iterator FirstSPPopI,
806                             MachineBasicBlock::iterator LastPopI) {
807   // Sometimes (when we restore in the same order as we save), we can end up
808   // with code like this:
809   //
810   // ldp      x26, x25, [sp]
811   // ldp      x24, x23, [sp, #16]
812   // ldp      x22, x21, [sp, #32]
813   // ldp      x20, x19, [sp, #48]
814   // add      sp, sp, #64
815   //
816   // In this case, it is always better to put the first ldp at the end, so
817   // that the load-store optimizer can run and merge the ldp and the add into
818   // a post-index ldp.
819   // If we managed to grab the first pop instruction, move it to the end.
820   if (ReverseCSRRestoreSeq)
821     MBB.splice(FirstSPPopI, &MBB, LastPopI);
822   // We should end up with something like this now:
823   //
824   // ldp      x24, x23, [sp, #16]
825   // ldp      x22, x21, [sp, #32]
826   // ldp      x20, x19, [sp, #48]
827   // ldp      x26, x25, [sp]
828   // add      sp, sp, #64
829   //
830   // and the load-store optimizer can merge the last two instructions into:
831   //
832   // ldp      x26, x25, [sp], #64
833   //
834 }
835 
836 static bool ShouldSignWithAKey(MachineFunction &MF) {
837   const Function &F = MF.getFunction();
838   if (!F.hasFnAttribute("sign-return-address-key"))
839     return true;
840 
841   const StringRef Key =
842       F.getFnAttribute("sign-return-address-key").getValueAsString();
843   assert(Key.equals_lower("a_key") || Key.equals_lower("b_key"));
844   return Key.equals_lower("a_key");
845 }
846 
847 static bool needsWinCFI(const MachineFunction &MF) {
848   const Function &F = MF.getFunction();
849   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
850          F.needsUnwindTableEntry();
851 }
852 
853 static bool isTargetDarwin(const MachineFunction &MF) {
854   return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin();
855 }
856 
857 static bool isTargetWindows(const MachineFunction &MF) {
858   return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
859 }
860 
861 // Convenience function to determine whether I is an SVE callee save.
862 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
863   switch (I->getOpcode()) {
864   default:
865     return false;
866   case AArch64::STR_ZXI:
867   case AArch64::STR_PXI:
868   case AArch64::LDR_ZXI:
869   case AArch64::LDR_PXI:
870     return I->getFlag(MachineInstr::FrameSetup) ||
871            I->getFlag(MachineInstr::FrameDestroy);
872   }
873 }
874 
875 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
876                                         MachineBasicBlock &MBB) const {
877   MachineBasicBlock::iterator MBBI = MBB.begin();
878   const MachineFrameInfo &MFI = MF.getFrameInfo();
879   const Function &F = MF.getFunction();
880   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
881   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
882   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
883   MachineModuleInfo &MMI = MF.getMMI();
884   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
885   bool needsFrameMoves =
886       MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
887   bool HasFP = hasFP(MF);
888   bool NeedsWinCFI = needsWinCFI(MF);
889   bool HasWinCFI = false;
890   auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
891 
892   bool IsFunclet = MBB.isEHFuncletEntry();
893 
894   // At this point, we're going to decide whether or not the function uses a
895   // redzone. In most cases, the function doesn't have a redzone so let's
896   // assume that's false and set it to true in the case that there's a redzone.
897   AFI->setHasRedZone(false);
898 
899   // Debug location must be unknown since the first debug location is used
900   // to determine the end of the prologue.
901   DebugLoc DL;
902 
903   if (ShouldSignReturnAddress(MF)) {
904     if (ShouldSignWithAKey(MF))
905       BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP))
906           .setMIFlag(MachineInstr::FrameSetup);
907     else {
908       BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
909           .setMIFlag(MachineInstr::FrameSetup);
910       BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP))
911           .setMIFlag(MachineInstr::FrameSetup);
912     }
913 
914     unsigned CFIIndex =
915         MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
916     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
917         .addCFIIndex(CFIIndex)
918         .setMIFlags(MachineInstr::FrameSetup);
919   }
920 
921   // All calls are tail calls in GHC calling conv, and functions have no
922   // prologue/epilogue.
923   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
924     return;
925 
926   // Set tagged base pointer to the bottom of the stack frame.
927   // Ideally it should match SP value after prologue.
928   AFI->setTaggedBasePointerOffset(MFI.getStackSize());
929 
930   const StackOffset &SVEStackSize = getSVEStackSize(MF);
931 
932   // getStackSize() includes all the locals in its size calculation. We don't
933   // include these locals when computing the stack size of a funclet, as they
934   // are allocated in the parent's stack frame and accessed via the frame
935   // pointer from the funclet.  We only save the callee saved registers in the
936   // funclet, which are really the callee saved registers of the parent
937   // function, including the funclet.
938   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
939                                : MFI.getStackSize();
940   if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
941     assert(!HasFP && "unexpected function without stack frame but with FP");
942     assert(!SVEStackSize &&
943            "unexpected function without stack frame but with SVE objects");
944     // All of the stack allocation is for locals.
945     AFI->setLocalStackSize(NumBytes);
946     if (!NumBytes)
947       return;
948     // REDZONE: If the stack size is less than 128 bytes, we don't need
949     // to actually allocate.
950     if (canUseRedZone(MF)) {
951       AFI->setHasRedZone(true);
952       ++NumRedZoneFunctions;
953     } else {
954       emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
955                       {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
956                       false, NeedsWinCFI, &HasWinCFI);
957       if (!NeedsWinCFI && needsFrameMoves) {
958         // Label used to tie together the PROLOG_LABEL and the MachineMoves.
959         MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
960           // Encode the stack size of the leaf function.
961           unsigned CFIIndex = MF.addFrameInst(
962               MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
963           BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
964               .addCFIIndex(CFIIndex)
965               .setMIFlags(MachineInstr::FrameSetup);
966       }
967     }
968 
969     if (NeedsWinCFI) {
970       HasWinCFI = true;
971       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
972           .setMIFlag(MachineInstr::FrameSetup);
973     }
974 
975     return;
976   }
977 
978   bool IsWin64 =
979       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
980   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
981 
982   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
983   // All of the remaining stack allocations are for locals.
984   AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
985   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
986   if (CombineSPBump) {
987     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
988     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
989                     {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false,
990                     NeedsWinCFI, &HasWinCFI);
991     NumBytes = 0;
992   } else if (PrologueSaveSize != 0) {
993     MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
994         MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI);
995     NumBytes -= PrologueSaveSize;
996   }
997   assert(NumBytes >= 0 && "Negative stack allocation size!?");
998 
999   // Move past the saves of the callee-saved registers, fixing up the offsets
1000   // and pre-inc if we decided to combine the callee-save and local stack
1001   // pointer bump above.
1002   MachineBasicBlock::iterator End = MBB.end();
1003   while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1004          !IsSVECalleeSave(MBBI)) {
1005     if (CombineSPBump)
1006       fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1007                                         NeedsWinCFI, &HasWinCFI);
1008     ++MBBI;
1009   }
1010 
1011   // For funclets the FP belongs to the containing function.
1012   if (!IsFunclet && HasFP) {
1013     // Only set up FP if we actually need to.
1014     int64_t FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0;
1015 
1016     if (CombineSPBump)
1017       FPOffset += AFI->getLocalStackSize();
1018 
1019     // Issue    sub fp, sp, FPOffset or
1020     //          mov fp,sp          when FPOffset is zero.
1021     // Note: All stores of callee-saved registers are marked as "FrameSetup".
1022     // This code marks the instruction(s) that set the FP also.
1023     emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1024                     {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false,
1025                     NeedsWinCFI, &HasWinCFI);
1026   }
1027 
1028   if (windowsRequiresStackProbe(MF, NumBytes)) {
1029     uint64_t NumWords = NumBytes >> 4;
1030     if (NeedsWinCFI) {
1031       HasWinCFI = true;
1032       // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1033       // exceed this amount.  We need to move at most 2^24 - 1 into x15.
1034       // This is at most two instructions, MOVZ follwed by MOVK.
1035       // TODO: Fix to use multiple stack alloc unwind codes for stacks
1036       // exceeding 256MB in size.
1037       if (NumBytes >= (1 << 28))
1038         report_fatal_error("Stack size cannot exceed 256MB for stack "
1039                             "unwinding purposes");
1040 
1041       uint32_t LowNumWords = NumWords & 0xFFFF;
1042       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1043             .addImm(LowNumWords)
1044             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1045             .setMIFlag(MachineInstr::FrameSetup);
1046       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1047             .setMIFlag(MachineInstr::FrameSetup);
1048       if ((NumWords & 0xFFFF0000) != 0) {
1049           BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1050               .addReg(AArch64::X15)
1051               .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1052               .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1053               .setMIFlag(MachineInstr::FrameSetup);
1054           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1055             .setMIFlag(MachineInstr::FrameSetup);
1056       }
1057     } else {
1058       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1059           .addImm(NumWords)
1060           .setMIFlags(MachineInstr::FrameSetup);
1061     }
1062 
1063     switch (MF.getTarget().getCodeModel()) {
1064     case CodeModel::Tiny:
1065     case CodeModel::Small:
1066     case CodeModel::Medium:
1067     case CodeModel::Kernel:
1068       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1069           .addExternalSymbol("__chkstk")
1070           .addReg(AArch64::X15, RegState::Implicit)
1071           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1072           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1073           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1074           .setMIFlags(MachineInstr::FrameSetup);
1075       if (NeedsWinCFI) {
1076         HasWinCFI = true;
1077         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1078             .setMIFlag(MachineInstr::FrameSetup);
1079       }
1080       break;
1081     case CodeModel::Large:
1082       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1083           .addReg(AArch64::X16, RegState::Define)
1084           .addExternalSymbol("__chkstk")
1085           .addExternalSymbol("__chkstk")
1086           .setMIFlags(MachineInstr::FrameSetup);
1087       if (NeedsWinCFI) {
1088         HasWinCFI = true;
1089         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1090             .setMIFlag(MachineInstr::FrameSetup);
1091       }
1092 
1093       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR))
1094           .addReg(AArch64::X16, RegState::Kill)
1095           .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1096           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1097           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1098           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1099           .setMIFlags(MachineInstr::FrameSetup);
1100       if (NeedsWinCFI) {
1101         HasWinCFI = true;
1102         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1103             .setMIFlag(MachineInstr::FrameSetup);
1104       }
1105       break;
1106     }
1107 
1108     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1109         .addReg(AArch64::SP, RegState::Kill)
1110         .addReg(AArch64::X15, RegState::Kill)
1111         .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1112         .setMIFlags(MachineInstr::FrameSetup);
1113     if (NeedsWinCFI) {
1114       HasWinCFI = true;
1115       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1116           .addImm(NumBytes)
1117           .setMIFlag(MachineInstr::FrameSetup);
1118     }
1119     NumBytes = 0;
1120   }
1121 
1122   StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1123   MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1124 
1125   // Process the SVE callee-saves to determine what space needs to be
1126   // allocated.
1127   if (AFI->getSVECalleeSavedStackSize()) {
1128     // Find callee save instructions in frame.
1129     CalleeSavesBegin = MBBI;
1130     assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1131     while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1132       ++MBBI;
1133     CalleeSavesEnd = MBBI;
1134 
1135     int64_t OffsetToFirstCalleeSaveFromSP =
1136         MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex());
1137     StackOffset OffsetToCalleeSavesFromSP =
1138         StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize;
1139     AllocateBefore -= OffsetToCalleeSavesFromSP;
1140     AllocateAfter = SVEStackSize - AllocateBefore;
1141   }
1142 
1143   // Allocate space for the callee saves (if any).
1144   emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP,
1145                   -AllocateBefore, TII,
1146                   MachineInstr::FrameSetup);
1147 
1148   // Finally allocate remaining SVE stack space.
1149   emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1150                   -AllocateAfter, TII,
1151                   MachineInstr::FrameSetup);
1152 
1153   // Allocate space for the rest of the frame.
1154   if (NumBytes) {
1155     // Alignment is required for the parent frame, not the funclet
1156     const bool NeedsRealignment =
1157         !IsFunclet && RegInfo->needsStackRealignment(MF);
1158     unsigned scratchSPReg = AArch64::SP;
1159 
1160     if (NeedsRealignment) {
1161       scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1162       assert(scratchSPReg != AArch64::NoRegister);
1163     }
1164 
1165     // If we're a leaf function, try using the red zone.
1166     if (!canUseRedZone(MF))
1167       // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1168       // the correct value here, as NumBytes also includes padding bytes,
1169       // which shouldn't be counted here.
1170       emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1171                       {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup,
1172                       false, NeedsWinCFI, &HasWinCFI);
1173 
1174     if (NeedsRealignment) {
1175       const unsigned Alignment = MFI.getMaxAlignment();
1176       const unsigned NrBitsToZero = countTrailingZeros(Alignment);
1177       assert(NrBitsToZero > 1);
1178       assert(scratchSPReg != AArch64::SP);
1179 
1180       // SUB X9, SP, NumBytes
1181       //   -- X9 is temporary register, so shouldn't contain any live data here,
1182       //   -- free to use. This is already produced by emitFrameOffset above.
1183       // AND SP, X9, 0b11111...0000
1184       // The logical immediates have a non-trivial encoding. The following
1185       // formula computes the encoded immediate with all ones but
1186       // NrBitsToZero zero bits as least significant bits.
1187       uint32_t andMaskEncoded = (1 << 12)                         // = N
1188                                 | ((64 - NrBitsToZero) << 6)      // immr
1189                                 | ((64 - NrBitsToZero - 1) << 0); // imms
1190 
1191       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1192           .addReg(scratchSPReg, RegState::Kill)
1193           .addImm(andMaskEncoded);
1194       AFI->setStackRealigned(true);
1195       if (NeedsWinCFI) {
1196         HasWinCFI = true;
1197         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1198             .addImm(NumBytes & andMaskEncoded)
1199             .setMIFlag(MachineInstr::FrameSetup);
1200       }
1201     }
1202   }
1203 
1204   // If we need a base pointer, set it up here. It's whatever the value of the
1205   // stack pointer is at this point. Any variable size objects will be allocated
1206   // after this, so we can still use the base pointer to reference locals.
1207   //
1208   // FIXME: Clarify FrameSetup flags here.
1209   // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1210   // needed.
1211   // For funclets the BP belongs to the containing function.
1212   if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1213     TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1214                      false);
1215     if (NeedsWinCFI) {
1216       HasWinCFI = true;
1217       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1218           .setMIFlag(MachineInstr::FrameSetup);
1219     }
1220   }
1221 
1222   // The very last FrameSetup instruction indicates the end of prologue. Emit a
1223   // SEH opcode indicating the prologue end.
1224   if (NeedsWinCFI && HasWinCFI) {
1225     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1226         .setMIFlag(MachineInstr::FrameSetup);
1227   }
1228 
1229   // SEH funclets are passed the frame pointer in X1.  If the parent
1230   // function uses the base register, then the base register is used
1231   // directly, and is not retrieved from X1.
1232   if (IsFunclet && F.hasPersonalityFn()) {
1233     EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1234     if (isAsynchronousEHPersonality(Per)) {
1235       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1236           .addReg(AArch64::X1)
1237           .setMIFlag(MachineInstr::FrameSetup);
1238       MBB.addLiveIn(AArch64::X1);
1239     }
1240   }
1241 
1242   if (needsFrameMoves) {
1243     const DataLayout &TD = MF.getDataLayout();
1244     const int StackGrowth = isTargetDarwin(MF)
1245                                 ? (2 * -TD.getPointerSize(0))
1246                                 : -AFI->getCalleeSavedStackSize();
1247     Register FramePtr = RegInfo->getFrameRegister(MF);
1248     // An example of the prologue:
1249     //
1250     //     .globl __foo
1251     //     .align 2
1252     //  __foo:
1253     // Ltmp0:
1254     //     .cfi_startproc
1255     //     .cfi_personality 155, ___gxx_personality_v0
1256     // Leh_func_begin:
1257     //     .cfi_lsda 16, Lexception33
1258     //
1259     //     stp  xa,bx, [sp, -#offset]!
1260     //     ...
1261     //     stp  x28, x27, [sp, #offset-32]
1262     //     stp  fp, lr, [sp, #offset-16]
1263     //     add  fp, sp, #offset - 16
1264     //     sub  sp, sp, #1360
1265     //
1266     // The Stack:
1267     //       +-------------------------------------------+
1268     // 10000 | ........ | ........ | ........ | ........ |
1269     // 10004 | ........ | ........ | ........ | ........ |
1270     //       +-------------------------------------------+
1271     // 10008 | ........ | ........ | ........ | ........ |
1272     // 1000c | ........ | ........ | ........ | ........ |
1273     //       +===========================================+
1274     // 10010 |                X28 Register               |
1275     // 10014 |                X28 Register               |
1276     //       +-------------------------------------------+
1277     // 10018 |                X27 Register               |
1278     // 1001c |                X27 Register               |
1279     //       +===========================================+
1280     // 10020 |                Frame Pointer              |
1281     // 10024 |                Frame Pointer              |
1282     //       +-------------------------------------------+
1283     // 10028 |                Link Register              |
1284     // 1002c |                Link Register              |
1285     //       +===========================================+
1286     // 10030 | ........ | ........ | ........ | ........ |
1287     // 10034 | ........ | ........ | ........ | ........ |
1288     //       +-------------------------------------------+
1289     // 10038 | ........ | ........ | ........ | ........ |
1290     // 1003c | ........ | ........ | ........ | ........ |
1291     //       +-------------------------------------------+
1292     //
1293     //     [sp] = 10030        ::    >>initial value<<
1294     //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
1295     //     fp = sp == 10020    ::  mov fp, sp
1296     //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
1297     //     sp == 10010         ::    >>final value<<
1298     //
1299     // The frame pointer (w29) points to address 10020. If we use an offset of
1300     // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
1301     // for w27, and -32 for w28:
1302     //
1303     //  Ltmp1:
1304     //     .cfi_def_cfa w29, 16
1305     //  Ltmp2:
1306     //     .cfi_offset w30, -8
1307     //  Ltmp3:
1308     //     .cfi_offset w29, -16
1309     //  Ltmp4:
1310     //     .cfi_offset w27, -24
1311     //  Ltmp5:
1312     //     .cfi_offset w28, -32
1313 
1314     if (HasFP) {
1315       // Define the current CFA rule to use the provided FP.
1316       unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1317       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
1318           nullptr, Reg, StackGrowth - FixedObject));
1319       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1320           .addCFIIndex(CFIIndex)
1321           .setMIFlags(MachineInstr::FrameSetup);
1322     } else {
1323       // Encode the stack size of the leaf function.
1324       unsigned CFIIndex = MF.addFrameInst(
1325           MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize()));
1326       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1327           .addCFIIndex(CFIIndex)
1328           .setMIFlags(MachineInstr::FrameSetup);
1329     }
1330 
1331     // Now emit the moves for whatever callee saved regs we have (including FP,
1332     // LR if those are saved).
1333     emitCalleeSavedFrameMoves(MBB, MBBI);
1334   }
1335 }
1336 
1337 static void InsertReturnAddressAuth(MachineFunction &MF,
1338                                     MachineBasicBlock &MBB) {
1339   if (!ShouldSignReturnAddress(MF))
1340     return;
1341   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1342   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1343 
1344   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1345   DebugLoc DL;
1346   if (MBBI != MBB.end())
1347     DL = MBBI->getDebugLoc();
1348 
1349   // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1350   // this instruction can safely used for any v8a architecture.
1351   // From v8.3a onwards there are optimised authenticate LR and return
1352   // instructions, namely RETA{A,B}, that can be used instead.
1353   if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() &&
1354       MBBI->getOpcode() == AArch64::RET_ReallyLR) {
1355     BuildMI(MBB, MBBI, DL,
1356             TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB))
1357         .copyImplicitOps(*MBBI);
1358     MBB.erase(MBBI);
1359   } else {
1360     BuildMI(
1361         MBB, MBBI, DL,
1362         TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP))
1363         .setMIFlag(MachineInstr::FrameDestroy);
1364   }
1365 }
1366 
1367 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1368   switch (MI.getOpcode()) {
1369   default:
1370     return false;
1371   case AArch64::CATCHRET:
1372   case AArch64::CLEANUPRET:
1373     return true;
1374   }
1375 }
1376 
1377 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1378                                         MachineBasicBlock &MBB) const {
1379   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1380   MachineFrameInfo &MFI = MF.getFrameInfo();
1381   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1382   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1383   DebugLoc DL;
1384   bool IsTailCallReturn = false;
1385   bool NeedsWinCFI = needsWinCFI(MF);
1386   bool HasWinCFI = false;
1387   bool IsFunclet = false;
1388   auto WinCFI = make_scope_exit([&]() {
1389     if (!MF.hasWinCFI())
1390       MF.setHasWinCFI(HasWinCFI);
1391   });
1392 
1393   if (MBB.end() != MBBI) {
1394     DL = MBBI->getDebugLoc();
1395     unsigned RetOpcode = MBBI->getOpcode();
1396     IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
1397                        RetOpcode == AArch64::TCRETURNri ||
1398                        RetOpcode == AArch64::TCRETURNriBTI;
1399     IsFunclet = isFuncletReturnInstr(*MBBI);
1400   }
1401 
1402   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1403                                : MFI.getStackSize();
1404   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1405 
1406   // All calls are tail calls in GHC calling conv, and functions have no
1407   // prologue/epilogue.
1408   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1409     return;
1410 
1411   // Initial and residual are named for consistency with the prologue. Note that
1412   // in the epilogue, the residual adjustment is executed first.
1413   uint64_t ArgumentPopSize = 0;
1414   if (IsTailCallReturn) {
1415     MachineOperand &StackAdjust = MBBI->getOperand(1);
1416 
1417     // For a tail-call in a callee-pops-arguments environment, some or all of
1418     // the stack may actually be in use for the call's arguments, this is
1419     // calculated during LowerCall and consumed here...
1420     ArgumentPopSize = StackAdjust.getImm();
1421   } else {
1422     // ... otherwise the amount to pop is *all* of the argument space,
1423     // conveniently stored in the MachineFunctionInfo by
1424     // LowerFormalArguments. This will, of course, be zero for the C calling
1425     // convention.
1426     ArgumentPopSize = AFI->getArgumentStackToRestore();
1427   }
1428 
1429   // The stack frame should be like below,
1430   //
1431   //      ----------------------                     ---
1432   //      |                    |                      |
1433   //      | BytesInStackArgArea|              CalleeArgStackSize
1434   //      | (NumReusableBytes) |                (of tail call)
1435   //      |                    |                     ---
1436   //      |                    |                      |
1437   //      ---------------------|        ---           |
1438   //      |                    |         |            |
1439   //      |   CalleeSavedReg   |         |            |
1440   //      | (CalleeSavedStackSize)|      |            |
1441   //      |                    |         |            |
1442   //      ---------------------|         |         NumBytes
1443   //      |                    |     StackSize  (StackAdjustUp)
1444   //      |   LocalStackSize   |         |            |
1445   //      | (covering callee   |         |            |
1446   //      |       args)        |         |            |
1447   //      |                    |         |            |
1448   //      ----------------------        ---          ---
1449   //
1450   // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
1451   //             = StackSize + ArgumentPopSize
1452   //
1453   // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
1454   // it as the 2nd argument of AArch64ISD::TC_RETURN.
1455 
1456   auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); });
1457 
1458   bool IsWin64 =
1459       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1460   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1461 
1462   uint64_t AfterCSRPopSize = ArgumentPopSize;
1463   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1464   // We cannot rely on the local stack size set in emitPrologue if the function
1465   // has funclets, as funclets have different local stack size requirements, and
1466   // the current value set in emitPrologue may be that of the containing
1467   // function.
1468   if (MF.hasEHFunclets())
1469     AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1470   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1471   // Assume we can't combine the last pop with the sp restore.
1472 
1473   if (!CombineSPBump && PrologueSaveSize != 0) {
1474     MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1475     while (AArch64InstrInfo::isSEHInstruction(*Pop))
1476       Pop = std::prev(Pop);
1477     // Converting the last ldp to a post-index ldp is valid only if the last
1478     // ldp's offset is 0.
1479     const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
1480     // If the offset is 0, convert it to a post-index ldp.
1481     if (OffsetOp.getImm() == 0)
1482       convertCalleeSaveRestoreToSPPrePostIncDec(
1483           MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false);
1484     else {
1485       // If not, make sure to emit an add after the last ldp.
1486       // We're doing this by transfering the size to be restored from the
1487       // adjustment *before* the CSR pops to the adjustment *after* the CSR
1488       // pops.
1489       AfterCSRPopSize += PrologueSaveSize;
1490     }
1491   }
1492 
1493   // Move past the restores of the callee-saved registers.
1494   // If we plan on combining the sp bump of the local stack size and the callee
1495   // save stack size, we might need to adjust the CSR save and restore offsets.
1496   MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
1497   MachineBasicBlock::iterator Begin = MBB.begin();
1498   while (LastPopI != Begin) {
1499     --LastPopI;
1500     if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
1501         IsSVECalleeSave(LastPopI)) {
1502       ++LastPopI;
1503       break;
1504     } else if (CombineSPBump)
1505       fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
1506                                         NeedsWinCFI, &HasWinCFI);
1507   }
1508 
1509   if (NeedsWinCFI) {
1510     HasWinCFI = true;
1511     BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
1512         .setMIFlag(MachineInstr::FrameDestroy);
1513   }
1514 
1515   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1516 
1517   // If there is a single SP update, insert it before the ret and we're done.
1518   if (CombineSPBump) {
1519     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1520     emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
1521                     {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII,
1522                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1523     if (NeedsWinCFI && HasWinCFI)
1524       BuildMI(MBB, MBB.getFirstTerminator(), DL,
1525               TII->get(AArch64::SEH_EpilogEnd))
1526           .setMIFlag(MachineInstr::FrameDestroy);
1527     return;
1528   }
1529 
1530   NumBytes -= PrologueSaveSize;
1531   assert(NumBytes >= 0 && "Negative stack allocation size!?");
1532 
1533   // Process the SVE callee-saves to determine what space needs to be
1534   // deallocated.
1535   StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
1536   MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
1537   if (AFI->getSVECalleeSavedStackSize()) {
1538     RestoreBegin = std::prev(RestoreEnd);;
1539     while (IsSVECalleeSave(RestoreBegin) &&
1540            RestoreBegin != MBB.begin())
1541       --RestoreBegin;
1542     ++RestoreBegin;
1543 
1544     assert(IsSVECalleeSave(RestoreBegin) &&
1545            IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
1546 
1547     int64_t OffsetToFirstCalleeSaveFromSP =
1548         MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex());
1549     StackOffset OffsetToCalleeSavesFromSP =
1550         StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize;
1551     DeallocateBefore = OffsetToCalleeSavesFromSP;
1552     DeallocateAfter = SVEStackSize - DeallocateBefore;
1553   }
1554 
1555   // Deallocate the SVE area.
1556   if (SVEStackSize) {
1557     if (AFI->isStackRealigned()) {
1558       if (AFI->getSVECalleeSavedStackSize())
1559         // Set SP to start of SVE area, from which the callee-save reloads
1560         // can be done. The code below will deallocate the stack space
1561         // space by moving FP -> SP.
1562         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
1563                         -SVEStackSize, TII, MachineInstr::FrameDestroy);
1564     } else {
1565       if (AFI->getSVECalleeSavedStackSize()) {
1566         // Deallocate the non-SVE locals first before we can deallocate (and
1567         // restore callee saves) from the SVE area.
1568         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1569                         {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy);
1570         NumBytes = 0;
1571       }
1572 
1573       emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1574                       DeallocateBefore, TII, MachineInstr::FrameDestroy);
1575 
1576       emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
1577                       DeallocateAfter, TII, MachineInstr::FrameDestroy);
1578     }
1579   }
1580 
1581   if (!hasFP(MF)) {
1582     bool RedZone = canUseRedZone(MF);
1583     // If this was a redzone leaf function, we don't need to restore the
1584     // stack pointer (but we may need to pop stack args for fastcc).
1585     if (RedZone && AfterCSRPopSize == 0)
1586       return;
1587 
1588     bool NoCalleeSaveRestore = PrologueSaveSize == 0;
1589     int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
1590     if (NoCalleeSaveRestore)
1591       StackRestoreBytes += AfterCSRPopSize;
1592 
1593     // If we were able to combine the local stack pop with the argument pop,
1594     // then we're done.
1595     bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
1596 
1597     // If we're done after this, make sure to help the load store optimizer.
1598     if (Done)
1599       adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
1600 
1601     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1602                     {StackRestoreBytes, MVT::i8}, TII,
1603                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1604     if (Done) {
1605       if (NeedsWinCFI) {
1606         HasWinCFI = true;
1607         BuildMI(MBB, MBB.getFirstTerminator(), DL,
1608                 TII->get(AArch64::SEH_EpilogEnd))
1609             .setMIFlag(MachineInstr::FrameDestroy);
1610       }
1611       return;
1612     }
1613 
1614     NumBytes = 0;
1615   }
1616 
1617   // Restore the original stack pointer.
1618   // FIXME: Rather than doing the math here, we should instead just use
1619   // non-post-indexed loads for the restores if we aren't actually going to
1620   // be able to save any instructions.
1621   if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
1622     int64_t OffsetToFrameRecord =
1623         isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0;
1624     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
1625                     {OffsetToFrameRecord, MVT::i8},
1626                     TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
1627   } else if (NumBytes)
1628     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1629                     {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false,
1630                     NeedsWinCFI);
1631 
1632   // This must be placed after the callee-save restore code because that code
1633   // assumes the SP is at the same location as it was after the callee-save save
1634   // code in the prologue.
1635   if (AfterCSRPopSize) {
1636     // Find an insertion point for the first ldp so that it goes before the
1637     // shadow call stack epilog instruction. This ensures that the restore of
1638     // lr from x18 is placed after the restore from sp.
1639     auto FirstSPPopI = MBB.getFirstTerminator();
1640     while (FirstSPPopI != Begin) {
1641       auto Prev = std::prev(FirstSPPopI);
1642       if (Prev->getOpcode() != AArch64::LDRXpre ||
1643           Prev->getOperand(0).getReg() == AArch64::SP)
1644         break;
1645       FirstSPPopI = Prev;
1646     }
1647 
1648     adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
1649 
1650     emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
1651                     {(int64_t)AfterCSRPopSize, MVT::i8}, TII,
1652                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1653   }
1654   if (NeedsWinCFI && HasWinCFI)
1655     BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd))
1656         .setMIFlag(MachineInstr::FrameDestroy);
1657 
1658   MF.setHasWinCFI(HasWinCFI);
1659 }
1660 
1661 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1662 /// debug info.  It's the same as what we use for resolving the code-gen
1663 /// references for now.  FIXME: This can go wrong when references are
1664 /// SP-relative and simple call frames aren't used.
1665 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
1666                                                  int FI,
1667                                                  unsigned &FrameReg) const {
1668   return resolveFrameIndexReference(
1669              MF, FI, FrameReg,
1670              /*PreferFP=*/
1671              MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
1672              /*ForSimm=*/false)
1673       .getBytes();
1674 }
1675 
1676 int AArch64FrameLowering::getNonLocalFrameIndexReference(
1677   const MachineFunction &MF, int FI) const {
1678   return getSEHFrameIndexOffset(MF, FI);
1679 }
1680 
1681 static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) {
1682   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1683   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1684   bool IsWin64 =
1685       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1686 
1687   unsigned FixedObject =
1688       getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
1689   unsigned FPAdjust = isTargetDarwin(MF)
1690                         ? 16 : AFI->getCalleeSavedStackSize(MF.getFrameInfo());
1691   return {ObjectOffset + FixedObject + FPAdjust, MVT::i8};
1692 }
1693 
1694 static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) {
1695   const auto &MFI = MF.getFrameInfo();
1696   return {ObjectOffset + (int64_t)MFI.getStackSize(), MVT::i8};
1697 }
1698 
1699 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
1700                                                  int FI) const {
1701   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1702       MF.getSubtarget().getRegisterInfo());
1703   int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
1704   return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
1705              ? getFPOffset(MF, ObjectOffset).getBytes()
1706              : getStackOffset(MF, ObjectOffset).getBytes();
1707 }
1708 
1709 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
1710     const MachineFunction &MF, int FI, unsigned &FrameReg, bool PreferFP,
1711     bool ForSimm) const {
1712   const auto &MFI = MF.getFrameInfo();
1713   int64_t ObjectOffset = MFI.getObjectOffset(FI);
1714   bool isFixed = MFI.isFixedObjectIndex(FI);
1715   bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector;
1716   return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
1717                                      PreferFP, ForSimm);
1718 }
1719 
1720 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
1721     const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
1722     unsigned &FrameReg, bool PreferFP, bool ForSimm) const {
1723   const auto &MFI = MF.getFrameInfo();
1724   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1725       MF.getSubtarget().getRegisterInfo());
1726   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1727   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1728 
1729   int64_t FPOffset = getFPOffset(MF, ObjectOffset).getBytes();
1730   int64_t Offset = getStackOffset(MF, ObjectOffset).getBytes();
1731   bool isCSR =
1732       !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1733 
1734   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1735 
1736   // Use frame pointer to reference fixed objects. Use it for locals if
1737   // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1738   // reliable as a base). Make sure useFPForScavengingIndex() does the
1739   // right thing for the emergency spill slot.
1740   bool UseFP = false;
1741   if (AFI->hasStackFrame() && !isSVE) {
1742     // We shouldn't prefer using the FP when there is an SVE area
1743     // in between the FP and the non-SVE locals/spills.
1744     PreferFP &= !SVEStackSize;
1745 
1746     // Note: Keeping the following as multiple 'if' statements rather than
1747     // merging to a single expression for readability.
1748     //
1749     // Argument access should always use the FP.
1750     if (isFixed) {
1751       UseFP = hasFP(MF);
1752     } else if (isCSR && RegInfo->needsStackRealignment(MF)) {
1753       // References to the CSR area must use FP if we're re-aligning the stack
1754       // since the dynamically-sized alignment padding is between the SP/BP and
1755       // the CSR area.
1756       assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1757       UseFP = true;
1758     } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
1759       // If the FPOffset is negative and we're producing a signed immediate, we
1760       // have to keep in mind that the available offset range for negative
1761       // offsets is smaller than for positive ones. If an offset is available
1762       // via the FP and the SP, use whichever is closest.
1763       bool FPOffsetFits = !ForSimm || FPOffset >= -256;
1764       PreferFP |= Offset > -FPOffset;
1765 
1766       if (MFI.hasVarSizedObjects()) {
1767         // If we have variable sized objects, we can use either FP or BP, as the
1768         // SP offset is unknown. We can use the base pointer if we have one and
1769         // FP is not preferred. If not, we're stuck with using FP.
1770         bool CanUseBP = RegInfo->hasBasePointer(MF);
1771         if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1772           UseFP = PreferFP;
1773         else if (!CanUseBP) { // Can't use BP. Forced to use FP.
1774           assert(!SVEStackSize && "Expected BP to be available");
1775           UseFP = true;
1776         }
1777         // else we can use BP and FP, but the offset from FP won't fit.
1778         // That will make us scavenge registers which we can probably avoid by
1779         // using BP. If it won't fit for BP either, we'll scavenge anyway.
1780       } else if (FPOffset >= 0) {
1781         // Use SP or FP, whichever gives us the best chance of the offset
1782         // being in range for direct access. If the FPOffset is positive,
1783         // that'll always be best, as the SP will be even further away.
1784         UseFP = true;
1785       } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
1786         // Funclets access the locals contained in the parent's stack frame
1787         // via the frame pointer, so we have to use the FP in the parent
1788         // function.
1789         (void) Subtarget;
1790         assert(
1791             Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
1792             "Funclets should only be present on Win64");
1793         UseFP = true;
1794       } else {
1795         // We have the choice between FP and (SP or BP).
1796         if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1797           UseFP = true;
1798       }
1799     }
1800   }
1801 
1802   assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
1803          "In the presence of dynamic stack pointer realignment, "
1804          "non-argument/CSR objects cannot be accessed through the frame pointer");
1805 
1806   if (isSVE) {
1807     int64_t OffsetToSVEArea =
1808         MFI.getStackSize() - AFI->getCalleeSavedStackSize();
1809     StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8};
1810     StackOffset SPOffset = SVEStackSize +
1811                            StackOffset(ObjectOffset, MVT::nxv1i8) +
1812                            StackOffset(OffsetToSVEArea, MVT::i8);
1813     // Always use the FP for SVE spills if available and beneficial.
1814     if (hasFP(MF) &&
1815         (SPOffset.getBytes() ||
1816          FPOffset.getScalableBytes() < SPOffset.getScalableBytes() ||
1817          RegInfo->needsStackRealignment(MF))) {
1818       FrameReg = RegInfo->getFrameRegister(MF);
1819       return FPOffset;
1820     }
1821 
1822     FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
1823                                            : (unsigned)AArch64::SP;
1824     return SPOffset;
1825   }
1826 
1827   StackOffset ScalableOffset = {};
1828   if (UseFP && !(isFixed || isCSR))
1829     ScalableOffset = -SVEStackSize;
1830   if (!UseFP && (isFixed || isCSR))
1831     ScalableOffset = SVEStackSize;
1832 
1833   if (UseFP) {
1834     FrameReg = RegInfo->getFrameRegister(MF);
1835     return StackOffset(FPOffset, MVT::i8) + ScalableOffset;
1836   }
1837 
1838   // Use the base pointer if we have one.
1839   if (RegInfo->hasBasePointer(MF))
1840     FrameReg = RegInfo->getBaseRegister();
1841   else {
1842     assert(!MFI.hasVarSizedObjects() &&
1843            "Can't use SP when we have var sized objects.");
1844     FrameReg = AArch64::SP;
1845     // If we're using the red zone for this function, the SP won't actually
1846     // be adjusted, so the offsets will be negative. They're also all
1847     // within range of the signed 9-bit immediate instructions.
1848     if (canUseRedZone(MF))
1849       Offset -= AFI->getLocalStackSize();
1850   }
1851 
1852   return StackOffset(Offset, MVT::i8) + ScalableOffset;
1853 }
1854 
1855 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1856   // Do not set a kill flag on values that are also marked as live-in. This
1857   // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1858   // callee saved registers.
1859   // Omitting the kill flags is conservatively correct even if the live-in
1860   // is not used after all.
1861   bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
1862   return getKillRegState(!IsLiveIn);
1863 }
1864 
1865 static bool produceCompactUnwindFrame(MachineFunction &MF) {
1866   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1867   AttributeList Attrs = MF.getFunction().getAttributes();
1868   return Subtarget.isTargetMachO() &&
1869          !(Subtarget.getTargetLowering()->supportSwiftError() &&
1870            Attrs.hasAttrSomewhere(Attribute::SwiftError));
1871 }
1872 
1873 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
1874                                              bool NeedsWinCFI) {
1875   // If we are generating register pairs for a Windows function that requires
1876   // EH support, then pair consecutive registers only.  There are no unwind
1877   // opcodes for saves/restores of non-consectuve register pairs.
1878   // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x.
1879   // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
1880 
1881   // TODO: LR can be paired with any register.  We don't support this yet in
1882   // the MCLayer.  We need to add support for the save_lrpair unwind code.
1883   if (Reg2 == AArch64::FP)
1884     return true;
1885   if (!NeedsWinCFI)
1886     return false;
1887   if (Reg2 == Reg1 + 1)
1888     return false;
1889   return true;
1890 }
1891 
1892 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
1893 /// WindowsCFI requires that only consecutive registers can be paired.
1894 /// LR and FP need to be allocated together when the frame needs to save
1895 /// the frame-record. This means any other register pairing with LR is invalid.
1896 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
1897                                       bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord) {
1898   if (UsesWinAAPCS)
1899     return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI);
1900 
1901   // If we need to store the frame record, don't pair any register
1902   // with LR other than FP.
1903   if (NeedsFrameRecord)
1904     return Reg2 == AArch64::LR;
1905 
1906   return false;
1907 }
1908 
1909 namespace {
1910 
1911 struct RegPairInfo {
1912   unsigned Reg1 = AArch64::NoRegister;
1913   unsigned Reg2 = AArch64::NoRegister;
1914   int FrameIdx;
1915   int Offset;
1916   enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
1917 
1918   RegPairInfo() = default;
1919 
1920   bool isPaired() const { return Reg2 != AArch64::NoRegister; }
1921 
1922   unsigned getScale() const {
1923     switch (Type) {
1924     case PPR:
1925       return 2;
1926     case GPR:
1927     case FPR64:
1928       return 8;
1929     case ZPR:
1930     case FPR128:
1931       return 16;
1932     }
1933     llvm_unreachable("Unsupported type");
1934   }
1935 
1936   bool isScalable() const { return Type == PPR || Type == ZPR; }
1937 };
1938 
1939 } // end anonymous namespace
1940 
1941 static void computeCalleeSaveRegisterPairs(
1942     MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI,
1943     const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
1944     bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) {
1945 
1946   if (CSI.empty())
1947     return;
1948 
1949   bool IsWindows = isTargetWindows(MF);
1950   bool NeedsWinCFI = needsWinCFI(MF);
1951   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1952   MachineFrameInfo &MFI = MF.getFrameInfo();
1953   CallingConv::ID CC = MF.getFunction().getCallingConv();
1954   unsigned Count = CSI.size();
1955   (void)CC;
1956   // MachO's compact unwind format relies on all registers being stored in
1957   // pairs.
1958   assert((!produceCompactUnwindFrame(MF) ||
1959           CC == CallingConv::PreserveMost ||
1960           (Count & 1) == 0) &&
1961          "Odd number of callee-saved regs to spill!");
1962   int ByteOffset = AFI->getCalleeSavedStackSize();
1963   int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
1964   // On Linux, we will have either one or zero non-paired register.  On Windows
1965   // with CFI, we can have multiple unpaired registers in order to utilize the
1966   // available unwind codes.  This flag assures that the alignment fixup is done
1967   // only once, as intened.
1968   bool FixupDone = false;
1969   for (unsigned i = 0; i < Count; ++i) {
1970     RegPairInfo RPI;
1971     RPI.Reg1 = CSI[i].getReg();
1972 
1973     if (AArch64::GPR64RegClass.contains(RPI.Reg1))
1974       RPI.Type = RegPairInfo::GPR;
1975     else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
1976       RPI.Type = RegPairInfo::FPR64;
1977     else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
1978       RPI.Type = RegPairInfo::FPR128;
1979     else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
1980       RPI.Type = RegPairInfo::ZPR;
1981     else if (AArch64::PPRRegClass.contains(RPI.Reg1))
1982       RPI.Type = RegPairInfo::PPR;
1983     else
1984       llvm_unreachable("Unsupported register class.");
1985 
1986     // Add the next reg to the pair if it is in the same register class.
1987     if (i + 1 < Count) {
1988       unsigned NextReg = CSI[i + 1].getReg();
1989       switch (RPI.Type) {
1990       case RegPairInfo::GPR:
1991         if (AArch64::GPR64RegClass.contains(NextReg) &&
1992             !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI,
1993                                        NeedsFrameRecord))
1994           RPI.Reg2 = NextReg;
1995         break;
1996       case RegPairInfo::FPR64:
1997         if (AArch64::FPR64RegClass.contains(NextReg) &&
1998             !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI))
1999           RPI.Reg2 = NextReg;
2000         break;
2001       case RegPairInfo::FPR128:
2002         if (AArch64::FPR128RegClass.contains(NextReg))
2003           RPI.Reg2 = NextReg;
2004         break;
2005       case RegPairInfo::PPR:
2006       case RegPairInfo::ZPR:
2007         break;
2008       }
2009     }
2010 
2011     // If either of the registers to be saved is the lr register, it means that
2012     // we also need to save lr in the shadow call stack.
2013     if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
2014         MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
2015       if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
2016         report_fatal_error("Must reserve x18 to use shadow call stack");
2017       NeedShadowCallStackProlog = true;
2018     }
2019 
2020     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2021     // list to come in sorted by frame index so that we can issue the store
2022     // pair instructions directly. Assert if we see anything otherwise.
2023     //
2024     // The order of the registers in the list is controlled by
2025     // getCalleeSavedRegs(), so they will always be in-order, as well.
2026     assert((!RPI.isPaired() ||
2027             (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) &&
2028            "Out of order callee saved regs!");
2029 
2030     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2031             RPI.Reg1 == AArch64::LR) &&
2032            "FrameRecord must be allocated together with LR");
2033 
2034     // Windows AAPCS has FP and LR reversed.
2035     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2036             RPI.Reg2 == AArch64::LR) &&
2037            "FrameRecord must be allocated together with LR");
2038 
2039     // MachO's compact unwind format relies on all registers being stored in
2040     // adjacent register pairs.
2041     assert((!produceCompactUnwindFrame(MF) ||
2042             CC == CallingConv::PreserveMost ||
2043             (RPI.isPaired() &&
2044              ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2045               RPI.Reg1 + 1 == RPI.Reg2))) &&
2046            "Callee-save registers not saved as adjacent register pair!");
2047 
2048     RPI.FrameIdx = CSI[i].getFrameIdx();
2049 
2050     int Scale = RPI.getScale();
2051     if (RPI.isScalable())
2052       ScalableByteOffset -= Scale;
2053     else
2054       ByteOffset -= RPI.isPaired() ? 2 * Scale : Scale;
2055 
2056     assert(!(RPI.isScalable() && RPI.isPaired()) &&
2057            "Paired spill/fill instructions don't exist for SVE vectors");
2058 
2059     // Round up size of non-pair to pair size if we need to pad the
2060     // callee-save area to ensure 16-byte alignment.
2061     if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone &&
2062         !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2063         !RPI.isPaired()) {
2064       FixupDone = true;
2065       ByteOffset -= 8;
2066       assert(ByteOffset % 16 == 0);
2067       assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16);
2068       MFI.setObjectAlignment(RPI.FrameIdx, 16);
2069     }
2070 
2071     int Offset = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2072     assert(Offset % Scale == 0);
2073     RPI.Offset = Offset / Scale;
2074 
2075     assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2076             (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2077            "Offset out of bounds for LDP/STP immediate");
2078 
2079     RegPairs.push_back(RPI);
2080     if (RPI.isPaired())
2081       ++i;
2082   }
2083 }
2084 
2085 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2086     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2087     const std::vector<CalleeSavedInfo> &CSI,
2088     const TargetRegisterInfo *TRI) const {
2089   MachineFunction &MF = *MBB.getParent();
2090   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2091   bool NeedsWinCFI = needsWinCFI(MF);
2092   DebugLoc DL;
2093   SmallVector<RegPairInfo, 8> RegPairs;
2094 
2095   bool NeedShadowCallStackProlog = false;
2096   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2097                                  NeedShadowCallStackProlog, hasFP(MF));
2098   const MachineRegisterInfo &MRI = MF.getRegInfo();
2099 
2100   if (NeedShadowCallStackProlog) {
2101     // Shadow call stack prolog: str x30, [x18], #8
2102     BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
2103         .addReg(AArch64::X18, RegState::Define)
2104         .addReg(AArch64::LR)
2105         .addReg(AArch64::X18)
2106         .addImm(8)
2107         .setMIFlag(MachineInstr::FrameSetup);
2108 
2109     if (NeedsWinCFI)
2110       BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop))
2111           .setMIFlag(MachineInstr::FrameSetup);
2112 
2113     if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) {
2114       // Emit a CFI instruction that causes 8 to be subtracted from the value of
2115       // x18 when unwinding past this frame.
2116       static const char CFIInst[] = {
2117           dwarf::DW_CFA_val_expression,
2118           18, // register
2119           2,  // length
2120           static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
2121           static_cast<char>(-8) & 0x7f, // addend (sleb128)
2122       };
2123       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
2124           nullptr, StringRef(CFIInst, sizeof(CFIInst))));
2125       BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION))
2126           .addCFIIndex(CFIIndex)
2127           .setMIFlag(MachineInstr::FrameSetup);
2128     }
2129 
2130     // This instruction also makes x18 live-in to the entry block.
2131     MBB.addLiveIn(AArch64::X18);
2132   }
2133 
2134   for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
2135        ++RPII) {
2136     RegPairInfo RPI = *RPII;
2137     unsigned Reg1 = RPI.Reg1;
2138     unsigned Reg2 = RPI.Reg2;
2139     unsigned StrOpc;
2140 
2141     // Issue sequence of spills for cs regs.  The first spill may be converted
2142     // to a pre-decrement store later by emitPrologue if the callee-save stack
2143     // area allocation can't be combined with the local stack area allocation.
2144     // For example:
2145     //    stp     x22, x21, [sp, #0]     // addImm(+0)
2146     //    stp     x20, x19, [sp, #16]    // addImm(+2)
2147     //    stp     fp, lr, [sp, #32]      // addImm(+4)
2148     // Rationale: This sequence saves uop updates compared to a sequence of
2149     // pre-increment spills like stp xi,xj,[sp,#-16]!
2150     // Note: Similar rationale and sequence for restores in epilog.
2151     unsigned Size, Align;
2152     switch (RPI.Type) {
2153     case RegPairInfo::GPR:
2154        StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2155        Size = 8;
2156        Align = 8;
2157        break;
2158     case RegPairInfo::FPR64:
2159        StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2160        Size = 8;
2161        Align = 8;
2162        break;
2163     case RegPairInfo::FPR128:
2164        StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2165        Size = 16;
2166        Align = 16;
2167        break;
2168     case RegPairInfo::ZPR:
2169        StrOpc = AArch64::STR_ZXI;
2170        Size = 16;
2171        Align = 16;
2172        break;
2173     case RegPairInfo::PPR:
2174        StrOpc = AArch64::STR_PXI;
2175        Size = 2;
2176        Align = 2;
2177        break;
2178     }
2179     LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2180                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2181                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2182                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2183                dbgs() << ")\n");
2184 
2185     assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2186            "Windows unwdinding requires a consecutive (FP,LR) pair");
2187     // Windows unwind codes require consecutive registers if registers are
2188     // paired.  Make the switch here, so that the code below will save (x,x+1)
2189     // and not (x+1,x).
2190     unsigned FrameIdxReg1 = RPI.FrameIdx;
2191     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2192     if (NeedsWinCFI && RPI.isPaired()) {
2193       std::swap(Reg1, Reg2);
2194       std::swap(FrameIdxReg1, FrameIdxReg2);
2195     }
2196     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2197     if (!MRI.isReserved(Reg1))
2198       MBB.addLiveIn(Reg1);
2199     if (RPI.isPaired()) {
2200       if (!MRI.isReserved(Reg2))
2201         MBB.addLiveIn(Reg2);
2202       MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2203       MIB.addMemOperand(MF.getMachineMemOperand(
2204           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2205           MachineMemOperand::MOStore, Size, Align));
2206     }
2207     MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2208         .addReg(AArch64::SP)
2209         .addImm(RPI.Offset) // [sp, #offset*scale],
2210                             // where factor*scale is implicit
2211         .setMIFlag(MachineInstr::FrameSetup);
2212     MIB.addMemOperand(MF.getMachineMemOperand(
2213         MachinePointerInfo::getFixedStack(MF,FrameIdxReg1),
2214         MachineMemOperand::MOStore, Size, Align));
2215     if (NeedsWinCFI)
2216       InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2217 
2218     // Update the StackIDs of the SVE stack slots.
2219     MachineFrameInfo &MFI = MF.getFrameInfo();
2220     if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2221       MFI.setStackID(RPI.FrameIdx, TargetStackID::SVEVector);
2222 
2223   }
2224   return true;
2225 }
2226 
2227 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2228     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2229     std::vector<CalleeSavedInfo> &CSI,
2230     const TargetRegisterInfo *TRI) const {
2231   MachineFunction &MF = *MBB.getParent();
2232   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2233   DebugLoc DL;
2234   SmallVector<RegPairInfo, 8> RegPairs;
2235   bool NeedsWinCFI = needsWinCFI(MF);
2236 
2237   if (MI != MBB.end())
2238     DL = MI->getDebugLoc();
2239 
2240   bool NeedShadowCallStackProlog = false;
2241   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2242                                  NeedShadowCallStackProlog, hasFP(MF));
2243 
2244   auto EmitMI = [&](const RegPairInfo &RPI) {
2245     unsigned Reg1 = RPI.Reg1;
2246     unsigned Reg2 = RPI.Reg2;
2247 
2248     // Issue sequence of restores for cs regs. The last restore may be converted
2249     // to a post-increment load later by emitEpilogue if the callee-save stack
2250     // area allocation can't be combined with the local stack area allocation.
2251     // For example:
2252     //    ldp     fp, lr, [sp, #32]       // addImm(+4)
2253     //    ldp     x20, x19, [sp, #16]     // addImm(+2)
2254     //    ldp     x22, x21, [sp, #0]      // addImm(+0)
2255     // Note: see comment in spillCalleeSavedRegisters()
2256     unsigned LdrOpc;
2257     unsigned Size, Align;
2258     switch (RPI.Type) {
2259     case RegPairInfo::GPR:
2260        LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2261        Size = 8;
2262        Align = 8;
2263        break;
2264     case RegPairInfo::FPR64:
2265        LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2266        Size = 8;
2267        Align = 8;
2268        break;
2269     case RegPairInfo::FPR128:
2270        LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2271        Size = 16;
2272        Align = 16;
2273        break;
2274     case RegPairInfo::ZPR:
2275        LdrOpc = AArch64::LDR_ZXI;
2276        Size = 16;
2277        Align = 16;
2278        break;
2279     case RegPairInfo::PPR:
2280        LdrOpc = AArch64::LDR_PXI;
2281        Size = 2;
2282        Align = 2;
2283        break;
2284     }
2285     LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2286                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2287                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2288                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2289                dbgs() << ")\n");
2290 
2291     // Windows unwind codes require consecutive registers if registers are
2292     // paired.  Make the switch here, so that the code below will save (x,x+1)
2293     // and not (x+1,x).
2294     unsigned FrameIdxReg1 = RPI.FrameIdx;
2295     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2296     if (NeedsWinCFI && RPI.isPaired()) {
2297       std::swap(Reg1, Reg2);
2298       std::swap(FrameIdxReg1, FrameIdxReg2);
2299     }
2300     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
2301     if (RPI.isPaired()) {
2302       MIB.addReg(Reg2, getDefRegState(true));
2303       MIB.addMemOperand(MF.getMachineMemOperand(
2304           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2305           MachineMemOperand::MOLoad, Size, Align));
2306     }
2307     MIB.addReg(Reg1, getDefRegState(true))
2308         .addReg(AArch64::SP)
2309         .addImm(RPI.Offset) // [sp, #offset*scale]
2310                             // where factor*scale is implicit
2311         .setMIFlag(MachineInstr::FrameDestroy);
2312     MIB.addMemOperand(MF.getMachineMemOperand(
2313         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2314         MachineMemOperand::MOLoad, Size, Align));
2315     if (NeedsWinCFI)
2316       InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2317   };
2318 
2319   // SVE objects are always restored in reverse order.
2320   for (const RegPairInfo &RPI : reverse(RegPairs))
2321     if (RPI.isScalable())
2322       EmitMI(RPI);
2323 
2324   if (ReverseCSRRestoreSeq) {
2325     for (const RegPairInfo &RPI : reverse(RegPairs))
2326       if (!RPI.isScalable())
2327         EmitMI(RPI);
2328   } else
2329     for (const RegPairInfo &RPI : RegPairs)
2330       if (!RPI.isScalable())
2331         EmitMI(RPI);
2332 
2333   if (NeedShadowCallStackProlog) {
2334     // Shadow call stack epilog: ldr x30, [x18, #-8]!
2335     BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
2336         .addReg(AArch64::X18, RegState::Define)
2337         .addReg(AArch64::LR, RegState::Define)
2338         .addReg(AArch64::X18)
2339         .addImm(-8)
2340         .setMIFlag(MachineInstr::FrameDestroy);
2341   }
2342 
2343   return true;
2344 }
2345 
2346 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2347                                                 BitVector &SavedRegs,
2348                                                 RegScavenger *RS) const {
2349   // All calls are tail calls in GHC calling conv, and functions have no
2350   // prologue/epilogue.
2351   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2352     return;
2353 
2354   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2355   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2356       MF.getSubtarget().getRegisterInfo());
2357   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2358   unsigned UnspilledCSGPR = AArch64::NoRegister;
2359   unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2360 
2361   MachineFrameInfo &MFI = MF.getFrameInfo();
2362   const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2363 
2364   unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2365                                 ? RegInfo->getBaseRegister()
2366                                 : (unsigned)AArch64::NoRegister;
2367 
2368   unsigned ExtraCSSpill = 0;
2369   // Figure out which callee-saved registers to save/restore.
2370   for (unsigned i = 0; CSRegs[i]; ++i) {
2371     const unsigned Reg = CSRegs[i];
2372 
2373     // Add the base pointer register to SavedRegs if it is callee-save.
2374     if (Reg == BasePointerReg)
2375       SavedRegs.set(Reg);
2376 
2377     bool RegUsed = SavedRegs.test(Reg);
2378     unsigned PairedReg = AArch64::NoRegister;
2379     if (AArch64::GPR64RegClass.contains(Reg) ||
2380         AArch64::FPR64RegClass.contains(Reg) ||
2381         AArch64::FPR128RegClass.contains(Reg))
2382       PairedReg = CSRegs[i ^ 1];
2383 
2384     if (!RegUsed) {
2385       if (AArch64::GPR64RegClass.contains(Reg) &&
2386           !RegInfo->isReservedReg(MF, Reg)) {
2387         UnspilledCSGPR = Reg;
2388         UnspilledCSGPRPaired = PairedReg;
2389       }
2390       continue;
2391     }
2392 
2393     // MachO's compact unwind format relies on all registers being stored in
2394     // pairs.
2395     // FIXME: the usual format is actually better if unwinding isn't needed.
2396     if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister &&
2397         !SavedRegs.test(PairedReg)) {
2398       SavedRegs.set(PairedReg);
2399       if (AArch64::GPR64RegClass.contains(PairedReg) &&
2400           !RegInfo->isReservedReg(MF, PairedReg))
2401         ExtraCSSpill = PairedReg;
2402     }
2403   }
2404 
2405   // Calculates the callee saved stack size.
2406   unsigned CSStackSize = 0;
2407   unsigned SVECSStackSize = 0;
2408   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2409   const MachineRegisterInfo &MRI = MF.getRegInfo();
2410   for (unsigned Reg : SavedRegs.set_bits()) {
2411     auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
2412     if (AArch64::PPRRegClass.contains(Reg) ||
2413         AArch64::ZPRRegClass.contains(Reg))
2414       SVECSStackSize += RegSize;
2415     else
2416       CSStackSize += RegSize;
2417   }
2418 
2419   // Save number of saved regs, so we can easily update CSStackSize later.
2420   unsigned NumSavedRegs = SavedRegs.count();
2421 
2422   // The frame record needs to be created by saving the appropriate registers
2423   uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
2424   if (hasFP(MF) ||
2425       windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
2426     SavedRegs.set(AArch64::FP);
2427     SavedRegs.set(AArch64::LR);
2428   }
2429 
2430   LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2431              for (unsigned Reg
2432                   : SavedRegs.set_bits()) dbgs()
2433              << ' ' << printReg(Reg, RegInfo);
2434              dbgs() << "\n";);
2435 
2436   // If any callee-saved registers are used, the frame cannot be eliminated.
2437   int64_t SVEStackSize =
2438       alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
2439   bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
2440 
2441   // The CSR spill slots have not been allocated yet, so estimateStackSize
2442   // won't include them.
2443   unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
2444 
2445   // Conservatively always assume BigStack when there are SVE spills.
2446   bool BigStack = SVEStackSize ||
2447                   (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
2448   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
2449     AFI->setHasStackFrame(true);
2450 
2451   // Estimate if we might need to scavenge a register at some point in order
2452   // to materialize a stack offset. If so, either spill one additional
2453   // callee-saved register or reserve a special spill slot to facilitate
2454   // register scavenging. If we already spilled an extra callee-saved register
2455   // above to keep the number of spills even, we don't need to do anything else
2456   // here.
2457   if (BigStack) {
2458     if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
2459       LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
2460                         << " to get a scratch register.\n");
2461       SavedRegs.set(UnspilledCSGPR);
2462       // MachO's compact unwind format relies on all registers being stored in
2463       // pairs, so if we need to spill one extra for BigStack, then we need to
2464       // store the pair.
2465       if (produceCompactUnwindFrame(MF))
2466         SavedRegs.set(UnspilledCSGPRPaired);
2467       ExtraCSSpill = UnspilledCSGPR;
2468     }
2469 
2470     // If we didn't find an extra callee-saved register to spill, create
2471     // an emergency spill slot.
2472     if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
2473       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2474       const TargetRegisterClass &RC = AArch64::GPR64RegClass;
2475       unsigned Size = TRI->getSpillSize(RC);
2476       unsigned Align = TRI->getSpillAlignment(RC);
2477       int FI = MFI.CreateStackObject(Size, Align, false);
2478       RS->addScavengingFrameIndex(FI);
2479       LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2480                         << " as the emergency spill slot.\n");
2481     }
2482   }
2483 
2484   // Adding the size of additional 64bit GPR saves.
2485   CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
2486   uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
2487   LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2488                << EstimatedStackSize + AlignedCSStackSize
2489                << " bytes.\n");
2490 
2491   assert((!MFI.isCalleeSavedInfoValid() ||
2492           AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
2493          "Should not invalidate callee saved info");
2494 
2495   // Round up to register pair alignment to avoid additional SP adjustment
2496   // instructions.
2497   AFI->setCalleeSavedStackSize(AlignedCSStackSize);
2498   AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
2499   AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
2500 }
2501 
2502 bool AArch64FrameLowering::enableStackSlotScavenging(
2503     const MachineFunction &MF) const {
2504   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2505   return AFI->hasCalleeSaveStackFreeSpace();
2506 }
2507 
2508 /// returns true if there are any SVE callee saves.
2509 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
2510                                       int &Min, int &Max) {
2511   Min = std::numeric_limits<int>::max();
2512   Max = std::numeric_limits<int>::min();
2513 
2514   if (!MFI.isCalleeSavedInfoValid())
2515     return false;
2516 
2517   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2518   for (auto &CS : CSI) {
2519     if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
2520         AArch64::PPRRegClass.contains(CS.getReg())) {
2521       assert((Max == std::numeric_limits<int>::min() ||
2522               Max + 1 == CS.getFrameIdx()) &&
2523              "SVE CalleeSaves are not consecutive");
2524 
2525       Min = std::min(Min, CS.getFrameIdx());
2526       Max = std::max(Max, CS.getFrameIdx());
2527     }
2528   }
2529   return Min != std::numeric_limits<int>::max();
2530 }
2531 
2532 // Process all the SVE stack objects and determine offsets for each
2533 // object. If AssignOffsets is true, the offsets get assigned.
2534 // Fills in the first and last callee-saved frame indices into
2535 // Min/MaxCSFrameIndex, respectively.
2536 // Returns the size of the stack.
2537 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
2538                                               int &MinCSFrameIndex,
2539                                               int &MaxCSFrameIndex,
2540                                               bool AssignOffsets) {
2541   // First process all fixed stack objects.
2542   int64_t Offset = 0;
2543   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
2544     if (MFI.getStackID(I) == TargetStackID::SVEVector) {
2545       int64_t FixedOffset = -MFI.getObjectOffset(I);
2546       if (FixedOffset > Offset)
2547         Offset = FixedOffset;
2548     }
2549 
2550   auto Assign = [&MFI](int FI, int64_t Offset) {
2551     LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
2552     MFI.setObjectOffset(FI, Offset);
2553   };
2554 
2555   // Then process all callee saved slots.
2556   if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
2557     // Make sure to align the last callee save slot.
2558     MFI.setObjectAlignment(MaxCSFrameIndex, 16U);
2559 
2560     // Assign offsets to the callee save slots.
2561     for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
2562       Offset += MFI.getObjectSize(I);
2563       Offset = alignTo(Offset, MFI.getObjectAlignment(I));
2564       if (AssignOffsets)
2565         Assign(I, -Offset);
2566     }
2567   }
2568 
2569   // Create a buffer of SVE objects to allocate and sort it.
2570   SmallVector<int, 8> ObjectsToAllocate;
2571   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
2572     unsigned StackID = MFI.getStackID(I);
2573     if (StackID != TargetStackID::SVEVector)
2574       continue;
2575     if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
2576       continue;
2577     if (MFI.isDeadObjectIndex(I))
2578       continue;
2579 
2580     ObjectsToAllocate.push_back(I);
2581   }
2582 
2583   // Allocate all SVE locals and spills
2584   for (unsigned FI : ObjectsToAllocate) {
2585     unsigned Align = MFI.getObjectAlignment(FI);
2586     // FIXME: Given that the length of SVE vectors is not necessarily a power of
2587     // two, we'd need to align every object dynamically at runtime if the
2588     // alignment is larger than 16. This is not yet supported.
2589     if (Align > 16)
2590       report_fatal_error(
2591           "Alignment of scalable vectors > 16 bytes is not yet supported");
2592 
2593     Offset = alignTo(Offset + MFI.getObjectSize(FI), Align);
2594     if (AssignOffsets)
2595       Assign(FI, -Offset);
2596   }
2597 
2598   return Offset;
2599 }
2600 
2601 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
2602     MachineFrameInfo &MFI) const {
2603   int MinCSFrameIndex, MaxCSFrameIndex;
2604   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
2605 }
2606 
2607 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
2608     MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
2609   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
2610                                         true);
2611 }
2612 
2613 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
2614     MachineFunction &MF, RegScavenger *RS) const {
2615   MachineFrameInfo &MFI = MF.getFrameInfo();
2616 
2617   assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
2618          "Upwards growing stack unsupported");
2619 
2620   int MinCSFrameIndex, MaxCSFrameIndex;
2621   int64_t SVEStackSize =
2622       assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
2623 
2624   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2625   AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
2626   AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
2627 
2628   // If this function isn't doing Win64-style C++ EH, we don't need to do
2629   // anything.
2630   if (!MF.hasEHFunclets())
2631     return;
2632   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2633   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2634 
2635   MachineBasicBlock &MBB = MF.front();
2636   auto MBBI = MBB.begin();
2637   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2638     ++MBBI;
2639 
2640   // Create an UnwindHelp object.
2641   // The UnwindHelp object is allocated at the start of the fixed object area
2642   int64_t FixedObject =
2643       getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
2644   int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
2645                                            /*SPOffset*/ -FixedObject,
2646                                            /*IsImmutable=*/false);
2647   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2648 
2649   // We need to store -2 into the UnwindHelp object at the start of the
2650   // function.
2651   DebugLoc DL;
2652   RS->enterBasicBlockEnd(MBB);
2653   RS->backward(std::prev(MBBI));
2654   unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
2655   assert(DstReg && "There must be a free register after frame setup");
2656   BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
2657   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
2658       .addReg(DstReg, getKillRegState(true))
2659       .addFrameIndex(UnwindHelpFI)
2660       .addImm(0);
2661 }
2662 
2663 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP before
2664 /// the update.  This is easily retrieved as it is exactly the offset that is set
2665 /// in processFunctionBeforeFrameFinalized.
2666 int AArch64FrameLowering::getFrameIndexReferencePreferSP(
2667     const MachineFunction &MF, int FI, unsigned &FrameReg,
2668     bool IgnoreSPUpdates) const {
2669   const MachineFrameInfo &MFI = MF.getFrameInfo();
2670   if (IgnoreSPUpdates) {
2671     LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
2672                       << MFI.getObjectOffset(FI) << "\n");
2673     FrameReg = AArch64::SP;
2674     return MFI.getObjectOffset(FI);
2675   }
2676 
2677   return getFrameIndexReference(MF, FI, FrameReg);
2678 }
2679 
2680 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
2681 /// the parent's frame pointer
2682 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
2683     const MachineFunction &MF) const {
2684   return 0;
2685 }
2686 
2687 /// Funclets only need to account for space for the callee saved registers,
2688 /// as the locals are accounted for in the parent's stack frame.
2689 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
2690     const MachineFunction &MF) const {
2691   // This is the size of the pushed CSRs.
2692   unsigned CSSize =
2693       MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
2694   // This is the amount of stack a funclet needs to allocate.
2695   return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
2696                  getStackAlignment());
2697 }
2698