1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | | | (frame record first) 51 // | prev_fp, prev_lr | <--' 52 // | (a.k.a. "frame record") | 53 // |-----------------------------------| <- fp(=x29) 54 // | | 55 // | callee-saved fp/simd/SVE regs | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | SVE stack objects | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.16-byte.alignment....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- bp(not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses X19) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 92 // callee-saved area, since the unwind encoding does not allow for encoding 93 // this dynamically and existing tools depend on this layout. For other 94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 95 // area to allow SVE stack objects (allocated directly below the callee-saves, 96 // if available) to be accessed directly from the framepointer. 97 // The SVE spill/fill instructions have VL-scaled addressing modes such 98 // as: 99 // ldr z8, [fp, #-7 mul vl] 100 // For SVE the size of the vector length (VL) is not known at compile-time, so 101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 102 // layout, we don't need to add an unscaled offset to the framepointer before 103 // accessing the SVE object in the frame. 104 // 105 // In some cases when a base pointer is not strictly needed, it is generated 106 // anyway when offsets from the frame pointer to access local variables become 107 // so large that the offset can't be encoded in the immediate fields of loads 108 // or stores. 109 // 110 // FIXME: also explain the redzone concept. 111 // FIXME: also explain the concept of reserved call frames. 112 // 113 //===----------------------------------------------------------------------===// 114 115 #include "AArch64FrameLowering.h" 116 #include "AArch64InstrInfo.h" 117 #include "AArch64MachineFunctionInfo.h" 118 #include "AArch64RegisterInfo.h" 119 #include "AArch64StackOffset.h" 120 #include "AArch64Subtarget.h" 121 #include "AArch64TargetMachine.h" 122 #include "MCTargetDesc/AArch64AddressingModes.h" 123 #include "llvm/ADT/ScopeExit.h" 124 #include "llvm/ADT/SmallVector.h" 125 #include "llvm/ADT/Statistic.h" 126 #include "llvm/CodeGen/LivePhysRegs.h" 127 #include "llvm/CodeGen/MachineBasicBlock.h" 128 #include "llvm/CodeGen/MachineFrameInfo.h" 129 #include "llvm/CodeGen/MachineFunction.h" 130 #include "llvm/CodeGen/MachineInstr.h" 131 #include "llvm/CodeGen/MachineInstrBuilder.h" 132 #include "llvm/CodeGen/MachineMemOperand.h" 133 #include "llvm/CodeGen/MachineModuleInfo.h" 134 #include "llvm/CodeGen/MachineOperand.h" 135 #include "llvm/CodeGen/MachineRegisterInfo.h" 136 #include "llvm/CodeGen/RegisterScavenging.h" 137 #include "llvm/CodeGen/TargetInstrInfo.h" 138 #include "llvm/CodeGen/TargetRegisterInfo.h" 139 #include "llvm/CodeGen/TargetSubtargetInfo.h" 140 #include "llvm/CodeGen/WinEHFuncInfo.h" 141 #include "llvm/IR/Attributes.h" 142 #include "llvm/IR/CallingConv.h" 143 #include "llvm/IR/DataLayout.h" 144 #include "llvm/IR/DebugLoc.h" 145 #include "llvm/IR/Function.h" 146 #include "llvm/MC/MCAsmInfo.h" 147 #include "llvm/MC/MCDwarf.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Debug.h" 150 #include "llvm/Support/ErrorHandling.h" 151 #include "llvm/Support/MathExtras.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include "llvm/Target/TargetOptions.h" 155 #include <cassert> 156 #include <cstdint> 157 #include <iterator> 158 #include <vector> 159 160 using namespace llvm; 161 162 #define DEBUG_TYPE "frame-info" 163 164 static cl::opt<bool> EnableRedZone("aarch64-redzone", 165 cl::desc("enable use of redzone on AArch64"), 166 cl::init(false), cl::Hidden); 167 168 static cl::opt<bool> 169 ReverseCSRRestoreSeq("reverse-csr-restore-seq", 170 cl::desc("reverse the CSR restore sequence"), 171 cl::init(false), cl::Hidden); 172 173 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 174 175 /// This is the biggest offset to the stack pointer we can encode in aarch64 176 /// instructions (without using a separate calculation and a temp register). 177 /// Note that the exception here are vector stores/loads which cannot encode any 178 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 179 static const unsigned DefaultSafeSPDisplacement = 255; 180 181 /// Look at each instruction that references stack frames and return the stack 182 /// size limit beyond which some of these instructions will require a scratch 183 /// register during their expansion later. 184 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 185 // FIXME: For now, just conservatively guestimate based on unscaled indexing 186 // range. We'll end up allocating an unnecessary spill slot a lot, but 187 // realistically that's not a big deal at this stage of the game. 188 for (MachineBasicBlock &MBB : MF) { 189 for (MachineInstr &MI : MBB) { 190 if (MI.isDebugInstr() || MI.isPseudo() || 191 MI.getOpcode() == AArch64::ADDXri || 192 MI.getOpcode() == AArch64::ADDSXri) 193 continue; 194 195 for (const MachineOperand &MO : MI.operands()) { 196 if (!MO.isFI()) 197 continue; 198 199 StackOffset Offset; 200 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 201 AArch64FrameOffsetCannotUpdate) 202 return 0; 203 } 204 } 205 } 206 return DefaultSafeSPDisplacement; 207 } 208 209 TargetStackID::Value 210 AArch64FrameLowering::getStackIDForScalableVectors() const { 211 return TargetStackID::SVEVector; 212 } 213 214 /// Returns the size of the fixed object area (allocated next to sp on entry) 215 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 216 static unsigned getFixedObjectSize(const MachineFunction &MF, 217 const AArch64FunctionInfo *AFI, bool IsWin64, 218 bool IsFunclet) { 219 if (!IsWin64 || IsFunclet) { 220 // Only Win64 uses fixed objects, and then only for the function (not 221 // funclets) 222 return 0; 223 } else { 224 // Var args are stored here in the primary function. 225 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 226 // To support EH funclets we allocate an UnwindHelp object 227 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 228 return alignTo(VarArgsArea + UnwindHelpObject, 16); 229 } 230 } 231 232 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 233 static StackOffset getSVEStackSize(const MachineFunction &MF) { 234 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 235 return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8}; 236 } 237 238 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 239 if (!EnableRedZone) 240 return false; 241 // Don't use the red zone if the function explicitly asks us not to. 242 // This is typically used for kernel code. 243 if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone)) 244 return false; 245 246 const MachineFrameInfo &MFI = MF.getFrameInfo(); 247 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 248 uint64_t NumBytes = AFI->getLocalStackSize(); 249 250 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 || 251 getSVEStackSize(MF)); 252 } 253 254 /// hasFP - Return true if the specified function should have a dedicated frame 255 /// pointer register. 256 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { 257 const MachineFrameInfo &MFI = MF.getFrameInfo(); 258 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 259 // Win64 EH requires a frame pointer if funclets are present, as the locals 260 // are accessed off the frame pointer in both the parent function and the 261 // funclets. 262 if (MF.hasEHFunclets()) 263 return true; 264 // Retain behavior of always omitting the FP for leaf functions when possible. 265 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 266 return true; 267 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 268 MFI.hasStackMap() || MFI.hasPatchPoint() || 269 RegInfo->needsStackRealignment(MF)) 270 return true; 271 // With large callframes around we may need to use FP to access the scavenging 272 // emergency spillslot. 273 // 274 // Unfortunately some calls to hasFP() like machine verifier -> 275 // getReservedReg() -> hasFP in the middle of global isel are too early 276 // to know the max call frame size. Hopefully conservatively returning "true" 277 // in those cases is fine. 278 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 279 if (!MFI.isMaxCallFrameSizeComputed() || 280 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 281 return true; 282 283 return false; 284 } 285 286 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 287 /// not required, we reserve argument space for call sites in the function 288 /// immediately on entry to the current function. This eliminates the need for 289 /// add/sub sp brackets around call sites. Returns true if the call frame is 290 /// included as part of the stack frame. 291 bool 292 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 293 return !MF.getFrameInfo().hasVarSizedObjects(); 294 } 295 296 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 297 MachineFunction &MF, MachineBasicBlock &MBB, 298 MachineBasicBlock::iterator I) const { 299 const AArch64InstrInfo *TII = 300 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 301 DebugLoc DL = I->getDebugLoc(); 302 unsigned Opc = I->getOpcode(); 303 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 304 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 305 306 if (!hasReservedCallFrame(MF)) { 307 unsigned Align = getStackAlignment(); 308 309 int64_t Amount = I->getOperand(0).getImm(); 310 Amount = alignTo(Amount, Align); 311 if (!IsDestroy) 312 Amount = -Amount; 313 314 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 315 // doesn't have to pop anything), then the first operand will be zero too so 316 // this adjustment is a no-op. 317 if (CalleePopAmount == 0) { 318 // FIXME: in-function stack adjustment for calls is limited to 24-bits 319 // because there's no guaranteed temporary register available. 320 // 321 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 322 // 1) For offset <= 12-bit, we use LSL #0 323 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 324 // LSL #0, and the other uses LSL #12. 325 // 326 // Most call frames will be allocated at the start of a function so 327 // this is OK, but it is a limitation that needs dealing with. 328 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 329 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8}, 330 TII); 331 } 332 } else if (CalleePopAmount != 0) { 333 // If the calling convention demands that the callee pops arguments from the 334 // stack, we want to add it back if we have a reserved call frame. 335 assert(CalleePopAmount < 0xffffff && "call frame too large"); 336 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 337 {-(int64_t)CalleePopAmount, MVT::i8}, TII); 338 } 339 return MBB.erase(I); 340 } 341 342 static bool ShouldSignReturnAddress(MachineFunction &MF) { 343 // The function should be signed in the following situations: 344 // - sign-return-address=all 345 // - sign-return-address=non-leaf and the functions spills the LR 346 347 const Function &F = MF.getFunction(); 348 if (!F.hasFnAttribute("sign-return-address")) 349 return false; 350 351 StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString(); 352 if (Scope.equals("none")) 353 return false; 354 355 if (Scope.equals("all")) 356 return true; 357 358 assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf"); 359 360 for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo()) 361 if (Info.getReg() == AArch64::LR) 362 return true; 363 364 return false; 365 } 366 367 void AArch64FrameLowering::emitCalleeSavedFrameMoves( 368 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 369 MachineFunction &MF = *MBB.getParent(); 370 MachineFrameInfo &MFI = MF.getFrameInfo(); 371 const TargetSubtargetInfo &STI = MF.getSubtarget(); 372 const MCRegisterInfo *MRI = STI.getRegisterInfo(); 373 const TargetInstrInfo *TII = STI.getInstrInfo(); 374 DebugLoc DL = MBB.findDebugLoc(MBBI); 375 376 // Add callee saved registers to move list. 377 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 378 if (CSI.empty()) 379 return; 380 381 for (const auto &Info : CSI) { 382 unsigned Reg = Info.getReg(); 383 int64_t Offset = 384 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea(); 385 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 386 unsigned CFIIndex = MF.addFrameInst( 387 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 388 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 389 .addCFIIndex(CFIIndex) 390 .setMIFlags(MachineInstr::FrameSetup); 391 } 392 } 393 394 // Find a scratch register that we can use at the start of the prologue to 395 // re-align the stack pointer. We avoid using callee-save registers since they 396 // may appear to be free when this is called from canUseAsPrologue (during 397 // shrink wrapping), but then no longer be free when this is called from 398 // emitPrologue. 399 // 400 // FIXME: This is a bit conservative, since in the above case we could use one 401 // of the callee-save registers as a scratch temp to re-align the stack pointer, 402 // but we would then have to make sure that we were in fact saving at least one 403 // callee-save register in the prologue, which is additional complexity that 404 // doesn't seem worth the benefit. 405 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 406 MachineFunction *MF = MBB->getParent(); 407 408 // If MBB is an entry block, use X9 as the scratch register 409 if (&MF->front() == MBB) 410 return AArch64::X9; 411 412 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 413 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 414 LivePhysRegs LiveRegs(TRI); 415 LiveRegs.addLiveIns(*MBB); 416 417 // Mark callee saved registers as used so we will not choose them. 418 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 419 for (unsigned i = 0; CSRegs[i]; ++i) 420 LiveRegs.addReg(CSRegs[i]); 421 422 // Prefer X9 since it was historically used for the prologue scratch reg. 423 const MachineRegisterInfo &MRI = MF->getRegInfo(); 424 if (LiveRegs.available(MRI, AArch64::X9)) 425 return AArch64::X9; 426 427 for (unsigned Reg : AArch64::GPR64RegClass) { 428 if (LiveRegs.available(MRI, Reg)) 429 return Reg; 430 } 431 return AArch64::NoRegister; 432 } 433 434 bool AArch64FrameLowering::canUseAsPrologue( 435 const MachineBasicBlock &MBB) const { 436 const MachineFunction *MF = MBB.getParent(); 437 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 438 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 439 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 440 441 // Don't need a scratch register if we're not going to re-align the stack. 442 if (!RegInfo->needsStackRealignment(*MF)) 443 return true; 444 // Otherwise, we can use any block as long as it has a scratch register 445 // available. 446 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 447 } 448 449 static bool windowsRequiresStackProbe(MachineFunction &MF, 450 uint64_t StackSizeInBytes) { 451 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 452 if (!Subtarget.isTargetWindows()) 453 return false; 454 const Function &F = MF.getFunction(); 455 // TODO: When implementing stack protectors, take that into account 456 // for the probe threshold. 457 unsigned StackProbeSize = 4096; 458 if (F.hasFnAttribute("stack-probe-size")) 459 F.getFnAttribute("stack-probe-size") 460 .getValueAsString() 461 .getAsInteger(0, StackProbeSize); 462 return (StackSizeInBytes >= StackProbeSize) && 463 !F.hasFnAttribute("no-stack-arg-probe"); 464 } 465 466 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 467 MachineFunction &MF, uint64_t StackBumpBytes) const { 468 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 469 const MachineFrameInfo &MFI = MF.getFrameInfo(); 470 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 471 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 472 473 if (AFI->getLocalStackSize() == 0) 474 return false; 475 476 // 512 is the maximum immediate for stp/ldp that will be used for 477 // callee-save save/restores 478 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 479 return false; 480 481 if (MFI.hasVarSizedObjects()) 482 return false; 483 484 if (RegInfo->needsStackRealignment(MF)) 485 return false; 486 487 // This isn't strictly necessary, but it simplifies things a bit since the 488 // current RedZone handling code assumes the SP is adjusted by the 489 // callee-save save/restore code. 490 if (canUseRedZone(MF)) 491 return false; 492 493 // When there is an SVE area on the stack, always allocate the 494 // callee-saves and spills/locals separately. 495 if (getSVEStackSize(MF)) 496 return false; 497 498 return true; 499 } 500 501 // Given a load or a store instruction, generate an appropriate unwinding SEH 502 // code on Windows. 503 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 504 const TargetInstrInfo &TII, 505 MachineInstr::MIFlag Flag) { 506 unsigned Opc = MBBI->getOpcode(); 507 MachineBasicBlock *MBB = MBBI->getParent(); 508 MachineFunction &MF = *MBB->getParent(); 509 DebugLoc DL = MBBI->getDebugLoc(); 510 unsigned ImmIdx = MBBI->getNumOperands() - 1; 511 int Imm = MBBI->getOperand(ImmIdx).getImm(); 512 MachineInstrBuilder MIB; 513 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 514 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 515 516 switch (Opc) { 517 default: 518 llvm_unreachable("No SEH Opcode for this instruction"); 519 case AArch64::LDPDpost: 520 Imm = -Imm; 521 LLVM_FALLTHROUGH; 522 case AArch64::STPDpre: { 523 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 524 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 525 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 526 .addImm(Reg0) 527 .addImm(Reg1) 528 .addImm(Imm * 8) 529 .setMIFlag(Flag); 530 break; 531 } 532 case AArch64::LDPXpost: 533 Imm = -Imm; 534 LLVM_FALLTHROUGH; 535 case AArch64::STPXpre: { 536 Register Reg0 = MBBI->getOperand(1).getReg(); 537 Register Reg1 = MBBI->getOperand(2).getReg(); 538 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 539 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 540 .addImm(Imm * 8) 541 .setMIFlag(Flag); 542 else 543 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 544 .addImm(RegInfo->getSEHRegNum(Reg0)) 545 .addImm(RegInfo->getSEHRegNum(Reg1)) 546 .addImm(Imm * 8) 547 .setMIFlag(Flag); 548 break; 549 } 550 case AArch64::LDRDpost: 551 Imm = -Imm; 552 LLVM_FALLTHROUGH; 553 case AArch64::STRDpre: { 554 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 555 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 556 .addImm(Reg) 557 .addImm(Imm) 558 .setMIFlag(Flag); 559 break; 560 } 561 case AArch64::LDRXpost: 562 Imm = -Imm; 563 LLVM_FALLTHROUGH; 564 case AArch64::STRXpre: { 565 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 566 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 567 .addImm(Reg) 568 .addImm(Imm) 569 .setMIFlag(Flag); 570 break; 571 } 572 case AArch64::STPDi: 573 case AArch64::LDPDi: { 574 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 575 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 576 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 577 .addImm(Reg0) 578 .addImm(Reg1) 579 .addImm(Imm * 8) 580 .setMIFlag(Flag); 581 break; 582 } 583 case AArch64::STPXi: 584 case AArch64::LDPXi: { 585 Register Reg0 = MBBI->getOperand(0).getReg(); 586 Register Reg1 = MBBI->getOperand(1).getReg(); 587 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 588 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 589 .addImm(Imm * 8) 590 .setMIFlag(Flag); 591 else 592 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 593 .addImm(RegInfo->getSEHRegNum(Reg0)) 594 .addImm(RegInfo->getSEHRegNum(Reg1)) 595 .addImm(Imm * 8) 596 .setMIFlag(Flag); 597 break; 598 } 599 case AArch64::STRXui: 600 case AArch64::LDRXui: { 601 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 602 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 603 .addImm(Reg) 604 .addImm(Imm * 8) 605 .setMIFlag(Flag); 606 break; 607 } 608 case AArch64::STRDui: 609 case AArch64::LDRDui: { 610 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 611 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 612 .addImm(Reg) 613 .addImm(Imm * 8) 614 .setMIFlag(Flag); 615 break; 616 } 617 } 618 auto I = MBB->insertAfter(MBBI, MIB); 619 return I; 620 } 621 622 // Fix up the SEH opcode associated with the save/restore instruction. 623 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 624 unsigned LocalStackSize) { 625 MachineOperand *ImmOpnd = nullptr; 626 unsigned ImmIdx = MBBI->getNumOperands() - 1; 627 switch (MBBI->getOpcode()) { 628 default: 629 llvm_unreachable("Fix the offset in the SEH instruction"); 630 case AArch64::SEH_SaveFPLR: 631 case AArch64::SEH_SaveRegP: 632 case AArch64::SEH_SaveReg: 633 case AArch64::SEH_SaveFRegP: 634 case AArch64::SEH_SaveFReg: 635 ImmOpnd = &MBBI->getOperand(ImmIdx); 636 break; 637 } 638 if (ImmOpnd) 639 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 640 } 641 642 // Convert callee-save register save/restore instruction to do stack pointer 643 // decrement/increment to allocate/deallocate the callee-save stack area by 644 // converting store/load to use pre/post increment version. 645 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 646 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 647 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 648 bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) { 649 // Ignore instructions that do not operate on SP, i.e. shadow call stack 650 // instructions and associated CFI instruction. 651 while (MBBI->getOpcode() == AArch64::STRXpost || 652 MBBI->getOpcode() == AArch64::LDRXpre || 653 MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) { 654 if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION) 655 assert(MBBI->getOperand(0).getReg() != AArch64::SP); 656 ++MBBI; 657 } 658 unsigned NewOpc; 659 int Scale = 1; 660 switch (MBBI->getOpcode()) { 661 default: 662 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 663 case AArch64::STPXi: 664 NewOpc = AArch64::STPXpre; 665 Scale = 8; 666 break; 667 case AArch64::STPDi: 668 NewOpc = AArch64::STPDpre; 669 Scale = 8; 670 break; 671 case AArch64::STPQi: 672 NewOpc = AArch64::STPQpre; 673 Scale = 16; 674 break; 675 case AArch64::STRXui: 676 NewOpc = AArch64::STRXpre; 677 break; 678 case AArch64::STRDui: 679 NewOpc = AArch64::STRDpre; 680 break; 681 case AArch64::STRQui: 682 NewOpc = AArch64::STRQpre; 683 break; 684 case AArch64::LDPXi: 685 NewOpc = AArch64::LDPXpost; 686 Scale = 8; 687 break; 688 case AArch64::LDPDi: 689 NewOpc = AArch64::LDPDpost; 690 Scale = 8; 691 break; 692 case AArch64::LDPQi: 693 NewOpc = AArch64::LDPQpost; 694 Scale = 16; 695 break; 696 case AArch64::LDRXui: 697 NewOpc = AArch64::LDRXpost; 698 break; 699 case AArch64::LDRDui: 700 NewOpc = AArch64::LDRDpost; 701 break; 702 case AArch64::LDRQui: 703 NewOpc = AArch64::LDRQpost; 704 break; 705 } 706 // Get rid of the SEH code associated with the old instruction. 707 if (NeedsWinCFI) { 708 auto SEH = std::next(MBBI); 709 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 710 SEH->eraseFromParent(); 711 } 712 713 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 714 MIB.addReg(AArch64::SP, RegState::Define); 715 716 // Copy all operands other than the immediate offset. 717 unsigned OpndIdx = 0; 718 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 719 ++OpndIdx) 720 MIB.add(MBBI->getOperand(OpndIdx)); 721 722 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 723 "Unexpected immediate offset in first/last callee-save save/restore " 724 "instruction!"); 725 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 726 "Unexpected base register in callee-save save/restore instruction!"); 727 assert(CSStackSizeInc % Scale == 0); 728 MIB.addImm(CSStackSizeInc / Scale); 729 730 MIB.setMIFlags(MBBI->getFlags()); 731 MIB.setMemRefs(MBBI->memoperands()); 732 733 // Generate a new SEH code that corresponds to the new instruction. 734 if (NeedsWinCFI) { 735 *HasWinCFI = true; 736 InsertSEH(*MIB, *TII, 737 InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy); 738 } 739 740 return std::prev(MBB.erase(MBBI)); 741 } 742 743 // Fixup callee-save register save/restore instructions to take into account 744 // combined SP bump by adding the local stack size to the stack offsets. 745 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 746 uint64_t LocalStackSize, 747 bool NeedsWinCFI, 748 bool *HasWinCFI) { 749 if (AArch64InstrInfo::isSEHInstruction(MI)) 750 return; 751 752 unsigned Opc = MI.getOpcode(); 753 754 // Ignore instructions that do not operate on SP, i.e. shadow call stack 755 // instructions and associated CFI instruction. 756 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre || 757 Opc == AArch64::CFI_INSTRUCTION) { 758 if (Opc != AArch64::CFI_INSTRUCTION) 759 assert(MI.getOperand(0).getReg() != AArch64::SP); 760 return; 761 } 762 763 unsigned Scale; 764 switch (Opc) { 765 case AArch64::STPXi: 766 case AArch64::STRXui: 767 case AArch64::STPDi: 768 case AArch64::STRDui: 769 case AArch64::LDPXi: 770 case AArch64::LDRXui: 771 case AArch64::LDPDi: 772 case AArch64::LDRDui: 773 Scale = 8; 774 break; 775 case AArch64::STPQi: 776 case AArch64::STRQui: 777 case AArch64::LDPQi: 778 case AArch64::LDRQui: 779 Scale = 16; 780 break; 781 default: 782 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 783 } 784 785 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 786 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 787 "Unexpected base register in callee-save save/restore instruction!"); 788 // Last operand is immediate offset that needs fixing. 789 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 790 // All generated opcodes have scaled offsets. 791 assert(LocalStackSize % Scale == 0); 792 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 793 794 if (NeedsWinCFI) { 795 *HasWinCFI = true; 796 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 797 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 798 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 799 "Expecting a SEH instruction"); 800 fixupSEHOpcode(MBBI, LocalStackSize); 801 } 802 } 803 804 static void adaptForLdStOpt(MachineBasicBlock &MBB, 805 MachineBasicBlock::iterator FirstSPPopI, 806 MachineBasicBlock::iterator LastPopI) { 807 // Sometimes (when we restore in the same order as we save), we can end up 808 // with code like this: 809 // 810 // ldp x26, x25, [sp] 811 // ldp x24, x23, [sp, #16] 812 // ldp x22, x21, [sp, #32] 813 // ldp x20, x19, [sp, #48] 814 // add sp, sp, #64 815 // 816 // In this case, it is always better to put the first ldp at the end, so 817 // that the load-store optimizer can run and merge the ldp and the add into 818 // a post-index ldp. 819 // If we managed to grab the first pop instruction, move it to the end. 820 if (ReverseCSRRestoreSeq) 821 MBB.splice(FirstSPPopI, &MBB, LastPopI); 822 // We should end up with something like this now: 823 // 824 // ldp x24, x23, [sp, #16] 825 // ldp x22, x21, [sp, #32] 826 // ldp x20, x19, [sp, #48] 827 // ldp x26, x25, [sp] 828 // add sp, sp, #64 829 // 830 // and the load-store optimizer can merge the last two instructions into: 831 // 832 // ldp x26, x25, [sp], #64 833 // 834 } 835 836 static bool ShouldSignWithAKey(MachineFunction &MF) { 837 const Function &F = MF.getFunction(); 838 if (!F.hasFnAttribute("sign-return-address-key")) 839 return true; 840 841 const StringRef Key = 842 F.getFnAttribute("sign-return-address-key").getValueAsString(); 843 assert(Key.equals_lower("a_key") || Key.equals_lower("b_key")); 844 return Key.equals_lower("a_key"); 845 } 846 847 static bool needsWinCFI(const MachineFunction &MF) { 848 const Function &F = MF.getFunction(); 849 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 850 F.needsUnwindTableEntry(); 851 } 852 853 static bool isTargetDarwin(const MachineFunction &MF) { 854 return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin(); 855 } 856 857 static bool isTargetWindows(const MachineFunction &MF) { 858 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 859 } 860 861 // Convenience function to determine whether I is an SVE callee save. 862 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 863 switch (I->getOpcode()) { 864 default: 865 return false; 866 case AArch64::STR_ZXI: 867 case AArch64::STR_PXI: 868 case AArch64::LDR_ZXI: 869 case AArch64::LDR_PXI: 870 return I->getFlag(MachineInstr::FrameSetup) || 871 I->getFlag(MachineInstr::FrameDestroy); 872 } 873 } 874 875 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 876 MachineBasicBlock &MBB) const { 877 MachineBasicBlock::iterator MBBI = MBB.begin(); 878 const MachineFrameInfo &MFI = MF.getFrameInfo(); 879 const Function &F = MF.getFunction(); 880 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 881 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 882 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 883 MachineModuleInfo &MMI = MF.getMMI(); 884 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 885 bool needsFrameMoves = 886 MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 887 bool HasFP = hasFP(MF); 888 bool NeedsWinCFI = needsWinCFI(MF); 889 bool HasWinCFI = false; 890 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 891 892 bool IsFunclet = MBB.isEHFuncletEntry(); 893 894 // At this point, we're going to decide whether or not the function uses a 895 // redzone. In most cases, the function doesn't have a redzone so let's 896 // assume that's false and set it to true in the case that there's a redzone. 897 AFI->setHasRedZone(false); 898 899 // Debug location must be unknown since the first debug location is used 900 // to determine the end of the prologue. 901 DebugLoc DL; 902 903 if (ShouldSignReturnAddress(MF)) { 904 if (ShouldSignWithAKey(MF)) 905 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP)) 906 .setMIFlag(MachineInstr::FrameSetup); 907 else { 908 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY)) 909 .setMIFlag(MachineInstr::FrameSetup); 910 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP)) 911 .setMIFlag(MachineInstr::FrameSetup); 912 } 913 914 unsigned CFIIndex = 915 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 916 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 917 .addCFIIndex(CFIIndex) 918 .setMIFlags(MachineInstr::FrameSetup); 919 } 920 921 // All calls are tail calls in GHC calling conv, and functions have no 922 // prologue/epilogue. 923 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 924 return; 925 926 // Set tagged base pointer to the bottom of the stack frame. 927 // Ideally it should match SP value after prologue. 928 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 929 930 const StackOffset &SVEStackSize = getSVEStackSize(MF); 931 932 // getStackSize() includes all the locals in its size calculation. We don't 933 // include these locals when computing the stack size of a funclet, as they 934 // are allocated in the parent's stack frame and accessed via the frame 935 // pointer from the funclet. We only save the callee saved registers in the 936 // funclet, which are really the callee saved registers of the parent 937 // function, including the funclet. 938 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 939 : MFI.getStackSize(); 940 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 941 assert(!HasFP && "unexpected function without stack frame but with FP"); 942 assert(!SVEStackSize && 943 "unexpected function without stack frame but with SVE objects"); 944 // All of the stack allocation is for locals. 945 AFI->setLocalStackSize(NumBytes); 946 if (!NumBytes) 947 return; 948 // REDZONE: If the stack size is less than 128 bytes, we don't need 949 // to actually allocate. 950 if (canUseRedZone(MF)) { 951 AFI->setHasRedZone(true); 952 ++NumRedZoneFunctions; 953 } else { 954 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 955 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, 956 false, NeedsWinCFI, &HasWinCFI); 957 if (!NeedsWinCFI && needsFrameMoves) { 958 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 959 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 960 // Encode the stack size of the leaf function. 961 unsigned CFIIndex = MF.addFrameInst( 962 MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes)); 963 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 964 .addCFIIndex(CFIIndex) 965 .setMIFlags(MachineInstr::FrameSetup); 966 } 967 } 968 969 if (NeedsWinCFI) { 970 HasWinCFI = true; 971 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 972 .setMIFlag(MachineInstr::FrameSetup); 973 } 974 975 return; 976 } 977 978 bool IsWin64 = 979 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 980 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 981 982 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 983 // All of the remaining stack allocations are for locals. 984 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 985 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 986 if (CombineSPBump) { 987 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 988 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 989 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false, 990 NeedsWinCFI, &HasWinCFI); 991 NumBytes = 0; 992 } else if (PrologueSaveSize != 0) { 993 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 994 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI); 995 NumBytes -= PrologueSaveSize; 996 } 997 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 998 999 // Move past the saves of the callee-saved registers, fixing up the offsets 1000 // and pre-inc if we decided to combine the callee-save and local stack 1001 // pointer bump above. 1002 MachineBasicBlock::iterator End = MBB.end(); 1003 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1004 !IsSVECalleeSave(MBBI)) { 1005 if (CombineSPBump) 1006 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1007 NeedsWinCFI, &HasWinCFI); 1008 ++MBBI; 1009 } 1010 1011 // For funclets the FP belongs to the containing function. 1012 if (!IsFunclet && HasFP) { 1013 // Only set up FP if we actually need to. 1014 int64_t FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0; 1015 1016 if (CombineSPBump) 1017 FPOffset += AFI->getLocalStackSize(); 1018 1019 // Issue sub fp, sp, FPOffset or 1020 // mov fp,sp when FPOffset is zero. 1021 // Note: All stores of callee-saved registers are marked as "FrameSetup". 1022 // This code marks the instruction(s) that set the FP also. 1023 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 1024 {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false, 1025 NeedsWinCFI, &HasWinCFI); 1026 } 1027 1028 if (windowsRequiresStackProbe(MF, NumBytes)) { 1029 uint64_t NumWords = NumBytes >> 4; 1030 if (NeedsWinCFI) { 1031 HasWinCFI = true; 1032 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 1033 // exceed this amount. We need to move at most 2^24 - 1 into x15. 1034 // This is at most two instructions, MOVZ follwed by MOVK. 1035 // TODO: Fix to use multiple stack alloc unwind codes for stacks 1036 // exceeding 256MB in size. 1037 if (NumBytes >= (1 << 28)) 1038 report_fatal_error("Stack size cannot exceed 256MB for stack " 1039 "unwinding purposes"); 1040 1041 uint32_t LowNumWords = NumWords & 0xFFFF; 1042 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 1043 .addImm(LowNumWords) 1044 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1045 .setMIFlag(MachineInstr::FrameSetup); 1046 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1047 .setMIFlag(MachineInstr::FrameSetup); 1048 if ((NumWords & 0xFFFF0000) != 0) { 1049 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 1050 .addReg(AArch64::X15) 1051 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 1052 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 1053 .setMIFlag(MachineInstr::FrameSetup); 1054 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1055 .setMIFlag(MachineInstr::FrameSetup); 1056 } 1057 } else { 1058 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 1059 .addImm(NumWords) 1060 .setMIFlags(MachineInstr::FrameSetup); 1061 } 1062 1063 switch (MF.getTarget().getCodeModel()) { 1064 case CodeModel::Tiny: 1065 case CodeModel::Small: 1066 case CodeModel::Medium: 1067 case CodeModel::Kernel: 1068 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 1069 .addExternalSymbol("__chkstk") 1070 .addReg(AArch64::X15, RegState::Implicit) 1071 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1072 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1073 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1074 .setMIFlags(MachineInstr::FrameSetup); 1075 if (NeedsWinCFI) { 1076 HasWinCFI = true; 1077 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1078 .setMIFlag(MachineInstr::FrameSetup); 1079 } 1080 break; 1081 case CodeModel::Large: 1082 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 1083 .addReg(AArch64::X16, RegState::Define) 1084 .addExternalSymbol("__chkstk") 1085 .addExternalSymbol("__chkstk") 1086 .setMIFlags(MachineInstr::FrameSetup); 1087 if (NeedsWinCFI) { 1088 HasWinCFI = true; 1089 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1090 .setMIFlag(MachineInstr::FrameSetup); 1091 } 1092 1093 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR)) 1094 .addReg(AArch64::X16, RegState::Kill) 1095 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 1096 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1097 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1098 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1099 .setMIFlags(MachineInstr::FrameSetup); 1100 if (NeedsWinCFI) { 1101 HasWinCFI = true; 1102 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1103 .setMIFlag(MachineInstr::FrameSetup); 1104 } 1105 break; 1106 } 1107 1108 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 1109 .addReg(AArch64::SP, RegState::Kill) 1110 .addReg(AArch64::X15, RegState::Kill) 1111 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 1112 .setMIFlags(MachineInstr::FrameSetup); 1113 if (NeedsWinCFI) { 1114 HasWinCFI = true; 1115 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1116 .addImm(NumBytes) 1117 .setMIFlag(MachineInstr::FrameSetup); 1118 } 1119 NumBytes = 0; 1120 } 1121 1122 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {}; 1123 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 1124 1125 // Process the SVE callee-saves to determine what space needs to be 1126 // allocated. 1127 if (AFI->getSVECalleeSavedStackSize()) { 1128 // Find callee save instructions in frame. 1129 CalleeSavesBegin = MBBI; 1130 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 1131 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 1132 ++MBBI; 1133 CalleeSavesEnd = MBBI; 1134 1135 int64_t OffsetToFirstCalleeSaveFromSP = 1136 MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex()); 1137 StackOffset OffsetToCalleeSavesFromSP = 1138 StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize; 1139 AllocateBefore -= OffsetToCalleeSavesFromSP; 1140 AllocateAfter = SVEStackSize - AllocateBefore; 1141 } 1142 1143 // Allocate space for the callee saves (if any). 1144 emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, 1145 -AllocateBefore, TII, 1146 MachineInstr::FrameSetup); 1147 1148 // Finally allocate remaining SVE stack space. 1149 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP, 1150 -AllocateAfter, TII, 1151 MachineInstr::FrameSetup); 1152 1153 // Allocate space for the rest of the frame. 1154 if (NumBytes) { 1155 // Alignment is required for the parent frame, not the funclet 1156 const bool NeedsRealignment = 1157 !IsFunclet && RegInfo->needsStackRealignment(MF); 1158 unsigned scratchSPReg = AArch64::SP; 1159 1160 if (NeedsRealignment) { 1161 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB); 1162 assert(scratchSPReg != AArch64::NoRegister); 1163 } 1164 1165 // If we're a leaf function, try using the red zone. 1166 if (!canUseRedZone(MF)) 1167 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 1168 // the correct value here, as NumBytes also includes padding bytes, 1169 // which shouldn't be counted here. 1170 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, 1171 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, 1172 false, NeedsWinCFI, &HasWinCFI); 1173 1174 if (NeedsRealignment) { 1175 const unsigned Alignment = MFI.getMaxAlignment(); 1176 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 1177 assert(NrBitsToZero > 1); 1178 assert(scratchSPReg != AArch64::SP); 1179 1180 // SUB X9, SP, NumBytes 1181 // -- X9 is temporary register, so shouldn't contain any live data here, 1182 // -- free to use. This is already produced by emitFrameOffset above. 1183 // AND SP, X9, 0b11111...0000 1184 // The logical immediates have a non-trivial encoding. The following 1185 // formula computes the encoded immediate with all ones but 1186 // NrBitsToZero zero bits as least significant bits. 1187 uint32_t andMaskEncoded = (1 << 12) // = N 1188 | ((64 - NrBitsToZero) << 6) // immr 1189 | ((64 - NrBitsToZero - 1) << 0); // imms 1190 1191 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 1192 .addReg(scratchSPReg, RegState::Kill) 1193 .addImm(andMaskEncoded); 1194 AFI->setStackRealigned(true); 1195 if (NeedsWinCFI) { 1196 HasWinCFI = true; 1197 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1198 .addImm(NumBytes & andMaskEncoded) 1199 .setMIFlag(MachineInstr::FrameSetup); 1200 } 1201 } 1202 } 1203 1204 // If we need a base pointer, set it up here. It's whatever the value of the 1205 // stack pointer is at this point. Any variable size objects will be allocated 1206 // after this, so we can still use the base pointer to reference locals. 1207 // 1208 // FIXME: Clarify FrameSetup flags here. 1209 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 1210 // needed. 1211 // For funclets the BP belongs to the containing function. 1212 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 1213 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 1214 false); 1215 if (NeedsWinCFI) { 1216 HasWinCFI = true; 1217 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1218 .setMIFlag(MachineInstr::FrameSetup); 1219 } 1220 } 1221 1222 // The very last FrameSetup instruction indicates the end of prologue. Emit a 1223 // SEH opcode indicating the prologue end. 1224 if (NeedsWinCFI && HasWinCFI) { 1225 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1226 .setMIFlag(MachineInstr::FrameSetup); 1227 } 1228 1229 // SEH funclets are passed the frame pointer in X1. If the parent 1230 // function uses the base register, then the base register is used 1231 // directly, and is not retrieved from X1. 1232 if (IsFunclet && F.hasPersonalityFn()) { 1233 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 1234 if (isAsynchronousEHPersonality(Per)) { 1235 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 1236 .addReg(AArch64::X1) 1237 .setMIFlag(MachineInstr::FrameSetup); 1238 MBB.addLiveIn(AArch64::X1); 1239 } 1240 } 1241 1242 if (needsFrameMoves) { 1243 const DataLayout &TD = MF.getDataLayout(); 1244 const int StackGrowth = isTargetDarwin(MF) 1245 ? (2 * -TD.getPointerSize(0)) 1246 : -AFI->getCalleeSavedStackSize(); 1247 Register FramePtr = RegInfo->getFrameRegister(MF); 1248 // An example of the prologue: 1249 // 1250 // .globl __foo 1251 // .align 2 1252 // __foo: 1253 // Ltmp0: 1254 // .cfi_startproc 1255 // .cfi_personality 155, ___gxx_personality_v0 1256 // Leh_func_begin: 1257 // .cfi_lsda 16, Lexception33 1258 // 1259 // stp xa,bx, [sp, -#offset]! 1260 // ... 1261 // stp x28, x27, [sp, #offset-32] 1262 // stp fp, lr, [sp, #offset-16] 1263 // add fp, sp, #offset - 16 1264 // sub sp, sp, #1360 1265 // 1266 // The Stack: 1267 // +-------------------------------------------+ 1268 // 10000 | ........ | ........ | ........ | ........ | 1269 // 10004 | ........ | ........ | ........ | ........ | 1270 // +-------------------------------------------+ 1271 // 10008 | ........ | ........ | ........ | ........ | 1272 // 1000c | ........ | ........ | ........ | ........ | 1273 // +===========================================+ 1274 // 10010 | X28 Register | 1275 // 10014 | X28 Register | 1276 // +-------------------------------------------+ 1277 // 10018 | X27 Register | 1278 // 1001c | X27 Register | 1279 // +===========================================+ 1280 // 10020 | Frame Pointer | 1281 // 10024 | Frame Pointer | 1282 // +-------------------------------------------+ 1283 // 10028 | Link Register | 1284 // 1002c | Link Register | 1285 // +===========================================+ 1286 // 10030 | ........ | ........ | ........ | ........ | 1287 // 10034 | ........ | ........ | ........ | ........ | 1288 // +-------------------------------------------+ 1289 // 10038 | ........ | ........ | ........ | ........ | 1290 // 1003c | ........ | ........ | ........ | ........ | 1291 // +-------------------------------------------+ 1292 // 1293 // [sp] = 10030 :: >>initial value<< 1294 // sp = 10020 :: stp fp, lr, [sp, #-16]! 1295 // fp = sp == 10020 :: mov fp, sp 1296 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 1297 // sp == 10010 :: >>final value<< 1298 // 1299 // The frame pointer (w29) points to address 10020. If we use an offset of 1300 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 1301 // for w27, and -32 for w28: 1302 // 1303 // Ltmp1: 1304 // .cfi_def_cfa w29, 16 1305 // Ltmp2: 1306 // .cfi_offset w30, -8 1307 // Ltmp3: 1308 // .cfi_offset w29, -16 1309 // Ltmp4: 1310 // .cfi_offset w27, -24 1311 // Ltmp5: 1312 // .cfi_offset w28, -32 1313 1314 if (HasFP) { 1315 // Define the current CFA rule to use the provided FP. 1316 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true); 1317 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 1318 nullptr, Reg, StackGrowth - FixedObject)); 1319 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1320 .addCFIIndex(CFIIndex) 1321 .setMIFlags(MachineInstr::FrameSetup); 1322 } else { 1323 // Encode the stack size of the leaf function. 1324 unsigned CFIIndex = MF.addFrameInst( 1325 MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize())); 1326 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1327 .addCFIIndex(CFIIndex) 1328 .setMIFlags(MachineInstr::FrameSetup); 1329 } 1330 1331 // Now emit the moves for whatever callee saved regs we have (including FP, 1332 // LR if those are saved). 1333 emitCalleeSavedFrameMoves(MBB, MBBI); 1334 } 1335 } 1336 1337 static void InsertReturnAddressAuth(MachineFunction &MF, 1338 MachineBasicBlock &MBB) { 1339 if (!ShouldSignReturnAddress(MF)) 1340 return; 1341 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1342 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1343 1344 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1345 DebugLoc DL; 1346 if (MBBI != MBB.end()) 1347 DL = MBBI->getDebugLoc(); 1348 1349 // The AUTIASP instruction assembles to a hint instruction before v8.3a so 1350 // this instruction can safely used for any v8a architecture. 1351 // From v8.3a onwards there are optimised authenticate LR and return 1352 // instructions, namely RETA{A,B}, that can be used instead. 1353 if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() && 1354 MBBI->getOpcode() == AArch64::RET_ReallyLR) { 1355 BuildMI(MBB, MBBI, DL, 1356 TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB)) 1357 .copyImplicitOps(*MBBI); 1358 MBB.erase(MBBI); 1359 } else { 1360 BuildMI( 1361 MBB, MBBI, DL, 1362 TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP)) 1363 .setMIFlag(MachineInstr::FrameDestroy); 1364 } 1365 } 1366 1367 static bool isFuncletReturnInstr(const MachineInstr &MI) { 1368 switch (MI.getOpcode()) { 1369 default: 1370 return false; 1371 case AArch64::CATCHRET: 1372 case AArch64::CLEANUPRET: 1373 return true; 1374 } 1375 } 1376 1377 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 1378 MachineBasicBlock &MBB) const { 1379 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 1380 MachineFrameInfo &MFI = MF.getFrameInfo(); 1381 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1382 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1383 DebugLoc DL; 1384 bool IsTailCallReturn = false; 1385 bool NeedsWinCFI = needsWinCFI(MF); 1386 bool HasWinCFI = false; 1387 bool IsFunclet = false; 1388 auto WinCFI = make_scope_exit([&]() { 1389 if (!MF.hasWinCFI()) 1390 MF.setHasWinCFI(HasWinCFI); 1391 }); 1392 1393 if (MBB.end() != MBBI) { 1394 DL = MBBI->getDebugLoc(); 1395 unsigned RetOpcode = MBBI->getOpcode(); 1396 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi || 1397 RetOpcode == AArch64::TCRETURNri || 1398 RetOpcode == AArch64::TCRETURNriBTI; 1399 IsFunclet = isFuncletReturnInstr(*MBBI); 1400 } 1401 1402 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1403 : MFI.getStackSize(); 1404 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1405 1406 // All calls are tail calls in GHC calling conv, and functions have no 1407 // prologue/epilogue. 1408 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1409 return; 1410 1411 // Initial and residual are named for consistency with the prologue. Note that 1412 // in the epilogue, the residual adjustment is executed first. 1413 uint64_t ArgumentPopSize = 0; 1414 if (IsTailCallReturn) { 1415 MachineOperand &StackAdjust = MBBI->getOperand(1); 1416 1417 // For a tail-call in a callee-pops-arguments environment, some or all of 1418 // the stack may actually be in use for the call's arguments, this is 1419 // calculated during LowerCall and consumed here... 1420 ArgumentPopSize = StackAdjust.getImm(); 1421 } else { 1422 // ... otherwise the amount to pop is *all* of the argument space, 1423 // conveniently stored in the MachineFunctionInfo by 1424 // LowerFormalArguments. This will, of course, be zero for the C calling 1425 // convention. 1426 ArgumentPopSize = AFI->getArgumentStackToRestore(); 1427 } 1428 1429 // The stack frame should be like below, 1430 // 1431 // ---------------------- --- 1432 // | | | 1433 // | BytesInStackArgArea| CalleeArgStackSize 1434 // | (NumReusableBytes) | (of tail call) 1435 // | | --- 1436 // | | | 1437 // ---------------------| --- | 1438 // | | | | 1439 // | CalleeSavedReg | | | 1440 // | (CalleeSavedStackSize)| | | 1441 // | | | | 1442 // ---------------------| | NumBytes 1443 // | | StackSize (StackAdjustUp) 1444 // | LocalStackSize | | | 1445 // | (covering callee | | | 1446 // | args) | | | 1447 // | | | | 1448 // ---------------------- --- --- 1449 // 1450 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize 1451 // = StackSize + ArgumentPopSize 1452 // 1453 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps 1454 // it as the 2nd argument of AArch64ISD::TC_RETURN. 1455 1456 auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); }); 1457 1458 bool IsWin64 = 1459 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1460 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1461 1462 uint64_t AfterCSRPopSize = ArgumentPopSize; 1463 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1464 // We cannot rely on the local stack size set in emitPrologue if the function 1465 // has funclets, as funclets have different local stack size requirements, and 1466 // the current value set in emitPrologue may be that of the containing 1467 // function. 1468 if (MF.hasEHFunclets()) 1469 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1470 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1471 // Assume we can't combine the last pop with the sp restore. 1472 1473 if (!CombineSPBump && PrologueSaveSize != 0) { 1474 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 1475 while (AArch64InstrInfo::isSEHInstruction(*Pop)) 1476 Pop = std::prev(Pop); 1477 // Converting the last ldp to a post-index ldp is valid only if the last 1478 // ldp's offset is 0. 1479 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 1480 // If the offset is 0, convert it to a post-index ldp. 1481 if (OffsetOp.getImm() == 0) 1482 convertCalleeSaveRestoreToSPPrePostIncDec( 1483 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false); 1484 else { 1485 // If not, make sure to emit an add after the last ldp. 1486 // We're doing this by transfering the size to be restored from the 1487 // adjustment *before* the CSR pops to the adjustment *after* the CSR 1488 // pops. 1489 AfterCSRPopSize += PrologueSaveSize; 1490 } 1491 } 1492 1493 // Move past the restores of the callee-saved registers. 1494 // If we plan on combining the sp bump of the local stack size and the callee 1495 // save stack size, we might need to adjust the CSR save and restore offsets. 1496 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 1497 MachineBasicBlock::iterator Begin = MBB.begin(); 1498 while (LastPopI != Begin) { 1499 --LastPopI; 1500 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 1501 IsSVECalleeSave(LastPopI)) { 1502 ++LastPopI; 1503 break; 1504 } else if (CombineSPBump) 1505 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 1506 NeedsWinCFI, &HasWinCFI); 1507 } 1508 1509 if (NeedsWinCFI) { 1510 HasWinCFI = true; 1511 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 1512 .setMIFlag(MachineInstr::FrameDestroy); 1513 } 1514 1515 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1516 1517 // If there is a single SP update, insert it before the ret and we're done. 1518 if (CombineSPBump) { 1519 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1520 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 1521 {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII, 1522 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1523 if (NeedsWinCFI && HasWinCFI) 1524 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1525 TII->get(AArch64::SEH_EpilogEnd)) 1526 .setMIFlag(MachineInstr::FrameDestroy); 1527 return; 1528 } 1529 1530 NumBytes -= PrologueSaveSize; 1531 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1532 1533 // Process the SVE callee-saves to determine what space needs to be 1534 // deallocated. 1535 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 1536 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 1537 if (AFI->getSVECalleeSavedStackSize()) { 1538 RestoreBegin = std::prev(RestoreEnd);; 1539 while (IsSVECalleeSave(RestoreBegin) && 1540 RestoreBegin != MBB.begin()) 1541 --RestoreBegin; 1542 ++RestoreBegin; 1543 1544 assert(IsSVECalleeSave(RestoreBegin) && 1545 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 1546 1547 int64_t OffsetToFirstCalleeSaveFromSP = 1548 MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex()); 1549 StackOffset OffsetToCalleeSavesFromSP = 1550 StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize; 1551 DeallocateBefore = OffsetToCalleeSavesFromSP; 1552 DeallocateAfter = SVEStackSize - DeallocateBefore; 1553 } 1554 1555 // Deallocate the SVE area. 1556 if (SVEStackSize) { 1557 if (AFI->isStackRealigned()) { 1558 if (AFI->getSVECalleeSavedStackSize()) 1559 // Set SP to start of SVE area, from which the callee-save reloads 1560 // can be done. The code below will deallocate the stack space 1561 // space by moving FP -> SP. 1562 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 1563 -SVEStackSize, TII, MachineInstr::FrameDestroy); 1564 } else { 1565 if (AFI->getSVECalleeSavedStackSize()) { 1566 // Deallocate the non-SVE locals first before we can deallocate (and 1567 // restore callee saves) from the SVE area. 1568 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1569 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy); 1570 NumBytes = 0; 1571 } 1572 1573 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1574 DeallocateBefore, TII, MachineInstr::FrameDestroy); 1575 1576 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 1577 DeallocateAfter, TII, MachineInstr::FrameDestroy); 1578 } 1579 } 1580 1581 if (!hasFP(MF)) { 1582 bool RedZone = canUseRedZone(MF); 1583 // If this was a redzone leaf function, we don't need to restore the 1584 // stack pointer (but we may need to pop stack args for fastcc). 1585 if (RedZone && AfterCSRPopSize == 0) 1586 return; 1587 1588 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 1589 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 1590 if (NoCalleeSaveRestore) 1591 StackRestoreBytes += AfterCSRPopSize; 1592 1593 // If we were able to combine the local stack pop with the argument pop, 1594 // then we're done. 1595 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0; 1596 1597 // If we're done after this, make sure to help the load store optimizer. 1598 if (Done) 1599 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI); 1600 1601 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1602 {StackRestoreBytes, MVT::i8}, TII, 1603 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1604 if (Done) { 1605 if (NeedsWinCFI) { 1606 HasWinCFI = true; 1607 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1608 TII->get(AArch64::SEH_EpilogEnd)) 1609 .setMIFlag(MachineInstr::FrameDestroy); 1610 } 1611 return; 1612 } 1613 1614 NumBytes = 0; 1615 } 1616 1617 // Restore the original stack pointer. 1618 // FIXME: Rather than doing the math here, we should instead just use 1619 // non-post-indexed loads for the restores if we aren't actually going to 1620 // be able to save any instructions. 1621 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 1622 int64_t OffsetToFrameRecord = 1623 isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0; 1624 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 1625 {OffsetToFrameRecord, MVT::i8}, 1626 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI); 1627 } else if (NumBytes) 1628 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1629 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false, 1630 NeedsWinCFI); 1631 1632 // This must be placed after the callee-save restore code because that code 1633 // assumes the SP is at the same location as it was after the callee-save save 1634 // code in the prologue. 1635 if (AfterCSRPopSize) { 1636 // Find an insertion point for the first ldp so that it goes before the 1637 // shadow call stack epilog instruction. This ensures that the restore of 1638 // lr from x18 is placed after the restore from sp. 1639 auto FirstSPPopI = MBB.getFirstTerminator(); 1640 while (FirstSPPopI != Begin) { 1641 auto Prev = std::prev(FirstSPPopI); 1642 if (Prev->getOpcode() != AArch64::LDRXpre || 1643 Prev->getOperand(0).getReg() == AArch64::SP) 1644 break; 1645 FirstSPPopI = Prev; 1646 } 1647 1648 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI); 1649 1650 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP, 1651 {(int64_t)AfterCSRPopSize, MVT::i8}, TII, 1652 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1653 } 1654 if (NeedsWinCFI && HasWinCFI) 1655 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd)) 1656 .setMIFlag(MachineInstr::FrameDestroy); 1657 1658 MF.setHasWinCFI(HasWinCFI); 1659 } 1660 1661 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1662 /// debug info. It's the same as what we use for resolving the code-gen 1663 /// references for now. FIXME: This can go wrong when references are 1664 /// SP-relative and simple call frames aren't used. 1665 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, 1666 int FI, 1667 unsigned &FrameReg) const { 1668 return resolveFrameIndexReference( 1669 MF, FI, FrameReg, 1670 /*PreferFP=*/ 1671 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress), 1672 /*ForSimm=*/false) 1673 .getBytes(); 1674 } 1675 1676 int AArch64FrameLowering::getNonLocalFrameIndexReference( 1677 const MachineFunction &MF, int FI) const { 1678 return getSEHFrameIndexOffset(MF, FI); 1679 } 1680 1681 static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) { 1682 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1683 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1684 bool IsWin64 = 1685 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1686 1687 unsigned FixedObject = 1688 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 1689 unsigned FPAdjust = isTargetDarwin(MF) 1690 ? 16 : AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 1691 return {ObjectOffset + FixedObject + FPAdjust, MVT::i8}; 1692 } 1693 1694 static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) { 1695 const auto &MFI = MF.getFrameInfo(); 1696 return {ObjectOffset + (int64_t)MFI.getStackSize(), MVT::i8}; 1697 } 1698 1699 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 1700 int FI) const { 1701 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1702 MF.getSubtarget().getRegisterInfo()); 1703 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 1704 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 1705 ? getFPOffset(MF, ObjectOffset).getBytes() 1706 : getStackOffset(MF, ObjectOffset).getBytes(); 1707 } 1708 1709 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 1710 const MachineFunction &MF, int FI, unsigned &FrameReg, bool PreferFP, 1711 bool ForSimm) const { 1712 const auto &MFI = MF.getFrameInfo(); 1713 int64_t ObjectOffset = MFI.getObjectOffset(FI); 1714 bool isFixed = MFI.isFixedObjectIndex(FI); 1715 bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector; 1716 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 1717 PreferFP, ForSimm); 1718 } 1719 1720 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 1721 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 1722 unsigned &FrameReg, bool PreferFP, bool ForSimm) const { 1723 const auto &MFI = MF.getFrameInfo(); 1724 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1725 MF.getSubtarget().getRegisterInfo()); 1726 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1727 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1728 1729 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getBytes(); 1730 int64_t Offset = getStackOffset(MF, ObjectOffset).getBytes(); 1731 bool isCSR = 1732 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 1733 1734 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1735 1736 // Use frame pointer to reference fixed objects. Use it for locals if 1737 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 1738 // reliable as a base). Make sure useFPForScavengingIndex() does the 1739 // right thing for the emergency spill slot. 1740 bool UseFP = false; 1741 if (AFI->hasStackFrame() && !isSVE) { 1742 // We shouldn't prefer using the FP when there is an SVE area 1743 // in between the FP and the non-SVE locals/spills. 1744 PreferFP &= !SVEStackSize; 1745 1746 // Note: Keeping the following as multiple 'if' statements rather than 1747 // merging to a single expression for readability. 1748 // 1749 // Argument access should always use the FP. 1750 if (isFixed) { 1751 UseFP = hasFP(MF); 1752 } else if (isCSR && RegInfo->needsStackRealignment(MF)) { 1753 // References to the CSR area must use FP if we're re-aligning the stack 1754 // since the dynamically-sized alignment padding is between the SP/BP and 1755 // the CSR area. 1756 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 1757 UseFP = true; 1758 } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) { 1759 // If the FPOffset is negative and we're producing a signed immediate, we 1760 // have to keep in mind that the available offset range for negative 1761 // offsets is smaller than for positive ones. If an offset is available 1762 // via the FP and the SP, use whichever is closest. 1763 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 1764 PreferFP |= Offset > -FPOffset; 1765 1766 if (MFI.hasVarSizedObjects()) { 1767 // If we have variable sized objects, we can use either FP or BP, as the 1768 // SP offset is unknown. We can use the base pointer if we have one and 1769 // FP is not preferred. If not, we're stuck with using FP. 1770 bool CanUseBP = RegInfo->hasBasePointer(MF); 1771 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 1772 UseFP = PreferFP; 1773 else if (!CanUseBP) { // Can't use BP. Forced to use FP. 1774 assert(!SVEStackSize && "Expected BP to be available"); 1775 UseFP = true; 1776 } 1777 // else we can use BP and FP, but the offset from FP won't fit. 1778 // That will make us scavenge registers which we can probably avoid by 1779 // using BP. If it won't fit for BP either, we'll scavenge anyway. 1780 } else if (FPOffset >= 0) { 1781 // Use SP or FP, whichever gives us the best chance of the offset 1782 // being in range for direct access. If the FPOffset is positive, 1783 // that'll always be best, as the SP will be even further away. 1784 UseFP = true; 1785 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 1786 // Funclets access the locals contained in the parent's stack frame 1787 // via the frame pointer, so we have to use the FP in the parent 1788 // function. 1789 (void) Subtarget; 1790 assert( 1791 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) && 1792 "Funclets should only be present on Win64"); 1793 UseFP = true; 1794 } else { 1795 // We have the choice between FP and (SP or BP). 1796 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 1797 UseFP = true; 1798 } 1799 } 1800 } 1801 1802 assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) && 1803 "In the presence of dynamic stack pointer realignment, " 1804 "non-argument/CSR objects cannot be accessed through the frame pointer"); 1805 1806 if (isSVE) { 1807 int64_t OffsetToSVEArea = 1808 MFI.getStackSize() - AFI->getCalleeSavedStackSize(); 1809 StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8}; 1810 StackOffset SPOffset = SVEStackSize + 1811 StackOffset(ObjectOffset, MVT::nxv1i8) + 1812 StackOffset(OffsetToSVEArea, MVT::i8); 1813 // Always use the FP for SVE spills if available and beneficial. 1814 if (hasFP(MF) && 1815 (SPOffset.getBytes() || 1816 FPOffset.getScalableBytes() < SPOffset.getScalableBytes() || 1817 RegInfo->needsStackRealignment(MF))) { 1818 FrameReg = RegInfo->getFrameRegister(MF); 1819 return FPOffset; 1820 } 1821 1822 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 1823 : (unsigned)AArch64::SP; 1824 return SPOffset; 1825 } 1826 1827 StackOffset ScalableOffset = {}; 1828 if (UseFP && !(isFixed || isCSR)) 1829 ScalableOffset = -SVEStackSize; 1830 if (!UseFP && (isFixed || isCSR)) 1831 ScalableOffset = SVEStackSize; 1832 1833 if (UseFP) { 1834 FrameReg = RegInfo->getFrameRegister(MF); 1835 return StackOffset(FPOffset, MVT::i8) + ScalableOffset; 1836 } 1837 1838 // Use the base pointer if we have one. 1839 if (RegInfo->hasBasePointer(MF)) 1840 FrameReg = RegInfo->getBaseRegister(); 1841 else { 1842 assert(!MFI.hasVarSizedObjects() && 1843 "Can't use SP when we have var sized objects."); 1844 FrameReg = AArch64::SP; 1845 // If we're using the red zone for this function, the SP won't actually 1846 // be adjusted, so the offsets will be negative. They're also all 1847 // within range of the signed 9-bit immediate instructions. 1848 if (canUseRedZone(MF)) 1849 Offset -= AFI->getLocalStackSize(); 1850 } 1851 1852 return StackOffset(Offset, MVT::i8) + ScalableOffset; 1853 } 1854 1855 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 1856 // Do not set a kill flag on values that are also marked as live-in. This 1857 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 1858 // callee saved registers. 1859 // Omitting the kill flags is conservatively correct even if the live-in 1860 // is not used after all. 1861 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 1862 return getKillRegState(!IsLiveIn); 1863 } 1864 1865 static bool produceCompactUnwindFrame(MachineFunction &MF) { 1866 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1867 AttributeList Attrs = MF.getFunction().getAttributes(); 1868 return Subtarget.isTargetMachO() && 1869 !(Subtarget.getTargetLowering()->supportSwiftError() && 1870 Attrs.hasAttrSomewhere(Attribute::SwiftError)); 1871 } 1872 1873 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 1874 bool NeedsWinCFI) { 1875 // If we are generating register pairs for a Windows function that requires 1876 // EH support, then pair consecutive registers only. There are no unwind 1877 // opcodes for saves/restores of non-consectuve register pairs. 1878 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x. 1879 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 1880 1881 // TODO: LR can be paired with any register. We don't support this yet in 1882 // the MCLayer. We need to add support for the save_lrpair unwind code. 1883 if (Reg2 == AArch64::FP) 1884 return true; 1885 if (!NeedsWinCFI) 1886 return false; 1887 if (Reg2 == Reg1 + 1) 1888 return false; 1889 return true; 1890 } 1891 1892 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 1893 /// WindowsCFI requires that only consecutive registers can be paired. 1894 /// LR and FP need to be allocated together when the frame needs to save 1895 /// the frame-record. This means any other register pairing with LR is invalid. 1896 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 1897 bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord) { 1898 if (UsesWinAAPCS) 1899 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI); 1900 1901 // If we need to store the frame record, don't pair any register 1902 // with LR other than FP. 1903 if (NeedsFrameRecord) 1904 return Reg2 == AArch64::LR; 1905 1906 return false; 1907 } 1908 1909 namespace { 1910 1911 struct RegPairInfo { 1912 unsigned Reg1 = AArch64::NoRegister; 1913 unsigned Reg2 = AArch64::NoRegister; 1914 int FrameIdx; 1915 int Offset; 1916 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type; 1917 1918 RegPairInfo() = default; 1919 1920 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 1921 1922 unsigned getScale() const { 1923 switch (Type) { 1924 case PPR: 1925 return 2; 1926 case GPR: 1927 case FPR64: 1928 return 8; 1929 case ZPR: 1930 case FPR128: 1931 return 16; 1932 } 1933 llvm_unreachable("Unsupported type"); 1934 } 1935 1936 bool isScalable() const { return Type == PPR || Type == ZPR; } 1937 }; 1938 1939 } // end anonymous namespace 1940 1941 static void computeCalleeSaveRegisterPairs( 1942 MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI, 1943 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 1944 bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) { 1945 1946 if (CSI.empty()) 1947 return; 1948 1949 bool IsWindows = isTargetWindows(MF); 1950 bool NeedsWinCFI = needsWinCFI(MF); 1951 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1952 MachineFrameInfo &MFI = MF.getFrameInfo(); 1953 CallingConv::ID CC = MF.getFunction().getCallingConv(); 1954 unsigned Count = CSI.size(); 1955 (void)CC; 1956 // MachO's compact unwind format relies on all registers being stored in 1957 // pairs. 1958 assert((!produceCompactUnwindFrame(MF) || 1959 CC == CallingConv::PreserveMost || 1960 (Count & 1) == 0) && 1961 "Odd number of callee-saved regs to spill!"); 1962 int ByteOffset = AFI->getCalleeSavedStackSize(); 1963 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 1964 // On Linux, we will have either one or zero non-paired register. On Windows 1965 // with CFI, we can have multiple unpaired registers in order to utilize the 1966 // available unwind codes. This flag assures that the alignment fixup is done 1967 // only once, as intened. 1968 bool FixupDone = false; 1969 for (unsigned i = 0; i < Count; ++i) { 1970 RegPairInfo RPI; 1971 RPI.Reg1 = CSI[i].getReg(); 1972 1973 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) 1974 RPI.Type = RegPairInfo::GPR; 1975 else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) 1976 RPI.Type = RegPairInfo::FPR64; 1977 else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) 1978 RPI.Type = RegPairInfo::FPR128; 1979 else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) 1980 RPI.Type = RegPairInfo::ZPR; 1981 else if (AArch64::PPRRegClass.contains(RPI.Reg1)) 1982 RPI.Type = RegPairInfo::PPR; 1983 else 1984 llvm_unreachable("Unsupported register class."); 1985 1986 // Add the next reg to the pair if it is in the same register class. 1987 if (i + 1 < Count) { 1988 unsigned NextReg = CSI[i + 1].getReg(); 1989 switch (RPI.Type) { 1990 case RegPairInfo::GPR: 1991 if (AArch64::GPR64RegClass.contains(NextReg) && 1992 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI, 1993 NeedsFrameRecord)) 1994 RPI.Reg2 = NextReg; 1995 break; 1996 case RegPairInfo::FPR64: 1997 if (AArch64::FPR64RegClass.contains(NextReg) && 1998 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI)) 1999 RPI.Reg2 = NextReg; 2000 break; 2001 case RegPairInfo::FPR128: 2002 if (AArch64::FPR128RegClass.contains(NextReg)) 2003 RPI.Reg2 = NextReg; 2004 break; 2005 case RegPairInfo::PPR: 2006 case RegPairInfo::ZPR: 2007 break; 2008 } 2009 } 2010 2011 // If either of the registers to be saved is the lr register, it means that 2012 // we also need to save lr in the shadow call stack. 2013 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) && 2014 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) { 2015 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18)) 2016 report_fatal_error("Must reserve x18 to use shadow call stack"); 2017 NeedShadowCallStackProlog = true; 2018 } 2019 2020 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 2021 // list to come in sorted by frame index so that we can issue the store 2022 // pair instructions directly. Assert if we see anything otherwise. 2023 // 2024 // The order of the registers in the list is controlled by 2025 // getCalleeSavedRegs(), so they will always be in-order, as well. 2026 assert((!RPI.isPaired() || 2027 (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) && 2028 "Out of order callee saved regs!"); 2029 2030 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 2031 RPI.Reg1 == AArch64::LR) && 2032 "FrameRecord must be allocated together with LR"); 2033 2034 // Windows AAPCS has FP and LR reversed. 2035 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 2036 RPI.Reg2 == AArch64::LR) && 2037 "FrameRecord must be allocated together with LR"); 2038 2039 // MachO's compact unwind format relies on all registers being stored in 2040 // adjacent register pairs. 2041 assert((!produceCompactUnwindFrame(MF) || 2042 CC == CallingConv::PreserveMost || 2043 (RPI.isPaired() && 2044 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 2045 RPI.Reg1 + 1 == RPI.Reg2))) && 2046 "Callee-save registers not saved as adjacent register pair!"); 2047 2048 RPI.FrameIdx = CSI[i].getFrameIdx(); 2049 2050 int Scale = RPI.getScale(); 2051 if (RPI.isScalable()) 2052 ScalableByteOffset -= Scale; 2053 else 2054 ByteOffset -= RPI.isPaired() ? 2 * Scale : Scale; 2055 2056 assert(!(RPI.isScalable() && RPI.isPaired()) && 2057 "Paired spill/fill instructions don't exist for SVE vectors"); 2058 2059 // Round up size of non-pair to pair size if we need to pad the 2060 // callee-save area to ensure 16-byte alignment. 2061 if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone && 2062 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 && 2063 !RPI.isPaired()) { 2064 FixupDone = true; 2065 ByteOffset -= 8; 2066 assert(ByteOffset % 16 == 0); 2067 assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16); 2068 MFI.setObjectAlignment(RPI.FrameIdx, 16); 2069 } 2070 2071 int Offset = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2072 assert(Offset % Scale == 0); 2073 RPI.Offset = Offset / Scale; 2074 2075 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 2076 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 2077 "Offset out of bounds for LDP/STP immediate"); 2078 2079 RegPairs.push_back(RPI); 2080 if (RPI.isPaired()) 2081 ++i; 2082 } 2083 } 2084 2085 bool AArch64FrameLowering::spillCalleeSavedRegisters( 2086 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2087 const std::vector<CalleeSavedInfo> &CSI, 2088 const TargetRegisterInfo *TRI) const { 2089 MachineFunction &MF = *MBB.getParent(); 2090 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2091 bool NeedsWinCFI = needsWinCFI(MF); 2092 DebugLoc DL; 2093 SmallVector<RegPairInfo, 8> RegPairs; 2094 2095 bool NeedShadowCallStackProlog = false; 2096 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2097 NeedShadowCallStackProlog, hasFP(MF)); 2098 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2099 2100 if (NeedShadowCallStackProlog) { 2101 // Shadow call stack prolog: str x30, [x18], #8 2102 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost)) 2103 .addReg(AArch64::X18, RegState::Define) 2104 .addReg(AArch64::LR) 2105 .addReg(AArch64::X18) 2106 .addImm(8) 2107 .setMIFlag(MachineInstr::FrameSetup); 2108 2109 if (NeedsWinCFI) 2110 BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop)) 2111 .setMIFlag(MachineInstr::FrameSetup); 2112 2113 if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) { 2114 // Emit a CFI instruction that causes 8 to be subtracted from the value of 2115 // x18 when unwinding past this frame. 2116 static const char CFIInst[] = { 2117 dwarf::DW_CFA_val_expression, 2118 18, // register 2119 2, // length 2120 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 2121 static_cast<char>(-8) & 0x7f, // addend (sleb128) 2122 }; 2123 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 2124 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 2125 BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 2126 .addCFIIndex(CFIIndex) 2127 .setMIFlag(MachineInstr::FrameSetup); 2128 } 2129 2130 // This instruction also makes x18 live-in to the entry block. 2131 MBB.addLiveIn(AArch64::X18); 2132 } 2133 2134 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE; 2135 ++RPII) { 2136 RegPairInfo RPI = *RPII; 2137 unsigned Reg1 = RPI.Reg1; 2138 unsigned Reg2 = RPI.Reg2; 2139 unsigned StrOpc; 2140 2141 // Issue sequence of spills for cs regs. The first spill may be converted 2142 // to a pre-decrement store later by emitPrologue if the callee-save stack 2143 // area allocation can't be combined with the local stack area allocation. 2144 // For example: 2145 // stp x22, x21, [sp, #0] // addImm(+0) 2146 // stp x20, x19, [sp, #16] // addImm(+2) 2147 // stp fp, lr, [sp, #32] // addImm(+4) 2148 // Rationale: This sequence saves uop updates compared to a sequence of 2149 // pre-increment spills like stp xi,xj,[sp,#-16]! 2150 // Note: Similar rationale and sequence for restores in epilog. 2151 unsigned Size, Align; 2152 switch (RPI.Type) { 2153 case RegPairInfo::GPR: 2154 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 2155 Size = 8; 2156 Align = 8; 2157 break; 2158 case RegPairInfo::FPR64: 2159 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 2160 Size = 8; 2161 Align = 8; 2162 break; 2163 case RegPairInfo::FPR128: 2164 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 2165 Size = 16; 2166 Align = 16; 2167 break; 2168 case RegPairInfo::ZPR: 2169 StrOpc = AArch64::STR_ZXI; 2170 Size = 16; 2171 Align = 16; 2172 break; 2173 case RegPairInfo::PPR: 2174 StrOpc = AArch64::STR_PXI; 2175 Size = 2; 2176 Align = 2; 2177 break; 2178 } 2179 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 2180 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2181 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2182 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2183 dbgs() << ")\n"); 2184 2185 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 2186 "Windows unwdinding requires a consecutive (FP,LR) pair"); 2187 // Windows unwind codes require consecutive registers if registers are 2188 // paired. Make the switch here, so that the code below will save (x,x+1) 2189 // and not (x+1,x). 2190 unsigned FrameIdxReg1 = RPI.FrameIdx; 2191 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2192 if (NeedsWinCFI && RPI.isPaired()) { 2193 std::swap(Reg1, Reg2); 2194 std::swap(FrameIdxReg1, FrameIdxReg2); 2195 } 2196 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 2197 if (!MRI.isReserved(Reg1)) 2198 MBB.addLiveIn(Reg1); 2199 if (RPI.isPaired()) { 2200 if (!MRI.isReserved(Reg2)) 2201 MBB.addLiveIn(Reg2); 2202 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 2203 MIB.addMemOperand(MF.getMachineMemOperand( 2204 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2205 MachineMemOperand::MOStore, Size, Align)); 2206 } 2207 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 2208 .addReg(AArch64::SP) 2209 .addImm(RPI.Offset) // [sp, #offset*scale], 2210 // where factor*scale is implicit 2211 .setMIFlag(MachineInstr::FrameSetup); 2212 MIB.addMemOperand(MF.getMachineMemOperand( 2213 MachinePointerInfo::getFixedStack(MF,FrameIdxReg1), 2214 MachineMemOperand::MOStore, Size, Align)); 2215 if (NeedsWinCFI) 2216 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 2217 2218 // Update the StackIDs of the SVE stack slots. 2219 MachineFrameInfo &MFI = MF.getFrameInfo(); 2220 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) 2221 MFI.setStackID(RPI.FrameIdx, TargetStackID::SVEVector); 2222 2223 } 2224 return true; 2225 } 2226 2227 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 2228 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2229 std::vector<CalleeSavedInfo> &CSI, 2230 const TargetRegisterInfo *TRI) const { 2231 MachineFunction &MF = *MBB.getParent(); 2232 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2233 DebugLoc DL; 2234 SmallVector<RegPairInfo, 8> RegPairs; 2235 bool NeedsWinCFI = needsWinCFI(MF); 2236 2237 if (MI != MBB.end()) 2238 DL = MI->getDebugLoc(); 2239 2240 bool NeedShadowCallStackProlog = false; 2241 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2242 NeedShadowCallStackProlog, hasFP(MF)); 2243 2244 auto EmitMI = [&](const RegPairInfo &RPI) { 2245 unsigned Reg1 = RPI.Reg1; 2246 unsigned Reg2 = RPI.Reg2; 2247 2248 // Issue sequence of restores for cs regs. The last restore may be converted 2249 // to a post-increment load later by emitEpilogue if the callee-save stack 2250 // area allocation can't be combined with the local stack area allocation. 2251 // For example: 2252 // ldp fp, lr, [sp, #32] // addImm(+4) 2253 // ldp x20, x19, [sp, #16] // addImm(+2) 2254 // ldp x22, x21, [sp, #0] // addImm(+0) 2255 // Note: see comment in spillCalleeSavedRegisters() 2256 unsigned LdrOpc; 2257 unsigned Size, Align; 2258 switch (RPI.Type) { 2259 case RegPairInfo::GPR: 2260 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 2261 Size = 8; 2262 Align = 8; 2263 break; 2264 case RegPairInfo::FPR64: 2265 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 2266 Size = 8; 2267 Align = 8; 2268 break; 2269 case RegPairInfo::FPR128: 2270 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 2271 Size = 16; 2272 Align = 16; 2273 break; 2274 case RegPairInfo::ZPR: 2275 LdrOpc = AArch64::LDR_ZXI; 2276 Size = 16; 2277 Align = 16; 2278 break; 2279 case RegPairInfo::PPR: 2280 LdrOpc = AArch64::LDR_PXI; 2281 Size = 2; 2282 Align = 2; 2283 break; 2284 } 2285 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 2286 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2287 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2288 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2289 dbgs() << ")\n"); 2290 2291 // Windows unwind codes require consecutive registers if registers are 2292 // paired. Make the switch here, so that the code below will save (x,x+1) 2293 // and not (x+1,x). 2294 unsigned FrameIdxReg1 = RPI.FrameIdx; 2295 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2296 if (NeedsWinCFI && RPI.isPaired()) { 2297 std::swap(Reg1, Reg2); 2298 std::swap(FrameIdxReg1, FrameIdxReg2); 2299 } 2300 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc)); 2301 if (RPI.isPaired()) { 2302 MIB.addReg(Reg2, getDefRegState(true)); 2303 MIB.addMemOperand(MF.getMachineMemOperand( 2304 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2305 MachineMemOperand::MOLoad, Size, Align)); 2306 } 2307 MIB.addReg(Reg1, getDefRegState(true)) 2308 .addReg(AArch64::SP) 2309 .addImm(RPI.Offset) // [sp, #offset*scale] 2310 // where factor*scale is implicit 2311 .setMIFlag(MachineInstr::FrameDestroy); 2312 MIB.addMemOperand(MF.getMachineMemOperand( 2313 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2314 MachineMemOperand::MOLoad, Size, Align)); 2315 if (NeedsWinCFI) 2316 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 2317 }; 2318 2319 // SVE objects are always restored in reverse order. 2320 for (const RegPairInfo &RPI : reverse(RegPairs)) 2321 if (RPI.isScalable()) 2322 EmitMI(RPI); 2323 2324 if (ReverseCSRRestoreSeq) { 2325 for (const RegPairInfo &RPI : reverse(RegPairs)) 2326 if (!RPI.isScalable()) 2327 EmitMI(RPI); 2328 } else 2329 for (const RegPairInfo &RPI : RegPairs) 2330 if (!RPI.isScalable()) 2331 EmitMI(RPI); 2332 2333 if (NeedShadowCallStackProlog) { 2334 // Shadow call stack epilog: ldr x30, [x18, #-8]! 2335 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre)) 2336 .addReg(AArch64::X18, RegState::Define) 2337 .addReg(AArch64::LR, RegState::Define) 2338 .addReg(AArch64::X18) 2339 .addImm(-8) 2340 .setMIFlag(MachineInstr::FrameDestroy); 2341 } 2342 2343 return true; 2344 } 2345 2346 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 2347 BitVector &SavedRegs, 2348 RegScavenger *RS) const { 2349 // All calls are tail calls in GHC calling conv, and functions have no 2350 // prologue/epilogue. 2351 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2352 return; 2353 2354 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2355 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 2356 MF.getSubtarget().getRegisterInfo()); 2357 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2358 unsigned UnspilledCSGPR = AArch64::NoRegister; 2359 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 2360 2361 MachineFrameInfo &MFI = MF.getFrameInfo(); 2362 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 2363 2364 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 2365 ? RegInfo->getBaseRegister() 2366 : (unsigned)AArch64::NoRegister; 2367 2368 unsigned ExtraCSSpill = 0; 2369 // Figure out which callee-saved registers to save/restore. 2370 for (unsigned i = 0; CSRegs[i]; ++i) { 2371 const unsigned Reg = CSRegs[i]; 2372 2373 // Add the base pointer register to SavedRegs if it is callee-save. 2374 if (Reg == BasePointerReg) 2375 SavedRegs.set(Reg); 2376 2377 bool RegUsed = SavedRegs.test(Reg); 2378 unsigned PairedReg = AArch64::NoRegister; 2379 if (AArch64::GPR64RegClass.contains(Reg) || 2380 AArch64::FPR64RegClass.contains(Reg) || 2381 AArch64::FPR128RegClass.contains(Reg)) 2382 PairedReg = CSRegs[i ^ 1]; 2383 2384 if (!RegUsed) { 2385 if (AArch64::GPR64RegClass.contains(Reg) && 2386 !RegInfo->isReservedReg(MF, Reg)) { 2387 UnspilledCSGPR = Reg; 2388 UnspilledCSGPRPaired = PairedReg; 2389 } 2390 continue; 2391 } 2392 2393 // MachO's compact unwind format relies on all registers being stored in 2394 // pairs. 2395 // FIXME: the usual format is actually better if unwinding isn't needed. 2396 if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister && 2397 !SavedRegs.test(PairedReg)) { 2398 SavedRegs.set(PairedReg); 2399 if (AArch64::GPR64RegClass.contains(PairedReg) && 2400 !RegInfo->isReservedReg(MF, PairedReg)) 2401 ExtraCSSpill = PairedReg; 2402 } 2403 } 2404 2405 // Calculates the callee saved stack size. 2406 unsigned CSStackSize = 0; 2407 unsigned SVECSStackSize = 0; 2408 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2409 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2410 for (unsigned Reg : SavedRegs.set_bits()) { 2411 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; 2412 if (AArch64::PPRRegClass.contains(Reg) || 2413 AArch64::ZPRRegClass.contains(Reg)) 2414 SVECSStackSize += RegSize; 2415 else 2416 CSStackSize += RegSize; 2417 } 2418 2419 // Save number of saved regs, so we can easily update CSStackSize later. 2420 unsigned NumSavedRegs = SavedRegs.count(); 2421 2422 // The frame record needs to be created by saving the appropriate registers 2423 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 2424 if (hasFP(MF) || 2425 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 2426 SavedRegs.set(AArch64::FP); 2427 SavedRegs.set(AArch64::LR); 2428 } 2429 2430 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 2431 for (unsigned Reg 2432 : SavedRegs.set_bits()) dbgs() 2433 << ' ' << printReg(Reg, RegInfo); 2434 dbgs() << "\n";); 2435 2436 // If any callee-saved registers are used, the frame cannot be eliminated. 2437 int64_t SVEStackSize = 2438 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 2439 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 2440 2441 // The CSR spill slots have not been allocated yet, so estimateStackSize 2442 // won't include them. 2443 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 2444 2445 // Conservatively always assume BigStack when there are SVE spills. 2446 bool BigStack = SVEStackSize || 2447 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit; 2448 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 2449 AFI->setHasStackFrame(true); 2450 2451 // Estimate if we might need to scavenge a register at some point in order 2452 // to materialize a stack offset. If so, either spill one additional 2453 // callee-saved register or reserve a special spill slot to facilitate 2454 // register scavenging. If we already spilled an extra callee-saved register 2455 // above to keep the number of spills even, we don't need to do anything else 2456 // here. 2457 if (BigStack) { 2458 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 2459 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 2460 << " to get a scratch register.\n"); 2461 SavedRegs.set(UnspilledCSGPR); 2462 // MachO's compact unwind format relies on all registers being stored in 2463 // pairs, so if we need to spill one extra for BigStack, then we need to 2464 // store the pair. 2465 if (produceCompactUnwindFrame(MF)) 2466 SavedRegs.set(UnspilledCSGPRPaired); 2467 ExtraCSSpill = UnspilledCSGPR; 2468 } 2469 2470 // If we didn't find an extra callee-saved register to spill, create 2471 // an emergency spill slot. 2472 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 2473 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2474 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 2475 unsigned Size = TRI->getSpillSize(RC); 2476 unsigned Align = TRI->getSpillAlignment(RC); 2477 int FI = MFI.CreateStackObject(Size, Align, false); 2478 RS->addScavengingFrameIndex(FI); 2479 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 2480 << " as the emergency spill slot.\n"); 2481 } 2482 } 2483 2484 // Adding the size of additional 64bit GPR saves. 2485 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 2486 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 2487 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 2488 << EstimatedStackSize + AlignedCSStackSize 2489 << " bytes.\n"); 2490 2491 assert((!MFI.isCalleeSavedInfoValid() || 2492 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 2493 "Should not invalidate callee saved info"); 2494 2495 // Round up to register pair alignment to avoid additional SP adjustment 2496 // instructions. 2497 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 2498 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 2499 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 2500 } 2501 2502 bool AArch64FrameLowering::enableStackSlotScavenging( 2503 const MachineFunction &MF) const { 2504 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2505 return AFI->hasCalleeSaveStackFreeSpace(); 2506 } 2507 2508 /// returns true if there are any SVE callee saves. 2509 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 2510 int &Min, int &Max) { 2511 Min = std::numeric_limits<int>::max(); 2512 Max = std::numeric_limits<int>::min(); 2513 2514 if (!MFI.isCalleeSavedInfoValid()) 2515 return false; 2516 2517 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2518 for (auto &CS : CSI) { 2519 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 2520 AArch64::PPRRegClass.contains(CS.getReg())) { 2521 assert((Max == std::numeric_limits<int>::min() || 2522 Max + 1 == CS.getFrameIdx()) && 2523 "SVE CalleeSaves are not consecutive"); 2524 2525 Min = std::min(Min, CS.getFrameIdx()); 2526 Max = std::max(Max, CS.getFrameIdx()); 2527 } 2528 } 2529 return Min != std::numeric_limits<int>::max(); 2530 } 2531 2532 // Process all the SVE stack objects and determine offsets for each 2533 // object. If AssignOffsets is true, the offsets get assigned. 2534 // Fills in the first and last callee-saved frame indices into 2535 // Min/MaxCSFrameIndex, respectively. 2536 // Returns the size of the stack. 2537 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 2538 int &MinCSFrameIndex, 2539 int &MaxCSFrameIndex, 2540 bool AssignOffsets) { 2541 // First process all fixed stack objects. 2542 int64_t Offset = 0; 2543 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 2544 if (MFI.getStackID(I) == TargetStackID::SVEVector) { 2545 int64_t FixedOffset = -MFI.getObjectOffset(I); 2546 if (FixedOffset > Offset) 2547 Offset = FixedOffset; 2548 } 2549 2550 auto Assign = [&MFI](int FI, int64_t Offset) { 2551 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 2552 MFI.setObjectOffset(FI, Offset); 2553 }; 2554 2555 // Then process all callee saved slots. 2556 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 2557 // Make sure to align the last callee save slot. 2558 MFI.setObjectAlignment(MaxCSFrameIndex, 16U); 2559 2560 // Assign offsets to the callee save slots. 2561 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 2562 Offset += MFI.getObjectSize(I); 2563 Offset = alignTo(Offset, MFI.getObjectAlignment(I)); 2564 if (AssignOffsets) 2565 Assign(I, -Offset); 2566 } 2567 } 2568 2569 // Create a buffer of SVE objects to allocate and sort it. 2570 SmallVector<int, 8> ObjectsToAllocate; 2571 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 2572 unsigned StackID = MFI.getStackID(I); 2573 if (StackID != TargetStackID::SVEVector) 2574 continue; 2575 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 2576 continue; 2577 if (MFI.isDeadObjectIndex(I)) 2578 continue; 2579 2580 ObjectsToAllocate.push_back(I); 2581 } 2582 2583 // Allocate all SVE locals and spills 2584 for (unsigned FI : ObjectsToAllocate) { 2585 unsigned Align = MFI.getObjectAlignment(FI); 2586 // FIXME: Given that the length of SVE vectors is not necessarily a power of 2587 // two, we'd need to align every object dynamically at runtime if the 2588 // alignment is larger than 16. This is not yet supported. 2589 if (Align > 16) 2590 report_fatal_error( 2591 "Alignment of scalable vectors > 16 bytes is not yet supported"); 2592 2593 Offset = alignTo(Offset + MFI.getObjectSize(FI), Align); 2594 if (AssignOffsets) 2595 Assign(FI, -Offset); 2596 } 2597 2598 return Offset; 2599 } 2600 2601 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 2602 MachineFrameInfo &MFI) const { 2603 int MinCSFrameIndex, MaxCSFrameIndex; 2604 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 2605 } 2606 2607 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 2608 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 2609 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 2610 true); 2611 } 2612 2613 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 2614 MachineFunction &MF, RegScavenger *RS) const { 2615 MachineFrameInfo &MFI = MF.getFrameInfo(); 2616 2617 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 2618 "Upwards growing stack unsupported"); 2619 2620 int MinCSFrameIndex, MaxCSFrameIndex; 2621 int64_t SVEStackSize = 2622 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 2623 2624 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2625 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 2626 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 2627 2628 // If this function isn't doing Win64-style C++ EH, we don't need to do 2629 // anything. 2630 if (!MF.hasEHFunclets()) 2631 return; 2632 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2633 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 2634 2635 MachineBasicBlock &MBB = MF.front(); 2636 auto MBBI = MBB.begin(); 2637 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 2638 ++MBBI; 2639 2640 // Create an UnwindHelp object. 2641 // The UnwindHelp object is allocated at the start of the fixed object area 2642 int64_t FixedObject = 2643 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 2644 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 2645 /*SPOffset*/ -FixedObject, 2646 /*IsImmutable=*/false); 2647 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 2648 2649 // We need to store -2 into the UnwindHelp object at the start of the 2650 // function. 2651 DebugLoc DL; 2652 RS->enterBasicBlockEnd(MBB); 2653 RS->backward(std::prev(MBBI)); 2654 unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 2655 assert(DstReg && "There must be a free register after frame setup"); 2656 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 2657 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 2658 .addReg(DstReg, getKillRegState(true)) 2659 .addFrameIndex(UnwindHelpFI) 2660 .addImm(0); 2661 } 2662 2663 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP before 2664 /// the update. This is easily retrieved as it is exactly the offset that is set 2665 /// in processFunctionBeforeFrameFinalized. 2666 int AArch64FrameLowering::getFrameIndexReferencePreferSP( 2667 const MachineFunction &MF, int FI, unsigned &FrameReg, 2668 bool IgnoreSPUpdates) const { 2669 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2670 if (IgnoreSPUpdates) { 2671 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 2672 << MFI.getObjectOffset(FI) << "\n"); 2673 FrameReg = AArch64::SP; 2674 return MFI.getObjectOffset(FI); 2675 } 2676 2677 return getFrameIndexReference(MF, FI, FrameReg); 2678 } 2679 2680 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 2681 /// the parent's frame pointer 2682 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 2683 const MachineFunction &MF) const { 2684 return 0; 2685 } 2686 2687 /// Funclets only need to account for space for the callee saved registers, 2688 /// as the locals are accounted for in the parent's stack frame. 2689 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 2690 const MachineFunction &MF) const { 2691 // This is the size of the pushed CSRs. 2692 unsigned CSSize = 2693 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 2694 // This is the amount of stack a funclet needs to allocate. 2695 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 2696 getStackAlignment()); 2697 } 2698