1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | prev_lr | | (frame record first) 51 // | prev_fp | <--' 52 // | async context if needed | 53 // | (a.k.a. "frame record") | 54 // |-----------------------------------| <- fp(=x29) 55 // | <hazard padding> | 56 // |-----------------------------------| 57 // | | 58 // | callee-saved fp/simd/SVE regs | 59 // | | 60 // |-----------------------------------| 61 // | | 62 // | SVE stack objects | 63 // | | 64 // |-----------------------------------| 65 // |.empty.space.to.make.part.below....| 66 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 67 // |.the.standard.16-byte.alignment....| compile time; if present) 68 // |-----------------------------------| 69 // | local variables of fixed size | 70 // | including spill slots | 71 // | <FPR> | 72 // | <hazard padding> | 73 // | <GPR> | 74 // |-----------------------------------| <- bp(not defined by ABI, 75 // |.variable-sized.local.variables....| LLVM chooses X19) 76 // |.(VLAs)............................| (size of this area is unknown at 77 // |...................................| compile time) 78 // |-----------------------------------| <- sp 79 // | | Lower address 80 // 81 // 82 // To access the data in a frame, at-compile time, a constant offset must be 83 // computable from one of the pointers (fp, bp, sp) to access it. The size 84 // of the areas with a dotted background cannot be computed at compile-time 85 // if they are present, making it required to have all three of fp, bp and 86 // sp to be set up to be able to access all contents in the frame areas, 87 // assuming all of the frame areas are non-empty. 88 // 89 // For most functions, some of the frame areas are empty. For those functions, 90 // it may not be necessary to set up fp or bp: 91 // * A base pointer is definitely needed when there are both VLAs and local 92 // variables with more-than-default alignment requirements. 93 // * A frame pointer is definitely needed when there are local variables with 94 // more-than-default alignment requirements. 95 // 96 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 97 // callee-saved area, since the unwind encoding does not allow for encoding 98 // this dynamically and existing tools depend on this layout. For other 99 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 100 // area to allow SVE stack objects (allocated directly below the callee-saves, 101 // if available) to be accessed directly from the framepointer. 102 // The SVE spill/fill instructions have VL-scaled addressing modes such 103 // as: 104 // ldr z8, [fp, #-7 mul vl] 105 // For SVE the size of the vector length (VL) is not known at compile-time, so 106 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 107 // layout, we don't need to add an unscaled offset to the framepointer before 108 // accessing the SVE object in the frame. 109 // 110 // In some cases when a base pointer is not strictly needed, it is generated 111 // anyway when offsets from the frame pointer to access local variables become 112 // so large that the offset can't be encoded in the immediate fields of loads 113 // or stores. 114 // 115 // Outgoing function arguments must be at the bottom of the stack frame when 116 // calling another function. If we do not have variable-sized stack objects, we 117 // can allocate a "reserved call frame" area at the bottom of the local 118 // variable area, large enough for all outgoing calls. If we do have VLAs, then 119 // the stack pointer must be decremented and incremented around each call to 120 // make space for the arguments below the VLAs. 121 // 122 // FIXME: also explain the redzone concept. 123 // 124 // About stack hazards: Under some SME contexts, a coprocessor with its own 125 // separate cache can used for FP operations. This can create hazards if the CPU 126 // and the SME unit try to access the same area of memory, including if the 127 // access is to an area of the stack. To try to alleviate this we attempt to 128 // introduce extra padding into the stack frame between FP and GPR accesses, 129 // controlled by the StackHazardSize option. Without changing the layout of the 130 // stack frame in the diagram above, a stack object of size StackHazardSize is 131 // added between GPR and FPR CSRs. Another is added to the stack objects 132 // section, and stack objects are sorted so that FPR > Hazard padding slot > 133 // GPRs (where possible). Unfortunately some things are not handled well (VLA 134 // area, arguments on the stack, object with both GPR and FPR accesses), but if 135 // those are controlled by the user then the entire stack frame becomes GPR at 136 // the start/end with FPR in the middle, surrounded by Hazard padding. 137 // 138 // An example of the prologue: 139 // 140 // .globl __foo 141 // .align 2 142 // __foo: 143 // Ltmp0: 144 // .cfi_startproc 145 // .cfi_personality 155, ___gxx_personality_v0 146 // Leh_func_begin: 147 // .cfi_lsda 16, Lexception33 148 // 149 // stp xa,bx, [sp, -#offset]! 150 // ... 151 // stp x28, x27, [sp, #offset-32] 152 // stp fp, lr, [sp, #offset-16] 153 // add fp, sp, #offset - 16 154 // sub sp, sp, #1360 155 // 156 // The Stack: 157 // +-------------------------------------------+ 158 // 10000 | ........ | ........ | ........ | ........ | 159 // 10004 | ........ | ........ | ........ | ........ | 160 // +-------------------------------------------+ 161 // 10008 | ........ | ........ | ........ | ........ | 162 // 1000c | ........ | ........ | ........ | ........ | 163 // +===========================================+ 164 // 10010 | X28 Register | 165 // 10014 | X28 Register | 166 // +-------------------------------------------+ 167 // 10018 | X27 Register | 168 // 1001c | X27 Register | 169 // +===========================================+ 170 // 10020 | Frame Pointer | 171 // 10024 | Frame Pointer | 172 // +-------------------------------------------+ 173 // 10028 | Link Register | 174 // 1002c | Link Register | 175 // +===========================================+ 176 // 10030 | ........ | ........ | ........ | ........ | 177 // 10034 | ........ | ........ | ........ | ........ | 178 // +-------------------------------------------+ 179 // 10038 | ........ | ........ | ........ | ........ | 180 // 1003c | ........ | ........ | ........ | ........ | 181 // +-------------------------------------------+ 182 // 183 // [sp] = 10030 :: >>initial value<< 184 // sp = 10020 :: stp fp, lr, [sp, #-16]! 185 // fp = sp == 10020 :: mov fp, sp 186 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 187 // sp == 10010 :: >>final value<< 188 // 189 // The frame pointer (w29) points to address 10020. If we use an offset of 190 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 191 // for w27, and -32 for w28: 192 // 193 // Ltmp1: 194 // .cfi_def_cfa w29, 16 195 // Ltmp2: 196 // .cfi_offset w30, -8 197 // Ltmp3: 198 // .cfi_offset w29, -16 199 // Ltmp4: 200 // .cfi_offset w27, -24 201 // Ltmp5: 202 // .cfi_offset w28, -32 203 // 204 //===----------------------------------------------------------------------===// 205 206 #include "AArch64FrameLowering.h" 207 #include "AArch64InstrInfo.h" 208 #include "AArch64MachineFunctionInfo.h" 209 #include "AArch64RegisterInfo.h" 210 #include "AArch64Subtarget.h" 211 #include "AArch64TargetMachine.h" 212 #include "MCTargetDesc/AArch64AddressingModes.h" 213 #include "MCTargetDesc/AArch64MCTargetDesc.h" 214 #include "llvm/ADT/ScopeExit.h" 215 #include "llvm/ADT/SmallVector.h" 216 #include "llvm/ADT/Statistic.h" 217 #include "llvm/Analysis/ValueTracking.h" 218 #include "llvm/CodeGen/LivePhysRegs.h" 219 #include "llvm/CodeGen/MachineBasicBlock.h" 220 #include "llvm/CodeGen/MachineFrameInfo.h" 221 #include "llvm/CodeGen/MachineFunction.h" 222 #include "llvm/CodeGen/MachineInstr.h" 223 #include "llvm/CodeGen/MachineInstrBuilder.h" 224 #include "llvm/CodeGen/MachineMemOperand.h" 225 #include "llvm/CodeGen/MachineModuleInfo.h" 226 #include "llvm/CodeGen/MachineOperand.h" 227 #include "llvm/CodeGen/MachineRegisterInfo.h" 228 #include "llvm/CodeGen/RegisterScavenging.h" 229 #include "llvm/CodeGen/TargetInstrInfo.h" 230 #include "llvm/CodeGen/TargetRegisterInfo.h" 231 #include "llvm/CodeGen/TargetSubtargetInfo.h" 232 #include "llvm/CodeGen/WinEHFuncInfo.h" 233 #include "llvm/IR/Attributes.h" 234 #include "llvm/IR/CallingConv.h" 235 #include "llvm/IR/DataLayout.h" 236 #include "llvm/IR/DebugLoc.h" 237 #include "llvm/IR/Function.h" 238 #include "llvm/MC/MCAsmInfo.h" 239 #include "llvm/MC/MCDwarf.h" 240 #include "llvm/Support/CommandLine.h" 241 #include "llvm/Support/Debug.h" 242 #include "llvm/Support/ErrorHandling.h" 243 #include "llvm/Support/FormatVariadic.h" 244 #include "llvm/Support/MathExtras.h" 245 #include "llvm/Support/raw_ostream.h" 246 #include "llvm/Target/TargetMachine.h" 247 #include "llvm/Target/TargetOptions.h" 248 #include <cassert> 249 #include <cstdint> 250 #include <iterator> 251 #include <optional> 252 #include <vector> 253 254 using namespace llvm; 255 256 #define DEBUG_TYPE "frame-info" 257 258 static cl::opt<bool> EnableRedZone("aarch64-redzone", 259 cl::desc("enable use of redzone on AArch64"), 260 cl::init(false), cl::Hidden); 261 262 static cl::opt<bool> StackTaggingMergeSetTag( 263 "stack-tagging-merge-settag", 264 cl::desc("merge settag instruction in function epilog"), cl::init(true), 265 cl::Hidden); 266 267 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects", 268 cl::desc("sort stack allocations"), 269 cl::init(true), cl::Hidden); 270 271 cl::opt<bool> EnableHomogeneousPrologEpilog( 272 "homogeneous-prolog-epilog", cl::Hidden, 273 cl::desc("Emit homogeneous prologue and epilogue for the size " 274 "optimization (default = off)")); 275 276 // Stack hazard padding size. 0 = disabled. 277 static cl::opt<unsigned> StackHazardSize("aarch64-stack-hazard-size", 278 cl::init(0), cl::Hidden); 279 // Stack hazard size for analysis remarks. StackHazardSize takes precedence. 280 static cl::opt<unsigned> 281 StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0), 282 cl::Hidden); 283 // Whether to insert padding into non-streaming functions (for testing). 284 static cl::opt<bool> 285 StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming", 286 cl::init(false), cl::Hidden); 287 288 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 289 290 /// Returns how much of the incoming argument stack area (in bytes) we should 291 /// clean up in an epilogue. For the C calling convention this will be 0, for 292 /// guaranteed tail call conventions it can be positive (a normal return or a 293 /// tail call to a function that uses less stack space for arguments) or 294 /// negative (for a tail call to a function that needs more stack space than us 295 /// for arguments). 296 static int64_t getArgumentStackToRestore(MachineFunction &MF, 297 MachineBasicBlock &MBB) { 298 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 299 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 300 bool IsTailCallReturn = (MBB.end() != MBBI) 301 ? AArch64InstrInfo::isTailCallReturnInst(*MBBI) 302 : false; 303 304 int64_t ArgumentPopSize = 0; 305 if (IsTailCallReturn) { 306 MachineOperand &StackAdjust = MBBI->getOperand(1); 307 308 // For a tail-call in a callee-pops-arguments environment, some or all of 309 // the stack may actually be in use for the call's arguments, this is 310 // calculated during LowerCall and consumed here... 311 ArgumentPopSize = StackAdjust.getImm(); 312 } else { 313 // ... otherwise the amount to pop is *all* of the argument space, 314 // conveniently stored in the MachineFunctionInfo by 315 // LowerFormalArguments. This will, of course, be zero for the C calling 316 // convention. 317 ArgumentPopSize = AFI->getArgumentStackToRestore(); 318 } 319 320 return ArgumentPopSize; 321 } 322 323 static bool produceCompactUnwindFrame(MachineFunction &MF); 324 static bool needsWinCFI(const MachineFunction &MF); 325 static StackOffset getSVEStackSize(const MachineFunction &MF); 326 static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB); 327 328 /// Returns true if a homogeneous prolog or epilog code can be emitted 329 /// for the size optimization. If possible, a frame helper call is injected. 330 /// When Exit block is given, this check is for epilog. 331 bool AArch64FrameLowering::homogeneousPrologEpilog( 332 MachineFunction &MF, MachineBasicBlock *Exit) const { 333 if (!MF.getFunction().hasMinSize()) 334 return false; 335 if (!EnableHomogeneousPrologEpilog) 336 return false; 337 if (EnableRedZone) 338 return false; 339 340 // TODO: Window is supported yet. 341 if (needsWinCFI(MF)) 342 return false; 343 // TODO: SVE is not supported yet. 344 if (getSVEStackSize(MF)) 345 return false; 346 347 // Bail on stack adjustment needed on return for simplicity. 348 const MachineFrameInfo &MFI = MF.getFrameInfo(); 349 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 350 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)) 351 return false; 352 if (Exit && getArgumentStackToRestore(MF, *Exit)) 353 return false; 354 355 auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 356 if (AFI->hasSwiftAsyncContext() || AFI->hasStreamingModeChanges()) 357 return false; 358 359 // If there are an odd number of GPRs before LR and FP in the CSRs list, 360 // they will not be paired into one RegPairInfo, which is incompatible with 361 // the assumption made by the homogeneous prolog epilog pass. 362 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 363 unsigned NumGPRs = 0; 364 for (unsigned I = 0; CSRegs[I]; ++I) { 365 Register Reg = CSRegs[I]; 366 if (Reg == AArch64::LR) { 367 assert(CSRegs[I + 1] == AArch64::FP); 368 if (NumGPRs % 2 != 0) 369 return false; 370 break; 371 } 372 if (AArch64::GPR64RegClass.contains(Reg)) 373 ++NumGPRs; 374 } 375 376 return true; 377 } 378 379 /// Returns true if CSRs should be paired. 380 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const { 381 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF); 382 } 383 384 /// This is the biggest offset to the stack pointer we can encode in aarch64 385 /// instructions (without using a separate calculation and a temp register). 386 /// Note that the exception here are vector stores/loads which cannot encode any 387 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 388 static const unsigned DefaultSafeSPDisplacement = 255; 389 390 /// Look at each instruction that references stack frames and return the stack 391 /// size limit beyond which some of these instructions will require a scratch 392 /// register during their expansion later. 393 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 394 // FIXME: For now, just conservatively guestimate based on unscaled indexing 395 // range. We'll end up allocating an unnecessary spill slot a lot, but 396 // realistically that's not a big deal at this stage of the game. 397 for (MachineBasicBlock &MBB : MF) { 398 for (MachineInstr &MI : MBB) { 399 if (MI.isDebugInstr() || MI.isPseudo() || 400 MI.getOpcode() == AArch64::ADDXri || 401 MI.getOpcode() == AArch64::ADDSXri) 402 continue; 403 404 for (const MachineOperand &MO : MI.operands()) { 405 if (!MO.isFI()) 406 continue; 407 408 StackOffset Offset; 409 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 410 AArch64FrameOffsetCannotUpdate) 411 return 0; 412 } 413 } 414 } 415 return DefaultSafeSPDisplacement; 416 } 417 418 TargetStackID::Value 419 AArch64FrameLowering::getStackIDForScalableVectors() const { 420 return TargetStackID::ScalableVector; 421 } 422 423 /// Returns the size of the fixed object area (allocated next to sp on entry) 424 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 425 static unsigned getFixedObjectSize(const MachineFunction &MF, 426 const AArch64FunctionInfo *AFI, bool IsWin64, 427 bool IsFunclet) { 428 if (!IsWin64 || IsFunclet) { 429 return AFI->getTailCallReservedStack(); 430 } else { 431 if (AFI->getTailCallReservedStack() != 0 && 432 !MF.getFunction().getAttributes().hasAttrSomewhere( 433 Attribute::SwiftAsync)) 434 report_fatal_error("cannot generate ABI-changing tail call for Win64"); 435 // Var args are stored here in the primary function. 436 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 437 // To support EH funclets we allocate an UnwindHelp object 438 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 439 return AFI->getTailCallReservedStack() + 440 alignTo(VarArgsArea + UnwindHelpObject, 16); 441 } 442 } 443 444 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 445 static StackOffset getSVEStackSize(const MachineFunction &MF) { 446 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 447 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE()); 448 } 449 450 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 451 if (!EnableRedZone) 452 return false; 453 454 // Don't use the red zone if the function explicitly asks us not to. 455 // This is typically used for kernel code. 456 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 457 const unsigned RedZoneSize = 458 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 459 if (!RedZoneSize) 460 return false; 461 462 const MachineFrameInfo &MFI = MF.getFrameInfo(); 463 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 464 uint64_t NumBytes = AFI->getLocalStackSize(); 465 466 // If neither NEON or SVE are available, a COPY from one Q-reg to 467 // another requires a spill -> reload sequence. We can do that 468 // using a pre-decrementing store/post-decrementing load, but 469 // if we do so, we can't use the Red Zone. 470 bool LowerQRegCopyThroughMem = Subtarget.hasFPARMv8() && 471 !Subtarget.isNeonAvailable() && 472 !Subtarget.hasSVE(); 473 474 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize || 475 getSVEStackSize(MF) || LowerQRegCopyThroughMem); 476 } 477 478 /// hasFP - Return true if the specified function should have a dedicated frame 479 /// pointer register. 480 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { 481 const MachineFrameInfo &MFI = MF.getFrameInfo(); 482 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 483 484 // Win64 EH requires a frame pointer if funclets are present, as the locals 485 // are accessed off the frame pointer in both the parent function and the 486 // funclets. 487 if (MF.hasEHFunclets()) 488 return true; 489 // Retain behavior of always omitting the FP for leaf functions when possible. 490 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 491 return true; 492 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 493 MFI.hasStackMap() || MFI.hasPatchPoint() || 494 RegInfo->hasStackRealignment(MF)) 495 return true; 496 // With large callframes around we may need to use FP to access the scavenging 497 // emergency spillslot. 498 // 499 // Unfortunately some calls to hasFP() like machine verifier -> 500 // getReservedReg() -> hasFP in the middle of global isel are too early 501 // to know the max call frame size. Hopefully conservatively returning "true" 502 // in those cases is fine. 503 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 504 if (!MFI.isMaxCallFrameSizeComputed() || 505 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 506 return true; 507 508 return false; 509 } 510 511 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 512 /// not required, we reserve argument space for call sites in the function 513 /// immediately on entry to the current function. This eliminates the need for 514 /// add/sub sp brackets around call sites. Returns true if the call frame is 515 /// included as part of the stack frame. 516 bool AArch64FrameLowering::hasReservedCallFrame( 517 const MachineFunction &MF) const { 518 // The stack probing code for the dynamically allocated outgoing arguments 519 // area assumes that the stack is probed at the top - either by the prologue 520 // code, which issues a probe if `hasVarSizedObjects` return true, or by the 521 // most recent variable-sized object allocation. Changing the condition here 522 // may need to be followed up by changes to the probe issuing logic. 523 return !MF.getFrameInfo().hasVarSizedObjects(); 524 } 525 526 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 527 MachineFunction &MF, MachineBasicBlock &MBB, 528 MachineBasicBlock::iterator I) const { 529 const AArch64InstrInfo *TII = 530 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 531 const AArch64TargetLowering *TLI = 532 MF.getSubtarget<AArch64Subtarget>().getTargetLowering(); 533 [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo(); 534 DebugLoc DL = I->getDebugLoc(); 535 unsigned Opc = I->getOpcode(); 536 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 537 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 538 539 if (!hasReservedCallFrame(MF)) { 540 int64_t Amount = I->getOperand(0).getImm(); 541 Amount = alignTo(Amount, getStackAlign()); 542 if (!IsDestroy) 543 Amount = -Amount; 544 545 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 546 // doesn't have to pop anything), then the first operand will be zero too so 547 // this adjustment is a no-op. 548 if (CalleePopAmount == 0) { 549 // FIXME: in-function stack adjustment for calls is limited to 24-bits 550 // because there's no guaranteed temporary register available. 551 // 552 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 553 // 1) For offset <= 12-bit, we use LSL #0 554 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 555 // LSL #0, and the other uses LSL #12. 556 // 557 // Most call frames will be allocated at the start of a function so 558 // this is OK, but it is a limitation that needs dealing with. 559 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 560 561 if (TLI->hasInlineStackProbe(MF) && 562 -Amount >= AArch64::StackProbeMaxUnprobedStack) { 563 // When stack probing is enabled, the decrement of SP may need to be 564 // probed. We only need to do this if the call site needs 1024 bytes of 565 // space or more, because a region smaller than that is allowed to be 566 // unprobed at an ABI boundary. We rely on the fact that SP has been 567 // probed exactly at this point, either by the prologue or most recent 568 // dynamic allocation. 569 assert(MFI.hasVarSizedObjects() && 570 "non-reserved call frame without var sized objects?"); 571 Register ScratchReg = 572 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass); 573 inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0)); 574 } else { 575 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 576 StackOffset::getFixed(Amount), TII); 577 } 578 } 579 } else if (CalleePopAmount != 0) { 580 // If the calling convention demands that the callee pops arguments from the 581 // stack, we want to add it back if we have a reserved call frame. 582 assert(CalleePopAmount < 0xffffff && "call frame too large"); 583 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 584 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII); 585 } 586 return MBB.erase(I); 587 } 588 589 void AArch64FrameLowering::emitCalleeSavedGPRLocations( 590 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 591 MachineFunction &MF = *MBB.getParent(); 592 MachineFrameInfo &MFI = MF.getFrameInfo(); 593 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 594 SMEAttrs Attrs(MF.getFunction()); 595 bool LocallyStreaming = 596 Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface(); 597 598 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 599 if (CSI.empty()) 600 return; 601 602 const TargetSubtargetInfo &STI = MF.getSubtarget(); 603 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 604 const TargetInstrInfo &TII = *STI.getInstrInfo(); 605 DebugLoc DL = MBB.findDebugLoc(MBBI); 606 607 for (const auto &Info : CSI) { 608 unsigned FrameIdx = Info.getFrameIdx(); 609 if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) 610 continue; 611 612 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented"); 613 int64_t DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true); 614 int64_t Offset = MFI.getObjectOffset(FrameIdx) - getOffsetOfLocalArea(); 615 616 // The location of VG will be emitted before each streaming-mode change in 617 // the function. Only locally-streaming functions require emitting the 618 // non-streaming VG location here. 619 if ((LocallyStreaming && FrameIdx == AFI->getStreamingVGIdx()) || 620 (!LocallyStreaming && 621 DwarfReg == TRI.getDwarfRegNum(AArch64::VG, true))) 622 continue; 623 624 unsigned CFIIndex = MF.addFrameInst( 625 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 626 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 627 .addCFIIndex(CFIIndex) 628 .setMIFlags(MachineInstr::FrameSetup); 629 } 630 } 631 632 void AArch64FrameLowering::emitCalleeSavedSVELocations( 633 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 634 MachineFunction &MF = *MBB.getParent(); 635 MachineFrameInfo &MFI = MF.getFrameInfo(); 636 637 // Add callee saved registers to move list. 638 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 639 if (CSI.empty()) 640 return; 641 642 const TargetSubtargetInfo &STI = MF.getSubtarget(); 643 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 644 const TargetInstrInfo &TII = *STI.getInstrInfo(); 645 DebugLoc DL = MBB.findDebugLoc(MBBI); 646 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 647 648 for (const auto &Info : CSI) { 649 if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)) 650 continue; 651 652 // Not all unwinders may know about SVE registers, so assume the lowest 653 // common demoninator. 654 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented"); 655 unsigned Reg = Info.getReg(); 656 if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg)) 657 continue; 658 659 StackOffset Offset = 660 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) - 661 StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI)); 662 663 unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset)); 664 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 665 .addCFIIndex(CFIIndex) 666 .setMIFlags(MachineInstr::FrameSetup); 667 } 668 } 669 670 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF, 671 MachineBasicBlock &MBB, 672 MachineBasicBlock::iterator InsertPt, 673 unsigned DwarfReg) { 674 unsigned CFIIndex = 675 MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg)); 676 BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex); 677 } 678 679 void AArch64FrameLowering::resetCFIToInitialState( 680 MachineBasicBlock &MBB) const { 681 682 MachineFunction &MF = *MBB.getParent(); 683 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 684 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 685 const auto &TRI = 686 static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo()); 687 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>(); 688 689 const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION); 690 DebugLoc DL; 691 692 // Reset the CFA to `SP + 0`. 693 MachineBasicBlock::iterator InsertPt = MBB.begin(); 694 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 695 nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0)); 696 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex); 697 698 // Flip the RA sign state. 699 if (MFI.shouldSignReturnAddress(MF)) { 700 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 701 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex); 702 } 703 704 // Shadow call stack uses X18, reset it. 705 if (MFI.needsShadowCallStackPrologueEpilogue(MF)) 706 insertCFISameValue(CFIDesc, MF, MBB, InsertPt, 707 TRI.getDwarfRegNum(AArch64::X18, true)); 708 709 // Emit .cfi_same_value for callee-saved registers. 710 const std::vector<CalleeSavedInfo> &CSI = 711 MF.getFrameInfo().getCalleeSavedInfo(); 712 for (const auto &Info : CSI) { 713 unsigned Reg = Info.getReg(); 714 if (!TRI.regNeedsCFI(Reg, Reg)) 715 continue; 716 insertCFISameValue(CFIDesc, MF, MBB, InsertPt, 717 TRI.getDwarfRegNum(Reg, true)); 718 } 719 } 720 721 static void emitCalleeSavedRestores(MachineBasicBlock &MBB, 722 MachineBasicBlock::iterator MBBI, 723 bool SVE) { 724 MachineFunction &MF = *MBB.getParent(); 725 MachineFrameInfo &MFI = MF.getFrameInfo(); 726 727 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 728 if (CSI.empty()) 729 return; 730 731 const TargetSubtargetInfo &STI = MF.getSubtarget(); 732 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 733 const TargetInstrInfo &TII = *STI.getInstrInfo(); 734 DebugLoc DL = MBB.findDebugLoc(MBBI); 735 736 for (const auto &Info : CSI) { 737 if (SVE != 738 (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)) 739 continue; 740 741 unsigned Reg = Info.getReg(); 742 if (SVE && 743 !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg)) 744 continue; 745 746 if (!Info.isRestored()) 747 continue; 748 749 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore( 750 nullptr, TRI.getDwarfRegNum(Info.getReg(), true))); 751 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 752 .addCFIIndex(CFIIndex) 753 .setMIFlags(MachineInstr::FrameDestroy); 754 } 755 } 756 757 void AArch64FrameLowering::emitCalleeSavedGPRRestores( 758 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 759 emitCalleeSavedRestores(MBB, MBBI, false); 760 } 761 762 void AArch64FrameLowering::emitCalleeSavedSVERestores( 763 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 764 emitCalleeSavedRestores(MBB, MBBI, true); 765 } 766 767 // Return the maximum possible number of bytes for `Size` due to the 768 // architectural limit on the size of a SVE register. 769 static int64_t upperBound(StackOffset Size) { 770 static const int64_t MAX_BYTES_PER_SCALABLE_BYTE = 16; 771 return Size.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE + Size.getFixed(); 772 } 773 774 void AArch64FrameLowering::allocateStackSpace( 775 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 776 int64_t RealignmentPadding, StackOffset AllocSize, bool NeedsWinCFI, 777 bool *HasWinCFI, bool EmitCFI, StackOffset InitialOffset, 778 bool FollowupAllocs) const { 779 780 if (!AllocSize) 781 return; 782 783 DebugLoc DL; 784 MachineFunction &MF = *MBB.getParent(); 785 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 786 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 787 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 788 const MachineFrameInfo &MFI = MF.getFrameInfo(); 789 790 const int64_t MaxAlign = MFI.getMaxAlign().value(); 791 const uint64_t AndMask = ~(MaxAlign - 1); 792 793 if (!Subtarget.getTargetLowering()->hasInlineStackProbe(MF)) { 794 Register TargetReg = RealignmentPadding 795 ? findScratchNonCalleeSaveRegister(&MBB) 796 : AArch64::SP; 797 // SUB Xd/SP, SP, AllocSize 798 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII, 799 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 800 EmitCFI, InitialOffset); 801 802 if (RealignmentPadding) { 803 // AND SP, X9, 0b11111...0000 804 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP) 805 .addReg(TargetReg, RegState::Kill) 806 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 807 .setMIFlags(MachineInstr::FrameSetup); 808 AFI.setStackRealigned(true); 809 810 // No need for SEH instructions here; if we're realigning the stack, 811 // we've set a frame pointer and already finished the SEH prologue. 812 assert(!NeedsWinCFI); 813 } 814 return; 815 } 816 817 // 818 // Stack probing allocation. 819 // 820 821 // Fixed length allocation. If we don't need to re-align the stack and don't 822 // have SVE objects, we can use a more efficient sequence for stack probing. 823 if (AllocSize.getScalable() == 0 && RealignmentPadding == 0) { 824 Register ScratchReg = findScratchNonCalleeSaveRegister(&MBB); 825 assert(ScratchReg != AArch64::NoRegister); 826 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC)) 827 .addDef(ScratchReg) 828 .addImm(AllocSize.getFixed()) 829 .addImm(InitialOffset.getFixed()) 830 .addImm(InitialOffset.getScalable()); 831 // The fixed allocation may leave unprobed bytes at the top of the 832 // stack. If we have subsequent alocation (e.g. if we have variable-sized 833 // objects), we need to issue an extra probe, so these allocations start in 834 // a known state. 835 if (FollowupAllocs) { 836 // STR XZR, [SP] 837 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui)) 838 .addReg(AArch64::XZR) 839 .addReg(AArch64::SP) 840 .addImm(0) 841 .setMIFlags(MachineInstr::FrameSetup); 842 } 843 844 return; 845 } 846 847 // Variable length allocation. 848 849 // If the (unknown) allocation size cannot exceed the probe size, decrement 850 // the stack pointer right away. 851 int64_t ProbeSize = AFI.getStackProbeSize(); 852 if (upperBound(AllocSize) + RealignmentPadding <= ProbeSize) { 853 Register ScratchReg = RealignmentPadding 854 ? findScratchNonCalleeSaveRegister(&MBB) 855 : AArch64::SP; 856 assert(ScratchReg != AArch64::NoRegister); 857 // SUB Xd, SP, AllocSize 858 emitFrameOffset(MBB, MBBI, DL, ScratchReg, AArch64::SP, -AllocSize, &TII, 859 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 860 EmitCFI, InitialOffset); 861 if (RealignmentPadding) { 862 // AND SP, Xn, 0b11111...0000 863 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP) 864 .addReg(ScratchReg, RegState::Kill) 865 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 866 .setMIFlags(MachineInstr::FrameSetup); 867 AFI.setStackRealigned(true); 868 } 869 if (FollowupAllocs || upperBound(AllocSize) + RealignmentPadding > 870 AArch64::StackProbeMaxUnprobedStack) { 871 // STR XZR, [SP] 872 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui)) 873 .addReg(AArch64::XZR) 874 .addReg(AArch64::SP) 875 .addImm(0) 876 .setMIFlags(MachineInstr::FrameSetup); 877 } 878 return; 879 } 880 881 // Emit a variable-length allocation probing loop. 882 // TODO: As an optimisation, the loop can be "unrolled" into a few parts, 883 // each of them guaranteed to adjust the stack by less than the probe size. 884 Register TargetReg = findScratchNonCalleeSaveRegister(&MBB); 885 assert(TargetReg != AArch64::NoRegister); 886 // SUB Xd, SP, AllocSize 887 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII, 888 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 889 EmitCFI, InitialOffset); 890 if (RealignmentPadding) { 891 // AND Xn, Xn, 0b11111...0000 892 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), TargetReg) 893 .addReg(TargetReg, RegState::Kill) 894 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 895 .setMIFlags(MachineInstr::FrameSetup); 896 } 897 898 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC_VAR)) 899 .addReg(TargetReg); 900 if (EmitCFI) { 901 // Set the CFA register back to SP. 902 unsigned Reg = 903 Subtarget.getRegisterInfo()->getDwarfRegNum(AArch64::SP, true); 904 unsigned CFIIndex = 905 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 906 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 907 .addCFIIndex(CFIIndex) 908 .setMIFlags(MachineInstr::FrameSetup); 909 } 910 if (RealignmentPadding) 911 AFI.setStackRealigned(true); 912 } 913 914 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) { 915 switch (Reg.id()) { 916 default: 917 // The called routine is expected to preserve r19-r28 918 // r29 and r30 are used as frame pointer and link register resp. 919 return 0; 920 921 // GPRs 922 #define CASE(n) \ 923 case AArch64::W##n: \ 924 case AArch64::X##n: \ 925 return AArch64::X##n 926 CASE(0); 927 CASE(1); 928 CASE(2); 929 CASE(3); 930 CASE(4); 931 CASE(5); 932 CASE(6); 933 CASE(7); 934 CASE(8); 935 CASE(9); 936 CASE(10); 937 CASE(11); 938 CASE(12); 939 CASE(13); 940 CASE(14); 941 CASE(15); 942 CASE(16); 943 CASE(17); 944 CASE(18); 945 #undef CASE 946 947 // FPRs 948 #define CASE(n) \ 949 case AArch64::B##n: \ 950 case AArch64::H##n: \ 951 case AArch64::S##n: \ 952 case AArch64::D##n: \ 953 case AArch64::Q##n: \ 954 return HasSVE ? AArch64::Z##n : AArch64::Q##n 955 CASE(0); 956 CASE(1); 957 CASE(2); 958 CASE(3); 959 CASE(4); 960 CASE(5); 961 CASE(6); 962 CASE(7); 963 CASE(8); 964 CASE(9); 965 CASE(10); 966 CASE(11); 967 CASE(12); 968 CASE(13); 969 CASE(14); 970 CASE(15); 971 CASE(16); 972 CASE(17); 973 CASE(18); 974 CASE(19); 975 CASE(20); 976 CASE(21); 977 CASE(22); 978 CASE(23); 979 CASE(24); 980 CASE(25); 981 CASE(26); 982 CASE(27); 983 CASE(28); 984 CASE(29); 985 CASE(30); 986 CASE(31); 987 #undef CASE 988 } 989 } 990 991 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 992 MachineBasicBlock &MBB) const { 993 // Insertion point. 994 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 995 996 // Fake a debug loc. 997 DebugLoc DL; 998 if (MBBI != MBB.end()) 999 DL = MBBI->getDebugLoc(); 1000 1001 const MachineFunction &MF = *MBB.getParent(); 1002 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 1003 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo(); 1004 1005 BitVector GPRsToZero(TRI.getNumRegs()); 1006 BitVector FPRsToZero(TRI.getNumRegs()); 1007 bool HasSVE = STI.hasSVE(); 1008 for (MCRegister Reg : RegsToZero.set_bits()) { 1009 if (TRI.isGeneralPurposeRegister(MF, Reg)) { 1010 // For GPRs, we only care to clear out the 64-bit register. 1011 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE)) 1012 GPRsToZero.set(XReg); 1013 } else if (AArch64InstrInfo::isFpOrNEON(Reg)) { 1014 // For FPRs, 1015 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE)) 1016 FPRsToZero.set(XReg); 1017 } 1018 } 1019 1020 const AArch64InstrInfo &TII = *STI.getInstrInfo(); 1021 1022 // Zero out GPRs. 1023 for (MCRegister Reg : GPRsToZero.set_bits()) 1024 TII.buildClearRegister(Reg, MBB, MBBI, DL); 1025 1026 // Zero out FP/vector registers. 1027 for (MCRegister Reg : FPRsToZero.set_bits()) 1028 TII.buildClearRegister(Reg, MBB, MBBI, DL); 1029 1030 if (HasSVE) { 1031 for (MCRegister PReg : 1032 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4, 1033 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9, 1034 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14, 1035 AArch64::P15}) { 1036 if (RegsToZero[PReg]) 1037 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg); 1038 } 1039 } 1040 } 1041 1042 static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs, 1043 const MachineBasicBlock &MBB) { 1044 const MachineFunction *MF = MBB.getParent(); 1045 LiveRegs.addLiveIns(MBB); 1046 // Mark callee saved registers as used so we will not choose them. 1047 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 1048 for (unsigned i = 0; CSRegs[i]; ++i) 1049 LiveRegs.addReg(CSRegs[i]); 1050 } 1051 1052 // Find a scratch register that we can use at the start of the prologue to 1053 // re-align the stack pointer. We avoid using callee-save registers since they 1054 // may appear to be free when this is called from canUseAsPrologue (during 1055 // shrink wrapping), but then no longer be free when this is called from 1056 // emitPrologue. 1057 // 1058 // FIXME: This is a bit conservative, since in the above case we could use one 1059 // of the callee-save registers as a scratch temp to re-align the stack pointer, 1060 // but we would then have to make sure that we were in fact saving at least one 1061 // callee-save register in the prologue, which is additional complexity that 1062 // doesn't seem worth the benefit. 1063 static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 1064 MachineFunction *MF = MBB->getParent(); 1065 1066 // If MBB is an entry block, use X9 as the scratch register 1067 // preserve_none functions may be using X9 to pass arguments, 1068 // so prefer to pick an available register below. 1069 if (&MF->front() == MBB && 1070 MF->getFunction().getCallingConv() != CallingConv::PreserveNone) 1071 return AArch64::X9; 1072 1073 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 1074 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 1075 LivePhysRegs LiveRegs(TRI); 1076 getLiveRegsForEntryMBB(LiveRegs, *MBB); 1077 1078 // Prefer X9 since it was historically used for the prologue scratch reg. 1079 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1080 if (LiveRegs.available(MRI, AArch64::X9)) 1081 return AArch64::X9; 1082 1083 for (unsigned Reg : AArch64::GPR64RegClass) { 1084 if (LiveRegs.available(MRI, Reg)) 1085 return Reg; 1086 } 1087 return AArch64::NoRegister; 1088 } 1089 1090 bool AArch64FrameLowering::canUseAsPrologue( 1091 const MachineBasicBlock &MBB) const { 1092 const MachineFunction *MF = MBB.getParent(); 1093 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 1094 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 1095 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1096 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering(); 1097 const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>(); 1098 1099 if (AFI->hasSwiftAsyncContext()) { 1100 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 1101 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1102 LivePhysRegs LiveRegs(TRI); 1103 getLiveRegsForEntryMBB(LiveRegs, MBB); 1104 // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are 1105 // available. 1106 if (!LiveRegs.available(MRI, AArch64::X16) || 1107 !LiveRegs.available(MRI, AArch64::X17)) 1108 return false; 1109 } 1110 1111 // Certain stack probing sequences might clobber flags, then we can't use 1112 // the block as a prologue if the flags register is a live-in. 1113 if (MF->getInfo<AArch64FunctionInfo>()->hasStackProbing() && 1114 MBB.isLiveIn(AArch64::NZCV)) 1115 return false; 1116 1117 // Don't need a scratch register if we're not going to re-align the stack or 1118 // emit stack probes. 1119 if (!RegInfo->hasStackRealignment(*MF) && !TLI->hasInlineStackProbe(*MF)) 1120 return true; 1121 // Otherwise, we can use any block as long as it has a scratch register 1122 // available. 1123 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 1124 } 1125 1126 static bool windowsRequiresStackProbe(MachineFunction &MF, 1127 uint64_t StackSizeInBytes) { 1128 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1129 const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>(); 1130 // TODO: When implementing stack protectors, take that into account 1131 // for the probe threshold. 1132 return Subtarget.isTargetWindows() && MFI.hasStackProbing() && 1133 StackSizeInBytes >= uint64_t(MFI.getStackProbeSize()); 1134 } 1135 1136 static bool needsWinCFI(const MachineFunction &MF) { 1137 const Function &F = MF.getFunction(); 1138 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 1139 F.needsUnwindTableEntry(); 1140 } 1141 1142 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 1143 MachineFunction &MF, uint64_t StackBumpBytes) const { 1144 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1145 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1146 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1147 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1148 if (homogeneousPrologEpilog(MF)) 1149 return false; 1150 1151 if (AFI->getLocalStackSize() == 0) 1152 return false; 1153 1154 // For WinCFI, if optimizing for size, prefer to not combine the stack bump 1155 // (to force a stp with predecrement) to match the packed unwind format, 1156 // provided that there actually are any callee saved registers to merge the 1157 // decrement with. 1158 // This is potentially marginally slower, but allows using the packed 1159 // unwind format for functions that both have a local area and callee saved 1160 // registers. Using the packed unwind format notably reduces the size of 1161 // the unwind info. 1162 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 && 1163 MF.getFunction().hasOptSize()) 1164 return false; 1165 1166 // 512 is the maximum immediate for stp/ldp that will be used for 1167 // callee-save save/restores 1168 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 1169 return false; 1170 1171 if (MFI.hasVarSizedObjects()) 1172 return false; 1173 1174 if (RegInfo->hasStackRealignment(MF)) 1175 return false; 1176 1177 // This isn't strictly necessary, but it simplifies things a bit since the 1178 // current RedZone handling code assumes the SP is adjusted by the 1179 // callee-save save/restore code. 1180 if (canUseRedZone(MF)) 1181 return false; 1182 1183 // When there is an SVE area on the stack, always allocate the 1184 // callee-saves and spills/locals separately. 1185 if (getSVEStackSize(MF)) 1186 return false; 1187 1188 return true; 1189 } 1190 1191 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( 1192 MachineBasicBlock &MBB, unsigned StackBumpBytes) const { 1193 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) 1194 return false; 1195 1196 if (MBB.empty()) 1197 return true; 1198 1199 // Disable combined SP bump if the last instruction is an MTE tag store. It 1200 // is almost always better to merge SP adjustment into those instructions. 1201 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); 1202 MachineBasicBlock::iterator Begin = MBB.begin(); 1203 while (LastI != Begin) { 1204 --LastI; 1205 if (LastI->isTransient()) 1206 continue; 1207 if (!LastI->getFlag(MachineInstr::FrameDestroy)) 1208 break; 1209 } 1210 switch (LastI->getOpcode()) { 1211 case AArch64::STGloop: 1212 case AArch64::STZGloop: 1213 case AArch64::STGi: 1214 case AArch64::STZGi: 1215 case AArch64::ST2Gi: 1216 case AArch64::STZ2Gi: 1217 return false; 1218 default: 1219 return true; 1220 } 1221 llvm_unreachable("unreachable"); 1222 } 1223 1224 // Given a load or a store instruction, generate an appropriate unwinding SEH 1225 // code on Windows. 1226 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 1227 const TargetInstrInfo &TII, 1228 MachineInstr::MIFlag Flag) { 1229 unsigned Opc = MBBI->getOpcode(); 1230 MachineBasicBlock *MBB = MBBI->getParent(); 1231 MachineFunction &MF = *MBB->getParent(); 1232 DebugLoc DL = MBBI->getDebugLoc(); 1233 unsigned ImmIdx = MBBI->getNumOperands() - 1; 1234 int Imm = MBBI->getOperand(ImmIdx).getImm(); 1235 MachineInstrBuilder MIB; 1236 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1237 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1238 1239 switch (Opc) { 1240 default: 1241 llvm_unreachable("No SEH Opcode for this instruction"); 1242 case AArch64::LDPDpost: 1243 Imm = -Imm; 1244 [[fallthrough]]; 1245 case AArch64::STPDpre: { 1246 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1247 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 1248 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 1249 .addImm(Reg0) 1250 .addImm(Reg1) 1251 .addImm(Imm * 8) 1252 .setMIFlag(Flag); 1253 break; 1254 } 1255 case AArch64::LDPXpost: 1256 Imm = -Imm; 1257 [[fallthrough]]; 1258 case AArch64::STPXpre: { 1259 Register Reg0 = MBBI->getOperand(1).getReg(); 1260 Register Reg1 = MBBI->getOperand(2).getReg(); 1261 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 1262 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 1263 .addImm(Imm * 8) 1264 .setMIFlag(Flag); 1265 else 1266 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 1267 .addImm(RegInfo->getSEHRegNum(Reg0)) 1268 .addImm(RegInfo->getSEHRegNum(Reg1)) 1269 .addImm(Imm * 8) 1270 .setMIFlag(Flag); 1271 break; 1272 } 1273 case AArch64::LDRDpost: 1274 Imm = -Imm; 1275 [[fallthrough]]; 1276 case AArch64::STRDpre: { 1277 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1278 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 1279 .addImm(Reg) 1280 .addImm(Imm) 1281 .setMIFlag(Flag); 1282 break; 1283 } 1284 case AArch64::LDRXpost: 1285 Imm = -Imm; 1286 [[fallthrough]]; 1287 case AArch64::STRXpre: { 1288 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1289 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 1290 .addImm(Reg) 1291 .addImm(Imm) 1292 .setMIFlag(Flag); 1293 break; 1294 } 1295 case AArch64::STPDi: 1296 case AArch64::LDPDi: { 1297 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1298 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1299 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 1300 .addImm(Reg0) 1301 .addImm(Reg1) 1302 .addImm(Imm * 8) 1303 .setMIFlag(Flag); 1304 break; 1305 } 1306 case AArch64::STPXi: 1307 case AArch64::LDPXi: { 1308 Register Reg0 = MBBI->getOperand(0).getReg(); 1309 Register Reg1 = MBBI->getOperand(1).getReg(); 1310 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 1311 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 1312 .addImm(Imm * 8) 1313 .setMIFlag(Flag); 1314 else 1315 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 1316 .addImm(RegInfo->getSEHRegNum(Reg0)) 1317 .addImm(RegInfo->getSEHRegNum(Reg1)) 1318 .addImm(Imm * 8) 1319 .setMIFlag(Flag); 1320 break; 1321 } 1322 case AArch64::STRXui: 1323 case AArch64::LDRXui: { 1324 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1325 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 1326 .addImm(Reg) 1327 .addImm(Imm * 8) 1328 .setMIFlag(Flag); 1329 break; 1330 } 1331 case AArch64::STRDui: 1332 case AArch64::LDRDui: { 1333 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1334 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 1335 .addImm(Reg) 1336 .addImm(Imm * 8) 1337 .setMIFlag(Flag); 1338 break; 1339 } 1340 case AArch64::STPQi: 1341 case AArch64::LDPQi: { 1342 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1343 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1344 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP)) 1345 .addImm(Reg0) 1346 .addImm(Reg1) 1347 .addImm(Imm * 16) 1348 .setMIFlag(Flag); 1349 break; 1350 } 1351 case AArch64::LDPQpost: 1352 Imm = -Imm; 1353 [[fallthrough]]; 1354 case AArch64::STPQpre: { 1355 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1356 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 1357 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX)) 1358 .addImm(Reg0) 1359 .addImm(Reg1) 1360 .addImm(Imm * 16) 1361 .setMIFlag(Flag); 1362 break; 1363 } 1364 } 1365 auto I = MBB->insertAfter(MBBI, MIB); 1366 return I; 1367 } 1368 1369 // Fix up the SEH opcode associated with the save/restore instruction. 1370 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 1371 unsigned LocalStackSize) { 1372 MachineOperand *ImmOpnd = nullptr; 1373 unsigned ImmIdx = MBBI->getNumOperands() - 1; 1374 switch (MBBI->getOpcode()) { 1375 default: 1376 llvm_unreachable("Fix the offset in the SEH instruction"); 1377 case AArch64::SEH_SaveFPLR: 1378 case AArch64::SEH_SaveRegP: 1379 case AArch64::SEH_SaveReg: 1380 case AArch64::SEH_SaveFRegP: 1381 case AArch64::SEH_SaveFReg: 1382 case AArch64::SEH_SaveAnyRegQP: 1383 case AArch64::SEH_SaveAnyRegQPX: 1384 ImmOpnd = &MBBI->getOperand(ImmIdx); 1385 break; 1386 } 1387 if (ImmOpnd) 1388 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 1389 } 1390 1391 bool requiresGetVGCall(MachineFunction &MF) { 1392 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1393 return AFI->hasStreamingModeChanges() && 1394 !MF.getSubtarget<AArch64Subtarget>().hasSVE(); 1395 } 1396 1397 static bool requiresSaveVG(MachineFunction &MF) { 1398 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1399 // For Darwin platforms we don't save VG for non-SVE functions, even if SME 1400 // is enabled with streaming mode changes. 1401 if (!AFI->hasStreamingModeChanges()) 1402 return false; 1403 auto &ST = MF.getSubtarget<AArch64Subtarget>(); 1404 if (ST.isTargetDarwin()) 1405 return ST.hasSVE(); 1406 return true; 1407 } 1408 1409 bool isVGInstruction(MachineBasicBlock::iterator MBBI) { 1410 unsigned Opc = MBBI->getOpcode(); 1411 if (Opc == AArch64::CNTD_XPiI || Opc == AArch64::RDSVLI_XI || 1412 Opc == AArch64::UBFMXri) 1413 return true; 1414 1415 if (requiresGetVGCall(*MBBI->getMF())) { 1416 if (Opc == AArch64::ORRXrr) 1417 return true; 1418 1419 if (Opc == AArch64::BL) { 1420 auto Op1 = MBBI->getOperand(0); 1421 return Op1.isSymbol() && 1422 (StringRef(Op1.getSymbolName()) == "__arm_get_current_vg"); 1423 } 1424 } 1425 1426 return false; 1427 } 1428 1429 // Convert callee-save register save/restore instruction to do stack pointer 1430 // decrement/increment to allocate/deallocate the callee-save stack area by 1431 // converting store/load to use pre/post increment version. 1432 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 1433 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 1434 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 1435 bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI, 1436 MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup, 1437 int CFAOffset = 0) { 1438 unsigned NewOpc; 1439 1440 // If the function contains streaming mode changes, we expect instructions 1441 // to calculate the value of VG before spilling. For locally-streaming 1442 // functions, we need to do this for both the streaming and non-streaming 1443 // vector length. Move past these instructions if necessary. 1444 MachineFunction &MF = *MBB.getParent(); 1445 if (requiresSaveVG(MF)) 1446 while (isVGInstruction(MBBI)) 1447 ++MBBI; 1448 1449 switch (MBBI->getOpcode()) { 1450 default: 1451 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 1452 case AArch64::STPXi: 1453 NewOpc = AArch64::STPXpre; 1454 break; 1455 case AArch64::STPDi: 1456 NewOpc = AArch64::STPDpre; 1457 break; 1458 case AArch64::STPQi: 1459 NewOpc = AArch64::STPQpre; 1460 break; 1461 case AArch64::STRXui: 1462 NewOpc = AArch64::STRXpre; 1463 break; 1464 case AArch64::STRDui: 1465 NewOpc = AArch64::STRDpre; 1466 break; 1467 case AArch64::STRQui: 1468 NewOpc = AArch64::STRQpre; 1469 break; 1470 case AArch64::LDPXi: 1471 NewOpc = AArch64::LDPXpost; 1472 break; 1473 case AArch64::LDPDi: 1474 NewOpc = AArch64::LDPDpost; 1475 break; 1476 case AArch64::LDPQi: 1477 NewOpc = AArch64::LDPQpost; 1478 break; 1479 case AArch64::LDRXui: 1480 NewOpc = AArch64::LDRXpost; 1481 break; 1482 case AArch64::LDRDui: 1483 NewOpc = AArch64::LDRDpost; 1484 break; 1485 case AArch64::LDRQui: 1486 NewOpc = AArch64::LDRQpost; 1487 break; 1488 } 1489 // Get rid of the SEH code associated with the old instruction. 1490 if (NeedsWinCFI) { 1491 auto SEH = std::next(MBBI); 1492 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 1493 SEH->eraseFromParent(); 1494 } 1495 1496 TypeSize Scale = TypeSize::getFixed(1), Width = TypeSize::getFixed(0); 1497 int64_t MinOffset, MaxOffset; 1498 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo( 1499 NewOpc, Scale, Width, MinOffset, MaxOffset); 1500 (void)Success; 1501 assert(Success && "unknown load/store opcode"); 1502 1503 // If the first store isn't right where we want SP then we can't fold the 1504 // update in so create a normal arithmetic instruction instead. 1505 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 || 1506 CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) { 1507 // If we are destroying the frame, make sure we add the increment after the 1508 // last frame operation. 1509 if (FrameFlag == MachineInstr::FrameDestroy) 1510 ++MBBI; 1511 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1512 StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag, 1513 false, false, nullptr, EmitCFI, 1514 StackOffset::getFixed(CFAOffset)); 1515 1516 return std::prev(MBBI); 1517 } 1518 1519 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 1520 MIB.addReg(AArch64::SP, RegState::Define); 1521 1522 // Copy all operands other than the immediate offset. 1523 unsigned OpndIdx = 0; 1524 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 1525 ++OpndIdx) 1526 MIB.add(MBBI->getOperand(OpndIdx)); 1527 1528 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 1529 "Unexpected immediate offset in first/last callee-save save/restore " 1530 "instruction!"); 1531 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 1532 "Unexpected base register in callee-save save/restore instruction!"); 1533 assert(CSStackSizeInc % Scale == 0); 1534 MIB.addImm(CSStackSizeInc / (int)Scale); 1535 1536 MIB.setMIFlags(MBBI->getFlags()); 1537 MIB.setMemRefs(MBBI->memoperands()); 1538 1539 // Generate a new SEH code that corresponds to the new instruction. 1540 if (NeedsWinCFI) { 1541 *HasWinCFI = true; 1542 InsertSEH(*MIB, *TII, FrameFlag); 1543 } 1544 1545 if (EmitCFI) { 1546 unsigned CFIIndex = MF.addFrameInst( 1547 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc)); 1548 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1549 .addCFIIndex(CFIIndex) 1550 .setMIFlags(FrameFlag); 1551 } 1552 1553 return std::prev(MBB.erase(MBBI)); 1554 } 1555 1556 // Fixup callee-save register save/restore instructions to take into account 1557 // combined SP bump by adding the local stack size to the stack offsets. 1558 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 1559 uint64_t LocalStackSize, 1560 bool NeedsWinCFI, 1561 bool *HasWinCFI) { 1562 if (AArch64InstrInfo::isSEHInstruction(MI)) 1563 return; 1564 1565 unsigned Opc = MI.getOpcode(); 1566 unsigned Scale; 1567 switch (Opc) { 1568 case AArch64::STPXi: 1569 case AArch64::STRXui: 1570 case AArch64::STPDi: 1571 case AArch64::STRDui: 1572 case AArch64::LDPXi: 1573 case AArch64::LDRXui: 1574 case AArch64::LDPDi: 1575 case AArch64::LDRDui: 1576 Scale = 8; 1577 break; 1578 case AArch64::STPQi: 1579 case AArch64::STRQui: 1580 case AArch64::LDPQi: 1581 case AArch64::LDRQui: 1582 Scale = 16; 1583 break; 1584 default: 1585 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 1586 } 1587 1588 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 1589 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 1590 "Unexpected base register in callee-save save/restore instruction!"); 1591 // Last operand is immediate offset that needs fixing. 1592 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 1593 // All generated opcodes have scaled offsets. 1594 assert(LocalStackSize % Scale == 0); 1595 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 1596 1597 if (NeedsWinCFI) { 1598 *HasWinCFI = true; 1599 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 1600 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 1601 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 1602 "Expecting a SEH instruction"); 1603 fixupSEHOpcode(MBBI, LocalStackSize); 1604 } 1605 } 1606 1607 static bool isTargetWindows(const MachineFunction &MF) { 1608 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 1609 } 1610 1611 // Convenience function to determine whether I is an SVE callee save. 1612 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 1613 switch (I->getOpcode()) { 1614 default: 1615 return false; 1616 case AArch64::PTRUE_C_B: 1617 case AArch64::LD1B_2Z_IMM: 1618 case AArch64::ST1B_2Z_IMM: 1619 case AArch64::STR_ZXI: 1620 case AArch64::STR_PXI: 1621 case AArch64::LDR_ZXI: 1622 case AArch64::LDR_PXI: 1623 return I->getFlag(MachineInstr::FrameSetup) || 1624 I->getFlag(MachineInstr::FrameDestroy); 1625 } 1626 } 1627 1628 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII, 1629 MachineFunction &MF, 1630 MachineBasicBlock &MBB, 1631 MachineBasicBlock::iterator MBBI, 1632 const DebugLoc &DL, bool NeedsWinCFI, 1633 bool NeedsUnwindInfo) { 1634 // Shadow call stack prolog: str x30, [x18], #8 1635 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost)) 1636 .addReg(AArch64::X18, RegState::Define) 1637 .addReg(AArch64::LR) 1638 .addReg(AArch64::X18) 1639 .addImm(8) 1640 .setMIFlag(MachineInstr::FrameSetup); 1641 1642 // This instruction also makes x18 live-in to the entry block. 1643 MBB.addLiveIn(AArch64::X18); 1644 1645 if (NeedsWinCFI) 1646 BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop)) 1647 .setMIFlag(MachineInstr::FrameSetup); 1648 1649 if (NeedsUnwindInfo) { 1650 // Emit a CFI instruction that causes 8 to be subtracted from the value of 1651 // x18 when unwinding past this frame. 1652 static const char CFIInst[] = { 1653 dwarf::DW_CFA_val_expression, 1654 18, // register 1655 2, // length 1656 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 1657 static_cast<char>(-8) & 0x7f, // addend (sleb128) 1658 }; 1659 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 1660 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 1661 BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 1662 .addCFIIndex(CFIIndex) 1663 .setMIFlag(MachineInstr::FrameSetup); 1664 } 1665 } 1666 1667 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII, 1668 MachineFunction &MF, 1669 MachineBasicBlock &MBB, 1670 MachineBasicBlock::iterator MBBI, 1671 const DebugLoc &DL) { 1672 // Shadow call stack epilog: ldr x30, [x18, #-8]! 1673 BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre)) 1674 .addReg(AArch64::X18, RegState::Define) 1675 .addReg(AArch64::LR, RegState::Define) 1676 .addReg(AArch64::X18) 1677 .addImm(-8) 1678 .setMIFlag(MachineInstr::FrameDestroy); 1679 1680 if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) { 1681 unsigned CFIIndex = 1682 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18)); 1683 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1684 .addCFIIndex(CFIIndex) 1685 .setMIFlags(MachineInstr::FrameDestroy); 1686 } 1687 } 1688 1689 // Define the current CFA rule to use the provided FP. 1690 static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB, 1691 MachineBasicBlock::iterator MBBI, 1692 const DebugLoc &DL, unsigned FixedObject) { 1693 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 1694 const AArch64RegisterInfo *TRI = STI.getRegisterInfo(); 1695 const TargetInstrInfo *TII = STI.getInstrInfo(); 1696 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1697 1698 const int OffsetToFirstCalleeSaveFromFP = 1699 AFI->getCalleeSaveBaseToFrameRecordOffset() - 1700 AFI->getCalleeSavedStackSize(); 1701 Register FramePtr = TRI->getFrameRegister(MF); 1702 unsigned Reg = TRI->getDwarfRegNum(FramePtr, true); 1703 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1704 nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP)); 1705 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1706 .addCFIIndex(CFIIndex) 1707 .setMIFlags(MachineInstr::FrameSetup); 1708 } 1709 1710 #ifndef NDEBUG 1711 /// Collect live registers from the end of \p MI's parent up to (including) \p 1712 /// MI in \p LiveRegs. 1713 static void getLivePhysRegsUpTo(MachineInstr &MI, const TargetRegisterInfo &TRI, 1714 LivePhysRegs &LiveRegs) { 1715 1716 MachineBasicBlock &MBB = *MI.getParent(); 1717 LiveRegs.addLiveOuts(MBB); 1718 for (const MachineInstr &MI : 1719 reverse(make_range(MI.getIterator(), MBB.instr_end()))) 1720 LiveRegs.stepBackward(MI); 1721 } 1722 #endif 1723 1724 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 1725 MachineBasicBlock &MBB) const { 1726 MachineBasicBlock::iterator MBBI = MBB.begin(); 1727 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1728 const Function &F = MF.getFunction(); 1729 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1730 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1731 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1732 1733 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1734 bool EmitCFI = AFI->needsDwarfUnwindInfo(MF); 1735 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 1736 bool HasFP = hasFP(MF); 1737 bool NeedsWinCFI = needsWinCFI(MF); 1738 bool HasWinCFI = false; 1739 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 1740 1741 MachineBasicBlock::iterator End = MBB.end(); 1742 #ifndef NDEBUG 1743 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1744 // Collect live register from the end of MBB up to the start of the existing 1745 // frame setup instructions. 1746 MachineBasicBlock::iterator NonFrameStart = MBB.begin(); 1747 while (NonFrameStart != End && 1748 NonFrameStart->getFlag(MachineInstr::FrameSetup)) 1749 ++NonFrameStart; 1750 1751 LivePhysRegs LiveRegs(*TRI); 1752 if (NonFrameStart != MBB.end()) { 1753 getLivePhysRegsUpTo(*NonFrameStart, *TRI, LiveRegs); 1754 // Ignore registers used for stack management for now. 1755 LiveRegs.removeReg(AArch64::SP); 1756 LiveRegs.removeReg(AArch64::X19); 1757 LiveRegs.removeReg(AArch64::FP); 1758 LiveRegs.removeReg(AArch64::LR); 1759 1760 // X0 will be clobbered by a call to __arm_get_current_vg in the prologue. 1761 // This is necessary to spill VG if required where SVE is unavailable, but 1762 // X0 is preserved around this call. 1763 if (requiresGetVGCall(MF)) 1764 LiveRegs.removeReg(AArch64::X0); 1765 } 1766 1767 auto VerifyClobberOnExit = make_scope_exit([&]() { 1768 if (NonFrameStart == MBB.end()) 1769 return; 1770 // Check if any of the newly instructions clobber any of the live registers. 1771 for (MachineInstr &MI : 1772 make_range(MBB.instr_begin(), NonFrameStart->getIterator())) { 1773 for (auto &Op : MI.operands()) 1774 if (Op.isReg() && Op.isDef()) 1775 assert(!LiveRegs.contains(Op.getReg()) && 1776 "live register clobbered by inserted prologue instructions"); 1777 } 1778 }); 1779 #endif 1780 1781 bool IsFunclet = MBB.isEHFuncletEntry(); 1782 1783 // At this point, we're going to decide whether or not the function uses a 1784 // redzone. In most cases, the function doesn't have a redzone so let's 1785 // assume that's false and set it to true in the case that there's a redzone. 1786 AFI->setHasRedZone(false); 1787 1788 // Debug location must be unknown since the first debug location is used 1789 // to determine the end of the prologue. 1790 DebugLoc DL; 1791 1792 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>(); 1793 if (MFnI.needsShadowCallStackPrologueEpilogue(MF)) 1794 emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI, 1795 MFnI.needsDwarfUnwindInfo(MF)); 1796 1797 if (MFnI.shouldSignReturnAddress(MF)) { 1798 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE)) 1799 .setMIFlag(MachineInstr::FrameSetup); 1800 if (NeedsWinCFI) 1801 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR 1802 } 1803 1804 if (EmitCFI && MFnI.isMTETagged()) { 1805 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED)) 1806 .setMIFlag(MachineInstr::FrameSetup); 1807 } 1808 1809 // We signal the presence of a Swift extended frame to external tools by 1810 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple 1811 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI 1812 // bits so that is still true. 1813 if (HasFP && AFI->hasSwiftAsyncContext()) { 1814 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1815 case SwiftAsyncFramePointerMode::DeploymentBased: 1816 if (Subtarget.swiftAsyncContextIsDynamicallySet()) { 1817 // The special symbol below is absolute and has a *value* that can be 1818 // combined with the frame pointer to signal an extended frame. 1819 BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16) 1820 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1821 AArch64II::MO_GOT); 1822 if (NeedsWinCFI) { 1823 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1824 .setMIFlags(MachineInstr::FrameSetup); 1825 HasWinCFI = true; 1826 } 1827 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP) 1828 .addUse(AArch64::FP) 1829 .addUse(AArch64::X16) 1830 .addImm(Subtarget.isTargetILP32() ? 32 : 0); 1831 if (NeedsWinCFI) { 1832 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1833 .setMIFlags(MachineInstr::FrameSetup); 1834 HasWinCFI = true; 1835 } 1836 break; 1837 } 1838 [[fallthrough]]; 1839 1840 case SwiftAsyncFramePointerMode::Always: 1841 // ORR x29, x29, #0x1000_0000_0000_0000 1842 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP) 1843 .addUse(AArch64::FP) 1844 .addImm(0x1100) 1845 .setMIFlag(MachineInstr::FrameSetup); 1846 if (NeedsWinCFI) { 1847 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1848 .setMIFlags(MachineInstr::FrameSetup); 1849 HasWinCFI = true; 1850 } 1851 break; 1852 1853 case SwiftAsyncFramePointerMode::Never: 1854 break; 1855 } 1856 } 1857 1858 // All calls are tail calls in GHC calling conv, and functions have no 1859 // prologue/epilogue. 1860 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1861 return; 1862 1863 // Set tagged base pointer to the requested stack slot. 1864 // Ideally it should match SP value after prologue. 1865 std::optional<int> TBPI = AFI->getTaggedBasePointerIndex(); 1866 if (TBPI) 1867 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI)); 1868 else 1869 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 1870 1871 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1872 1873 // getStackSize() includes all the locals in its size calculation. We don't 1874 // include these locals when computing the stack size of a funclet, as they 1875 // are allocated in the parent's stack frame and accessed via the frame 1876 // pointer from the funclet. We only save the callee saved registers in the 1877 // funclet, which are really the callee saved registers of the parent 1878 // function, including the funclet. 1879 int64_t NumBytes = 1880 IsFunclet ? getWinEHFuncletFrameSize(MF) : MFI.getStackSize(); 1881 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 1882 assert(!HasFP && "unexpected function without stack frame but with FP"); 1883 assert(!SVEStackSize && 1884 "unexpected function without stack frame but with SVE objects"); 1885 // All of the stack allocation is for locals. 1886 AFI->setLocalStackSize(NumBytes); 1887 if (!NumBytes) 1888 return; 1889 // REDZONE: If the stack size is less than 128 bytes, we don't need 1890 // to actually allocate. 1891 if (canUseRedZone(MF)) { 1892 AFI->setHasRedZone(true); 1893 ++NumRedZoneFunctions; 1894 } else { 1895 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1896 StackOffset::getFixed(-NumBytes), TII, 1897 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1898 if (EmitCFI) { 1899 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 1900 MCSymbol *FrameLabel = MF.getContext().createTempSymbol(); 1901 // Encode the stack size of the leaf function. 1902 unsigned CFIIndex = MF.addFrameInst( 1903 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); 1904 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1905 .addCFIIndex(CFIIndex) 1906 .setMIFlags(MachineInstr::FrameSetup); 1907 } 1908 } 1909 1910 if (NeedsWinCFI) { 1911 HasWinCFI = true; 1912 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1913 .setMIFlag(MachineInstr::FrameSetup); 1914 } 1915 1916 return; 1917 } 1918 1919 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg()); 1920 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1921 1922 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1923 // All of the remaining stack allocations are for locals. 1924 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1925 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1926 bool HomPrologEpilog = homogeneousPrologEpilog(MF); 1927 if (CombineSPBump) { 1928 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1929 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1930 StackOffset::getFixed(-NumBytes), TII, 1931 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI, 1932 EmitAsyncCFI); 1933 NumBytes = 0; 1934 } else if (HomPrologEpilog) { 1935 // Stack has been already adjusted. 1936 NumBytes -= PrologueSaveSize; 1937 } else if (PrologueSaveSize != 0) { 1938 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 1939 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI, 1940 EmitAsyncCFI); 1941 NumBytes -= PrologueSaveSize; 1942 } 1943 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1944 1945 // Move past the saves of the callee-saved registers, fixing up the offsets 1946 // and pre-inc if we decided to combine the callee-save and local stack 1947 // pointer bump above. 1948 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1949 !IsSVECalleeSave(MBBI)) { 1950 if (CombineSPBump && 1951 // Only fix-up frame-setup load/store instructions. 1952 (!requiresSaveVG(MF) || !isVGInstruction(MBBI))) 1953 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1954 NeedsWinCFI, &HasWinCFI); 1955 ++MBBI; 1956 } 1957 1958 // For funclets the FP belongs to the containing function. 1959 if (!IsFunclet && HasFP) { 1960 // Only set up FP if we actually need to. 1961 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset(); 1962 1963 if (CombineSPBump) 1964 FPOffset += AFI->getLocalStackSize(); 1965 1966 if (AFI->hasSwiftAsyncContext()) { 1967 // Before we update the live FP we have to ensure there's a valid (or 1968 // null) asynchronous context in its slot just before FP in the frame 1969 // record, so store it now. 1970 const auto &Attrs = MF.getFunction().getAttributes(); 1971 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync); 1972 if (HaveInitialContext) 1973 MBB.addLiveIn(AArch64::X22); 1974 Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR; 1975 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext)) 1976 .addUse(Reg) 1977 .addUse(AArch64::SP) 1978 .addImm(FPOffset - 8) 1979 .setMIFlags(MachineInstr::FrameSetup); 1980 if (NeedsWinCFI) { 1981 // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded 1982 // to multiple instructions, should be mutually-exclusive. 1983 assert(Subtarget.getTargetTriple().getArchName() != "arm64e"); 1984 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1985 .setMIFlags(MachineInstr::FrameSetup); 1986 HasWinCFI = true; 1987 } 1988 } 1989 1990 if (HomPrologEpilog) { 1991 auto Prolog = MBBI; 1992 --Prolog; 1993 assert(Prolog->getOpcode() == AArch64::HOM_Prolog); 1994 Prolog->addOperand(MachineOperand::CreateImm(FPOffset)); 1995 } else { 1996 // Issue sub fp, sp, FPOffset or 1997 // mov fp,sp when FPOffset is zero. 1998 // Note: All stores of callee-saved registers are marked as "FrameSetup". 1999 // This code marks the instruction(s) that set the FP also. 2000 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 2001 StackOffset::getFixed(FPOffset), TII, 2002 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 2003 if (NeedsWinCFI && HasWinCFI) { 2004 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 2005 .setMIFlag(MachineInstr::FrameSetup); 2006 // After setting up the FP, the rest of the prolog doesn't need to be 2007 // included in the SEH unwind info. 2008 NeedsWinCFI = false; 2009 } 2010 } 2011 if (EmitAsyncCFI) 2012 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject); 2013 } 2014 2015 // Now emit the moves for whatever callee saved regs we have (including FP, 2016 // LR if those are saved). Frame instructions for SVE register are emitted 2017 // later, after the instruction which actually save SVE regs. 2018 if (EmitAsyncCFI) 2019 emitCalleeSavedGPRLocations(MBB, MBBI); 2020 2021 // Alignment is required for the parent frame, not the funclet 2022 const bool NeedsRealignment = 2023 NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF); 2024 const int64_t RealignmentPadding = 2025 (NeedsRealignment && MFI.getMaxAlign() > Align(16)) 2026 ? MFI.getMaxAlign().value() - 16 2027 : 0; 2028 2029 if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) { 2030 uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4; 2031 if (NeedsWinCFI) { 2032 HasWinCFI = true; 2033 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 2034 // exceed this amount. We need to move at most 2^24 - 1 into x15. 2035 // This is at most two instructions, MOVZ follwed by MOVK. 2036 // TODO: Fix to use multiple stack alloc unwind codes for stacks 2037 // exceeding 256MB in size. 2038 if (NumBytes >= (1 << 28)) 2039 report_fatal_error("Stack size cannot exceed 256MB for stack " 2040 "unwinding purposes"); 2041 2042 uint32_t LowNumWords = NumWords & 0xFFFF; 2043 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 2044 .addImm(LowNumWords) 2045 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 2046 .setMIFlag(MachineInstr::FrameSetup); 2047 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2048 .setMIFlag(MachineInstr::FrameSetup); 2049 if ((NumWords & 0xFFFF0000) != 0) { 2050 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 2051 .addReg(AArch64::X15) 2052 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 2053 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 2054 .setMIFlag(MachineInstr::FrameSetup); 2055 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2056 .setMIFlag(MachineInstr::FrameSetup); 2057 } 2058 } else { 2059 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 2060 .addImm(NumWords) 2061 .setMIFlags(MachineInstr::FrameSetup); 2062 } 2063 2064 const char *ChkStk = Subtarget.getChkStkName(); 2065 switch (MF.getTarget().getCodeModel()) { 2066 case CodeModel::Tiny: 2067 case CodeModel::Small: 2068 case CodeModel::Medium: 2069 case CodeModel::Kernel: 2070 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 2071 .addExternalSymbol(ChkStk) 2072 .addReg(AArch64::X15, RegState::Implicit) 2073 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 2074 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 2075 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 2076 .setMIFlags(MachineInstr::FrameSetup); 2077 if (NeedsWinCFI) { 2078 HasWinCFI = true; 2079 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2080 .setMIFlag(MachineInstr::FrameSetup); 2081 } 2082 break; 2083 case CodeModel::Large: 2084 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 2085 .addReg(AArch64::X16, RegState::Define) 2086 .addExternalSymbol(ChkStk) 2087 .addExternalSymbol(ChkStk) 2088 .setMIFlags(MachineInstr::FrameSetup); 2089 if (NeedsWinCFI) { 2090 HasWinCFI = true; 2091 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2092 .setMIFlag(MachineInstr::FrameSetup); 2093 } 2094 2095 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF))) 2096 .addReg(AArch64::X16, RegState::Kill) 2097 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 2098 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 2099 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 2100 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 2101 .setMIFlags(MachineInstr::FrameSetup); 2102 if (NeedsWinCFI) { 2103 HasWinCFI = true; 2104 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2105 .setMIFlag(MachineInstr::FrameSetup); 2106 } 2107 break; 2108 } 2109 2110 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 2111 .addReg(AArch64::SP, RegState::Kill) 2112 .addReg(AArch64::X15, RegState::Kill) 2113 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 2114 .setMIFlags(MachineInstr::FrameSetup); 2115 if (NeedsWinCFI) { 2116 HasWinCFI = true; 2117 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 2118 .addImm(NumBytes) 2119 .setMIFlag(MachineInstr::FrameSetup); 2120 } 2121 NumBytes = 0; 2122 2123 if (RealignmentPadding > 0) { 2124 if (RealignmentPadding >= 4096) { 2125 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm)) 2126 .addReg(AArch64::X16, RegState::Define) 2127 .addImm(RealignmentPadding) 2128 .setMIFlags(MachineInstr::FrameSetup); 2129 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15) 2130 .addReg(AArch64::SP) 2131 .addReg(AArch64::X16, RegState::Kill) 2132 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0)) 2133 .setMIFlag(MachineInstr::FrameSetup); 2134 } else { 2135 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15) 2136 .addReg(AArch64::SP) 2137 .addImm(RealignmentPadding) 2138 .addImm(0) 2139 .setMIFlag(MachineInstr::FrameSetup); 2140 } 2141 2142 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1); 2143 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 2144 .addReg(AArch64::X15, RegState::Kill) 2145 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)); 2146 AFI->setStackRealigned(true); 2147 2148 // No need for SEH instructions here; if we're realigning the stack, 2149 // we've set a frame pointer and already finished the SEH prologue. 2150 assert(!NeedsWinCFI); 2151 } 2152 } 2153 2154 StackOffset SVECalleeSavesSize = {}, SVELocalsSize = SVEStackSize; 2155 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 2156 2157 // Process the SVE callee-saves to determine what space needs to be 2158 // allocated. 2159 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2160 LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize 2161 << "\n"); 2162 // Find callee save instructions in frame. 2163 CalleeSavesBegin = MBBI; 2164 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 2165 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 2166 ++MBBI; 2167 CalleeSavesEnd = MBBI; 2168 2169 SVECalleeSavesSize = StackOffset::getScalable(CalleeSavedSize); 2170 SVELocalsSize = SVEStackSize - SVECalleeSavesSize; 2171 } 2172 2173 // Allocate space for the callee saves (if any). 2174 StackOffset CFAOffset = 2175 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes); 2176 StackOffset LocalsSize = SVELocalsSize + StackOffset::getFixed(NumBytes); 2177 allocateStackSpace(MBB, CalleeSavesBegin, 0, SVECalleeSavesSize, false, 2178 nullptr, EmitAsyncCFI && !HasFP, CFAOffset, 2179 MFI.hasVarSizedObjects() || LocalsSize); 2180 CFAOffset += SVECalleeSavesSize; 2181 2182 if (EmitAsyncCFI) 2183 emitCalleeSavedSVELocations(MBB, CalleeSavesEnd); 2184 2185 // Allocate space for the rest of the frame including SVE locals. Align the 2186 // stack as necessary. 2187 assert(!(canUseRedZone(MF) && NeedsRealignment) && 2188 "Cannot use redzone with stack realignment"); 2189 if (!canUseRedZone(MF)) { 2190 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 2191 // the correct value here, as NumBytes also includes padding bytes, 2192 // which shouldn't be counted here. 2193 allocateStackSpace(MBB, CalleeSavesEnd, RealignmentPadding, 2194 SVELocalsSize + StackOffset::getFixed(NumBytes), 2195 NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP, 2196 CFAOffset, MFI.hasVarSizedObjects()); 2197 } 2198 2199 // If we need a base pointer, set it up here. It's whatever the value of the 2200 // stack pointer is at this point. Any variable size objects will be allocated 2201 // after this, so we can still use the base pointer to reference locals. 2202 // 2203 // FIXME: Clarify FrameSetup flags here. 2204 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 2205 // needed. 2206 // For funclets the BP belongs to the containing function. 2207 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 2208 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 2209 false); 2210 if (NeedsWinCFI) { 2211 HasWinCFI = true; 2212 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2213 .setMIFlag(MachineInstr::FrameSetup); 2214 } 2215 } 2216 2217 // The very last FrameSetup instruction indicates the end of prologue. Emit a 2218 // SEH opcode indicating the prologue end. 2219 if (NeedsWinCFI && HasWinCFI) { 2220 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 2221 .setMIFlag(MachineInstr::FrameSetup); 2222 } 2223 2224 // SEH funclets are passed the frame pointer in X1. If the parent 2225 // function uses the base register, then the base register is used 2226 // directly, and is not retrieved from X1. 2227 if (IsFunclet && F.hasPersonalityFn()) { 2228 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 2229 if (isAsynchronousEHPersonality(Per)) { 2230 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 2231 .addReg(AArch64::X1) 2232 .setMIFlag(MachineInstr::FrameSetup); 2233 MBB.addLiveIn(AArch64::X1); 2234 } 2235 } 2236 2237 if (EmitCFI && !EmitAsyncCFI) { 2238 if (HasFP) { 2239 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject); 2240 } else { 2241 StackOffset TotalSize = 2242 SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize()); 2243 unsigned CFIIndex = MF.addFrameInst(createDefCFA( 2244 *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize, 2245 /*LastAdjustmentWasScalable=*/false)); 2246 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2247 .addCFIIndex(CFIIndex) 2248 .setMIFlags(MachineInstr::FrameSetup); 2249 } 2250 emitCalleeSavedGPRLocations(MBB, MBBI); 2251 emitCalleeSavedSVELocations(MBB, MBBI); 2252 } 2253 } 2254 2255 static bool isFuncletReturnInstr(const MachineInstr &MI) { 2256 switch (MI.getOpcode()) { 2257 default: 2258 return false; 2259 case AArch64::CATCHRET: 2260 case AArch64::CLEANUPRET: 2261 return true; 2262 } 2263 } 2264 2265 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 2266 MachineBasicBlock &MBB) const { 2267 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 2268 MachineFrameInfo &MFI = MF.getFrameInfo(); 2269 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2270 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2271 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 2272 DebugLoc DL; 2273 bool NeedsWinCFI = needsWinCFI(MF); 2274 bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 2275 bool HasWinCFI = false; 2276 bool IsFunclet = false; 2277 2278 if (MBB.end() != MBBI) { 2279 DL = MBBI->getDebugLoc(); 2280 IsFunclet = isFuncletReturnInstr(*MBBI); 2281 } 2282 2283 MachineBasicBlock::iterator EpilogStartI = MBB.end(); 2284 2285 auto FinishingTouches = make_scope_exit([&]() { 2286 if (AFI->shouldSignReturnAddress(MF)) { 2287 BuildMI(MBB, MBB.getFirstTerminator(), DL, 2288 TII->get(AArch64::PAUTH_EPILOGUE)) 2289 .setMIFlag(MachineInstr::FrameDestroy); 2290 if (NeedsWinCFI) 2291 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR 2292 } 2293 if (AFI->needsShadowCallStackPrologueEpilogue(MF)) 2294 emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL); 2295 if (EmitCFI) 2296 emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator()); 2297 if (HasWinCFI) { 2298 BuildMI(MBB, MBB.getFirstTerminator(), DL, 2299 TII->get(AArch64::SEH_EpilogEnd)) 2300 .setMIFlag(MachineInstr::FrameDestroy); 2301 if (!MF.hasWinCFI()) 2302 MF.setHasWinCFI(true); 2303 } 2304 if (NeedsWinCFI) { 2305 assert(EpilogStartI != MBB.end()); 2306 if (!HasWinCFI) 2307 MBB.erase(EpilogStartI); 2308 } 2309 }); 2310 2311 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 2312 : MFI.getStackSize(); 2313 2314 // All calls are tail calls in GHC calling conv, and functions have no 2315 // prologue/epilogue. 2316 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2317 return; 2318 2319 // How much of the stack used by incoming arguments this function is expected 2320 // to restore in this particular epilogue. 2321 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB); 2322 bool IsWin64 = Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(), 2323 MF.getFunction().isVarArg()); 2324 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 2325 2326 int64_t AfterCSRPopSize = ArgumentStackToRestore; 2327 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 2328 // We cannot rely on the local stack size set in emitPrologue if the function 2329 // has funclets, as funclets have different local stack size requirements, and 2330 // the current value set in emitPrologue may be that of the containing 2331 // function. 2332 if (MF.hasEHFunclets()) 2333 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 2334 if (homogeneousPrologEpilog(MF, &MBB)) { 2335 assert(!NeedsWinCFI); 2336 auto LastPopI = MBB.getFirstTerminator(); 2337 if (LastPopI != MBB.begin()) { 2338 auto HomogeneousEpilog = std::prev(LastPopI); 2339 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog) 2340 LastPopI = HomogeneousEpilog; 2341 } 2342 2343 // Adjust local stack 2344 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2345 StackOffset::getFixed(AFI->getLocalStackSize()), TII, 2346 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2347 2348 // SP has been already adjusted while restoring callee save regs. 2349 // We've bailed-out the case with adjusting SP for arguments. 2350 assert(AfterCSRPopSize == 0); 2351 return; 2352 } 2353 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); 2354 // Assume we can't combine the last pop with the sp restore. 2355 2356 bool CombineAfterCSRBump = false; 2357 if (!CombineSPBump && PrologueSaveSize != 0) { 2358 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 2359 while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION || 2360 AArch64InstrInfo::isSEHInstruction(*Pop)) 2361 Pop = std::prev(Pop); 2362 // Converting the last ldp to a post-index ldp is valid only if the last 2363 // ldp's offset is 0. 2364 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 2365 // If the offset is 0 and the AfterCSR pop is not actually trying to 2366 // allocate more stack for arguments (in space that an untimely interrupt 2367 // may clobber), convert it to a post-index ldp. 2368 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) { 2369 convertCalleeSaveRestoreToSPPrePostIncDec( 2370 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI, 2371 MachineInstr::FrameDestroy, PrologueSaveSize); 2372 } else { 2373 // If not, make sure to emit an add after the last ldp. 2374 // We're doing this by transfering the size to be restored from the 2375 // adjustment *before* the CSR pops to the adjustment *after* the CSR 2376 // pops. 2377 AfterCSRPopSize += PrologueSaveSize; 2378 CombineAfterCSRBump = true; 2379 } 2380 } 2381 2382 // Move past the restores of the callee-saved registers. 2383 // If we plan on combining the sp bump of the local stack size and the callee 2384 // save stack size, we might need to adjust the CSR save and restore offsets. 2385 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 2386 MachineBasicBlock::iterator Begin = MBB.begin(); 2387 while (LastPopI != Begin) { 2388 --LastPopI; 2389 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 2390 IsSVECalleeSave(LastPopI)) { 2391 ++LastPopI; 2392 break; 2393 } else if (CombineSPBump) 2394 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 2395 NeedsWinCFI, &HasWinCFI); 2396 } 2397 2398 if (NeedsWinCFI) { 2399 // Note that there are cases where we insert SEH opcodes in the 2400 // epilogue when we had no SEH opcodes in the prologue. For 2401 // example, when there is no stack frame but there are stack 2402 // arguments. Insert the SEH_EpilogStart and remove it later if it 2403 // we didn't emit any SEH opcodes to avoid generating WinCFI for 2404 // functions that don't need it. 2405 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 2406 .setMIFlag(MachineInstr::FrameDestroy); 2407 EpilogStartI = LastPopI; 2408 --EpilogStartI; 2409 } 2410 2411 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) { 2412 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 2413 case SwiftAsyncFramePointerMode::DeploymentBased: 2414 // Avoid the reload as it is GOT relative, and instead fall back to the 2415 // hardcoded value below. This allows a mismatch between the OS and 2416 // application without immediately terminating on the difference. 2417 [[fallthrough]]; 2418 case SwiftAsyncFramePointerMode::Always: 2419 // We need to reset FP to its untagged state on return. Bit 60 is 2420 // currently used to show the presence of an extended frame. 2421 2422 // BIC x29, x29, #0x1000_0000_0000_0000 2423 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri), 2424 AArch64::FP) 2425 .addUse(AArch64::FP) 2426 .addImm(0x10fe) 2427 .setMIFlag(MachineInstr::FrameDestroy); 2428 if (NeedsWinCFI) { 2429 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2430 .setMIFlags(MachineInstr::FrameDestroy); 2431 HasWinCFI = true; 2432 } 2433 break; 2434 2435 case SwiftAsyncFramePointerMode::Never: 2436 break; 2437 } 2438 } 2439 2440 const StackOffset &SVEStackSize = getSVEStackSize(MF); 2441 2442 // If there is a single SP update, insert it before the ret and we're done. 2443 if (CombineSPBump) { 2444 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 2445 2446 // When we are about to restore the CSRs, the CFA register is SP again. 2447 if (EmitCFI && hasFP(MF)) { 2448 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo(); 2449 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 2450 unsigned CFIIndex = 2451 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes)); 2452 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2453 .addCFIIndex(CFIIndex) 2454 .setMIFlags(MachineInstr::FrameDestroy); 2455 } 2456 2457 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 2458 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize), 2459 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, 2460 &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes)); 2461 return; 2462 } 2463 2464 NumBytes -= PrologueSaveSize; 2465 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 2466 2467 // Process the SVE callee-saves to determine what space needs to be 2468 // deallocated. 2469 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 2470 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 2471 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2472 RestoreBegin = std::prev(RestoreEnd); 2473 while (RestoreBegin != MBB.begin() && 2474 IsSVECalleeSave(std::prev(RestoreBegin))) 2475 --RestoreBegin; 2476 2477 assert(IsSVECalleeSave(RestoreBegin) && 2478 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 2479 2480 StackOffset CalleeSavedSizeAsOffset = 2481 StackOffset::getScalable(CalleeSavedSize); 2482 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset; 2483 DeallocateAfter = CalleeSavedSizeAsOffset; 2484 } 2485 2486 // Deallocate the SVE area. 2487 if (SVEStackSize) { 2488 // If we have stack realignment or variable sized objects on the stack, 2489 // restore the stack pointer from the frame pointer prior to SVE CSR 2490 // restoration. 2491 if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) { 2492 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2493 // Set SP to start of SVE callee-save area from which they can 2494 // be reloaded. The code below will deallocate the stack space 2495 // space by moving FP -> SP. 2496 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 2497 StackOffset::getScalable(-CalleeSavedSize), TII, 2498 MachineInstr::FrameDestroy); 2499 } 2500 } else { 2501 if (AFI->getSVECalleeSavedStackSize()) { 2502 // Deallocate the non-SVE locals first before we can deallocate (and 2503 // restore callee saves) from the SVE area. 2504 emitFrameOffset( 2505 MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 2506 StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy, 2507 false, false, nullptr, EmitCFI && !hasFP(MF), 2508 SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2509 NumBytes = 0; 2510 } 2511 2512 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 2513 DeallocateBefore, TII, MachineInstr::FrameDestroy, false, 2514 false, nullptr, EmitCFI && !hasFP(MF), 2515 SVEStackSize + 2516 StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2517 2518 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 2519 DeallocateAfter, TII, MachineInstr::FrameDestroy, false, 2520 false, nullptr, EmitCFI && !hasFP(MF), 2521 DeallocateAfter + 2522 StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2523 } 2524 if (EmitCFI) 2525 emitCalleeSavedSVERestores(MBB, RestoreEnd); 2526 } 2527 2528 if (!hasFP(MF)) { 2529 bool RedZone = canUseRedZone(MF); 2530 // If this was a redzone leaf function, we don't need to restore the 2531 // stack pointer (but we may need to pop stack args for fastcc). 2532 if (RedZone && AfterCSRPopSize == 0) 2533 return; 2534 2535 // Pop the local variables off the stack. If there are no callee-saved 2536 // registers, it means we are actually positioned at the terminator and can 2537 // combine stack increment for the locals and the stack increment for 2538 // callee-popped arguments into (possibly) a single instruction and be done. 2539 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 2540 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 2541 if (NoCalleeSaveRestore) 2542 StackRestoreBytes += AfterCSRPopSize; 2543 2544 emitFrameOffset( 2545 MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2546 StackOffset::getFixed(StackRestoreBytes), TII, 2547 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI, 2548 StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize)); 2549 2550 // If we were able to combine the local stack pop with the argument pop, 2551 // then we're done. 2552 if (NoCalleeSaveRestore || AfterCSRPopSize == 0) { 2553 return; 2554 } 2555 2556 NumBytes = 0; 2557 } 2558 2559 // Restore the original stack pointer. 2560 // FIXME: Rather than doing the math here, we should instead just use 2561 // non-post-indexed loads for the restores if we aren't actually going to 2562 // be able to save any instructions. 2563 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 2564 emitFrameOffset( 2565 MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 2566 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()), 2567 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2568 } else if (NumBytes) 2569 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2570 StackOffset::getFixed(NumBytes), TII, 2571 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2572 2573 // When we are about to restore the CSRs, the CFA register is SP again. 2574 if (EmitCFI && hasFP(MF)) { 2575 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo(); 2576 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 2577 unsigned CFIIndex = MF.addFrameInst( 2578 MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize)); 2579 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2580 .addCFIIndex(CFIIndex) 2581 .setMIFlags(MachineInstr::FrameDestroy); 2582 } 2583 2584 // This must be placed after the callee-save restore code because that code 2585 // assumes the SP is at the same location as it was after the callee-save save 2586 // code in the prologue. 2587 if (AfterCSRPopSize) { 2588 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an " 2589 "interrupt may have clobbered"); 2590 2591 emitFrameOffset( 2592 MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 2593 StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy, 2594 false, NeedsWinCFI, &HasWinCFI, EmitCFI, 2595 StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0)); 2596 } 2597 } 2598 2599 bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const { 2600 return TargetFrameLowering::enableCFIFixup(MF) && 2601 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF); 2602 } 2603 2604 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 2605 /// debug info. It's the same as what we use for resolving the code-gen 2606 /// references for now. FIXME: This can go wrong when references are 2607 /// SP-relative and simple call frames aren't used. 2608 StackOffset 2609 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 2610 Register &FrameReg) const { 2611 return resolveFrameIndexReference( 2612 MF, FI, FrameReg, 2613 /*PreferFP=*/ 2614 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress) || 2615 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemTag), 2616 /*ForSimm=*/false); 2617 } 2618 2619 StackOffset 2620 AArch64FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, 2621 int FI) const { 2622 // This function serves to provide a comparable offset from a single reference 2623 // point (the value of SP at function entry) that can be used for analysis, 2624 // e.g. the stack-frame-layout analysis pass. It is not guaranteed to be 2625 // correct for all objects in the presence of VLA-area objects or dynamic 2626 // stack re-alignment. 2627 2628 const auto &MFI = MF.getFrameInfo(); 2629 2630 int64_t ObjectOffset = MFI.getObjectOffset(FI); 2631 StackOffset SVEStackSize = getSVEStackSize(MF); 2632 2633 // For VLA-area objects, just emit an offset at the end of the stack frame. 2634 // Whilst not quite correct, these objects do live at the end of the frame and 2635 // so it is more useful for analysis for the offset to reflect this. 2636 if (MFI.isVariableSizedObjectIndex(FI)) { 2637 return StackOffset::getFixed(-((int64_t)MFI.getStackSize())) - SVEStackSize; 2638 } 2639 2640 // This is correct in the absence of any SVE stack objects. 2641 if (!SVEStackSize) 2642 return StackOffset::getFixed(ObjectOffset - getOffsetOfLocalArea()); 2643 2644 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2645 if (MFI.getStackID(FI) == TargetStackID::ScalableVector) { 2646 return StackOffset::get(-((int64_t)AFI->getCalleeSavedStackSize()), 2647 ObjectOffset); 2648 } 2649 2650 bool IsFixed = MFI.isFixedObjectIndex(FI); 2651 bool IsCSR = 2652 !IsFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 2653 2654 StackOffset ScalableOffset = {}; 2655 if (!IsFixed && !IsCSR) 2656 ScalableOffset = -SVEStackSize; 2657 2658 return StackOffset::getFixed(ObjectOffset) + ScalableOffset; 2659 } 2660 2661 StackOffset 2662 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF, 2663 int FI) const { 2664 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI)); 2665 } 2666 2667 static StackOffset getFPOffset(const MachineFunction &MF, 2668 int64_t ObjectOffset) { 2669 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2670 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2671 const Function &F = MF.getFunction(); 2672 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg()); 2673 unsigned FixedObject = 2674 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 2675 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 2676 int64_t FPAdjust = 2677 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset(); 2678 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust); 2679 } 2680 2681 static StackOffset getStackOffset(const MachineFunction &MF, 2682 int64_t ObjectOffset) { 2683 const auto &MFI = MF.getFrameInfo(); 2684 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize()); 2685 } 2686 2687 // TODO: This function currently does not work for scalable vectors. 2688 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 2689 int FI) const { 2690 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 2691 MF.getSubtarget().getRegisterInfo()); 2692 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 2693 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 2694 ? getFPOffset(MF, ObjectOffset).getFixed() 2695 : getStackOffset(MF, ObjectOffset).getFixed(); 2696 } 2697 2698 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 2699 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, 2700 bool ForSimm) const { 2701 const auto &MFI = MF.getFrameInfo(); 2702 int64_t ObjectOffset = MFI.getObjectOffset(FI); 2703 bool isFixed = MFI.isFixedObjectIndex(FI); 2704 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector; 2705 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 2706 PreferFP, ForSimm); 2707 } 2708 2709 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 2710 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 2711 Register &FrameReg, bool PreferFP, bool ForSimm) const { 2712 const auto &MFI = MF.getFrameInfo(); 2713 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 2714 MF.getSubtarget().getRegisterInfo()); 2715 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2716 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2717 2718 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed(); 2719 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed(); 2720 bool isCSR = 2721 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 2722 2723 const StackOffset &SVEStackSize = getSVEStackSize(MF); 2724 2725 // Use frame pointer to reference fixed objects. Use it for locals if 2726 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 2727 // reliable as a base). Make sure useFPForScavengingIndex() does the 2728 // right thing for the emergency spill slot. 2729 bool UseFP = false; 2730 if (AFI->hasStackFrame() && !isSVE) { 2731 // We shouldn't prefer using the FP to access fixed-sized stack objects when 2732 // there are scalable (SVE) objects in between the FP and the fixed-sized 2733 // objects. 2734 PreferFP &= !SVEStackSize; 2735 2736 // Note: Keeping the following as multiple 'if' statements rather than 2737 // merging to a single expression for readability. 2738 // 2739 // Argument access should always use the FP. 2740 if (isFixed) { 2741 UseFP = hasFP(MF); 2742 } else if (isCSR && RegInfo->hasStackRealignment(MF)) { 2743 // References to the CSR area must use FP if we're re-aligning the stack 2744 // since the dynamically-sized alignment padding is between the SP/BP and 2745 // the CSR area. 2746 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 2747 UseFP = true; 2748 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) { 2749 // If the FPOffset is negative and we're producing a signed immediate, we 2750 // have to keep in mind that the available offset range for negative 2751 // offsets is smaller than for positive ones. If an offset is available 2752 // via the FP and the SP, use whichever is closest. 2753 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 2754 PreferFP |= Offset > -FPOffset && !SVEStackSize; 2755 2756 if (MFI.hasVarSizedObjects()) { 2757 // If we have variable sized objects, we can use either FP or BP, as the 2758 // SP offset is unknown. We can use the base pointer if we have one and 2759 // FP is not preferred. If not, we're stuck with using FP. 2760 bool CanUseBP = RegInfo->hasBasePointer(MF); 2761 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 2762 UseFP = PreferFP; 2763 else if (!CanUseBP) // Can't use BP. Forced to use FP. 2764 UseFP = true; 2765 // else we can use BP and FP, but the offset from FP won't fit. 2766 // That will make us scavenge registers which we can probably avoid by 2767 // using BP. If it won't fit for BP either, we'll scavenge anyway. 2768 } else if (FPOffset >= 0) { 2769 // Use SP or FP, whichever gives us the best chance of the offset 2770 // being in range for direct access. If the FPOffset is positive, 2771 // that'll always be best, as the SP will be even further away. 2772 UseFP = true; 2773 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 2774 // Funclets access the locals contained in the parent's stack frame 2775 // via the frame pointer, so we have to use the FP in the parent 2776 // function. 2777 (void) Subtarget; 2778 assert(Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(), 2779 MF.getFunction().isVarArg()) && 2780 "Funclets should only be present on Win64"); 2781 UseFP = true; 2782 } else { 2783 // We have the choice between FP and (SP or BP). 2784 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 2785 UseFP = true; 2786 } 2787 } 2788 } 2789 2790 assert( 2791 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) && 2792 "In the presence of dynamic stack pointer realignment, " 2793 "non-argument/CSR objects cannot be accessed through the frame pointer"); 2794 2795 if (isSVE) { 2796 StackOffset FPOffset = 2797 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset); 2798 StackOffset SPOffset = 2799 SVEStackSize + 2800 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(), 2801 ObjectOffset); 2802 // Always use the FP for SVE spills if available and beneficial. 2803 if (hasFP(MF) && (SPOffset.getFixed() || 2804 FPOffset.getScalable() < SPOffset.getScalable() || 2805 RegInfo->hasStackRealignment(MF))) { 2806 FrameReg = RegInfo->getFrameRegister(MF); 2807 return FPOffset; 2808 } 2809 2810 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 2811 : (unsigned)AArch64::SP; 2812 return SPOffset; 2813 } 2814 2815 StackOffset ScalableOffset = {}; 2816 if (UseFP && !(isFixed || isCSR)) 2817 ScalableOffset = -SVEStackSize; 2818 if (!UseFP && (isFixed || isCSR)) 2819 ScalableOffset = SVEStackSize; 2820 2821 if (UseFP) { 2822 FrameReg = RegInfo->getFrameRegister(MF); 2823 return StackOffset::getFixed(FPOffset) + ScalableOffset; 2824 } 2825 2826 // Use the base pointer if we have one. 2827 if (RegInfo->hasBasePointer(MF)) 2828 FrameReg = RegInfo->getBaseRegister(); 2829 else { 2830 assert(!MFI.hasVarSizedObjects() && 2831 "Can't use SP when we have var sized objects."); 2832 FrameReg = AArch64::SP; 2833 // If we're using the red zone for this function, the SP won't actually 2834 // be adjusted, so the offsets will be negative. They're also all 2835 // within range of the signed 9-bit immediate instructions. 2836 if (canUseRedZone(MF)) 2837 Offset -= AFI->getLocalStackSize(); 2838 } 2839 2840 return StackOffset::getFixed(Offset) + ScalableOffset; 2841 } 2842 2843 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 2844 // Do not set a kill flag on values that are also marked as live-in. This 2845 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 2846 // callee saved registers. 2847 // Omitting the kill flags is conservatively correct even if the live-in 2848 // is not used after all. 2849 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 2850 return getKillRegState(!IsLiveIn); 2851 } 2852 2853 static bool produceCompactUnwindFrame(MachineFunction &MF) { 2854 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2855 AttributeList Attrs = MF.getFunction().getAttributes(); 2856 return Subtarget.isTargetMachO() && 2857 !(Subtarget.getTargetLowering()->supportSwiftError() && 2858 Attrs.hasAttrSomewhere(Attribute::SwiftError)) && 2859 MF.getFunction().getCallingConv() != CallingConv::SwiftTail && 2860 !requiresSaveVG(MF); 2861 } 2862 2863 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 2864 bool NeedsWinCFI, bool IsFirst, 2865 const TargetRegisterInfo *TRI) { 2866 // If we are generating register pairs for a Windows function that requires 2867 // EH support, then pair consecutive registers only. There are no unwind 2868 // opcodes for saves/restores of non-consectuve register pairs. 2869 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x, 2870 // save_lrpair. 2871 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 2872 2873 if (Reg2 == AArch64::FP) 2874 return true; 2875 if (!NeedsWinCFI) 2876 return false; 2877 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1) 2878 return false; 2879 // If pairing a GPR with LR, the pair can be described by the save_lrpair 2880 // opcode. If this is the first register pair, it would end up with a 2881 // predecrement, but there's no save_lrpair_x opcode, so we can only do this 2882 // if LR is paired with something else than the first register. 2883 // The save_lrpair opcode requires the first register to be an odd one. 2884 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 && 2885 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst) 2886 return false; 2887 return true; 2888 } 2889 2890 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 2891 /// WindowsCFI requires that only consecutive registers can be paired. 2892 /// LR and FP need to be allocated together when the frame needs to save 2893 /// the frame-record. This means any other register pairing with LR is invalid. 2894 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 2895 bool UsesWinAAPCS, bool NeedsWinCFI, 2896 bool NeedsFrameRecord, bool IsFirst, 2897 const TargetRegisterInfo *TRI) { 2898 if (UsesWinAAPCS) 2899 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst, 2900 TRI); 2901 2902 // If we need to store the frame record, don't pair any register 2903 // with LR other than FP. 2904 if (NeedsFrameRecord) 2905 return Reg2 == AArch64::LR; 2906 2907 return false; 2908 } 2909 2910 namespace { 2911 2912 struct RegPairInfo { 2913 unsigned Reg1 = AArch64::NoRegister; 2914 unsigned Reg2 = AArch64::NoRegister; 2915 int FrameIdx; 2916 int Offset; 2917 enum RegType { GPR, FPR64, FPR128, PPR, ZPR, VG } Type; 2918 2919 RegPairInfo() = default; 2920 2921 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 2922 2923 unsigned getScale() const { 2924 switch (Type) { 2925 case PPR: 2926 return 2; 2927 case GPR: 2928 case FPR64: 2929 case VG: 2930 return 8; 2931 case ZPR: 2932 case FPR128: 2933 return 16; 2934 } 2935 llvm_unreachable("Unsupported type"); 2936 } 2937 2938 bool isScalable() const { return Type == PPR || Type == ZPR; } 2939 }; 2940 2941 } // end anonymous namespace 2942 2943 static void computeCalleeSaveRegisterPairs( 2944 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI, 2945 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 2946 bool NeedsFrameRecord) { 2947 2948 if (CSI.empty()) 2949 return; 2950 2951 bool IsWindows = isTargetWindows(MF); 2952 bool NeedsWinCFI = needsWinCFI(MF); 2953 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2954 MachineFrameInfo &MFI = MF.getFrameInfo(); 2955 CallingConv::ID CC = MF.getFunction().getCallingConv(); 2956 unsigned Count = CSI.size(); 2957 (void)CC; 2958 // MachO's compact unwind format relies on all registers being stored in 2959 // pairs. 2960 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost || 2961 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS || 2962 CC == CallingConv::Win64 || (Count & 1) == 0) && 2963 "Odd number of callee-saved regs to spill!"); 2964 int ByteOffset = AFI->getCalleeSavedStackSize(); 2965 int StackFillDir = -1; 2966 int RegInc = 1; 2967 unsigned FirstReg = 0; 2968 if (NeedsWinCFI) { 2969 // For WinCFI, fill the stack from the bottom up. 2970 ByteOffset = 0; 2971 StackFillDir = 1; 2972 // As the CSI array is reversed to match PrologEpilogInserter, iterate 2973 // backwards, to pair up registers starting from lower numbered registers. 2974 RegInc = -1; 2975 FirstReg = Count - 1; 2976 } 2977 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 2978 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace(); 2979 Register LastReg = 0; 2980 2981 // When iterating backwards, the loop condition relies on unsigned wraparound. 2982 for (unsigned i = FirstReg; i < Count; i += RegInc) { 2983 RegPairInfo RPI; 2984 RPI.Reg1 = CSI[i].getReg(); 2985 2986 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) 2987 RPI.Type = RegPairInfo::GPR; 2988 else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) 2989 RPI.Type = RegPairInfo::FPR64; 2990 else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) 2991 RPI.Type = RegPairInfo::FPR128; 2992 else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) 2993 RPI.Type = RegPairInfo::ZPR; 2994 else if (AArch64::PPRRegClass.contains(RPI.Reg1)) 2995 RPI.Type = RegPairInfo::PPR; 2996 else if (RPI.Reg1 == AArch64::VG) 2997 RPI.Type = RegPairInfo::VG; 2998 else 2999 llvm_unreachable("Unsupported register class."); 3000 3001 // Add the stack hazard size as we transition from GPR->FPR CSRs. 3002 if (AFI->hasStackHazardSlotIndex() && 3003 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) && 3004 AArch64InstrInfo::isFpOrNEON(RPI.Reg1)) 3005 ByteOffset += StackFillDir * StackHazardSize; 3006 LastReg = RPI.Reg1; 3007 3008 // Add the next reg to the pair if it is in the same register class. 3009 if (unsigned(i + RegInc) < Count && !AFI->hasStackHazardSlotIndex()) { 3010 Register NextReg = CSI[i + RegInc].getReg(); 3011 bool IsFirst = i == FirstReg; 3012 switch (RPI.Type) { 3013 case RegPairInfo::GPR: 3014 if (AArch64::GPR64RegClass.contains(NextReg) && 3015 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, 3016 NeedsWinCFI, NeedsFrameRecord, IsFirst, 3017 TRI)) 3018 RPI.Reg2 = NextReg; 3019 break; 3020 case RegPairInfo::FPR64: 3021 if (AArch64::FPR64RegClass.contains(NextReg) && 3022 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI, 3023 IsFirst, TRI)) 3024 RPI.Reg2 = NextReg; 3025 break; 3026 case RegPairInfo::FPR128: 3027 if (AArch64::FPR128RegClass.contains(NextReg)) 3028 RPI.Reg2 = NextReg; 3029 break; 3030 case RegPairInfo::PPR: 3031 break; 3032 case RegPairInfo::ZPR: 3033 if (AFI->getPredicateRegForFillSpill() != 0) 3034 if (((RPI.Reg1 - AArch64::Z0) & 1) == 0 && (NextReg == RPI.Reg1 + 1)) 3035 RPI.Reg2 = NextReg; 3036 break; 3037 case RegPairInfo::VG: 3038 break; 3039 } 3040 } 3041 3042 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 3043 // list to come in sorted by frame index so that we can issue the store 3044 // pair instructions directly. Assert if we see anything otherwise. 3045 // 3046 // The order of the registers in the list is controlled by 3047 // getCalleeSavedRegs(), so they will always be in-order, as well. 3048 assert((!RPI.isPaired() || 3049 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) && 3050 "Out of order callee saved regs!"); 3051 3052 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 3053 RPI.Reg1 == AArch64::LR) && 3054 "FrameRecord must be allocated together with LR"); 3055 3056 // Windows AAPCS has FP and LR reversed. 3057 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 3058 RPI.Reg2 == AArch64::LR) && 3059 "FrameRecord must be allocated together with LR"); 3060 3061 // MachO's compact unwind format relies on all registers being stored in 3062 // adjacent register pairs. 3063 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost || 3064 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS || 3065 CC == CallingConv::Win64 || 3066 (RPI.isPaired() && 3067 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 3068 RPI.Reg1 + 1 == RPI.Reg2))) && 3069 "Callee-save registers not saved as adjacent register pair!"); 3070 3071 RPI.FrameIdx = CSI[i].getFrameIdx(); 3072 if (NeedsWinCFI && 3073 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair 3074 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx(); 3075 int Scale = RPI.getScale(); 3076 3077 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 3078 assert(OffsetPre % Scale == 0); 3079 3080 if (RPI.isScalable()) 3081 ScalableByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); 3082 else 3083 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); 3084 3085 // Swift's async context is directly before FP, so allocate an extra 3086 // 8 bytes for it. 3087 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && 3088 ((!IsWindows && RPI.Reg2 == AArch64::FP) || 3089 (IsWindows && RPI.Reg2 == AArch64::LR))) 3090 ByteOffset += StackFillDir * 8; 3091 3092 // Round up size of non-pair to pair size if we need to pad the 3093 // callee-save area to ensure 16-byte alignment. 3094 if (NeedGapToAlignStack && !NeedsWinCFI && !RPI.isScalable() && 3095 RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired() && 3096 ByteOffset % 16 != 0) { 3097 ByteOffset += 8 * StackFillDir; 3098 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); 3099 // A stack frame with a gap looks like this, bottom up: 3100 // d9, d8. x21, gap, x20, x19. 3101 // Set extra alignment on the x21 object to create the gap above it. 3102 MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); 3103 NeedGapToAlignStack = false; 3104 } 3105 3106 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 3107 assert(OffsetPost % Scale == 0); 3108 // If filling top down (default), we want the offset after incrementing it. 3109 // If filling bottom up (WinCFI) we need the original offset. 3110 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost; 3111 3112 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the 3113 // Swift context can directly precede FP. 3114 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && 3115 ((!IsWindows && RPI.Reg2 == AArch64::FP) || 3116 (IsWindows && RPI.Reg2 == AArch64::LR))) 3117 Offset += 8; 3118 RPI.Offset = Offset / Scale; 3119 3120 assert((!RPI.isPaired() || 3121 (!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 3122 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 3123 "Offset out of bounds for LDP/STP immediate"); 3124 3125 // Save the offset to frame record so that the FP register can point to the 3126 // innermost frame record (spilled FP and LR registers). 3127 if (NeedsFrameRecord && 3128 ((!IsWindows && RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 3129 (IsWindows && RPI.Reg1 == AArch64::FP && RPI.Reg2 == AArch64::LR))) 3130 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset); 3131 3132 RegPairs.push_back(RPI); 3133 if (RPI.isPaired()) 3134 i += RegInc; 3135 } 3136 if (NeedsWinCFI) { 3137 // If we need an alignment gap in the stack, align the topmost stack 3138 // object. A stack frame with a gap looks like this, bottom up: 3139 // x19, d8. d9, gap. 3140 // Set extra alignment on the topmost stack object (the first element in 3141 // CSI, which goes top down), to create the gap above it. 3142 if (AFI->hasCalleeSaveStackFreeSpace()) 3143 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16)); 3144 // We iterated bottom up over the registers; flip RegPairs back to top 3145 // down order. 3146 std::reverse(RegPairs.begin(), RegPairs.end()); 3147 } 3148 } 3149 3150 bool AArch64FrameLowering::spillCalleeSavedRegisters( 3151 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 3152 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 3153 MachineFunction &MF = *MBB.getParent(); 3154 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3155 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3156 bool NeedsWinCFI = needsWinCFI(MF); 3157 DebugLoc DL; 3158 SmallVector<RegPairInfo, 8> RegPairs; 3159 3160 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF)); 3161 3162 MachineRegisterInfo &MRI = MF.getRegInfo(); 3163 // Refresh the reserved regs in case there are any potential changes since the 3164 // last freeze. 3165 MRI.freezeReservedRegs(); 3166 3167 if (homogeneousPrologEpilog(MF)) { 3168 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog)) 3169 .setMIFlag(MachineInstr::FrameSetup); 3170 3171 for (auto &RPI : RegPairs) { 3172 MIB.addReg(RPI.Reg1); 3173 MIB.addReg(RPI.Reg2); 3174 3175 // Update register live in. 3176 if (!MRI.isReserved(RPI.Reg1)) 3177 MBB.addLiveIn(RPI.Reg1); 3178 if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2)) 3179 MBB.addLiveIn(RPI.Reg2); 3180 } 3181 return true; 3182 } 3183 bool PTrueCreated = false; 3184 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) { 3185 unsigned Reg1 = RPI.Reg1; 3186 unsigned Reg2 = RPI.Reg2; 3187 unsigned StrOpc; 3188 3189 // Issue sequence of spills for cs regs. The first spill may be converted 3190 // to a pre-decrement store later by emitPrologue if the callee-save stack 3191 // area allocation can't be combined with the local stack area allocation. 3192 // For example: 3193 // stp x22, x21, [sp, #0] // addImm(+0) 3194 // stp x20, x19, [sp, #16] // addImm(+2) 3195 // stp fp, lr, [sp, #32] // addImm(+4) 3196 // Rationale: This sequence saves uop updates compared to a sequence of 3197 // pre-increment spills like stp xi,xj,[sp,#-16]! 3198 // Note: Similar rationale and sequence for restores in epilog. 3199 unsigned Size; 3200 Align Alignment; 3201 switch (RPI.Type) { 3202 case RegPairInfo::GPR: 3203 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 3204 Size = 8; 3205 Alignment = Align(8); 3206 break; 3207 case RegPairInfo::FPR64: 3208 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 3209 Size = 8; 3210 Alignment = Align(8); 3211 break; 3212 case RegPairInfo::FPR128: 3213 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 3214 Size = 16; 3215 Alignment = Align(16); 3216 break; 3217 case RegPairInfo::ZPR: 3218 StrOpc = RPI.isPaired() ? AArch64::ST1B_2Z_IMM : AArch64::STR_ZXI; 3219 Size = 16; 3220 Alignment = Align(16); 3221 break; 3222 case RegPairInfo::PPR: 3223 StrOpc = AArch64::STR_PXI; 3224 Size = 2; 3225 Alignment = Align(2); 3226 break; 3227 case RegPairInfo::VG: 3228 StrOpc = AArch64::STRXui; 3229 Size = 8; 3230 Alignment = Align(8); 3231 break; 3232 } 3233 3234 unsigned X0Scratch = AArch64::NoRegister; 3235 if (Reg1 == AArch64::VG) { 3236 // Find an available register to store value of VG to. 3237 Reg1 = findScratchNonCalleeSaveRegister(&MBB); 3238 assert(Reg1 != AArch64::NoRegister); 3239 SMEAttrs Attrs(MF.getFunction()); 3240 3241 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface() && 3242 AFI->getStreamingVGIdx() == std::numeric_limits<int>::max()) { 3243 // For locally-streaming functions, we need to store both the streaming 3244 // & non-streaming VG. Spill the streaming value first. 3245 BuildMI(MBB, MI, DL, TII.get(AArch64::RDSVLI_XI), Reg1) 3246 .addImm(1) 3247 .setMIFlag(MachineInstr::FrameSetup); 3248 BuildMI(MBB, MI, DL, TII.get(AArch64::UBFMXri), Reg1) 3249 .addReg(Reg1) 3250 .addImm(3) 3251 .addImm(63) 3252 .setMIFlag(MachineInstr::FrameSetup); 3253 3254 AFI->setStreamingVGIdx(RPI.FrameIdx); 3255 } else if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) { 3256 BuildMI(MBB, MI, DL, TII.get(AArch64::CNTD_XPiI), Reg1) 3257 .addImm(31) 3258 .addImm(1) 3259 .setMIFlag(MachineInstr::FrameSetup); 3260 AFI->setVGIdx(RPI.FrameIdx); 3261 } else { 3262 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 3263 if (llvm::any_of( 3264 MBB.liveins(), 3265 [&STI](const MachineBasicBlock::RegisterMaskPair &LiveIn) { 3266 return STI.getRegisterInfo()->isSuperOrSubRegisterEq( 3267 AArch64::X0, LiveIn.PhysReg); 3268 })) 3269 X0Scratch = Reg1; 3270 3271 if (X0Scratch != AArch64::NoRegister) 3272 BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), Reg1) 3273 .addReg(AArch64::XZR) 3274 .addReg(AArch64::X0, RegState::Undef) 3275 .addReg(AArch64::X0, RegState::Implicit) 3276 .setMIFlag(MachineInstr::FrameSetup); 3277 3278 const uint32_t *RegMask = TRI->getCallPreservedMask( 3279 MF, 3280 CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1); 3281 BuildMI(MBB, MI, DL, TII.get(AArch64::BL)) 3282 .addExternalSymbol("__arm_get_current_vg") 3283 .addRegMask(RegMask) 3284 .addReg(AArch64::X0, RegState::ImplicitDefine) 3285 .setMIFlag(MachineInstr::FrameSetup); 3286 Reg1 = AArch64::X0; 3287 AFI->setVGIdx(RPI.FrameIdx); 3288 } 3289 } 3290 3291 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 3292 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 3293 dbgs() << ") -> fi#(" << RPI.FrameIdx; 3294 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 3295 dbgs() << ")\n"); 3296 3297 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 3298 "Windows unwdinding requires a consecutive (FP,LR) pair"); 3299 // Windows unwind codes require consecutive registers if registers are 3300 // paired. Make the switch here, so that the code below will save (x,x+1) 3301 // and not (x+1,x). 3302 unsigned FrameIdxReg1 = RPI.FrameIdx; 3303 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 3304 if (NeedsWinCFI && RPI.isPaired()) { 3305 std::swap(Reg1, Reg2); 3306 std::swap(FrameIdxReg1, FrameIdxReg2); 3307 } 3308 3309 if (RPI.isPaired() && RPI.isScalable()) { 3310 [[maybe_unused]] const AArch64Subtarget &Subtarget = 3311 MF.getSubtarget<AArch64Subtarget>(); 3312 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3313 unsigned PnReg = AFI->getPredicateRegForFillSpill(); 3314 assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) && 3315 "Expects SVE2.1 or SME2 target and a predicate register"); 3316 #ifdef EXPENSIVE_CHECKS 3317 auto IsPPR = [](const RegPairInfo &c) { 3318 return c.Reg1 == RegPairInfo::PPR; 3319 }; 3320 auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR); 3321 auto IsZPR = [](const RegPairInfo &c) { 3322 return c.Type == RegPairInfo::ZPR; 3323 }; 3324 auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR); 3325 assert(!(PPRBegin < ZPRBegin) && 3326 "Expected callee save predicate to be handled first"); 3327 #endif 3328 if (!PTrueCreated) { 3329 PTrueCreated = true; 3330 BuildMI(MBB, MI, DL, TII.get(AArch64::PTRUE_C_B), PnReg) 3331 .setMIFlags(MachineInstr::FrameSetup); 3332 } 3333 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 3334 if (!MRI.isReserved(Reg1)) 3335 MBB.addLiveIn(Reg1); 3336 if (!MRI.isReserved(Reg2)) 3337 MBB.addLiveIn(Reg2); 3338 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0)); 3339 MIB.addMemOperand(MF.getMachineMemOperand( 3340 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3341 MachineMemOperand::MOStore, Size, Alignment)); 3342 MIB.addReg(PnReg); 3343 MIB.addReg(AArch64::SP) 3344 .addImm(RPI.Offset) // [sp, #offset*scale], 3345 // where factor*scale is implicit 3346 .setMIFlag(MachineInstr::FrameSetup); 3347 MIB.addMemOperand(MF.getMachineMemOperand( 3348 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3349 MachineMemOperand::MOStore, Size, Alignment)); 3350 if (NeedsWinCFI) 3351 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 3352 } else { // The code when the pair of ZReg is not present 3353 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 3354 if (!MRI.isReserved(Reg1)) 3355 MBB.addLiveIn(Reg1); 3356 if (RPI.isPaired()) { 3357 if (!MRI.isReserved(Reg2)) 3358 MBB.addLiveIn(Reg2); 3359 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 3360 MIB.addMemOperand(MF.getMachineMemOperand( 3361 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3362 MachineMemOperand::MOStore, Size, Alignment)); 3363 } 3364 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 3365 .addReg(AArch64::SP) 3366 .addImm(RPI.Offset) // [sp, #offset*scale], 3367 // where factor*scale is implicit 3368 .setMIFlag(MachineInstr::FrameSetup); 3369 MIB.addMemOperand(MF.getMachineMemOperand( 3370 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3371 MachineMemOperand::MOStore, Size, Alignment)); 3372 if (NeedsWinCFI) 3373 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 3374 } 3375 // Update the StackIDs of the SVE stack slots. 3376 MachineFrameInfo &MFI = MF.getFrameInfo(); 3377 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) { 3378 MFI.setStackID(FrameIdxReg1, TargetStackID::ScalableVector); 3379 if (RPI.isPaired()) 3380 MFI.setStackID(FrameIdxReg2, TargetStackID::ScalableVector); 3381 } 3382 3383 if (X0Scratch != AArch64::NoRegister) 3384 BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), AArch64::X0) 3385 .addReg(AArch64::XZR) 3386 .addReg(X0Scratch, RegState::Undef) 3387 .addReg(X0Scratch, RegState::Implicit) 3388 .setMIFlag(MachineInstr::FrameSetup); 3389 } 3390 return true; 3391 } 3392 3393 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 3394 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3395 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 3396 MachineFunction &MF = *MBB.getParent(); 3397 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3398 DebugLoc DL; 3399 SmallVector<RegPairInfo, 8> RegPairs; 3400 bool NeedsWinCFI = needsWinCFI(MF); 3401 3402 if (MBBI != MBB.end()) 3403 DL = MBBI->getDebugLoc(); 3404 3405 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF)); 3406 if (homogeneousPrologEpilog(MF, &MBB)) { 3407 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog)) 3408 .setMIFlag(MachineInstr::FrameDestroy); 3409 for (auto &RPI : RegPairs) { 3410 MIB.addReg(RPI.Reg1, RegState::Define); 3411 MIB.addReg(RPI.Reg2, RegState::Define); 3412 } 3413 return true; 3414 } 3415 3416 // For performance reasons restore SVE register in increasing order 3417 auto IsPPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::PPR; }; 3418 auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR); 3419 auto PPREnd = std::find_if_not(PPRBegin, RegPairs.end(), IsPPR); 3420 std::reverse(PPRBegin, PPREnd); 3421 auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; }; 3422 auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR); 3423 auto ZPREnd = std::find_if_not(ZPRBegin, RegPairs.end(), IsZPR); 3424 std::reverse(ZPRBegin, ZPREnd); 3425 3426 bool PTrueCreated = false; 3427 for (const RegPairInfo &RPI : RegPairs) { 3428 unsigned Reg1 = RPI.Reg1; 3429 unsigned Reg2 = RPI.Reg2; 3430 3431 // Issue sequence of restores for cs regs. The last restore may be converted 3432 // to a post-increment load later by emitEpilogue if the callee-save stack 3433 // area allocation can't be combined with the local stack area allocation. 3434 // For example: 3435 // ldp fp, lr, [sp, #32] // addImm(+4) 3436 // ldp x20, x19, [sp, #16] // addImm(+2) 3437 // ldp x22, x21, [sp, #0] // addImm(+0) 3438 // Note: see comment in spillCalleeSavedRegisters() 3439 unsigned LdrOpc; 3440 unsigned Size; 3441 Align Alignment; 3442 switch (RPI.Type) { 3443 case RegPairInfo::GPR: 3444 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 3445 Size = 8; 3446 Alignment = Align(8); 3447 break; 3448 case RegPairInfo::FPR64: 3449 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 3450 Size = 8; 3451 Alignment = Align(8); 3452 break; 3453 case RegPairInfo::FPR128: 3454 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 3455 Size = 16; 3456 Alignment = Align(16); 3457 break; 3458 case RegPairInfo::ZPR: 3459 LdrOpc = RPI.isPaired() ? AArch64::LD1B_2Z_IMM : AArch64::LDR_ZXI; 3460 Size = 16; 3461 Alignment = Align(16); 3462 break; 3463 case RegPairInfo::PPR: 3464 LdrOpc = AArch64::LDR_PXI; 3465 Size = 2; 3466 Alignment = Align(2); 3467 break; 3468 case RegPairInfo::VG: 3469 continue; 3470 } 3471 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 3472 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 3473 dbgs() << ") -> fi#(" << RPI.FrameIdx; 3474 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 3475 dbgs() << ")\n"); 3476 3477 // Windows unwind codes require consecutive registers if registers are 3478 // paired. Make the switch here, so that the code below will save (x,x+1) 3479 // and not (x+1,x). 3480 unsigned FrameIdxReg1 = RPI.FrameIdx; 3481 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 3482 if (NeedsWinCFI && RPI.isPaired()) { 3483 std::swap(Reg1, Reg2); 3484 std::swap(FrameIdxReg1, FrameIdxReg2); 3485 } 3486 3487 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3488 if (RPI.isPaired() && RPI.isScalable()) { 3489 [[maybe_unused]] const AArch64Subtarget &Subtarget = 3490 MF.getSubtarget<AArch64Subtarget>(); 3491 unsigned PnReg = AFI->getPredicateRegForFillSpill(); 3492 assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) && 3493 "Expects SVE2.1 or SME2 target and a predicate register"); 3494 #ifdef EXPENSIVE_CHECKS 3495 assert(!(PPRBegin < ZPRBegin) && 3496 "Expected callee save predicate to be handled first"); 3497 #endif 3498 if (!PTrueCreated) { 3499 PTrueCreated = true; 3500 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PTRUE_C_B), PnReg) 3501 .setMIFlags(MachineInstr::FrameDestroy); 3502 } 3503 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc)); 3504 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0), 3505 getDefRegState(true)); 3506 MIB.addMemOperand(MF.getMachineMemOperand( 3507 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3508 MachineMemOperand::MOLoad, Size, Alignment)); 3509 MIB.addReg(PnReg); 3510 MIB.addReg(AArch64::SP) 3511 .addImm(RPI.Offset) // [sp, #offset*scale] 3512 // where factor*scale is implicit 3513 .setMIFlag(MachineInstr::FrameDestroy); 3514 MIB.addMemOperand(MF.getMachineMemOperand( 3515 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3516 MachineMemOperand::MOLoad, Size, Alignment)); 3517 if (NeedsWinCFI) 3518 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 3519 } else { 3520 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc)); 3521 if (RPI.isPaired()) { 3522 MIB.addReg(Reg2, getDefRegState(true)); 3523 MIB.addMemOperand(MF.getMachineMemOperand( 3524 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3525 MachineMemOperand::MOLoad, Size, Alignment)); 3526 } 3527 MIB.addReg(Reg1, getDefRegState(true)); 3528 MIB.addReg(AArch64::SP) 3529 .addImm(RPI.Offset) // [sp, #offset*scale] 3530 // where factor*scale is implicit 3531 .setMIFlag(MachineInstr::FrameDestroy); 3532 MIB.addMemOperand(MF.getMachineMemOperand( 3533 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3534 MachineMemOperand::MOLoad, Size, Alignment)); 3535 if (NeedsWinCFI) 3536 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 3537 } 3538 } 3539 return true; 3540 } 3541 3542 // Return the FrameID for a MMO. 3543 static std::optional<int> getMMOFrameID(MachineMemOperand *MMO, 3544 const MachineFrameInfo &MFI) { 3545 auto *PSV = 3546 dyn_cast_or_null<FixedStackPseudoSourceValue>(MMO->getPseudoValue()); 3547 if (PSV) 3548 return std::optional<int>(PSV->getFrameIndex()); 3549 3550 if (MMO->getValue()) { 3551 if (auto *Al = dyn_cast<AllocaInst>(getUnderlyingObject(MMO->getValue()))) { 3552 for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd(); 3553 FI++) 3554 if (MFI.getObjectAllocation(FI) == Al) 3555 return FI; 3556 } 3557 } 3558 3559 return std::nullopt; 3560 } 3561 3562 // Return the FrameID for a Load/Store instruction by looking at the first MMO. 3563 static std::optional<int> getLdStFrameID(const MachineInstr &MI, 3564 const MachineFrameInfo &MFI) { 3565 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1) 3566 return std::nullopt; 3567 3568 return getMMOFrameID(*MI.memoperands_begin(), MFI); 3569 } 3570 3571 // Check if a Hazard slot is needed for the current function, and if so create 3572 // one for it. The index is stored in AArch64FunctionInfo->StackHazardSlotIndex, 3573 // which can be used to determine if any hazard padding is needed. 3574 void AArch64FrameLowering::determineStackHazardSlot( 3575 MachineFunction &MF, BitVector &SavedRegs) const { 3576 if (StackHazardSize == 0 || StackHazardSize % 16 != 0 || 3577 MF.getInfo<AArch64FunctionInfo>()->hasStackHazardSlotIndex()) 3578 return; 3579 3580 // Stack hazards are only needed in streaming functions. 3581 SMEAttrs Attrs(MF.getFunction()); 3582 if (!StackHazardInNonStreaming && Attrs.hasNonStreamingInterfaceAndBody()) 3583 return; 3584 3585 MachineFrameInfo &MFI = MF.getFrameInfo(); 3586 3587 // Add a hazard slot if there are any CSR FPR registers, or are any fp-only 3588 // stack objects. 3589 bool HasFPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) { 3590 return AArch64::FPR64RegClass.contains(Reg) || 3591 AArch64::FPR128RegClass.contains(Reg) || 3592 AArch64::ZPRRegClass.contains(Reg) || 3593 AArch64::PPRRegClass.contains(Reg); 3594 }); 3595 bool HasFPRStackObjects = false; 3596 if (!HasFPRCSRs) { 3597 std::vector<unsigned> FrameObjects(MFI.getObjectIndexEnd()); 3598 for (auto &MBB : MF) { 3599 for (auto &MI : MBB) { 3600 std::optional<int> FI = getLdStFrameID(MI, MFI); 3601 if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) { 3602 if (MFI.getStackID(*FI) == TargetStackID::ScalableVector || 3603 AArch64InstrInfo::isFpOrNEON(MI)) 3604 FrameObjects[*FI] |= 2; 3605 else 3606 FrameObjects[*FI] |= 1; 3607 } 3608 } 3609 } 3610 HasFPRStackObjects = 3611 any_of(FrameObjects, [](unsigned B) { return (B & 3) == 2; }); 3612 } 3613 3614 if (HasFPRCSRs || HasFPRStackObjects) { 3615 int ID = MFI.CreateStackObject(StackHazardSize, Align(16), false); 3616 LLVM_DEBUG(dbgs() << "Created Hazard slot at " << ID << " size " 3617 << StackHazardSize << "\n"); 3618 MF.getInfo<AArch64FunctionInfo>()->setStackHazardSlotIndex(ID); 3619 } 3620 } 3621 3622 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 3623 BitVector &SavedRegs, 3624 RegScavenger *RS) const { 3625 // All calls are tail calls in GHC calling conv, and functions have no 3626 // prologue/epilogue. 3627 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 3628 return; 3629 3630 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 3631 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 3632 MF.getSubtarget().getRegisterInfo()); 3633 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 3634 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3635 unsigned UnspilledCSGPR = AArch64::NoRegister; 3636 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 3637 3638 MachineFrameInfo &MFI = MF.getFrameInfo(); 3639 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 3640 3641 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 3642 ? RegInfo->getBaseRegister() 3643 : (unsigned)AArch64::NoRegister; 3644 3645 unsigned ExtraCSSpill = 0; 3646 bool HasUnpairedGPR64 = false; 3647 // Figure out which callee-saved registers to save/restore. 3648 for (unsigned i = 0; CSRegs[i]; ++i) { 3649 const unsigned Reg = CSRegs[i]; 3650 3651 // Add the base pointer register to SavedRegs if it is callee-save. 3652 if (Reg == BasePointerReg) 3653 SavedRegs.set(Reg); 3654 3655 bool RegUsed = SavedRegs.test(Reg); 3656 unsigned PairedReg = AArch64::NoRegister; 3657 const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg); 3658 if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) || 3659 AArch64::FPR128RegClass.contains(Reg)) { 3660 // Compensate for odd numbers of GP CSRs. 3661 // For now, all the known cases of odd number of CSRs are of GPRs. 3662 if (HasUnpairedGPR64) 3663 PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1]; 3664 else 3665 PairedReg = CSRegs[i ^ 1]; 3666 } 3667 3668 // If the function requires all the GP registers to save (SavedRegs), 3669 // and there are an odd number of GP CSRs at the same time (CSRegs), 3670 // PairedReg could be in a different register class from Reg, which would 3671 // lead to a FPR (usually D8) accidentally being marked saved. 3672 if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) { 3673 PairedReg = AArch64::NoRegister; 3674 HasUnpairedGPR64 = true; 3675 } 3676 assert(PairedReg == AArch64::NoRegister || 3677 AArch64::GPR64RegClass.contains(Reg, PairedReg) || 3678 AArch64::FPR64RegClass.contains(Reg, PairedReg) || 3679 AArch64::FPR128RegClass.contains(Reg, PairedReg)); 3680 3681 if (!RegUsed) { 3682 if (AArch64::GPR64RegClass.contains(Reg) && 3683 !RegInfo->isReservedReg(MF, Reg)) { 3684 UnspilledCSGPR = Reg; 3685 UnspilledCSGPRPaired = PairedReg; 3686 } 3687 continue; 3688 } 3689 3690 // MachO's compact unwind format relies on all registers being stored in 3691 // pairs. 3692 // FIXME: the usual format is actually better if unwinding isn't needed. 3693 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister && 3694 !SavedRegs.test(PairedReg)) { 3695 SavedRegs.set(PairedReg); 3696 if (AArch64::GPR64RegClass.contains(PairedReg) && 3697 !RegInfo->isReservedReg(MF, PairedReg)) 3698 ExtraCSSpill = PairedReg; 3699 } 3700 } 3701 3702 if (MF.getFunction().getCallingConv() == CallingConv::Win64 && 3703 !Subtarget.isTargetWindows()) { 3704 // For Windows calling convention on a non-windows OS, where X18 is treated 3705 // as reserved, back up X18 when entering non-windows code (marked with the 3706 // Windows calling convention) and restore when returning regardless of 3707 // whether the individual function uses it - it might call other functions 3708 // that clobber it. 3709 SavedRegs.set(AArch64::X18); 3710 } 3711 3712 // Calculates the callee saved stack size. 3713 unsigned CSStackSize = 0; 3714 unsigned SVECSStackSize = 0; 3715 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3716 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3717 for (unsigned Reg : SavedRegs.set_bits()) { 3718 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; 3719 if (AArch64::PPRRegClass.contains(Reg) || 3720 AArch64::ZPRRegClass.contains(Reg)) 3721 SVECSStackSize += RegSize; 3722 else 3723 CSStackSize += RegSize; 3724 } 3725 3726 // Increase the callee-saved stack size if the function has streaming mode 3727 // changes, as we will need to spill the value of the VG register. 3728 // For locally streaming functions, we spill both the streaming and 3729 // non-streaming VG value. 3730 const Function &F = MF.getFunction(); 3731 SMEAttrs Attrs(F); 3732 if (requiresSaveVG(MF)) { 3733 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface()) 3734 CSStackSize += 16; 3735 else 3736 CSStackSize += 8; 3737 } 3738 3739 // Determine if a Hazard slot should be used, and increase the CSStackSize by 3740 // StackHazardSize if so. 3741 determineStackHazardSlot(MF, SavedRegs); 3742 if (AFI->hasStackHazardSlotIndex()) 3743 CSStackSize += StackHazardSize; 3744 3745 // Save number of saved regs, so we can easily update CSStackSize later. 3746 unsigned NumSavedRegs = SavedRegs.count(); 3747 3748 // The frame record needs to be created by saving the appropriate registers 3749 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 3750 if (hasFP(MF) || 3751 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 3752 SavedRegs.set(AArch64::FP); 3753 SavedRegs.set(AArch64::LR); 3754 } 3755 3756 LLVM_DEBUG({ 3757 dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 3758 for (unsigned Reg : SavedRegs.set_bits()) 3759 dbgs() << ' ' << printReg(Reg, RegInfo); 3760 dbgs() << "\n"; 3761 }); 3762 3763 // If any callee-saved registers are used, the frame cannot be eliminated. 3764 int64_t SVEStackSize = 3765 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 3766 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 3767 3768 // The CSR spill slots have not been allocated yet, so estimateStackSize 3769 // won't include them. 3770 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 3771 3772 // We may address some of the stack above the canonical frame address, either 3773 // for our own arguments or during a call. Include that in calculating whether 3774 // we have complicated addressing concerns. 3775 int64_t CalleeStackUsed = 0; 3776 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) { 3777 int64_t FixedOff = MFI.getObjectOffset(I); 3778 if (FixedOff > CalleeStackUsed) 3779 CalleeStackUsed = FixedOff; 3780 } 3781 3782 // Conservatively always assume BigStack when there are SVE spills. 3783 bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize + 3784 CalleeStackUsed) > EstimatedStackSizeLimit; 3785 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 3786 AFI->setHasStackFrame(true); 3787 3788 // Estimate if we might need to scavenge a register at some point in order 3789 // to materialize a stack offset. If so, either spill one additional 3790 // callee-saved register or reserve a special spill slot to facilitate 3791 // register scavenging. If we already spilled an extra callee-saved register 3792 // above to keep the number of spills even, we don't need to do anything else 3793 // here. 3794 if (BigStack) { 3795 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 3796 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 3797 << " to get a scratch register.\n"); 3798 SavedRegs.set(UnspilledCSGPR); 3799 ExtraCSSpill = UnspilledCSGPR; 3800 3801 // MachO's compact unwind format relies on all registers being stored in 3802 // pairs, so if we need to spill one extra for BigStack, then we need to 3803 // store the pair. 3804 if (producePairRegisters(MF)) { 3805 if (UnspilledCSGPRPaired == AArch64::NoRegister) { 3806 // Failed to make a pair for compact unwind format, revert spilling. 3807 if (produceCompactUnwindFrame(MF)) { 3808 SavedRegs.reset(UnspilledCSGPR); 3809 ExtraCSSpill = AArch64::NoRegister; 3810 } 3811 } else 3812 SavedRegs.set(UnspilledCSGPRPaired); 3813 } 3814 } 3815 3816 // If we didn't find an extra callee-saved register to spill, create 3817 // an emergency spill slot. 3818 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 3819 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3820 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 3821 unsigned Size = TRI->getSpillSize(RC); 3822 Align Alignment = TRI->getSpillAlign(RC); 3823 int FI = MFI.CreateStackObject(Size, Alignment, false); 3824 RS->addScavengingFrameIndex(FI); 3825 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 3826 << " as the emergency spill slot.\n"); 3827 } 3828 } 3829 3830 // Adding the size of additional 64bit GPR saves. 3831 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 3832 3833 // A Swift asynchronous context extends the frame record with a pointer 3834 // directly before FP. 3835 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) 3836 CSStackSize += 8; 3837 3838 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 3839 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 3840 << EstimatedStackSize + AlignedCSStackSize << " bytes.\n"); 3841 3842 assert((!MFI.isCalleeSavedInfoValid() || 3843 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 3844 "Should not invalidate callee saved info"); 3845 3846 // Round up to register pair alignment to avoid additional SP adjustment 3847 // instructions. 3848 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 3849 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 3850 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 3851 } 3852 3853 bool AArch64FrameLowering::assignCalleeSavedSpillSlots( 3854 MachineFunction &MF, const TargetRegisterInfo *RegInfo, 3855 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex, 3856 unsigned &MaxCSFrameIndex) const { 3857 bool NeedsWinCFI = needsWinCFI(MF); 3858 // To match the canonical windows frame layout, reverse the list of 3859 // callee saved registers to get them laid out by PrologEpilogInserter 3860 // in the right order. (PrologEpilogInserter allocates stack objects top 3861 // down. Windows canonical prologs store higher numbered registers at 3862 // the top, thus have the CSI array start from the highest registers.) 3863 if (NeedsWinCFI) 3864 std::reverse(CSI.begin(), CSI.end()); 3865 3866 if (CSI.empty()) 3867 return true; // Early exit if no callee saved registers are modified! 3868 3869 // Now that we know which registers need to be saved and restored, allocate 3870 // stack slots for them. 3871 MachineFrameInfo &MFI = MF.getFrameInfo(); 3872 auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 3873 3874 bool UsesWinAAPCS = isTargetWindows(MF); 3875 if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) { 3876 int FrameIdx = MFI.CreateStackObject(8, Align(16), true); 3877 AFI->setSwiftAsyncContextFrameIdx(FrameIdx); 3878 if ((unsigned)FrameIdx < MinCSFrameIndex) 3879 MinCSFrameIndex = FrameIdx; 3880 if ((unsigned)FrameIdx > MaxCSFrameIndex) 3881 MaxCSFrameIndex = FrameIdx; 3882 } 3883 3884 // Insert VG into the list of CSRs, immediately before LR if saved. 3885 if (requiresSaveVG(MF)) { 3886 std::vector<CalleeSavedInfo> VGSaves; 3887 SMEAttrs Attrs(MF.getFunction()); 3888 3889 auto VGInfo = CalleeSavedInfo(AArch64::VG); 3890 VGInfo.setRestored(false); 3891 VGSaves.push_back(VGInfo); 3892 3893 // Add VG again if the function is locally-streaming, as we will spill two 3894 // values. 3895 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface()) 3896 VGSaves.push_back(VGInfo); 3897 3898 bool InsertBeforeLR = false; 3899 3900 for (unsigned I = 0; I < CSI.size(); I++) 3901 if (CSI[I].getReg() == AArch64::LR) { 3902 InsertBeforeLR = true; 3903 CSI.insert(CSI.begin() + I, VGSaves.begin(), VGSaves.end()); 3904 break; 3905 } 3906 3907 if (!InsertBeforeLR) 3908 CSI.insert(CSI.end(), VGSaves.begin(), VGSaves.end()); 3909 } 3910 3911 Register LastReg = 0; 3912 int HazardSlotIndex = std::numeric_limits<int>::max(); 3913 for (auto &CS : CSI) { 3914 Register Reg = CS.getReg(); 3915 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); 3916 3917 // Create a hazard slot as we switch between GPR and FPR CSRs. 3918 if (AFI->hasStackHazardSlotIndex() && 3919 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) && 3920 AArch64InstrInfo::isFpOrNEON(Reg)) { 3921 assert(HazardSlotIndex == std::numeric_limits<int>::max() && 3922 "Unexpected register order for hazard slot"); 3923 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true); 3924 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex 3925 << "\n"); 3926 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex); 3927 if ((unsigned)HazardSlotIndex < MinCSFrameIndex) 3928 MinCSFrameIndex = HazardSlotIndex; 3929 if ((unsigned)HazardSlotIndex > MaxCSFrameIndex) 3930 MaxCSFrameIndex = HazardSlotIndex; 3931 } 3932 3933 unsigned Size = RegInfo->getSpillSize(*RC); 3934 Align Alignment(RegInfo->getSpillAlign(*RC)); 3935 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true); 3936 CS.setFrameIdx(FrameIdx); 3937 3938 if ((unsigned)FrameIdx < MinCSFrameIndex) 3939 MinCSFrameIndex = FrameIdx; 3940 if ((unsigned)FrameIdx > MaxCSFrameIndex) 3941 MaxCSFrameIndex = FrameIdx; 3942 3943 // Grab 8 bytes below FP for the extended asynchronous frame info. 3944 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS && 3945 Reg == AArch64::FP) { 3946 FrameIdx = MFI.CreateStackObject(8, Alignment, true); 3947 AFI->setSwiftAsyncContextFrameIdx(FrameIdx); 3948 if ((unsigned)FrameIdx < MinCSFrameIndex) 3949 MinCSFrameIndex = FrameIdx; 3950 if ((unsigned)FrameIdx > MaxCSFrameIndex) 3951 MaxCSFrameIndex = FrameIdx; 3952 } 3953 LastReg = Reg; 3954 } 3955 3956 // Add hazard slot in the case where no FPR CSRs are present. 3957 if (AFI->hasStackHazardSlotIndex() && 3958 HazardSlotIndex == std::numeric_limits<int>::max()) { 3959 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true); 3960 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex 3961 << "\n"); 3962 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex); 3963 if ((unsigned)HazardSlotIndex < MinCSFrameIndex) 3964 MinCSFrameIndex = HazardSlotIndex; 3965 if ((unsigned)HazardSlotIndex > MaxCSFrameIndex) 3966 MaxCSFrameIndex = HazardSlotIndex; 3967 } 3968 3969 return true; 3970 } 3971 3972 bool AArch64FrameLowering::enableStackSlotScavenging( 3973 const MachineFunction &MF) const { 3974 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3975 // If the function has streaming-mode changes, don't scavenge a 3976 // spillslot in the callee-save area, as that might require an 3977 // 'addvl' in the streaming-mode-changing call-sequence when the 3978 // function doesn't use a FP. 3979 if (AFI->hasStreamingModeChanges() && !hasFP(MF)) 3980 return false; 3981 // Don't allow register salvaging with hazard slots, in case it moves objects 3982 // into the wrong place. 3983 if (AFI->hasStackHazardSlotIndex()) 3984 return false; 3985 return AFI->hasCalleeSaveStackFreeSpace(); 3986 } 3987 3988 /// returns true if there are any SVE callee saves. 3989 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 3990 int &Min, int &Max) { 3991 Min = std::numeric_limits<int>::max(); 3992 Max = std::numeric_limits<int>::min(); 3993 3994 if (!MFI.isCalleeSavedInfoValid()) 3995 return false; 3996 3997 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 3998 for (auto &CS : CSI) { 3999 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 4000 AArch64::PPRRegClass.contains(CS.getReg())) { 4001 assert((Max == std::numeric_limits<int>::min() || 4002 Max + 1 == CS.getFrameIdx()) && 4003 "SVE CalleeSaves are not consecutive"); 4004 4005 Min = std::min(Min, CS.getFrameIdx()); 4006 Max = std::max(Max, CS.getFrameIdx()); 4007 } 4008 } 4009 return Min != std::numeric_limits<int>::max(); 4010 } 4011 4012 // Process all the SVE stack objects and determine offsets for each 4013 // object. If AssignOffsets is true, the offsets get assigned. 4014 // Fills in the first and last callee-saved frame indices into 4015 // Min/MaxCSFrameIndex, respectively. 4016 // Returns the size of the stack. 4017 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 4018 int &MinCSFrameIndex, 4019 int &MaxCSFrameIndex, 4020 bool AssignOffsets) { 4021 #ifndef NDEBUG 4022 // First process all fixed stack objects. 4023 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 4024 assert(MFI.getStackID(I) != TargetStackID::ScalableVector && 4025 "SVE vectors should never be passed on the stack by value, only by " 4026 "reference."); 4027 #endif 4028 4029 auto Assign = [&MFI](int FI, int64_t Offset) { 4030 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 4031 MFI.setObjectOffset(FI, Offset); 4032 }; 4033 4034 int64_t Offset = 0; 4035 4036 // Then process all callee saved slots. 4037 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 4038 // Assign offsets to the callee save slots. 4039 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 4040 Offset += MFI.getObjectSize(I); 4041 Offset = alignTo(Offset, MFI.getObjectAlign(I)); 4042 if (AssignOffsets) 4043 Assign(I, -Offset); 4044 } 4045 } 4046 4047 // Ensure that the Callee-save area is aligned to 16bytes. 4048 Offset = alignTo(Offset, Align(16U)); 4049 4050 // Create a buffer of SVE objects to allocate and sort it. 4051 SmallVector<int, 8> ObjectsToAllocate; 4052 // If we have a stack protector, and we've previously decided that we have SVE 4053 // objects on the stack and thus need it to go in the SVE stack area, then it 4054 // needs to go first. 4055 int StackProtectorFI = -1; 4056 if (MFI.hasStackProtectorIndex()) { 4057 StackProtectorFI = MFI.getStackProtectorIndex(); 4058 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector) 4059 ObjectsToAllocate.push_back(StackProtectorFI); 4060 } 4061 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 4062 unsigned StackID = MFI.getStackID(I); 4063 if (StackID != TargetStackID::ScalableVector) 4064 continue; 4065 if (I == StackProtectorFI) 4066 continue; 4067 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 4068 continue; 4069 if (MFI.isDeadObjectIndex(I)) 4070 continue; 4071 4072 ObjectsToAllocate.push_back(I); 4073 } 4074 4075 // Allocate all SVE locals and spills 4076 for (unsigned FI : ObjectsToAllocate) { 4077 Align Alignment = MFI.getObjectAlign(FI); 4078 // FIXME: Given that the length of SVE vectors is not necessarily a power of 4079 // two, we'd need to align every object dynamically at runtime if the 4080 // alignment is larger than 16. This is not yet supported. 4081 if (Alignment > Align(16)) 4082 report_fatal_error( 4083 "Alignment of scalable vectors > 16 bytes is not yet supported"); 4084 4085 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); 4086 if (AssignOffsets) 4087 Assign(FI, -Offset); 4088 } 4089 4090 return Offset; 4091 } 4092 4093 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 4094 MachineFrameInfo &MFI) const { 4095 int MinCSFrameIndex, MaxCSFrameIndex; 4096 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 4097 } 4098 4099 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 4100 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 4101 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 4102 true); 4103 } 4104 4105 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 4106 MachineFunction &MF, RegScavenger *RS) const { 4107 MachineFrameInfo &MFI = MF.getFrameInfo(); 4108 4109 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 4110 "Upwards growing stack unsupported"); 4111 4112 int MinCSFrameIndex, MaxCSFrameIndex; 4113 int64_t SVEStackSize = 4114 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 4115 4116 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 4117 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 4118 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 4119 4120 // If this function isn't doing Win64-style C++ EH, we don't need to do 4121 // anything. 4122 if (!MF.hasEHFunclets()) 4123 return; 4124 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 4125 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 4126 4127 MachineBasicBlock &MBB = MF.front(); 4128 auto MBBI = MBB.begin(); 4129 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 4130 ++MBBI; 4131 4132 // Create an UnwindHelp object. 4133 // The UnwindHelp object is allocated at the start of the fixed object area 4134 int64_t FixedObject = 4135 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 4136 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 4137 /*SPOffset*/ -FixedObject, 4138 /*IsImmutable=*/false); 4139 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 4140 4141 // We need to store -2 into the UnwindHelp object at the start of the 4142 // function. 4143 DebugLoc DL; 4144 RS->enterBasicBlockEnd(MBB); 4145 RS->backward(MBBI); 4146 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 4147 assert(DstReg && "There must be a free register after frame setup"); 4148 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 4149 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 4150 .addReg(DstReg, getKillRegState(true)) 4151 .addFrameIndex(UnwindHelpFI) 4152 .addImm(0); 4153 } 4154 4155 namespace { 4156 struct TagStoreInstr { 4157 MachineInstr *MI; 4158 int64_t Offset, Size; 4159 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) 4160 : MI(MI), Offset(Offset), Size(Size) {} 4161 }; 4162 4163 class TagStoreEdit { 4164 MachineFunction *MF; 4165 MachineBasicBlock *MBB; 4166 MachineRegisterInfo *MRI; 4167 // Tag store instructions that are being replaced. 4168 SmallVector<TagStoreInstr, 8> TagStores; 4169 // Combined memref arguments of the above instructions. 4170 SmallVector<MachineMemOperand *, 8> CombinedMemRefs; 4171 4172 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + 4173 // FrameRegOffset + Size) with the address tag of SP. 4174 Register FrameReg; 4175 StackOffset FrameRegOffset; 4176 int64_t Size; 4177 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the 4178 // end. 4179 std::optional<int64_t> FrameRegUpdate; 4180 // MIFlags for any FrameReg updating instructions. 4181 unsigned FrameRegUpdateFlags; 4182 4183 // Use zeroing instruction variants. 4184 bool ZeroData; 4185 DebugLoc DL; 4186 4187 void emitUnrolled(MachineBasicBlock::iterator InsertI); 4188 void emitLoop(MachineBasicBlock::iterator InsertI); 4189 4190 public: 4191 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) 4192 : MBB(MBB), ZeroData(ZeroData) { 4193 MF = MBB->getParent(); 4194 MRI = &MF->getRegInfo(); 4195 } 4196 // Add an instruction to be replaced. Instructions must be added in the 4197 // ascending order of Offset, and have to be adjacent. 4198 void addInstruction(TagStoreInstr I) { 4199 assert((TagStores.empty() || 4200 TagStores.back().Offset + TagStores.back().Size == I.Offset) && 4201 "Non-adjacent tag store instructions."); 4202 TagStores.push_back(I); 4203 } 4204 void clear() { TagStores.clear(); } 4205 // Emit equivalent code at the given location, and erase the current set of 4206 // instructions. May skip if the replacement is not profitable. May invalidate 4207 // the input iterator and replace it with a valid one. 4208 void emitCode(MachineBasicBlock::iterator &InsertI, 4209 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate); 4210 }; 4211 4212 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { 4213 const AArch64InstrInfo *TII = 4214 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 4215 4216 const int64_t kMinOffset = -256 * 16; 4217 const int64_t kMaxOffset = 255 * 16; 4218 4219 Register BaseReg = FrameReg; 4220 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed(); 4221 if (BaseRegOffsetBytes < kMinOffset || 4222 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset || 4223 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In 4224 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which 4225 // is required for the offset of ST2G. 4226 BaseRegOffsetBytes % 16 != 0) { 4227 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 4228 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, 4229 StackOffset::getFixed(BaseRegOffsetBytes), TII); 4230 BaseReg = ScratchReg; 4231 BaseRegOffsetBytes = 0; 4232 } 4233 4234 MachineInstr *LastI = nullptr; 4235 while (Size) { 4236 int64_t InstrSize = (Size > 16) ? 32 : 16; 4237 unsigned Opcode = 4238 InstrSize == 16 4239 ? (ZeroData ? AArch64::STZGi : AArch64::STGi) 4240 : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi); 4241 assert(BaseRegOffsetBytes % 16 == 0); 4242 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) 4243 .addReg(AArch64::SP) 4244 .addReg(BaseReg) 4245 .addImm(BaseRegOffsetBytes / 16) 4246 .setMemRefs(CombinedMemRefs); 4247 // A store to [BaseReg, #0] should go last for an opportunity to fold the 4248 // final SP adjustment in the epilogue. 4249 if (BaseRegOffsetBytes == 0) 4250 LastI = I; 4251 BaseRegOffsetBytes += InstrSize; 4252 Size -= InstrSize; 4253 } 4254 4255 if (LastI) 4256 MBB->splice(InsertI, MBB, LastI); 4257 } 4258 4259 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { 4260 const AArch64InstrInfo *TII = 4261 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 4262 4263 Register BaseReg = FrameRegUpdate 4264 ? FrameReg 4265 : MRI->createVirtualRegister(&AArch64::GPR64RegClass); 4266 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 4267 4268 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); 4269 4270 int64_t LoopSize = Size; 4271 // If the loop size is not a multiple of 32, split off one 16-byte store at 4272 // the end to fold BaseReg update into. 4273 if (FrameRegUpdate && *FrameRegUpdate) 4274 LoopSize -= LoopSize % 32; 4275 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, 4276 TII->get(ZeroData ? AArch64::STZGloop_wback 4277 : AArch64::STGloop_wback)) 4278 .addDef(SizeReg) 4279 .addDef(BaseReg) 4280 .addImm(LoopSize) 4281 .addReg(BaseReg) 4282 .setMemRefs(CombinedMemRefs); 4283 if (FrameRegUpdate) 4284 LoopI->setFlags(FrameRegUpdateFlags); 4285 4286 int64_t ExtraBaseRegUpdate = 4287 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0; 4288 if (LoopSize < Size) { 4289 assert(FrameRegUpdate); 4290 assert(Size - LoopSize == 16); 4291 // Tag 16 more bytes at BaseReg and update BaseReg. 4292 BuildMI(*MBB, InsertI, DL, 4293 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) 4294 .addDef(BaseReg) 4295 .addReg(BaseReg) 4296 .addReg(BaseReg) 4297 .addImm(1 + ExtraBaseRegUpdate / 16) 4298 .setMemRefs(CombinedMemRefs) 4299 .setMIFlags(FrameRegUpdateFlags); 4300 } else if (ExtraBaseRegUpdate) { 4301 // Update BaseReg. 4302 BuildMI( 4303 *MBB, InsertI, DL, 4304 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) 4305 .addDef(BaseReg) 4306 .addReg(BaseReg) 4307 .addImm(std::abs(ExtraBaseRegUpdate)) 4308 .addImm(0) 4309 .setMIFlags(FrameRegUpdateFlags); 4310 } 4311 } 4312 4313 // Check if *II is a register update that can be merged into STGloop that ends 4314 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the 4315 // end of the loop. 4316 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, 4317 int64_t Size, int64_t *TotalOffset) { 4318 MachineInstr &MI = *II; 4319 if ((MI.getOpcode() == AArch64::ADDXri || 4320 MI.getOpcode() == AArch64::SUBXri) && 4321 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { 4322 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); 4323 int64_t Offset = MI.getOperand(2).getImm() << Shift; 4324 if (MI.getOpcode() == AArch64::SUBXri) 4325 Offset = -Offset; 4326 int64_t AbsPostOffset = std::abs(Offset - Size); 4327 const int64_t kMaxOffset = 4328 0xFFF; // Max encoding for unshifted ADDXri / SUBXri 4329 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) { 4330 *TotalOffset = Offset; 4331 return true; 4332 } 4333 } 4334 return false; 4335 } 4336 4337 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE, 4338 SmallVectorImpl<MachineMemOperand *> &MemRefs) { 4339 MemRefs.clear(); 4340 for (auto &TS : TSE) { 4341 MachineInstr *MI = TS.MI; 4342 // An instruction without memory operands may access anything. Be 4343 // conservative and return an empty list. 4344 if (MI->memoperands_empty()) { 4345 MemRefs.clear(); 4346 return; 4347 } 4348 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); 4349 } 4350 } 4351 4352 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, 4353 const AArch64FrameLowering *TFI, 4354 bool TryMergeSPUpdate) { 4355 if (TagStores.empty()) 4356 return; 4357 TagStoreInstr &FirstTagStore = TagStores[0]; 4358 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; 4359 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; 4360 DL = TagStores[0].MI->getDebugLoc(); 4361 4362 Register Reg; 4363 FrameRegOffset = TFI->resolveFrameOffsetReference( 4364 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, 4365 /*PreferFP=*/false, /*ForSimm=*/true); 4366 FrameReg = Reg; 4367 FrameRegUpdate = std::nullopt; 4368 4369 mergeMemRefs(TagStores, CombinedMemRefs); 4370 4371 LLVM_DEBUG({ 4372 dbgs() << "Replacing adjacent STG instructions:\n"; 4373 for (const auto &Instr : TagStores) { 4374 dbgs() << " " << *Instr.MI; 4375 } 4376 }); 4377 4378 // Size threshold where a loop becomes shorter than a linear sequence of 4379 // tagging instructions. 4380 const int kSetTagLoopThreshold = 176; 4381 if (Size < kSetTagLoopThreshold) { 4382 if (TagStores.size() < 2) 4383 return; 4384 emitUnrolled(InsertI); 4385 } else { 4386 MachineInstr *UpdateInstr = nullptr; 4387 int64_t TotalOffset = 0; 4388 if (TryMergeSPUpdate) { 4389 // See if we can merge base register update into the STGloop. 4390 // This is done in AArch64LoadStoreOptimizer for "normal" stores, 4391 // but STGloop is way too unusual for that, and also it only 4392 // realistically happens in function epilogue. Also, STGloop is expanded 4393 // before that pass. 4394 if (InsertI != MBB->end() && 4395 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size, 4396 &TotalOffset)) { 4397 UpdateInstr = &*InsertI++; 4398 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " 4399 << *UpdateInstr); 4400 } 4401 } 4402 4403 if (!UpdateInstr && TagStores.size() < 2) 4404 return; 4405 4406 if (UpdateInstr) { 4407 FrameRegUpdate = TotalOffset; 4408 FrameRegUpdateFlags = UpdateInstr->getFlags(); 4409 } 4410 emitLoop(InsertI); 4411 if (UpdateInstr) 4412 UpdateInstr->eraseFromParent(); 4413 } 4414 4415 for (auto &TS : TagStores) 4416 TS.MI->eraseFromParent(); 4417 } 4418 4419 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, 4420 int64_t &Size, bool &ZeroData) { 4421 MachineFunction &MF = *MI.getParent()->getParent(); 4422 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4423 4424 unsigned Opcode = MI.getOpcode(); 4425 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi || 4426 Opcode == AArch64::STZ2Gi); 4427 4428 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { 4429 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) 4430 return false; 4431 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) 4432 return false; 4433 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); 4434 Size = MI.getOperand(2).getImm(); 4435 return true; 4436 } 4437 4438 if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi) 4439 Size = 16; 4440 else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi) 4441 Size = 32; 4442 else 4443 return false; 4444 4445 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) 4446 return false; 4447 4448 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 4449 16 * MI.getOperand(2).getImm(); 4450 return true; 4451 } 4452 4453 // Detect a run of memory tagging instructions for adjacent stack frame slots, 4454 // and replace them with a shorter instruction sequence: 4455 // * replace STG + STG with ST2G 4456 // * replace STGloop + STGloop with STGloop 4457 // This code needs to run when stack slot offsets are already known, but before 4458 // FrameIndex operands in STG instructions are eliminated. 4459 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, 4460 const AArch64FrameLowering *TFI, 4461 RegScavenger *RS) { 4462 bool FirstZeroData; 4463 int64_t Size, Offset; 4464 MachineInstr &MI = *II; 4465 MachineBasicBlock *MBB = MI.getParent(); 4466 MachineBasicBlock::iterator NextI = ++II; 4467 if (&MI == &MBB->instr_back()) 4468 return II; 4469 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) 4470 return II; 4471 4472 SmallVector<TagStoreInstr, 4> Instrs; 4473 Instrs.emplace_back(&MI, Offset, Size); 4474 4475 constexpr int kScanLimit = 10; 4476 int Count = 0; 4477 for (MachineBasicBlock::iterator E = MBB->end(); 4478 NextI != E && Count < kScanLimit; ++NextI) { 4479 MachineInstr &MI = *NextI; 4480 bool ZeroData; 4481 int64_t Size, Offset; 4482 // Collect instructions that update memory tags with a FrameIndex operand 4483 // and (when applicable) constant size, and whose output registers are dead 4484 // (the latter is almost always the case in practice). Since these 4485 // instructions effectively have no inputs or outputs, we are free to skip 4486 // any non-aliasing instructions in between without tracking used registers. 4487 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { 4488 if (ZeroData != FirstZeroData) 4489 break; 4490 Instrs.emplace_back(&MI, Offset, Size); 4491 continue; 4492 } 4493 4494 // Only count non-transient, non-tagging instructions toward the scan 4495 // limit. 4496 if (!MI.isTransient()) 4497 ++Count; 4498 4499 // Just in case, stop before the epilogue code starts. 4500 if (MI.getFlag(MachineInstr::FrameSetup) || 4501 MI.getFlag(MachineInstr::FrameDestroy)) 4502 break; 4503 4504 // Reject anything that may alias the collected instructions. 4505 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects()) 4506 break; 4507 } 4508 4509 // New code will be inserted after the last tagging instruction we've found. 4510 MachineBasicBlock::iterator InsertI = Instrs.back().MI; 4511 4512 // All the gathered stack tag instructions are merged and placed after 4513 // last tag store in the list. The check should be made if the nzcv 4514 // flag is live at the point where we are trying to insert. Otherwise 4515 // the nzcv flag might get clobbered if any stg loops are present. 4516 4517 // FIXME : This approach of bailing out from merge is conservative in 4518 // some ways like even if stg loops are not present after merge the 4519 // insert list, this liveness check is done (which is not needed). 4520 LivePhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().getRegisterInfo())); 4521 LiveRegs.addLiveOuts(*MBB); 4522 for (auto I = MBB->rbegin();; ++I) { 4523 MachineInstr &MI = *I; 4524 if (MI == InsertI) 4525 break; 4526 LiveRegs.stepBackward(*I); 4527 } 4528 InsertI++; 4529 if (LiveRegs.contains(AArch64::NZCV)) 4530 return InsertI; 4531 4532 llvm::stable_sort(Instrs, 4533 [](const TagStoreInstr &Left, const TagStoreInstr &Right) { 4534 return Left.Offset < Right.Offset; 4535 }); 4536 4537 // Make sure that we don't have any overlapping stores. 4538 int64_t CurOffset = Instrs[0].Offset; 4539 for (auto &Instr : Instrs) { 4540 if (CurOffset > Instr.Offset) 4541 return NextI; 4542 CurOffset = Instr.Offset + Instr.Size; 4543 } 4544 4545 // Find contiguous runs of tagged memory and emit shorter instruction 4546 // sequencies for them when possible. 4547 TagStoreEdit TSE(MBB, FirstZeroData); 4548 std::optional<int64_t> EndOffset; 4549 for (auto &Instr : Instrs) { 4550 if (EndOffset && *EndOffset != Instr.Offset) { 4551 // Found a gap. 4552 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false); 4553 TSE.clear(); 4554 } 4555 4556 TSE.addInstruction(Instr); 4557 EndOffset = Instr.Offset + Instr.Size; 4558 } 4559 4560 const MachineFunction *MF = MBB->getParent(); 4561 // Multiple FP/SP updates in a loop cannot be described by CFI instructions. 4562 TSE.emitCode( 4563 InsertI, TFI, /*TryMergeSPUpdate = */ 4564 !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF)); 4565 4566 return InsertI; 4567 } 4568 } // namespace 4569 4570 MachineBasicBlock::iterator emitVGSaveRestore(MachineBasicBlock::iterator II, 4571 const AArch64FrameLowering *TFI) { 4572 MachineInstr &MI = *II; 4573 MachineBasicBlock *MBB = MI.getParent(); 4574 MachineFunction *MF = MBB->getParent(); 4575 4576 if (MI.getOpcode() != AArch64::VGSavePseudo && 4577 MI.getOpcode() != AArch64::VGRestorePseudo) 4578 return II; 4579 4580 SMEAttrs FuncAttrs(MF->getFunction()); 4581 bool LocallyStreaming = 4582 FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface(); 4583 const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>(); 4584 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 4585 const AArch64InstrInfo *TII = 4586 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 4587 4588 int64_t VGFrameIdx = 4589 LocallyStreaming ? AFI->getStreamingVGIdx() : AFI->getVGIdx(); 4590 assert(VGFrameIdx != std::numeric_limits<int>::max() && 4591 "Expected FrameIdx for VG"); 4592 4593 unsigned CFIIndex; 4594 if (MI.getOpcode() == AArch64::VGSavePseudo) { 4595 const MachineFrameInfo &MFI = MF->getFrameInfo(); 4596 int64_t Offset = 4597 MFI.getObjectOffset(VGFrameIdx) - TFI->getOffsetOfLocalArea(); 4598 CFIIndex = MF->addFrameInst(MCCFIInstruction::createOffset( 4599 nullptr, TRI->getDwarfRegNum(AArch64::VG, true), Offset)); 4600 } else 4601 CFIIndex = MF->addFrameInst(MCCFIInstruction::createRestore( 4602 nullptr, TRI->getDwarfRegNum(AArch64::VG, true))); 4603 4604 MachineInstr *UnwindInst = BuildMI(*MBB, II, II->getDebugLoc(), 4605 TII->get(TargetOpcode::CFI_INSTRUCTION)) 4606 .addCFIIndex(CFIIndex); 4607 4608 MI.eraseFromParent(); 4609 return UnwindInst->getIterator(); 4610 } 4611 4612 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( 4613 MachineFunction &MF, RegScavenger *RS = nullptr) const { 4614 for (auto &BB : MF) 4615 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) { 4616 if (requiresSaveVG(MF)) 4617 II = emitVGSaveRestore(II, this); 4618 if (StackTaggingMergeSetTag) 4619 II = tryMergeAdjacentSTG(II, this, RS); 4620 } 4621 } 4622 4623 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP 4624 /// before the update. This is easily retrieved as it is exactly the offset 4625 /// that is set in processFunctionBeforeFrameFinalized. 4626 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP( 4627 const MachineFunction &MF, int FI, Register &FrameReg, 4628 bool IgnoreSPUpdates) const { 4629 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4630 if (IgnoreSPUpdates) { 4631 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 4632 << MFI.getObjectOffset(FI) << "\n"); 4633 FrameReg = AArch64::SP; 4634 return StackOffset::getFixed(MFI.getObjectOffset(FI)); 4635 } 4636 4637 // Go to common code if we cannot provide sp + offset. 4638 if (MFI.hasVarSizedObjects() || 4639 MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() || 4640 MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF)) 4641 return getFrameIndexReference(MF, FI, FrameReg); 4642 4643 FrameReg = AArch64::SP; 4644 return getStackOffset(MF, MFI.getObjectOffset(FI)); 4645 } 4646 4647 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 4648 /// the parent's frame pointer 4649 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 4650 const MachineFunction &MF) const { 4651 return 0; 4652 } 4653 4654 /// Funclets only need to account for space for the callee saved registers, 4655 /// as the locals are accounted for in the parent's stack frame. 4656 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 4657 const MachineFunction &MF) const { 4658 // This is the size of the pushed CSRs. 4659 unsigned CSSize = 4660 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 4661 // This is the amount of stack a funclet needs to allocate. 4662 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 4663 getStackAlign()); 4664 } 4665 4666 namespace { 4667 struct FrameObject { 4668 bool IsValid = false; 4669 // Index of the object in MFI. 4670 int ObjectIndex = 0; 4671 // Group ID this object belongs to. 4672 int GroupIndex = -1; 4673 // This object should be placed first (closest to SP). 4674 bool ObjectFirst = false; 4675 // This object's group (which always contains the object with 4676 // ObjectFirst==true) should be placed first. 4677 bool GroupFirst = false; 4678 4679 // Used to distinguish between FP and GPR accesses. The values are decided so 4680 // that they sort FPR < Hazard < GPR and they can be or'd together. 4681 unsigned Accesses = 0; 4682 enum { AccessFPR = 1, AccessHazard = 2, AccessGPR = 4 }; 4683 }; 4684 4685 class GroupBuilder { 4686 SmallVector<int, 8> CurrentMembers; 4687 int NextGroupIndex = 0; 4688 std::vector<FrameObject> &Objects; 4689 4690 public: 4691 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {} 4692 void AddMember(int Index) { CurrentMembers.push_back(Index); } 4693 void EndCurrentGroup() { 4694 if (CurrentMembers.size() > 1) { 4695 // Create a new group with the current member list. This might remove them 4696 // from their pre-existing groups. That's OK, dealing with overlapping 4697 // groups is too hard and unlikely to make a difference. 4698 LLVM_DEBUG(dbgs() << "group:"); 4699 for (int Index : CurrentMembers) { 4700 Objects[Index].GroupIndex = NextGroupIndex; 4701 LLVM_DEBUG(dbgs() << " " << Index); 4702 } 4703 LLVM_DEBUG(dbgs() << "\n"); 4704 NextGroupIndex++; 4705 } 4706 CurrentMembers.clear(); 4707 } 4708 }; 4709 4710 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) { 4711 // Objects at a lower index are closer to FP; objects at a higher index are 4712 // closer to SP. 4713 // 4714 // For consistency in our comparison, all invalid objects are placed 4715 // at the end. This also allows us to stop walking when we hit the 4716 // first invalid item after it's all sorted. 4717 // 4718 // If we want to include a stack hazard region, order FPR accesses < the 4719 // hazard object < GPRs accesses in order to create a separation between the 4720 // two. For the Accesses field 1 = FPR, 2 = Hazard Object, 4 = GPR. 4721 // 4722 // Otherwise the "first" object goes first (closest to SP), followed by the 4723 // members of the "first" group. 4724 // 4725 // The rest are sorted by the group index to keep the groups together. 4726 // Higher numbered groups are more likely to be around longer (i.e. untagged 4727 // in the function epilogue and not at some earlier point). Place them closer 4728 // to SP. 4729 // 4730 // If all else equal, sort by the object index to keep the objects in the 4731 // original order. 4732 return std::make_tuple(!A.IsValid, A.Accesses, A.ObjectFirst, A.GroupFirst, 4733 A.GroupIndex, A.ObjectIndex) < 4734 std::make_tuple(!B.IsValid, B.Accesses, B.ObjectFirst, B.GroupFirst, 4735 B.GroupIndex, B.ObjectIndex); 4736 } 4737 } // namespace 4738 4739 void AArch64FrameLowering::orderFrameObjects( 4740 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 4741 if (!OrderFrameObjects || ObjectsToAllocate.empty()) 4742 return; 4743 4744 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 4745 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4746 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd()); 4747 for (auto &Obj : ObjectsToAllocate) { 4748 FrameObjects[Obj].IsValid = true; 4749 FrameObjects[Obj].ObjectIndex = Obj; 4750 } 4751 4752 // Identify FPR vs GPR slots for hazards, and stack slots that are tagged at 4753 // the same time. 4754 GroupBuilder GB(FrameObjects); 4755 for (auto &MBB : MF) { 4756 for (auto &MI : MBB) { 4757 if (MI.isDebugInstr()) 4758 continue; 4759 4760 if (AFI.hasStackHazardSlotIndex()) { 4761 std::optional<int> FI = getLdStFrameID(MI, MFI); 4762 if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) { 4763 if (MFI.getStackID(*FI) == TargetStackID::ScalableVector || 4764 AArch64InstrInfo::isFpOrNEON(MI)) 4765 FrameObjects[*FI].Accesses |= FrameObject::AccessFPR; 4766 else 4767 FrameObjects[*FI].Accesses |= FrameObject::AccessGPR; 4768 } 4769 } 4770 4771 int OpIndex; 4772 switch (MI.getOpcode()) { 4773 case AArch64::STGloop: 4774 case AArch64::STZGloop: 4775 OpIndex = 3; 4776 break; 4777 case AArch64::STGi: 4778 case AArch64::STZGi: 4779 case AArch64::ST2Gi: 4780 case AArch64::STZ2Gi: 4781 OpIndex = 1; 4782 break; 4783 default: 4784 OpIndex = -1; 4785 } 4786 4787 int TaggedFI = -1; 4788 if (OpIndex >= 0) { 4789 const MachineOperand &MO = MI.getOperand(OpIndex); 4790 if (MO.isFI()) { 4791 int FI = MO.getIndex(); 4792 if (FI >= 0 && FI < MFI.getObjectIndexEnd() && 4793 FrameObjects[FI].IsValid) 4794 TaggedFI = FI; 4795 } 4796 } 4797 4798 // If this is a stack tagging instruction for a slot that is not part of a 4799 // group yet, either start a new group or add it to the current one. 4800 if (TaggedFI >= 0) 4801 GB.AddMember(TaggedFI); 4802 else 4803 GB.EndCurrentGroup(); 4804 } 4805 // Groups should never span multiple basic blocks. 4806 GB.EndCurrentGroup(); 4807 } 4808 4809 if (AFI.hasStackHazardSlotIndex()) { 4810 FrameObjects[AFI.getStackHazardSlotIndex()].Accesses = 4811 FrameObject::AccessHazard; 4812 // If a stack object is unknown or both GPR and FPR, sort it into GPR. 4813 for (auto &Obj : FrameObjects) 4814 if (!Obj.Accesses || 4815 Obj.Accesses == (FrameObject::AccessGPR | FrameObject::AccessFPR)) 4816 Obj.Accesses = FrameObject::AccessGPR; 4817 } 4818 4819 // If the function's tagged base pointer is pinned to a stack slot, we want to 4820 // put that slot first when possible. This will likely place it at SP + 0, 4821 // and save one instruction when generating the base pointer because IRG does 4822 // not allow an immediate offset. 4823 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex(); 4824 if (TBPI) { 4825 FrameObjects[*TBPI].ObjectFirst = true; 4826 FrameObjects[*TBPI].GroupFirst = true; 4827 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex; 4828 if (FirstGroupIndex >= 0) 4829 for (FrameObject &Object : FrameObjects) 4830 if (Object.GroupIndex == FirstGroupIndex) 4831 Object.GroupFirst = true; 4832 } 4833 4834 llvm::stable_sort(FrameObjects, FrameObjectCompare); 4835 4836 int i = 0; 4837 for (auto &Obj : FrameObjects) { 4838 // All invalid items are sorted at the end, so it's safe to stop. 4839 if (!Obj.IsValid) 4840 break; 4841 ObjectsToAllocate[i++] = Obj.ObjectIndex; 4842 } 4843 4844 LLVM_DEBUG({ 4845 dbgs() << "Final frame order:\n"; 4846 for (auto &Obj : FrameObjects) { 4847 if (!Obj.IsValid) 4848 break; 4849 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex; 4850 if (Obj.ObjectFirst) 4851 dbgs() << ", first"; 4852 if (Obj.GroupFirst) 4853 dbgs() << ", group-first"; 4854 dbgs() << "\n"; 4855 } 4856 }); 4857 } 4858 4859 /// Emit a loop to decrement SP until it is equal to TargetReg, with probes at 4860 /// least every ProbeSize bytes. Returns an iterator of the first instruction 4861 /// after the loop. The difference between SP and TargetReg must be an exact 4862 /// multiple of ProbeSize. 4863 MachineBasicBlock::iterator 4864 AArch64FrameLowering::inlineStackProbeLoopExactMultiple( 4865 MachineBasicBlock::iterator MBBI, int64_t ProbeSize, 4866 Register TargetReg) const { 4867 MachineBasicBlock &MBB = *MBBI->getParent(); 4868 MachineFunction &MF = *MBB.getParent(); 4869 const AArch64InstrInfo *TII = 4870 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 4871 DebugLoc DL = MBB.findDebugLoc(MBBI); 4872 4873 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 4874 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 4875 MF.insert(MBBInsertPoint, LoopMBB); 4876 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 4877 MF.insert(MBBInsertPoint, ExitMBB); 4878 4879 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable 4880 // in SUB). 4881 emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP, 4882 StackOffset::getFixed(-ProbeSize), TII, 4883 MachineInstr::FrameSetup); 4884 // STR XZR, [SP] 4885 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui)) 4886 .addReg(AArch64::XZR) 4887 .addReg(AArch64::SP) 4888 .addImm(0) 4889 .setMIFlags(MachineInstr::FrameSetup); 4890 // CMP SP, TargetReg 4891 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64), 4892 AArch64::XZR) 4893 .addReg(AArch64::SP) 4894 .addReg(TargetReg) 4895 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0)) 4896 .setMIFlags(MachineInstr::FrameSetup); 4897 // B.CC Loop 4898 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc)) 4899 .addImm(AArch64CC::NE) 4900 .addMBB(LoopMBB) 4901 .setMIFlags(MachineInstr::FrameSetup); 4902 4903 LoopMBB->addSuccessor(ExitMBB); 4904 LoopMBB->addSuccessor(LoopMBB); 4905 // Synthesize the exit MBB. 4906 ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end()); 4907 ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 4908 MBB.addSuccessor(LoopMBB); 4909 // Update liveins. 4910 fullyRecomputeLiveIns({ExitMBB, LoopMBB}); 4911 4912 return ExitMBB->begin(); 4913 } 4914 4915 void AArch64FrameLowering::inlineStackProbeFixed( 4916 MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize, 4917 StackOffset CFAOffset) const { 4918 MachineBasicBlock *MBB = MBBI->getParent(); 4919 MachineFunction &MF = *MBB->getParent(); 4920 const AArch64InstrInfo *TII = 4921 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 4922 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 4923 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 4924 bool HasFP = hasFP(MF); 4925 4926 DebugLoc DL; 4927 int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize(); 4928 int64_t NumBlocks = FrameSize / ProbeSize; 4929 int64_t ResidualSize = FrameSize % ProbeSize; 4930 4931 LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, " 4932 << NumBlocks << " blocks of " << ProbeSize 4933 << " bytes, plus " << ResidualSize << " bytes\n"); 4934 4935 // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or 4936 // ordinary loop. 4937 if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) { 4938 for (int i = 0; i < NumBlocks; ++i) { 4939 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not 4940 // encodable in a SUB). 4941 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP, 4942 StackOffset::getFixed(-ProbeSize), TII, 4943 MachineInstr::FrameSetup, false, false, nullptr, 4944 EmitAsyncCFI && !HasFP, CFAOffset); 4945 CFAOffset += StackOffset::getFixed(ProbeSize); 4946 // STR XZR, [SP] 4947 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui)) 4948 .addReg(AArch64::XZR) 4949 .addReg(AArch64::SP) 4950 .addImm(0) 4951 .setMIFlags(MachineInstr::FrameSetup); 4952 } 4953 } else if (NumBlocks != 0) { 4954 // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not 4955 // encodable in ADD). ScrathReg may temporarily become the CFA register. 4956 emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP, 4957 StackOffset::getFixed(-ProbeSize * NumBlocks), TII, 4958 MachineInstr::FrameSetup, false, false, nullptr, 4959 EmitAsyncCFI && !HasFP, CFAOffset); 4960 CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks); 4961 MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg); 4962 MBB = MBBI->getParent(); 4963 if (EmitAsyncCFI && !HasFP) { 4964 // Set the CFA register back to SP. 4965 const AArch64RegisterInfo &RegInfo = 4966 *MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 4967 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 4968 unsigned CFIIndex = 4969 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 4970 BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 4971 .addCFIIndex(CFIIndex) 4972 .setMIFlags(MachineInstr::FrameSetup); 4973 } 4974 } 4975 4976 if (ResidualSize != 0) { 4977 // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable 4978 // in SUB). 4979 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP, 4980 StackOffset::getFixed(-ResidualSize), TII, 4981 MachineInstr::FrameSetup, false, false, nullptr, 4982 EmitAsyncCFI && !HasFP, CFAOffset); 4983 if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) { 4984 // STR XZR, [SP] 4985 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui)) 4986 .addReg(AArch64::XZR) 4987 .addReg(AArch64::SP) 4988 .addImm(0) 4989 .setMIFlags(MachineInstr::FrameSetup); 4990 } 4991 } 4992 } 4993 4994 void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF, 4995 MachineBasicBlock &MBB) const { 4996 // Get the instructions that need to be replaced. We emit at most two of 4997 // these. Remember them in order to avoid complications coming from the need 4998 // to traverse the block while potentially creating more blocks. 4999 SmallVector<MachineInstr *, 4> ToReplace; 5000 for (MachineInstr &MI : MBB) 5001 if (MI.getOpcode() == AArch64::PROBED_STACKALLOC || 5002 MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR) 5003 ToReplace.push_back(&MI); 5004 5005 for (MachineInstr *MI : ToReplace) { 5006 if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) { 5007 Register ScratchReg = MI->getOperand(0).getReg(); 5008 int64_t FrameSize = MI->getOperand(1).getImm(); 5009 StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(), 5010 MI->getOperand(3).getImm()); 5011 inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize, 5012 CFAOffset); 5013 } else { 5014 assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR && 5015 "Stack probe pseudo-instruction expected"); 5016 const AArch64InstrInfo *TII = 5017 MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo(); 5018 Register TargetReg = MI->getOperand(0).getReg(); 5019 (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true); 5020 } 5021 MI->eraseFromParent(); 5022 } 5023 } 5024 5025 struct StackAccess { 5026 enum AccessType { 5027 NotAccessed = 0, // Stack object not accessed by load/store instructions. 5028 GPR = 1 << 0, // A general purpose register. 5029 PPR = 1 << 1, // A predicate register. 5030 FPR = 1 << 2, // A floating point/Neon/SVE register. 5031 }; 5032 5033 int Idx; 5034 StackOffset Offset; 5035 int64_t Size; 5036 unsigned AccessTypes; 5037 5038 StackAccess() : Idx(0), Offset(), Size(0), AccessTypes(NotAccessed) {} 5039 5040 bool operator<(const StackAccess &Rhs) const { 5041 return std::make_tuple(start(), Idx) < 5042 std::make_tuple(Rhs.start(), Rhs.Idx); 5043 } 5044 5045 bool isCPU() const { 5046 // Predicate register load and store instructions execute on the CPU. 5047 return AccessTypes & (AccessType::GPR | AccessType::PPR); 5048 } 5049 bool isSME() const { return AccessTypes & AccessType::FPR; } 5050 bool isMixed() const { return isCPU() && isSME(); } 5051 5052 int64_t start() const { return Offset.getFixed() + Offset.getScalable(); } 5053 int64_t end() const { return start() + Size; } 5054 5055 std::string getTypeString() const { 5056 switch (AccessTypes) { 5057 case AccessType::FPR: 5058 return "FPR"; 5059 case AccessType::PPR: 5060 return "PPR"; 5061 case AccessType::GPR: 5062 return "GPR"; 5063 case AccessType::NotAccessed: 5064 return "NA"; 5065 default: 5066 return "Mixed"; 5067 } 5068 } 5069 5070 void print(raw_ostream &OS) const { 5071 OS << getTypeString() << " stack object at [SP" 5072 << (Offset.getFixed() < 0 ? "" : "+") << Offset.getFixed(); 5073 if (Offset.getScalable()) 5074 OS << (Offset.getScalable() < 0 ? "" : "+") << Offset.getScalable() 5075 << " * vscale"; 5076 OS << "]"; 5077 } 5078 }; 5079 5080 static inline raw_ostream &operator<<(raw_ostream &OS, const StackAccess &SA) { 5081 SA.print(OS); 5082 return OS; 5083 } 5084 5085 void AArch64FrameLowering::emitRemarks( 5086 const MachineFunction &MF, MachineOptimizationRemarkEmitter *ORE) const { 5087 5088 SMEAttrs Attrs(MF.getFunction()); 5089 if (Attrs.hasNonStreamingInterfaceAndBody()) 5090 return; 5091 5092 const uint64_t HazardSize = 5093 (StackHazardSize) ? StackHazardSize : StackHazardRemarkSize; 5094 5095 if (HazardSize == 0) 5096 return; 5097 5098 const MachineFrameInfo &MFI = MF.getFrameInfo(); 5099 // Bail if function has no stack objects. 5100 if (!MFI.hasStackObjects()) 5101 return; 5102 5103 std::vector<StackAccess> StackAccesses(MFI.getNumObjects()); 5104 5105 size_t NumFPLdSt = 0; 5106 size_t NumNonFPLdSt = 0; 5107 5108 // Collect stack accesses via Load/Store instructions. 5109 for (const MachineBasicBlock &MBB : MF) { 5110 for (const MachineInstr &MI : MBB) { 5111 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1) 5112 continue; 5113 for (MachineMemOperand *MMO : MI.memoperands()) { 5114 std::optional<int> FI = getMMOFrameID(MMO, MFI); 5115 if (FI && !MFI.isDeadObjectIndex(*FI)) { 5116 int FrameIdx = *FI; 5117 5118 size_t ArrIdx = FrameIdx + MFI.getNumFixedObjects(); 5119 if (StackAccesses[ArrIdx].AccessTypes == StackAccess::NotAccessed) { 5120 StackAccesses[ArrIdx].Idx = FrameIdx; 5121 StackAccesses[ArrIdx].Offset = 5122 getFrameIndexReferenceFromSP(MF, FrameIdx); 5123 StackAccesses[ArrIdx].Size = MFI.getObjectSize(FrameIdx); 5124 } 5125 5126 unsigned RegTy = StackAccess::AccessType::GPR; 5127 if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) { 5128 if (AArch64::PPRRegClass.contains(MI.getOperand(0).getReg())) 5129 RegTy = StackAccess::PPR; 5130 else 5131 RegTy = StackAccess::FPR; 5132 } else if (AArch64InstrInfo::isFpOrNEON(MI)) { 5133 RegTy = StackAccess::FPR; 5134 } 5135 5136 StackAccesses[ArrIdx].AccessTypes |= RegTy; 5137 5138 if (RegTy == StackAccess::FPR) 5139 ++NumFPLdSt; 5140 else 5141 ++NumNonFPLdSt; 5142 } 5143 } 5144 } 5145 } 5146 5147 if (NumFPLdSt == 0 || NumNonFPLdSt == 0) 5148 return; 5149 5150 llvm::sort(StackAccesses); 5151 StackAccesses.erase(llvm::remove_if(StackAccesses, 5152 [](const StackAccess &S) { 5153 return S.AccessTypes == 5154 StackAccess::NotAccessed; 5155 }), 5156 StackAccesses.end()); 5157 5158 SmallVector<const StackAccess *> MixedObjects; 5159 SmallVector<std::pair<const StackAccess *, const StackAccess *>> HazardPairs; 5160 5161 if (StackAccesses.front().isMixed()) 5162 MixedObjects.push_back(&StackAccesses.front()); 5163 5164 for (auto It = StackAccesses.begin(), End = std::prev(StackAccesses.end()); 5165 It != End; ++It) { 5166 const auto &First = *It; 5167 const auto &Second = *(It + 1); 5168 5169 if (Second.isMixed()) 5170 MixedObjects.push_back(&Second); 5171 5172 if ((First.isSME() && Second.isCPU()) || 5173 (First.isCPU() && Second.isSME())) { 5174 uint64_t Distance = static_cast<uint64_t>(Second.start() - First.end()); 5175 if (Distance < HazardSize) 5176 HazardPairs.emplace_back(&First, &Second); 5177 } 5178 } 5179 5180 auto EmitRemark = [&](llvm::StringRef Str) { 5181 ORE->emit([&]() { 5182 auto R = MachineOptimizationRemarkAnalysis( 5183 "sme", "StackHazard", MF.getFunction().getSubprogram(), &MF.front()); 5184 return R << formatv("stack hazard in '{0}': ", MF.getName()).str() << Str; 5185 }); 5186 }; 5187 5188 for (const auto &P : HazardPairs) 5189 EmitRemark(formatv("{0} is too close to {1}", *P.first, *P.second).str()); 5190 5191 for (const auto *Obj : MixedObjects) 5192 EmitRemark( 5193 formatv("{0} accessed by both GP and FP instructions", *Obj).str()); 5194 } 5195