1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | prev_lr | | (frame record first) 51 // | prev_fp | <--' 52 // | async context if needed | 53 // | (a.k.a. "frame record") | 54 // |-----------------------------------| <- fp(=x29) 55 // | | 56 // | callee-saved fp/simd/SVE regs | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | SVE stack objects | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.16-byte.alignment....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- bp(not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses X19) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 93 // callee-saved area, since the unwind encoding does not allow for encoding 94 // this dynamically and existing tools depend on this layout. For other 95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 96 // area to allow SVE stack objects (allocated directly below the callee-saves, 97 // if available) to be accessed directly from the framepointer. 98 // The SVE spill/fill instructions have VL-scaled addressing modes such 99 // as: 100 // ldr z8, [fp, #-7 mul vl] 101 // For SVE the size of the vector length (VL) is not known at compile-time, so 102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 103 // layout, we don't need to add an unscaled offset to the framepointer before 104 // accessing the SVE object in the frame. 105 // 106 // In some cases when a base pointer is not strictly needed, it is generated 107 // anyway when offsets from the frame pointer to access local variables become 108 // so large that the offset can't be encoded in the immediate fields of loads 109 // or stores. 110 // 111 // Outgoing function arguments must be at the bottom of the stack frame when 112 // calling another function. If we do not have variable-sized stack objects, we 113 // can allocate a "reserved call frame" area at the bottom of the local 114 // variable area, large enough for all outgoing calls. If we do have VLAs, then 115 // the stack pointer must be decremented and incremented around each call to 116 // make space for the arguments below the VLAs. 117 // 118 // FIXME: also explain the redzone concept. 119 // 120 //===----------------------------------------------------------------------===// 121 122 #include "AArch64FrameLowering.h" 123 #include "AArch64InstrInfo.h" 124 #include "AArch64MachineFunctionInfo.h" 125 #include "AArch64RegisterInfo.h" 126 #include "AArch64Subtarget.h" 127 #include "AArch64TargetMachine.h" 128 #include "MCTargetDesc/AArch64AddressingModes.h" 129 #include "llvm/ADT/ScopeExit.h" 130 #include "llvm/ADT/SmallVector.h" 131 #include "llvm/ADT/Statistic.h" 132 #include "llvm/CodeGen/LivePhysRegs.h" 133 #include "llvm/CodeGen/MachineBasicBlock.h" 134 #include "llvm/CodeGen/MachineFrameInfo.h" 135 #include "llvm/CodeGen/MachineFunction.h" 136 #include "llvm/CodeGen/MachineInstr.h" 137 #include "llvm/CodeGen/MachineInstrBuilder.h" 138 #include "llvm/CodeGen/MachineMemOperand.h" 139 #include "llvm/CodeGen/MachineModuleInfo.h" 140 #include "llvm/CodeGen/MachineOperand.h" 141 #include "llvm/CodeGen/MachineRegisterInfo.h" 142 #include "llvm/CodeGen/RegisterScavenging.h" 143 #include "llvm/CodeGen/TargetInstrInfo.h" 144 #include "llvm/CodeGen/TargetRegisterInfo.h" 145 #include "llvm/CodeGen/TargetSubtargetInfo.h" 146 #include "llvm/CodeGen/WinEHFuncInfo.h" 147 #include "llvm/IR/Attributes.h" 148 #include "llvm/IR/CallingConv.h" 149 #include "llvm/IR/DataLayout.h" 150 #include "llvm/IR/DebugLoc.h" 151 #include "llvm/IR/Function.h" 152 #include "llvm/MC/MCAsmInfo.h" 153 #include "llvm/MC/MCDwarf.h" 154 #include "llvm/Support/CommandLine.h" 155 #include "llvm/Support/Debug.h" 156 #include "llvm/Support/ErrorHandling.h" 157 #include "llvm/Support/LEB128.h" 158 #include "llvm/Support/MathExtras.h" 159 #include "llvm/Support/raw_ostream.h" 160 #include "llvm/Target/TargetMachine.h" 161 #include "llvm/Target/TargetOptions.h" 162 #include <cassert> 163 #include <cstdint> 164 #include <iterator> 165 #include <vector> 166 167 using namespace llvm; 168 169 #define DEBUG_TYPE "frame-info" 170 171 static cl::opt<bool> EnableRedZone("aarch64-redzone", 172 cl::desc("enable use of redzone on AArch64"), 173 cl::init(false), cl::Hidden); 174 175 static cl::opt<bool> 176 ReverseCSRRestoreSeq("reverse-csr-restore-seq", 177 cl::desc("reverse the CSR restore sequence"), 178 cl::init(false), cl::Hidden); 179 180 static cl::opt<bool> StackTaggingMergeSetTag( 181 "stack-tagging-merge-settag", 182 cl::desc("merge settag instruction in function epilog"), cl::init(true), 183 cl::Hidden); 184 185 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects", 186 cl::desc("sort stack allocations"), 187 cl::init(true), cl::Hidden); 188 189 cl::opt<bool> EnableHomogeneousPrologEpilog( 190 "homogeneous-prolog-epilog", cl::init(false), cl::ZeroOrMore, cl::Hidden, 191 cl::desc("Emit homogeneous prologue and epilogue for the size " 192 "optimization (default = off)")); 193 194 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 195 196 /// Returns how much of the incoming argument stack area (in bytes) we should 197 /// clean up in an epilogue. For the C calling convention this will be 0, for 198 /// guaranteed tail call conventions it can be positive (a normal return or a 199 /// tail call to a function that uses less stack space for arguments) or 200 /// negative (for a tail call to a function that needs more stack space than us 201 /// for arguments). 202 static int64_t getArgumentStackToRestore(MachineFunction &MF, 203 MachineBasicBlock &MBB) { 204 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 205 bool IsTailCallReturn = false; 206 if (MBB.end() != MBBI) { 207 unsigned RetOpcode = MBBI->getOpcode(); 208 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi || 209 RetOpcode == AArch64::TCRETURNri || 210 RetOpcode == AArch64::TCRETURNriBTI; 211 } 212 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 213 214 int64_t ArgumentPopSize = 0; 215 if (IsTailCallReturn) { 216 MachineOperand &StackAdjust = MBBI->getOperand(1); 217 218 // For a tail-call in a callee-pops-arguments environment, some or all of 219 // the stack may actually be in use for the call's arguments, this is 220 // calculated during LowerCall and consumed here... 221 ArgumentPopSize = StackAdjust.getImm(); 222 } else { 223 // ... otherwise the amount to pop is *all* of the argument space, 224 // conveniently stored in the MachineFunctionInfo by 225 // LowerFormalArguments. This will, of course, be zero for the C calling 226 // convention. 227 ArgumentPopSize = AFI->getArgumentStackToRestore(); 228 } 229 230 return ArgumentPopSize; 231 } 232 233 static bool produceCompactUnwindFrame(MachineFunction &MF); 234 static bool needsWinCFI(const MachineFunction &MF); 235 static StackOffset getSVEStackSize(const MachineFunction &MF); 236 237 /// Returns true if a homogeneous prolog or epilog code can be emitted 238 /// for the size optimization. If possible, a frame helper call is injected. 239 /// When Exit block is given, this check is for epilog. 240 bool AArch64FrameLowering::homogeneousPrologEpilog( 241 MachineFunction &MF, MachineBasicBlock *Exit) const { 242 if (!MF.getFunction().hasMinSize()) 243 return false; 244 if (!EnableHomogeneousPrologEpilog) 245 return false; 246 if (ReverseCSRRestoreSeq) 247 return false; 248 if (EnableRedZone) 249 return false; 250 251 // TODO: Window is supported yet. 252 if (needsWinCFI(MF)) 253 return false; 254 // TODO: SVE is not supported yet. 255 if (getSVEStackSize(MF)) 256 return false; 257 258 // Bail on stack adjustment needed on return for simplicity. 259 const MachineFrameInfo &MFI = MF.getFrameInfo(); 260 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 261 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)) 262 return false; 263 if (Exit && getArgumentStackToRestore(MF, *Exit)) 264 return false; 265 266 return true; 267 } 268 269 /// Returns true if CSRs should be paired. 270 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const { 271 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF); 272 } 273 274 /// This is the biggest offset to the stack pointer we can encode in aarch64 275 /// instructions (without using a separate calculation and a temp register). 276 /// Note that the exception here are vector stores/loads which cannot encode any 277 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 278 static const unsigned DefaultSafeSPDisplacement = 255; 279 280 /// Look at each instruction that references stack frames and return the stack 281 /// size limit beyond which some of these instructions will require a scratch 282 /// register during their expansion later. 283 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 284 // FIXME: For now, just conservatively guestimate based on unscaled indexing 285 // range. We'll end up allocating an unnecessary spill slot a lot, but 286 // realistically that's not a big deal at this stage of the game. 287 for (MachineBasicBlock &MBB : MF) { 288 for (MachineInstr &MI : MBB) { 289 if (MI.isDebugInstr() || MI.isPseudo() || 290 MI.getOpcode() == AArch64::ADDXri || 291 MI.getOpcode() == AArch64::ADDSXri) 292 continue; 293 294 for (const MachineOperand &MO : MI.operands()) { 295 if (!MO.isFI()) 296 continue; 297 298 StackOffset Offset; 299 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 300 AArch64FrameOffsetCannotUpdate) 301 return 0; 302 } 303 } 304 } 305 return DefaultSafeSPDisplacement; 306 } 307 308 TargetStackID::Value 309 AArch64FrameLowering::getStackIDForScalableVectors() const { 310 return TargetStackID::ScalableVector; 311 } 312 313 /// Returns the size of the fixed object area (allocated next to sp on entry) 314 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 315 static unsigned getFixedObjectSize(const MachineFunction &MF, 316 const AArch64FunctionInfo *AFI, bool IsWin64, 317 bool IsFunclet) { 318 if (!IsWin64 || IsFunclet) { 319 return AFI->getTailCallReservedStack(); 320 } else { 321 if (AFI->getTailCallReservedStack() != 0) 322 report_fatal_error("cannot generate ABI-changing tail call for Win64"); 323 // Var args are stored here in the primary function. 324 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 325 // To support EH funclets we allocate an UnwindHelp object 326 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 327 return alignTo(VarArgsArea + UnwindHelpObject, 16); 328 } 329 } 330 331 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 332 static StackOffset getSVEStackSize(const MachineFunction &MF) { 333 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 334 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE()); 335 } 336 337 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 338 if (!EnableRedZone) 339 return false; 340 341 // Don't use the red zone if the function explicitly asks us not to. 342 // This is typically used for kernel code. 343 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 344 const unsigned RedZoneSize = 345 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 346 if (!RedZoneSize) 347 return false; 348 349 const MachineFrameInfo &MFI = MF.getFrameInfo(); 350 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 351 uint64_t NumBytes = AFI->getLocalStackSize(); 352 353 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize || 354 getSVEStackSize(MF)); 355 } 356 357 /// hasFP - Return true if the specified function should have a dedicated frame 358 /// pointer register. 359 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { 360 const MachineFrameInfo &MFI = MF.getFrameInfo(); 361 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 362 // Win64 EH requires a frame pointer if funclets are present, as the locals 363 // are accessed off the frame pointer in both the parent function and the 364 // funclets. 365 if (MF.hasEHFunclets()) 366 return true; 367 // Retain behavior of always omitting the FP for leaf functions when possible. 368 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 369 return true; 370 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 371 MFI.hasStackMap() || MFI.hasPatchPoint() || 372 RegInfo->hasStackRealignment(MF)) 373 return true; 374 // With large callframes around we may need to use FP to access the scavenging 375 // emergency spillslot. 376 // 377 // Unfortunately some calls to hasFP() like machine verifier -> 378 // getReservedReg() -> hasFP in the middle of global isel are too early 379 // to know the max call frame size. Hopefully conservatively returning "true" 380 // in those cases is fine. 381 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 382 if (!MFI.isMaxCallFrameSizeComputed() || 383 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 384 return true; 385 386 return false; 387 } 388 389 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 390 /// not required, we reserve argument space for call sites in the function 391 /// immediately on entry to the current function. This eliminates the need for 392 /// add/sub sp brackets around call sites. Returns true if the call frame is 393 /// included as part of the stack frame. 394 bool 395 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 396 return !MF.getFrameInfo().hasVarSizedObjects(); 397 } 398 399 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 400 MachineFunction &MF, MachineBasicBlock &MBB, 401 MachineBasicBlock::iterator I) const { 402 const AArch64InstrInfo *TII = 403 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 404 DebugLoc DL = I->getDebugLoc(); 405 unsigned Opc = I->getOpcode(); 406 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 407 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 408 409 if (!hasReservedCallFrame(MF)) { 410 int64_t Amount = I->getOperand(0).getImm(); 411 Amount = alignTo(Amount, getStackAlign()); 412 if (!IsDestroy) 413 Amount = -Amount; 414 415 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 416 // doesn't have to pop anything), then the first operand will be zero too so 417 // this adjustment is a no-op. 418 if (CalleePopAmount == 0) { 419 // FIXME: in-function stack adjustment for calls is limited to 24-bits 420 // because there's no guaranteed temporary register available. 421 // 422 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 423 // 1) For offset <= 12-bit, we use LSL #0 424 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 425 // LSL #0, and the other uses LSL #12. 426 // 427 // Most call frames will be allocated at the start of a function so 428 // this is OK, but it is a limitation that needs dealing with. 429 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 430 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 431 StackOffset::getFixed(Amount), TII); 432 } 433 } else if (CalleePopAmount != 0) { 434 // If the calling convention demands that the callee pops arguments from the 435 // stack, we want to add it back if we have a reserved call frame. 436 assert(CalleePopAmount < 0xffffff && "call frame too large"); 437 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 438 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII); 439 } 440 return MBB.erase(I); 441 } 442 443 // Convenience function to create a DWARF expression for 444 // Expr + NumBytes + NumVGScaledBytes * AArch64::VG 445 static void appendVGScaledOffsetExpr(SmallVectorImpl<char> &Expr, 446 int NumBytes, int NumVGScaledBytes, unsigned VG, 447 llvm::raw_string_ostream &Comment) { 448 uint8_t buffer[16]; 449 450 if (NumBytes) { 451 Expr.push_back(dwarf::DW_OP_consts); 452 Expr.append(buffer, buffer + encodeSLEB128(NumBytes, buffer)); 453 Expr.push_back((uint8_t)dwarf::DW_OP_plus); 454 Comment << (NumBytes < 0 ? " - " : " + ") << std::abs(NumBytes); 455 } 456 457 if (NumVGScaledBytes) { 458 Expr.push_back((uint8_t)dwarf::DW_OP_consts); 459 Expr.append(buffer, buffer + encodeSLEB128(NumVGScaledBytes, buffer)); 460 461 Expr.push_back((uint8_t)dwarf::DW_OP_bregx); 462 Expr.append(buffer, buffer + encodeULEB128(VG, buffer)); 463 Expr.push_back(0); 464 465 Expr.push_back((uint8_t)dwarf::DW_OP_mul); 466 Expr.push_back((uint8_t)dwarf::DW_OP_plus); 467 468 Comment << (NumVGScaledBytes < 0 ? " - " : " + ") 469 << std::abs(NumVGScaledBytes) << " * VG"; 470 } 471 } 472 473 // Creates an MCCFIInstruction: 474 // { DW_CFA_def_cfa_expression, ULEB128 (sizeof expr), expr } 475 MCCFIInstruction AArch64FrameLowering::createDefCFAExpressionFromSP( 476 const TargetRegisterInfo &TRI, const StackOffset &OffsetFromSP) const { 477 int64_t NumBytes, NumVGScaledBytes; 478 AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(OffsetFromSP, NumBytes, 479 NumVGScaledBytes); 480 481 std::string CommentBuffer = "sp"; 482 llvm::raw_string_ostream Comment(CommentBuffer); 483 484 // Build up the expression (SP + NumBytes + NumVGScaledBytes * AArch64::VG) 485 SmallString<64> Expr; 486 Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + /*SP*/ 31)); 487 Expr.push_back(0); 488 appendVGScaledOffsetExpr(Expr, NumBytes, NumVGScaledBytes, 489 TRI.getDwarfRegNum(AArch64::VG, true), Comment); 490 491 // Wrap this into DW_CFA_def_cfa. 492 SmallString<64> DefCfaExpr; 493 DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression); 494 uint8_t buffer[16]; 495 DefCfaExpr.append(buffer, 496 buffer + encodeULEB128(Expr.size(), buffer)); 497 DefCfaExpr.append(Expr.str()); 498 return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), 499 Comment.str()); 500 } 501 502 MCCFIInstruction AArch64FrameLowering::createCfaOffset( 503 const TargetRegisterInfo &TRI, unsigned Reg, 504 const StackOffset &OffsetFromDefCFA) const { 505 int64_t NumBytes, NumVGScaledBytes; 506 AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets( 507 OffsetFromDefCFA, NumBytes, NumVGScaledBytes); 508 509 unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true); 510 511 // Non-scalable offsets can use DW_CFA_offset directly. 512 if (!NumVGScaledBytes) 513 return MCCFIInstruction::createOffset(nullptr, DwarfReg, NumBytes); 514 515 std::string CommentBuffer; 516 llvm::raw_string_ostream Comment(CommentBuffer); 517 Comment << printReg(Reg, &TRI) << " @ cfa"; 518 519 // Build up expression (NumBytes + NumVGScaledBytes * AArch64::VG) 520 SmallString<64> OffsetExpr; 521 appendVGScaledOffsetExpr(OffsetExpr, NumBytes, NumVGScaledBytes, 522 TRI.getDwarfRegNum(AArch64::VG, true), Comment); 523 524 // Wrap this into DW_CFA_expression 525 SmallString<64> CfaExpr; 526 CfaExpr.push_back(dwarf::DW_CFA_expression); 527 uint8_t buffer[16]; 528 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 529 CfaExpr.append(buffer, buffer + encodeULEB128(OffsetExpr.size(), buffer)); 530 CfaExpr.append(OffsetExpr.str()); 531 532 return MCCFIInstruction::createEscape(nullptr, CfaExpr.str(), Comment.str()); 533 } 534 535 void AArch64FrameLowering::emitCalleeSavedFrameMoves( 536 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 537 MachineFunction &MF = *MBB.getParent(); 538 MachineFrameInfo &MFI = MF.getFrameInfo(); 539 const TargetSubtargetInfo &STI = MF.getSubtarget(); 540 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 541 const TargetInstrInfo *TII = STI.getInstrInfo(); 542 DebugLoc DL = MBB.findDebugLoc(MBBI); 543 544 // Add callee saved registers to move list. 545 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 546 if (CSI.empty()) 547 return; 548 549 for (const auto &Info : CSI) { 550 unsigned Reg = Info.getReg(); 551 552 // Not all unwinders may know about SVE registers, so assume the lowest 553 // common demoninator. 554 unsigned NewReg; 555 if (static_cast<const AArch64RegisterInfo *>(TRI)->regNeedsCFI(Reg, NewReg)) 556 Reg = NewReg; 557 else 558 continue; 559 560 StackOffset Offset; 561 if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector) { 562 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 563 Offset = 564 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) - 565 StackOffset::getFixed(AFI->getCalleeSavedStackSize(MFI)); 566 } else { 567 Offset = StackOffset::getFixed(MFI.getObjectOffset(Info.getFrameIdx()) - 568 getOffsetOfLocalArea()); 569 } 570 unsigned CFIIndex = MF.addFrameInst(createCfaOffset(*TRI, Reg, Offset)); 571 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 572 .addCFIIndex(CFIIndex) 573 .setMIFlags(MachineInstr::FrameSetup); 574 } 575 } 576 577 // Find a scratch register that we can use at the start of the prologue to 578 // re-align the stack pointer. We avoid using callee-save registers since they 579 // may appear to be free when this is called from canUseAsPrologue (during 580 // shrink wrapping), but then no longer be free when this is called from 581 // emitPrologue. 582 // 583 // FIXME: This is a bit conservative, since in the above case we could use one 584 // of the callee-save registers as a scratch temp to re-align the stack pointer, 585 // but we would then have to make sure that we were in fact saving at least one 586 // callee-save register in the prologue, which is additional complexity that 587 // doesn't seem worth the benefit. 588 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 589 MachineFunction *MF = MBB->getParent(); 590 591 // If MBB is an entry block, use X9 as the scratch register 592 if (&MF->front() == MBB) 593 return AArch64::X9; 594 595 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 596 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 597 LivePhysRegs LiveRegs(TRI); 598 LiveRegs.addLiveIns(*MBB); 599 600 // Mark callee saved registers as used so we will not choose them. 601 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 602 for (unsigned i = 0; CSRegs[i]; ++i) 603 LiveRegs.addReg(CSRegs[i]); 604 605 // Prefer X9 since it was historically used for the prologue scratch reg. 606 const MachineRegisterInfo &MRI = MF->getRegInfo(); 607 if (LiveRegs.available(MRI, AArch64::X9)) 608 return AArch64::X9; 609 610 for (unsigned Reg : AArch64::GPR64RegClass) { 611 if (LiveRegs.available(MRI, Reg)) 612 return Reg; 613 } 614 return AArch64::NoRegister; 615 } 616 617 bool AArch64FrameLowering::canUseAsPrologue( 618 const MachineBasicBlock &MBB) const { 619 const MachineFunction *MF = MBB.getParent(); 620 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 621 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 622 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 623 624 // Don't need a scratch register if we're not going to re-align the stack. 625 if (!RegInfo->hasStackRealignment(*MF)) 626 return true; 627 // Otherwise, we can use any block as long as it has a scratch register 628 // available. 629 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 630 } 631 632 static bool windowsRequiresStackProbe(MachineFunction &MF, 633 uint64_t StackSizeInBytes) { 634 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 635 if (!Subtarget.isTargetWindows()) 636 return false; 637 const Function &F = MF.getFunction(); 638 // TODO: When implementing stack protectors, take that into account 639 // for the probe threshold. 640 unsigned StackProbeSize = 4096; 641 if (F.hasFnAttribute("stack-probe-size")) 642 F.getFnAttribute("stack-probe-size") 643 .getValueAsString() 644 .getAsInteger(0, StackProbeSize); 645 return (StackSizeInBytes >= StackProbeSize) && 646 !F.hasFnAttribute("no-stack-arg-probe"); 647 } 648 649 static bool needsWinCFI(const MachineFunction &MF) { 650 const Function &F = MF.getFunction(); 651 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 652 F.needsUnwindTableEntry(); 653 } 654 655 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 656 MachineFunction &MF, uint64_t StackBumpBytes) const { 657 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 658 const MachineFrameInfo &MFI = MF.getFrameInfo(); 659 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 660 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 661 if (homogeneousPrologEpilog(MF)) 662 return false; 663 664 if (AFI->getLocalStackSize() == 0) 665 return false; 666 667 // For WinCFI, if optimizing for size, prefer to not combine the stack bump 668 // (to force a stp with predecrement) to match the packed unwind format, 669 // provided that there actually are any callee saved registers to merge the 670 // decrement with. 671 // This is potentially marginally slower, but allows using the packed 672 // unwind format for functions that both have a local area and callee saved 673 // registers. Using the packed unwind format notably reduces the size of 674 // the unwind info. 675 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 && 676 MF.getFunction().hasOptSize()) 677 return false; 678 679 // 512 is the maximum immediate for stp/ldp that will be used for 680 // callee-save save/restores 681 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 682 return false; 683 684 if (MFI.hasVarSizedObjects()) 685 return false; 686 687 if (RegInfo->hasStackRealignment(MF)) 688 return false; 689 690 // This isn't strictly necessary, but it simplifies things a bit since the 691 // current RedZone handling code assumes the SP is adjusted by the 692 // callee-save save/restore code. 693 if (canUseRedZone(MF)) 694 return false; 695 696 // When there is an SVE area on the stack, always allocate the 697 // callee-saves and spills/locals separately. 698 if (getSVEStackSize(MF)) 699 return false; 700 701 return true; 702 } 703 704 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( 705 MachineBasicBlock &MBB, unsigned StackBumpBytes) const { 706 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) 707 return false; 708 709 if (MBB.empty()) 710 return true; 711 712 // Disable combined SP bump if the last instruction is an MTE tag store. It 713 // is almost always better to merge SP adjustment into those instructions. 714 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); 715 MachineBasicBlock::iterator Begin = MBB.begin(); 716 while (LastI != Begin) { 717 --LastI; 718 if (LastI->isTransient()) 719 continue; 720 if (!LastI->getFlag(MachineInstr::FrameDestroy)) 721 break; 722 } 723 switch (LastI->getOpcode()) { 724 case AArch64::STGloop: 725 case AArch64::STZGloop: 726 case AArch64::STGOffset: 727 case AArch64::STZGOffset: 728 case AArch64::ST2GOffset: 729 case AArch64::STZ2GOffset: 730 return false; 731 default: 732 return true; 733 } 734 llvm_unreachable("unreachable"); 735 } 736 737 // Given a load or a store instruction, generate an appropriate unwinding SEH 738 // code on Windows. 739 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 740 const TargetInstrInfo &TII, 741 MachineInstr::MIFlag Flag) { 742 unsigned Opc = MBBI->getOpcode(); 743 MachineBasicBlock *MBB = MBBI->getParent(); 744 MachineFunction &MF = *MBB->getParent(); 745 DebugLoc DL = MBBI->getDebugLoc(); 746 unsigned ImmIdx = MBBI->getNumOperands() - 1; 747 int Imm = MBBI->getOperand(ImmIdx).getImm(); 748 MachineInstrBuilder MIB; 749 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 750 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 751 752 switch (Opc) { 753 default: 754 llvm_unreachable("No SEH Opcode for this instruction"); 755 case AArch64::LDPDpost: 756 Imm = -Imm; 757 LLVM_FALLTHROUGH; 758 case AArch64::STPDpre: { 759 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 760 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 761 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 762 .addImm(Reg0) 763 .addImm(Reg1) 764 .addImm(Imm * 8) 765 .setMIFlag(Flag); 766 break; 767 } 768 case AArch64::LDPXpost: 769 Imm = -Imm; 770 LLVM_FALLTHROUGH; 771 case AArch64::STPXpre: { 772 Register Reg0 = MBBI->getOperand(1).getReg(); 773 Register Reg1 = MBBI->getOperand(2).getReg(); 774 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 775 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 776 .addImm(Imm * 8) 777 .setMIFlag(Flag); 778 else 779 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 780 .addImm(RegInfo->getSEHRegNum(Reg0)) 781 .addImm(RegInfo->getSEHRegNum(Reg1)) 782 .addImm(Imm * 8) 783 .setMIFlag(Flag); 784 break; 785 } 786 case AArch64::LDRDpost: 787 Imm = -Imm; 788 LLVM_FALLTHROUGH; 789 case AArch64::STRDpre: { 790 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 791 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 792 .addImm(Reg) 793 .addImm(Imm) 794 .setMIFlag(Flag); 795 break; 796 } 797 case AArch64::LDRXpost: 798 Imm = -Imm; 799 LLVM_FALLTHROUGH; 800 case AArch64::STRXpre: { 801 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 802 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 803 .addImm(Reg) 804 .addImm(Imm) 805 .setMIFlag(Flag); 806 break; 807 } 808 case AArch64::STPDi: 809 case AArch64::LDPDi: { 810 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 811 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 812 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 813 .addImm(Reg0) 814 .addImm(Reg1) 815 .addImm(Imm * 8) 816 .setMIFlag(Flag); 817 break; 818 } 819 case AArch64::STPXi: 820 case AArch64::LDPXi: { 821 Register Reg0 = MBBI->getOperand(0).getReg(); 822 Register Reg1 = MBBI->getOperand(1).getReg(); 823 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 824 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 825 .addImm(Imm * 8) 826 .setMIFlag(Flag); 827 else 828 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 829 .addImm(RegInfo->getSEHRegNum(Reg0)) 830 .addImm(RegInfo->getSEHRegNum(Reg1)) 831 .addImm(Imm * 8) 832 .setMIFlag(Flag); 833 break; 834 } 835 case AArch64::STRXui: 836 case AArch64::LDRXui: { 837 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 838 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 839 .addImm(Reg) 840 .addImm(Imm * 8) 841 .setMIFlag(Flag); 842 break; 843 } 844 case AArch64::STRDui: 845 case AArch64::LDRDui: { 846 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 847 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 848 .addImm(Reg) 849 .addImm(Imm * 8) 850 .setMIFlag(Flag); 851 break; 852 } 853 } 854 auto I = MBB->insertAfter(MBBI, MIB); 855 return I; 856 } 857 858 // Fix up the SEH opcode associated with the save/restore instruction. 859 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 860 unsigned LocalStackSize) { 861 MachineOperand *ImmOpnd = nullptr; 862 unsigned ImmIdx = MBBI->getNumOperands() - 1; 863 switch (MBBI->getOpcode()) { 864 default: 865 llvm_unreachable("Fix the offset in the SEH instruction"); 866 case AArch64::SEH_SaveFPLR: 867 case AArch64::SEH_SaveRegP: 868 case AArch64::SEH_SaveReg: 869 case AArch64::SEH_SaveFRegP: 870 case AArch64::SEH_SaveFReg: 871 ImmOpnd = &MBBI->getOperand(ImmIdx); 872 break; 873 } 874 if (ImmOpnd) 875 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 876 } 877 878 // Convert callee-save register save/restore instruction to do stack pointer 879 // decrement/increment to allocate/deallocate the callee-save stack area by 880 // converting store/load to use pre/post increment version. 881 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 882 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 883 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 884 bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) { 885 // Ignore instructions that do not operate on SP, i.e. shadow call stack 886 // instructions and associated CFI instruction. 887 while (MBBI->getOpcode() == AArch64::STRXpost || 888 MBBI->getOpcode() == AArch64::LDRXpre || 889 MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) { 890 if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION) 891 assert(MBBI->getOperand(0).getReg() != AArch64::SP); 892 ++MBBI; 893 } 894 unsigned NewOpc; 895 switch (MBBI->getOpcode()) { 896 default: 897 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 898 case AArch64::STPXi: 899 NewOpc = AArch64::STPXpre; 900 break; 901 case AArch64::STPDi: 902 NewOpc = AArch64::STPDpre; 903 break; 904 case AArch64::STPQi: 905 NewOpc = AArch64::STPQpre; 906 break; 907 case AArch64::STRXui: 908 NewOpc = AArch64::STRXpre; 909 break; 910 case AArch64::STRDui: 911 NewOpc = AArch64::STRDpre; 912 break; 913 case AArch64::STRQui: 914 NewOpc = AArch64::STRQpre; 915 break; 916 case AArch64::LDPXi: 917 NewOpc = AArch64::LDPXpost; 918 break; 919 case AArch64::LDPDi: 920 NewOpc = AArch64::LDPDpost; 921 break; 922 case AArch64::LDPQi: 923 NewOpc = AArch64::LDPQpost; 924 break; 925 case AArch64::LDRXui: 926 NewOpc = AArch64::LDRXpost; 927 break; 928 case AArch64::LDRDui: 929 NewOpc = AArch64::LDRDpost; 930 break; 931 case AArch64::LDRQui: 932 NewOpc = AArch64::LDRQpost; 933 break; 934 } 935 // Get rid of the SEH code associated with the old instruction. 936 if (NeedsWinCFI) { 937 auto SEH = std::next(MBBI); 938 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 939 SEH->eraseFromParent(); 940 } 941 942 TypeSize Scale = TypeSize::Fixed(1); 943 unsigned Width; 944 int64_t MinOffset, MaxOffset; 945 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo( 946 NewOpc, Scale, Width, MinOffset, MaxOffset); 947 (void)Success; 948 assert(Success && "unknown load/store opcode"); 949 950 // If the first store isn't right where we want SP then we can't fold the 951 // update in so create a normal arithmetic instruction instead. 952 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 || 953 CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) { 954 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 955 StackOffset::getFixed(CSStackSizeInc), TII, 956 InProlog ? MachineInstr::FrameSetup 957 : MachineInstr::FrameDestroy); 958 return std::prev(MBBI); 959 } 960 961 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 962 MIB.addReg(AArch64::SP, RegState::Define); 963 964 // Copy all operands other than the immediate offset. 965 unsigned OpndIdx = 0; 966 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 967 ++OpndIdx) 968 MIB.add(MBBI->getOperand(OpndIdx)); 969 970 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 971 "Unexpected immediate offset in first/last callee-save save/restore " 972 "instruction!"); 973 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 974 "Unexpected base register in callee-save save/restore instruction!"); 975 assert(CSStackSizeInc % Scale == 0); 976 MIB.addImm(CSStackSizeInc / (int)Scale); 977 978 MIB.setMIFlags(MBBI->getFlags()); 979 MIB.setMemRefs(MBBI->memoperands()); 980 981 // Generate a new SEH code that corresponds to the new instruction. 982 if (NeedsWinCFI) { 983 *HasWinCFI = true; 984 InsertSEH(*MIB, *TII, 985 InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy); 986 } 987 988 return std::prev(MBB.erase(MBBI)); 989 } 990 991 // Fixup callee-save register save/restore instructions to take into account 992 // combined SP bump by adding the local stack size to the stack offsets. 993 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 994 uint64_t LocalStackSize, 995 bool NeedsWinCFI, 996 bool *HasWinCFI) { 997 if (AArch64InstrInfo::isSEHInstruction(MI)) 998 return; 999 1000 unsigned Opc = MI.getOpcode(); 1001 1002 // Ignore instructions that do not operate on SP, i.e. shadow call stack 1003 // instructions and associated CFI instruction. 1004 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre || 1005 Opc == AArch64::CFI_INSTRUCTION) { 1006 if (Opc != AArch64::CFI_INSTRUCTION) 1007 assert(MI.getOperand(0).getReg() != AArch64::SP); 1008 return; 1009 } 1010 1011 unsigned Scale; 1012 switch (Opc) { 1013 case AArch64::STPXi: 1014 case AArch64::STRXui: 1015 case AArch64::STPDi: 1016 case AArch64::STRDui: 1017 case AArch64::LDPXi: 1018 case AArch64::LDRXui: 1019 case AArch64::LDPDi: 1020 case AArch64::LDRDui: 1021 Scale = 8; 1022 break; 1023 case AArch64::STPQi: 1024 case AArch64::STRQui: 1025 case AArch64::LDPQi: 1026 case AArch64::LDRQui: 1027 Scale = 16; 1028 break; 1029 default: 1030 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 1031 } 1032 1033 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 1034 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 1035 "Unexpected base register in callee-save save/restore instruction!"); 1036 // Last operand is immediate offset that needs fixing. 1037 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 1038 // All generated opcodes have scaled offsets. 1039 assert(LocalStackSize % Scale == 0); 1040 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 1041 1042 if (NeedsWinCFI) { 1043 *HasWinCFI = true; 1044 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 1045 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 1046 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 1047 "Expecting a SEH instruction"); 1048 fixupSEHOpcode(MBBI, LocalStackSize); 1049 } 1050 } 1051 1052 static void adaptForLdStOpt(MachineBasicBlock &MBB, 1053 MachineBasicBlock::iterator FirstSPPopI, 1054 MachineBasicBlock::iterator LastPopI) { 1055 // Sometimes (when we restore in the same order as we save), we can end up 1056 // with code like this: 1057 // 1058 // ldp x26, x25, [sp] 1059 // ldp x24, x23, [sp, #16] 1060 // ldp x22, x21, [sp, #32] 1061 // ldp x20, x19, [sp, #48] 1062 // add sp, sp, #64 1063 // 1064 // In this case, it is always better to put the first ldp at the end, so 1065 // that the load-store optimizer can run and merge the ldp and the add into 1066 // a post-index ldp. 1067 // If we managed to grab the first pop instruction, move it to the end. 1068 if (ReverseCSRRestoreSeq) 1069 MBB.splice(FirstSPPopI, &MBB, LastPopI); 1070 // We should end up with something like this now: 1071 // 1072 // ldp x24, x23, [sp, #16] 1073 // ldp x22, x21, [sp, #32] 1074 // ldp x20, x19, [sp, #48] 1075 // ldp x26, x25, [sp] 1076 // add sp, sp, #64 1077 // 1078 // and the load-store optimizer can merge the last two instructions into: 1079 // 1080 // ldp x26, x25, [sp], #64 1081 // 1082 } 1083 1084 static bool isTargetWindows(const MachineFunction &MF) { 1085 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 1086 } 1087 1088 // Convenience function to determine whether I is an SVE callee save. 1089 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 1090 switch (I->getOpcode()) { 1091 default: 1092 return false; 1093 case AArch64::STR_ZXI: 1094 case AArch64::STR_PXI: 1095 case AArch64::LDR_ZXI: 1096 case AArch64::LDR_PXI: 1097 return I->getFlag(MachineInstr::FrameSetup) || 1098 I->getFlag(MachineInstr::FrameDestroy); 1099 } 1100 } 1101 1102 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 1103 MachineBasicBlock &MBB) const { 1104 MachineBasicBlock::iterator MBBI = MBB.begin(); 1105 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1106 const Function &F = MF.getFunction(); 1107 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1108 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1109 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1110 MachineModuleInfo &MMI = MF.getMMI(); 1111 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1112 bool needsFrameMoves = 1113 MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1114 bool HasFP = hasFP(MF); 1115 bool NeedsWinCFI = needsWinCFI(MF); 1116 bool HasWinCFI = false; 1117 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 1118 1119 bool IsFunclet = MBB.isEHFuncletEntry(); 1120 1121 // At this point, we're going to decide whether or not the function uses a 1122 // redzone. In most cases, the function doesn't have a redzone so let's 1123 // assume that's false and set it to true in the case that there's a redzone. 1124 AFI->setHasRedZone(false); 1125 1126 // Debug location must be unknown since the first debug location is used 1127 // to determine the end of the prologue. 1128 DebugLoc DL; 1129 1130 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>(); 1131 if (MFnI.shouldSignReturnAddress()) { 1132 1133 unsigned PACI; 1134 if (MFnI.shouldSignWithBKey()) { 1135 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY)) 1136 .setMIFlag(MachineInstr::FrameSetup); 1137 PACI = Subtarget.hasPAuth() ? AArch64::PACIB : AArch64::PACIBSP; 1138 } else { 1139 PACI = Subtarget.hasPAuth() ? AArch64::PACIA : AArch64::PACIASP; 1140 } 1141 1142 auto MI = BuildMI(MBB, MBBI, DL, TII->get(PACI)); 1143 if (Subtarget.hasPAuth()) 1144 MI.addReg(AArch64::LR, RegState::Define) 1145 .addReg(AArch64::LR) 1146 .addReg(AArch64::SP, RegState::InternalRead); 1147 MI.setMIFlag(MachineInstr::FrameSetup); 1148 1149 unsigned CFIIndex = 1150 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 1151 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1152 .addCFIIndex(CFIIndex) 1153 .setMIFlags(MachineInstr::FrameSetup); 1154 } 1155 1156 // We signal the presence of a Swift extended frame to external tools by 1157 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple 1158 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI 1159 // bits so that is still true. 1160 if (HasFP && AFI->hasSwiftAsyncContext()) { 1161 // ORR x29, x29, #0x1000_0000_0000_0000 1162 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP) 1163 .addUse(AArch64::FP) 1164 .addImm(0x1100) 1165 .setMIFlag(MachineInstr::FrameSetup); 1166 } 1167 1168 // All calls are tail calls in GHC calling conv, and functions have no 1169 // prologue/epilogue. 1170 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1171 return; 1172 1173 // Set tagged base pointer to the requested stack slot. 1174 // Ideally it should match SP value after prologue. 1175 Optional<int> TBPI = AFI->getTaggedBasePointerIndex(); 1176 if (TBPI) 1177 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI)); 1178 else 1179 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 1180 1181 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1182 1183 // getStackSize() includes all the locals in its size calculation. We don't 1184 // include these locals when computing the stack size of a funclet, as they 1185 // are allocated in the parent's stack frame and accessed via the frame 1186 // pointer from the funclet. We only save the callee saved registers in the 1187 // funclet, which are really the callee saved registers of the parent 1188 // function, including the funclet. 1189 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1190 : MFI.getStackSize(); 1191 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 1192 assert(!HasFP && "unexpected function without stack frame but with FP"); 1193 assert(!SVEStackSize && 1194 "unexpected function without stack frame but with SVE objects"); 1195 // All of the stack allocation is for locals. 1196 AFI->setLocalStackSize(NumBytes); 1197 if (!NumBytes) 1198 return; 1199 // REDZONE: If the stack size is less than 128 bytes, we don't need 1200 // to actually allocate. 1201 if (canUseRedZone(MF)) { 1202 AFI->setHasRedZone(true); 1203 ++NumRedZoneFunctions; 1204 } else { 1205 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1206 StackOffset::getFixed(-NumBytes), TII, 1207 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1208 if (!NeedsWinCFI && needsFrameMoves) { 1209 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 1210 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 1211 // Encode the stack size of the leaf function. 1212 unsigned CFIIndex = MF.addFrameInst( 1213 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); 1214 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1215 .addCFIIndex(CFIIndex) 1216 .setMIFlags(MachineInstr::FrameSetup); 1217 } 1218 } 1219 1220 if (NeedsWinCFI) { 1221 HasWinCFI = true; 1222 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1223 .setMIFlag(MachineInstr::FrameSetup); 1224 } 1225 1226 return; 1227 } 1228 1229 bool IsWin64 = 1230 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1231 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1232 1233 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1234 // All of the remaining stack allocations are for locals. 1235 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1236 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1237 bool HomPrologEpilog = homogeneousPrologEpilog(MF); 1238 if (CombineSPBump) { 1239 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1240 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1241 StackOffset::getFixed(-NumBytes), TII, 1242 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1243 NumBytes = 0; 1244 } else if (HomPrologEpilog) { 1245 // Stack has been already adjusted. 1246 NumBytes -= PrologueSaveSize; 1247 } else if (PrologueSaveSize != 0) { 1248 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 1249 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI); 1250 NumBytes -= PrologueSaveSize; 1251 } 1252 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1253 1254 // Move past the saves of the callee-saved registers, fixing up the offsets 1255 // and pre-inc if we decided to combine the callee-save and local stack 1256 // pointer bump above. 1257 MachineBasicBlock::iterator End = MBB.end(); 1258 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1259 !IsSVECalleeSave(MBBI)) { 1260 if (CombineSPBump) 1261 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1262 NeedsWinCFI, &HasWinCFI); 1263 ++MBBI; 1264 } 1265 1266 // For funclets the FP belongs to the containing function. 1267 if (!IsFunclet && HasFP) { 1268 // Only set up FP if we actually need to. 1269 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset(); 1270 1271 if (CombineSPBump) 1272 FPOffset += AFI->getLocalStackSize(); 1273 1274 if (AFI->hasSwiftAsyncContext()) { 1275 // Before we update the live FP we have to ensure there's a valid (or 1276 // null) asynchronous context in its slot just before FP in the frame 1277 // record, so store it now. 1278 const auto &Attrs = MF.getFunction().getAttributes(); 1279 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync); 1280 if (HaveInitialContext) 1281 MBB.addLiveIn(AArch64::X22); 1282 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext)) 1283 .addUse(HaveInitialContext ? AArch64::X22 : AArch64::XZR) 1284 .addUse(AArch64::SP) 1285 .addImm(FPOffset - 8) 1286 .setMIFlags(MachineInstr::FrameSetup); 1287 } 1288 1289 if (HomPrologEpilog) { 1290 auto Prolog = MBBI; 1291 --Prolog; 1292 assert(Prolog->getOpcode() == AArch64::HOM_Prolog); 1293 Prolog->addOperand(MachineOperand::CreateImm(FPOffset)); 1294 } else { 1295 // Issue sub fp, sp, FPOffset or 1296 // mov fp,sp when FPOffset is zero. 1297 // Note: All stores of callee-saved registers are marked as "FrameSetup". 1298 // This code marks the instruction(s) that set the FP also. 1299 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 1300 StackOffset::getFixed(FPOffset), TII, 1301 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1302 } 1303 } 1304 1305 if (windowsRequiresStackProbe(MF, NumBytes)) { 1306 uint64_t NumWords = NumBytes >> 4; 1307 if (NeedsWinCFI) { 1308 HasWinCFI = true; 1309 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 1310 // exceed this amount. We need to move at most 2^24 - 1 into x15. 1311 // This is at most two instructions, MOVZ follwed by MOVK. 1312 // TODO: Fix to use multiple stack alloc unwind codes for stacks 1313 // exceeding 256MB in size. 1314 if (NumBytes >= (1 << 28)) 1315 report_fatal_error("Stack size cannot exceed 256MB for stack " 1316 "unwinding purposes"); 1317 1318 uint32_t LowNumWords = NumWords & 0xFFFF; 1319 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 1320 .addImm(LowNumWords) 1321 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1322 .setMIFlag(MachineInstr::FrameSetup); 1323 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1324 .setMIFlag(MachineInstr::FrameSetup); 1325 if ((NumWords & 0xFFFF0000) != 0) { 1326 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 1327 .addReg(AArch64::X15) 1328 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 1329 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 1330 .setMIFlag(MachineInstr::FrameSetup); 1331 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1332 .setMIFlag(MachineInstr::FrameSetup); 1333 } 1334 } else { 1335 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 1336 .addImm(NumWords) 1337 .setMIFlags(MachineInstr::FrameSetup); 1338 } 1339 1340 switch (MF.getTarget().getCodeModel()) { 1341 case CodeModel::Tiny: 1342 case CodeModel::Small: 1343 case CodeModel::Medium: 1344 case CodeModel::Kernel: 1345 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 1346 .addExternalSymbol("__chkstk") 1347 .addReg(AArch64::X15, RegState::Implicit) 1348 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1349 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1350 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1351 .setMIFlags(MachineInstr::FrameSetup); 1352 if (NeedsWinCFI) { 1353 HasWinCFI = true; 1354 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1355 .setMIFlag(MachineInstr::FrameSetup); 1356 } 1357 break; 1358 case CodeModel::Large: 1359 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 1360 .addReg(AArch64::X16, RegState::Define) 1361 .addExternalSymbol("__chkstk") 1362 .addExternalSymbol("__chkstk") 1363 .setMIFlags(MachineInstr::FrameSetup); 1364 if (NeedsWinCFI) { 1365 HasWinCFI = true; 1366 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1367 .setMIFlag(MachineInstr::FrameSetup); 1368 } 1369 1370 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF))) 1371 .addReg(AArch64::X16, RegState::Kill) 1372 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 1373 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1374 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1375 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1376 .setMIFlags(MachineInstr::FrameSetup); 1377 if (NeedsWinCFI) { 1378 HasWinCFI = true; 1379 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1380 .setMIFlag(MachineInstr::FrameSetup); 1381 } 1382 break; 1383 } 1384 1385 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 1386 .addReg(AArch64::SP, RegState::Kill) 1387 .addReg(AArch64::X15, RegState::Kill) 1388 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 1389 .setMIFlags(MachineInstr::FrameSetup); 1390 if (NeedsWinCFI) { 1391 HasWinCFI = true; 1392 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1393 .addImm(NumBytes) 1394 .setMIFlag(MachineInstr::FrameSetup); 1395 } 1396 NumBytes = 0; 1397 } 1398 1399 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {}; 1400 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 1401 1402 // Process the SVE callee-saves to determine what space needs to be 1403 // allocated. 1404 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 1405 // Find callee save instructions in frame. 1406 CalleeSavesBegin = MBBI; 1407 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 1408 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 1409 ++MBBI; 1410 CalleeSavesEnd = MBBI; 1411 1412 AllocateBefore = StackOffset::getScalable(CalleeSavedSize); 1413 AllocateAfter = SVEStackSize - AllocateBefore; 1414 } 1415 1416 // Allocate space for the callee saves (if any). 1417 emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, 1418 -AllocateBefore, TII, 1419 MachineInstr::FrameSetup); 1420 1421 // Finally allocate remaining SVE stack space. 1422 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP, 1423 -AllocateAfter, TII, 1424 MachineInstr::FrameSetup); 1425 1426 // Allocate space for the rest of the frame. 1427 if (NumBytes) { 1428 // Alignment is required for the parent frame, not the funclet 1429 const bool NeedsRealignment = 1430 !IsFunclet && RegInfo->hasStackRealignment(MF); 1431 unsigned scratchSPReg = AArch64::SP; 1432 1433 if (NeedsRealignment) { 1434 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB); 1435 assert(scratchSPReg != AArch64::NoRegister); 1436 } 1437 1438 // If we're a leaf function, try using the red zone. 1439 if (!canUseRedZone(MF)) 1440 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 1441 // the correct value here, as NumBytes also includes padding bytes, 1442 // which shouldn't be counted here. 1443 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, 1444 StackOffset::getFixed(-NumBytes), TII, 1445 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1446 1447 if (NeedsRealignment) { 1448 const unsigned NrBitsToZero = Log2(MFI.getMaxAlign()); 1449 assert(NrBitsToZero > 1); 1450 assert(scratchSPReg != AArch64::SP); 1451 1452 // SUB X9, SP, NumBytes 1453 // -- X9 is temporary register, so shouldn't contain any live data here, 1454 // -- free to use. This is already produced by emitFrameOffset above. 1455 // AND SP, X9, 0b11111...0000 1456 // The logical immediates have a non-trivial encoding. The following 1457 // formula computes the encoded immediate with all ones but 1458 // NrBitsToZero zero bits as least significant bits. 1459 uint32_t andMaskEncoded = (1 << 12) // = N 1460 | ((64 - NrBitsToZero) << 6) // immr 1461 | ((64 - NrBitsToZero - 1) << 0); // imms 1462 1463 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 1464 .addReg(scratchSPReg, RegState::Kill) 1465 .addImm(andMaskEncoded); 1466 AFI->setStackRealigned(true); 1467 if (NeedsWinCFI) { 1468 HasWinCFI = true; 1469 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1470 .addImm(NumBytes & andMaskEncoded) 1471 .setMIFlag(MachineInstr::FrameSetup); 1472 } 1473 } 1474 } 1475 1476 // If we need a base pointer, set it up here. It's whatever the value of the 1477 // stack pointer is at this point. Any variable size objects will be allocated 1478 // after this, so we can still use the base pointer to reference locals. 1479 // 1480 // FIXME: Clarify FrameSetup flags here. 1481 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 1482 // needed. 1483 // For funclets the BP belongs to the containing function. 1484 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 1485 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 1486 false); 1487 if (NeedsWinCFI) { 1488 HasWinCFI = true; 1489 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1490 .setMIFlag(MachineInstr::FrameSetup); 1491 } 1492 } 1493 1494 // The very last FrameSetup instruction indicates the end of prologue. Emit a 1495 // SEH opcode indicating the prologue end. 1496 if (NeedsWinCFI && HasWinCFI) { 1497 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1498 .setMIFlag(MachineInstr::FrameSetup); 1499 } 1500 1501 // SEH funclets are passed the frame pointer in X1. If the parent 1502 // function uses the base register, then the base register is used 1503 // directly, and is not retrieved from X1. 1504 if (IsFunclet && F.hasPersonalityFn()) { 1505 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 1506 if (isAsynchronousEHPersonality(Per)) { 1507 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 1508 .addReg(AArch64::X1) 1509 .setMIFlag(MachineInstr::FrameSetup); 1510 MBB.addLiveIn(AArch64::X1); 1511 } 1512 } 1513 1514 if (needsFrameMoves) { 1515 // An example of the prologue: 1516 // 1517 // .globl __foo 1518 // .align 2 1519 // __foo: 1520 // Ltmp0: 1521 // .cfi_startproc 1522 // .cfi_personality 155, ___gxx_personality_v0 1523 // Leh_func_begin: 1524 // .cfi_lsda 16, Lexception33 1525 // 1526 // stp xa,bx, [sp, -#offset]! 1527 // ... 1528 // stp x28, x27, [sp, #offset-32] 1529 // stp fp, lr, [sp, #offset-16] 1530 // add fp, sp, #offset - 16 1531 // sub sp, sp, #1360 1532 // 1533 // The Stack: 1534 // +-------------------------------------------+ 1535 // 10000 | ........ | ........ | ........ | ........ | 1536 // 10004 | ........ | ........ | ........ | ........ | 1537 // +-------------------------------------------+ 1538 // 10008 | ........ | ........ | ........ | ........ | 1539 // 1000c | ........ | ........ | ........ | ........ | 1540 // +===========================================+ 1541 // 10010 | X28 Register | 1542 // 10014 | X28 Register | 1543 // +-------------------------------------------+ 1544 // 10018 | X27 Register | 1545 // 1001c | X27 Register | 1546 // +===========================================+ 1547 // 10020 | Frame Pointer | 1548 // 10024 | Frame Pointer | 1549 // +-------------------------------------------+ 1550 // 10028 | Link Register | 1551 // 1002c | Link Register | 1552 // +===========================================+ 1553 // 10030 | ........ | ........ | ........ | ........ | 1554 // 10034 | ........ | ........ | ........ | ........ | 1555 // +-------------------------------------------+ 1556 // 10038 | ........ | ........ | ........ | ........ | 1557 // 1003c | ........ | ........ | ........ | ........ | 1558 // +-------------------------------------------+ 1559 // 1560 // [sp] = 10030 :: >>initial value<< 1561 // sp = 10020 :: stp fp, lr, [sp, #-16]! 1562 // fp = sp == 10020 :: mov fp, sp 1563 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 1564 // sp == 10010 :: >>final value<< 1565 // 1566 // The frame pointer (w29) points to address 10020. If we use an offset of 1567 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 1568 // for w27, and -32 for w28: 1569 // 1570 // Ltmp1: 1571 // .cfi_def_cfa w29, 16 1572 // Ltmp2: 1573 // .cfi_offset w30, -8 1574 // Ltmp3: 1575 // .cfi_offset w29, -16 1576 // Ltmp4: 1577 // .cfi_offset w27, -24 1578 // Ltmp5: 1579 // .cfi_offset w28, -32 1580 1581 if (HasFP) { 1582 const int OffsetToFirstCalleeSaveFromFP = 1583 AFI->getCalleeSaveBaseToFrameRecordOffset() - 1584 AFI->getCalleeSavedStackSize(); 1585 Register FramePtr = RegInfo->getFrameRegister(MF); 1586 1587 // Define the current CFA rule to use the provided FP. 1588 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true); 1589 unsigned CFIIndex = MF.addFrameInst( 1590 MCCFIInstruction::cfiDefCfa(nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP)); 1591 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1592 .addCFIIndex(CFIIndex) 1593 .setMIFlags(MachineInstr::FrameSetup); 1594 } else { 1595 unsigned CFIIndex; 1596 if (SVEStackSize) { 1597 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1598 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1599 StackOffset TotalSize = 1600 SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize()); 1601 CFIIndex = MF.addFrameInst(createDefCFAExpressionFromSP(TRI, TotalSize)); 1602 } else { 1603 // Encode the stack size of the leaf function. 1604 CFIIndex = MF.addFrameInst( 1605 MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize())); 1606 } 1607 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1608 .addCFIIndex(CFIIndex) 1609 .setMIFlags(MachineInstr::FrameSetup); 1610 } 1611 1612 // Now emit the moves for whatever callee saved regs we have (including FP, 1613 // LR if those are saved). 1614 emitCalleeSavedFrameMoves(MBB, MBBI); 1615 } 1616 } 1617 1618 static void InsertReturnAddressAuth(MachineFunction &MF, 1619 MachineBasicBlock &MBB) { 1620 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>(); 1621 if (!MFI.shouldSignReturnAddress()) 1622 return; 1623 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1624 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1625 1626 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1627 DebugLoc DL; 1628 if (MBBI != MBB.end()) 1629 DL = MBBI->getDebugLoc(); 1630 1631 // The AUTIASP instruction assembles to a hint instruction before v8.3a so 1632 // this instruction can safely used for any v8a architecture. 1633 // From v8.3a onwards there are optimised authenticate LR and return 1634 // instructions, namely RETA{A,B}, that can be used instead. 1635 if (Subtarget.hasPAuth() && MBBI != MBB.end() && 1636 MBBI->getOpcode() == AArch64::RET_ReallyLR) { 1637 BuildMI(MBB, MBBI, DL, 1638 TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA)) 1639 .copyImplicitOps(*MBBI); 1640 MBB.erase(MBBI); 1641 } else { 1642 BuildMI( 1643 MBB, MBBI, DL, 1644 TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP)) 1645 .setMIFlag(MachineInstr::FrameDestroy); 1646 } 1647 } 1648 1649 static bool isFuncletReturnInstr(const MachineInstr &MI) { 1650 switch (MI.getOpcode()) { 1651 default: 1652 return false; 1653 case AArch64::CATCHRET: 1654 case AArch64::CLEANUPRET: 1655 return true; 1656 } 1657 } 1658 1659 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 1660 MachineBasicBlock &MBB) const { 1661 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 1662 MachineFrameInfo &MFI = MF.getFrameInfo(); 1663 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1664 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1665 DebugLoc DL; 1666 bool NeedsWinCFI = needsWinCFI(MF); 1667 bool HasWinCFI = false; 1668 bool IsFunclet = false; 1669 auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); }); 1670 1671 if (MBB.end() != MBBI) { 1672 DL = MBBI->getDebugLoc(); 1673 IsFunclet = isFuncletReturnInstr(*MBBI); 1674 } 1675 1676 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1677 : MFI.getStackSize(); 1678 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1679 1680 // All calls are tail calls in GHC calling conv, and functions have no 1681 // prologue/epilogue. 1682 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1683 return; 1684 1685 // How much of the stack used by incoming arguments this function is expected 1686 // to restore in this particular epilogue. 1687 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB); 1688 1689 // The stack frame should be like below, 1690 // 1691 // ---------------------- --- 1692 // | | | 1693 // | BytesInStackArgArea| CalleeArgStackSize 1694 // | (NumReusableBytes) | (of tail call) 1695 // | | --- 1696 // | | | 1697 // ---------------------| --- | 1698 // | | | | 1699 // | CalleeSavedReg | | | 1700 // | (CalleeSavedStackSize)| | | 1701 // | | | | 1702 // ---------------------| | NumBytes 1703 // | | StackSize (StackAdjustUp) 1704 // | LocalStackSize | | | 1705 // | (covering callee | | | 1706 // | args) | | | 1707 // | | | | 1708 // ---------------------- --- --- 1709 // 1710 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize 1711 // = StackSize + ArgumentPopSize 1712 // 1713 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps 1714 // it as the 2nd argument of AArch64ISD::TC_RETURN. 1715 1716 auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); }); 1717 1718 bool IsWin64 = 1719 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1720 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1721 1722 int64_t AfterCSRPopSize = ArgumentStackToRestore; 1723 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1724 // We cannot rely on the local stack size set in emitPrologue if the function 1725 // has funclets, as funclets have different local stack size requirements, and 1726 // the current value set in emitPrologue may be that of the containing 1727 // function. 1728 if (MF.hasEHFunclets()) 1729 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1730 if (homogeneousPrologEpilog(MF, &MBB)) { 1731 assert(!NeedsWinCFI); 1732 auto LastPopI = MBB.getFirstTerminator(); 1733 if (LastPopI != MBB.begin()) { 1734 auto HomogeneousEpilog = std::prev(LastPopI); 1735 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog) 1736 LastPopI = HomogeneousEpilog; 1737 } 1738 1739 // Adjust local stack 1740 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1741 StackOffset::getFixed(AFI->getLocalStackSize()), TII, 1742 MachineInstr::FrameDestroy, false, NeedsWinCFI); 1743 1744 // SP has been already adjusted while restoring callee save regs. 1745 // We've bailed-out the case with adjusting SP for arguments. 1746 assert(AfterCSRPopSize == 0); 1747 return; 1748 } 1749 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); 1750 // Assume we can't combine the last pop with the sp restore. 1751 1752 if (!CombineSPBump && PrologueSaveSize != 0) { 1753 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 1754 while (AArch64InstrInfo::isSEHInstruction(*Pop)) 1755 Pop = std::prev(Pop); 1756 // Converting the last ldp to a post-index ldp is valid only if the last 1757 // ldp's offset is 0. 1758 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 1759 // If the offset is 0 and the AfterCSR pop is not actually trying to 1760 // allocate more stack for arguments (in space that an untimely interrupt 1761 // may clobber), convert it to a post-index ldp. 1762 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) 1763 convertCalleeSaveRestoreToSPPrePostIncDec( 1764 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false); 1765 else { 1766 // If not, make sure to emit an add after the last ldp. 1767 // We're doing this by transfering the size to be restored from the 1768 // adjustment *before* the CSR pops to the adjustment *after* the CSR 1769 // pops. 1770 AfterCSRPopSize += PrologueSaveSize; 1771 } 1772 } 1773 1774 // Move past the restores of the callee-saved registers. 1775 // If we plan on combining the sp bump of the local stack size and the callee 1776 // save stack size, we might need to adjust the CSR save and restore offsets. 1777 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 1778 MachineBasicBlock::iterator Begin = MBB.begin(); 1779 while (LastPopI != Begin) { 1780 --LastPopI; 1781 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 1782 IsSVECalleeSave(LastPopI)) { 1783 ++LastPopI; 1784 break; 1785 } else if (CombineSPBump) 1786 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 1787 NeedsWinCFI, &HasWinCFI); 1788 } 1789 1790 if (MF.hasWinCFI()) { 1791 // If the prologue didn't contain any SEH opcodes and didn't set the 1792 // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the 1793 // EpilogStart - to avoid generating CFI for functions that don't need it. 1794 // (And as we didn't generate any prologue at all, it would be asymmetrical 1795 // to the epilogue.) By the end of the function, we assert that 1796 // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption. 1797 HasWinCFI = true; 1798 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 1799 .setMIFlag(MachineInstr::FrameDestroy); 1800 } 1801 1802 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) { 1803 // We need to reset FP to its untagged state on return. Bit 60 is currently 1804 // used to show the presence of an extended frame. 1805 1806 // BIC x29, x29, #0x1000_0000_0000_0000 1807 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri), 1808 AArch64::FP) 1809 .addUse(AArch64::FP) 1810 .addImm(0x10fe) 1811 .setMIFlag(MachineInstr::FrameDestroy); 1812 } 1813 1814 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1815 1816 // If there is a single SP update, insert it before the ret and we're done. 1817 if (CombineSPBump) { 1818 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1819 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 1820 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize), 1821 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, 1822 &HasWinCFI); 1823 if (HasWinCFI) 1824 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1825 TII->get(AArch64::SEH_EpilogEnd)) 1826 .setMIFlag(MachineInstr::FrameDestroy); 1827 return; 1828 } 1829 1830 NumBytes -= PrologueSaveSize; 1831 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1832 1833 // Process the SVE callee-saves to determine what space needs to be 1834 // deallocated. 1835 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 1836 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 1837 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 1838 RestoreBegin = std::prev(RestoreEnd); 1839 while (RestoreBegin != MBB.begin() && 1840 IsSVECalleeSave(std::prev(RestoreBegin))) 1841 --RestoreBegin; 1842 1843 assert(IsSVECalleeSave(RestoreBegin) && 1844 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 1845 1846 StackOffset CalleeSavedSizeAsOffset = 1847 StackOffset::getScalable(CalleeSavedSize); 1848 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset; 1849 DeallocateAfter = CalleeSavedSizeAsOffset; 1850 } 1851 1852 // Deallocate the SVE area. 1853 if (SVEStackSize) { 1854 if (AFI->isStackRealigned()) { 1855 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) 1856 // Set SP to start of SVE callee-save area from which they can 1857 // be reloaded. The code below will deallocate the stack space 1858 // space by moving FP -> SP. 1859 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 1860 StackOffset::getScalable(-CalleeSavedSize), TII, 1861 MachineInstr::FrameDestroy); 1862 } else { 1863 if (AFI->getSVECalleeSavedStackSize()) { 1864 // Deallocate the non-SVE locals first before we can deallocate (and 1865 // restore callee saves) from the SVE area. 1866 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1867 StackOffset::getFixed(NumBytes), TII, 1868 MachineInstr::FrameDestroy); 1869 NumBytes = 0; 1870 } 1871 1872 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1873 DeallocateBefore, TII, MachineInstr::FrameDestroy); 1874 1875 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 1876 DeallocateAfter, TII, MachineInstr::FrameDestroy); 1877 } 1878 } 1879 1880 if (!hasFP(MF)) { 1881 bool RedZone = canUseRedZone(MF); 1882 // If this was a redzone leaf function, we don't need to restore the 1883 // stack pointer (but we may need to pop stack args for fastcc). 1884 if (RedZone && AfterCSRPopSize == 0) 1885 return; 1886 1887 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 1888 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 1889 if (NoCalleeSaveRestore) 1890 StackRestoreBytes += AfterCSRPopSize; 1891 1892 // If we were able to combine the local stack pop with the argument pop, 1893 // then we're done. 1894 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0; 1895 1896 // If we're done after this, make sure to help the load store optimizer. 1897 if (Done) 1898 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI); 1899 1900 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1901 StackOffset::getFixed(StackRestoreBytes), TII, 1902 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1903 if (Done) { 1904 if (HasWinCFI) { 1905 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1906 TII->get(AArch64::SEH_EpilogEnd)) 1907 .setMIFlag(MachineInstr::FrameDestroy); 1908 } 1909 return; 1910 } 1911 1912 NumBytes = 0; 1913 } 1914 1915 // Restore the original stack pointer. 1916 // FIXME: Rather than doing the math here, we should instead just use 1917 // non-post-indexed loads for the restores if we aren't actually going to 1918 // be able to save any instructions. 1919 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 1920 emitFrameOffset( 1921 MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 1922 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()), 1923 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI); 1924 } else if (NumBytes) 1925 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1926 StackOffset::getFixed(NumBytes), TII, 1927 MachineInstr::FrameDestroy, false, NeedsWinCFI); 1928 1929 // This must be placed after the callee-save restore code because that code 1930 // assumes the SP is at the same location as it was after the callee-save save 1931 // code in the prologue. 1932 if (AfterCSRPopSize) { 1933 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an " 1934 "interrupt may have clobbered"); 1935 // Find an insertion point for the first ldp so that it goes before the 1936 // shadow call stack epilog instruction. This ensures that the restore of 1937 // lr from x18 is placed after the restore from sp. 1938 auto FirstSPPopI = MBB.getFirstTerminator(); 1939 while (FirstSPPopI != Begin) { 1940 auto Prev = std::prev(FirstSPPopI); 1941 if (Prev->getOpcode() != AArch64::LDRXpre || 1942 Prev->getOperand(0).getReg() == AArch64::SP) 1943 break; 1944 FirstSPPopI = Prev; 1945 } 1946 1947 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI); 1948 1949 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP, 1950 StackOffset::getFixed(AfterCSRPopSize), TII, 1951 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1952 } 1953 if (HasWinCFI) 1954 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd)) 1955 .setMIFlag(MachineInstr::FrameDestroy); 1956 } 1957 1958 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1959 /// debug info. It's the same as what we use for resolving the code-gen 1960 /// references for now. FIXME: This can go wrong when references are 1961 /// SP-relative and simple call frames aren't used. 1962 StackOffset 1963 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1964 Register &FrameReg) const { 1965 return resolveFrameIndexReference( 1966 MF, FI, FrameReg, 1967 /*PreferFP=*/ 1968 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress), 1969 /*ForSimm=*/false); 1970 } 1971 1972 StackOffset 1973 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF, 1974 int FI) const { 1975 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI)); 1976 } 1977 1978 static StackOffset getFPOffset(const MachineFunction &MF, 1979 int64_t ObjectOffset) { 1980 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1981 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1982 bool IsWin64 = 1983 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1984 unsigned FixedObject = 1985 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 1986 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 1987 int64_t FPAdjust = 1988 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset(); 1989 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust); 1990 } 1991 1992 static StackOffset getStackOffset(const MachineFunction &MF, 1993 int64_t ObjectOffset) { 1994 const auto &MFI = MF.getFrameInfo(); 1995 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize()); 1996 } 1997 1998 // TODO: This function currently does not work for scalable vectors. 1999 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 2000 int FI) const { 2001 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 2002 MF.getSubtarget().getRegisterInfo()); 2003 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 2004 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 2005 ? getFPOffset(MF, ObjectOffset).getFixed() 2006 : getStackOffset(MF, ObjectOffset).getFixed(); 2007 } 2008 2009 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 2010 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, 2011 bool ForSimm) const { 2012 const auto &MFI = MF.getFrameInfo(); 2013 int64_t ObjectOffset = MFI.getObjectOffset(FI); 2014 bool isFixed = MFI.isFixedObjectIndex(FI); 2015 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector; 2016 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 2017 PreferFP, ForSimm); 2018 } 2019 2020 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 2021 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 2022 Register &FrameReg, bool PreferFP, bool ForSimm) const { 2023 const auto &MFI = MF.getFrameInfo(); 2024 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 2025 MF.getSubtarget().getRegisterInfo()); 2026 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2027 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2028 2029 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed(); 2030 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed(); 2031 bool isCSR = 2032 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 2033 2034 const StackOffset &SVEStackSize = getSVEStackSize(MF); 2035 2036 // Use frame pointer to reference fixed objects. Use it for locals if 2037 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 2038 // reliable as a base). Make sure useFPForScavengingIndex() does the 2039 // right thing for the emergency spill slot. 2040 bool UseFP = false; 2041 if (AFI->hasStackFrame() && !isSVE) { 2042 // We shouldn't prefer using the FP when there is an SVE area 2043 // in between the FP and the non-SVE locals/spills. 2044 PreferFP &= !SVEStackSize; 2045 2046 // Note: Keeping the following as multiple 'if' statements rather than 2047 // merging to a single expression for readability. 2048 // 2049 // Argument access should always use the FP. 2050 if (isFixed) { 2051 UseFP = hasFP(MF); 2052 } else if (isCSR && RegInfo->hasStackRealignment(MF)) { 2053 // References to the CSR area must use FP if we're re-aligning the stack 2054 // since the dynamically-sized alignment padding is between the SP/BP and 2055 // the CSR area. 2056 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 2057 UseFP = true; 2058 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) { 2059 // If the FPOffset is negative and we're producing a signed immediate, we 2060 // have to keep in mind that the available offset range for negative 2061 // offsets is smaller than for positive ones. If an offset is available 2062 // via the FP and the SP, use whichever is closest. 2063 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 2064 PreferFP |= Offset > -FPOffset; 2065 2066 if (MFI.hasVarSizedObjects()) { 2067 // If we have variable sized objects, we can use either FP or BP, as the 2068 // SP offset is unknown. We can use the base pointer if we have one and 2069 // FP is not preferred. If not, we're stuck with using FP. 2070 bool CanUseBP = RegInfo->hasBasePointer(MF); 2071 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 2072 UseFP = PreferFP; 2073 else if (!CanUseBP) // Can't use BP. Forced to use FP. 2074 UseFP = true; 2075 // else we can use BP and FP, but the offset from FP won't fit. 2076 // That will make us scavenge registers which we can probably avoid by 2077 // using BP. If it won't fit for BP either, we'll scavenge anyway. 2078 } else if (FPOffset >= 0) { 2079 // Use SP or FP, whichever gives us the best chance of the offset 2080 // being in range for direct access. If the FPOffset is positive, 2081 // that'll always be best, as the SP will be even further away. 2082 UseFP = true; 2083 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 2084 // Funclets access the locals contained in the parent's stack frame 2085 // via the frame pointer, so we have to use the FP in the parent 2086 // function. 2087 (void) Subtarget; 2088 assert( 2089 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) && 2090 "Funclets should only be present on Win64"); 2091 UseFP = true; 2092 } else { 2093 // We have the choice between FP and (SP or BP). 2094 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 2095 UseFP = true; 2096 } 2097 } 2098 } 2099 2100 assert( 2101 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) && 2102 "In the presence of dynamic stack pointer realignment, " 2103 "non-argument/CSR objects cannot be accessed through the frame pointer"); 2104 2105 if (isSVE) { 2106 StackOffset FPOffset = 2107 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset); 2108 StackOffset SPOffset = 2109 SVEStackSize + 2110 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(), 2111 ObjectOffset); 2112 // Always use the FP for SVE spills if available and beneficial. 2113 if (hasFP(MF) && (SPOffset.getFixed() || 2114 FPOffset.getScalable() < SPOffset.getScalable() || 2115 RegInfo->hasStackRealignment(MF))) { 2116 FrameReg = RegInfo->getFrameRegister(MF); 2117 return FPOffset; 2118 } 2119 2120 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 2121 : (unsigned)AArch64::SP; 2122 return SPOffset; 2123 } 2124 2125 StackOffset ScalableOffset = {}; 2126 if (UseFP && !(isFixed || isCSR)) 2127 ScalableOffset = -SVEStackSize; 2128 if (!UseFP && (isFixed || isCSR)) 2129 ScalableOffset = SVEStackSize; 2130 2131 if (UseFP) { 2132 FrameReg = RegInfo->getFrameRegister(MF); 2133 return StackOffset::getFixed(FPOffset) + ScalableOffset; 2134 } 2135 2136 // Use the base pointer if we have one. 2137 if (RegInfo->hasBasePointer(MF)) 2138 FrameReg = RegInfo->getBaseRegister(); 2139 else { 2140 assert(!MFI.hasVarSizedObjects() && 2141 "Can't use SP when we have var sized objects."); 2142 FrameReg = AArch64::SP; 2143 // If we're using the red zone for this function, the SP won't actually 2144 // be adjusted, so the offsets will be negative. They're also all 2145 // within range of the signed 9-bit immediate instructions. 2146 if (canUseRedZone(MF)) 2147 Offset -= AFI->getLocalStackSize(); 2148 } 2149 2150 return StackOffset::getFixed(Offset) + ScalableOffset; 2151 } 2152 2153 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 2154 // Do not set a kill flag on values that are also marked as live-in. This 2155 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 2156 // callee saved registers. 2157 // Omitting the kill flags is conservatively correct even if the live-in 2158 // is not used after all. 2159 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 2160 return getKillRegState(!IsLiveIn); 2161 } 2162 2163 static bool produceCompactUnwindFrame(MachineFunction &MF) { 2164 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2165 AttributeList Attrs = MF.getFunction().getAttributes(); 2166 return Subtarget.isTargetMachO() && 2167 !(Subtarget.getTargetLowering()->supportSwiftError() && 2168 Attrs.hasAttrSomewhere(Attribute::SwiftError)) && 2169 MF.getFunction().getCallingConv() != CallingConv::SwiftTail; 2170 } 2171 2172 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 2173 bool NeedsWinCFI, bool IsFirst) { 2174 // If we are generating register pairs for a Windows function that requires 2175 // EH support, then pair consecutive registers only. There are no unwind 2176 // opcodes for saves/restores of non-consectuve register pairs. 2177 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x, 2178 // save_lrpair. 2179 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 2180 2181 if (Reg2 == AArch64::FP) 2182 return true; 2183 if (!NeedsWinCFI) 2184 return false; 2185 if (Reg2 == Reg1 + 1) 2186 return false; 2187 // If pairing a GPR with LR, the pair can be described by the save_lrpair 2188 // opcode. If this is the first register pair, it would end up with a 2189 // predecrement, but there's no save_lrpair_x opcode, so we can only do this 2190 // if LR is paired with something else than the first register. 2191 // The save_lrpair opcode requires the first register to be an odd one. 2192 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 && 2193 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst) 2194 return false; 2195 return true; 2196 } 2197 2198 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 2199 /// WindowsCFI requires that only consecutive registers can be paired. 2200 /// LR and FP need to be allocated together when the frame needs to save 2201 /// the frame-record. This means any other register pairing with LR is invalid. 2202 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 2203 bool UsesWinAAPCS, bool NeedsWinCFI, 2204 bool NeedsFrameRecord, bool IsFirst) { 2205 if (UsesWinAAPCS) 2206 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst); 2207 2208 // If we need to store the frame record, don't pair any register 2209 // with LR other than FP. 2210 if (NeedsFrameRecord) 2211 return Reg2 == AArch64::LR; 2212 2213 return false; 2214 } 2215 2216 namespace { 2217 2218 struct RegPairInfo { 2219 unsigned Reg1 = AArch64::NoRegister; 2220 unsigned Reg2 = AArch64::NoRegister; 2221 int FrameIdx; 2222 int Offset; 2223 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type; 2224 2225 RegPairInfo() = default; 2226 2227 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 2228 2229 unsigned getScale() const { 2230 switch (Type) { 2231 case PPR: 2232 return 2; 2233 case GPR: 2234 case FPR64: 2235 return 8; 2236 case ZPR: 2237 case FPR128: 2238 return 16; 2239 } 2240 llvm_unreachable("Unsupported type"); 2241 } 2242 2243 bool isScalable() const { return Type == PPR || Type == ZPR; } 2244 }; 2245 2246 } // end anonymous namespace 2247 2248 static void computeCalleeSaveRegisterPairs( 2249 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI, 2250 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 2251 bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) { 2252 2253 if (CSI.empty()) 2254 return; 2255 2256 bool IsWindows = isTargetWindows(MF); 2257 bool NeedsWinCFI = needsWinCFI(MF); 2258 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2259 MachineFrameInfo &MFI = MF.getFrameInfo(); 2260 CallingConv::ID CC = MF.getFunction().getCallingConv(); 2261 unsigned Count = CSI.size(); 2262 (void)CC; 2263 // MachO's compact unwind format relies on all registers being stored in 2264 // pairs. 2265 assert((!produceCompactUnwindFrame(MF) || 2266 CC == CallingConv::PreserveMost || 2267 (Count & 1) == 0) && 2268 "Odd number of callee-saved regs to spill!"); 2269 int ByteOffset = AFI->getCalleeSavedStackSize(); 2270 int StackFillDir = -1; 2271 int RegInc = 1; 2272 unsigned FirstReg = 0; 2273 if (NeedsWinCFI) { 2274 // For WinCFI, fill the stack from the bottom up. 2275 ByteOffset = 0; 2276 StackFillDir = 1; 2277 // As the CSI array is reversed to match PrologEpilogInserter, iterate 2278 // backwards, to pair up registers starting from lower numbered registers. 2279 RegInc = -1; 2280 FirstReg = Count - 1; 2281 } 2282 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 2283 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace(); 2284 2285 // When iterating backwards, the loop condition relies on unsigned wraparound. 2286 for (unsigned i = FirstReg; i < Count; i += RegInc) { 2287 RegPairInfo RPI; 2288 RPI.Reg1 = CSI[i].getReg(); 2289 2290 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) 2291 RPI.Type = RegPairInfo::GPR; 2292 else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) 2293 RPI.Type = RegPairInfo::FPR64; 2294 else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) 2295 RPI.Type = RegPairInfo::FPR128; 2296 else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) 2297 RPI.Type = RegPairInfo::ZPR; 2298 else if (AArch64::PPRRegClass.contains(RPI.Reg1)) 2299 RPI.Type = RegPairInfo::PPR; 2300 else 2301 llvm_unreachable("Unsupported register class."); 2302 2303 // Add the next reg to the pair if it is in the same register class. 2304 if (unsigned(i + RegInc) < Count) { 2305 unsigned NextReg = CSI[i + RegInc].getReg(); 2306 bool IsFirst = i == FirstReg; 2307 switch (RPI.Type) { 2308 case RegPairInfo::GPR: 2309 if (AArch64::GPR64RegClass.contains(NextReg) && 2310 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, 2311 NeedsWinCFI, NeedsFrameRecord, IsFirst)) 2312 RPI.Reg2 = NextReg; 2313 break; 2314 case RegPairInfo::FPR64: 2315 if (AArch64::FPR64RegClass.contains(NextReg) && 2316 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI, 2317 IsFirst)) 2318 RPI.Reg2 = NextReg; 2319 break; 2320 case RegPairInfo::FPR128: 2321 if (AArch64::FPR128RegClass.contains(NextReg)) 2322 RPI.Reg2 = NextReg; 2323 break; 2324 case RegPairInfo::PPR: 2325 case RegPairInfo::ZPR: 2326 break; 2327 } 2328 } 2329 2330 // If either of the registers to be saved is the lr register, it means that 2331 // we also need to save lr in the shadow call stack. 2332 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) && 2333 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) { 2334 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18)) 2335 report_fatal_error("Must reserve x18 to use shadow call stack"); 2336 NeedShadowCallStackProlog = true; 2337 } 2338 2339 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 2340 // list to come in sorted by frame index so that we can issue the store 2341 // pair instructions directly. Assert if we see anything otherwise. 2342 // 2343 // The order of the registers in the list is controlled by 2344 // getCalleeSavedRegs(), so they will always be in-order, as well. 2345 assert((!RPI.isPaired() || 2346 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) && 2347 "Out of order callee saved regs!"); 2348 2349 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 2350 RPI.Reg1 == AArch64::LR) && 2351 "FrameRecord must be allocated together with LR"); 2352 2353 // Windows AAPCS has FP and LR reversed. 2354 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 2355 RPI.Reg2 == AArch64::LR) && 2356 "FrameRecord must be allocated together with LR"); 2357 2358 // MachO's compact unwind format relies on all registers being stored in 2359 // adjacent register pairs. 2360 assert((!produceCompactUnwindFrame(MF) || 2361 CC == CallingConv::PreserveMost || 2362 (RPI.isPaired() && 2363 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 2364 RPI.Reg1 + 1 == RPI.Reg2))) && 2365 "Callee-save registers not saved as adjacent register pair!"); 2366 2367 RPI.FrameIdx = CSI[i].getFrameIdx(); 2368 if (NeedsWinCFI && 2369 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair 2370 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx(); 2371 2372 int Scale = RPI.getScale(); 2373 2374 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2375 assert(OffsetPre % Scale == 0); 2376 2377 if (RPI.isScalable()) 2378 ScalableByteOffset += StackFillDir * Scale; 2379 else 2380 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); 2381 2382 // Swift's async context is directly before FP, so allocate an extra 2383 // 8 bytes for it. 2384 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && 2385 RPI.Reg2 == AArch64::FP) 2386 ByteOffset += StackFillDir * 8; 2387 2388 assert(!(RPI.isScalable() && RPI.isPaired()) && 2389 "Paired spill/fill instructions don't exist for SVE vectors"); 2390 2391 // Round up size of non-pair to pair size if we need to pad the 2392 // callee-save area to ensure 16-byte alignment. 2393 if (NeedGapToAlignStack && !NeedsWinCFI && 2394 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 && 2395 !RPI.isPaired() && ByteOffset % 16 != 0) { 2396 ByteOffset += 8 * StackFillDir; 2397 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); 2398 // A stack frame with a gap looks like this, bottom up: 2399 // d9, d8. x21, gap, x20, x19. 2400 // Set extra alignment on the x21 object to create the gap above it. 2401 MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); 2402 NeedGapToAlignStack = false; 2403 } 2404 2405 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2406 assert(OffsetPost % Scale == 0); 2407 // If filling top down (default), we want the offset after incrementing it. 2408 // If fillibg bootom up (WinCFI) we need the original offset. 2409 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost; 2410 2411 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the 2412 // Swift context can directly precede FP. 2413 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && 2414 RPI.Reg2 == AArch64::FP) 2415 Offset += 8; 2416 RPI.Offset = Offset / Scale; 2417 2418 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 2419 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 2420 "Offset out of bounds for LDP/STP immediate"); 2421 2422 // Save the offset to frame record so that the FP register can point to the 2423 // innermost frame record (spilled FP and LR registers). 2424 if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR && 2425 RPI.Reg2 == AArch64::FP) || 2426 (IsWindows && RPI.Reg1 == AArch64::FP && 2427 RPI.Reg2 == AArch64::LR))) 2428 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset); 2429 2430 RegPairs.push_back(RPI); 2431 if (RPI.isPaired()) 2432 i += RegInc; 2433 } 2434 if (NeedsWinCFI) { 2435 // If we need an alignment gap in the stack, align the topmost stack 2436 // object. A stack frame with a gap looks like this, bottom up: 2437 // x19, d8. d9, gap. 2438 // Set extra alignment on the topmost stack object (the first element in 2439 // CSI, which goes top down), to create the gap above it. 2440 if (AFI->hasCalleeSaveStackFreeSpace()) 2441 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16)); 2442 // We iterated bottom up over the registers; flip RegPairs back to top 2443 // down order. 2444 std::reverse(RegPairs.begin(), RegPairs.end()); 2445 } 2446 } 2447 2448 bool AArch64FrameLowering::spillCalleeSavedRegisters( 2449 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2450 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2451 MachineFunction &MF = *MBB.getParent(); 2452 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2453 bool NeedsWinCFI = needsWinCFI(MF); 2454 DebugLoc DL; 2455 SmallVector<RegPairInfo, 8> RegPairs; 2456 2457 bool NeedShadowCallStackProlog = false; 2458 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2459 NeedShadowCallStackProlog, hasFP(MF)); 2460 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2461 2462 if (NeedShadowCallStackProlog) { 2463 // Shadow call stack prolog: str x30, [x18], #8 2464 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost)) 2465 .addReg(AArch64::X18, RegState::Define) 2466 .addReg(AArch64::LR) 2467 .addReg(AArch64::X18) 2468 .addImm(8) 2469 .setMIFlag(MachineInstr::FrameSetup); 2470 2471 if (NeedsWinCFI) 2472 BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop)) 2473 .setMIFlag(MachineInstr::FrameSetup); 2474 2475 if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) { 2476 // Emit a CFI instruction that causes 8 to be subtracted from the value of 2477 // x18 when unwinding past this frame. 2478 static const char CFIInst[] = { 2479 dwarf::DW_CFA_val_expression, 2480 18, // register 2481 2, // length 2482 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 2483 static_cast<char>(-8) & 0x7f, // addend (sleb128) 2484 }; 2485 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 2486 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 2487 BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 2488 .addCFIIndex(CFIIndex) 2489 .setMIFlag(MachineInstr::FrameSetup); 2490 } 2491 2492 // This instruction also makes x18 live-in to the entry block. 2493 MBB.addLiveIn(AArch64::X18); 2494 } 2495 2496 if (homogeneousPrologEpilog(MF)) { 2497 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog)) 2498 .setMIFlag(MachineInstr::FrameSetup); 2499 2500 for (auto &RPI : RegPairs) { 2501 MIB.addReg(RPI.Reg1); 2502 MIB.addReg(RPI.Reg2); 2503 2504 // Update register live in. 2505 if (!MRI.isReserved(RPI.Reg1)) 2506 MBB.addLiveIn(RPI.Reg1); 2507 if (!MRI.isReserved(RPI.Reg2)) 2508 MBB.addLiveIn(RPI.Reg2); 2509 } 2510 return true; 2511 } 2512 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE; 2513 ++RPII) { 2514 RegPairInfo RPI = *RPII; 2515 unsigned Reg1 = RPI.Reg1; 2516 unsigned Reg2 = RPI.Reg2; 2517 unsigned StrOpc; 2518 2519 // Issue sequence of spills for cs regs. The first spill may be converted 2520 // to a pre-decrement store later by emitPrologue if the callee-save stack 2521 // area allocation can't be combined with the local stack area allocation. 2522 // For example: 2523 // stp x22, x21, [sp, #0] // addImm(+0) 2524 // stp x20, x19, [sp, #16] // addImm(+2) 2525 // stp fp, lr, [sp, #32] // addImm(+4) 2526 // Rationale: This sequence saves uop updates compared to a sequence of 2527 // pre-increment spills like stp xi,xj,[sp,#-16]! 2528 // Note: Similar rationale and sequence for restores in epilog. 2529 unsigned Size; 2530 Align Alignment; 2531 switch (RPI.Type) { 2532 case RegPairInfo::GPR: 2533 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 2534 Size = 8; 2535 Alignment = Align(8); 2536 break; 2537 case RegPairInfo::FPR64: 2538 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 2539 Size = 8; 2540 Alignment = Align(8); 2541 break; 2542 case RegPairInfo::FPR128: 2543 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 2544 Size = 16; 2545 Alignment = Align(16); 2546 break; 2547 case RegPairInfo::ZPR: 2548 StrOpc = AArch64::STR_ZXI; 2549 Size = 16; 2550 Alignment = Align(16); 2551 break; 2552 case RegPairInfo::PPR: 2553 StrOpc = AArch64::STR_PXI; 2554 Size = 2; 2555 Alignment = Align(2); 2556 break; 2557 } 2558 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 2559 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2560 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2561 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2562 dbgs() << ")\n"); 2563 2564 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 2565 "Windows unwdinding requires a consecutive (FP,LR) pair"); 2566 // Windows unwind codes require consecutive registers if registers are 2567 // paired. Make the switch here, so that the code below will save (x,x+1) 2568 // and not (x+1,x). 2569 unsigned FrameIdxReg1 = RPI.FrameIdx; 2570 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2571 if (NeedsWinCFI && RPI.isPaired()) { 2572 std::swap(Reg1, Reg2); 2573 std::swap(FrameIdxReg1, FrameIdxReg2); 2574 } 2575 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 2576 if (!MRI.isReserved(Reg1)) 2577 MBB.addLiveIn(Reg1); 2578 if (RPI.isPaired()) { 2579 if (!MRI.isReserved(Reg2)) 2580 MBB.addLiveIn(Reg2); 2581 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 2582 MIB.addMemOperand(MF.getMachineMemOperand( 2583 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2584 MachineMemOperand::MOStore, Size, Alignment)); 2585 } 2586 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 2587 .addReg(AArch64::SP) 2588 .addImm(RPI.Offset) // [sp, #offset*scale], 2589 // where factor*scale is implicit 2590 .setMIFlag(MachineInstr::FrameSetup); 2591 MIB.addMemOperand(MF.getMachineMemOperand( 2592 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2593 MachineMemOperand::MOStore, Size, Alignment)); 2594 if (NeedsWinCFI) 2595 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 2596 2597 // Update the StackIDs of the SVE stack slots. 2598 MachineFrameInfo &MFI = MF.getFrameInfo(); 2599 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) 2600 MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector); 2601 2602 } 2603 return true; 2604 } 2605 2606 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 2607 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2608 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2609 MachineFunction &MF = *MBB.getParent(); 2610 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2611 DebugLoc DL; 2612 SmallVector<RegPairInfo, 8> RegPairs; 2613 bool NeedsWinCFI = needsWinCFI(MF); 2614 2615 if (MI != MBB.end()) 2616 DL = MI->getDebugLoc(); 2617 2618 bool NeedShadowCallStackProlog = false; 2619 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2620 NeedShadowCallStackProlog, hasFP(MF)); 2621 2622 auto EmitMI = [&](const RegPairInfo &RPI) { 2623 unsigned Reg1 = RPI.Reg1; 2624 unsigned Reg2 = RPI.Reg2; 2625 2626 // Issue sequence of restores for cs regs. The last restore may be converted 2627 // to a post-increment load later by emitEpilogue if the callee-save stack 2628 // area allocation can't be combined with the local stack area allocation. 2629 // For example: 2630 // ldp fp, lr, [sp, #32] // addImm(+4) 2631 // ldp x20, x19, [sp, #16] // addImm(+2) 2632 // ldp x22, x21, [sp, #0] // addImm(+0) 2633 // Note: see comment in spillCalleeSavedRegisters() 2634 unsigned LdrOpc; 2635 unsigned Size; 2636 Align Alignment; 2637 switch (RPI.Type) { 2638 case RegPairInfo::GPR: 2639 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 2640 Size = 8; 2641 Alignment = Align(8); 2642 break; 2643 case RegPairInfo::FPR64: 2644 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 2645 Size = 8; 2646 Alignment = Align(8); 2647 break; 2648 case RegPairInfo::FPR128: 2649 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 2650 Size = 16; 2651 Alignment = Align(16); 2652 break; 2653 case RegPairInfo::ZPR: 2654 LdrOpc = AArch64::LDR_ZXI; 2655 Size = 16; 2656 Alignment = Align(16); 2657 break; 2658 case RegPairInfo::PPR: 2659 LdrOpc = AArch64::LDR_PXI; 2660 Size = 2; 2661 Alignment = Align(2); 2662 break; 2663 } 2664 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 2665 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2666 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2667 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2668 dbgs() << ")\n"); 2669 2670 // Windows unwind codes require consecutive registers if registers are 2671 // paired. Make the switch here, so that the code below will save (x,x+1) 2672 // and not (x+1,x). 2673 unsigned FrameIdxReg1 = RPI.FrameIdx; 2674 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2675 if (NeedsWinCFI && RPI.isPaired()) { 2676 std::swap(Reg1, Reg2); 2677 std::swap(FrameIdxReg1, FrameIdxReg2); 2678 } 2679 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc)); 2680 if (RPI.isPaired()) { 2681 MIB.addReg(Reg2, getDefRegState(true)); 2682 MIB.addMemOperand(MF.getMachineMemOperand( 2683 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2684 MachineMemOperand::MOLoad, Size, Alignment)); 2685 } 2686 MIB.addReg(Reg1, getDefRegState(true)) 2687 .addReg(AArch64::SP) 2688 .addImm(RPI.Offset) // [sp, #offset*scale] 2689 // where factor*scale is implicit 2690 .setMIFlag(MachineInstr::FrameDestroy); 2691 MIB.addMemOperand(MF.getMachineMemOperand( 2692 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2693 MachineMemOperand::MOLoad, Size, Alignment)); 2694 if (NeedsWinCFI) 2695 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 2696 }; 2697 2698 // SVE objects are always restored in reverse order. 2699 for (const RegPairInfo &RPI : reverse(RegPairs)) 2700 if (RPI.isScalable()) 2701 EmitMI(RPI); 2702 2703 if (ReverseCSRRestoreSeq) { 2704 for (const RegPairInfo &RPI : reverse(RegPairs)) 2705 if (!RPI.isScalable()) 2706 EmitMI(RPI); 2707 } else if (homogeneousPrologEpilog(MF, &MBB)) { 2708 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Epilog)) 2709 .setMIFlag(MachineInstr::FrameDestroy); 2710 for (auto &RPI : RegPairs) { 2711 MIB.addReg(RPI.Reg1, RegState::Define); 2712 MIB.addReg(RPI.Reg2, RegState::Define); 2713 } 2714 return true; 2715 } else 2716 for (const RegPairInfo &RPI : RegPairs) 2717 if (!RPI.isScalable()) 2718 EmitMI(RPI); 2719 2720 if (NeedShadowCallStackProlog) { 2721 // Shadow call stack epilog: ldr x30, [x18, #-8]! 2722 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre)) 2723 .addReg(AArch64::X18, RegState::Define) 2724 .addReg(AArch64::LR, RegState::Define) 2725 .addReg(AArch64::X18) 2726 .addImm(-8) 2727 .setMIFlag(MachineInstr::FrameDestroy); 2728 } 2729 2730 return true; 2731 } 2732 2733 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 2734 BitVector &SavedRegs, 2735 RegScavenger *RS) const { 2736 // All calls are tail calls in GHC calling conv, and functions have no 2737 // prologue/epilogue. 2738 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2739 return; 2740 2741 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2742 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 2743 MF.getSubtarget().getRegisterInfo()); 2744 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2745 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2746 unsigned UnspilledCSGPR = AArch64::NoRegister; 2747 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 2748 2749 MachineFrameInfo &MFI = MF.getFrameInfo(); 2750 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 2751 2752 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 2753 ? RegInfo->getBaseRegister() 2754 : (unsigned)AArch64::NoRegister; 2755 2756 unsigned ExtraCSSpill = 0; 2757 // Figure out which callee-saved registers to save/restore. 2758 for (unsigned i = 0; CSRegs[i]; ++i) { 2759 const unsigned Reg = CSRegs[i]; 2760 2761 // Add the base pointer register to SavedRegs if it is callee-save. 2762 if (Reg == BasePointerReg) 2763 SavedRegs.set(Reg); 2764 2765 bool RegUsed = SavedRegs.test(Reg); 2766 unsigned PairedReg = AArch64::NoRegister; 2767 if (AArch64::GPR64RegClass.contains(Reg) || 2768 AArch64::FPR64RegClass.contains(Reg) || 2769 AArch64::FPR128RegClass.contains(Reg)) 2770 PairedReg = CSRegs[i ^ 1]; 2771 2772 if (!RegUsed) { 2773 if (AArch64::GPR64RegClass.contains(Reg) && 2774 !RegInfo->isReservedReg(MF, Reg)) { 2775 UnspilledCSGPR = Reg; 2776 UnspilledCSGPRPaired = PairedReg; 2777 } 2778 continue; 2779 } 2780 2781 // MachO's compact unwind format relies on all registers being stored in 2782 // pairs. 2783 // FIXME: the usual format is actually better if unwinding isn't needed. 2784 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister && 2785 !SavedRegs.test(PairedReg)) { 2786 SavedRegs.set(PairedReg); 2787 if (AArch64::GPR64RegClass.contains(PairedReg) && 2788 !RegInfo->isReservedReg(MF, PairedReg)) 2789 ExtraCSSpill = PairedReg; 2790 } 2791 } 2792 2793 if (MF.getFunction().getCallingConv() == CallingConv::Win64 && 2794 !Subtarget.isTargetWindows()) { 2795 // For Windows calling convention on a non-windows OS, where X18 is treated 2796 // as reserved, back up X18 when entering non-windows code (marked with the 2797 // Windows calling convention) and restore when returning regardless of 2798 // whether the individual function uses it - it might call other functions 2799 // that clobber it. 2800 SavedRegs.set(AArch64::X18); 2801 } 2802 2803 // Calculates the callee saved stack size. 2804 unsigned CSStackSize = 0; 2805 unsigned SVECSStackSize = 0; 2806 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2807 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2808 for (unsigned Reg : SavedRegs.set_bits()) { 2809 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; 2810 if (AArch64::PPRRegClass.contains(Reg) || 2811 AArch64::ZPRRegClass.contains(Reg)) 2812 SVECSStackSize += RegSize; 2813 else 2814 CSStackSize += RegSize; 2815 } 2816 2817 // Save number of saved regs, so we can easily update CSStackSize later. 2818 unsigned NumSavedRegs = SavedRegs.count(); 2819 2820 // The frame record needs to be created by saving the appropriate registers 2821 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 2822 if (hasFP(MF) || 2823 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 2824 SavedRegs.set(AArch64::FP); 2825 SavedRegs.set(AArch64::LR); 2826 } 2827 2828 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 2829 for (unsigned Reg 2830 : SavedRegs.set_bits()) dbgs() 2831 << ' ' << printReg(Reg, RegInfo); 2832 dbgs() << "\n";); 2833 2834 // If any callee-saved registers are used, the frame cannot be eliminated. 2835 int64_t SVEStackSize = 2836 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 2837 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 2838 2839 // The CSR spill slots have not been allocated yet, so estimateStackSize 2840 // won't include them. 2841 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 2842 2843 // Conservatively always assume BigStack when there are SVE spills. 2844 bool BigStack = SVEStackSize || 2845 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit; 2846 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 2847 AFI->setHasStackFrame(true); 2848 2849 // Estimate if we might need to scavenge a register at some point in order 2850 // to materialize a stack offset. If so, either spill one additional 2851 // callee-saved register or reserve a special spill slot to facilitate 2852 // register scavenging. If we already spilled an extra callee-saved register 2853 // above to keep the number of spills even, we don't need to do anything else 2854 // here. 2855 if (BigStack) { 2856 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 2857 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 2858 << " to get a scratch register.\n"); 2859 SavedRegs.set(UnspilledCSGPR); 2860 // MachO's compact unwind format relies on all registers being stored in 2861 // pairs, so if we need to spill one extra for BigStack, then we need to 2862 // store the pair. 2863 if (producePairRegisters(MF)) 2864 SavedRegs.set(UnspilledCSGPRPaired); 2865 ExtraCSSpill = UnspilledCSGPR; 2866 } 2867 2868 // If we didn't find an extra callee-saved register to spill, create 2869 // an emergency spill slot. 2870 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 2871 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2872 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 2873 unsigned Size = TRI->getSpillSize(RC); 2874 Align Alignment = TRI->getSpillAlign(RC); 2875 int FI = MFI.CreateStackObject(Size, Alignment, false); 2876 RS->addScavengingFrameIndex(FI); 2877 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 2878 << " as the emergency spill slot.\n"); 2879 } 2880 } 2881 2882 // Adding the size of additional 64bit GPR saves. 2883 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 2884 2885 // A Swift asynchronous context extends the frame record with a pointer 2886 // directly before FP. 2887 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) 2888 CSStackSize += 8; 2889 2890 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 2891 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 2892 << EstimatedStackSize + AlignedCSStackSize 2893 << " bytes.\n"); 2894 2895 assert((!MFI.isCalleeSavedInfoValid() || 2896 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 2897 "Should not invalidate callee saved info"); 2898 2899 // Round up to register pair alignment to avoid additional SP adjustment 2900 // instructions. 2901 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 2902 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 2903 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 2904 } 2905 2906 bool AArch64FrameLowering::assignCalleeSavedSpillSlots( 2907 MachineFunction &MF, const TargetRegisterInfo *RegInfo, 2908 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex, 2909 unsigned &MaxCSFrameIndex) const { 2910 bool NeedsWinCFI = needsWinCFI(MF); 2911 // To match the canonical windows frame layout, reverse the list of 2912 // callee saved registers to get them laid out by PrologEpilogInserter 2913 // in the right order. (PrologEpilogInserter allocates stack objects top 2914 // down. Windows canonical prologs store higher numbered registers at 2915 // the top, thus have the CSI array start from the highest registers.) 2916 if (NeedsWinCFI) 2917 std::reverse(CSI.begin(), CSI.end()); 2918 2919 if (CSI.empty()) 2920 return true; // Early exit if no callee saved registers are modified! 2921 2922 // Now that we know which registers need to be saved and restored, allocate 2923 // stack slots for them. 2924 MachineFrameInfo &MFI = MF.getFrameInfo(); 2925 auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2926 for (auto &CS : CSI) { 2927 Register Reg = CS.getReg(); 2928 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); 2929 2930 unsigned Size = RegInfo->getSpillSize(*RC); 2931 Align Alignment(RegInfo->getSpillAlign(*RC)); 2932 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true); 2933 CS.setFrameIdx(FrameIdx); 2934 2935 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; 2936 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; 2937 2938 // Grab 8 bytes below FP for the extended asynchronous frame info. 2939 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && Reg == AArch64::FP) { 2940 FrameIdx = MFI.CreateStackObject(8, Alignment, true); 2941 AFI->setSwiftAsyncContextFrameIdx(FrameIdx); 2942 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; 2943 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; 2944 } 2945 } 2946 return true; 2947 } 2948 2949 bool AArch64FrameLowering::enableStackSlotScavenging( 2950 const MachineFunction &MF) const { 2951 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2952 return AFI->hasCalleeSaveStackFreeSpace(); 2953 } 2954 2955 /// returns true if there are any SVE callee saves. 2956 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 2957 int &Min, int &Max) { 2958 Min = std::numeric_limits<int>::max(); 2959 Max = std::numeric_limits<int>::min(); 2960 2961 if (!MFI.isCalleeSavedInfoValid()) 2962 return false; 2963 2964 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2965 for (auto &CS : CSI) { 2966 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 2967 AArch64::PPRRegClass.contains(CS.getReg())) { 2968 assert((Max == std::numeric_limits<int>::min() || 2969 Max + 1 == CS.getFrameIdx()) && 2970 "SVE CalleeSaves are not consecutive"); 2971 2972 Min = std::min(Min, CS.getFrameIdx()); 2973 Max = std::max(Max, CS.getFrameIdx()); 2974 } 2975 } 2976 return Min != std::numeric_limits<int>::max(); 2977 } 2978 2979 // Process all the SVE stack objects and determine offsets for each 2980 // object. If AssignOffsets is true, the offsets get assigned. 2981 // Fills in the first and last callee-saved frame indices into 2982 // Min/MaxCSFrameIndex, respectively. 2983 // Returns the size of the stack. 2984 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 2985 int &MinCSFrameIndex, 2986 int &MaxCSFrameIndex, 2987 bool AssignOffsets) { 2988 #ifndef NDEBUG 2989 // First process all fixed stack objects. 2990 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 2991 assert(MFI.getStackID(I) != TargetStackID::ScalableVector && 2992 "SVE vectors should never be passed on the stack by value, only by " 2993 "reference."); 2994 #endif 2995 2996 auto Assign = [&MFI](int FI, int64_t Offset) { 2997 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 2998 MFI.setObjectOffset(FI, Offset); 2999 }; 3000 3001 int64_t Offset = 0; 3002 3003 // Then process all callee saved slots. 3004 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 3005 // Assign offsets to the callee save slots. 3006 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 3007 Offset += MFI.getObjectSize(I); 3008 Offset = alignTo(Offset, MFI.getObjectAlign(I)); 3009 if (AssignOffsets) 3010 Assign(I, -Offset); 3011 } 3012 } 3013 3014 // Ensure that the Callee-save area is aligned to 16bytes. 3015 Offset = alignTo(Offset, Align(16U)); 3016 3017 // Create a buffer of SVE objects to allocate and sort it. 3018 SmallVector<int, 8> ObjectsToAllocate; 3019 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 3020 unsigned StackID = MFI.getStackID(I); 3021 if (StackID != TargetStackID::ScalableVector) 3022 continue; 3023 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 3024 continue; 3025 if (MFI.isDeadObjectIndex(I)) 3026 continue; 3027 3028 ObjectsToAllocate.push_back(I); 3029 } 3030 3031 // Allocate all SVE locals and spills 3032 for (unsigned FI : ObjectsToAllocate) { 3033 Align Alignment = MFI.getObjectAlign(FI); 3034 // FIXME: Given that the length of SVE vectors is not necessarily a power of 3035 // two, we'd need to align every object dynamically at runtime if the 3036 // alignment is larger than 16. This is not yet supported. 3037 if (Alignment > Align(16)) 3038 report_fatal_error( 3039 "Alignment of scalable vectors > 16 bytes is not yet supported"); 3040 3041 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); 3042 if (AssignOffsets) 3043 Assign(FI, -Offset); 3044 } 3045 3046 return Offset; 3047 } 3048 3049 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 3050 MachineFrameInfo &MFI) const { 3051 int MinCSFrameIndex, MaxCSFrameIndex; 3052 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 3053 } 3054 3055 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 3056 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 3057 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 3058 true); 3059 } 3060 3061 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 3062 MachineFunction &MF, RegScavenger *RS) const { 3063 MachineFrameInfo &MFI = MF.getFrameInfo(); 3064 3065 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 3066 "Upwards growing stack unsupported"); 3067 3068 int MinCSFrameIndex, MaxCSFrameIndex; 3069 int64_t SVEStackSize = 3070 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 3071 3072 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3073 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 3074 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 3075 3076 // If this function isn't doing Win64-style C++ EH, we don't need to do 3077 // anything. 3078 if (!MF.hasEHFunclets()) 3079 return; 3080 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3081 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3082 3083 MachineBasicBlock &MBB = MF.front(); 3084 auto MBBI = MBB.begin(); 3085 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3086 ++MBBI; 3087 3088 // Create an UnwindHelp object. 3089 // The UnwindHelp object is allocated at the start of the fixed object area 3090 int64_t FixedObject = 3091 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 3092 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 3093 /*SPOffset*/ -FixedObject, 3094 /*IsImmutable=*/false); 3095 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3096 3097 // We need to store -2 into the UnwindHelp object at the start of the 3098 // function. 3099 DebugLoc DL; 3100 RS->enterBasicBlockEnd(MBB); 3101 RS->backward(std::prev(MBBI)); 3102 unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 3103 assert(DstReg && "There must be a free register after frame setup"); 3104 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 3105 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 3106 .addReg(DstReg, getKillRegState(true)) 3107 .addFrameIndex(UnwindHelpFI) 3108 .addImm(0); 3109 } 3110 3111 namespace { 3112 struct TagStoreInstr { 3113 MachineInstr *MI; 3114 int64_t Offset, Size; 3115 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) 3116 : MI(MI), Offset(Offset), Size(Size) {} 3117 }; 3118 3119 class TagStoreEdit { 3120 MachineFunction *MF; 3121 MachineBasicBlock *MBB; 3122 MachineRegisterInfo *MRI; 3123 // Tag store instructions that are being replaced. 3124 SmallVector<TagStoreInstr, 8> TagStores; 3125 // Combined memref arguments of the above instructions. 3126 SmallVector<MachineMemOperand *, 8> CombinedMemRefs; 3127 3128 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + 3129 // FrameRegOffset + Size) with the address tag of SP. 3130 Register FrameReg; 3131 StackOffset FrameRegOffset; 3132 int64_t Size; 3133 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end. 3134 Optional<int64_t> FrameRegUpdate; 3135 // MIFlags for any FrameReg updating instructions. 3136 unsigned FrameRegUpdateFlags; 3137 3138 // Use zeroing instruction variants. 3139 bool ZeroData; 3140 DebugLoc DL; 3141 3142 void emitUnrolled(MachineBasicBlock::iterator InsertI); 3143 void emitLoop(MachineBasicBlock::iterator InsertI); 3144 3145 public: 3146 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) 3147 : MBB(MBB), ZeroData(ZeroData) { 3148 MF = MBB->getParent(); 3149 MRI = &MF->getRegInfo(); 3150 } 3151 // Add an instruction to be replaced. Instructions must be added in the 3152 // ascending order of Offset, and have to be adjacent. 3153 void addInstruction(TagStoreInstr I) { 3154 assert((TagStores.empty() || 3155 TagStores.back().Offset + TagStores.back().Size == I.Offset) && 3156 "Non-adjacent tag store instructions."); 3157 TagStores.push_back(I); 3158 } 3159 void clear() { TagStores.clear(); } 3160 // Emit equivalent code at the given location, and erase the current set of 3161 // instructions. May skip if the replacement is not profitable. May invalidate 3162 // the input iterator and replace it with a valid one. 3163 void emitCode(MachineBasicBlock::iterator &InsertI, 3164 const AArch64FrameLowering *TFI, bool IsLast); 3165 }; 3166 3167 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { 3168 const AArch64InstrInfo *TII = 3169 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 3170 3171 const int64_t kMinOffset = -256 * 16; 3172 const int64_t kMaxOffset = 255 * 16; 3173 3174 Register BaseReg = FrameReg; 3175 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed(); 3176 if (BaseRegOffsetBytes < kMinOffset || 3177 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) { 3178 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 3179 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, 3180 StackOffset::getFixed(BaseRegOffsetBytes), TII); 3181 BaseReg = ScratchReg; 3182 BaseRegOffsetBytes = 0; 3183 } 3184 3185 MachineInstr *LastI = nullptr; 3186 while (Size) { 3187 int64_t InstrSize = (Size > 16) ? 32 : 16; 3188 unsigned Opcode = 3189 InstrSize == 16 3190 ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset) 3191 : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset); 3192 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) 3193 .addReg(AArch64::SP) 3194 .addReg(BaseReg) 3195 .addImm(BaseRegOffsetBytes / 16) 3196 .setMemRefs(CombinedMemRefs); 3197 // A store to [BaseReg, #0] should go last for an opportunity to fold the 3198 // final SP adjustment in the epilogue. 3199 if (BaseRegOffsetBytes == 0) 3200 LastI = I; 3201 BaseRegOffsetBytes += InstrSize; 3202 Size -= InstrSize; 3203 } 3204 3205 if (LastI) 3206 MBB->splice(InsertI, MBB, LastI); 3207 } 3208 3209 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { 3210 const AArch64InstrInfo *TII = 3211 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 3212 3213 Register BaseReg = FrameRegUpdate 3214 ? FrameReg 3215 : MRI->createVirtualRegister(&AArch64::GPR64RegClass); 3216 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 3217 3218 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); 3219 3220 int64_t LoopSize = Size; 3221 // If the loop size is not a multiple of 32, split off one 16-byte store at 3222 // the end to fold BaseReg update into. 3223 if (FrameRegUpdate && *FrameRegUpdate) 3224 LoopSize -= LoopSize % 32; 3225 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, 3226 TII->get(ZeroData ? AArch64::STZGloop_wback 3227 : AArch64::STGloop_wback)) 3228 .addDef(SizeReg) 3229 .addDef(BaseReg) 3230 .addImm(LoopSize) 3231 .addReg(BaseReg) 3232 .setMemRefs(CombinedMemRefs); 3233 if (FrameRegUpdate) 3234 LoopI->setFlags(FrameRegUpdateFlags); 3235 3236 int64_t ExtraBaseRegUpdate = 3237 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0; 3238 if (LoopSize < Size) { 3239 assert(FrameRegUpdate); 3240 assert(Size - LoopSize == 16); 3241 // Tag 16 more bytes at BaseReg and update BaseReg. 3242 BuildMI(*MBB, InsertI, DL, 3243 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) 3244 .addDef(BaseReg) 3245 .addReg(BaseReg) 3246 .addReg(BaseReg) 3247 .addImm(1 + ExtraBaseRegUpdate / 16) 3248 .setMemRefs(CombinedMemRefs) 3249 .setMIFlags(FrameRegUpdateFlags); 3250 } else if (ExtraBaseRegUpdate) { 3251 // Update BaseReg. 3252 BuildMI( 3253 *MBB, InsertI, DL, 3254 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) 3255 .addDef(BaseReg) 3256 .addReg(BaseReg) 3257 .addImm(std::abs(ExtraBaseRegUpdate)) 3258 .addImm(0) 3259 .setMIFlags(FrameRegUpdateFlags); 3260 } 3261 } 3262 3263 // Check if *II is a register update that can be merged into STGloop that ends 3264 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the 3265 // end of the loop. 3266 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, 3267 int64_t Size, int64_t *TotalOffset) { 3268 MachineInstr &MI = *II; 3269 if ((MI.getOpcode() == AArch64::ADDXri || 3270 MI.getOpcode() == AArch64::SUBXri) && 3271 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { 3272 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); 3273 int64_t Offset = MI.getOperand(2).getImm() << Shift; 3274 if (MI.getOpcode() == AArch64::SUBXri) 3275 Offset = -Offset; 3276 int64_t AbsPostOffset = std::abs(Offset - Size); 3277 const int64_t kMaxOffset = 3278 0xFFF; // Max encoding for unshifted ADDXri / SUBXri 3279 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) { 3280 *TotalOffset = Offset; 3281 return true; 3282 } 3283 } 3284 return false; 3285 } 3286 3287 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE, 3288 SmallVectorImpl<MachineMemOperand *> &MemRefs) { 3289 MemRefs.clear(); 3290 for (auto &TS : TSE) { 3291 MachineInstr *MI = TS.MI; 3292 // An instruction without memory operands may access anything. Be 3293 // conservative and return an empty list. 3294 if (MI->memoperands_empty()) { 3295 MemRefs.clear(); 3296 return; 3297 } 3298 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); 3299 } 3300 } 3301 3302 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, 3303 const AArch64FrameLowering *TFI, bool IsLast) { 3304 if (TagStores.empty()) 3305 return; 3306 TagStoreInstr &FirstTagStore = TagStores[0]; 3307 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; 3308 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; 3309 DL = TagStores[0].MI->getDebugLoc(); 3310 3311 Register Reg; 3312 FrameRegOffset = TFI->resolveFrameOffsetReference( 3313 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, 3314 /*PreferFP=*/false, /*ForSimm=*/true); 3315 FrameReg = Reg; 3316 FrameRegUpdate = None; 3317 3318 mergeMemRefs(TagStores, CombinedMemRefs); 3319 3320 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n"; 3321 for (const auto &Instr 3322 : TagStores) { dbgs() << " " << *Instr.MI; }); 3323 3324 // Size threshold where a loop becomes shorter than a linear sequence of 3325 // tagging instructions. 3326 const int kSetTagLoopThreshold = 176; 3327 if (Size < kSetTagLoopThreshold) { 3328 if (TagStores.size() < 2) 3329 return; 3330 emitUnrolled(InsertI); 3331 } else { 3332 MachineInstr *UpdateInstr = nullptr; 3333 int64_t TotalOffset; 3334 if (IsLast) { 3335 // See if we can merge base register update into the STGloop. 3336 // This is done in AArch64LoadStoreOptimizer for "normal" stores, 3337 // but STGloop is way too unusual for that, and also it only 3338 // realistically happens in function epilogue. Also, STGloop is expanded 3339 // before that pass. 3340 if (InsertI != MBB->end() && 3341 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size, 3342 &TotalOffset)) { 3343 UpdateInstr = &*InsertI++; 3344 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " 3345 << *UpdateInstr); 3346 } 3347 } 3348 3349 if (!UpdateInstr && TagStores.size() < 2) 3350 return; 3351 3352 if (UpdateInstr) { 3353 FrameRegUpdate = TotalOffset; 3354 FrameRegUpdateFlags = UpdateInstr->getFlags(); 3355 } 3356 emitLoop(InsertI); 3357 if (UpdateInstr) 3358 UpdateInstr->eraseFromParent(); 3359 } 3360 3361 for (auto &TS : TagStores) 3362 TS.MI->eraseFromParent(); 3363 } 3364 3365 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, 3366 int64_t &Size, bool &ZeroData) { 3367 MachineFunction &MF = *MI.getParent()->getParent(); 3368 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3369 3370 unsigned Opcode = MI.getOpcode(); 3371 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset || 3372 Opcode == AArch64::STZ2GOffset); 3373 3374 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { 3375 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) 3376 return false; 3377 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) 3378 return false; 3379 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); 3380 Size = MI.getOperand(2).getImm(); 3381 return true; 3382 } 3383 3384 if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset) 3385 Size = 16; 3386 else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset) 3387 Size = 32; 3388 else 3389 return false; 3390 3391 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) 3392 return false; 3393 3394 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 3395 16 * MI.getOperand(2).getImm(); 3396 return true; 3397 } 3398 3399 // Detect a run of memory tagging instructions for adjacent stack frame slots, 3400 // and replace them with a shorter instruction sequence: 3401 // * replace STG + STG with ST2G 3402 // * replace STGloop + STGloop with STGloop 3403 // This code needs to run when stack slot offsets are already known, but before 3404 // FrameIndex operands in STG instructions are eliminated. 3405 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, 3406 const AArch64FrameLowering *TFI, 3407 RegScavenger *RS) { 3408 bool FirstZeroData; 3409 int64_t Size, Offset; 3410 MachineInstr &MI = *II; 3411 MachineBasicBlock *MBB = MI.getParent(); 3412 MachineBasicBlock::iterator NextI = ++II; 3413 if (&MI == &MBB->instr_back()) 3414 return II; 3415 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) 3416 return II; 3417 3418 SmallVector<TagStoreInstr, 4> Instrs; 3419 Instrs.emplace_back(&MI, Offset, Size); 3420 3421 constexpr int kScanLimit = 10; 3422 int Count = 0; 3423 for (MachineBasicBlock::iterator E = MBB->end(); 3424 NextI != E && Count < kScanLimit; ++NextI) { 3425 MachineInstr &MI = *NextI; 3426 bool ZeroData; 3427 int64_t Size, Offset; 3428 // Collect instructions that update memory tags with a FrameIndex operand 3429 // and (when applicable) constant size, and whose output registers are dead 3430 // (the latter is almost always the case in practice). Since these 3431 // instructions effectively have no inputs or outputs, we are free to skip 3432 // any non-aliasing instructions in between without tracking used registers. 3433 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { 3434 if (ZeroData != FirstZeroData) 3435 break; 3436 Instrs.emplace_back(&MI, Offset, Size); 3437 continue; 3438 } 3439 3440 // Only count non-transient, non-tagging instructions toward the scan 3441 // limit. 3442 if (!MI.isTransient()) 3443 ++Count; 3444 3445 // Just in case, stop before the epilogue code starts. 3446 if (MI.getFlag(MachineInstr::FrameSetup) || 3447 MI.getFlag(MachineInstr::FrameDestroy)) 3448 break; 3449 3450 // Reject anything that may alias the collected instructions. 3451 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects()) 3452 break; 3453 } 3454 3455 // New code will be inserted after the last tagging instruction we've found. 3456 MachineBasicBlock::iterator InsertI = Instrs.back().MI; 3457 InsertI++; 3458 3459 llvm::stable_sort(Instrs, 3460 [](const TagStoreInstr &Left, const TagStoreInstr &Right) { 3461 return Left.Offset < Right.Offset; 3462 }); 3463 3464 // Make sure that we don't have any overlapping stores. 3465 int64_t CurOffset = Instrs[0].Offset; 3466 for (auto &Instr : Instrs) { 3467 if (CurOffset > Instr.Offset) 3468 return NextI; 3469 CurOffset = Instr.Offset + Instr.Size; 3470 } 3471 3472 // Find contiguous runs of tagged memory and emit shorter instruction 3473 // sequencies for them when possible. 3474 TagStoreEdit TSE(MBB, FirstZeroData); 3475 Optional<int64_t> EndOffset; 3476 for (auto &Instr : Instrs) { 3477 if (EndOffset && *EndOffset != Instr.Offset) { 3478 // Found a gap. 3479 TSE.emitCode(InsertI, TFI, /*IsLast = */ false); 3480 TSE.clear(); 3481 } 3482 3483 TSE.addInstruction(Instr); 3484 EndOffset = Instr.Offset + Instr.Size; 3485 } 3486 3487 TSE.emitCode(InsertI, TFI, /*IsLast = */ true); 3488 3489 return InsertI; 3490 } 3491 } // namespace 3492 3493 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3494 MachineFunction &MF, RegScavenger *RS = nullptr) const { 3495 if (StackTaggingMergeSetTag) 3496 for (auto &BB : MF) 3497 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) 3498 II = tryMergeAdjacentSTG(II, this, RS); 3499 } 3500 3501 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP 3502 /// before the update. This is easily retrieved as it is exactly the offset 3503 /// that is set in processFunctionBeforeFrameFinalized. 3504 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP( 3505 const MachineFunction &MF, int FI, Register &FrameReg, 3506 bool IgnoreSPUpdates) const { 3507 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3508 if (IgnoreSPUpdates) { 3509 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 3510 << MFI.getObjectOffset(FI) << "\n"); 3511 FrameReg = AArch64::SP; 3512 return StackOffset::getFixed(MFI.getObjectOffset(FI)); 3513 } 3514 3515 return getFrameIndexReference(MF, FI, FrameReg); 3516 } 3517 3518 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 3519 /// the parent's frame pointer 3520 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 3521 const MachineFunction &MF) const { 3522 return 0; 3523 } 3524 3525 /// Funclets only need to account for space for the callee saved registers, 3526 /// as the locals are accounted for in the parent's stack frame. 3527 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 3528 const MachineFunction &MF) const { 3529 // This is the size of the pushed CSRs. 3530 unsigned CSSize = 3531 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 3532 // This is the amount of stack a funclet needs to allocate. 3533 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 3534 getStackAlign()); 3535 } 3536 3537 namespace { 3538 struct FrameObject { 3539 bool IsValid = false; 3540 // Index of the object in MFI. 3541 int ObjectIndex = 0; 3542 // Group ID this object belongs to. 3543 int GroupIndex = -1; 3544 // This object should be placed first (closest to SP). 3545 bool ObjectFirst = false; 3546 // This object's group (which always contains the object with 3547 // ObjectFirst==true) should be placed first. 3548 bool GroupFirst = false; 3549 }; 3550 3551 class GroupBuilder { 3552 SmallVector<int, 8> CurrentMembers; 3553 int NextGroupIndex = 0; 3554 std::vector<FrameObject> &Objects; 3555 3556 public: 3557 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {} 3558 void AddMember(int Index) { CurrentMembers.push_back(Index); } 3559 void EndCurrentGroup() { 3560 if (CurrentMembers.size() > 1) { 3561 // Create a new group with the current member list. This might remove them 3562 // from their pre-existing groups. That's OK, dealing with overlapping 3563 // groups is too hard and unlikely to make a difference. 3564 LLVM_DEBUG(dbgs() << "group:"); 3565 for (int Index : CurrentMembers) { 3566 Objects[Index].GroupIndex = NextGroupIndex; 3567 LLVM_DEBUG(dbgs() << " " << Index); 3568 } 3569 LLVM_DEBUG(dbgs() << "\n"); 3570 NextGroupIndex++; 3571 } 3572 CurrentMembers.clear(); 3573 } 3574 }; 3575 3576 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) { 3577 // Objects at a lower index are closer to FP; objects at a higher index are 3578 // closer to SP. 3579 // 3580 // For consistency in our comparison, all invalid objects are placed 3581 // at the end. This also allows us to stop walking when we hit the 3582 // first invalid item after it's all sorted. 3583 // 3584 // The "first" object goes first (closest to SP), followed by the members of 3585 // the "first" group. 3586 // 3587 // The rest are sorted by the group index to keep the groups together. 3588 // Higher numbered groups are more likely to be around longer (i.e. untagged 3589 // in the function epilogue and not at some earlier point). Place them closer 3590 // to SP. 3591 // 3592 // If all else equal, sort by the object index to keep the objects in the 3593 // original order. 3594 return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex, 3595 A.ObjectIndex) < 3596 std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex, 3597 B.ObjectIndex); 3598 } 3599 } // namespace 3600 3601 void AArch64FrameLowering::orderFrameObjects( 3602 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3603 if (!OrderFrameObjects || ObjectsToAllocate.empty()) 3604 return; 3605 3606 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3607 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd()); 3608 for (auto &Obj : ObjectsToAllocate) { 3609 FrameObjects[Obj].IsValid = true; 3610 FrameObjects[Obj].ObjectIndex = Obj; 3611 } 3612 3613 // Identify stack slots that are tagged at the same time. 3614 GroupBuilder GB(FrameObjects); 3615 for (auto &MBB : MF) { 3616 for (auto &MI : MBB) { 3617 if (MI.isDebugInstr()) 3618 continue; 3619 int OpIndex; 3620 switch (MI.getOpcode()) { 3621 case AArch64::STGloop: 3622 case AArch64::STZGloop: 3623 OpIndex = 3; 3624 break; 3625 case AArch64::STGOffset: 3626 case AArch64::STZGOffset: 3627 case AArch64::ST2GOffset: 3628 case AArch64::STZ2GOffset: 3629 OpIndex = 1; 3630 break; 3631 default: 3632 OpIndex = -1; 3633 } 3634 3635 int TaggedFI = -1; 3636 if (OpIndex >= 0) { 3637 const MachineOperand &MO = MI.getOperand(OpIndex); 3638 if (MO.isFI()) { 3639 int FI = MO.getIndex(); 3640 if (FI >= 0 && FI < MFI.getObjectIndexEnd() && 3641 FrameObjects[FI].IsValid) 3642 TaggedFI = FI; 3643 } 3644 } 3645 3646 // If this is a stack tagging instruction for a slot that is not part of a 3647 // group yet, either start a new group or add it to the current one. 3648 if (TaggedFI >= 0) 3649 GB.AddMember(TaggedFI); 3650 else 3651 GB.EndCurrentGroup(); 3652 } 3653 // Groups should never span multiple basic blocks. 3654 GB.EndCurrentGroup(); 3655 } 3656 3657 // If the function's tagged base pointer is pinned to a stack slot, we want to 3658 // put that slot first when possible. This will likely place it at SP + 0, 3659 // and save one instruction when generating the base pointer because IRG does 3660 // not allow an immediate offset. 3661 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 3662 Optional<int> TBPI = AFI.getTaggedBasePointerIndex(); 3663 if (TBPI) { 3664 FrameObjects[*TBPI].ObjectFirst = true; 3665 FrameObjects[*TBPI].GroupFirst = true; 3666 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex; 3667 if (FirstGroupIndex >= 0) 3668 for (FrameObject &Object : FrameObjects) 3669 if (Object.GroupIndex == FirstGroupIndex) 3670 Object.GroupFirst = true; 3671 } 3672 3673 llvm::stable_sort(FrameObjects, FrameObjectCompare); 3674 3675 int i = 0; 3676 for (auto &Obj : FrameObjects) { 3677 // All invalid items are sorted at the end, so it's safe to stop. 3678 if (!Obj.IsValid) 3679 break; 3680 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3681 } 3682 3683 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj 3684 : FrameObjects) { 3685 if (!Obj.IsValid) 3686 break; 3687 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex; 3688 if (Obj.ObjectFirst) 3689 dbgs() << ", first"; 3690 if (Obj.GroupFirst) 3691 dbgs() << ", group-first"; 3692 dbgs() << "\n"; 3693 }); 3694 } 3695