1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | prev_lr | | (frame record first) 51 // | prev_fp | <--' 52 // | async context if needed | 53 // | (a.k.a. "frame record") | 54 // |-----------------------------------| <- fp(=x29) 55 // | | 56 // | callee-saved fp/simd/SVE regs | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | SVE stack objects | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.16-byte.alignment....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- bp(not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses X19) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 93 // callee-saved area, since the unwind encoding does not allow for encoding 94 // this dynamically and existing tools depend on this layout. For other 95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 96 // area to allow SVE stack objects (allocated directly below the callee-saves, 97 // if available) to be accessed directly from the framepointer. 98 // The SVE spill/fill instructions have VL-scaled addressing modes such 99 // as: 100 // ldr z8, [fp, #-7 mul vl] 101 // For SVE the size of the vector length (VL) is not known at compile-time, so 102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 103 // layout, we don't need to add an unscaled offset to the framepointer before 104 // accessing the SVE object in the frame. 105 // 106 // In some cases when a base pointer is not strictly needed, it is generated 107 // anyway when offsets from the frame pointer to access local variables become 108 // so large that the offset can't be encoded in the immediate fields of loads 109 // or stores. 110 // 111 // Outgoing function arguments must be at the bottom of the stack frame when 112 // calling another function. If we do not have variable-sized stack objects, we 113 // can allocate a "reserved call frame" area at the bottom of the local 114 // variable area, large enough for all outgoing calls. If we do have VLAs, then 115 // the stack pointer must be decremented and incremented around each call to 116 // make space for the arguments below the VLAs. 117 // 118 // FIXME: also explain the redzone concept. 119 // 120 // An example of the prologue: 121 // 122 // .globl __foo 123 // .align 2 124 // __foo: 125 // Ltmp0: 126 // .cfi_startproc 127 // .cfi_personality 155, ___gxx_personality_v0 128 // Leh_func_begin: 129 // .cfi_lsda 16, Lexception33 130 // 131 // stp xa,bx, [sp, -#offset]! 132 // ... 133 // stp x28, x27, [sp, #offset-32] 134 // stp fp, lr, [sp, #offset-16] 135 // add fp, sp, #offset - 16 136 // sub sp, sp, #1360 137 // 138 // The Stack: 139 // +-------------------------------------------+ 140 // 10000 | ........ | ........ | ........ | ........ | 141 // 10004 | ........ | ........ | ........ | ........ | 142 // +-------------------------------------------+ 143 // 10008 | ........ | ........ | ........ | ........ | 144 // 1000c | ........ | ........ | ........ | ........ | 145 // +===========================================+ 146 // 10010 | X28 Register | 147 // 10014 | X28 Register | 148 // +-------------------------------------------+ 149 // 10018 | X27 Register | 150 // 1001c | X27 Register | 151 // +===========================================+ 152 // 10020 | Frame Pointer | 153 // 10024 | Frame Pointer | 154 // +-------------------------------------------+ 155 // 10028 | Link Register | 156 // 1002c | Link Register | 157 // +===========================================+ 158 // 10030 | ........ | ........ | ........ | ........ | 159 // 10034 | ........ | ........ | ........ | ........ | 160 // +-------------------------------------------+ 161 // 10038 | ........ | ........ | ........ | ........ | 162 // 1003c | ........ | ........ | ........ | ........ | 163 // +-------------------------------------------+ 164 // 165 // [sp] = 10030 :: >>initial value<< 166 // sp = 10020 :: stp fp, lr, [sp, #-16]! 167 // fp = sp == 10020 :: mov fp, sp 168 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 169 // sp == 10010 :: >>final value<< 170 // 171 // The frame pointer (w29) points to address 10020. If we use an offset of 172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 173 // for w27, and -32 for w28: 174 // 175 // Ltmp1: 176 // .cfi_def_cfa w29, 16 177 // Ltmp2: 178 // .cfi_offset w30, -8 179 // Ltmp3: 180 // .cfi_offset w29, -16 181 // Ltmp4: 182 // .cfi_offset w27, -24 183 // Ltmp5: 184 // .cfi_offset w28, -32 185 // 186 //===----------------------------------------------------------------------===// 187 188 #include "AArch64FrameLowering.h" 189 #include "AArch64InstrInfo.h" 190 #include "AArch64MachineFunctionInfo.h" 191 #include "AArch64RegisterInfo.h" 192 #include "AArch64Subtarget.h" 193 #include "AArch64TargetMachine.h" 194 #include "MCTargetDesc/AArch64AddressingModes.h" 195 #include "MCTargetDesc/AArch64MCTargetDesc.h" 196 #include "llvm/ADT/ScopeExit.h" 197 #include "llvm/ADT/SmallVector.h" 198 #include "llvm/ADT/Statistic.h" 199 #include "llvm/CodeGen/LivePhysRegs.h" 200 #include "llvm/CodeGen/MachineBasicBlock.h" 201 #include "llvm/CodeGen/MachineFrameInfo.h" 202 #include "llvm/CodeGen/MachineFunction.h" 203 #include "llvm/CodeGen/MachineInstr.h" 204 #include "llvm/CodeGen/MachineInstrBuilder.h" 205 #include "llvm/CodeGen/MachineMemOperand.h" 206 #include "llvm/CodeGen/MachineModuleInfo.h" 207 #include "llvm/CodeGen/MachineOperand.h" 208 #include "llvm/CodeGen/MachineRegisterInfo.h" 209 #include "llvm/CodeGen/RegisterScavenging.h" 210 #include "llvm/CodeGen/TargetInstrInfo.h" 211 #include "llvm/CodeGen/TargetRegisterInfo.h" 212 #include "llvm/CodeGen/TargetSubtargetInfo.h" 213 #include "llvm/CodeGen/WinEHFuncInfo.h" 214 #include "llvm/IR/Attributes.h" 215 #include "llvm/IR/CallingConv.h" 216 #include "llvm/IR/DataLayout.h" 217 #include "llvm/IR/DebugLoc.h" 218 #include "llvm/IR/Function.h" 219 #include "llvm/MC/MCAsmInfo.h" 220 #include "llvm/MC/MCDwarf.h" 221 #include "llvm/Support/CommandLine.h" 222 #include "llvm/Support/Debug.h" 223 #include "llvm/Support/ErrorHandling.h" 224 #include "llvm/Support/MathExtras.h" 225 #include "llvm/Support/raw_ostream.h" 226 #include "llvm/Target/TargetMachine.h" 227 #include "llvm/Target/TargetOptions.h" 228 #include <cassert> 229 #include <cstdint> 230 #include <iterator> 231 #include <optional> 232 #include <vector> 233 234 using namespace llvm; 235 236 #define DEBUG_TYPE "frame-info" 237 238 static cl::opt<bool> EnableRedZone("aarch64-redzone", 239 cl::desc("enable use of redzone on AArch64"), 240 cl::init(false), cl::Hidden); 241 242 static cl::opt<bool> 243 ReverseCSRRestoreSeq("reverse-csr-restore-seq", 244 cl::desc("reverse the CSR restore sequence"), 245 cl::init(false), cl::Hidden); 246 247 static cl::opt<bool> StackTaggingMergeSetTag( 248 "stack-tagging-merge-settag", 249 cl::desc("merge settag instruction in function epilog"), cl::init(true), 250 cl::Hidden); 251 252 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects", 253 cl::desc("sort stack allocations"), 254 cl::init(true), cl::Hidden); 255 256 cl::opt<bool> EnableHomogeneousPrologEpilog( 257 "homogeneous-prolog-epilog", cl::Hidden, 258 cl::desc("Emit homogeneous prologue and epilogue for the size " 259 "optimization (default = off)")); 260 261 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 262 263 /// Returns how much of the incoming argument stack area (in bytes) we should 264 /// clean up in an epilogue. For the C calling convention this will be 0, for 265 /// guaranteed tail call conventions it can be positive (a normal return or a 266 /// tail call to a function that uses less stack space for arguments) or 267 /// negative (for a tail call to a function that needs more stack space than us 268 /// for arguments). 269 static int64_t getArgumentStackToRestore(MachineFunction &MF, 270 MachineBasicBlock &MBB) { 271 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 272 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 273 bool IsTailCallReturn = (MBB.end() != MBBI) 274 ? AArch64InstrInfo::isTailCallReturnInst(*MBBI) 275 : false; 276 277 int64_t ArgumentPopSize = 0; 278 if (IsTailCallReturn) { 279 MachineOperand &StackAdjust = MBBI->getOperand(1); 280 281 // For a tail-call in a callee-pops-arguments environment, some or all of 282 // the stack may actually be in use for the call's arguments, this is 283 // calculated during LowerCall and consumed here... 284 ArgumentPopSize = StackAdjust.getImm(); 285 } else { 286 // ... otherwise the amount to pop is *all* of the argument space, 287 // conveniently stored in the MachineFunctionInfo by 288 // LowerFormalArguments. This will, of course, be zero for the C calling 289 // convention. 290 ArgumentPopSize = AFI->getArgumentStackToRestore(); 291 } 292 293 return ArgumentPopSize; 294 } 295 296 static bool produceCompactUnwindFrame(MachineFunction &MF); 297 static bool needsWinCFI(const MachineFunction &MF); 298 static StackOffset getSVEStackSize(const MachineFunction &MF); 299 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB); 300 301 /// Returns true if a homogeneous prolog or epilog code can be emitted 302 /// for the size optimization. If possible, a frame helper call is injected. 303 /// When Exit block is given, this check is for epilog. 304 bool AArch64FrameLowering::homogeneousPrologEpilog( 305 MachineFunction &MF, MachineBasicBlock *Exit) const { 306 if (!MF.getFunction().hasMinSize()) 307 return false; 308 if (!EnableHomogeneousPrologEpilog) 309 return false; 310 if (ReverseCSRRestoreSeq) 311 return false; 312 if (EnableRedZone) 313 return false; 314 315 // TODO: Window is supported yet. 316 if (needsWinCFI(MF)) 317 return false; 318 // TODO: SVE is not supported yet. 319 if (getSVEStackSize(MF)) 320 return false; 321 322 // Bail on stack adjustment needed on return for simplicity. 323 const MachineFrameInfo &MFI = MF.getFrameInfo(); 324 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 325 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)) 326 return false; 327 if (Exit && getArgumentStackToRestore(MF, *Exit)) 328 return false; 329 330 auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 331 if (AFI->hasSwiftAsyncContext()) 332 return false; 333 334 // If there are an odd number of GPRs before LR and FP in the CSRs list, 335 // they will not be paired into one RegPairInfo, which is incompatible with 336 // the assumption made by the homogeneous prolog epilog pass. 337 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 338 unsigned NumGPRs = 0; 339 for (unsigned I = 0; CSRegs[I]; ++I) { 340 Register Reg = CSRegs[I]; 341 if (Reg == AArch64::LR) { 342 assert(CSRegs[I + 1] == AArch64::FP); 343 if (NumGPRs % 2 != 0) 344 return false; 345 break; 346 } 347 if (AArch64::GPR64RegClass.contains(Reg)) 348 ++NumGPRs; 349 } 350 351 return true; 352 } 353 354 /// Returns true if CSRs should be paired. 355 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const { 356 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF); 357 } 358 359 /// This is the biggest offset to the stack pointer we can encode in aarch64 360 /// instructions (without using a separate calculation and a temp register). 361 /// Note that the exception here are vector stores/loads which cannot encode any 362 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 363 static const unsigned DefaultSafeSPDisplacement = 255; 364 365 /// Look at each instruction that references stack frames and return the stack 366 /// size limit beyond which some of these instructions will require a scratch 367 /// register during their expansion later. 368 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 369 // FIXME: For now, just conservatively guestimate based on unscaled indexing 370 // range. We'll end up allocating an unnecessary spill slot a lot, but 371 // realistically that's not a big deal at this stage of the game. 372 for (MachineBasicBlock &MBB : MF) { 373 for (MachineInstr &MI : MBB) { 374 if (MI.isDebugInstr() || MI.isPseudo() || 375 MI.getOpcode() == AArch64::ADDXri || 376 MI.getOpcode() == AArch64::ADDSXri) 377 continue; 378 379 for (const MachineOperand &MO : MI.operands()) { 380 if (!MO.isFI()) 381 continue; 382 383 StackOffset Offset; 384 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 385 AArch64FrameOffsetCannotUpdate) 386 return 0; 387 } 388 } 389 } 390 return DefaultSafeSPDisplacement; 391 } 392 393 TargetStackID::Value 394 AArch64FrameLowering::getStackIDForScalableVectors() const { 395 return TargetStackID::ScalableVector; 396 } 397 398 /// Returns the size of the fixed object area (allocated next to sp on entry) 399 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 400 static unsigned getFixedObjectSize(const MachineFunction &MF, 401 const AArch64FunctionInfo *AFI, bool IsWin64, 402 bool IsFunclet) { 403 if (!IsWin64 || IsFunclet) { 404 return AFI->getTailCallReservedStack(); 405 } else { 406 if (AFI->getTailCallReservedStack() != 0) 407 report_fatal_error("cannot generate ABI-changing tail call for Win64"); 408 // Var args are stored here in the primary function. 409 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 410 // To support EH funclets we allocate an UnwindHelp object 411 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 412 return alignTo(VarArgsArea + UnwindHelpObject, 16); 413 } 414 } 415 416 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 417 static StackOffset getSVEStackSize(const MachineFunction &MF) { 418 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 419 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE()); 420 } 421 422 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 423 if (!EnableRedZone) 424 return false; 425 426 // Don't use the red zone if the function explicitly asks us not to. 427 // This is typically used for kernel code. 428 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 429 const unsigned RedZoneSize = 430 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 431 if (!RedZoneSize) 432 return false; 433 434 const MachineFrameInfo &MFI = MF.getFrameInfo(); 435 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 436 uint64_t NumBytes = AFI->getLocalStackSize(); 437 438 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize || 439 getSVEStackSize(MF)); 440 } 441 442 /// hasFP - Return true if the specified function should have a dedicated frame 443 /// pointer register. 444 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { 445 const MachineFrameInfo &MFI = MF.getFrameInfo(); 446 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 447 448 // Win64 EH requires a frame pointer if funclets are present, as the locals 449 // are accessed off the frame pointer in both the parent function and the 450 // funclets. 451 if (MF.hasEHFunclets()) 452 return true; 453 // Retain behavior of always omitting the FP for leaf functions when possible. 454 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 455 return true; 456 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 457 MFI.hasStackMap() || MFI.hasPatchPoint() || 458 RegInfo->hasStackRealignment(MF)) 459 return true; 460 // With large callframes around we may need to use FP to access the scavenging 461 // emergency spillslot. 462 // 463 // Unfortunately some calls to hasFP() like machine verifier -> 464 // getReservedReg() -> hasFP in the middle of global isel are too early 465 // to know the max call frame size. Hopefully conservatively returning "true" 466 // in those cases is fine. 467 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 468 if (!MFI.isMaxCallFrameSizeComputed() || 469 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 470 return true; 471 472 return false; 473 } 474 475 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 476 /// not required, we reserve argument space for call sites in the function 477 /// immediately on entry to the current function. This eliminates the need for 478 /// add/sub sp brackets around call sites. Returns true if the call frame is 479 /// included as part of the stack frame. 480 bool 481 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 482 // The stack probing code for the dynamically allocated outgoing arguments 483 // area assumes that the stack is probed at the top - either by the prologue 484 // code, which issues a probe if `hasVarSizedObjects` return true, or by the 485 // most recent variable-sized object allocation. Changing the condition here 486 // may need to be followed up by changes to the probe issuing logic. 487 return !MF.getFrameInfo().hasVarSizedObjects(); 488 } 489 490 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 491 MachineFunction &MF, MachineBasicBlock &MBB, 492 MachineBasicBlock::iterator I) const { 493 const AArch64InstrInfo *TII = 494 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 495 const AArch64TargetLowering *TLI = 496 MF.getSubtarget<AArch64Subtarget>().getTargetLowering(); 497 [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo(); 498 DebugLoc DL = I->getDebugLoc(); 499 unsigned Opc = I->getOpcode(); 500 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 501 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 502 503 if (!hasReservedCallFrame(MF)) { 504 int64_t Amount = I->getOperand(0).getImm(); 505 Amount = alignTo(Amount, getStackAlign()); 506 if (!IsDestroy) 507 Amount = -Amount; 508 509 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 510 // doesn't have to pop anything), then the first operand will be zero too so 511 // this adjustment is a no-op. 512 if (CalleePopAmount == 0) { 513 // FIXME: in-function stack adjustment for calls is limited to 24-bits 514 // because there's no guaranteed temporary register available. 515 // 516 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 517 // 1) For offset <= 12-bit, we use LSL #0 518 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 519 // LSL #0, and the other uses LSL #12. 520 // 521 // Most call frames will be allocated at the start of a function so 522 // this is OK, but it is a limitation that needs dealing with. 523 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 524 525 if (TLI->hasInlineStackProbe(MF) && 526 -Amount >= AArch64::StackProbeMaxUnprobedStack) { 527 // When stack probing is enabled, the decrement of SP may need to be 528 // probed. We only need to do this if the call site needs 1024 bytes of 529 // space or more, because a region smaller than that is allowed to be 530 // unprobed at an ABI boundary. We rely on the fact that SP has been 531 // probed exactly at this point, either by the prologue or most recent 532 // dynamic allocation. 533 assert(MFI.hasVarSizedObjects() && 534 "non-reserved call frame without var sized objects?"); 535 Register ScratchReg = 536 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass); 537 inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0)); 538 } else { 539 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 540 StackOffset::getFixed(Amount), TII); 541 } 542 } 543 } else if (CalleePopAmount != 0) { 544 // If the calling convention demands that the callee pops arguments from the 545 // stack, we want to add it back if we have a reserved call frame. 546 assert(CalleePopAmount < 0xffffff && "call frame too large"); 547 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 548 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII); 549 } 550 return MBB.erase(I); 551 } 552 553 void AArch64FrameLowering::emitCalleeSavedGPRLocations( 554 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 555 MachineFunction &MF = *MBB.getParent(); 556 MachineFrameInfo &MFI = MF.getFrameInfo(); 557 558 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 559 if (CSI.empty()) 560 return; 561 562 const TargetSubtargetInfo &STI = MF.getSubtarget(); 563 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 564 const TargetInstrInfo &TII = *STI.getInstrInfo(); 565 DebugLoc DL = MBB.findDebugLoc(MBBI); 566 567 for (const auto &Info : CSI) { 568 if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector) 569 continue; 570 571 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented"); 572 unsigned DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true); 573 574 int64_t Offset = 575 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea(); 576 unsigned CFIIndex = MF.addFrameInst( 577 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 578 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 579 .addCFIIndex(CFIIndex) 580 .setMIFlags(MachineInstr::FrameSetup); 581 } 582 } 583 584 void AArch64FrameLowering::emitCalleeSavedSVELocations( 585 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 586 MachineFunction &MF = *MBB.getParent(); 587 MachineFrameInfo &MFI = MF.getFrameInfo(); 588 589 // Add callee saved registers to move list. 590 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 591 if (CSI.empty()) 592 return; 593 594 const TargetSubtargetInfo &STI = MF.getSubtarget(); 595 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 596 const TargetInstrInfo &TII = *STI.getInstrInfo(); 597 DebugLoc DL = MBB.findDebugLoc(MBBI); 598 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 599 600 for (const auto &Info : CSI) { 601 if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)) 602 continue; 603 604 // Not all unwinders may know about SVE registers, so assume the lowest 605 // common demoninator. 606 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented"); 607 unsigned Reg = Info.getReg(); 608 if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg)) 609 continue; 610 611 StackOffset Offset = 612 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) - 613 StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI)); 614 615 unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset)); 616 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 617 .addCFIIndex(CFIIndex) 618 .setMIFlags(MachineInstr::FrameSetup); 619 } 620 } 621 622 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF, 623 MachineBasicBlock &MBB, 624 MachineBasicBlock::iterator InsertPt, 625 unsigned DwarfReg) { 626 unsigned CFIIndex = 627 MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg)); 628 BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex); 629 } 630 631 void AArch64FrameLowering::resetCFIToInitialState( 632 MachineBasicBlock &MBB) const { 633 634 MachineFunction &MF = *MBB.getParent(); 635 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 636 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 637 const auto &TRI = 638 static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo()); 639 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>(); 640 641 const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION); 642 DebugLoc DL; 643 644 // Reset the CFA to `SP + 0`. 645 MachineBasicBlock::iterator InsertPt = MBB.begin(); 646 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 647 nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0)); 648 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex); 649 650 // Flip the RA sign state. 651 if (MFI.shouldSignReturnAddress(MF)) { 652 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 653 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex); 654 } 655 656 // Shadow call stack uses X18, reset it. 657 if (MFI.needsShadowCallStackPrologueEpilogue(MF)) 658 insertCFISameValue(CFIDesc, MF, MBB, InsertPt, 659 TRI.getDwarfRegNum(AArch64::X18, true)); 660 661 // Emit .cfi_same_value for callee-saved registers. 662 const std::vector<CalleeSavedInfo> &CSI = 663 MF.getFrameInfo().getCalleeSavedInfo(); 664 for (const auto &Info : CSI) { 665 unsigned Reg = Info.getReg(); 666 if (!TRI.regNeedsCFI(Reg, Reg)) 667 continue; 668 insertCFISameValue(CFIDesc, MF, MBB, InsertPt, 669 TRI.getDwarfRegNum(Reg, true)); 670 } 671 } 672 673 static void emitCalleeSavedRestores(MachineBasicBlock &MBB, 674 MachineBasicBlock::iterator MBBI, 675 bool SVE) { 676 MachineFunction &MF = *MBB.getParent(); 677 MachineFrameInfo &MFI = MF.getFrameInfo(); 678 679 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 680 if (CSI.empty()) 681 return; 682 683 const TargetSubtargetInfo &STI = MF.getSubtarget(); 684 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 685 const TargetInstrInfo &TII = *STI.getInstrInfo(); 686 DebugLoc DL = MBB.findDebugLoc(MBBI); 687 688 for (const auto &Info : CSI) { 689 if (SVE != 690 (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)) 691 continue; 692 693 unsigned Reg = Info.getReg(); 694 if (SVE && 695 !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg)) 696 continue; 697 698 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore( 699 nullptr, TRI.getDwarfRegNum(Info.getReg(), true))); 700 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 701 .addCFIIndex(CFIIndex) 702 .setMIFlags(MachineInstr::FrameDestroy); 703 } 704 } 705 706 void AArch64FrameLowering::emitCalleeSavedGPRRestores( 707 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 708 emitCalleeSavedRestores(MBB, MBBI, false); 709 } 710 711 void AArch64FrameLowering::emitCalleeSavedSVERestores( 712 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 713 emitCalleeSavedRestores(MBB, MBBI, true); 714 } 715 716 // Return the maximum possible number of bytes for `Size` due to the 717 // architectural limit on the size of a SVE register. 718 static int64_t upperBound(StackOffset Size) { 719 static const int64_t MAX_BYTES_PER_SCALABLE_BYTE = 16; 720 return Size.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE + Size.getFixed(); 721 } 722 723 void AArch64FrameLowering::allocateStackSpace( 724 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 725 int64_t RealignmentPadding, StackOffset AllocSize, bool NeedsWinCFI, 726 bool *HasWinCFI, bool EmitCFI, StackOffset InitialOffset, 727 bool FollowupAllocs) const { 728 729 if (!AllocSize) 730 return; 731 732 DebugLoc DL; 733 MachineFunction &MF = *MBB.getParent(); 734 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 735 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 736 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 737 const MachineFrameInfo &MFI = MF.getFrameInfo(); 738 739 const int64_t MaxAlign = MFI.getMaxAlign().value(); 740 const uint64_t AndMask = ~(MaxAlign - 1); 741 742 if (!Subtarget.getTargetLowering()->hasInlineStackProbe(MF)) { 743 Register TargetReg = RealignmentPadding 744 ? findScratchNonCalleeSaveRegister(&MBB) 745 : AArch64::SP; 746 // SUB Xd/SP, SP, AllocSize 747 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII, 748 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 749 EmitCFI, InitialOffset); 750 751 if (RealignmentPadding) { 752 // AND SP, X9, 0b11111...0000 753 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP) 754 .addReg(TargetReg, RegState::Kill) 755 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 756 .setMIFlags(MachineInstr::FrameSetup); 757 AFI.setStackRealigned(true); 758 759 // No need for SEH instructions here; if we're realigning the stack, 760 // we've set a frame pointer and already finished the SEH prologue. 761 assert(!NeedsWinCFI); 762 } 763 return; 764 } 765 766 // 767 // Stack probing allocation. 768 // 769 770 // Fixed length allocation. If we don't need to re-align the stack and don't 771 // have SVE objects, we can use a more efficient sequence for stack probing. 772 if (AllocSize.getScalable() == 0 && RealignmentPadding == 0) { 773 Register ScratchReg = findScratchNonCalleeSaveRegister(&MBB); 774 assert(ScratchReg != AArch64::NoRegister); 775 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC)) 776 .addDef(ScratchReg) 777 .addImm(AllocSize.getFixed()) 778 .addImm(InitialOffset.getFixed()) 779 .addImm(InitialOffset.getScalable()); 780 // The fixed allocation may leave unprobed bytes at the top of the 781 // stack. If we have subsequent alocation (e.g. if we have variable-sized 782 // objects), we need to issue an extra probe, so these allocations start in 783 // a known state. 784 if (FollowupAllocs) { 785 // STR XZR, [SP] 786 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui)) 787 .addReg(AArch64::XZR) 788 .addReg(AArch64::SP) 789 .addImm(0) 790 .setMIFlags(MachineInstr::FrameSetup); 791 } 792 793 return; 794 } 795 796 // Variable length allocation. 797 798 // If the (unknown) allocation size cannot exceed the probe size, decrement 799 // the stack pointer right away. 800 int64_t ProbeSize = AFI.getStackProbeSize(); 801 if (upperBound(AllocSize) + RealignmentPadding <= ProbeSize) { 802 Register ScratchReg = RealignmentPadding 803 ? findScratchNonCalleeSaveRegister(&MBB) 804 : AArch64::SP; 805 assert(ScratchReg != AArch64::NoRegister); 806 // SUB Xd, SP, AllocSize 807 emitFrameOffset(MBB, MBBI, DL, ScratchReg, AArch64::SP, -AllocSize, &TII, 808 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 809 EmitCFI, InitialOffset); 810 if (RealignmentPadding) { 811 // AND SP, Xn, 0b11111...0000 812 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP) 813 .addReg(ScratchReg, RegState::Kill) 814 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 815 .setMIFlags(MachineInstr::FrameSetup); 816 AFI.setStackRealigned(true); 817 } 818 if (FollowupAllocs || upperBound(AllocSize) + RealignmentPadding > 819 AArch64::StackProbeMaxUnprobedStack) { 820 // STR XZR, [SP] 821 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui)) 822 .addReg(AArch64::XZR) 823 .addReg(AArch64::SP) 824 .addImm(0) 825 .setMIFlags(MachineInstr::FrameSetup); 826 } 827 return; 828 } 829 830 // Emit a variable-length allocation probing loop. 831 // TODO: As an optimisation, the loop can be "unrolled" into a few parts, 832 // each of them guaranteed to adjust the stack by less than the probe size. 833 Register TargetReg = findScratchNonCalleeSaveRegister(&MBB); 834 assert(TargetReg != AArch64::NoRegister); 835 // SUB Xd, SP, AllocSize 836 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII, 837 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 838 EmitCFI, InitialOffset); 839 if (RealignmentPadding) { 840 // AND Xn, Xn, 0b11111...0000 841 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), TargetReg) 842 .addReg(TargetReg, RegState::Kill) 843 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 844 .setMIFlags(MachineInstr::FrameSetup); 845 } 846 847 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC_VAR)) 848 .addReg(TargetReg); 849 if (EmitCFI) { 850 // Set the CFA register back to SP. 851 unsigned Reg = 852 Subtarget.getRegisterInfo()->getDwarfRegNum(AArch64::SP, true); 853 unsigned CFIIndex = 854 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 855 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 856 .addCFIIndex(CFIIndex) 857 .setMIFlags(MachineInstr::FrameSetup); 858 } 859 if (RealignmentPadding) 860 AFI.setStackRealigned(true); 861 } 862 863 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) { 864 switch (Reg.id()) { 865 default: 866 // The called routine is expected to preserve r19-r28 867 // r29 and r30 are used as frame pointer and link register resp. 868 return 0; 869 870 // GPRs 871 #define CASE(n) \ 872 case AArch64::W##n: \ 873 case AArch64::X##n: \ 874 return AArch64::X##n 875 CASE(0); 876 CASE(1); 877 CASE(2); 878 CASE(3); 879 CASE(4); 880 CASE(5); 881 CASE(6); 882 CASE(7); 883 CASE(8); 884 CASE(9); 885 CASE(10); 886 CASE(11); 887 CASE(12); 888 CASE(13); 889 CASE(14); 890 CASE(15); 891 CASE(16); 892 CASE(17); 893 CASE(18); 894 #undef CASE 895 896 // FPRs 897 #define CASE(n) \ 898 case AArch64::B##n: \ 899 case AArch64::H##n: \ 900 case AArch64::S##n: \ 901 case AArch64::D##n: \ 902 case AArch64::Q##n: \ 903 return HasSVE ? AArch64::Z##n : AArch64::Q##n 904 CASE(0); 905 CASE(1); 906 CASE(2); 907 CASE(3); 908 CASE(4); 909 CASE(5); 910 CASE(6); 911 CASE(7); 912 CASE(8); 913 CASE(9); 914 CASE(10); 915 CASE(11); 916 CASE(12); 917 CASE(13); 918 CASE(14); 919 CASE(15); 920 CASE(16); 921 CASE(17); 922 CASE(18); 923 CASE(19); 924 CASE(20); 925 CASE(21); 926 CASE(22); 927 CASE(23); 928 CASE(24); 929 CASE(25); 930 CASE(26); 931 CASE(27); 932 CASE(28); 933 CASE(29); 934 CASE(30); 935 CASE(31); 936 #undef CASE 937 } 938 } 939 940 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 941 MachineBasicBlock &MBB) const { 942 // Insertion point. 943 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 944 945 // Fake a debug loc. 946 DebugLoc DL; 947 if (MBBI != MBB.end()) 948 DL = MBBI->getDebugLoc(); 949 950 const MachineFunction &MF = *MBB.getParent(); 951 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 952 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo(); 953 954 BitVector GPRsToZero(TRI.getNumRegs()); 955 BitVector FPRsToZero(TRI.getNumRegs()); 956 bool HasSVE = STI.hasSVE(); 957 for (MCRegister Reg : RegsToZero.set_bits()) { 958 if (TRI.isGeneralPurposeRegister(MF, Reg)) { 959 // For GPRs, we only care to clear out the 64-bit register. 960 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE)) 961 GPRsToZero.set(XReg); 962 } else if (AArch64::FPR128RegClass.contains(Reg) || 963 AArch64::FPR64RegClass.contains(Reg) || 964 AArch64::FPR32RegClass.contains(Reg) || 965 AArch64::FPR16RegClass.contains(Reg) || 966 AArch64::FPR8RegClass.contains(Reg)) { 967 // For FPRs, 968 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE)) 969 FPRsToZero.set(XReg); 970 } 971 } 972 973 const AArch64InstrInfo &TII = *STI.getInstrInfo(); 974 975 // Zero out GPRs. 976 for (MCRegister Reg : GPRsToZero.set_bits()) 977 TII.buildClearRegister(Reg, MBB, MBBI, DL); 978 979 // Zero out FP/vector registers. 980 for (MCRegister Reg : FPRsToZero.set_bits()) 981 TII.buildClearRegister(Reg, MBB, MBBI, DL); 982 983 if (HasSVE) { 984 for (MCRegister PReg : 985 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4, 986 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9, 987 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14, 988 AArch64::P15}) { 989 if (RegsToZero[PReg]) 990 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg); 991 } 992 } 993 } 994 995 static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs, 996 const MachineBasicBlock &MBB) { 997 const MachineFunction *MF = MBB.getParent(); 998 LiveRegs.addLiveIns(MBB); 999 // Mark callee saved registers as used so we will not choose them. 1000 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 1001 for (unsigned i = 0; CSRegs[i]; ++i) 1002 LiveRegs.addReg(CSRegs[i]); 1003 } 1004 1005 // Find a scratch register that we can use at the start of the prologue to 1006 // re-align the stack pointer. We avoid using callee-save registers since they 1007 // may appear to be free when this is called from canUseAsPrologue (during 1008 // shrink wrapping), but then no longer be free when this is called from 1009 // emitPrologue. 1010 // 1011 // FIXME: This is a bit conservative, since in the above case we could use one 1012 // of the callee-save registers as a scratch temp to re-align the stack pointer, 1013 // but we would then have to make sure that we were in fact saving at least one 1014 // callee-save register in the prologue, which is additional complexity that 1015 // doesn't seem worth the benefit. 1016 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 1017 MachineFunction *MF = MBB->getParent(); 1018 1019 // If MBB is an entry block, use X9 as the scratch register 1020 if (&MF->front() == MBB) 1021 return AArch64::X9; 1022 1023 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 1024 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 1025 LivePhysRegs LiveRegs(TRI); 1026 getLiveRegsForEntryMBB(LiveRegs, *MBB); 1027 1028 // Prefer X9 since it was historically used for the prologue scratch reg. 1029 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1030 if (LiveRegs.available(MRI, AArch64::X9)) 1031 return AArch64::X9; 1032 1033 for (unsigned Reg : AArch64::GPR64RegClass) { 1034 if (LiveRegs.available(MRI, Reg)) 1035 return Reg; 1036 } 1037 return AArch64::NoRegister; 1038 } 1039 1040 bool AArch64FrameLowering::canUseAsPrologue( 1041 const MachineBasicBlock &MBB) const { 1042 const MachineFunction *MF = MBB.getParent(); 1043 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 1044 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 1045 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1046 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering(); 1047 const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>(); 1048 1049 if (AFI->hasSwiftAsyncContext()) { 1050 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 1051 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1052 LivePhysRegs LiveRegs(TRI); 1053 getLiveRegsForEntryMBB(LiveRegs, MBB); 1054 // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are 1055 // available. 1056 if (!LiveRegs.available(MRI, AArch64::X16) || 1057 !LiveRegs.available(MRI, AArch64::X17)) 1058 return false; 1059 } 1060 1061 // Don't need a scratch register if we're not going to re-align the stack or 1062 // emit stack probes. 1063 if (!RegInfo->hasStackRealignment(*MF) && TLI->hasInlineStackProbe(*MF)) 1064 return true; 1065 // Otherwise, we can use any block as long as it has a scratch register 1066 // available. 1067 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 1068 } 1069 1070 static bool windowsRequiresStackProbe(MachineFunction &MF, 1071 uint64_t StackSizeInBytes) { 1072 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1073 const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>(); 1074 // TODO: When implementing stack protectors, take that into account 1075 // for the probe threshold. 1076 return Subtarget.isTargetWindows() && MFI.hasStackProbing() && 1077 StackSizeInBytes >= uint64_t(MFI.getStackProbeSize()); 1078 } 1079 1080 static bool needsWinCFI(const MachineFunction &MF) { 1081 const Function &F = MF.getFunction(); 1082 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 1083 F.needsUnwindTableEntry(); 1084 } 1085 1086 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 1087 MachineFunction &MF, uint64_t StackBumpBytes) const { 1088 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1089 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1090 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1091 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1092 if (homogeneousPrologEpilog(MF)) 1093 return false; 1094 1095 if (AFI->getLocalStackSize() == 0) 1096 return false; 1097 1098 // For WinCFI, if optimizing for size, prefer to not combine the stack bump 1099 // (to force a stp with predecrement) to match the packed unwind format, 1100 // provided that there actually are any callee saved registers to merge the 1101 // decrement with. 1102 // This is potentially marginally slower, but allows using the packed 1103 // unwind format for functions that both have a local area and callee saved 1104 // registers. Using the packed unwind format notably reduces the size of 1105 // the unwind info. 1106 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 && 1107 MF.getFunction().hasOptSize()) 1108 return false; 1109 1110 // 512 is the maximum immediate for stp/ldp that will be used for 1111 // callee-save save/restores 1112 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 1113 return false; 1114 1115 if (MFI.hasVarSizedObjects()) 1116 return false; 1117 1118 if (RegInfo->hasStackRealignment(MF)) 1119 return false; 1120 1121 // This isn't strictly necessary, but it simplifies things a bit since the 1122 // current RedZone handling code assumes the SP is adjusted by the 1123 // callee-save save/restore code. 1124 if (canUseRedZone(MF)) 1125 return false; 1126 1127 // When there is an SVE area on the stack, always allocate the 1128 // callee-saves and spills/locals separately. 1129 if (getSVEStackSize(MF)) 1130 return false; 1131 1132 return true; 1133 } 1134 1135 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( 1136 MachineBasicBlock &MBB, unsigned StackBumpBytes) const { 1137 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) 1138 return false; 1139 1140 if (MBB.empty()) 1141 return true; 1142 1143 // Disable combined SP bump if the last instruction is an MTE tag store. It 1144 // is almost always better to merge SP adjustment into those instructions. 1145 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); 1146 MachineBasicBlock::iterator Begin = MBB.begin(); 1147 while (LastI != Begin) { 1148 --LastI; 1149 if (LastI->isTransient()) 1150 continue; 1151 if (!LastI->getFlag(MachineInstr::FrameDestroy)) 1152 break; 1153 } 1154 switch (LastI->getOpcode()) { 1155 case AArch64::STGloop: 1156 case AArch64::STZGloop: 1157 case AArch64::STGi: 1158 case AArch64::STZGi: 1159 case AArch64::ST2Gi: 1160 case AArch64::STZ2Gi: 1161 return false; 1162 default: 1163 return true; 1164 } 1165 llvm_unreachable("unreachable"); 1166 } 1167 1168 // Given a load or a store instruction, generate an appropriate unwinding SEH 1169 // code on Windows. 1170 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 1171 const TargetInstrInfo &TII, 1172 MachineInstr::MIFlag Flag) { 1173 unsigned Opc = MBBI->getOpcode(); 1174 MachineBasicBlock *MBB = MBBI->getParent(); 1175 MachineFunction &MF = *MBB->getParent(); 1176 DebugLoc DL = MBBI->getDebugLoc(); 1177 unsigned ImmIdx = MBBI->getNumOperands() - 1; 1178 int Imm = MBBI->getOperand(ImmIdx).getImm(); 1179 MachineInstrBuilder MIB; 1180 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1181 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1182 1183 switch (Opc) { 1184 default: 1185 llvm_unreachable("No SEH Opcode for this instruction"); 1186 case AArch64::LDPDpost: 1187 Imm = -Imm; 1188 [[fallthrough]]; 1189 case AArch64::STPDpre: { 1190 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1191 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 1192 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 1193 .addImm(Reg0) 1194 .addImm(Reg1) 1195 .addImm(Imm * 8) 1196 .setMIFlag(Flag); 1197 break; 1198 } 1199 case AArch64::LDPXpost: 1200 Imm = -Imm; 1201 [[fallthrough]]; 1202 case AArch64::STPXpre: { 1203 Register Reg0 = MBBI->getOperand(1).getReg(); 1204 Register Reg1 = MBBI->getOperand(2).getReg(); 1205 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 1206 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 1207 .addImm(Imm * 8) 1208 .setMIFlag(Flag); 1209 else 1210 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 1211 .addImm(RegInfo->getSEHRegNum(Reg0)) 1212 .addImm(RegInfo->getSEHRegNum(Reg1)) 1213 .addImm(Imm * 8) 1214 .setMIFlag(Flag); 1215 break; 1216 } 1217 case AArch64::LDRDpost: 1218 Imm = -Imm; 1219 [[fallthrough]]; 1220 case AArch64::STRDpre: { 1221 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1222 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 1223 .addImm(Reg) 1224 .addImm(Imm) 1225 .setMIFlag(Flag); 1226 break; 1227 } 1228 case AArch64::LDRXpost: 1229 Imm = -Imm; 1230 [[fallthrough]]; 1231 case AArch64::STRXpre: { 1232 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1233 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 1234 .addImm(Reg) 1235 .addImm(Imm) 1236 .setMIFlag(Flag); 1237 break; 1238 } 1239 case AArch64::STPDi: 1240 case AArch64::LDPDi: { 1241 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1242 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1243 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 1244 .addImm(Reg0) 1245 .addImm(Reg1) 1246 .addImm(Imm * 8) 1247 .setMIFlag(Flag); 1248 break; 1249 } 1250 case AArch64::STPXi: 1251 case AArch64::LDPXi: { 1252 Register Reg0 = MBBI->getOperand(0).getReg(); 1253 Register Reg1 = MBBI->getOperand(1).getReg(); 1254 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 1255 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 1256 .addImm(Imm * 8) 1257 .setMIFlag(Flag); 1258 else 1259 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 1260 .addImm(RegInfo->getSEHRegNum(Reg0)) 1261 .addImm(RegInfo->getSEHRegNum(Reg1)) 1262 .addImm(Imm * 8) 1263 .setMIFlag(Flag); 1264 break; 1265 } 1266 case AArch64::STRXui: 1267 case AArch64::LDRXui: { 1268 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1269 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 1270 .addImm(Reg) 1271 .addImm(Imm * 8) 1272 .setMIFlag(Flag); 1273 break; 1274 } 1275 case AArch64::STRDui: 1276 case AArch64::LDRDui: { 1277 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1278 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 1279 .addImm(Reg) 1280 .addImm(Imm * 8) 1281 .setMIFlag(Flag); 1282 break; 1283 } 1284 case AArch64::STPQi: 1285 case AArch64::LDPQi: { 1286 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1287 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1288 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP)) 1289 .addImm(Reg0) 1290 .addImm(Reg1) 1291 .addImm(Imm * 16) 1292 .setMIFlag(Flag); 1293 break; 1294 } 1295 case AArch64::LDPQpost: 1296 Imm = -Imm; 1297 LLVM_FALLTHROUGH; 1298 case AArch64::STPQpre: { 1299 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1300 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 1301 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX)) 1302 .addImm(Reg0) 1303 .addImm(Reg1) 1304 .addImm(Imm * 16) 1305 .setMIFlag(Flag); 1306 break; 1307 } 1308 } 1309 auto I = MBB->insertAfter(MBBI, MIB); 1310 return I; 1311 } 1312 1313 // Fix up the SEH opcode associated with the save/restore instruction. 1314 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 1315 unsigned LocalStackSize) { 1316 MachineOperand *ImmOpnd = nullptr; 1317 unsigned ImmIdx = MBBI->getNumOperands() - 1; 1318 switch (MBBI->getOpcode()) { 1319 default: 1320 llvm_unreachable("Fix the offset in the SEH instruction"); 1321 case AArch64::SEH_SaveFPLR: 1322 case AArch64::SEH_SaveRegP: 1323 case AArch64::SEH_SaveReg: 1324 case AArch64::SEH_SaveFRegP: 1325 case AArch64::SEH_SaveFReg: 1326 case AArch64::SEH_SaveAnyRegQP: 1327 case AArch64::SEH_SaveAnyRegQPX: 1328 ImmOpnd = &MBBI->getOperand(ImmIdx); 1329 break; 1330 } 1331 if (ImmOpnd) 1332 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 1333 } 1334 1335 // Convert callee-save register save/restore instruction to do stack pointer 1336 // decrement/increment to allocate/deallocate the callee-save stack area by 1337 // converting store/load to use pre/post increment version. 1338 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 1339 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 1340 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 1341 bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI, 1342 MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup, 1343 int CFAOffset = 0) { 1344 unsigned NewOpc; 1345 switch (MBBI->getOpcode()) { 1346 default: 1347 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 1348 case AArch64::STPXi: 1349 NewOpc = AArch64::STPXpre; 1350 break; 1351 case AArch64::STPDi: 1352 NewOpc = AArch64::STPDpre; 1353 break; 1354 case AArch64::STPQi: 1355 NewOpc = AArch64::STPQpre; 1356 break; 1357 case AArch64::STRXui: 1358 NewOpc = AArch64::STRXpre; 1359 break; 1360 case AArch64::STRDui: 1361 NewOpc = AArch64::STRDpre; 1362 break; 1363 case AArch64::STRQui: 1364 NewOpc = AArch64::STRQpre; 1365 break; 1366 case AArch64::LDPXi: 1367 NewOpc = AArch64::LDPXpost; 1368 break; 1369 case AArch64::LDPDi: 1370 NewOpc = AArch64::LDPDpost; 1371 break; 1372 case AArch64::LDPQi: 1373 NewOpc = AArch64::LDPQpost; 1374 break; 1375 case AArch64::LDRXui: 1376 NewOpc = AArch64::LDRXpost; 1377 break; 1378 case AArch64::LDRDui: 1379 NewOpc = AArch64::LDRDpost; 1380 break; 1381 case AArch64::LDRQui: 1382 NewOpc = AArch64::LDRQpost; 1383 break; 1384 } 1385 // Get rid of the SEH code associated with the old instruction. 1386 if (NeedsWinCFI) { 1387 auto SEH = std::next(MBBI); 1388 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 1389 SEH->eraseFromParent(); 1390 } 1391 1392 TypeSize Scale = TypeSize::getFixed(1), Width = TypeSize::getFixed(0); 1393 int64_t MinOffset, MaxOffset; 1394 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo( 1395 NewOpc, Scale, Width, MinOffset, MaxOffset); 1396 (void)Success; 1397 assert(Success && "unknown load/store opcode"); 1398 1399 // If the first store isn't right where we want SP then we can't fold the 1400 // update in so create a normal arithmetic instruction instead. 1401 MachineFunction &MF = *MBB.getParent(); 1402 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 || 1403 CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) { 1404 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1405 StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag, 1406 false, false, nullptr, EmitCFI, 1407 StackOffset::getFixed(CFAOffset)); 1408 1409 return std::prev(MBBI); 1410 } 1411 1412 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 1413 MIB.addReg(AArch64::SP, RegState::Define); 1414 1415 // Copy all operands other than the immediate offset. 1416 unsigned OpndIdx = 0; 1417 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 1418 ++OpndIdx) 1419 MIB.add(MBBI->getOperand(OpndIdx)); 1420 1421 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 1422 "Unexpected immediate offset in first/last callee-save save/restore " 1423 "instruction!"); 1424 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 1425 "Unexpected base register in callee-save save/restore instruction!"); 1426 assert(CSStackSizeInc % Scale == 0); 1427 MIB.addImm(CSStackSizeInc / (int)Scale); 1428 1429 MIB.setMIFlags(MBBI->getFlags()); 1430 MIB.setMemRefs(MBBI->memoperands()); 1431 1432 // Generate a new SEH code that corresponds to the new instruction. 1433 if (NeedsWinCFI) { 1434 *HasWinCFI = true; 1435 InsertSEH(*MIB, *TII, FrameFlag); 1436 } 1437 1438 if (EmitCFI) { 1439 unsigned CFIIndex = MF.addFrameInst( 1440 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc)); 1441 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1442 .addCFIIndex(CFIIndex) 1443 .setMIFlags(FrameFlag); 1444 } 1445 1446 return std::prev(MBB.erase(MBBI)); 1447 } 1448 1449 // Fixup callee-save register save/restore instructions to take into account 1450 // combined SP bump by adding the local stack size to the stack offsets. 1451 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 1452 uint64_t LocalStackSize, 1453 bool NeedsWinCFI, 1454 bool *HasWinCFI) { 1455 if (AArch64InstrInfo::isSEHInstruction(MI)) 1456 return; 1457 1458 unsigned Opc = MI.getOpcode(); 1459 unsigned Scale; 1460 switch (Opc) { 1461 case AArch64::STPXi: 1462 case AArch64::STRXui: 1463 case AArch64::STPDi: 1464 case AArch64::STRDui: 1465 case AArch64::LDPXi: 1466 case AArch64::LDRXui: 1467 case AArch64::LDPDi: 1468 case AArch64::LDRDui: 1469 Scale = 8; 1470 break; 1471 case AArch64::STPQi: 1472 case AArch64::STRQui: 1473 case AArch64::LDPQi: 1474 case AArch64::LDRQui: 1475 Scale = 16; 1476 break; 1477 default: 1478 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 1479 } 1480 1481 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 1482 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 1483 "Unexpected base register in callee-save save/restore instruction!"); 1484 // Last operand is immediate offset that needs fixing. 1485 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 1486 // All generated opcodes have scaled offsets. 1487 assert(LocalStackSize % Scale == 0); 1488 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 1489 1490 if (NeedsWinCFI) { 1491 *HasWinCFI = true; 1492 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 1493 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 1494 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 1495 "Expecting a SEH instruction"); 1496 fixupSEHOpcode(MBBI, LocalStackSize); 1497 } 1498 } 1499 1500 static bool isTargetWindows(const MachineFunction &MF) { 1501 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 1502 } 1503 1504 // Convenience function to determine whether I is an SVE callee save. 1505 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 1506 switch (I->getOpcode()) { 1507 default: 1508 return false; 1509 case AArch64::STR_ZXI: 1510 case AArch64::STR_PXI: 1511 case AArch64::LDR_ZXI: 1512 case AArch64::LDR_PXI: 1513 return I->getFlag(MachineInstr::FrameSetup) || 1514 I->getFlag(MachineInstr::FrameDestroy); 1515 } 1516 } 1517 1518 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII, 1519 MachineFunction &MF, 1520 MachineBasicBlock &MBB, 1521 MachineBasicBlock::iterator MBBI, 1522 const DebugLoc &DL, bool NeedsWinCFI, 1523 bool NeedsUnwindInfo) { 1524 // Shadow call stack prolog: str x30, [x18], #8 1525 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost)) 1526 .addReg(AArch64::X18, RegState::Define) 1527 .addReg(AArch64::LR) 1528 .addReg(AArch64::X18) 1529 .addImm(8) 1530 .setMIFlag(MachineInstr::FrameSetup); 1531 1532 // This instruction also makes x18 live-in to the entry block. 1533 MBB.addLiveIn(AArch64::X18); 1534 1535 if (NeedsWinCFI) 1536 BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop)) 1537 .setMIFlag(MachineInstr::FrameSetup); 1538 1539 if (NeedsUnwindInfo) { 1540 // Emit a CFI instruction that causes 8 to be subtracted from the value of 1541 // x18 when unwinding past this frame. 1542 static const char CFIInst[] = { 1543 dwarf::DW_CFA_val_expression, 1544 18, // register 1545 2, // length 1546 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 1547 static_cast<char>(-8) & 0x7f, // addend (sleb128) 1548 }; 1549 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 1550 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 1551 BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 1552 .addCFIIndex(CFIIndex) 1553 .setMIFlag(MachineInstr::FrameSetup); 1554 } 1555 } 1556 1557 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII, 1558 MachineFunction &MF, 1559 MachineBasicBlock &MBB, 1560 MachineBasicBlock::iterator MBBI, 1561 const DebugLoc &DL) { 1562 // Shadow call stack epilog: ldr x30, [x18, #-8]! 1563 BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre)) 1564 .addReg(AArch64::X18, RegState::Define) 1565 .addReg(AArch64::LR, RegState::Define) 1566 .addReg(AArch64::X18) 1567 .addImm(-8) 1568 .setMIFlag(MachineInstr::FrameDestroy); 1569 1570 if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) { 1571 unsigned CFIIndex = 1572 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18)); 1573 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1574 .addCFIIndex(CFIIndex) 1575 .setMIFlags(MachineInstr::FrameDestroy); 1576 } 1577 } 1578 1579 // Define the current CFA rule to use the provided FP. 1580 static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB, 1581 MachineBasicBlock::iterator MBBI, 1582 const DebugLoc &DL, unsigned FixedObject) { 1583 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 1584 const AArch64RegisterInfo *TRI = STI.getRegisterInfo(); 1585 const TargetInstrInfo *TII = STI.getInstrInfo(); 1586 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1587 1588 const int OffsetToFirstCalleeSaveFromFP = 1589 AFI->getCalleeSaveBaseToFrameRecordOffset() - 1590 AFI->getCalleeSavedStackSize(); 1591 Register FramePtr = TRI->getFrameRegister(MF); 1592 unsigned Reg = TRI->getDwarfRegNum(FramePtr, true); 1593 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1594 nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP)); 1595 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1596 .addCFIIndex(CFIIndex) 1597 .setMIFlags(MachineInstr::FrameSetup); 1598 } 1599 1600 #ifndef NDEBUG 1601 /// Collect live registers from the end of \p MI's parent up to (including) \p 1602 /// MI in \p LiveRegs. 1603 static void getLivePhysRegsUpTo(MachineInstr &MI, const TargetRegisterInfo &TRI, 1604 LivePhysRegs &LiveRegs) { 1605 1606 MachineBasicBlock &MBB = *MI.getParent(); 1607 LiveRegs.addLiveOuts(MBB); 1608 for (const MachineInstr &MI : 1609 reverse(make_range(MI.getIterator(), MBB.instr_end()))) 1610 LiveRegs.stepBackward(MI); 1611 } 1612 #endif 1613 1614 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 1615 MachineBasicBlock &MBB) const { 1616 MachineBasicBlock::iterator MBBI = MBB.begin(); 1617 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1618 const Function &F = MF.getFunction(); 1619 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1620 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1621 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1622 1623 MachineModuleInfo &MMI = MF.getMMI(); 1624 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1625 bool EmitCFI = AFI->needsDwarfUnwindInfo(MF); 1626 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 1627 bool HasFP = hasFP(MF); 1628 bool NeedsWinCFI = needsWinCFI(MF); 1629 bool HasWinCFI = false; 1630 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 1631 1632 MachineBasicBlock::iterator End = MBB.end(); 1633 #ifndef NDEBUG 1634 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1635 // Collect live register from the end of MBB up to the start of the existing 1636 // frame setup instructions. 1637 MachineBasicBlock::iterator NonFrameStart = MBB.begin(); 1638 while (NonFrameStart != End && 1639 NonFrameStart->getFlag(MachineInstr::FrameSetup)) 1640 ++NonFrameStart; 1641 1642 LivePhysRegs LiveRegs(*TRI); 1643 if (NonFrameStart != MBB.end()) { 1644 getLivePhysRegsUpTo(*NonFrameStart, *TRI, LiveRegs); 1645 // Ignore registers used for stack management for now. 1646 LiveRegs.removeReg(AArch64::SP); 1647 LiveRegs.removeReg(AArch64::X19); 1648 LiveRegs.removeReg(AArch64::FP); 1649 LiveRegs.removeReg(AArch64::LR); 1650 } 1651 1652 auto VerifyClobberOnExit = make_scope_exit([&]() { 1653 if (NonFrameStart == MBB.end()) 1654 return; 1655 // Check if any of the newly instructions clobber any of the live registers. 1656 for (MachineInstr &MI : 1657 make_range(MBB.instr_begin(), NonFrameStart->getIterator())) { 1658 for (auto &Op : MI.operands()) 1659 if (Op.isReg() && Op.isDef()) 1660 assert(!LiveRegs.contains(Op.getReg()) && 1661 "live register clobbered by inserted prologue instructions"); 1662 } 1663 }); 1664 #endif 1665 1666 bool IsFunclet = MBB.isEHFuncletEntry(); 1667 1668 // At this point, we're going to decide whether or not the function uses a 1669 // redzone. In most cases, the function doesn't have a redzone so let's 1670 // assume that's false and set it to true in the case that there's a redzone. 1671 AFI->setHasRedZone(false); 1672 1673 // Debug location must be unknown since the first debug location is used 1674 // to determine the end of the prologue. 1675 DebugLoc DL; 1676 1677 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>(); 1678 if (MFnI.needsShadowCallStackPrologueEpilogue(MF)) 1679 emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI, 1680 MFnI.needsDwarfUnwindInfo(MF)); 1681 1682 if (MFnI.shouldSignReturnAddress(MF)) { 1683 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE)) 1684 .setMIFlag(MachineInstr::FrameSetup); 1685 if (NeedsWinCFI) 1686 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR 1687 } 1688 1689 if (EmitCFI && MFnI.isMTETagged()) { 1690 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED)) 1691 .setMIFlag(MachineInstr::FrameSetup); 1692 } 1693 1694 // We signal the presence of a Swift extended frame to external tools by 1695 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple 1696 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI 1697 // bits so that is still true. 1698 if (HasFP && AFI->hasSwiftAsyncContext()) { 1699 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1700 case SwiftAsyncFramePointerMode::DeploymentBased: 1701 if (Subtarget.swiftAsyncContextIsDynamicallySet()) { 1702 // The special symbol below is absolute and has a *value* that can be 1703 // combined with the frame pointer to signal an extended frame. 1704 BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16) 1705 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1706 AArch64II::MO_GOT); 1707 if (NeedsWinCFI) { 1708 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1709 .setMIFlags(MachineInstr::FrameSetup); 1710 HasWinCFI = true; 1711 } 1712 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP) 1713 .addUse(AArch64::FP) 1714 .addUse(AArch64::X16) 1715 .addImm(Subtarget.isTargetILP32() ? 32 : 0); 1716 if (NeedsWinCFI) { 1717 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1718 .setMIFlags(MachineInstr::FrameSetup); 1719 HasWinCFI = true; 1720 } 1721 break; 1722 } 1723 [[fallthrough]]; 1724 1725 case SwiftAsyncFramePointerMode::Always: 1726 // ORR x29, x29, #0x1000_0000_0000_0000 1727 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP) 1728 .addUse(AArch64::FP) 1729 .addImm(0x1100) 1730 .setMIFlag(MachineInstr::FrameSetup); 1731 if (NeedsWinCFI) { 1732 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1733 .setMIFlags(MachineInstr::FrameSetup); 1734 HasWinCFI = true; 1735 } 1736 break; 1737 1738 case SwiftAsyncFramePointerMode::Never: 1739 break; 1740 } 1741 } 1742 1743 // All calls are tail calls in GHC calling conv, and functions have no 1744 // prologue/epilogue. 1745 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1746 return; 1747 1748 // Set tagged base pointer to the requested stack slot. 1749 // Ideally it should match SP value after prologue. 1750 std::optional<int> TBPI = AFI->getTaggedBasePointerIndex(); 1751 if (TBPI) 1752 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI)); 1753 else 1754 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 1755 1756 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1757 1758 // getStackSize() includes all the locals in its size calculation. We don't 1759 // include these locals when computing the stack size of a funclet, as they 1760 // are allocated in the parent's stack frame and accessed via the frame 1761 // pointer from the funclet. We only save the callee saved registers in the 1762 // funclet, which are really the callee saved registers of the parent 1763 // function, including the funclet. 1764 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1765 : MFI.getStackSize(); 1766 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 1767 assert(!HasFP && "unexpected function without stack frame but with FP"); 1768 assert(!SVEStackSize && 1769 "unexpected function without stack frame but with SVE objects"); 1770 // All of the stack allocation is for locals. 1771 AFI->setLocalStackSize(NumBytes); 1772 if (!NumBytes) 1773 return; 1774 // REDZONE: If the stack size is less than 128 bytes, we don't need 1775 // to actually allocate. 1776 if (canUseRedZone(MF)) { 1777 AFI->setHasRedZone(true); 1778 ++NumRedZoneFunctions; 1779 } else { 1780 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1781 StackOffset::getFixed(-NumBytes), TII, 1782 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1783 if (EmitCFI) { 1784 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 1785 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 1786 // Encode the stack size of the leaf function. 1787 unsigned CFIIndex = MF.addFrameInst( 1788 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); 1789 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1790 .addCFIIndex(CFIIndex) 1791 .setMIFlags(MachineInstr::FrameSetup); 1792 } 1793 } 1794 1795 if (NeedsWinCFI) { 1796 HasWinCFI = true; 1797 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1798 .setMIFlag(MachineInstr::FrameSetup); 1799 } 1800 1801 return; 1802 } 1803 1804 bool IsWin64 = 1805 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1806 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1807 1808 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1809 // All of the remaining stack allocations are for locals. 1810 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1811 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1812 bool HomPrologEpilog = homogeneousPrologEpilog(MF); 1813 if (CombineSPBump) { 1814 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1815 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1816 StackOffset::getFixed(-NumBytes), TII, 1817 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI, 1818 EmitAsyncCFI); 1819 NumBytes = 0; 1820 } else if (HomPrologEpilog) { 1821 // Stack has been already adjusted. 1822 NumBytes -= PrologueSaveSize; 1823 } else if (PrologueSaveSize != 0) { 1824 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 1825 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI, 1826 EmitAsyncCFI); 1827 NumBytes -= PrologueSaveSize; 1828 } 1829 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1830 1831 // Move past the saves of the callee-saved registers, fixing up the offsets 1832 // and pre-inc if we decided to combine the callee-save and local stack 1833 // pointer bump above. 1834 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1835 !IsSVECalleeSave(MBBI)) { 1836 if (CombineSPBump) 1837 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1838 NeedsWinCFI, &HasWinCFI); 1839 ++MBBI; 1840 } 1841 1842 // For funclets the FP belongs to the containing function. 1843 if (!IsFunclet && HasFP) { 1844 // Only set up FP if we actually need to. 1845 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset(); 1846 1847 if (CombineSPBump) 1848 FPOffset += AFI->getLocalStackSize(); 1849 1850 if (AFI->hasSwiftAsyncContext()) { 1851 // Before we update the live FP we have to ensure there's a valid (or 1852 // null) asynchronous context in its slot just before FP in the frame 1853 // record, so store it now. 1854 const auto &Attrs = MF.getFunction().getAttributes(); 1855 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync); 1856 if (HaveInitialContext) 1857 MBB.addLiveIn(AArch64::X22); 1858 Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR; 1859 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext)) 1860 .addUse(Reg) 1861 .addUse(AArch64::SP) 1862 .addImm(FPOffset - 8) 1863 .setMIFlags(MachineInstr::FrameSetup); 1864 if (NeedsWinCFI) { 1865 // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded 1866 // to multiple instructions, should be mutually-exclusive. 1867 assert(Subtarget.getTargetTriple().getArchName() != "arm64e"); 1868 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1869 .setMIFlags(MachineInstr::FrameSetup); 1870 HasWinCFI = true; 1871 } 1872 } 1873 1874 if (HomPrologEpilog) { 1875 auto Prolog = MBBI; 1876 --Prolog; 1877 assert(Prolog->getOpcode() == AArch64::HOM_Prolog); 1878 Prolog->addOperand(MachineOperand::CreateImm(FPOffset)); 1879 } else { 1880 // Issue sub fp, sp, FPOffset or 1881 // mov fp,sp when FPOffset is zero. 1882 // Note: All stores of callee-saved registers are marked as "FrameSetup". 1883 // This code marks the instruction(s) that set the FP also. 1884 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 1885 StackOffset::getFixed(FPOffset), TII, 1886 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1887 if (NeedsWinCFI && HasWinCFI) { 1888 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1889 .setMIFlag(MachineInstr::FrameSetup); 1890 // After setting up the FP, the rest of the prolog doesn't need to be 1891 // included in the SEH unwind info. 1892 NeedsWinCFI = false; 1893 } 1894 } 1895 if (EmitAsyncCFI) 1896 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject); 1897 } 1898 1899 // Now emit the moves for whatever callee saved regs we have (including FP, 1900 // LR if those are saved). Frame instructions for SVE register are emitted 1901 // later, after the instruction which actually save SVE regs. 1902 if (EmitAsyncCFI) 1903 emitCalleeSavedGPRLocations(MBB, MBBI); 1904 1905 // Alignment is required for the parent frame, not the funclet 1906 const bool NeedsRealignment = 1907 NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF); 1908 const int64_t RealignmentPadding = 1909 (NeedsRealignment && MFI.getMaxAlign() > Align(16)) 1910 ? MFI.getMaxAlign().value() - 16 1911 : 0; 1912 1913 if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) { 1914 uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4; 1915 if (NeedsWinCFI) { 1916 HasWinCFI = true; 1917 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 1918 // exceed this amount. We need to move at most 2^24 - 1 into x15. 1919 // This is at most two instructions, MOVZ follwed by MOVK. 1920 // TODO: Fix to use multiple stack alloc unwind codes for stacks 1921 // exceeding 256MB in size. 1922 if (NumBytes >= (1 << 28)) 1923 report_fatal_error("Stack size cannot exceed 256MB for stack " 1924 "unwinding purposes"); 1925 1926 uint32_t LowNumWords = NumWords & 0xFFFF; 1927 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 1928 .addImm(LowNumWords) 1929 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1930 .setMIFlag(MachineInstr::FrameSetup); 1931 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1932 .setMIFlag(MachineInstr::FrameSetup); 1933 if ((NumWords & 0xFFFF0000) != 0) { 1934 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 1935 .addReg(AArch64::X15) 1936 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 1937 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 1938 .setMIFlag(MachineInstr::FrameSetup); 1939 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1940 .setMIFlag(MachineInstr::FrameSetup); 1941 } 1942 } else { 1943 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 1944 .addImm(NumWords) 1945 .setMIFlags(MachineInstr::FrameSetup); 1946 } 1947 1948 const char* ChkStk = Subtarget.getChkStkName(); 1949 switch (MF.getTarget().getCodeModel()) { 1950 case CodeModel::Tiny: 1951 case CodeModel::Small: 1952 case CodeModel::Medium: 1953 case CodeModel::Kernel: 1954 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 1955 .addExternalSymbol(ChkStk) 1956 .addReg(AArch64::X15, RegState::Implicit) 1957 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1958 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1959 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1960 .setMIFlags(MachineInstr::FrameSetup); 1961 if (NeedsWinCFI) { 1962 HasWinCFI = true; 1963 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1964 .setMIFlag(MachineInstr::FrameSetup); 1965 } 1966 break; 1967 case CodeModel::Large: 1968 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 1969 .addReg(AArch64::X16, RegState::Define) 1970 .addExternalSymbol(ChkStk) 1971 .addExternalSymbol(ChkStk) 1972 .setMIFlags(MachineInstr::FrameSetup); 1973 if (NeedsWinCFI) { 1974 HasWinCFI = true; 1975 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1976 .setMIFlag(MachineInstr::FrameSetup); 1977 } 1978 1979 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF))) 1980 .addReg(AArch64::X16, RegState::Kill) 1981 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 1982 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1983 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1984 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1985 .setMIFlags(MachineInstr::FrameSetup); 1986 if (NeedsWinCFI) { 1987 HasWinCFI = true; 1988 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1989 .setMIFlag(MachineInstr::FrameSetup); 1990 } 1991 break; 1992 } 1993 1994 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 1995 .addReg(AArch64::SP, RegState::Kill) 1996 .addReg(AArch64::X15, RegState::Kill) 1997 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 1998 .setMIFlags(MachineInstr::FrameSetup); 1999 if (NeedsWinCFI) { 2000 HasWinCFI = true; 2001 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 2002 .addImm(NumBytes) 2003 .setMIFlag(MachineInstr::FrameSetup); 2004 } 2005 NumBytes = 0; 2006 2007 if (RealignmentPadding > 0) { 2008 if (RealignmentPadding >= 4096) { 2009 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm)) 2010 .addReg(AArch64::X16, RegState::Define) 2011 .addImm(RealignmentPadding) 2012 .setMIFlags(MachineInstr::FrameSetup); 2013 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15) 2014 .addReg(AArch64::SP) 2015 .addReg(AArch64::X16, RegState::Kill) 2016 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0)) 2017 .setMIFlag(MachineInstr::FrameSetup); 2018 } else { 2019 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15) 2020 .addReg(AArch64::SP) 2021 .addImm(RealignmentPadding) 2022 .addImm(0) 2023 .setMIFlag(MachineInstr::FrameSetup); 2024 } 2025 2026 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1); 2027 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 2028 .addReg(AArch64::X15, RegState::Kill) 2029 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)); 2030 AFI->setStackRealigned(true); 2031 2032 // No need for SEH instructions here; if we're realigning the stack, 2033 // we've set a frame pointer and already finished the SEH prologue. 2034 assert(!NeedsWinCFI); 2035 } 2036 } 2037 2038 StackOffset SVECalleeSavesSize = {}, SVELocalsSize = SVEStackSize; 2039 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 2040 2041 // Process the SVE callee-saves to determine what space needs to be 2042 // allocated. 2043 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2044 LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize 2045 << "\n"); 2046 // Find callee save instructions in frame. 2047 CalleeSavesBegin = MBBI; 2048 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 2049 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 2050 ++MBBI; 2051 CalleeSavesEnd = MBBI; 2052 2053 SVECalleeSavesSize = StackOffset::getScalable(CalleeSavedSize); 2054 SVELocalsSize = SVEStackSize - SVECalleeSavesSize; 2055 } 2056 2057 // Allocate space for the callee saves (if any). 2058 StackOffset CFAOffset = 2059 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes); 2060 StackOffset LocalsSize = SVELocalsSize + StackOffset::getFixed(NumBytes); 2061 allocateStackSpace(MBB, CalleeSavesBegin, 0, SVECalleeSavesSize, false, 2062 nullptr, EmitAsyncCFI && !HasFP, CFAOffset, 2063 MFI.hasVarSizedObjects() || LocalsSize); 2064 CFAOffset += SVECalleeSavesSize; 2065 2066 if (EmitAsyncCFI) 2067 emitCalleeSavedSVELocations(MBB, CalleeSavesEnd); 2068 2069 // Allocate space for the rest of the frame including SVE locals. Align the 2070 // stack as necessary. 2071 assert(!(canUseRedZone(MF) && NeedsRealignment) && 2072 "Cannot use redzone with stack realignment"); 2073 if (!canUseRedZone(MF)) { 2074 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 2075 // the correct value here, as NumBytes also includes padding bytes, 2076 // which shouldn't be counted here. 2077 allocateStackSpace(MBB, CalleeSavesEnd, RealignmentPadding, 2078 SVELocalsSize + StackOffset::getFixed(NumBytes), 2079 NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP, 2080 CFAOffset, MFI.hasVarSizedObjects()); 2081 } 2082 2083 // If we need a base pointer, set it up here. It's whatever the value of the 2084 // stack pointer is at this point. Any variable size objects will be allocated 2085 // after this, so we can still use the base pointer to reference locals. 2086 // 2087 // FIXME: Clarify FrameSetup flags here. 2088 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 2089 // needed. 2090 // For funclets the BP belongs to the containing function. 2091 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 2092 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 2093 false); 2094 if (NeedsWinCFI) { 2095 HasWinCFI = true; 2096 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2097 .setMIFlag(MachineInstr::FrameSetup); 2098 } 2099 } 2100 2101 // The very last FrameSetup instruction indicates the end of prologue. Emit a 2102 // SEH opcode indicating the prologue end. 2103 if (NeedsWinCFI && HasWinCFI) { 2104 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 2105 .setMIFlag(MachineInstr::FrameSetup); 2106 } 2107 2108 // SEH funclets are passed the frame pointer in X1. If the parent 2109 // function uses the base register, then the base register is used 2110 // directly, and is not retrieved from X1. 2111 if (IsFunclet && F.hasPersonalityFn()) { 2112 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 2113 if (isAsynchronousEHPersonality(Per)) { 2114 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 2115 .addReg(AArch64::X1) 2116 .setMIFlag(MachineInstr::FrameSetup); 2117 MBB.addLiveIn(AArch64::X1); 2118 } 2119 } 2120 2121 if (EmitCFI && !EmitAsyncCFI) { 2122 if (HasFP) { 2123 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject); 2124 } else { 2125 StackOffset TotalSize = 2126 SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize()); 2127 unsigned CFIIndex = MF.addFrameInst(createDefCFA( 2128 *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize, 2129 /*LastAdjustmentWasScalable=*/false)); 2130 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2131 .addCFIIndex(CFIIndex) 2132 .setMIFlags(MachineInstr::FrameSetup); 2133 } 2134 emitCalleeSavedGPRLocations(MBB, MBBI); 2135 emitCalleeSavedSVELocations(MBB, MBBI); 2136 } 2137 } 2138 2139 static bool isFuncletReturnInstr(const MachineInstr &MI) { 2140 switch (MI.getOpcode()) { 2141 default: 2142 return false; 2143 case AArch64::CATCHRET: 2144 case AArch64::CLEANUPRET: 2145 return true; 2146 } 2147 } 2148 2149 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 2150 MachineBasicBlock &MBB) const { 2151 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 2152 MachineFrameInfo &MFI = MF.getFrameInfo(); 2153 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2154 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2155 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 2156 DebugLoc DL; 2157 bool NeedsWinCFI = needsWinCFI(MF); 2158 bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 2159 bool HasWinCFI = false; 2160 bool IsFunclet = false; 2161 2162 if (MBB.end() != MBBI) { 2163 DL = MBBI->getDebugLoc(); 2164 IsFunclet = isFuncletReturnInstr(*MBBI); 2165 } 2166 2167 MachineBasicBlock::iterator EpilogStartI = MBB.end(); 2168 2169 auto FinishingTouches = make_scope_exit([&]() { 2170 if (AFI->shouldSignReturnAddress(MF)) { 2171 BuildMI(MBB, MBB.getFirstTerminator(), DL, 2172 TII->get(AArch64::PAUTH_EPILOGUE)) 2173 .setMIFlag(MachineInstr::FrameDestroy); 2174 if (NeedsWinCFI) 2175 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR 2176 } 2177 if (AFI->needsShadowCallStackPrologueEpilogue(MF)) 2178 emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL); 2179 if (EmitCFI) 2180 emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator()); 2181 if (HasWinCFI) { 2182 BuildMI(MBB, MBB.getFirstTerminator(), DL, 2183 TII->get(AArch64::SEH_EpilogEnd)) 2184 .setMIFlag(MachineInstr::FrameDestroy); 2185 if (!MF.hasWinCFI()) 2186 MF.setHasWinCFI(true); 2187 } 2188 if (NeedsWinCFI) { 2189 assert(EpilogStartI != MBB.end()); 2190 if (!HasWinCFI) 2191 MBB.erase(EpilogStartI); 2192 } 2193 }); 2194 2195 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 2196 : MFI.getStackSize(); 2197 2198 // All calls are tail calls in GHC calling conv, and functions have no 2199 // prologue/epilogue. 2200 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2201 return; 2202 2203 // How much of the stack used by incoming arguments this function is expected 2204 // to restore in this particular epilogue. 2205 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB); 2206 bool IsWin64 = 2207 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 2208 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 2209 2210 int64_t AfterCSRPopSize = ArgumentStackToRestore; 2211 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 2212 // We cannot rely on the local stack size set in emitPrologue if the function 2213 // has funclets, as funclets have different local stack size requirements, and 2214 // the current value set in emitPrologue may be that of the containing 2215 // function. 2216 if (MF.hasEHFunclets()) 2217 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 2218 if (homogeneousPrologEpilog(MF, &MBB)) { 2219 assert(!NeedsWinCFI); 2220 auto LastPopI = MBB.getFirstTerminator(); 2221 if (LastPopI != MBB.begin()) { 2222 auto HomogeneousEpilog = std::prev(LastPopI); 2223 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog) 2224 LastPopI = HomogeneousEpilog; 2225 } 2226 2227 // Adjust local stack 2228 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2229 StackOffset::getFixed(AFI->getLocalStackSize()), TII, 2230 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2231 2232 // SP has been already adjusted while restoring callee save regs. 2233 // We've bailed-out the case with adjusting SP for arguments. 2234 assert(AfterCSRPopSize == 0); 2235 return; 2236 } 2237 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); 2238 // Assume we can't combine the last pop with the sp restore. 2239 2240 bool CombineAfterCSRBump = false; 2241 if (!CombineSPBump && PrologueSaveSize != 0) { 2242 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 2243 while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION || 2244 AArch64InstrInfo::isSEHInstruction(*Pop)) 2245 Pop = std::prev(Pop); 2246 // Converting the last ldp to a post-index ldp is valid only if the last 2247 // ldp's offset is 0. 2248 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 2249 // If the offset is 0 and the AfterCSR pop is not actually trying to 2250 // allocate more stack for arguments (in space that an untimely interrupt 2251 // may clobber), convert it to a post-index ldp. 2252 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) { 2253 convertCalleeSaveRestoreToSPPrePostIncDec( 2254 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI, 2255 MachineInstr::FrameDestroy, PrologueSaveSize); 2256 } else { 2257 // If not, make sure to emit an add after the last ldp. 2258 // We're doing this by transfering the size to be restored from the 2259 // adjustment *before* the CSR pops to the adjustment *after* the CSR 2260 // pops. 2261 AfterCSRPopSize += PrologueSaveSize; 2262 CombineAfterCSRBump = true; 2263 } 2264 } 2265 2266 // Move past the restores of the callee-saved registers. 2267 // If we plan on combining the sp bump of the local stack size and the callee 2268 // save stack size, we might need to adjust the CSR save and restore offsets. 2269 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 2270 MachineBasicBlock::iterator Begin = MBB.begin(); 2271 while (LastPopI != Begin) { 2272 --LastPopI; 2273 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 2274 IsSVECalleeSave(LastPopI)) { 2275 ++LastPopI; 2276 break; 2277 } else if (CombineSPBump) 2278 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 2279 NeedsWinCFI, &HasWinCFI); 2280 } 2281 2282 if (NeedsWinCFI) { 2283 // Note that there are cases where we insert SEH opcodes in the 2284 // epilogue when we had no SEH opcodes in the prologue. For 2285 // example, when there is no stack frame but there are stack 2286 // arguments. Insert the SEH_EpilogStart and remove it later if it 2287 // we didn't emit any SEH opcodes to avoid generating WinCFI for 2288 // functions that don't need it. 2289 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 2290 .setMIFlag(MachineInstr::FrameDestroy); 2291 EpilogStartI = LastPopI; 2292 --EpilogStartI; 2293 } 2294 2295 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) { 2296 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 2297 case SwiftAsyncFramePointerMode::DeploymentBased: 2298 // Avoid the reload as it is GOT relative, and instead fall back to the 2299 // hardcoded value below. This allows a mismatch between the OS and 2300 // application without immediately terminating on the difference. 2301 [[fallthrough]]; 2302 case SwiftAsyncFramePointerMode::Always: 2303 // We need to reset FP to its untagged state on return. Bit 60 is 2304 // currently used to show the presence of an extended frame. 2305 2306 // BIC x29, x29, #0x1000_0000_0000_0000 2307 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri), 2308 AArch64::FP) 2309 .addUse(AArch64::FP) 2310 .addImm(0x10fe) 2311 .setMIFlag(MachineInstr::FrameDestroy); 2312 if (NeedsWinCFI) { 2313 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2314 .setMIFlags(MachineInstr::FrameDestroy); 2315 HasWinCFI = true; 2316 } 2317 break; 2318 2319 case SwiftAsyncFramePointerMode::Never: 2320 break; 2321 } 2322 } 2323 2324 const StackOffset &SVEStackSize = getSVEStackSize(MF); 2325 2326 // If there is a single SP update, insert it before the ret and we're done. 2327 if (CombineSPBump) { 2328 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 2329 2330 // When we are about to restore the CSRs, the CFA register is SP again. 2331 if (EmitCFI && hasFP(MF)) { 2332 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo(); 2333 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 2334 unsigned CFIIndex = 2335 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes)); 2336 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2337 .addCFIIndex(CFIIndex) 2338 .setMIFlags(MachineInstr::FrameDestroy); 2339 } 2340 2341 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 2342 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize), 2343 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, 2344 &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes)); 2345 return; 2346 } 2347 2348 NumBytes -= PrologueSaveSize; 2349 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 2350 2351 // Process the SVE callee-saves to determine what space needs to be 2352 // deallocated. 2353 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 2354 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 2355 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2356 RestoreBegin = std::prev(RestoreEnd); 2357 while (RestoreBegin != MBB.begin() && 2358 IsSVECalleeSave(std::prev(RestoreBegin))) 2359 --RestoreBegin; 2360 2361 assert(IsSVECalleeSave(RestoreBegin) && 2362 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 2363 2364 StackOffset CalleeSavedSizeAsOffset = 2365 StackOffset::getScalable(CalleeSavedSize); 2366 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset; 2367 DeallocateAfter = CalleeSavedSizeAsOffset; 2368 } 2369 2370 // Deallocate the SVE area. 2371 if (SVEStackSize) { 2372 // If we have stack realignment or variable sized objects on the stack, 2373 // restore the stack pointer from the frame pointer prior to SVE CSR 2374 // restoration. 2375 if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) { 2376 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2377 // Set SP to start of SVE callee-save area from which they can 2378 // be reloaded. The code below will deallocate the stack space 2379 // space by moving FP -> SP. 2380 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 2381 StackOffset::getScalable(-CalleeSavedSize), TII, 2382 MachineInstr::FrameDestroy); 2383 } 2384 } else { 2385 if (AFI->getSVECalleeSavedStackSize()) { 2386 // Deallocate the non-SVE locals first before we can deallocate (and 2387 // restore callee saves) from the SVE area. 2388 emitFrameOffset( 2389 MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 2390 StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy, 2391 false, false, nullptr, EmitCFI && !hasFP(MF), 2392 SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2393 NumBytes = 0; 2394 } 2395 2396 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 2397 DeallocateBefore, TII, MachineInstr::FrameDestroy, false, 2398 false, nullptr, EmitCFI && !hasFP(MF), 2399 SVEStackSize + 2400 StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2401 2402 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 2403 DeallocateAfter, TII, MachineInstr::FrameDestroy, false, 2404 false, nullptr, EmitCFI && !hasFP(MF), 2405 DeallocateAfter + 2406 StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2407 } 2408 if (EmitCFI) 2409 emitCalleeSavedSVERestores(MBB, RestoreEnd); 2410 } 2411 2412 if (!hasFP(MF)) { 2413 bool RedZone = canUseRedZone(MF); 2414 // If this was a redzone leaf function, we don't need to restore the 2415 // stack pointer (but we may need to pop stack args for fastcc). 2416 if (RedZone && AfterCSRPopSize == 0) 2417 return; 2418 2419 // Pop the local variables off the stack. If there are no callee-saved 2420 // registers, it means we are actually positioned at the terminator and can 2421 // combine stack increment for the locals and the stack increment for 2422 // callee-popped arguments into (possibly) a single instruction and be done. 2423 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 2424 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 2425 if (NoCalleeSaveRestore) 2426 StackRestoreBytes += AfterCSRPopSize; 2427 2428 emitFrameOffset( 2429 MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2430 StackOffset::getFixed(StackRestoreBytes), TII, 2431 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI, 2432 StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize)); 2433 2434 // If we were able to combine the local stack pop with the argument pop, 2435 // then we're done. 2436 if (NoCalleeSaveRestore || AfterCSRPopSize == 0) { 2437 return; 2438 } 2439 2440 NumBytes = 0; 2441 } 2442 2443 // Restore the original stack pointer. 2444 // FIXME: Rather than doing the math here, we should instead just use 2445 // non-post-indexed loads for the restores if we aren't actually going to 2446 // be able to save any instructions. 2447 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 2448 emitFrameOffset( 2449 MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 2450 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()), 2451 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2452 } else if (NumBytes) 2453 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2454 StackOffset::getFixed(NumBytes), TII, 2455 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2456 2457 // When we are about to restore the CSRs, the CFA register is SP again. 2458 if (EmitCFI && hasFP(MF)) { 2459 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo(); 2460 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 2461 unsigned CFIIndex = MF.addFrameInst( 2462 MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize)); 2463 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2464 .addCFIIndex(CFIIndex) 2465 .setMIFlags(MachineInstr::FrameDestroy); 2466 } 2467 2468 // This must be placed after the callee-save restore code because that code 2469 // assumes the SP is at the same location as it was after the callee-save save 2470 // code in the prologue. 2471 if (AfterCSRPopSize) { 2472 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an " 2473 "interrupt may have clobbered"); 2474 2475 emitFrameOffset( 2476 MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 2477 StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy, 2478 false, NeedsWinCFI, &HasWinCFI, EmitCFI, 2479 StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0)); 2480 } 2481 } 2482 2483 bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const { 2484 return TargetFrameLowering::enableCFIFixup(MF) && 2485 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF); 2486 } 2487 2488 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 2489 /// debug info. It's the same as what we use for resolving the code-gen 2490 /// references for now. FIXME: This can go wrong when references are 2491 /// SP-relative and simple call frames aren't used. 2492 StackOffset 2493 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 2494 Register &FrameReg) const { 2495 return resolveFrameIndexReference( 2496 MF, FI, FrameReg, 2497 /*PreferFP=*/ 2498 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress), 2499 /*ForSimm=*/false); 2500 } 2501 2502 StackOffset 2503 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF, 2504 int FI) const { 2505 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI)); 2506 } 2507 2508 static StackOffset getFPOffset(const MachineFunction &MF, 2509 int64_t ObjectOffset) { 2510 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2511 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2512 bool IsWin64 = 2513 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 2514 unsigned FixedObject = 2515 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 2516 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 2517 int64_t FPAdjust = 2518 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset(); 2519 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust); 2520 } 2521 2522 static StackOffset getStackOffset(const MachineFunction &MF, 2523 int64_t ObjectOffset) { 2524 const auto &MFI = MF.getFrameInfo(); 2525 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize()); 2526 } 2527 2528 // TODO: This function currently does not work for scalable vectors. 2529 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 2530 int FI) const { 2531 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 2532 MF.getSubtarget().getRegisterInfo()); 2533 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 2534 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 2535 ? getFPOffset(MF, ObjectOffset).getFixed() 2536 : getStackOffset(MF, ObjectOffset).getFixed(); 2537 } 2538 2539 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 2540 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, 2541 bool ForSimm) const { 2542 const auto &MFI = MF.getFrameInfo(); 2543 int64_t ObjectOffset = MFI.getObjectOffset(FI); 2544 bool isFixed = MFI.isFixedObjectIndex(FI); 2545 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector; 2546 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 2547 PreferFP, ForSimm); 2548 } 2549 2550 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 2551 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 2552 Register &FrameReg, bool PreferFP, bool ForSimm) const { 2553 const auto &MFI = MF.getFrameInfo(); 2554 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 2555 MF.getSubtarget().getRegisterInfo()); 2556 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2557 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2558 2559 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed(); 2560 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed(); 2561 bool isCSR = 2562 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 2563 2564 const StackOffset &SVEStackSize = getSVEStackSize(MF); 2565 2566 // Use frame pointer to reference fixed objects. Use it for locals if 2567 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 2568 // reliable as a base). Make sure useFPForScavengingIndex() does the 2569 // right thing for the emergency spill slot. 2570 bool UseFP = false; 2571 if (AFI->hasStackFrame() && !isSVE) { 2572 // We shouldn't prefer using the FP to access fixed-sized stack objects when 2573 // there are scalable (SVE) objects in between the FP and the fixed-sized 2574 // objects. 2575 PreferFP &= !SVEStackSize; 2576 2577 // Note: Keeping the following as multiple 'if' statements rather than 2578 // merging to a single expression for readability. 2579 // 2580 // Argument access should always use the FP. 2581 if (isFixed) { 2582 UseFP = hasFP(MF); 2583 } else if (isCSR && RegInfo->hasStackRealignment(MF)) { 2584 // References to the CSR area must use FP if we're re-aligning the stack 2585 // since the dynamically-sized alignment padding is between the SP/BP and 2586 // the CSR area. 2587 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 2588 UseFP = true; 2589 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) { 2590 // If the FPOffset is negative and we're producing a signed immediate, we 2591 // have to keep in mind that the available offset range for negative 2592 // offsets is smaller than for positive ones. If an offset is available 2593 // via the FP and the SP, use whichever is closest. 2594 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 2595 PreferFP |= Offset > -FPOffset && !SVEStackSize; 2596 2597 if (MFI.hasVarSizedObjects()) { 2598 // If we have variable sized objects, we can use either FP or BP, as the 2599 // SP offset is unknown. We can use the base pointer if we have one and 2600 // FP is not preferred. If not, we're stuck with using FP. 2601 bool CanUseBP = RegInfo->hasBasePointer(MF); 2602 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 2603 UseFP = PreferFP; 2604 else if (!CanUseBP) // Can't use BP. Forced to use FP. 2605 UseFP = true; 2606 // else we can use BP and FP, but the offset from FP won't fit. 2607 // That will make us scavenge registers which we can probably avoid by 2608 // using BP. If it won't fit for BP either, we'll scavenge anyway. 2609 } else if (FPOffset >= 0) { 2610 // Use SP or FP, whichever gives us the best chance of the offset 2611 // being in range for direct access. If the FPOffset is positive, 2612 // that'll always be best, as the SP will be even further away. 2613 UseFP = true; 2614 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 2615 // Funclets access the locals contained in the parent's stack frame 2616 // via the frame pointer, so we have to use the FP in the parent 2617 // function. 2618 (void) Subtarget; 2619 assert( 2620 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) && 2621 "Funclets should only be present on Win64"); 2622 UseFP = true; 2623 } else { 2624 // We have the choice between FP and (SP or BP). 2625 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 2626 UseFP = true; 2627 } 2628 } 2629 } 2630 2631 assert( 2632 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) && 2633 "In the presence of dynamic stack pointer realignment, " 2634 "non-argument/CSR objects cannot be accessed through the frame pointer"); 2635 2636 if (isSVE) { 2637 StackOffset FPOffset = 2638 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset); 2639 StackOffset SPOffset = 2640 SVEStackSize + 2641 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(), 2642 ObjectOffset); 2643 // Always use the FP for SVE spills if available and beneficial. 2644 if (hasFP(MF) && (SPOffset.getFixed() || 2645 FPOffset.getScalable() < SPOffset.getScalable() || 2646 RegInfo->hasStackRealignment(MF))) { 2647 FrameReg = RegInfo->getFrameRegister(MF); 2648 return FPOffset; 2649 } 2650 2651 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 2652 : (unsigned)AArch64::SP; 2653 return SPOffset; 2654 } 2655 2656 StackOffset ScalableOffset = {}; 2657 if (UseFP && !(isFixed || isCSR)) 2658 ScalableOffset = -SVEStackSize; 2659 if (!UseFP && (isFixed || isCSR)) 2660 ScalableOffset = SVEStackSize; 2661 2662 if (UseFP) { 2663 FrameReg = RegInfo->getFrameRegister(MF); 2664 return StackOffset::getFixed(FPOffset) + ScalableOffset; 2665 } 2666 2667 // Use the base pointer if we have one. 2668 if (RegInfo->hasBasePointer(MF)) 2669 FrameReg = RegInfo->getBaseRegister(); 2670 else { 2671 assert(!MFI.hasVarSizedObjects() && 2672 "Can't use SP when we have var sized objects."); 2673 FrameReg = AArch64::SP; 2674 // If we're using the red zone for this function, the SP won't actually 2675 // be adjusted, so the offsets will be negative. They're also all 2676 // within range of the signed 9-bit immediate instructions. 2677 if (canUseRedZone(MF)) 2678 Offset -= AFI->getLocalStackSize(); 2679 } 2680 2681 return StackOffset::getFixed(Offset) + ScalableOffset; 2682 } 2683 2684 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 2685 // Do not set a kill flag on values that are also marked as live-in. This 2686 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 2687 // callee saved registers. 2688 // Omitting the kill flags is conservatively correct even if the live-in 2689 // is not used after all. 2690 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 2691 return getKillRegState(!IsLiveIn); 2692 } 2693 2694 static bool produceCompactUnwindFrame(MachineFunction &MF) { 2695 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2696 AttributeList Attrs = MF.getFunction().getAttributes(); 2697 return Subtarget.isTargetMachO() && 2698 !(Subtarget.getTargetLowering()->supportSwiftError() && 2699 Attrs.hasAttrSomewhere(Attribute::SwiftError)) && 2700 MF.getFunction().getCallingConv() != CallingConv::SwiftTail; 2701 } 2702 2703 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 2704 bool NeedsWinCFI, bool IsFirst, 2705 const TargetRegisterInfo *TRI) { 2706 // If we are generating register pairs for a Windows function that requires 2707 // EH support, then pair consecutive registers only. There are no unwind 2708 // opcodes for saves/restores of non-consectuve register pairs. 2709 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x, 2710 // save_lrpair. 2711 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 2712 2713 if (Reg2 == AArch64::FP) 2714 return true; 2715 if (!NeedsWinCFI) 2716 return false; 2717 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1) 2718 return false; 2719 // If pairing a GPR with LR, the pair can be described by the save_lrpair 2720 // opcode. If this is the first register pair, it would end up with a 2721 // predecrement, but there's no save_lrpair_x opcode, so we can only do this 2722 // if LR is paired with something else than the first register. 2723 // The save_lrpair opcode requires the first register to be an odd one. 2724 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 && 2725 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst) 2726 return false; 2727 return true; 2728 } 2729 2730 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 2731 /// WindowsCFI requires that only consecutive registers can be paired. 2732 /// LR and FP need to be allocated together when the frame needs to save 2733 /// the frame-record. This means any other register pairing with LR is invalid. 2734 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 2735 bool UsesWinAAPCS, bool NeedsWinCFI, 2736 bool NeedsFrameRecord, bool IsFirst, 2737 const TargetRegisterInfo *TRI) { 2738 if (UsesWinAAPCS) 2739 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst, 2740 TRI); 2741 2742 // If we need to store the frame record, don't pair any register 2743 // with LR other than FP. 2744 if (NeedsFrameRecord) 2745 return Reg2 == AArch64::LR; 2746 2747 return false; 2748 } 2749 2750 namespace { 2751 2752 struct RegPairInfo { 2753 unsigned Reg1 = AArch64::NoRegister; 2754 unsigned Reg2 = AArch64::NoRegister; 2755 int FrameIdx; 2756 int Offset; 2757 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type; 2758 2759 RegPairInfo() = default; 2760 2761 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 2762 2763 unsigned getScale() const { 2764 switch (Type) { 2765 case PPR: 2766 return 2; 2767 case GPR: 2768 case FPR64: 2769 return 8; 2770 case ZPR: 2771 case FPR128: 2772 return 16; 2773 } 2774 llvm_unreachable("Unsupported type"); 2775 } 2776 2777 bool isScalable() const { return Type == PPR || Type == ZPR; } 2778 }; 2779 2780 } // end anonymous namespace 2781 2782 static void computeCalleeSaveRegisterPairs( 2783 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI, 2784 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 2785 bool NeedsFrameRecord) { 2786 2787 if (CSI.empty()) 2788 return; 2789 2790 bool IsWindows = isTargetWindows(MF); 2791 bool NeedsWinCFI = needsWinCFI(MF); 2792 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2793 MachineFrameInfo &MFI = MF.getFrameInfo(); 2794 CallingConv::ID CC = MF.getFunction().getCallingConv(); 2795 unsigned Count = CSI.size(); 2796 (void)CC; 2797 // MachO's compact unwind format relies on all registers being stored in 2798 // pairs. 2799 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost || 2800 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS || 2801 CC == CallingConv::Win64 || (Count & 1) == 0) && 2802 "Odd number of callee-saved regs to spill!"); 2803 int ByteOffset = AFI->getCalleeSavedStackSize(); 2804 int StackFillDir = -1; 2805 int RegInc = 1; 2806 unsigned FirstReg = 0; 2807 if (NeedsWinCFI) { 2808 // For WinCFI, fill the stack from the bottom up. 2809 ByteOffset = 0; 2810 StackFillDir = 1; 2811 // As the CSI array is reversed to match PrologEpilogInserter, iterate 2812 // backwards, to pair up registers starting from lower numbered registers. 2813 RegInc = -1; 2814 FirstReg = Count - 1; 2815 } 2816 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 2817 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace(); 2818 2819 // When iterating backwards, the loop condition relies on unsigned wraparound. 2820 for (unsigned i = FirstReg; i < Count; i += RegInc) { 2821 RegPairInfo RPI; 2822 RPI.Reg1 = CSI[i].getReg(); 2823 2824 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) 2825 RPI.Type = RegPairInfo::GPR; 2826 else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) 2827 RPI.Type = RegPairInfo::FPR64; 2828 else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) 2829 RPI.Type = RegPairInfo::FPR128; 2830 else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) 2831 RPI.Type = RegPairInfo::ZPR; 2832 else if (AArch64::PPRRegClass.contains(RPI.Reg1)) 2833 RPI.Type = RegPairInfo::PPR; 2834 else 2835 llvm_unreachable("Unsupported register class."); 2836 2837 // Add the next reg to the pair if it is in the same register class. 2838 if (unsigned(i + RegInc) < Count) { 2839 Register NextReg = CSI[i + RegInc].getReg(); 2840 bool IsFirst = i == FirstReg; 2841 switch (RPI.Type) { 2842 case RegPairInfo::GPR: 2843 if (AArch64::GPR64RegClass.contains(NextReg) && 2844 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, 2845 NeedsWinCFI, NeedsFrameRecord, IsFirst, 2846 TRI)) 2847 RPI.Reg2 = NextReg; 2848 break; 2849 case RegPairInfo::FPR64: 2850 if (AArch64::FPR64RegClass.contains(NextReg) && 2851 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI, 2852 IsFirst, TRI)) 2853 RPI.Reg2 = NextReg; 2854 break; 2855 case RegPairInfo::FPR128: 2856 if (AArch64::FPR128RegClass.contains(NextReg)) 2857 RPI.Reg2 = NextReg; 2858 break; 2859 case RegPairInfo::PPR: 2860 case RegPairInfo::ZPR: 2861 break; 2862 } 2863 } 2864 2865 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 2866 // list to come in sorted by frame index so that we can issue the store 2867 // pair instructions directly. Assert if we see anything otherwise. 2868 // 2869 // The order of the registers in the list is controlled by 2870 // getCalleeSavedRegs(), so they will always be in-order, as well. 2871 assert((!RPI.isPaired() || 2872 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) && 2873 "Out of order callee saved regs!"); 2874 2875 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 2876 RPI.Reg1 == AArch64::LR) && 2877 "FrameRecord must be allocated together with LR"); 2878 2879 // Windows AAPCS has FP and LR reversed. 2880 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 2881 RPI.Reg2 == AArch64::LR) && 2882 "FrameRecord must be allocated together with LR"); 2883 2884 // MachO's compact unwind format relies on all registers being stored in 2885 // adjacent register pairs. 2886 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost || 2887 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS || 2888 CC == CallingConv::Win64 || 2889 (RPI.isPaired() && 2890 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 2891 RPI.Reg1 + 1 == RPI.Reg2))) && 2892 "Callee-save registers not saved as adjacent register pair!"); 2893 2894 RPI.FrameIdx = CSI[i].getFrameIdx(); 2895 if (NeedsWinCFI && 2896 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair 2897 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx(); 2898 2899 int Scale = RPI.getScale(); 2900 2901 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2902 assert(OffsetPre % Scale == 0); 2903 2904 if (RPI.isScalable()) 2905 ScalableByteOffset += StackFillDir * Scale; 2906 else 2907 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); 2908 2909 // Swift's async context is directly before FP, so allocate an extra 2910 // 8 bytes for it. 2911 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && 2912 ((!IsWindows && RPI.Reg2 == AArch64::FP) || 2913 (IsWindows && RPI.Reg2 == AArch64::LR))) 2914 ByteOffset += StackFillDir * 8; 2915 2916 assert(!(RPI.isScalable() && RPI.isPaired()) && 2917 "Paired spill/fill instructions don't exist for SVE vectors"); 2918 2919 // Round up size of non-pair to pair size if we need to pad the 2920 // callee-save area to ensure 16-byte alignment. 2921 if (NeedGapToAlignStack && !NeedsWinCFI && 2922 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 && 2923 !RPI.isPaired() && ByteOffset % 16 != 0) { 2924 ByteOffset += 8 * StackFillDir; 2925 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); 2926 // A stack frame with a gap looks like this, bottom up: 2927 // d9, d8. x21, gap, x20, x19. 2928 // Set extra alignment on the x21 object to create the gap above it. 2929 MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); 2930 NeedGapToAlignStack = false; 2931 } 2932 2933 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2934 assert(OffsetPost % Scale == 0); 2935 // If filling top down (default), we want the offset after incrementing it. 2936 // If filling bottom up (WinCFI) we need the original offset. 2937 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost; 2938 2939 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the 2940 // Swift context can directly precede FP. 2941 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && 2942 ((!IsWindows && RPI.Reg2 == AArch64::FP) || 2943 (IsWindows && RPI.Reg2 == AArch64::LR))) 2944 Offset += 8; 2945 RPI.Offset = Offset / Scale; 2946 2947 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 2948 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 2949 "Offset out of bounds for LDP/STP immediate"); 2950 2951 // Save the offset to frame record so that the FP register can point to the 2952 // innermost frame record (spilled FP and LR registers). 2953 if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR && 2954 RPI.Reg2 == AArch64::FP) || 2955 (IsWindows && RPI.Reg1 == AArch64::FP && 2956 RPI.Reg2 == AArch64::LR))) 2957 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset); 2958 2959 RegPairs.push_back(RPI); 2960 if (RPI.isPaired()) 2961 i += RegInc; 2962 } 2963 if (NeedsWinCFI) { 2964 // If we need an alignment gap in the stack, align the topmost stack 2965 // object. A stack frame with a gap looks like this, bottom up: 2966 // x19, d8. d9, gap. 2967 // Set extra alignment on the topmost stack object (the first element in 2968 // CSI, which goes top down), to create the gap above it. 2969 if (AFI->hasCalleeSaveStackFreeSpace()) 2970 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16)); 2971 // We iterated bottom up over the registers; flip RegPairs back to top 2972 // down order. 2973 std::reverse(RegPairs.begin(), RegPairs.end()); 2974 } 2975 } 2976 2977 bool AArch64FrameLowering::spillCalleeSavedRegisters( 2978 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2979 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2980 MachineFunction &MF = *MBB.getParent(); 2981 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2982 bool NeedsWinCFI = needsWinCFI(MF); 2983 DebugLoc DL; 2984 SmallVector<RegPairInfo, 8> RegPairs; 2985 2986 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF)); 2987 2988 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2989 if (homogeneousPrologEpilog(MF)) { 2990 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog)) 2991 .setMIFlag(MachineInstr::FrameSetup); 2992 2993 for (auto &RPI : RegPairs) { 2994 MIB.addReg(RPI.Reg1); 2995 MIB.addReg(RPI.Reg2); 2996 2997 // Update register live in. 2998 if (!MRI.isReserved(RPI.Reg1)) 2999 MBB.addLiveIn(RPI.Reg1); 3000 if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2)) 3001 MBB.addLiveIn(RPI.Reg2); 3002 } 3003 return true; 3004 } 3005 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) { 3006 unsigned Reg1 = RPI.Reg1; 3007 unsigned Reg2 = RPI.Reg2; 3008 unsigned StrOpc; 3009 3010 // Issue sequence of spills for cs regs. The first spill may be converted 3011 // to a pre-decrement store later by emitPrologue if the callee-save stack 3012 // area allocation can't be combined with the local stack area allocation. 3013 // For example: 3014 // stp x22, x21, [sp, #0] // addImm(+0) 3015 // stp x20, x19, [sp, #16] // addImm(+2) 3016 // stp fp, lr, [sp, #32] // addImm(+4) 3017 // Rationale: This sequence saves uop updates compared to a sequence of 3018 // pre-increment spills like stp xi,xj,[sp,#-16]! 3019 // Note: Similar rationale and sequence for restores in epilog. 3020 unsigned Size; 3021 Align Alignment; 3022 switch (RPI.Type) { 3023 case RegPairInfo::GPR: 3024 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 3025 Size = 8; 3026 Alignment = Align(8); 3027 break; 3028 case RegPairInfo::FPR64: 3029 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 3030 Size = 8; 3031 Alignment = Align(8); 3032 break; 3033 case RegPairInfo::FPR128: 3034 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 3035 Size = 16; 3036 Alignment = Align(16); 3037 break; 3038 case RegPairInfo::ZPR: 3039 StrOpc = AArch64::STR_ZXI; 3040 Size = 16; 3041 Alignment = Align(16); 3042 break; 3043 case RegPairInfo::PPR: 3044 StrOpc = AArch64::STR_PXI; 3045 Size = 2; 3046 Alignment = Align(2); 3047 break; 3048 } 3049 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 3050 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 3051 dbgs() << ") -> fi#(" << RPI.FrameIdx; 3052 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 3053 dbgs() << ")\n"); 3054 3055 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 3056 "Windows unwdinding requires a consecutive (FP,LR) pair"); 3057 // Windows unwind codes require consecutive registers if registers are 3058 // paired. Make the switch here, so that the code below will save (x,x+1) 3059 // and not (x+1,x). 3060 unsigned FrameIdxReg1 = RPI.FrameIdx; 3061 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 3062 if (NeedsWinCFI && RPI.isPaired()) { 3063 std::swap(Reg1, Reg2); 3064 std::swap(FrameIdxReg1, FrameIdxReg2); 3065 } 3066 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 3067 if (!MRI.isReserved(Reg1)) 3068 MBB.addLiveIn(Reg1); 3069 if (RPI.isPaired()) { 3070 if (!MRI.isReserved(Reg2)) 3071 MBB.addLiveIn(Reg2); 3072 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 3073 MIB.addMemOperand(MF.getMachineMemOperand( 3074 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3075 MachineMemOperand::MOStore, Size, Alignment)); 3076 } 3077 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 3078 .addReg(AArch64::SP) 3079 .addImm(RPI.Offset) // [sp, #offset*scale], 3080 // where factor*scale is implicit 3081 .setMIFlag(MachineInstr::FrameSetup); 3082 MIB.addMemOperand(MF.getMachineMemOperand( 3083 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3084 MachineMemOperand::MOStore, Size, Alignment)); 3085 if (NeedsWinCFI) 3086 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 3087 3088 // Update the StackIDs of the SVE stack slots. 3089 MachineFrameInfo &MFI = MF.getFrameInfo(); 3090 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) 3091 MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector); 3092 3093 } 3094 return true; 3095 } 3096 3097 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 3098 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3099 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 3100 MachineFunction &MF = *MBB.getParent(); 3101 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3102 DebugLoc DL; 3103 SmallVector<RegPairInfo, 8> RegPairs; 3104 bool NeedsWinCFI = needsWinCFI(MF); 3105 3106 if (MBBI != MBB.end()) 3107 DL = MBBI->getDebugLoc(); 3108 3109 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF)); 3110 3111 auto EmitMI = [&](const RegPairInfo &RPI) -> MachineBasicBlock::iterator { 3112 unsigned Reg1 = RPI.Reg1; 3113 unsigned Reg2 = RPI.Reg2; 3114 3115 // Issue sequence of restores for cs regs. The last restore may be converted 3116 // to a post-increment load later by emitEpilogue if the callee-save stack 3117 // area allocation can't be combined with the local stack area allocation. 3118 // For example: 3119 // ldp fp, lr, [sp, #32] // addImm(+4) 3120 // ldp x20, x19, [sp, #16] // addImm(+2) 3121 // ldp x22, x21, [sp, #0] // addImm(+0) 3122 // Note: see comment in spillCalleeSavedRegisters() 3123 unsigned LdrOpc; 3124 unsigned Size; 3125 Align Alignment; 3126 switch (RPI.Type) { 3127 case RegPairInfo::GPR: 3128 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 3129 Size = 8; 3130 Alignment = Align(8); 3131 break; 3132 case RegPairInfo::FPR64: 3133 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 3134 Size = 8; 3135 Alignment = Align(8); 3136 break; 3137 case RegPairInfo::FPR128: 3138 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 3139 Size = 16; 3140 Alignment = Align(16); 3141 break; 3142 case RegPairInfo::ZPR: 3143 LdrOpc = AArch64::LDR_ZXI; 3144 Size = 16; 3145 Alignment = Align(16); 3146 break; 3147 case RegPairInfo::PPR: 3148 LdrOpc = AArch64::LDR_PXI; 3149 Size = 2; 3150 Alignment = Align(2); 3151 break; 3152 } 3153 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 3154 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 3155 dbgs() << ") -> fi#(" << RPI.FrameIdx; 3156 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 3157 dbgs() << ")\n"); 3158 3159 // Windows unwind codes require consecutive registers if registers are 3160 // paired. Make the switch here, so that the code below will save (x,x+1) 3161 // and not (x+1,x). 3162 unsigned FrameIdxReg1 = RPI.FrameIdx; 3163 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 3164 if (NeedsWinCFI && RPI.isPaired()) { 3165 std::swap(Reg1, Reg2); 3166 std::swap(FrameIdxReg1, FrameIdxReg2); 3167 } 3168 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc)); 3169 if (RPI.isPaired()) { 3170 MIB.addReg(Reg2, getDefRegState(true)); 3171 MIB.addMemOperand(MF.getMachineMemOperand( 3172 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3173 MachineMemOperand::MOLoad, Size, Alignment)); 3174 } 3175 MIB.addReg(Reg1, getDefRegState(true)) 3176 .addReg(AArch64::SP) 3177 .addImm(RPI.Offset) // [sp, #offset*scale] 3178 // where factor*scale is implicit 3179 .setMIFlag(MachineInstr::FrameDestroy); 3180 MIB.addMemOperand(MF.getMachineMemOperand( 3181 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3182 MachineMemOperand::MOLoad, Size, Alignment)); 3183 if (NeedsWinCFI) 3184 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 3185 3186 return MIB->getIterator(); 3187 }; 3188 3189 // SVE objects are always restored in reverse order. 3190 for (const RegPairInfo &RPI : reverse(RegPairs)) 3191 if (RPI.isScalable()) 3192 EmitMI(RPI); 3193 3194 if (homogeneousPrologEpilog(MF, &MBB)) { 3195 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog)) 3196 .setMIFlag(MachineInstr::FrameDestroy); 3197 for (auto &RPI : RegPairs) { 3198 MIB.addReg(RPI.Reg1, RegState::Define); 3199 MIB.addReg(RPI.Reg2, RegState::Define); 3200 } 3201 return true; 3202 } 3203 3204 if (ReverseCSRRestoreSeq) { 3205 MachineBasicBlock::iterator First = MBB.end(); 3206 for (const RegPairInfo &RPI : reverse(RegPairs)) { 3207 if (RPI.isScalable()) 3208 continue; 3209 MachineBasicBlock::iterator It = EmitMI(RPI); 3210 if (First == MBB.end()) 3211 First = It; 3212 } 3213 if (First != MBB.end()) 3214 MBB.splice(MBBI, &MBB, First); 3215 } else { 3216 for (const RegPairInfo &RPI : RegPairs) { 3217 if (RPI.isScalable()) 3218 continue; 3219 (void)EmitMI(RPI); 3220 } 3221 } 3222 3223 return true; 3224 } 3225 3226 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 3227 BitVector &SavedRegs, 3228 RegScavenger *RS) const { 3229 // All calls are tail calls in GHC calling conv, and functions have no 3230 // prologue/epilogue. 3231 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 3232 return; 3233 3234 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 3235 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 3236 MF.getSubtarget().getRegisterInfo()); 3237 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 3238 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3239 unsigned UnspilledCSGPR = AArch64::NoRegister; 3240 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 3241 3242 MachineFrameInfo &MFI = MF.getFrameInfo(); 3243 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 3244 3245 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 3246 ? RegInfo->getBaseRegister() 3247 : (unsigned)AArch64::NoRegister; 3248 3249 unsigned ExtraCSSpill = 0; 3250 bool HasUnpairedGPR64 = false; 3251 // Figure out which callee-saved registers to save/restore. 3252 for (unsigned i = 0; CSRegs[i]; ++i) { 3253 const unsigned Reg = CSRegs[i]; 3254 3255 // Add the base pointer register to SavedRegs if it is callee-save. 3256 if (Reg == BasePointerReg) 3257 SavedRegs.set(Reg); 3258 3259 bool RegUsed = SavedRegs.test(Reg); 3260 unsigned PairedReg = AArch64::NoRegister; 3261 const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg); 3262 if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) || 3263 AArch64::FPR128RegClass.contains(Reg)) { 3264 // Compensate for odd numbers of GP CSRs. 3265 // For now, all the known cases of odd number of CSRs are of GPRs. 3266 if (HasUnpairedGPR64) 3267 PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1]; 3268 else 3269 PairedReg = CSRegs[i ^ 1]; 3270 } 3271 3272 // If the function requires all the GP registers to save (SavedRegs), 3273 // and there are an odd number of GP CSRs at the same time (CSRegs), 3274 // PairedReg could be in a different register class from Reg, which would 3275 // lead to a FPR (usually D8) accidentally being marked saved. 3276 if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) { 3277 PairedReg = AArch64::NoRegister; 3278 HasUnpairedGPR64 = true; 3279 } 3280 assert(PairedReg == AArch64::NoRegister || 3281 AArch64::GPR64RegClass.contains(Reg, PairedReg) || 3282 AArch64::FPR64RegClass.contains(Reg, PairedReg) || 3283 AArch64::FPR128RegClass.contains(Reg, PairedReg)); 3284 3285 if (!RegUsed) { 3286 if (AArch64::GPR64RegClass.contains(Reg) && 3287 !RegInfo->isReservedReg(MF, Reg)) { 3288 UnspilledCSGPR = Reg; 3289 UnspilledCSGPRPaired = PairedReg; 3290 } 3291 continue; 3292 } 3293 3294 // MachO's compact unwind format relies on all registers being stored in 3295 // pairs. 3296 // FIXME: the usual format is actually better if unwinding isn't needed. 3297 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister && 3298 !SavedRegs.test(PairedReg)) { 3299 SavedRegs.set(PairedReg); 3300 if (AArch64::GPR64RegClass.contains(PairedReg) && 3301 !RegInfo->isReservedReg(MF, PairedReg)) 3302 ExtraCSSpill = PairedReg; 3303 } 3304 } 3305 3306 if (MF.getFunction().getCallingConv() == CallingConv::Win64 && 3307 !Subtarget.isTargetWindows()) { 3308 // For Windows calling convention on a non-windows OS, where X18 is treated 3309 // as reserved, back up X18 when entering non-windows code (marked with the 3310 // Windows calling convention) and restore when returning regardless of 3311 // whether the individual function uses it - it might call other functions 3312 // that clobber it. 3313 SavedRegs.set(AArch64::X18); 3314 } 3315 3316 // Calculates the callee saved stack size. 3317 unsigned CSStackSize = 0; 3318 unsigned SVECSStackSize = 0; 3319 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3320 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3321 for (unsigned Reg : SavedRegs.set_bits()) { 3322 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; 3323 if (AArch64::PPRRegClass.contains(Reg) || 3324 AArch64::ZPRRegClass.contains(Reg)) 3325 SVECSStackSize += RegSize; 3326 else 3327 CSStackSize += RegSize; 3328 } 3329 3330 // Save number of saved regs, so we can easily update CSStackSize later. 3331 unsigned NumSavedRegs = SavedRegs.count(); 3332 3333 // The frame record needs to be created by saving the appropriate registers 3334 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 3335 if (hasFP(MF) || 3336 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 3337 SavedRegs.set(AArch64::FP); 3338 SavedRegs.set(AArch64::LR); 3339 } 3340 3341 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 3342 for (unsigned Reg 3343 : SavedRegs.set_bits()) dbgs() 3344 << ' ' << printReg(Reg, RegInfo); 3345 dbgs() << "\n";); 3346 3347 // If any callee-saved registers are used, the frame cannot be eliminated. 3348 int64_t SVEStackSize = 3349 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 3350 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 3351 3352 // The CSR spill slots have not been allocated yet, so estimateStackSize 3353 // won't include them. 3354 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 3355 3356 // We may address some of the stack above the canonical frame address, either 3357 // for our own arguments or during a call. Include that in calculating whether 3358 // we have complicated addressing concerns. 3359 int64_t CalleeStackUsed = 0; 3360 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) { 3361 int64_t FixedOff = MFI.getObjectOffset(I); 3362 if (FixedOff > CalleeStackUsed) CalleeStackUsed = FixedOff; 3363 } 3364 3365 // Conservatively always assume BigStack when there are SVE spills. 3366 bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize + 3367 CalleeStackUsed) > EstimatedStackSizeLimit; 3368 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 3369 AFI->setHasStackFrame(true); 3370 3371 // Estimate if we might need to scavenge a register at some point in order 3372 // to materialize a stack offset. If so, either spill one additional 3373 // callee-saved register or reserve a special spill slot to facilitate 3374 // register scavenging. If we already spilled an extra callee-saved register 3375 // above to keep the number of spills even, we don't need to do anything else 3376 // here. 3377 if (BigStack) { 3378 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 3379 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 3380 << " to get a scratch register.\n"); 3381 SavedRegs.set(UnspilledCSGPR); 3382 ExtraCSSpill = UnspilledCSGPR; 3383 3384 // MachO's compact unwind format relies on all registers being stored in 3385 // pairs, so if we need to spill one extra for BigStack, then we need to 3386 // store the pair. 3387 if (producePairRegisters(MF)) { 3388 if (UnspilledCSGPRPaired == AArch64::NoRegister) { 3389 // Failed to make a pair for compact unwind format, revert spilling. 3390 if (produceCompactUnwindFrame(MF)) { 3391 SavedRegs.reset(UnspilledCSGPR); 3392 ExtraCSSpill = AArch64::NoRegister; 3393 } 3394 } else 3395 SavedRegs.set(UnspilledCSGPRPaired); 3396 } 3397 } 3398 3399 // If we didn't find an extra callee-saved register to spill, create 3400 // an emergency spill slot. 3401 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 3402 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3403 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 3404 unsigned Size = TRI->getSpillSize(RC); 3405 Align Alignment = TRI->getSpillAlign(RC); 3406 int FI = MFI.CreateStackObject(Size, Alignment, false); 3407 RS->addScavengingFrameIndex(FI); 3408 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 3409 << " as the emergency spill slot.\n"); 3410 } 3411 } 3412 3413 // Adding the size of additional 64bit GPR saves. 3414 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 3415 3416 // A Swift asynchronous context extends the frame record with a pointer 3417 // directly before FP. 3418 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) 3419 CSStackSize += 8; 3420 3421 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 3422 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 3423 << EstimatedStackSize + AlignedCSStackSize 3424 << " bytes.\n"); 3425 3426 assert((!MFI.isCalleeSavedInfoValid() || 3427 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 3428 "Should not invalidate callee saved info"); 3429 3430 // Round up to register pair alignment to avoid additional SP adjustment 3431 // instructions. 3432 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 3433 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 3434 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 3435 } 3436 3437 bool AArch64FrameLowering::assignCalleeSavedSpillSlots( 3438 MachineFunction &MF, const TargetRegisterInfo *RegInfo, 3439 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex, 3440 unsigned &MaxCSFrameIndex) const { 3441 bool NeedsWinCFI = needsWinCFI(MF); 3442 // To match the canonical windows frame layout, reverse the list of 3443 // callee saved registers to get them laid out by PrologEpilogInserter 3444 // in the right order. (PrologEpilogInserter allocates stack objects top 3445 // down. Windows canonical prologs store higher numbered registers at 3446 // the top, thus have the CSI array start from the highest registers.) 3447 if (NeedsWinCFI) 3448 std::reverse(CSI.begin(), CSI.end()); 3449 3450 if (CSI.empty()) 3451 return true; // Early exit if no callee saved registers are modified! 3452 3453 // Now that we know which registers need to be saved and restored, allocate 3454 // stack slots for them. 3455 MachineFrameInfo &MFI = MF.getFrameInfo(); 3456 auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 3457 3458 bool UsesWinAAPCS = isTargetWindows(MF); 3459 if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) { 3460 int FrameIdx = MFI.CreateStackObject(8, Align(16), true); 3461 AFI->setSwiftAsyncContextFrameIdx(FrameIdx); 3462 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; 3463 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; 3464 } 3465 3466 for (auto &CS : CSI) { 3467 Register Reg = CS.getReg(); 3468 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); 3469 3470 unsigned Size = RegInfo->getSpillSize(*RC); 3471 Align Alignment(RegInfo->getSpillAlign(*RC)); 3472 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true); 3473 CS.setFrameIdx(FrameIdx); 3474 3475 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; 3476 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; 3477 3478 // Grab 8 bytes below FP for the extended asynchronous frame info. 3479 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS && 3480 Reg == AArch64::FP) { 3481 FrameIdx = MFI.CreateStackObject(8, Alignment, true); 3482 AFI->setSwiftAsyncContextFrameIdx(FrameIdx); 3483 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; 3484 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; 3485 } 3486 } 3487 return true; 3488 } 3489 3490 bool AArch64FrameLowering::enableStackSlotScavenging( 3491 const MachineFunction &MF) const { 3492 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3493 // If the function has streaming-mode changes, don't scavenge a 3494 // spillslot in the callee-save area, as that might require an 3495 // 'addvl' in the streaming-mode-changing call-sequence when the 3496 // function doesn't use a FP. 3497 if (AFI->hasStreamingModeChanges() && !hasFP(MF)) 3498 return false; 3499 return AFI->hasCalleeSaveStackFreeSpace(); 3500 } 3501 3502 /// returns true if there are any SVE callee saves. 3503 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 3504 int &Min, int &Max) { 3505 Min = std::numeric_limits<int>::max(); 3506 Max = std::numeric_limits<int>::min(); 3507 3508 if (!MFI.isCalleeSavedInfoValid()) 3509 return false; 3510 3511 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 3512 for (auto &CS : CSI) { 3513 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 3514 AArch64::PPRRegClass.contains(CS.getReg())) { 3515 assert((Max == std::numeric_limits<int>::min() || 3516 Max + 1 == CS.getFrameIdx()) && 3517 "SVE CalleeSaves are not consecutive"); 3518 3519 Min = std::min(Min, CS.getFrameIdx()); 3520 Max = std::max(Max, CS.getFrameIdx()); 3521 } 3522 } 3523 return Min != std::numeric_limits<int>::max(); 3524 } 3525 3526 // Process all the SVE stack objects and determine offsets for each 3527 // object. If AssignOffsets is true, the offsets get assigned. 3528 // Fills in the first and last callee-saved frame indices into 3529 // Min/MaxCSFrameIndex, respectively. 3530 // Returns the size of the stack. 3531 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 3532 int &MinCSFrameIndex, 3533 int &MaxCSFrameIndex, 3534 bool AssignOffsets) { 3535 #ifndef NDEBUG 3536 // First process all fixed stack objects. 3537 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 3538 assert(MFI.getStackID(I) != TargetStackID::ScalableVector && 3539 "SVE vectors should never be passed on the stack by value, only by " 3540 "reference."); 3541 #endif 3542 3543 auto Assign = [&MFI](int FI, int64_t Offset) { 3544 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 3545 MFI.setObjectOffset(FI, Offset); 3546 }; 3547 3548 int64_t Offset = 0; 3549 3550 // Then process all callee saved slots. 3551 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 3552 // Assign offsets to the callee save slots. 3553 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 3554 Offset += MFI.getObjectSize(I); 3555 Offset = alignTo(Offset, MFI.getObjectAlign(I)); 3556 if (AssignOffsets) 3557 Assign(I, -Offset); 3558 } 3559 } 3560 3561 // Ensure that the Callee-save area is aligned to 16bytes. 3562 Offset = alignTo(Offset, Align(16U)); 3563 3564 // Create a buffer of SVE objects to allocate and sort it. 3565 SmallVector<int, 8> ObjectsToAllocate; 3566 // If we have a stack protector, and we've previously decided that we have SVE 3567 // objects on the stack and thus need it to go in the SVE stack area, then it 3568 // needs to go first. 3569 int StackProtectorFI = -1; 3570 if (MFI.hasStackProtectorIndex()) { 3571 StackProtectorFI = MFI.getStackProtectorIndex(); 3572 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector) 3573 ObjectsToAllocate.push_back(StackProtectorFI); 3574 } 3575 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 3576 unsigned StackID = MFI.getStackID(I); 3577 if (StackID != TargetStackID::ScalableVector) 3578 continue; 3579 if (I == StackProtectorFI) 3580 continue; 3581 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 3582 continue; 3583 if (MFI.isDeadObjectIndex(I)) 3584 continue; 3585 3586 ObjectsToAllocate.push_back(I); 3587 } 3588 3589 // Allocate all SVE locals and spills 3590 for (unsigned FI : ObjectsToAllocate) { 3591 Align Alignment = MFI.getObjectAlign(FI); 3592 // FIXME: Given that the length of SVE vectors is not necessarily a power of 3593 // two, we'd need to align every object dynamically at runtime if the 3594 // alignment is larger than 16. This is not yet supported. 3595 if (Alignment > Align(16)) 3596 report_fatal_error( 3597 "Alignment of scalable vectors > 16 bytes is not yet supported"); 3598 3599 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); 3600 if (AssignOffsets) 3601 Assign(FI, -Offset); 3602 } 3603 3604 return Offset; 3605 } 3606 3607 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 3608 MachineFrameInfo &MFI) const { 3609 int MinCSFrameIndex, MaxCSFrameIndex; 3610 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 3611 } 3612 3613 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 3614 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 3615 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 3616 true); 3617 } 3618 3619 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 3620 MachineFunction &MF, RegScavenger *RS) const { 3621 MachineFrameInfo &MFI = MF.getFrameInfo(); 3622 3623 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 3624 "Upwards growing stack unsupported"); 3625 3626 int MinCSFrameIndex, MaxCSFrameIndex; 3627 int64_t SVEStackSize = 3628 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 3629 3630 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3631 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 3632 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 3633 3634 // If this function isn't doing Win64-style C++ EH, we don't need to do 3635 // anything. 3636 if (!MF.hasEHFunclets()) 3637 return; 3638 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3639 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3640 3641 MachineBasicBlock &MBB = MF.front(); 3642 auto MBBI = MBB.begin(); 3643 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3644 ++MBBI; 3645 3646 // Create an UnwindHelp object. 3647 // The UnwindHelp object is allocated at the start of the fixed object area 3648 int64_t FixedObject = 3649 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 3650 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 3651 /*SPOffset*/ -FixedObject, 3652 /*IsImmutable=*/false); 3653 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3654 3655 // We need to store -2 into the UnwindHelp object at the start of the 3656 // function. 3657 DebugLoc DL; 3658 RS->enterBasicBlockEnd(MBB); 3659 RS->backward(MBBI); 3660 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 3661 assert(DstReg && "There must be a free register after frame setup"); 3662 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 3663 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 3664 .addReg(DstReg, getKillRegState(true)) 3665 .addFrameIndex(UnwindHelpFI) 3666 .addImm(0); 3667 } 3668 3669 namespace { 3670 struct TagStoreInstr { 3671 MachineInstr *MI; 3672 int64_t Offset, Size; 3673 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) 3674 : MI(MI), Offset(Offset), Size(Size) {} 3675 }; 3676 3677 class TagStoreEdit { 3678 MachineFunction *MF; 3679 MachineBasicBlock *MBB; 3680 MachineRegisterInfo *MRI; 3681 // Tag store instructions that are being replaced. 3682 SmallVector<TagStoreInstr, 8> TagStores; 3683 // Combined memref arguments of the above instructions. 3684 SmallVector<MachineMemOperand *, 8> CombinedMemRefs; 3685 3686 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + 3687 // FrameRegOffset + Size) with the address tag of SP. 3688 Register FrameReg; 3689 StackOffset FrameRegOffset; 3690 int64_t Size; 3691 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the 3692 // end. 3693 std::optional<int64_t> FrameRegUpdate; 3694 // MIFlags for any FrameReg updating instructions. 3695 unsigned FrameRegUpdateFlags; 3696 3697 // Use zeroing instruction variants. 3698 bool ZeroData; 3699 DebugLoc DL; 3700 3701 void emitUnrolled(MachineBasicBlock::iterator InsertI); 3702 void emitLoop(MachineBasicBlock::iterator InsertI); 3703 3704 public: 3705 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) 3706 : MBB(MBB), ZeroData(ZeroData) { 3707 MF = MBB->getParent(); 3708 MRI = &MF->getRegInfo(); 3709 } 3710 // Add an instruction to be replaced. Instructions must be added in the 3711 // ascending order of Offset, and have to be adjacent. 3712 void addInstruction(TagStoreInstr I) { 3713 assert((TagStores.empty() || 3714 TagStores.back().Offset + TagStores.back().Size == I.Offset) && 3715 "Non-adjacent tag store instructions."); 3716 TagStores.push_back(I); 3717 } 3718 void clear() { TagStores.clear(); } 3719 // Emit equivalent code at the given location, and erase the current set of 3720 // instructions. May skip if the replacement is not profitable. May invalidate 3721 // the input iterator and replace it with a valid one. 3722 void emitCode(MachineBasicBlock::iterator &InsertI, 3723 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate); 3724 }; 3725 3726 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { 3727 const AArch64InstrInfo *TII = 3728 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 3729 3730 const int64_t kMinOffset = -256 * 16; 3731 const int64_t kMaxOffset = 255 * 16; 3732 3733 Register BaseReg = FrameReg; 3734 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed(); 3735 if (BaseRegOffsetBytes < kMinOffset || 3736 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset || 3737 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In 3738 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which 3739 // is required for the offset of ST2G. 3740 BaseRegOffsetBytes % 16 != 0) { 3741 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 3742 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, 3743 StackOffset::getFixed(BaseRegOffsetBytes), TII); 3744 BaseReg = ScratchReg; 3745 BaseRegOffsetBytes = 0; 3746 } 3747 3748 MachineInstr *LastI = nullptr; 3749 while (Size) { 3750 int64_t InstrSize = (Size > 16) ? 32 : 16; 3751 unsigned Opcode = 3752 InstrSize == 16 3753 ? (ZeroData ? AArch64::STZGi : AArch64::STGi) 3754 : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi); 3755 assert(BaseRegOffsetBytes % 16 == 0); 3756 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) 3757 .addReg(AArch64::SP) 3758 .addReg(BaseReg) 3759 .addImm(BaseRegOffsetBytes / 16) 3760 .setMemRefs(CombinedMemRefs); 3761 // A store to [BaseReg, #0] should go last for an opportunity to fold the 3762 // final SP adjustment in the epilogue. 3763 if (BaseRegOffsetBytes == 0) 3764 LastI = I; 3765 BaseRegOffsetBytes += InstrSize; 3766 Size -= InstrSize; 3767 } 3768 3769 if (LastI) 3770 MBB->splice(InsertI, MBB, LastI); 3771 } 3772 3773 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { 3774 const AArch64InstrInfo *TII = 3775 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 3776 3777 Register BaseReg = FrameRegUpdate 3778 ? FrameReg 3779 : MRI->createVirtualRegister(&AArch64::GPR64RegClass); 3780 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 3781 3782 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); 3783 3784 int64_t LoopSize = Size; 3785 // If the loop size is not a multiple of 32, split off one 16-byte store at 3786 // the end to fold BaseReg update into. 3787 if (FrameRegUpdate && *FrameRegUpdate) 3788 LoopSize -= LoopSize % 32; 3789 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, 3790 TII->get(ZeroData ? AArch64::STZGloop_wback 3791 : AArch64::STGloop_wback)) 3792 .addDef(SizeReg) 3793 .addDef(BaseReg) 3794 .addImm(LoopSize) 3795 .addReg(BaseReg) 3796 .setMemRefs(CombinedMemRefs); 3797 if (FrameRegUpdate) 3798 LoopI->setFlags(FrameRegUpdateFlags); 3799 3800 int64_t ExtraBaseRegUpdate = 3801 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0; 3802 if (LoopSize < Size) { 3803 assert(FrameRegUpdate); 3804 assert(Size - LoopSize == 16); 3805 // Tag 16 more bytes at BaseReg and update BaseReg. 3806 BuildMI(*MBB, InsertI, DL, 3807 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) 3808 .addDef(BaseReg) 3809 .addReg(BaseReg) 3810 .addReg(BaseReg) 3811 .addImm(1 + ExtraBaseRegUpdate / 16) 3812 .setMemRefs(CombinedMemRefs) 3813 .setMIFlags(FrameRegUpdateFlags); 3814 } else if (ExtraBaseRegUpdate) { 3815 // Update BaseReg. 3816 BuildMI( 3817 *MBB, InsertI, DL, 3818 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) 3819 .addDef(BaseReg) 3820 .addReg(BaseReg) 3821 .addImm(std::abs(ExtraBaseRegUpdate)) 3822 .addImm(0) 3823 .setMIFlags(FrameRegUpdateFlags); 3824 } 3825 } 3826 3827 // Check if *II is a register update that can be merged into STGloop that ends 3828 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the 3829 // end of the loop. 3830 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, 3831 int64_t Size, int64_t *TotalOffset) { 3832 MachineInstr &MI = *II; 3833 if ((MI.getOpcode() == AArch64::ADDXri || 3834 MI.getOpcode() == AArch64::SUBXri) && 3835 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { 3836 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); 3837 int64_t Offset = MI.getOperand(2).getImm() << Shift; 3838 if (MI.getOpcode() == AArch64::SUBXri) 3839 Offset = -Offset; 3840 int64_t AbsPostOffset = std::abs(Offset - Size); 3841 const int64_t kMaxOffset = 3842 0xFFF; // Max encoding for unshifted ADDXri / SUBXri 3843 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) { 3844 *TotalOffset = Offset; 3845 return true; 3846 } 3847 } 3848 return false; 3849 } 3850 3851 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE, 3852 SmallVectorImpl<MachineMemOperand *> &MemRefs) { 3853 MemRefs.clear(); 3854 for (auto &TS : TSE) { 3855 MachineInstr *MI = TS.MI; 3856 // An instruction without memory operands may access anything. Be 3857 // conservative and return an empty list. 3858 if (MI->memoperands_empty()) { 3859 MemRefs.clear(); 3860 return; 3861 } 3862 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); 3863 } 3864 } 3865 3866 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, 3867 const AArch64FrameLowering *TFI, 3868 bool TryMergeSPUpdate) { 3869 if (TagStores.empty()) 3870 return; 3871 TagStoreInstr &FirstTagStore = TagStores[0]; 3872 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; 3873 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; 3874 DL = TagStores[0].MI->getDebugLoc(); 3875 3876 Register Reg; 3877 FrameRegOffset = TFI->resolveFrameOffsetReference( 3878 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, 3879 /*PreferFP=*/false, /*ForSimm=*/true); 3880 FrameReg = Reg; 3881 FrameRegUpdate = std::nullopt; 3882 3883 mergeMemRefs(TagStores, CombinedMemRefs); 3884 3885 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n"; 3886 for (const auto &Instr 3887 : TagStores) { dbgs() << " " << *Instr.MI; }); 3888 3889 // Size threshold where a loop becomes shorter than a linear sequence of 3890 // tagging instructions. 3891 const int kSetTagLoopThreshold = 176; 3892 if (Size < kSetTagLoopThreshold) { 3893 if (TagStores.size() < 2) 3894 return; 3895 emitUnrolled(InsertI); 3896 } else { 3897 MachineInstr *UpdateInstr = nullptr; 3898 int64_t TotalOffset = 0; 3899 if (TryMergeSPUpdate) { 3900 // See if we can merge base register update into the STGloop. 3901 // This is done in AArch64LoadStoreOptimizer for "normal" stores, 3902 // but STGloop is way too unusual for that, and also it only 3903 // realistically happens in function epilogue. Also, STGloop is expanded 3904 // before that pass. 3905 if (InsertI != MBB->end() && 3906 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size, 3907 &TotalOffset)) { 3908 UpdateInstr = &*InsertI++; 3909 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " 3910 << *UpdateInstr); 3911 } 3912 } 3913 3914 if (!UpdateInstr && TagStores.size() < 2) 3915 return; 3916 3917 if (UpdateInstr) { 3918 FrameRegUpdate = TotalOffset; 3919 FrameRegUpdateFlags = UpdateInstr->getFlags(); 3920 } 3921 emitLoop(InsertI); 3922 if (UpdateInstr) 3923 UpdateInstr->eraseFromParent(); 3924 } 3925 3926 for (auto &TS : TagStores) 3927 TS.MI->eraseFromParent(); 3928 } 3929 3930 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, 3931 int64_t &Size, bool &ZeroData) { 3932 MachineFunction &MF = *MI.getParent()->getParent(); 3933 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3934 3935 unsigned Opcode = MI.getOpcode(); 3936 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi || 3937 Opcode == AArch64::STZ2Gi); 3938 3939 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { 3940 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) 3941 return false; 3942 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) 3943 return false; 3944 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); 3945 Size = MI.getOperand(2).getImm(); 3946 return true; 3947 } 3948 3949 if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi) 3950 Size = 16; 3951 else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi) 3952 Size = 32; 3953 else 3954 return false; 3955 3956 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) 3957 return false; 3958 3959 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 3960 16 * MI.getOperand(2).getImm(); 3961 return true; 3962 } 3963 3964 // Detect a run of memory tagging instructions for adjacent stack frame slots, 3965 // and replace them with a shorter instruction sequence: 3966 // * replace STG + STG with ST2G 3967 // * replace STGloop + STGloop with STGloop 3968 // This code needs to run when stack slot offsets are already known, but before 3969 // FrameIndex operands in STG instructions are eliminated. 3970 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, 3971 const AArch64FrameLowering *TFI, 3972 RegScavenger *RS) { 3973 bool FirstZeroData; 3974 int64_t Size, Offset; 3975 MachineInstr &MI = *II; 3976 MachineBasicBlock *MBB = MI.getParent(); 3977 MachineBasicBlock::iterator NextI = ++II; 3978 if (&MI == &MBB->instr_back()) 3979 return II; 3980 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) 3981 return II; 3982 3983 SmallVector<TagStoreInstr, 4> Instrs; 3984 Instrs.emplace_back(&MI, Offset, Size); 3985 3986 constexpr int kScanLimit = 10; 3987 int Count = 0; 3988 for (MachineBasicBlock::iterator E = MBB->end(); 3989 NextI != E && Count < kScanLimit; ++NextI) { 3990 MachineInstr &MI = *NextI; 3991 bool ZeroData; 3992 int64_t Size, Offset; 3993 // Collect instructions that update memory tags with a FrameIndex operand 3994 // and (when applicable) constant size, and whose output registers are dead 3995 // (the latter is almost always the case in practice). Since these 3996 // instructions effectively have no inputs or outputs, we are free to skip 3997 // any non-aliasing instructions in between without tracking used registers. 3998 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { 3999 if (ZeroData != FirstZeroData) 4000 break; 4001 Instrs.emplace_back(&MI, Offset, Size); 4002 continue; 4003 } 4004 4005 // Only count non-transient, non-tagging instructions toward the scan 4006 // limit. 4007 if (!MI.isTransient()) 4008 ++Count; 4009 4010 // Just in case, stop before the epilogue code starts. 4011 if (MI.getFlag(MachineInstr::FrameSetup) || 4012 MI.getFlag(MachineInstr::FrameDestroy)) 4013 break; 4014 4015 // Reject anything that may alias the collected instructions. 4016 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects()) 4017 break; 4018 } 4019 4020 // New code will be inserted after the last tagging instruction we've found. 4021 MachineBasicBlock::iterator InsertI = Instrs.back().MI; 4022 4023 // All the gathered stack tag instructions are merged and placed after 4024 // last tag store in the list. The check should be made if the nzcv 4025 // flag is live at the point where we are trying to insert. Otherwise 4026 // the nzcv flag might get clobbered if any stg loops are present. 4027 4028 // FIXME : This approach of bailing out from merge is conservative in 4029 // some ways like even if stg loops are not present after merge the 4030 // insert list, this liveness check is done (which is not needed). 4031 LivePhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().getRegisterInfo())); 4032 LiveRegs.addLiveOuts(*MBB); 4033 for (auto I = MBB->rbegin();; ++I) { 4034 MachineInstr &MI = *I; 4035 if (MI == InsertI) 4036 break; 4037 LiveRegs.stepBackward(*I); 4038 } 4039 InsertI++; 4040 if (LiveRegs.contains(AArch64::NZCV)) 4041 return InsertI; 4042 4043 llvm::stable_sort(Instrs, 4044 [](const TagStoreInstr &Left, const TagStoreInstr &Right) { 4045 return Left.Offset < Right.Offset; 4046 }); 4047 4048 // Make sure that we don't have any overlapping stores. 4049 int64_t CurOffset = Instrs[0].Offset; 4050 for (auto &Instr : Instrs) { 4051 if (CurOffset > Instr.Offset) 4052 return NextI; 4053 CurOffset = Instr.Offset + Instr.Size; 4054 } 4055 4056 // Find contiguous runs of tagged memory and emit shorter instruction 4057 // sequencies for them when possible. 4058 TagStoreEdit TSE(MBB, FirstZeroData); 4059 std::optional<int64_t> EndOffset; 4060 for (auto &Instr : Instrs) { 4061 if (EndOffset && *EndOffset != Instr.Offset) { 4062 // Found a gap. 4063 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false); 4064 TSE.clear(); 4065 } 4066 4067 TSE.addInstruction(Instr); 4068 EndOffset = Instr.Offset + Instr.Size; 4069 } 4070 4071 const MachineFunction *MF = MBB->getParent(); 4072 // Multiple FP/SP updates in a loop cannot be described by CFI instructions. 4073 TSE.emitCode( 4074 InsertI, TFI, /*TryMergeSPUpdate = */ 4075 !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF)); 4076 4077 return InsertI; 4078 } 4079 } // namespace 4080 4081 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( 4082 MachineFunction &MF, RegScavenger *RS = nullptr) const { 4083 if (StackTaggingMergeSetTag) 4084 for (auto &BB : MF) 4085 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) 4086 II = tryMergeAdjacentSTG(II, this, RS); 4087 } 4088 4089 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP 4090 /// before the update. This is easily retrieved as it is exactly the offset 4091 /// that is set in processFunctionBeforeFrameFinalized. 4092 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP( 4093 const MachineFunction &MF, int FI, Register &FrameReg, 4094 bool IgnoreSPUpdates) const { 4095 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4096 if (IgnoreSPUpdates) { 4097 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 4098 << MFI.getObjectOffset(FI) << "\n"); 4099 FrameReg = AArch64::SP; 4100 return StackOffset::getFixed(MFI.getObjectOffset(FI)); 4101 } 4102 4103 // Go to common code if we cannot provide sp + offset. 4104 if (MFI.hasVarSizedObjects() || 4105 MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() || 4106 MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF)) 4107 return getFrameIndexReference(MF, FI, FrameReg); 4108 4109 FrameReg = AArch64::SP; 4110 return getStackOffset(MF, MFI.getObjectOffset(FI)); 4111 } 4112 4113 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 4114 /// the parent's frame pointer 4115 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 4116 const MachineFunction &MF) const { 4117 return 0; 4118 } 4119 4120 /// Funclets only need to account for space for the callee saved registers, 4121 /// as the locals are accounted for in the parent's stack frame. 4122 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 4123 const MachineFunction &MF) const { 4124 // This is the size of the pushed CSRs. 4125 unsigned CSSize = 4126 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 4127 // This is the amount of stack a funclet needs to allocate. 4128 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 4129 getStackAlign()); 4130 } 4131 4132 namespace { 4133 struct FrameObject { 4134 bool IsValid = false; 4135 // Index of the object in MFI. 4136 int ObjectIndex = 0; 4137 // Group ID this object belongs to. 4138 int GroupIndex = -1; 4139 // This object should be placed first (closest to SP). 4140 bool ObjectFirst = false; 4141 // This object's group (which always contains the object with 4142 // ObjectFirst==true) should be placed first. 4143 bool GroupFirst = false; 4144 }; 4145 4146 class GroupBuilder { 4147 SmallVector<int, 8> CurrentMembers; 4148 int NextGroupIndex = 0; 4149 std::vector<FrameObject> &Objects; 4150 4151 public: 4152 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {} 4153 void AddMember(int Index) { CurrentMembers.push_back(Index); } 4154 void EndCurrentGroup() { 4155 if (CurrentMembers.size() > 1) { 4156 // Create a new group with the current member list. This might remove them 4157 // from their pre-existing groups. That's OK, dealing with overlapping 4158 // groups is too hard and unlikely to make a difference. 4159 LLVM_DEBUG(dbgs() << "group:"); 4160 for (int Index : CurrentMembers) { 4161 Objects[Index].GroupIndex = NextGroupIndex; 4162 LLVM_DEBUG(dbgs() << " " << Index); 4163 } 4164 LLVM_DEBUG(dbgs() << "\n"); 4165 NextGroupIndex++; 4166 } 4167 CurrentMembers.clear(); 4168 } 4169 }; 4170 4171 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) { 4172 // Objects at a lower index are closer to FP; objects at a higher index are 4173 // closer to SP. 4174 // 4175 // For consistency in our comparison, all invalid objects are placed 4176 // at the end. This also allows us to stop walking when we hit the 4177 // first invalid item after it's all sorted. 4178 // 4179 // The "first" object goes first (closest to SP), followed by the members of 4180 // the "first" group. 4181 // 4182 // The rest are sorted by the group index to keep the groups together. 4183 // Higher numbered groups are more likely to be around longer (i.e. untagged 4184 // in the function epilogue and not at some earlier point). Place them closer 4185 // to SP. 4186 // 4187 // If all else equal, sort by the object index to keep the objects in the 4188 // original order. 4189 return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex, 4190 A.ObjectIndex) < 4191 std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex, 4192 B.ObjectIndex); 4193 } 4194 } // namespace 4195 4196 void AArch64FrameLowering::orderFrameObjects( 4197 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 4198 if (!OrderFrameObjects || ObjectsToAllocate.empty()) 4199 return; 4200 4201 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4202 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd()); 4203 for (auto &Obj : ObjectsToAllocate) { 4204 FrameObjects[Obj].IsValid = true; 4205 FrameObjects[Obj].ObjectIndex = Obj; 4206 } 4207 4208 // Identify stack slots that are tagged at the same time. 4209 GroupBuilder GB(FrameObjects); 4210 for (auto &MBB : MF) { 4211 for (auto &MI : MBB) { 4212 if (MI.isDebugInstr()) 4213 continue; 4214 int OpIndex; 4215 switch (MI.getOpcode()) { 4216 case AArch64::STGloop: 4217 case AArch64::STZGloop: 4218 OpIndex = 3; 4219 break; 4220 case AArch64::STGi: 4221 case AArch64::STZGi: 4222 case AArch64::ST2Gi: 4223 case AArch64::STZ2Gi: 4224 OpIndex = 1; 4225 break; 4226 default: 4227 OpIndex = -1; 4228 } 4229 4230 int TaggedFI = -1; 4231 if (OpIndex >= 0) { 4232 const MachineOperand &MO = MI.getOperand(OpIndex); 4233 if (MO.isFI()) { 4234 int FI = MO.getIndex(); 4235 if (FI >= 0 && FI < MFI.getObjectIndexEnd() && 4236 FrameObjects[FI].IsValid) 4237 TaggedFI = FI; 4238 } 4239 } 4240 4241 // If this is a stack tagging instruction for a slot that is not part of a 4242 // group yet, either start a new group or add it to the current one. 4243 if (TaggedFI >= 0) 4244 GB.AddMember(TaggedFI); 4245 else 4246 GB.EndCurrentGroup(); 4247 } 4248 // Groups should never span multiple basic blocks. 4249 GB.EndCurrentGroup(); 4250 } 4251 4252 // If the function's tagged base pointer is pinned to a stack slot, we want to 4253 // put that slot first when possible. This will likely place it at SP + 0, 4254 // and save one instruction when generating the base pointer because IRG does 4255 // not allow an immediate offset. 4256 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 4257 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex(); 4258 if (TBPI) { 4259 FrameObjects[*TBPI].ObjectFirst = true; 4260 FrameObjects[*TBPI].GroupFirst = true; 4261 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex; 4262 if (FirstGroupIndex >= 0) 4263 for (FrameObject &Object : FrameObjects) 4264 if (Object.GroupIndex == FirstGroupIndex) 4265 Object.GroupFirst = true; 4266 } 4267 4268 llvm::stable_sort(FrameObjects, FrameObjectCompare); 4269 4270 int i = 0; 4271 for (auto &Obj : FrameObjects) { 4272 // All invalid items are sorted at the end, so it's safe to stop. 4273 if (!Obj.IsValid) 4274 break; 4275 ObjectsToAllocate[i++] = Obj.ObjectIndex; 4276 } 4277 4278 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj 4279 : FrameObjects) { 4280 if (!Obj.IsValid) 4281 break; 4282 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex; 4283 if (Obj.ObjectFirst) 4284 dbgs() << ", first"; 4285 if (Obj.GroupFirst) 4286 dbgs() << ", group-first"; 4287 dbgs() << "\n"; 4288 }); 4289 } 4290 4291 /// Emit a loop to decrement SP until it is equal to TargetReg, with probes at 4292 /// least every ProbeSize bytes. Returns an iterator of the first instruction 4293 /// after the loop. The difference between SP and TargetReg must be an exact 4294 /// multiple of ProbeSize. 4295 MachineBasicBlock::iterator 4296 AArch64FrameLowering::inlineStackProbeLoopExactMultiple( 4297 MachineBasicBlock::iterator MBBI, int64_t ProbeSize, 4298 Register TargetReg) const { 4299 MachineBasicBlock &MBB = *MBBI->getParent(); 4300 MachineFunction &MF = *MBB.getParent(); 4301 const AArch64InstrInfo *TII = 4302 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 4303 DebugLoc DL = MBB.findDebugLoc(MBBI); 4304 4305 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 4306 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 4307 MF.insert(MBBInsertPoint, LoopMBB); 4308 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 4309 MF.insert(MBBInsertPoint, ExitMBB); 4310 4311 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable 4312 // in SUB). 4313 emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP, 4314 StackOffset::getFixed(-ProbeSize), TII, 4315 MachineInstr::FrameSetup); 4316 // STR XZR, [SP] 4317 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui)) 4318 .addReg(AArch64::XZR) 4319 .addReg(AArch64::SP) 4320 .addImm(0) 4321 .setMIFlags(MachineInstr::FrameSetup); 4322 // CMP SP, TargetReg 4323 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64), 4324 AArch64::XZR) 4325 .addReg(AArch64::SP) 4326 .addReg(TargetReg) 4327 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0)) 4328 .setMIFlags(MachineInstr::FrameSetup); 4329 // B.CC Loop 4330 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc)) 4331 .addImm(AArch64CC::NE) 4332 .addMBB(LoopMBB) 4333 .setMIFlags(MachineInstr::FrameSetup); 4334 4335 LoopMBB->addSuccessor(ExitMBB); 4336 LoopMBB->addSuccessor(LoopMBB); 4337 // Synthesize the exit MBB. 4338 ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end()); 4339 ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 4340 MBB.addSuccessor(LoopMBB); 4341 // Update liveins. 4342 bool anyChange = false; 4343 do { 4344 anyChange = recomputeLiveIns(*ExitMBB) || recomputeLiveIns(*LoopMBB); 4345 } while (anyChange); 4346 4347 return ExitMBB->begin(); 4348 } 4349 4350 void AArch64FrameLowering::inlineStackProbeFixed( 4351 MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize, 4352 StackOffset CFAOffset) const { 4353 MachineBasicBlock *MBB = MBBI->getParent(); 4354 MachineFunction &MF = *MBB->getParent(); 4355 const AArch64InstrInfo *TII = 4356 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 4357 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 4358 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 4359 bool HasFP = hasFP(MF); 4360 4361 DebugLoc DL; 4362 int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize(); 4363 int64_t NumBlocks = FrameSize / ProbeSize; 4364 int64_t ResidualSize = FrameSize % ProbeSize; 4365 4366 LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, " 4367 << NumBlocks << " blocks of " << ProbeSize 4368 << " bytes, plus " << ResidualSize << " bytes\n"); 4369 4370 // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or 4371 // ordinary loop. 4372 if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) { 4373 for (int i = 0; i < NumBlocks; ++i) { 4374 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not 4375 // encodable in a SUB). 4376 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP, 4377 StackOffset::getFixed(-ProbeSize), TII, 4378 MachineInstr::FrameSetup, false, false, nullptr, 4379 EmitAsyncCFI && !HasFP, CFAOffset); 4380 CFAOffset += StackOffset::getFixed(ProbeSize); 4381 // STR XZR, [SP] 4382 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui)) 4383 .addReg(AArch64::XZR) 4384 .addReg(AArch64::SP) 4385 .addImm(0) 4386 .setMIFlags(MachineInstr::FrameSetup); 4387 } 4388 } else if (NumBlocks != 0) { 4389 // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not 4390 // encodable in ADD). ScrathReg may temporarily become the CFA register. 4391 emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP, 4392 StackOffset::getFixed(-ProbeSize * NumBlocks), TII, 4393 MachineInstr::FrameSetup, false, false, nullptr, 4394 EmitAsyncCFI && !HasFP, CFAOffset); 4395 CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks); 4396 MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg); 4397 MBB = MBBI->getParent(); 4398 if (EmitAsyncCFI && !HasFP) { 4399 // Set the CFA register back to SP. 4400 const AArch64RegisterInfo &RegInfo = 4401 *MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 4402 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 4403 unsigned CFIIndex = 4404 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 4405 BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 4406 .addCFIIndex(CFIIndex) 4407 .setMIFlags(MachineInstr::FrameSetup); 4408 } 4409 } 4410 4411 if (ResidualSize != 0) { 4412 // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable 4413 // in SUB). 4414 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP, 4415 StackOffset::getFixed(-ResidualSize), TII, 4416 MachineInstr::FrameSetup, false, false, nullptr, 4417 EmitAsyncCFI && !HasFP, CFAOffset); 4418 if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) { 4419 // STR XZR, [SP] 4420 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui)) 4421 .addReg(AArch64::XZR) 4422 .addReg(AArch64::SP) 4423 .addImm(0) 4424 .setMIFlags(MachineInstr::FrameSetup); 4425 } 4426 } 4427 } 4428 4429 void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF, 4430 MachineBasicBlock &MBB) const { 4431 // Get the instructions that need to be replaced. We emit at most two of 4432 // these. Remember them in order to avoid complications coming from the need 4433 // to traverse the block while potentially creating more blocks. 4434 SmallVector<MachineInstr *, 4> ToReplace; 4435 for (MachineInstr &MI : MBB) 4436 if (MI.getOpcode() == AArch64::PROBED_STACKALLOC || 4437 MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR) 4438 ToReplace.push_back(&MI); 4439 4440 for (MachineInstr *MI : ToReplace) { 4441 if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) { 4442 Register ScratchReg = MI->getOperand(0).getReg(); 4443 int64_t FrameSize = MI->getOperand(1).getImm(); 4444 StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(), 4445 MI->getOperand(3).getImm()); 4446 inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize, 4447 CFAOffset); 4448 } else { 4449 assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR && 4450 "Stack probe pseudo-instruction expected"); 4451 const AArch64InstrInfo *TII = 4452 MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo(); 4453 Register TargetReg = MI->getOperand(0).getReg(); 4454 (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true); 4455 } 4456 MI->eraseFromParent(); 4457 } 4458 } 4459