xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp (revision 7ebc7d1ab76b9d06be9400d6c9fc74fcc43603a1)
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // |                                   | Higher address
22 // |-----------------------------------|
23 // |                                   |
24 // | arguments passed on the stack     |
25 // |                                   |
26 // |-----------------------------------| <- sp
27 // |                                   | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // |                                   | Higher address
37 // |-----------------------------------|
38 // |                                   |
39 // | arguments passed on the stack     |
40 // |                                   |
41 // |-----------------------------------|
42 // |                                   |
43 // | (Win64 only) varargs from reg     |
44 // |                                   |
45 // |-----------------------------------|
46 // |                                   |
47 // | callee-saved gpr registers        | <--.
48 // |                                   |    | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -|    | callee saves are swapped,
50 // | prev_lr                           |    | (frame record first)
51 // | prev_fp                           | <--'
52 // | async context if needed           |
53 // | (a.k.a. "frame record")           |
54 // |-----------------------------------| <- fp(=x29)
55 // |   <hazard padding>                |
56 // |-----------------------------------|
57 // |                                   |
58 // | callee-saved fp/simd/SVE regs     |
59 // |                                   |
60 // |-----------------------------------|
61 // |                                   |
62 // |        SVE stack objects          |
63 // |                                   |
64 // |-----------------------------------|
65 // |.empty.space.to.make.part.below....|
66 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
67 // |.the.standard.16-byte.alignment....|  compile time; if present)
68 // |-----------------------------------|
69 // | local variables of fixed size     |
70 // | including spill slots             |
71 // |   <FPR>                           |
72 // |   <hazard padding>                |
73 // |   <GPR>                           |
74 // |-----------------------------------| <- bp(not defined by ABI,
75 // |.variable-sized.local.variables....|       LLVM chooses X19)
76 // |.(VLAs)............................| (size of this area is unknown at
77 // |...................................|  compile time)
78 // |-----------------------------------| <- sp
79 // |                                   | Lower address
80 //
81 //
82 // To access the data in a frame, at-compile time, a constant offset must be
83 // computable from one of the pointers (fp, bp, sp) to access it. The size
84 // of the areas with a dotted background cannot be computed at compile-time
85 // if they are present, making it required to have all three of fp, bp and
86 // sp to be set up to be able to access all contents in the frame areas,
87 // assuming all of the frame areas are non-empty.
88 //
89 // For most functions, some of the frame areas are empty. For those functions,
90 // it may not be necessary to set up fp or bp:
91 // * A base pointer is definitely needed when there are both VLAs and local
92 //   variables with more-than-default alignment requirements.
93 // * A frame pointer is definitely needed when there are local variables with
94 //   more-than-default alignment requirements.
95 //
96 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
97 // callee-saved area, since the unwind encoding does not allow for encoding
98 // this dynamically and existing tools depend on this layout. For other
99 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
100 // area to allow SVE stack objects (allocated directly below the callee-saves,
101 // if available) to be accessed directly from the framepointer.
102 // The SVE spill/fill instructions have VL-scaled addressing modes such
103 // as:
104 //    ldr z8, [fp, #-7 mul vl]
105 // For SVE the size of the vector length (VL) is not known at compile-time, so
106 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
107 // layout, we don't need to add an unscaled offset to the framepointer before
108 // accessing the SVE object in the frame.
109 //
110 // In some cases when a base pointer is not strictly needed, it is generated
111 // anyway when offsets from the frame pointer to access local variables become
112 // so large that the offset can't be encoded in the immediate fields of loads
113 // or stores.
114 //
115 // Outgoing function arguments must be at the bottom of the stack frame when
116 // calling another function. If we do not have variable-sized stack objects, we
117 // can allocate a "reserved call frame" area at the bottom of the local
118 // variable area, large enough for all outgoing calls. If we do have VLAs, then
119 // the stack pointer must be decremented and incremented around each call to
120 // make space for the arguments below the VLAs.
121 //
122 // FIXME: also explain the redzone concept.
123 //
124 // About stack hazards: Under some SME contexts, a coprocessor with its own
125 // separate cache can used for FP operations. This can create hazards if the CPU
126 // and the SME unit try to access the same area of memory, including if the
127 // access is to an area of the stack. To try to alleviate this we attempt to
128 // introduce extra padding into the stack frame between FP and GPR accesses,
129 // controlled by the StackHazardSize option. Without changing the layout of the
130 // stack frame in the diagram above, a stack object of size StackHazardSize is
131 // added between GPR and FPR CSRs. Another is added to the stack objects
132 // section, and stack objects are sorted so that FPR > Hazard padding slot >
133 // GPRs (where possible). Unfortunately some things are not handled well (VLA
134 // area, arguments on the stack, object with both GPR and FPR accesses), but if
135 // those are controlled by the user then the entire stack frame becomes GPR at
136 // the start/end with FPR in the middle, surrounded by Hazard padding.
137 //
138 // An example of the prologue:
139 //
140 //     .globl __foo
141 //     .align 2
142 //  __foo:
143 // Ltmp0:
144 //     .cfi_startproc
145 //     .cfi_personality 155, ___gxx_personality_v0
146 // Leh_func_begin:
147 //     .cfi_lsda 16, Lexception33
148 //
149 //     stp  xa,bx, [sp, -#offset]!
150 //     ...
151 //     stp  x28, x27, [sp, #offset-32]
152 //     stp  fp, lr, [sp, #offset-16]
153 //     add  fp, sp, #offset - 16
154 //     sub  sp, sp, #1360
155 //
156 // The Stack:
157 //       +-------------------------------------------+
158 // 10000 | ........ | ........ | ........ | ........ |
159 // 10004 | ........ | ........ | ........ | ........ |
160 //       +-------------------------------------------+
161 // 10008 | ........ | ........ | ........ | ........ |
162 // 1000c | ........ | ........ | ........ | ........ |
163 //       +===========================================+
164 // 10010 |                X28 Register               |
165 // 10014 |                X28 Register               |
166 //       +-------------------------------------------+
167 // 10018 |                X27 Register               |
168 // 1001c |                X27 Register               |
169 //       +===========================================+
170 // 10020 |                Frame Pointer              |
171 // 10024 |                Frame Pointer              |
172 //       +-------------------------------------------+
173 // 10028 |                Link Register              |
174 // 1002c |                Link Register              |
175 //       +===========================================+
176 // 10030 | ........ | ........ | ........ | ........ |
177 // 10034 | ........ | ........ | ........ | ........ |
178 //       +-------------------------------------------+
179 // 10038 | ........ | ........ | ........ | ........ |
180 // 1003c | ........ | ........ | ........ | ........ |
181 //       +-------------------------------------------+
182 //
183 //     [sp] = 10030        ::    >>initial value<<
184 //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
185 //     fp = sp == 10020    ::  mov fp, sp
186 //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
187 //     sp == 10010         ::    >>final value<<
188 //
189 // The frame pointer (w29) points to address 10020. If we use an offset of
190 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
191 // for w27, and -32 for w28:
192 //
193 //  Ltmp1:
194 //     .cfi_def_cfa w29, 16
195 //  Ltmp2:
196 //     .cfi_offset w30, -8
197 //  Ltmp3:
198 //     .cfi_offset w29, -16
199 //  Ltmp4:
200 //     .cfi_offset w27, -24
201 //  Ltmp5:
202 //     .cfi_offset w28, -32
203 //
204 //===----------------------------------------------------------------------===//
205 
206 #include "AArch64FrameLowering.h"
207 #include "AArch64InstrInfo.h"
208 #include "AArch64MachineFunctionInfo.h"
209 #include "AArch64RegisterInfo.h"
210 #include "AArch64Subtarget.h"
211 #include "AArch64TargetMachine.h"
212 #include "MCTargetDesc/AArch64AddressingModes.h"
213 #include "MCTargetDesc/AArch64MCTargetDesc.h"
214 #include "llvm/ADT/ScopeExit.h"
215 #include "llvm/ADT/SmallVector.h"
216 #include "llvm/ADT/Statistic.h"
217 #include "llvm/Analysis/ValueTracking.h"
218 #include "llvm/CodeGen/LivePhysRegs.h"
219 #include "llvm/CodeGen/MachineBasicBlock.h"
220 #include "llvm/CodeGen/MachineFrameInfo.h"
221 #include "llvm/CodeGen/MachineFunction.h"
222 #include "llvm/CodeGen/MachineInstr.h"
223 #include "llvm/CodeGen/MachineInstrBuilder.h"
224 #include "llvm/CodeGen/MachineMemOperand.h"
225 #include "llvm/CodeGen/MachineModuleInfo.h"
226 #include "llvm/CodeGen/MachineOperand.h"
227 #include "llvm/CodeGen/MachineRegisterInfo.h"
228 #include "llvm/CodeGen/RegisterScavenging.h"
229 #include "llvm/CodeGen/TargetInstrInfo.h"
230 #include "llvm/CodeGen/TargetRegisterInfo.h"
231 #include "llvm/CodeGen/TargetSubtargetInfo.h"
232 #include "llvm/CodeGen/WinEHFuncInfo.h"
233 #include "llvm/IR/Attributes.h"
234 #include "llvm/IR/CallingConv.h"
235 #include "llvm/IR/DataLayout.h"
236 #include "llvm/IR/DebugLoc.h"
237 #include "llvm/IR/Function.h"
238 #include "llvm/MC/MCAsmInfo.h"
239 #include "llvm/MC/MCDwarf.h"
240 #include "llvm/Support/CommandLine.h"
241 #include "llvm/Support/Debug.h"
242 #include "llvm/Support/ErrorHandling.h"
243 #include "llvm/Support/FormatVariadic.h"
244 #include "llvm/Support/MathExtras.h"
245 #include "llvm/Support/raw_ostream.h"
246 #include "llvm/Target/TargetMachine.h"
247 #include "llvm/Target/TargetOptions.h"
248 #include <cassert>
249 #include <cstdint>
250 #include <iterator>
251 #include <optional>
252 #include <vector>
253 
254 using namespace llvm;
255 
256 #define DEBUG_TYPE "frame-info"
257 
258 static cl::opt<bool> EnableRedZone("aarch64-redzone",
259                                    cl::desc("enable use of redzone on AArch64"),
260                                    cl::init(false), cl::Hidden);
261 
262 static cl::opt<bool> StackTaggingMergeSetTag(
263     "stack-tagging-merge-settag",
264     cl::desc("merge settag instruction in function epilog"), cl::init(true),
265     cl::Hidden);
266 
267 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
268                                        cl::desc("sort stack allocations"),
269                                        cl::init(true), cl::Hidden);
270 
271 cl::opt<bool> EnableHomogeneousPrologEpilog(
272     "homogeneous-prolog-epilog", cl::Hidden,
273     cl::desc("Emit homogeneous prologue and epilogue for the size "
274              "optimization (default = off)"));
275 
276 // Stack hazard padding size. 0 = disabled.
277 static cl::opt<unsigned> StackHazardSize("aarch64-stack-hazard-size",
278                                          cl::init(0), cl::Hidden);
279 // Stack hazard size for analysis remarks. StackHazardSize takes precedence.
280 static cl::opt<unsigned>
281     StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0),
282                           cl::Hidden);
283 // Whether to insert padding into non-streaming functions (for testing).
284 static cl::opt<bool>
285     StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming",
286                               cl::init(false), cl::Hidden);
287 
288 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
289 
290 /// Returns how much of the incoming argument stack area (in bytes) we should
291 /// clean up in an epilogue. For the C calling convention this will be 0, for
292 /// guaranteed tail call conventions it can be positive (a normal return or a
293 /// tail call to a function that uses less stack space for arguments) or
294 /// negative (for a tail call to a function that needs more stack space than us
295 /// for arguments).
296 static int64_t getArgumentStackToRestore(MachineFunction &MF,
297                                          MachineBasicBlock &MBB) {
298   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
299   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
300   bool IsTailCallReturn = (MBB.end() != MBBI)
301                               ? AArch64InstrInfo::isTailCallReturnInst(*MBBI)
302                               : false;
303 
304   int64_t ArgumentPopSize = 0;
305   if (IsTailCallReturn) {
306     MachineOperand &StackAdjust = MBBI->getOperand(1);
307 
308     // For a tail-call in a callee-pops-arguments environment, some or all of
309     // the stack may actually be in use for the call's arguments, this is
310     // calculated during LowerCall and consumed here...
311     ArgumentPopSize = StackAdjust.getImm();
312   } else {
313     // ... otherwise the amount to pop is *all* of the argument space,
314     // conveniently stored in the MachineFunctionInfo by
315     // LowerFormalArguments. This will, of course, be zero for the C calling
316     // convention.
317     ArgumentPopSize = AFI->getArgumentStackToRestore();
318   }
319 
320   return ArgumentPopSize;
321 }
322 
323 static bool produceCompactUnwindFrame(MachineFunction &MF);
324 static bool needsWinCFI(const MachineFunction &MF);
325 static StackOffset getSVEStackSize(const MachineFunction &MF);
326 static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB);
327 
328 /// Returns true if a homogeneous prolog or epilog code can be emitted
329 /// for the size optimization. If possible, a frame helper call is injected.
330 /// When Exit block is given, this check is for epilog.
331 bool AArch64FrameLowering::homogeneousPrologEpilog(
332     MachineFunction &MF, MachineBasicBlock *Exit) const {
333   if (!MF.getFunction().hasMinSize())
334     return false;
335   if (!EnableHomogeneousPrologEpilog)
336     return false;
337   if (EnableRedZone)
338     return false;
339 
340   // TODO: Window is supported yet.
341   if (needsWinCFI(MF))
342     return false;
343   // TODO: SVE is not supported yet.
344   if (getSVEStackSize(MF))
345     return false;
346 
347   // Bail on stack adjustment needed on return for simplicity.
348   const MachineFrameInfo &MFI = MF.getFrameInfo();
349   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
350   if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
351     return false;
352   if (Exit && getArgumentStackToRestore(MF, *Exit))
353     return false;
354 
355   auto *AFI = MF.getInfo<AArch64FunctionInfo>();
356   if (AFI->hasSwiftAsyncContext() || AFI->hasStreamingModeChanges())
357     return false;
358 
359   // If there are an odd number of GPRs before LR and FP in the CSRs list,
360   // they will not be paired into one RegPairInfo, which is incompatible with
361   // the assumption made by the homogeneous prolog epilog pass.
362   const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
363   unsigned NumGPRs = 0;
364   for (unsigned I = 0; CSRegs[I]; ++I) {
365     Register Reg = CSRegs[I];
366     if (Reg == AArch64::LR) {
367       assert(CSRegs[I + 1] == AArch64::FP);
368       if (NumGPRs % 2 != 0)
369         return false;
370       break;
371     }
372     if (AArch64::GPR64RegClass.contains(Reg))
373       ++NumGPRs;
374   }
375 
376   return true;
377 }
378 
379 /// Returns true if CSRs should be paired.
380 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
381   return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
382 }
383 
384 /// This is the biggest offset to the stack pointer we can encode in aarch64
385 /// instructions (without using a separate calculation and a temp register).
386 /// Note that the exception here are vector stores/loads which cannot encode any
387 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
388 static const unsigned DefaultSafeSPDisplacement = 255;
389 
390 /// Look at each instruction that references stack frames and return the stack
391 /// size limit beyond which some of these instructions will require a scratch
392 /// register during their expansion later.
393 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
394   // FIXME: For now, just conservatively guestimate based on unscaled indexing
395   // range. We'll end up allocating an unnecessary spill slot a lot, but
396   // realistically that's not a big deal at this stage of the game.
397   for (MachineBasicBlock &MBB : MF) {
398     for (MachineInstr &MI : MBB) {
399       if (MI.isDebugInstr() || MI.isPseudo() ||
400           MI.getOpcode() == AArch64::ADDXri ||
401           MI.getOpcode() == AArch64::ADDSXri)
402         continue;
403 
404       for (const MachineOperand &MO : MI.operands()) {
405         if (!MO.isFI())
406           continue;
407 
408         StackOffset Offset;
409         if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
410             AArch64FrameOffsetCannotUpdate)
411           return 0;
412       }
413     }
414   }
415   return DefaultSafeSPDisplacement;
416 }
417 
418 TargetStackID::Value
419 AArch64FrameLowering::getStackIDForScalableVectors() const {
420   return TargetStackID::ScalableVector;
421 }
422 
423 /// Returns the size of the fixed object area (allocated next to sp on entry)
424 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
425 static unsigned getFixedObjectSize(const MachineFunction &MF,
426                                    const AArch64FunctionInfo *AFI, bool IsWin64,
427                                    bool IsFunclet) {
428   if (!IsWin64 || IsFunclet) {
429     return AFI->getTailCallReservedStack();
430   } else {
431     if (AFI->getTailCallReservedStack() != 0 &&
432         !MF.getFunction().getAttributes().hasAttrSomewhere(
433             Attribute::SwiftAsync))
434       report_fatal_error("cannot generate ABI-changing tail call for Win64");
435     // Var args are stored here in the primary function.
436     const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
437     // To support EH funclets we allocate an UnwindHelp object
438     const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
439     return AFI->getTailCallReservedStack() +
440            alignTo(VarArgsArea + UnwindHelpObject, 16);
441   }
442 }
443 
444 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
445 static StackOffset getSVEStackSize(const MachineFunction &MF) {
446   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
447   return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
448 }
449 
450 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
451   if (!EnableRedZone)
452     return false;
453 
454   // Don't use the red zone if the function explicitly asks us not to.
455   // This is typically used for kernel code.
456   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
457   const unsigned RedZoneSize =
458       Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
459   if (!RedZoneSize)
460     return false;
461 
462   const MachineFrameInfo &MFI = MF.getFrameInfo();
463   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
464   uint64_t NumBytes = AFI->getLocalStackSize();
465 
466   // If neither NEON or SVE are available, a COPY from one Q-reg to
467   // another requires a spill -> reload sequence. We can do that
468   // using a pre-decrementing store/post-decrementing load, but
469   // if we do so, we can't use the Red Zone.
470   bool LowerQRegCopyThroughMem = Subtarget.hasFPARMv8() &&
471                                  !Subtarget.isNeonAvailable() &&
472                                  !Subtarget.hasSVE();
473 
474   return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
475            getSVEStackSize(MF) || LowerQRegCopyThroughMem);
476 }
477 
478 /// hasFP - Return true if the specified function should have a dedicated frame
479 /// pointer register.
480 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
481   const MachineFrameInfo &MFI = MF.getFrameInfo();
482   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
483 
484   // Win64 EH requires a frame pointer if funclets are present, as the locals
485   // are accessed off the frame pointer in both the parent function and the
486   // funclets.
487   if (MF.hasEHFunclets())
488     return true;
489   // Retain behavior of always omitting the FP for leaf functions when possible.
490   if (MF.getTarget().Options.DisableFramePointerElim(MF))
491     return true;
492   if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
493       MFI.hasStackMap() || MFI.hasPatchPoint() ||
494       RegInfo->hasStackRealignment(MF))
495     return true;
496   // With large callframes around we may need to use FP to access the scavenging
497   // emergency spillslot.
498   //
499   // Unfortunately some calls to hasFP() like machine verifier ->
500   // getReservedReg() -> hasFP in the middle of global isel are too early
501   // to know the max call frame size. Hopefully conservatively returning "true"
502   // in those cases is fine.
503   // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
504   if (!MFI.isMaxCallFrameSizeComputed() ||
505       MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
506     return true;
507 
508   return false;
509 }
510 
511 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
512 /// not required, we reserve argument space for call sites in the function
513 /// immediately on entry to the current function.  This eliminates the need for
514 /// add/sub sp brackets around call sites.  Returns true if the call frame is
515 /// included as part of the stack frame.
516 bool AArch64FrameLowering::hasReservedCallFrame(
517     const MachineFunction &MF) const {
518   // The stack probing code for the dynamically allocated outgoing arguments
519   // area assumes that the stack is probed at the top - either by the prologue
520   // code, which issues a probe if `hasVarSizedObjects` return true, or by the
521   // most recent variable-sized object allocation. Changing the condition here
522   // may need to be followed up by changes to the probe issuing logic.
523   return !MF.getFrameInfo().hasVarSizedObjects();
524 }
525 
526 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
527     MachineFunction &MF, MachineBasicBlock &MBB,
528     MachineBasicBlock::iterator I) const {
529   const AArch64InstrInfo *TII =
530       static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
531   const AArch64TargetLowering *TLI =
532       MF.getSubtarget<AArch64Subtarget>().getTargetLowering();
533   [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo();
534   DebugLoc DL = I->getDebugLoc();
535   unsigned Opc = I->getOpcode();
536   bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
537   uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
538 
539   if (!hasReservedCallFrame(MF)) {
540     int64_t Amount = I->getOperand(0).getImm();
541     Amount = alignTo(Amount, getStackAlign());
542     if (!IsDestroy)
543       Amount = -Amount;
544 
545     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
546     // doesn't have to pop anything), then the first operand will be zero too so
547     // this adjustment is a no-op.
548     if (CalleePopAmount == 0) {
549       // FIXME: in-function stack adjustment for calls is limited to 24-bits
550       // because there's no guaranteed temporary register available.
551       //
552       // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
553       // 1) For offset <= 12-bit, we use LSL #0
554       // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
555       // LSL #0, and the other uses LSL #12.
556       //
557       // Most call frames will be allocated at the start of a function so
558       // this is OK, but it is a limitation that needs dealing with.
559       assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
560 
561       if (TLI->hasInlineStackProbe(MF) &&
562           -Amount >= AArch64::StackProbeMaxUnprobedStack) {
563         // When stack probing is enabled, the decrement of SP may need to be
564         // probed. We only need to do this if the call site needs 1024 bytes of
565         // space or more, because a region smaller than that is allowed to be
566         // unprobed at an ABI boundary. We rely on the fact that SP has been
567         // probed exactly at this point, either by the prologue or most recent
568         // dynamic allocation.
569         assert(MFI.hasVarSizedObjects() &&
570                "non-reserved call frame without var sized objects?");
571         Register ScratchReg =
572             MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
573         inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0));
574       } else {
575         emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
576                         StackOffset::getFixed(Amount), TII);
577       }
578     }
579   } else if (CalleePopAmount != 0) {
580     // If the calling convention demands that the callee pops arguments from the
581     // stack, we want to add it back if we have a reserved call frame.
582     assert(CalleePopAmount < 0xffffff && "call frame too large");
583     emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
584                     StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
585   }
586   return MBB.erase(I);
587 }
588 
589 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
590     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
591   MachineFunction &MF = *MBB.getParent();
592   MachineFrameInfo &MFI = MF.getFrameInfo();
593   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
594   SMEAttrs Attrs(MF.getFunction());
595   bool LocallyStreaming =
596       Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface();
597 
598   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
599   if (CSI.empty())
600     return;
601 
602   const TargetSubtargetInfo &STI = MF.getSubtarget();
603   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
604   const TargetInstrInfo &TII = *STI.getInstrInfo();
605   DebugLoc DL = MBB.findDebugLoc(MBBI);
606 
607   for (const auto &Info : CSI) {
608     unsigned FrameIdx = Info.getFrameIdx();
609     if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector)
610       continue;
611 
612     assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
613     int64_t DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
614     int64_t Offset = MFI.getObjectOffset(FrameIdx) - getOffsetOfLocalArea();
615 
616     // The location of VG will be emitted before each streaming-mode change in
617     // the function. Only locally-streaming functions require emitting the
618     // non-streaming VG location here.
619     if ((LocallyStreaming && FrameIdx == AFI->getStreamingVGIdx()) ||
620         (!LocallyStreaming &&
621          DwarfReg == TRI.getDwarfRegNum(AArch64::VG, true)))
622       continue;
623 
624     unsigned CFIIndex = MF.addFrameInst(
625         MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
626     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
627         .addCFIIndex(CFIIndex)
628         .setMIFlags(MachineInstr::FrameSetup);
629   }
630 }
631 
632 void AArch64FrameLowering::emitCalleeSavedSVELocations(
633     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
634   MachineFunction &MF = *MBB.getParent();
635   MachineFrameInfo &MFI = MF.getFrameInfo();
636 
637   // Add callee saved registers to move list.
638   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
639   if (CSI.empty())
640     return;
641 
642   const TargetSubtargetInfo &STI = MF.getSubtarget();
643   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
644   const TargetInstrInfo &TII = *STI.getInstrInfo();
645   DebugLoc DL = MBB.findDebugLoc(MBBI);
646   AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
647 
648   for (const auto &Info : CSI) {
649     if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
650       continue;
651 
652     // Not all unwinders may know about SVE registers, so assume the lowest
653     // common demoninator.
654     assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
655     unsigned Reg = Info.getReg();
656     if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
657       continue;
658 
659     StackOffset Offset =
660         StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
661         StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
662 
663     unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
664     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
665         .addCFIIndex(CFIIndex)
666         .setMIFlags(MachineInstr::FrameSetup);
667   }
668 }
669 
670 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
671                                MachineBasicBlock &MBB,
672                                MachineBasicBlock::iterator InsertPt,
673                                unsigned DwarfReg) {
674   unsigned CFIIndex =
675       MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
676   BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
677 }
678 
679 void AArch64FrameLowering::resetCFIToInitialState(
680     MachineBasicBlock &MBB) const {
681 
682   MachineFunction &MF = *MBB.getParent();
683   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
684   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
685   const auto &TRI =
686       static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
687   const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
688 
689   const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
690   DebugLoc DL;
691 
692   // Reset the CFA to `SP + 0`.
693   MachineBasicBlock::iterator InsertPt = MBB.begin();
694   unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
695       nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
696   BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
697 
698   // Flip the RA sign state.
699   if (MFI.shouldSignReturnAddress(MF)) {
700     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
701     BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
702   }
703 
704   // Shadow call stack uses X18, reset it.
705   if (MFI.needsShadowCallStackPrologueEpilogue(MF))
706     insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
707                        TRI.getDwarfRegNum(AArch64::X18, true));
708 
709   // Emit .cfi_same_value for callee-saved registers.
710   const std::vector<CalleeSavedInfo> &CSI =
711       MF.getFrameInfo().getCalleeSavedInfo();
712   for (const auto &Info : CSI) {
713     unsigned Reg = Info.getReg();
714     if (!TRI.regNeedsCFI(Reg, Reg))
715       continue;
716     insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
717                        TRI.getDwarfRegNum(Reg, true));
718   }
719 }
720 
721 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
722                                     MachineBasicBlock::iterator MBBI,
723                                     bool SVE) {
724   MachineFunction &MF = *MBB.getParent();
725   MachineFrameInfo &MFI = MF.getFrameInfo();
726 
727   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
728   if (CSI.empty())
729     return;
730 
731   const TargetSubtargetInfo &STI = MF.getSubtarget();
732   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
733   const TargetInstrInfo &TII = *STI.getInstrInfo();
734   DebugLoc DL = MBB.findDebugLoc(MBBI);
735 
736   for (const auto &Info : CSI) {
737     if (SVE !=
738         (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
739       continue;
740 
741     unsigned Reg = Info.getReg();
742     if (SVE &&
743         !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
744       continue;
745 
746     if (!Info.isRestored())
747       continue;
748 
749     unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
750         nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
751     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
752         .addCFIIndex(CFIIndex)
753         .setMIFlags(MachineInstr::FrameDestroy);
754   }
755 }
756 
757 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
758     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
759   emitCalleeSavedRestores(MBB, MBBI, false);
760 }
761 
762 void AArch64FrameLowering::emitCalleeSavedSVERestores(
763     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
764   emitCalleeSavedRestores(MBB, MBBI, true);
765 }
766 
767 // Return the maximum possible number of bytes for `Size` due to the
768 // architectural limit on the size of a SVE register.
769 static int64_t upperBound(StackOffset Size) {
770   static const int64_t MAX_BYTES_PER_SCALABLE_BYTE = 16;
771   return Size.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE + Size.getFixed();
772 }
773 
774 void AArch64FrameLowering::allocateStackSpace(
775     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
776     int64_t RealignmentPadding, StackOffset AllocSize, bool NeedsWinCFI,
777     bool *HasWinCFI, bool EmitCFI, StackOffset InitialOffset,
778     bool FollowupAllocs) const {
779 
780   if (!AllocSize)
781     return;
782 
783   DebugLoc DL;
784   MachineFunction &MF = *MBB.getParent();
785   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
786   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
787   AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
788   const MachineFrameInfo &MFI = MF.getFrameInfo();
789 
790   const int64_t MaxAlign = MFI.getMaxAlign().value();
791   const uint64_t AndMask = ~(MaxAlign - 1);
792 
793   if (!Subtarget.getTargetLowering()->hasInlineStackProbe(MF)) {
794     Register TargetReg = RealignmentPadding
795                              ? findScratchNonCalleeSaveRegister(&MBB)
796                              : AArch64::SP;
797     // SUB Xd/SP, SP, AllocSize
798     emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII,
799                     MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
800                     EmitCFI, InitialOffset);
801 
802     if (RealignmentPadding) {
803       // AND SP, X9, 0b11111...0000
804       BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP)
805           .addReg(TargetReg, RegState::Kill)
806           .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
807           .setMIFlags(MachineInstr::FrameSetup);
808       AFI.setStackRealigned(true);
809 
810       // No need for SEH instructions here; if we're realigning the stack,
811       // we've set a frame pointer and already finished the SEH prologue.
812       assert(!NeedsWinCFI);
813     }
814     return;
815   }
816 
817   //
818   // Stack probing allocation.
819   //
820 
821   // Fixed length allocation. If we don't need to re-align the stack and don't
822   // have SVE objects, we can use a more efficient sequence for stack probing.
823   if (AllocSize.getScalable() == 0 && RealignmentPadding == 0) {
824     Register ScratchReg = findScratchNonCalleeSaveRegister(&MBB);
825     assert(ScratchReg != AArch64::NoRegister);
826     BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC))
827         .addDef(ScratchReg)
828         .addImm(AllocSize.getFixed())
829         .addImm(InitialOffset.getFixed())
830         .addImm(InitialOffset.getScalable());
831     // The fixed allocation may leave unprobed bytes at the top of the
832     // stack. If we have subsequent alocation (e.g. if we have variable-sized
833     // objects), we need to issue an extra probe, so these allocations start in
834     // a known state.
835     if (FollowupAllocs) {
836       // STR XZR, [SP]
837       BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui))
838           .addReg(AArch64::XZR)
839           .addReg(AArch64::SP)
840           .addImm(0)
841           .setMIFlags(MachineInstr::FrameSetup);
842     }
843 
844     return;
845   }
846 
847   // Variable length allocation.
848 
849   // If the (unknown) allocation size cannot exceed the probe size, decrement
850   // the stack pointer right away.
851   int64_t ProbeSize = AFI.getStackProbeSize();
852   if (upperBound(AllocSize) + RealignmentPadding <= ProbeSize) {
853     Register ScratchReg = RealignmentPadding
854                               ? findScratchNonCalleeSaveRegister(&MBB)
855                               : AArch64::SP;
856     assert(ScratchReg != AArch64::NoRegister);
857     // SUB Xd, SP, AllocSize
858     emitFrameOffset(MBB, MBBI, DL, ScratchReg, AArch64::SP, -AllocSize, &TII,
859                     MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
860                     EmitCFI, InitialOffset);
861     if (RealignmentPadding) {
862       // AND SP, Xn, 0b11111...0000
863       BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP)
864           .addReg(ScratchReg, RegState::Kill)
865           .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
866           .setMIFlags(MachineInstr::FrameSetup);
867       AFI.setStackRealigned(true);
868     }
869     if (FollowupAllocs || upperBound(AllocSize) + RealignmentPadding >
870                               AArch64::StackProbeMaxUnprobedStack) {
871       // STR XZR, [SP]
872       BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui))
873           .addReg(AArch64::XZR)
874           .addReg(AArch64::SP)
875           .addImm(0)
876           .setMIFlags(MachineInstr::FrameSetup);
877     }
878     return;
879   }
880 
881   // Emit a variable-length allocation probing loop.
882   // TODO: As an optimisation, the loop can be "unrolled" into a few parts,
883   // each of them guaranteed to adjust the stack by less than the probe size.
884   Register TargetReg = findScratchNonCalleeSaveRegister(&MBB);
885   assert(TargetReg != AArch64::NoRegister);
886   // SUB Xd, SP, AllocSize
887   emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII,
888                   MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
889                   EmitCFI, InitialOffset);
890   if (RealignmentPadding) {
891     // AND Xn, Xn, 0b11111...0000
892     BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), TargetReg)
893         .addReg(TargetReg, RegState::Kill)
894         .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
895         .setMIFlags(MachineInstr::FrameSetup);
896   }
897 
898   BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC_VAR))
899       .addReg(TargetReg);
900   if (EmitCFI) {
901     // Set the CFA register back to SP.
902     unsigned Reg =
903         Subtarget.getRegisterInfo()->getDwarfRegNum(AArch64::SP, true);
904     unsigned CFIIndex =
905         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
906     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
907         .addCFIIndex(CFIIndex)
908         .setMIFlags(MachineInstr::FrameSetup);
909   }
910   if (RealignmentPadding)
911     AFI.setStackRealigned(true);
912 }
913 
914 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
915   switch (Reg.id()) {
916   default:
917     // The called routine is expected to preserve r19-r28
918     // r29 and r30 are used as frame pointer and link register resp.
919     return 0;
920 
921     // GPRs
922 #define CASE(n)                                                                \
923   case AArch64::W##n:                                                          \
924   case AArch64::X##n:                                                          \
925     return AArch64::X##n
926   CASE(0);
927   CASE(1);
928   CASE(2);
929   CASE(3);
930   CASE(4);
931   CASE(5);
932   CASE(6);
933   CASE(7);
934   CASE(8);
935   CASE(9);
936   CASE(10);
937   CASE(11);
938   CASE(12);
939   CASE(13);
940   CASE(14);
941   CASE(15);
942   CASE(16);
943   CASE(17);
944   CASE(18);
945 #undef CASE
946 
947     // FPRs
948 #define CASE(n)                                                                \
949   case AArch64::B##n:                                                          \
950   case AArch64::H##n:                                                          \
951   case AArch64::S##n:                                                          \
952   case AArch64::D##n:                                                          \
953   case AArch64::Q##n:                                                          \
954     return HasSVE ? AArch64::Z##n : AArch64::Q##n
955   CASE(0);
956   CASE(1);
957   CASE(2);
958   CASE(3);
959   CASE(4);
960   CASE(5);
961   CASE(6);
962   CASE(7);
963   CASE(8);
964   CASE(9);
965   CASE(10);
966   CASE(11);
967   CASE(12);
968   CASE(13);
969   CASE(14);
970   CASE(15);
971   CASE(16);
972   CASE(17);
973   CASE(18);
974   CASE(19);
975   CASE(20);
976   CASE(21);
977   CASE(22);
978   CASE(23);
979   CASE(24);
980   CASE(25);
981   CASE(26);
982   CASE(27);
983   CASE(28);
984   CASE(29);
985   CASE(30);
986   CASE(31);
987 #undef CASE
988   }
989 }
990 
991 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
992                                                 MachineBasicBlock &MBB) const {
993   // Insertion point.
994   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
995 
996   // Fake a debug loc.
997   DebugLoc DL;
998   if (MBBI != MBB.end())
999     DL = MBBI->getDebugLoc();
1000 
1001   const MachineFunction &MF = *MBB.getParent();
1002   const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1003   const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
1004 
1005   BitVector GPRsToZero(TRI.getNumRegs());
1006   BitVector FPRsToZero(TRI.getNumRegs());
1007   bool HasSVE = STI.hasSVE();
1008   for (MCRegister Reg : RegsToZero.set_bits()) {
1009     if (TRI.isGeneralPurposeRegister(MF, Reg)) {
1010       // For GPRs, we only care to clear out the 64-bit register.
1011       if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
1012         GPRsToZero.set(XReg);
1013     } else if (AArch64InstrInfo::isFpOrNEON(Reg)) {
1014       // For FPRs,
1015       if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
1016         FPRsToZero.set(XReg);
1017     }
1018   }
1019 
1020   const AArch64InstrInfo &TII = *STI.getInstrInfo();
1021 
1022   // Zero out GPRs.
1023   for (MCRegister Reg : GPRsToZero.set_bits())
1024     TII.buildClearRegister(Reg, MBB, MBBI, DL);
1025 
1026   // Zero out FP/vector registers.
1027   for (MCRegister Reg : FPRsToZero.set_bits())
1028     TII.buildClearRegister(Reg, MBB, MBBI, DL);
1029 
1030   if (HasSVE) {
1031     for (MCRegister PReg :
1032          {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
1033           AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
1034           AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
1035           AArch64::P15}) {
1036       if (RegsToZero[PReg])
1037         BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
1038     }
1039   }
1040 }
1041 
1042 static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs,
1043                                    const MachineBasicBlock &MBB) {
1044   const MachineFunction *MF = MBB.getParent();
1045   LiveRegs.addLiveIns(MBB);
1046   // Mark callee saved registers as used so we will not choose them.
1047   const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
1048   for (unsigned i = 0; CSRegs[i]; ++i)
1049     LiveRegs.addReg(CSRegs[i]);
1050 }
1051 
1052 // Find a scratch register that we can use at the start of the prologue to
1053 // re-align the stack pointer.  We avoid using callee-save registers since they
1054 // may appear to be free when this is called from canUseAsPrologue (during
1055 // shrink wrapping), but then no longer be free when this is called from
1056 // emitPrologue.
1057 //
1058 // FIXME: This is a bit conservative, since in the above case we could use one
1059 // of the callee-save registers as a scratch temp to re-align the stack pointer,
1060 // but we would then have to make sure that we were in fact saving at least one
1061 // callee-save register in the prologue, which is additional complexity that
1062 // doesn't seem worth the benefit.
1063 static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
1064   MachineFunction *MF = MBB->getParent();
1065 
1066   // If MBB is an entry block, use X9 as the scratch register
1067   // preserve_none functions may be using X9 to pass arguments,
1068   // so prefer to pick an available register below.
1069   if (&MF->front() == MBB &&
1070       MF->getFunction().getCallingConv() != CallingConv::PreserveNone)
1071     return AArch64::X9;
1072 
1073   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
1074   const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
1075   LivePhysRegs LiveRegs(TRI);
1076   getLiveRegsForEntryMBB(LiveRegs, *MBB);
1077 
1078   // Prefer X9 since it was historically used for the prologue scratch reg.
1079   const MachineRegisterInfo &MRI = MF->getRegInfo();
1080   if (LiveRegs.available(MRI, AArch64::X9))
1081     return AArch64::X9;
1082 
1083   for (unsigned Reg : AArch64::GPR64RegClass) {
1084     if (LiveRegs.available(MRI, Reg))
1085       return Reg;
1086   }
1087   return AArch64::NoRegister;
1088 }
1089 
1090 bool AArch64FrameLowering::canUseAsPrologue(
1091     const MachineBasicBlock &MBB) const {
1092   const MachineFunction *MF = MBB.getParent();
1093   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
1094   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
1095   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1096   const AArch64TargetLowering *TLI = Subtarget.getTargetLowering();
1097   const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>();
1098 
1099   if (AFI->hasSwiftAsyncContext()) {
1100     const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
1101     const MachineRegisterInfo &MRI = MF->getRegInfo();
1102     LivePhysRegs LiveRegs(TRI);
1103     getLiveRegsForEntryMBB(LiveRegs, MBB);
1104     // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are
1105     // available.
1106     if (!LiveRegs.available(MRI, AArch64::X16) ||
1107         !LiveRegs.available(MRI, AArch64::X17))
1108       return false;
1109   }
1110 
1111   // Certain stack probing sequences might clobber flags, then we can't use
1112   // the block as a prologue if the flags register is a live-in.
1113   if (MF->getInfo<AArch64FunctionInfo>()->hasStackProbing() &&
1114       MBB.isLiveIn(AArch64::NZCV))
1115     return false;
1116 
1117   // Don't need a scratch register if we're not going to re-align the stack or
1118   // emit stack probes.
1119   if (!RegInfo->hasStackRealignment(*MF) && !TLI->hasInlineStackProbe(*MF))
1120     return true;
1121   // Otherwise, we can use any block as long as it has a scratch register
1122   // available.
1123   return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
1124 }
1125 
1126 static bool windowsRequiresStackProbe(MachineFunction &MF,
1127                                       uint64_t StackSizeInBytes) {
1128   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1129   const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>();
1130   // TODO: When implementing stack protectors, take that into account
1131   // for the probe threshold.
1132   return Subtarget.isTargetWindows() && MFI.hasStackProbing() &&
1133          StackSizeInBytes >= uint64_t(MFI.getStackProbeSize());
1134 }
1135 
1136 static bool needsWinCFI(const MachineFunction &MF) {
1137   const Function &F = MF.getFunction();
1138   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1139          F.needsUnwindTableEntry();
1140 }
1141 
1142 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
1143     MachineFunction &MF, uint64_t StackBumpBytes) const {
1144   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1145   const MachineFrameInfo &MFI = MF.getFrameInfo();
1146   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1147   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1148   if (homogeneousPrologEpilog(MF))
1149     return false;
1150 
1151   if (AFI->getLocalStackSize() == 0)
1152     return false;
1153 
1154   // For WinCFI, if optimizing for size, prefer to not combine the stack bump
1155   // (to force a stp with predecrement) to match the packed unwind format,
1156   // provided that there actually are any callee saved registers to merge the
1157   // decrement with.
1158   // This is potentially marginally slower, but allows using the packed
1159   // unwind format for functions that both have a local area and callee saved
1160   // registers. Using the packed unwind format notably reduces the size of
1161   // the unwind info.
1162   if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
1163       MF.getFunction().hasOptSize())
1164     return false;
1165 
1166   // 512 is the maximum immediate for stp/ldp that will be used for
1167   // callee-save save/restores
1168   if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
1169     return false;
1170 
1171   if (MFI.hasVarSizedObjects())
1172     return false;
1173 
1174   if (RegInfo->hasStackRealignment(MF))
1175     return false;
1176 
1177   // This isn't strictly necessary, but it simplifies things a bit since the
1178   // current RedZone handling code assumes the SP is adjusted by the
1179   // callee-save save/restore code.
1180   if (canUseRedZone(MF))
1181     return false;
1182 
1183   // When there is an SVE area on the stack, always allocate the
1184   // callee-saves and spills/locals separately.
1185   if (getSVEStackSize(MF))
1186     return false;
1187 
1188   return true;
1189 }
1190 
1191 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
1192     MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
1193   if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
1194     return false;
1195 
1196   if (MBB.empty())
1197     return true;
1198 
1199   // Disable combined SP bump if the last instruction is an MTE tag store. It
1200   // is almost always better to merge SP adjustment into those instructions.
1201   MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
1202   MachineBasicBlock::iterator Begin = MBB.begin();
1203   while (LastI != Begin) {
1204     --LastI;
1205     if (LastI->isTransient())
1206       continue;
1207     if (!LastI->getFlag(MachineInstr::FrameDestroy))
1208       break;
1209   }
1210   switch (LastI->getOpcode()) {
1211   case AArch64::STGloop:
1212   case AArch64::STZGloop:
1213   case AArch64::STGi:
1214   case AArch64::STZGi:
1215   case AArch64::ST2Gi:
1216   case AArch64::STZ2Gi:
1217     return false;
1218   default:
1219     return true;
1220   }
1221   llvm_unreachable("unreachable");
1222 }
1223 
1224 // Given a load or a store instruction, generate an appropriate unwinding SEH
1225 // code on Windows.
1226 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
1227                                              const TargetInstrInfo &TII,
1228                                              MachineInstr::MIFlag Flag) {
1229   unsigned Opc = MBBI->getOpcode();
1230   MachineBasicBlock *MBB = MBBI->getParent();
1231   MachineFunction &MF = *MBB->getParent();
1232   DebugLoc DL = MBBI->getDebugLoc();
1233   unsigned ImmIdx = MBBI->getNumOperands() - 1;
1234   int Imm = MBBI->getOperand(ImmIdx).getImm();
1235   MachineInstrBuilder MIB;
1236   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1237   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1238 
1239   switch (Opc) {
1240   default:
1241     llvm_unreachable("No SEH Opcode for this instruction");
1242   case AArch64::LDPDpost:
1243     Imm = -Imm;
1244     [[fallthrough]];
1245   case AArch64::STPDpre: {
1246     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1247     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1248     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
1249               .addImm(Reg0)
1250               .addImm(Reg1)
1251               .addImm(Imm * 8)
1252               .setMIFlag(Flag);
1253     break;
1254   }
1255   case AArch64::LDPXpost:
1256     Imm = -Imm;
1257     [[fallthrough]];
1258   case AArch64::STPXpre: {
1259     Register Reg0 = MBBI->getOperand(1).getReg();
1260     Register Reg1 = MBBI->getOperand(2).getReg();
1261     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1262       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1263                 .addImm(Imm * 8)
1264                 .setMIFlag(Flag);
1265     else
1266       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1267                 .addImm(RegInfo->getSEHRegNum(Reg0))
1268                 .addImm(RegInfo->getSEHRegNum(Reg1))
1269                 .addImm(Imm * 8)
1270                 .setMIFlag(Flag);
1271     break;
1272   }
1273   case AArch64::LDRDpost:
1274     Imm = -Imm;
1275     [[fallthrough]];
1276   case AArch64::STRDpre: {
1277     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1278     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1279               .addImm(Reg)
1280               .addImm(Imm)
1281               .setMIFlag(Flag);
1282     break;
1283   }
1284   case AArch64::LDRXpost:
1285     Imm = -Imm;
1286     [[fallthrough]];
1287   case AArch64::STRXpre: {
1288     unsigned Reg =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1289     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1290               .addImm(Reg)
1291               .addImm(Imm)
1292               .setMIFlag(Flag);
1293     break;
1294   }
1295   case AArch64::STPDi:
1296   case AArch64::LDPDi: {
1297     unsigned Reg0 =  RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1298     unsigned Reg1 =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1299     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1300               .addImm(Reg0)
1301               .addImm(Reg1)
1302               .addImm(Imm * 8)
1303               .setMIFlag(Flag);
1304     break;
1305   }
1306   case AArch64::STPXi:
1307   case AArch64::LDPXi: {
1308     Register Reg0 = MBBI->getOperand(0).getReg();
1309     Register Reg1 = MBBI->getOperand(1).getReg();
1310     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1311       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1312                 .addImm(Imm * 8)
1313                 .setMIFlag(Flag);
1314     else
1315       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1316                 .addImm(RegInfo->getSEHRegNum(Reg0))
1317                 .addImm(RegInfo->getSEHRegNum(Reg1))
1318                 .addImm(Imm * 8)
1319                 .setMIFlag(Flag);
1320     break;
1321   }
1322   case AArch64::STRXui:
1323   case AArch64::LDRXui: {
1324     int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1325     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1326               .addImm(Reg)
1327               .addImm(Imm * 8)
1328               .setMIFlag(Flag);
1329     break;
1330   }
1331   case AArch64::STRDui:
1332   case AArch64::LDRDui: {
1333     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1334     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1335               .addImm(Reg)
1336               .addImm(Imm * 8)
1337               .setMIFlag(Flag);
1338     break;
1339   }
1340   case AArch64::STPQi:
1341   case AArch64::LDPQi: {
1342     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1343     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1344     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP))
1345               .addImm(Reg0)
1346               .addImm(Reg1)
1347               .addImm(Imm * 16)
1348               .setMIFlag(Flag);
1349     break;
1350   }
1351   case AArch64::LDPQpost:
1352     Imm = -Imm;
1353     [[fallthrough]];
1354   case AArch64::STPQpre: {
1355     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1356     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1357     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX))
1358               .addImm(Reg0)
1359               .addImm(Reg1)
1360               .addImm(Imm * 16)
1361               .setMIFlag(Flag);
1362     break;
1363   }
1364   }
1365   auto I = MBB->insertAfter(MBBI, MIB);
1366   return I;
1367 }
1368 
1369 // Fix up the SEH opcode associated with the save/restore instruction.
1370 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1371                            unsigned LocalStackSize) {
1372   MachineOperand *ImmOpnd = nullptr;
1373   unsigned ImmIdx = MBBI->getNumOperands() - 1;
1374   switch (MBBI->getOpcode()) {
1375   default:
1376     llvm_unreachable("Fix the offset in the SEH instruction");
1377   case AArch64::SEH_SaveFPLR:
1378   case AArch64::SEH_SaveRegP:
1379   case AArch64::SEH_SaveReg:
1380   case AArch64::SEH_SaveFRegP:
1381   case AArch64::SEH_SaveFReg:
1382   case AArch64::SEH_SaveAnyRegQP:
1383   case AArch64::SEH_SaveAnyRegQPX:
1384     ImmOpnd = &MBBI->getOperand(ImmIdx);
1385     break;
1386   }
1387   if (ImmOpnd)
1388     ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1389 }
1390 
1391 bool requiresGetVGCall(MachineFunction &MF) {
1392   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1393   return AFI->hasStreamingModeChanges() &&
1394          !MF.getSubtarget<AArch64Subtarget>().hasSVE();
1395 }
1396 
1397 bool isVGInstruction(MachineBasicBlock::iterator MBBI) {
1398   unsigned Opc = MBBI->getOpcode();
1399   if (Opc == AArch64::CNTD_XPiI || Opc == AArch64::RDSVLI_XI ||
1400       Opc == AArch64::UBFMXri)
1401     return true;
1402 
1403   if (requiresGetVGCall(*MBBI->getMF())) {
1404     if (Opc == AArch64::ORRXrr)
1405       return true;
1406 
1407     if (Opc == AArch64::BL) {
1408       auto Op1 = MBBI->getOperand(0);
1409       return Op1.isSymbol() &&
1410              (StringRef(Op1.getSymbolName()) == "__arm_get_current_vg");
1411     }
1412   }
1413 
1414   return false;
1415 }
1416 
1417 // Convert callee-save register save/restore instruction to do stack pointer
1418 // decrement/increment to allocate/deallocate the callee-save stack area by
1419 // converting store/load to use pre/post increment version.
1420 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1421     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1422     const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1423     bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1424     MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1425     int CFAOffset = 0) {
1426   unsigned NewOpc;
1427 
1428   // If the function contains streaming mode changes, we expect instructions
1429   // to calculate the value of VG before spilling. For locally-streaming
1430   // functions, we need to do this for both the streaming and non-streaming
1431   // vector length. Move past these instructions if necessary.
1432   MachineFunction &MF = *MBB.getParent();
1433   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1434   if (AFI->hasStreamingModeChanges())
1435     while (isVGInstruction(MBBI))
1436       ++MBBI;
1437 
1438   switch (MBBI->getOpcode()) {
1439   default:
1440     llvm_unreachable("Unexpected callee-save save/restore opcode!");
1441   case AArch64::STPXi:
1442     NewOpc = AArch64::STPXpre;
1443     break;
1444   case AArch64::STPDi:
1445     NewOpc = AArch64::STPDpre;
1446     break;
1447   case AArch64::STPQi:
1448     NewOpc = AArch64::STPQpre;
1449     break;
1450   case AArch64::STRXui:
1451     NewOpc = AArch64::STRXpre;
1452     break;
1453   case AArch64::STRDui:
1454     NewOpc = AArch64::STRDpre;
1455     break;
1456   case AArch64::STRQui:
1457     NewOpc = AArch64::STRQpre;
1458     break;
1459   case AArch64::LDPXi:
1460     NewOpc = AArch64::LDPXpost;
1461     break;
1462   case AArch64::LDPDi:
1463     NewOpc = AArch64::LDPDpost;
1464     break;
1465   case AArch64::LDPQi:
1466     NewOpc = AArch64::LDPQpost;
1467     break;
1468   case AArch64::LDRXui:
1469     NewOpc = AArch64::LDRXpost;
1470     break;
1471   case AArch64::LDRDui:
1472     NewOpc = AArch64::LDRDpost;
1473     break;
1474   case AArch64::LDRQui:
1475     NewOpc = AArch64::LDRQpost;
1476     break;
1477   }
1478   // Get rid of the SEH code associated with the old instruction.
1479   if (NeedsWinCFI) {
1480     auto SEH = std::next(MBBI);
1481     if (AArch64InstrInfo::isSEHInstruction(*SEH))
1482       SEH->eraseFromParent();
1483   }
1484 
1485   TypeSize Scale = TypeSize::getFixed(1), Width = TypeSize::getFixed(0);
1486   int64_t MinOffset, MaxOffset;
1487   bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1488       NewOpc, Scale, Width, MinOffset, MaxOffset);
1489   (void)Success;
1490   assert(Success && "unknown load/store opcode");
1491 
1492   // If the first store isn't right where we want SP then we can't fold the
1493   // update in so create a normal arithmetic instruction instead.
1494   if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1495       CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1496     // If we are destroying the frame, make sure we add the increment after the
1497     // last frame operation.
1498     if (FrameFlag == MachineInstr::FrameDestroy)
1499       ++MBBI;
1500     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1501                     StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1502                     false, false, nullptr, EmitCFI,
1503                     StackOffset::getFixed(CFAOffset));
1504 
1505     return std::prev(MBBI);
1506   }
1507 
1508   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1509   MIB.addReg(AArch64::SP, RegState::Define);
1510 
1511   // Copy all operands other than the immediate offset.
1512   unsigned OpndIdx = 0;
1513   for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1514        ++OpndIdx)
1515     MIB.add(MBBI->getOperand(OpndIdx));
1516 
1517   assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1518          "Unexpected immediate offset in first/last callee-save save/restore "
1519          "instruction!");
1520   assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1521          "Unexpected base register in callee-save save/restore instruction!");
1522   assert(CSStackSizeInc % Scale == 0);
1523   MIB.addImm(CSStackSizeInc / (int)Scale);
1524 
1525   MIB.setMIFlags(MBBI->getFlags());
1526   MIB.setMemRefs(MBBI->memoperands());
1527 
1528   // Generate a new SEH code that corresponds to the new instruction.
1529   if (NeedsWinCFI) {
1530     *HasWinCFI = true;
1531     InsertSEH(*MIB, *TII, FrameFlag);
1532   }
1533 
1534   if (EmitCFI) {
1535     unsigned CFIIndex = MF.addFrameInst(
1536         MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1537     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1538         .addCFIIndex(CFIIndex)
1539         .setMIFlags(FrameFlag);
1540   }
1541 
1542   return std::prev(MBB.erase(MBBI));
1543 }
1544 
1545 // Fixup callee-save register save/restore instructions to take into account
1546 // combined SP bump by adding the local stack size to the stack offsets.
1547 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1548                                               uint64_t LocalStackSize,
1549                                               bool NeedsWinCFI,
1550                                               bool *HasWinCFI) {
1551   if (AArch64InstrInfo::isSEHInstruction(MI))
1552     return;
1553 
1554   unsigned Opc = MI.getOpcode();
1555   unsigned Scale;
1556   switch (Opc) {
1557   case AArch64::STPXi:
1558   case AArch64::STRXui:
1559   case AArch64::STPDi:
1560   case AArch64::STRDui:
1561   case AArch64::LDPXi:
1562   case AArch64::LDRXui:
1563   case AArch64::LDPDi:
1564   case AArch64::LDRDui:
1565     Scale = 8;
1566     break;
1567   case AArch64::STPQi:
1568   case AArch64::STRQui:
1569   case AArch64::LDPQi:
1570   case AArch64::LDRQui:
1571     Scale = 16;
1572     break;
1573   default:
1574     llvm_unreachable("Unexpected callee-save save/restore opcode!");
1575   }
1576 
1577   unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1578   assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1579          "Unexpected base register in callee-save save/restore instruction!");
1580   // Last operand is immediate offset that needs fixing.
1581   MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1582   // All generated opcodes have scaled offsets.
1583   assert(LocalStackSize % Scale == 0);
1584   OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1585 
1586   if (NeedsWinCFI) {
1587     *HasWinCFI = true;
1588     auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1589     assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1590     assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1591            "Expecting a SEH instruction");
1592     fixupSEHOpcode(MBBI, LocalStackSize);
1593   }
1594 }
1595 
1596 static bool isTargetWindows(const MachineFunction &MF) {
1597   return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1598 }
1599 
1600 // Convenience function to determine whether I is an SVE callee save.
1601 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1602   switch (I->getOpcode()) {
1603   default:
1604     return false;
1605   case AArch64::PTRUE_C_B:
1606   case AArch64::LD1B_2Z_IMM:
1607   case AArch64::ST1B_2Z_IMM:
1608   case AArch64::STR_ZXI:
1609   case AArch64::STR_PXI:
1610   case AArch64::LDR_ZXI:
1611   case AArch64::LDR_PXI:
1612     return I->getFlag(MachineInstr::FrameSetup) ||
1613            I->getFlag(MachineInstr::FrameDestroy);
1614   }
1615 }
1616 
1617 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1618                                         MachineFunction &MF,
1619                                         MachineBasicBlock &MBB,
1620                                         MachineBasicBlock::iterator MBBI,
1621                                         const DebugLoc &DL, bool NeedsWinCFI,
1622                                         bool NeedsUnwindInfo) {
1623   // Shadow call stack prolog: str x30, [x18], #8
1624   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1625       .addReg(AArch64::X18, RegState::Define)
1626       .addReg(AArch64::LR)
1627       .addReg(AArch64::X18)
1628       .addImm(8)
1629       .setMIFlag(MachineInstr::FrameSetup);
1630 
1631   // This instruction also makes x18 live-in to the entry block.
1632   MBB.addLiveIn(AArch64::X18);
1633 
1634   if (NeedsWinCFI)
1635     BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1636         .setMIFlag(MachineInstr::FrameSetup);
1637 
1638   if (NeedsUnwindInfo) {
1639     // Emit a CFI instruction that causes 8 to be subtracted from the value of
1640     // x18 when unwinding past this frame.
1641     static const char CFIInst[] = {
1642         dwarf::DW_CFA_val_expression,
1643         18, // register
1644         2,  // length
1645         static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1646         static_cast<char>(-8) & 0x7f, // addend (sleb128)
1647     };
1648     unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1649         nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1650     BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1651         .addCFIIndex(CFIIndex)
1652         .setMIFlag(MachineInstr::FrameSetup);
1653   }
1654 }
1655 
1656 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1657                                         MachineFunction &MF,
1658                                         MachineBasicBlock &MBB,
1659                                         MachineBasicBlock::iterator MBBI,
1660                                         const DebugLoc &DL) {
1661   // Shadow call stack epilog: ldr x30, [x18, #-8]!
1662   BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1663       .addReg(AArch64::X18, RegState::Define)
1664       .addReg(AArch64::LR, RegState::Define)
1665       .addReg(AArch64::X18)
1666       .addImm(-8)
1667       .setMIFlag(MachineInstr::FrameDestroy);
1668 
1669   if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1670     unsigned CFIIndex =
1671         MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1672     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1673         .addCFIIndex(CFIIndex)
1674         .setMIFlags(MachineInstr::FrameDestroy);
1675   }
1676 }
1677 
1678 // Define the current CFA rule to use the provided FP.
1679 static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB,
1680                                 MachineBasicBlock::iterator MBBI,
1681                                 const DebugLoc &DL, unsigned FixedObject) {
1682   const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1683   const AArch64RegisterInfo *TRI = STI.getRegisterInfo();
1684   const TargetInstrInfo *TII = STI.getInstrInfo();
1685   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1686 
1687   const int OffsetToFirstCalleeSaveFromFP =
1688       AFI->getCalleeSaveBaseToFrameRecordOffset() -
1689       AFI->getCalleeSavedStackSize();
1690   Register FramePtr = TRI->getFrameRegister(MF);
1691   unsigned Reg = TRI->getDwarfRegNum(FramePtr, true);
1692   unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1693       nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1694   BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1695       .addCFIIndex(CFIIndex)
1696       .setMIFlags(MachineInstr::FrameSetup);
1697 }
1698 
1699 #ifndef NDEBUG
1700 /// Collect live registers from the end of \p MI's parent up to (including) \p
1701 /// MI in \p LiveRegs.
1702 static void getLivePhysRegsUpTo(MachineInstr &MI, const TargetRegisterInfo &TRI,
1703                                 LivePhysRegs &LiveRegs) {
1704 
1705   MachineBasicBlock &MBB = *MI.getParent();
1706   LiveRegs.addLiveOuts(MBB);
1707   for (const MachineInstr &MI :
1708        reverse(make_range(MI.getIterator(), MBB.instr_end())))
1709     LiveRegs.stepBackward(MI);
1710 }
1711 #endif
1712 
1713 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1714                                         MachineBasicBlock &MBB) const {
1715   MachineBasicBlock::iterator MBBI = MBB.begin();
1716   const MachineFrameInfo &MFI = MF.getFrameInfo();
1717   const Function &F = MF.getFunction();
1718   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1719   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1720   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1721 
1722   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1723   bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1724   bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
1725   bool HasFP = hasFP(MF);
1726   bool NeedsWinCFI = needsWinCFI(MF);
1727   bool HasWinCFI = false;
1728   auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1729 
1730   MachineBasicBlock::iterator End = MBB.end();
1731 #ifndef NDEBUG
1732   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1733   // Collect live register from the end of MBB up to the start of the existing
1734   // frame setup instructions.
1735   MachineBasicBlock::iterator NonFrameStart = MBB.begin();
1736   while (NonFrameStart != End &&
1737          NonFrameStart->getFlag(MachineInstr::FrameSetup))
1738     ++NonFrameStart;
1739 
1740   LivePhysRegs LiveRegs(*TRI);
1741   if (NonFrameStart != MBB.end()) {
1742     getLivePhysRegsUpTo(*NonFrameStart, *TRI, LiveRegs);
1743     // Ignore registers used for stack management for now.
1744     LiveRegs.removeReg(AArch64::SP);
1745     LiveRegs.removeReg(AArch64::X19);
1746     LiveRegs.removeReg(AArch64::FP);
1747     LiveRegs.removeReg(AArch64::LR);
1748 
1749     // X0 will be clobbered by a call to __arm_get_current_vg in the prologue.
1750     // This is necessary to spill VG if required where SVE is unavailable, but
1751     // X0 is preserved around this call.
1752     if (requiresGetVGCall(MF))
1753       LiveRegs.removeReg(AArch64::X0);
1754   }
1755 
1756   auto VerifyClobberOnExit = make_scope_exit([&]() {
1757     if (NonFrameStart == MBB.end())
1758       return;
1759     // Check if any of the newly instructions clobber any of the live registers.
1760     for (MachineInstr &MI :
1761          make_range(MBB.instr_begin(), NonFrameStart->getIterator())) {
1762       for (auto &Op : MI.operands())
1763         if (Op.isReg() && Op.isDef())
1764           assert(!LiveRegs.contains(Op.getReg()) &&
1765                  "live register clobbered by inserted prologue instructions");
1766     }
1767   });
1768 #endif
1769 
1770   bool IsFunclet = MBB.isEHFuncletEntry();
1771 
1772   // At this point, we're going to decide whether or not the function uses a
1773   // redzone. In most cases, the function doesn't have a redzone so let's
1774   // assume that's false and set it to true in the case that there's a redzone.
1775   AFI->setHasRedZone(false);
1776 
1777   // Debug location must be unknown since the first debug location is used
1778   // to determine the end of the prologue.
1779   DebugLoc DL;
1780 
1781   const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1782   if (MFnI.needsShadowCallStackPrologueEpilogue(MF))
1783     emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1784                                 MFnI.needsDwarfUnwindInfo(MF));
1785 
1786   if (MFnI.shouldSignReturnAddress(MF)) {
1787     BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE))
1788         .setMIFlag(MachineInstr::FrameSetup);
1789     if (NeedsWinCFI)
1790       HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
1791   }
1792 
1793   if (EmitCFI && MFnI.isMTETagged()) {
1794     BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1795         .setMIFlag(MachineInstr::FrameSetup);
1796   }
1797 
1798   // We signal the presence of a Swift extended frame to external tools by
1799   // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1800   // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1801   // bits so that is still true.
1802   if (HasFP && AFI->hasSwiftAsyncContext()) {
1803     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1804     case SwiftAsyncFramePointerMode::DeploymentBased:
1805       if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1806         // The special symbol below is absolute and has a *value* that can be
1807         // combined with the frame pointer to signal an extended frame.
1808         BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1809             .addExternalSymbol("swift_async_extendedFramePointerFlags",
1810                                AArch64II::MO_GOT);
1811         if (NeedsWinCFI) {
1812           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1813               .setMIFlags(MachineInstr::FrameSetup);
1814           HasWinCFI = true;
1815         }
1816         BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1817             .addUse(AArch64::FP)
1818             .addUse(AArch64::X16)
1819             .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1820         if (NeedsWinCFI) {
1821           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1822               .setMIFlags(MachineInstr::FrameSetup);
1823           HasWinCFI = true;
1824         }
1825         break;
1826       }
1827       [[fallthrough]];
1828 
1829     case SwiftAsyncFramePointerMode::Always:
1830       // ORR x29, x29, #0x1000_0000_0000_0000
1831       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1832           .addUse(AArch64::FP)
1833           .addImm(0x1100)
1834           .setMIFlag(MachineInstr::FrameSetup);
1835       if (NeedsWinCFI) {
1836         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1837             .setMIFlags(MachineInstr::FrameSetup);
1838         HasWinCFI = true;
1839       }
1840       break;
1841 
1842     case SwiftAsyncFramePointerMode::Never:
1843       break;
1844     }
1845   }
1846 
1847   // All calls are tail calls in GHC calling conv, and functions have no
1848   // prologue/epilogue.
1849   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1850     return;
1851 
1852   // Set tagged base pointer to the requested stack slot.
1853   // Ideally it should match SP value after prologue.
1854   std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1855   if (TBPI)
1856     AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1857   else
1858     AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1859 
1860   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1861 
1862   // getStackSize() includes all the locals in its size calculation. We don't
1863   // include these locals when computing the stack size of a funclet, as they
1864   // are allocated in the parent's stack frame and accessed via the frame
1865   // pointer from the funclet.  We only save the callee saved registers in the
1866   // funclet, which are really the callee saved registers of the parent
1867   // function, including the funclet.
1868   int64_t NumBytes =
1869       IsFunclet ? getWinEHFuncletFrameSize(MF) : MFI.getStackSize();
1870   if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1871     assert(!HasFP && "unexpected function without stack frame but with FP");
1872     assert(!SVEStackSize &&
1873            "unexpected function without stack frame but with SVE objects");
1874     // All of the stack allocation is for locals.
1875     AFI->setLocalStackSize(NumBytes);
1876     if (!NumBytes)
1877       return;
1878     // REDZONE: If the stack size is less than 128 bytes, we don't need
1879     // to actually allocate.
1880     if (canUseRedZone(MF)) {
1881       AFI->setHasRedZone(true);
1882       ++NumRedZoneFunctions;
1883     } else {
1884       emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1885                       StackOffset::getFixed(-NumBytes), TII,
1886                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1887       if (EmitCFI) {
1888         // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1889         MCSymbol *FrameLabel = MF.getContext().createTempSymbol();
1890         // Encode the stack size of the leaf function.
1891         unsigned CFIIndex = MF.addFrameInst(
1892             MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1893         BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1894             .addCFIIndex(CFIIndex)
1895             .setMIFlags(MachineInstr::FrameSetup);
1896       }
1897     }
1898 
1899     if (NeedsWinCFI) {
1900       HasWinCFI = true;
1901       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1902           .setMIFlag(MachineInstr::FrameSetup);
1903     }
1904 
1905     return;
1906   }
1907 
1908   bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg());
1909   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1910 
1911   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1912   // All of the remaining stack allocations are for locals.
1913   AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1914   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1915   bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1916   if (CombineSPBump) {
1917     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1918     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1919                     StackOffset::getFixed(-NumBytes), TII,
1920                     MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1921                     EmitAsyncCFI);
1922     NumBytes = 0;
1923   } else if (HomPrologEpilog) {
1924     // Stack has been already adjusted.
1925     NumBytes -= PrologueSaveSize;
1926   } else if (PrologueSaveSize != 0) {
1927     MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1928         MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1929         EmitAsyncCFI);
1930     NumBytes -= PrologueSaveSize;
1931   }
1932   assert(NumBytes >= 0 && "Negative stack allocation size!?");
1933 
1934   // Move past the saves of the callee-saved registers, fixing up the offsets
1935   // and pre-inc if we decided to combine the callee-save and local stack
1936   // pointer bump above.
1937   while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1938          !IsSVECalleeSave(MBBI)) {
1939     // Move past instructions generated to calculate VG
1940     if (AFI->hasStreamingModeChanges())
1941       while (isVGInstruction(MBBI))
1942         ++MBBI;
1943 
1944     if (CombineSPBump)
1945       fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1946                                         NeedsWinCFI, &HasWinCFI);
1947     ++MBBI;
1948   }
1949 
1950   // For funclets the FP belongs to the containing function.
1951   if (!IsFunclet && HasFP) {
1952     // Only set up FP if we actually need to.
1953     int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1954 
1955     if (CombineSPBump)
1956       FPOffset += AFI->getLocalStackSize();
1957 
1958     if (AFI->hasSwiftAsyncContext()) {
1959       // Before we update the live FP we have to ensure there's a valid (or
1960       // null) asynchronous context in its slot just before FP in the frame
1961       // record, so store it now.
1962       const auto &Attrs = MF.getFunction().getAttributes();
1963       bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1964       if (HaveInitialContext)
1965         MBB.addLiveIn(AArch64::X22);
1966       Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR;
1967       BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1968           .addUse(Reg)
1969           .addUse(AArch64::SP)
1970           .addImm(FPOffset - 8)
1971           .setMIFlags(MachineInstr::FrameSetup);
1972       if (NeedsWinCFI) {
1973         // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded
1974         // to multiple instructions, should be mutually-exclusive.
1975         assert(Subtarget.getTargetTriple().getArchName() != "arm64e");
1976         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1977             .setMIFlags(MachineInstr::FrameSetup);
1978         HasWinCFI = true;
1979       }
1980     }
1981 
1982     if (HomPrologEpilog) {
1983       auto Prolog = MBBI;
1984       --Prolog;
1985       assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1986       Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1987     } else {
1988       // Issue    sub fp, sp, FPOffset or
1989       //          mov fp,sp          when FPOffset is zero.
1990       // Note: All stores of callee-saved registers are marked as "FrameSetup".
1991       // This code marks the instruction(s) that set the FP also.
1992       emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1993                       StackOffset::getFixed(FPOffset), TII,
1994                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1995       if (NeedsWinCFI && HasWinCFI) {
1996         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1997             .setMIFlag(MachineInstr::FrameSetup);
1998         // After setting up the FP, the rest of the prolog doesn't need to be
1999         // included in the SEH unwind info.
2000         NeedsWinCFI = false;
2001       }
2002     }
2003     if (EmitAsyncCFI)
2004       emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
2005   }
2006 
2007   // Now emit the moves for whatever callee saved regs we have (including FP,
2008   // LR if those are saved). Frame instructions for SVE register are emitted
2009   // later, after the instruction which actually save SVE regs.
2010   if (EmitAsyncCFI)
2011     emitCalleeSavedGPRLocations(MBB, MBBI);
2012 
2013   // Alignment is required for the parent frame, not the funclet
2014   const bool NeedsRealignment =
2015       NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
2016   const int64_t RealignmentPadding =
2017       (NeedsRealignment && MFI.getMaxAlign() > Align(16))
2018           ? MFI.getMaxAlign().value() - 16
2019           : 0;
2020 
2021   if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
2022     uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
2023     if (NeedsWinCFI) {
2024       HasWinCFI = true;
2025       // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
2026       // exceed this amount.  We need to move at most 2^24 - 1 into x15.
2027       // This is at most two instructions, MOVZ follwed by MOVK.
2028       // TODO: Fix to use multiple stack alloc unwind codes for stacks
2029       // exceeding 256MB in size.
2030       if (NumBytes >= (1 << 28))
2031         report_fatal_error("Stack size cannot exceed 256MB for stack "
2032                            "unwinding purposes");
2033 
2034       uint32_t LowNumWords = NumWords & 0xFFFF;
2035       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
2036           .addImm(LowNumWords)
2037           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
2038           .setMIFlag(MachineInstr::FrameSetup);
2039       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2040           .setMIFlag(MachineInstr::FrameSetup);
2041       if ((NumWords & 0xFFFF0000) != 0) {
2042         BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
2043             .addReg(AArch64::X15)
2044             .addImm((NumWords & 0xFFFF0000) >> 16) // High half
2045             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
2046             .setMIFlag(MachineInstr::FrameSetup);
2047         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2048             .setMIFlag(MachineInstr::FrameSetup);
2049       }
2050     } else {
2051       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
2052           .addImm(NumWords)
2053           .setMIFlags(MachineInstr::FrameSetup);
2054     }
2055 
2056     const char *ChkStk = Subtarget.getChkStkName();
2057     switch (MF.getTarget().getCodeModel()) {
2058     case CodeModel::Tiny:
2059     case CodeModel::Small:
2060     case CodeModel::Medium:
2061     case CodeModel::Kernel:
2062       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
2063           .addExternalSymbol(ChkStk)
2064           .addReg(AArch64::X15, RegState::Implicit)
2065           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
2066           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
2067           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
2068           .setMIFlags(MachineInstr::FrameSetup);
2069       if (NeedsWinCFI) {
2070         HasWinCFI = true;
2071         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2072             .setMIFlag(MachineInstr::FrameSetup);
2073       }
2074       break;
2075     case CodeModel::Large:
2076       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
2077           .addReg(AArch64::X16, RegState::Define)
2078           .addExternalSymbol(ChkStk)
2079           .addExternalSymbol(ChkStk)
2080           .setMIFlags(MachineInstr::FrameSetup);
2081       if (NeedsWinCFI) {
2082         HasWinCFI = true;
2083         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2084             .setMIFlag(MachineInstr::FrameSetup);
2085       }
2086 
2087       BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
2088           .addReg(AArch64::X16, RegState::Kill)
2089           .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
2090           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
2091           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
2092           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
2093           .setMIFlags(MachineInstr::FrameSetup);
2094       if (NeedsWinCFI) {
2095         HasWinCFI = true;
2096         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2097             .setMIFlag(MachineInstr::FrameSetup);
2098       }
2099       break;
2100     }
2101 
2102     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
2103         .addReg(AArch64::SP, RegState::Kill)
2104         .addReg(AArch64::X15, RegState::Kill)
2105         .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
2106         .setMIFlags(MachineInstr::FrameSetup);
2107     if (NeedsWinCFI) {
2108       HasWinCFI = true;
2109       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
2110           .addImm(NumBytes)
2111           .setMIFlag(MachineInstr::FrameSetup);
2112     }
2113     NumBytes = 0;
2114 
2115     if (RealignmentPadding > 0) {
2116       if (RealignmentPadding >= 4096) {
2117         BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm))
2118             .addReg(AArch64::X16, RegState::Define)
2119             .addImm(RealignmentPadding)
2120             .setMIFlags(MachineInstr::FrameSetup);
2121         BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15)
2122             .addReg(AArch64::SP)
2123             .addReg(AArch64::X16, RegState::Kill)
2124             .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
2125             .setMIFlag(MachineInstr::FrameSetup);
2126       } else {
2127         BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
2128             .addReg(AArch64::SP)
2129             .addImm(RealignmentPadding)
2130             .addImm(0)
2131             .setMIFlag(MachineInstr::FrameSetup);
2132       }
2133 
2134       uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
2135       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
2136           .addReg(AArch64::X15, RegState::Kill)
2137           .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
2138       AFI->setStackRealigned(true);
2139 
2140       // No need for SEH instructions here; if we're realigning the stack,
2141       // we've set a frame pointer and already finished the SEH prologue.
2142       assert(!NeedsWinCFI);
2143     }
2144   }
2145 
2146   StackOffset SVECalleeSavesSize = {}, SVELocalsSize = SVEStackSize;
2147   MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
2148 
2149   // Process the SVE callee-saves to determine what space needs to be
2150   // allocated.
2151   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2152     LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize
2153                       << "\n");
2154     // Find callee save instructions in frame.
2155     CalleeSavesBegin = MBBI;
2156     assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
2157     while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
2158       ++MBBI;
2159     CalleeSavesEnd = MBBI;
2160 
2161     SVECalleeSavesSize = StackOffset::getScalable(CalleeSavedSize);
2162     SVELocalsSize = SVEStackSize - SVECalleeSavesSize;
2163   }
2164 
2165   // Allocate space for the callee saves (if any).
2166   StackOffset CFAOffset =
2167       StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes);
2168   StackOffset LocalsSize = SVELocalsSize + StackOffset::getFixed(NumBytes);
2169   allocateStackSpace(MBB, CalleeSavesBegin, 0, SVECalleeSavesSize, false,
2170                      nullptr, EmitAsyncCFI && !HasFP, CFAOffset,
2171                      MFI.hasVarSizedObjects() || LocalsSize);
2172   CFAOffset += SVECalleeSavesSize;
2173 
2174   if (EmitAsyncCFI)
2175     emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
2176 
2177   // Allocate space for the rest of the frame including SVE locals. Align the
2178   // stack as necessary.
2179   assert(!(canUseRedZone(MF) && NeedsRealignment) &&
2180          "Cannot use redzone with stack realignment");
2181   if (!canUseRedZone(MF)) {
2182     // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
2183     // the correct value here, as NumBytes also includes padding bytes,
2184     // which shouldn't be counted here.
2185     allocateStackSpace(MBB, CalleeSavesEnd, RealignmentPadding,
2186                        SVELocalsSize + StackOffset::getFixed(NumBytes),
2187                        NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP,
2188                        CFAOffset, MFI.hasVarSizedObjects());
2189   }
2190 
2191   // If we need a base pointer, set it up here. It's whatever the value of the
2192   // stack pointer is at this point. Any variable size objects will be allocated
2193   // after this, so we can still use the base pointer to reference locals.
2194   //
2195   // FIXME: Clarify FrameSetup flags here.
2196   // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
2197   // needed.
2198   // For funclets the BP belongs to the containing function.
2199   if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
2200     TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
2201                      false);
2202     if (NeedsWinCFI) {
2203       HasWinCFI = true;
2204       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2205           .setMIFlag(MachineInstr::FrameSetup);
2206     }
2207   }
2208 
2209   // The very last FrameSetup instruction indicates the end of prologue. Emit a
2210   // SEH opcode indicating the prologue end.
2211   if (NeedsWinCFI && HasWinCFI) {
2212     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
2213         .setMIFlag(MachineInstr::FrameSetup);
2214   }
2215 
2216   // SEH funclets are passed the frame pointer in X1.  If the parent
2217   // function uses the base register, then the base register is used
2218   // directly, and is not retrieved from X1.
2219   if (IsFunclet && F.hasPersonalityFn()) {
2220     EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
2221     if (isAsynchronousEHPersonality(Per)) {
2222       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
2223           .addReg(AArch64::X1)
2224           .setMIFlag(MachineInstr::FrameSetup);
2225       MBB.addLiveIn(AArch64::X1);
2226     }
2227   }
2228 
2229   if (EmitCFI && !EmitAsyncCFI) {
2230     if (HasFP) {
2231       emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
2232     } else {
2233       StackOffset TotalSize =
2234           SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize());
2235       unsigned CFIIndex = MF.addFrameInst(createDefCFA(
2236           *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize,
2237           /*LastAdjustmentWasScalable=*/false));
2238       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2239           .addCFIIndex(CFIIndex)
2240           .setMIFlags(MachineInstr::FrameSetup);
2241     }
2242     emitCalleeSavedGPRLocations(MBB, MBBI);
2243     emitCalleeSavedSVELocations(MBB, MBBI);
2244   }
2245 }
2246 
2247 static bool isFuncletReturnInstr(const MachineInstr &MI) {
2248   switch (MI.getOpcode()) {
2249   default:
2250     return false;
2251   case AArch64::CATCHRET:
2252   case AArch64::CLEANUPRET:
2253     return true;
2254   }
2255 }
2256 
2257 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
2258                                         MachineBasicBlock &MBB) const {
2259   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
2260   MachineFrameInfo &MFI = MF.getFrameInfo();
2261   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2262   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2263   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2264   DebugLoc DL;
2265   bool NeedsWinCFI = needsWinCFI(MF);
2266   bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
2267   bool HasWinCFI = false;
2268   bool IsFunclet = false;
2269 
2270   if (MBB.end() != MBBI) {
2271     DL = MBBI->getDebugLoc();
2272     IsFunclet = isFuncletReturnInstr(*MBBI);
2273   }
2274 
2275   MachineBasicBlock::iterator EpilogStartI = MBB.end();
2276 
2277   auto FinishingTouches = make_scope_exit([&]() {
2278     if (AFI->shouldSignReturnAddress(MF)) {
2279       BuildMI(MBB, MBB.getFirstTerminator(), DL,
2280               TII->get(AArch64::PAUTH_EPILOGUE))
2281           .setMIFlag(MachineInstr::FrameDestroy);
2282       if (NeedsWinCFI)
2283         HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
2284     }
2285     if (AFI->needsShadowCallStackPrologueEpilogue(MF))
2286       emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
2287     if (EmitCFI)
2288       emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
2289     if (HasWinCFI) {
2290       BuildMI(MBB, MBB.getFirstTerminator(), DL,
2291               TII->get(AArch64::SEH_EpilogEnd))
2292           .setMIFlag(MachineInstr::FrameDestroy);
2293       if (!MF.hasWinCFI())
2294         MF.setHasWinCFI(true);
2295     }
2296     if (NeedsWinCFI) {
2297       assert(EpilogStartI != MBB.end());
2298       if (!HasWinCFI)
2299         MBB.erase(EpilogStartI);
2300     }
2301   });
2302 
2303   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
2304                                : MFI.getStackSize();
2305 
2306   // All calls are tail calls in GHC calling conv, and functions have no
2307   // prologue/epilogue.
2308   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2309     return;
2310 
2311   // How much of the stack used by incoming arguments this function is expected
2312   // to restore in this particular epilogue.
2313   int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
2314   bool IsWin64 = Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(),
2315                                               MF.getFunction().isVarArg());
2316   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
2317 
2318   int64_t AfterCSRPopSize = ArgumentStackToRestore;
2319   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
2320   // We cannot rely on the local stack size set in emitPrologue if the function
2321   // has funclets, as funclets have different local stack size requirements, and
2322   // the current value set in emitPrologue may be that of the containing
2323   // function.
2324   if (MF.hasEHFunclets())
2325     AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
2326   if (homogeneousPrologEpilog(MF, &MBB)) {
2327     assert(!NeedsWinCFI);
2328     auto LastPopI = MBB.getFirstTerminator();
2329     if (LastPopI != MBB.begin()) {
2330       auto HomogeneousEpilog = std::prev(LastPopI);
2331       if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
2332         LastPopI = HomogeneousEpilog;
2333     }
2334 
2335     // Adjust local stack
2336     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2337                     StackOffset::getFixed(AFI->getLocalStackSize()), TII,
2338                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2339 
2340     // SP has been already adjusted while restoring callee save regs.
2341     // We've bailed-out the case with adjusting SP for arguments.
2342     assert(AfterCSRPopSize == 0);
2343     return;
2344   }
2345   bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
2346   // Assume we can't combine the last pop with the sp restore.
2347 
2348   bool CombineAfterCSRBump = false;
2349   if (!CombineSPBump && PrologueSaveSize != 0) {
2350     MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
2351     while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
2352            AArch64InstrInfo::isSEHInstruction(*Pop))
2353       Pop = std::prev(Pop);
2354     // Converting the last ldp to a post-index ldp is valid only if the last
2355     // ldp's offset is 0.
2356     const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2357     // If the offset is 0 and the AfterCSR pop is not actually trying to
2358     // allocate more stack for arguments (in space that an untimely interrupt
2359     // may clobber), convert it to a post-index ldp.
2360     if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2361       convertCalleeSaveRestoreToSPPrePostIncDec(
2362           MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2363           MachineInstr::FrameDestroy, PrologueSaveSize);
2364     } else {
2365       // If not, make sure to emit an add after the last ldp.
2366       // We're doing this by transfering the size to be restored from the
2367       // adjustment *before* the CSR pops to the adjustment *after* the CSR
2368       // pops.
2369       AfterCSRPopSize += PrologueSaveSize;
2370       CombineAfterCSRBump = true;
2371     }
2372   }
2373 
2374   // Move past the restores of the callee-saved registers.
2375   // If we plan on combining the sp bump of the local stack size and the callee
2376   // save stack size, we might need to adjust the CSR save and restore offsets.
2377   MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2378   MachineBasicBlock::iterator Begin = MBB.begin();
2379   while (LastPopI != Begin) {
2380     --LastPopI;
2381     if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2382         IsSVECalleeSave(LastPopI)) {
2383       ++LastPopI;
2384       break;
2385     } else if (CombineSPBump)
2386       fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2387                                         NeedsWinCFI, &HasWinCFI);
2388   }
2389 
2390   if (NeedsWinCFI) {
2391     // Note that there are cases where we insert SEH opcodes in the
2392     // epilogue when we had no SEH opcodes in the prologue. For
2393     // example, when there is no stack frame but there are stack
2394     // arguments. Insert the SEH_EpilogStart and remove it later if it
2395     // we didn't emit any SEH opcodes to avoid generating WinCFI for
2396     // functions that don't need it.
2397     BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2398         .setMIFlag(MachineInstr::FrameDestroy);
2399     EpilogStartI = LastPopI;
2400     --EpilogStartI;
2401   }
2402 
2403   if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2404     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2405     case SwiftAsyncFramePointerMode::DeploymentBased:
2406       // Avoid the reload as it is GOT relative, and instead fall back to the
2407       // hardcoded value below.  This allows a mismatch between the OS and
2408       // application without immediately terminating on the difference.
2409       [[fallthrough]];
2410     case SwiftAsyncFramePointerMode::Always:
2411       // We need to reset FP to its untagged state on return. Bit 60 is
2412       // currently used to show the presence of an extended frame.
2413 
2414       // BIC x29, x29, #0x1000_0000_0000_0000
2415       BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2416               AArch64::FP)
2417           .addUse(AArch64::FP)
2418           .addImm(0x10fe)
2419           .setMIFlag(MachineInstr::FrameDestroy);
2420       if (NeedsWinCFI) {
2421         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2422             .setMIFlags(MachineInstr::FrameDestroy);
2423         HasWinCFI = true;
2424       }
2425       break;
2426 
2427     case SwiftAsyncFramePointerMode::Never:
2428       break;
2429     }
2430   }
2431 
2432   const StackOffset &SVEStackSize = getSVEStackSize(MF);
2433 
2434   // If there is a single SP update, insert it before the ret and we're done.
2435   if (CombineSPBump) {
2436     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2437 
2438     // When we are about to restore the CSRs, the CFA register is SP again.
2439     if (EmitCFI && hasFP(MF)) {
2440       const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2441       unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2442       unsigned CFIIndex =
2443           MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2444       BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2445           .addCFIIndex(CFIIndex)
2446           .setMIFlags(MachineInstr::FrameDestroy);
2447     }
2448 
2449     emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2450                     StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2451                     TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2452                     &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2453     return;
2454   }
2455 
2456   NumBytes -= PrologueSaveSize;
2457   assert(NumBytes >= 0 && "Negative stack allocation size!?");
2458 
2459   // Process the SVE callee-saves to determine what space needs to be
2460   // deallocated.
2461   StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2462   MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2463   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2464     RestoreBegin = std::prev(RestoreEnd);
2465     while (RestoreBegin != MBB.begin() &&
2466            IsSVECalleeSave(std::prev(RestoreBegin)))
2467       --RestoreBegin;
2468 
2469     assert(IsSVECalleeSave(RestoreBegin) &&
2470            IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2471 
2472     StackOffset CalleeSavedSizeAsOffset =
2473         StackOffset::getScalable(CalleeSavedSize);
2474     DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2475     DeallocateAfter = CalleeSavedSizeAsOffset;
2476   }
2477 
2478   // Deallocate the SVE area.
2479   if (SVEStackSize) {
2480     // If we have stack realignment or variable sized objects on the stack,
2481     // restore the stack pointer from the frame pointer prior to SVE CSR
2482     // restoration.
2483     if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2484       if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2485         // Set SP to start of SVE callee-save area from which they can
2486         // be reloaded. The code below will deallocate the stack space
2487         // space by moving FP -> SP.
2488         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2489                         StackOffset::getScalable(-CalleeSavedSize), TII,
2490                         MachineInstr::FrameDestroy);
2491       }
2492     } else {
2493       if (AFI->getSVECalleeSavedStackSize()) {
2494         // Deallocate the non-SVE locals first before we can deallocate (and
2495         // restore callee saves) from the SVE area.
2496         emitFrameOffset(
2497             MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2498             StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2499             false, false, nullptr, EmitCFI && !hasFP(MF),
2500             SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2501         NumBytes = 0;
2502       }
2503 
2504       emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2505                       DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2506                       false, nullptr, EmitCFI && !hasFP(MF),
2507                       SVEStackSize +
2508                           StackOffset::getFixed(NumBytes + PrologueSaveSize));
2509 
2510       emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2511                       DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2512                       false, nullptr, EmitCFI && !hasFP(MF),
2513                       DeallocateAfter +
2514                           StackOffset::getFixed(NumBytes + PrologueSaveSize));
2515     }
2516     if (EmitCFI)
2517       emitCalleeSavedSVERestores(MBB, RestoreEnd);
2518   }
2519 
2520   if (!hasFP(MF)) {
2521     bool RedZone = canUseRedZone(MF);
2522     // If this was a redzone leaf function, we don't need to restore the
2523     // stack pointer (but we may need to pop stack args for fastcc).
2524     if (RedZone && AfterCSRPopSize == 0)
2525       return;
2526 
2527     // Pop the local variables off the stack. If there are no callee-saved
2528     // registers, it means we are actually positioned at the terminator and can
2529     // combine stack increment for the locals and the stack increment for
2530     // callee-popped arguments into (possibly) a single instruction and be done.
2531     bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2532     int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2533     if (NoCalleeSaveRestore)
2534       StackRestoreBytes += AfterCSRPopSize;
2535 
2536     emitFrameOffset(
2537         MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2538         StackOffset::getFixed(StackRestoreBytes), TII,
2539         MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2540         StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2541 
2542     // If we were able to combine the local stack pop with the argument pop,
2543     // then we're done.
2544     if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2545       return;
2546     }
2547 
2548     NumBytes = 0;
2549   }
2550 
2551   // Restore the original stack pointer.
2552   // FIXME: Rather than doing the math here, we should instead just use
2553   // non-post-indexed loads for the restores if we aren't actually going to
2554   // be able to save any instructions.
2555   if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2556     emitFrameOffset(
2557         MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2558         StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2559         TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2560   } else if (NumBytes)
2561     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2562                     StackOffset::getFixed(NumBytes), TII,
2563                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2564 
2565   // When we are about to restore the CSRs, the CFA register is SP again.
2566   if (EmitCFI && hasFP(MF)) {
2567     const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2568     unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2569     unsigned CFIIndex = MF.addFrameInst(
2570         MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2571     BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2572         .addCFIIndex(CFIIndex)
2573         .setMIFlags(MachineInstr::FrameDestroy);
2574   }
2575 
2576   // This must be placed after the callee-save restore code because that code
2577   // assumes the SP is at the same location as it was after the callee-save save
2578   // code in the prologue.
2579   if (AfterCSRPopSize) {
2580     assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2581                                   "interrupt may have clobbered");
2582 
2583     emitFrameOffset(
2584         MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2585         StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2586         false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2587         StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2588   }
2589 }
2590 
2591 bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const {
2592   return TargetFrameLowering::enableCFIFixup(MF) &&
2593          MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
2594 }
2595 
2596 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2597 /// debug info.  It's the same as what we use for resolving the code-gen
2598 /// references for now.  FIXME: This can go wrong when references are
2599 /// SP-relative and simple call frames aren't used.
2600 StackOffset
2601 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2602                                              Register &FrameReg) const {
2603   return resolveFrameIndexReference(
2604       MF, FI, FrameReg,
2605       /*PreferFP=*/
2606       MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress) ||
2607           MF.getFunction().hasFnAttribute(Attribute::SanitizeMemTag),
2608       /*ForSimm=*/false);
2609 }
2610 
2611 StackOffset
2612 AArch64FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
2613                                                    int FI) const {
2614   // This function serves to provide a comparable offset from a single reference
2615   // point (the value of SP at function entry) that can be used for analysis,
2616   // e.g. the stack-frame-layout analysis pass. It is not guaranteed to be
2617   // correct for all objects in the presence of VLA-area objects or dynamic
2618   // stack re-alignment.
2619 
2620   const auto &MFI = MF.getFrameInfo();
2621 
2622   int64_t ObjectOffset = MFI.getObjectOffset(FI);
2623   StackOffset SVEStackSize = getSVEStackSize(MF);
2624 
2625   // For VLA-area objects, just emit an offset at the end of the stack frame.
2626   // Whilst not quite correct, these objects do live at the end of the frame and
2627   // so it is more useful for analysis for the offset to reflect this.
2628   if (MFI.isVariableSizedObjectIndex(FI)) {
2629     return StackOffset::getFixed(-((int64_t)MFI.getStackSize())) - SVEStackSize;
2630   }
2631 
2632   // This is correct in the absence of any SVE stack objects.
2633   if (!SVEStackSize)
2634     return StackOffset::getFixed(ObjectOffset - getOffsetOfLocalArea());
2635 
2636   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2637   if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
2638     return StackOffset::get(-((int64_t)AFI->getCalleeSavedStackSize()),
2639                             ObjectOffset);
2640   }
2641 
2642   bool IsFixed = MFI.isFixedObjectIndex(FI);
2643   bool IsCSR =
2644       !IsFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2645 
2646   StackOffset ScalableOffset = {};
2647   if (!IsFixed && !IsCSR)
2648     ScalableOffset = -SVEStackSize;
2649 
2650   return StackOffset::getFixed(ObjectOffset) + ScalableOffset;
2651 }
2652 
2653 StackOffset
2654 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2655                                                      int FI) const {
2656   return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2657 }
2658 
2659 static StackOffset getFPOffset(const MachineFunction &MF,
2660                                int64_t ObjectOffset) {
2661   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2662   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2663   const Function &F = MF.getFunction();
2664   bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg());
2665   unsigned FixedObject =
2666       getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2667   int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2668   int64_t FPAdjust =
2669       CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2670   return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2671 }
2672 
2673 static StackOffset getStackOffset(const MachineFunction &MF,
2674                                   int64_t ObjectOffset) {
2675   const auto &MFI = MF.getFrameInfo();
2676   return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2677 }
2678 
2679 // TODO: This function currently does not work for scalable vectors.
2680 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2681                                                  int FI) const {
2682   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2683       MF.getSubtarget().getRegisterInfo());
2684   int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2685   return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2686              ? getFPOffset(MF, ObjectOffset).getFixed()
2687              : getStackOffset(MF, ObjectOffset).getFixed();
2688 }
2689 
2690 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2691     const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2692     bool ForSimm) const {
2693   const auto &MFI = MF.getFrameInfo();
2694   int64_t ObjectOffset = MFI.getObjectOffset(FI);
2695   bool isFixed = MFI.isFixedObjectIndex(FI);
2696   bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2697   return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2698                                      PreferFP, ForSimm);
2699 }
2700 
2701 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2702     const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2703     Register &FrameReg, bool PreferFP, bool ForSimm) const {
2704   const auto &MFI = MF.getFrameInfo();
2705   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2706       MF.getSubtarget().getRegisterInfo());
2707   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2708   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2709 
2710   int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2711   int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2712   bool isCSR =
2713       !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2714 
2715   const StackOffset &SVEStackSize = getSVEStackSize(MF);
2716 
2717   // Use frame pointer to reference fixed objects. Use it for locals if
2718   // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2719   // reliable as a base). Make sure useFPForScavengingIndex() does the
2720   // right thing for the emergency spill slot.
2721   bool UseFP = false;
2722   if (AFI->hasStackFrame() && !isSVE) {
2723     // We shouldn't prefer using the FP to access fixed-sized stack objects when
2724     // there are scalable (SVE) objects in between the FP and the fixed-sized
2725     // objects.
2726     PreferFP &= !SVEStackSize;
2727 
2728     // Note: Keeping the following as multiple 'if' statements rather than
2729     // merging to a single expression for readability.
2730     //
2731     // Argument access should always use the FP.
2732     if (isFixed) {
2733       UseFP = hasFP(MF);
2734     } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2735       // References to the CSR area must use FP if we're re-aligning the stack
2736       // since the dynamically-sized alignment padding is between the SP/BP and
2737       // the CSR area.
2738       assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2739       UseFP = true;
2740     } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2741       // If the FPOffset is negative and we're producing a signed immediate, we
2742       // have to keep in mind that the available offset range for negative
2743       // offsets is smaller than for positive ones. If an offset is available
2744       // via the FP and the SP, use whichever is closest.
2745       bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2746       PreferFP |= Offset > -FPOffset && !SVEStackSize;
2747 
2748       if (MFI.hasVarSizedObjects()) {
2749         // If we have variable sized objects, we can use either FP or BP, as the
2750         // SP offset is unknown. We can use the base pointer if we have one and
2751         // FP is not preferred. If not, we're stuck with using FP.
2752         bool CanUseBP = RegInfo->hasBasePointer(MF);
2753         if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2754           UseFP = PreferFP;
2755         else if (!CanUseBP) // Can't use BP. Forced to use FP.
2756           UseFP = true;
2757         // else we can use BP and FP, but the offset from FP won't fit.
2758         // That will make us scavenge registers which we can probably avoid by
2759         // using BP. If it won't fit for BP either, we'll scavenge anyway.
2760       } else if (FPOffset >= 0) {
2761         // Use SP or FP, whichever gives us the best chance of the offset
2762         // being in range for direct access. If the FPOffset is positive,
2763         // that'll always be best, as the SP will be even further away.
2764         UseFP = true;
2765       } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2766         // Funclets access the locals contained in the parent's stack frame
2767         // via the frame pointer, so we have to use the FP in the parent
2768         // function.
2769         (void) Subtarget;
2770         assert(Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(),
2771                                             MF.getFunction().isVarArg()) &&
2772                "Funclets should only be present on Win64");
2773         UseFP = true;
2774       } else {
2775         // We have the choice between FP and (SP or BP).
2776         if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2777           UseFP = true;
2778       }
2779     }
2780   }
2781 
2782   assert(
2783       ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2784       "In the presence of dynamic stack pointer realignment, "
2785       "non-argument/CSR objects cannot be accessed through the frame pointer");
2786 
2787   if (isSVE) {
2788     StackOffset FPOffset =
2789         StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2790     StackOffset SPOffset =
2791         SVEStackSize +
2792         StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2793                          ObjectOffset);
2794     // Always use the FP for SVE spills if available and beneficial.
2795     if (hasFP(MF) && (SPOffset.getFixed() ||
2796                       FPOffset.getScalable() < SPOffset.getScalable() ||
2797                       RegInfo->hasStackRealignment(MF))) {
2798       FrameReg = RegInfo->getFrameRegister(MF);
2799       return FPOffset;
2800     }
2801 
2802     FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2803                                            : (unsigned)AArch64::SP;
2804     return SPOffset;
2805   }
2806 
2807   StackOffset ScalableOffset = {};
2808   if (UseFP && !(isFixed || isCSR))
2809     ScalableOffset = -SVEStackSize;
2810   if (!UseFP && (isFixed || isCSR))
2811     ScalableOffset = SVEStackSize;
2812 
2813   if (UseFP) {
2814     FrameReg = RegInfo->getFrameRegister(MF);
2815     return StackOffset::getFixed(FPOffset) + ScalableOffset;
2816   }
2817 
2818   // Use the base pointer if we have one.
2819   if (RegInfo->hasBasePointer(MF))
2820     FrameReg = RegInfo->getBaseRegister();
2821   else {
2822     assert(!MFI.hasVarSizedObjects() &&
2823            "Can't use SP when we have var sized objects.");
2824     FrameReg = AArch64::SP;
2825     // If we're using the red zone for this function, the SP won't actually
2826     // be adjusted, so the offsets will be negative. They're also all
2827     // within range of the signed 9-bit immediate instructions.
2828     if (canUseRedZone(MF))
2829       Offset -= AFI->getLocalStackSize();
2830   }
2831 
2832   return StackOffset::getFixed(Offset) + ScalableOffset;
2833 }
2834 
2835 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2836   // Do not set a kill flag on values that are also marked as live-in. This
2837   // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2838   // callee saved registers.
2839   // Omitting the kill flags is conservatively correct even if the live-in
2840   // is not used after all.
2841   bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2842   return getKillRegState(!IsLiveIn);
2843 }
2844 
2845 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2846   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2847   AttributeList Attrs = MF.getFunction().getAttributes();
2848   return Subtarget.isTargetMachO() &&
2849          !(Subtarget.getTargetLowering()->supportSwiftError() &&
2850            Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2851          MF.getFunction().getCallingConv() != CallingConv::SwiftTail;
2852 }
2853 
2854 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2855                                              bool NeedsWinCFI, bool IsFirst,
2856                                              const TargetRegisterInfo *TRI) {
2857   // If we are generating register pairs for a Windows function that requires
2858   // EH support, then pair consecutive registers only.  There are no unwind
2859   // opcodes for saves/restores of non-consectuve register pairs.
2860   // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2861   // save_lrpair.
2862   // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2863 
2864   if (Reg2 == AArch64::FP)
2865     return true;
2866   if (!NeedsWinCFI)
2867     return false;
2868   if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2869     return false;
2870   // If pairing a GPR with LR, the pair can be described by the save_lrpair
2871   // opcode. If this is the first register pair, it would end up with a
2872   // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2873   // if LR is paired with something else than the first register.
2874   // The save_lrpair opcode requires the first register to be an odd one.
2875   if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2876       (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2877     return false;
2878   return true;
2879 }
2880 
2881 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2882 /// WindowsCFI requires that only consecutive registers can be paired.
2883 /// LR and FP need to be allocated together when the frame needs to save
2884 /// the frame-record. This means any other register pairing with LR is invalid.
2885 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2886                                       bool UsesWinAAPCS, bool NeedsWinCFI,
2887                                       bool NeedsFrameRecord, bool IsFirst,
2888                                       const TargetRegisterInfo *TRI) {
2889   if (UsesWinAAPCS)
2890     return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2891                                             TRI);
2892 
2893   // If we need to store the frame record, don't pair any register
2894   // with LR other than FP.
2895   if (NeedsFrameRecord)
2896     return Reg2 == AArch64::LR;
2897 
2898   return false;
2899 }
2900 
2901 namespace {
2902 
2903 struct RegPairInfo {
2904   unsigned Reg1 = AArch64::NoRegister;
2905   unsigned Reg2 = AArch64::NoRegister;
2906   int FrameIdx;
2907   int Offset;
2908   enum RegType { GPR, FPR64, FPR128, PPR, ZPR, VG } Type;
2909 
2910   RegPairInfo() = default;
2911 
2912   bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2913 
2914   unsigned getScale() const {
2915     switch (Type) {
2916     case PPR:
2917       return 2;
2918     case GPR:
2919     case FPR64:
2920     case VG:
2921       return 8;
2922     case ZPR:
2923     case FPR128:
2924       return 16;
2925     }
2926     llvm_unreachable("Unsupported type");
2927   }
2928 
2929   bool isScalable() const { return Type == PPR || Type == ZPR; }
2930 };
2931 
2932 } // end anonymous namespace
2933 
2934 static void computeCalleeSaveRegisterPairs(
2935     MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2936     const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2937     bool NeedsFrameRecord) {
2938 
2939   if (CSI.empty())
2940     return;
2941 
2942   bool IsWindows = isTargetWindows(MF);
2943   bool NeedsWinCFI = needsWinCFI(MF);
2944   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2945   MachineFrameInfo &MFI = MF.getFrameInfo();
2946   CallingConv::ID CC = MF.getFunction().getCallingConv();
2947   unsigned Count = CSI.size();
2948   (void)CC;
2949   // MachO's compact unwind format relies on all registers being stored in
2950   // pairs.
2951   assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2952           CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2953           CC == CallingConv::Win64 || (Count & 1) == 0) &&
2954          "Odd number of callee-saved regs to spill!");
2955   int ByteOffset = AFI->getCalleeSavedStackSize();
2956   int StackFillDir = -1;
2957   int RegInc = 1;
2958   unsigned FirstReg = 0;
2959   if (NeedsWinCFI) {
2960     // For WinCFI, fill the stack from the bottom up.
2961     ByteOffset = 0;
2962     StackFillDir = 1;
2963     // As the CSI array is reversed to match PrologEpilogInserter, iterate
2964     // backwards, to pair up registers starting from lower numbered registers.
2965     RegInc = -1;
2966     FirstReg = Count - 1;
2967   }
2968   int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2969   bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2970   Register LastReg = 0;
2971 
2972   // When iterating backwards, the loop condition relies on unsigned wraparound.
2973   for (unsigned i = FirstReg; i < Count; i += RegInc) {
2974     RegPairInfo RPI;
2975     RPI.Reg1 = CSI[i].getReg();
2976 
2977     if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2978       RPI.Type = RegPairInfo::GPR;
2979     else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2980       RPI.Type = RegPairInfo::FPR64;
2981     else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2982       RPI.Type = RegPairInfo::FPR128;
2983     else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2984       RPI.Type = RegPairInfo::ZPR;
2985     else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2986       RPI.Type = RegPairInfo::PPR;
2987     else if (RPI.Reg1 == AArch64::VG)
2988       RPI.Type = RegPairInfo::VG;
2989     else
2990       llvm_unreachable("Unsupported register class.");
2991 
2992     // Add the stack hazard size as we transition from GPR->FPR CSRs.
2993     if (AFI->hasStackHazardSlotIndex() &&
2994         (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
2995         AArch64InstrInfo::isFpOrNEON(RPI.Reg1))
2996       ByteOffset += StackFillDir * StackHazardSize;
2997     LastReg = RPI.Reg1;
2998 
2999     // Add the next reg to the pair if it is in the same register class.
3000     if (unsigned(i + RegInc) < Count && !AFI->hasStackHazardSlotIndex()) {
3001       Register NextReg = CSI[i + RegInc].getReg();
3002       bool IsFirst = i == FirstReg;
3003       switch (RPI.Type) {
3004       case RegPairInfo::GPR:
3005         if (AArch64::GPR64RegClass.contains(NextReg) &&
3006             !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
3007                                        NeedsWinCFI, NeedsFrameRecord, IsFirst,
3008                                        TRI))
3009           RPI.Reg2 = NextReg;
3010         break;
3011       case RegPairInfo::FPR64:
3012         if (AArch64::FPR64RegClass.contains(NextReg) &&
3013             !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
3014                                               IsFirst, TRI))
3015           RPI.Reg2 = NextReg;
3016         break;
3017       case RegPairInfo::FPR128:
3018         if (AArch64::FPR128RegClass.contains(NextReg))
3019           RPI.Reg2 = NextReg;
3020         break;
3021       case RegPairInfo::PPR:
3022         break;
3023       case RegPairInfo::ZPR:
3024         if (AFI->getPredicateRegForFillSpill() != 0)
3025           if (((RPI.Reg1 - AArch64::Z0) & 1) == 0 && (NextReg == RPI.Reg1 + 1))
3026             RPI.Reg2 = NextReg;
3027         break;
3028       case RegPairInfo::VG:
3029         break;
3030       }
3031     }
3032 
3033     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
3034     // list to come in sorted by frame index so that we can issue the store
3035     // pair instructions directly. Assert if we see anything otherwise.
3036     //
3037     // The order of the registers in the list is controlled by
3038     // getCalleeSavedRegs(), so they will always be in-order, as well.
3039     assert((!RPI.isPaired() ||
3040             (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
3041            "Out of order callee saved regs!");
3042 
3043     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
3044             RPI.Reg1 == AArch64::LR) &&
3045            "FrameRecord must be allocated together with LR");
3046 
3047     // Windows AAPCS has FP and LR reversed.
3048     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
3049             RPI.Reg2 == AArch64::LR) &&
3050            "FrameRecord must be allocated together with LR");
3051 
3052     // MachO's compact unwind format relies on all registers being stored in
3053     // adjacent register pairs.
3054     assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
3055             CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
3056             CC == CallingConv::Win64 ||
3057             (RPI.isPaired() &&
3058              ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
3059               RPI.Reg1 + 1 == RPI.Reg2))) &&
3060            "Callee-save registers not saved as adjacent register pair!");
3061 
3062     RPI.FrameIdx = CSI[i].getFrameIdx();
3063     if (NeedsWinCFI &&
3064         RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
3065       RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
3066     int Scale = RPI.getScale();
3067 
3068     int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
3069     assert(OffsetPre % Scale == 0);
3070 
3071     if (RPI.isScalable())
3072       ScalableByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
3073     else
3074       ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
3075 
3076     // Swift's async context is directly before FP, so allocate an extra
3077     // 8 bytes for it.
3078     if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
3079         ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
3080          (IsWindows && RPI.Reg2 == AArch64::LR)))
3081       ByteOffset += StackFillDir * 8;
3082 
3083     // Round up size of non-pair to pair size if we need to pad the
3084     // callee-save area to ensure 16-byte alignment.
3085     if (NeedGapToAlignStack && !NeedsWinCFI && !RPI.isScalable() &&
3086         RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired() &&
3087         ByteOffset % 16 != 0) {
3088       ByteOffset += 8 * StackFillDir;
3089       assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
3090       // A stack frame with a gap looks like this, bottom up:
3091       // d9, d8. x21, gap, x20, x19.
3092       // Set extra alignment on the x21 object to create the gap above it.
3093       MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
3094       NeedGapToAlignStack = false;
3095     }
3096 
3097     int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
3098     assert(OffsetPost % Scale == 0);
3099     // If filling top down (default), we want the offset after incrementing it.
3100     // If filling bottom up (WinCFI) we need the original offset.
3101     int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
3102 
3103     // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
3104     // Swift context can directly precede FP.
3105     if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
3106         ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
3107          (IsWindows && RPI.Reg2 == AArch64::LR)))
3108       Offset += 8;
3109     RPI.Offset = Offset / Scale;
3110 
3111     assert((!RPI.isPaired() ||
3112             (!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
3113             (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
3114            "Offset out of bounds for LDP/STP immediate");
3115 
3116     // Save the offset to frame record so that the FP register can point to the
3117     // innermost frame record (spilled FP and LR registers).
3118     if (NeedsFrameRecord &&
3119         ((!IsWindows && RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
3120          (IsWindows && RPI.Reg1 == AArch64::FP && RPI.Reg2 == AArch64::LR)))
3121       AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
3122 
3123     RegPairs.push_back(RPI);
3124     if (RPI.isPaired())
3125       i += RegInc;
3126   }
3127   if (NeedsWinCFI) {
3128     // If we need an alignment gap in the stack, align the topmost stack
3129     // object. A stack frame with a gap looks like this, bottom up:
3130     // x19, d8. d9, gap.
3131     // Set extra alignment on the topmost stack object (the first element in
3132     // CSI, which goes top down), to create the gap above it.
3133     if (AFI->hasCalleeSaveStackFreeSpace())
3134       MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
3135     // We iterated bottom up over the registers; flip RegPairs back to top
3136     // down order.
3137     std::reverse(RegPairs.begin(), RegPairs.end());
3138   }
3139 }
3140 
3141 bool AArch64FrameLowering::spillCalleeSavedRegisters(
3142     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
3143     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3144   MachineFunction &MF = *MBB.getParent();
3145   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3146   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3147   bool NeedsWinCFI = needsWinCFI(MF);
3148   DebugLoc DL;
3149   SmallVector<RegPairInfo, 8> RegPairs;
3150 
3151   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
3152 
3153   MachineRegisterInfo &MRI = MF.getRegInfo();
3154   // Refresh the reserved regs in case there are any potential changes since the
3155   // last freeze.
3156   MRI.freezeReservedRegs();
3157 
3158   if (homogeneousPrologEpilog(MF)) {
3159     auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
3160                    .setMIFlag(MachineInstr::FrameSetup);
3161 
3162     for (auto &RPI : RegPairs) {
3163       MIB.addReg(RPI.Reg1);
3164       MIB.addReg(RPI.Reg2);
3165 
3166       // Update register live in.
3167       if (!MRI.isReserved(RPI.Reg1))
3168         MBB.addLiveIn(RPI.Reg1);
3169       if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2))
3170         MBB.addLiveIn(RPI.Reg2);
3171     }
3172     return true;
3173   }
3174   bool PTrueCreated = false;
3175   for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
3176     unsigned Reg1 = RPI.Reg1;
3177     unsigned Reg2 = RPI.Reg2;
3178     unsigned StrOpc;
3179 
3180     // Issue sequence of spills for cs regs.  The first spill may be converted
3181     // to a pre-decrement store later by emitPrologue if the callee-save stack
3182     // area allocation can't be combined with the local stack area allocation.
3183     // For example:
3184     //    stp     x22, x21, [sp, #0]     // addImm(+0)
3185     //    stp     x20, x19, [sp, #16]    // addImm(+2)
3186     //    stp     fp, lr, [sp, #32]      // addImm(+4)
3187     // Rationale: This sequence saves uop updates compared to a sequence of
3188     // pre-increment spills like stp xi,xj,[sp,#-16]!
3189     // Note: Similar rationale and sequence for restores in epilog.
3190     unsigned Size;
3191     Align Alignment;
3192     switch (RPI.Type) {
3193     case RegPairInfo::GPR:
3194       StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
3195       Size = 8;
3196       Alignment = Align(8);
3197       break;
3198     case RegPairInfo::FPR64:
3199       StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
3200       Size = 8;
3201       Alignment = Align(8);
3202       break;
3203     case RegPairInfo::FPR128:
3204       StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
3205       Size = 16;
3206       Alignment = Align(16);
3207       break;
3208     case RegPairInfo::ZPR:
3209       StrOpc = RPI.isPaired() ? AArch64::ST1B_2Z_IMM : AArch64::STR_ZXI;
3210       Size = 16;
3211       Alignment = Align(16);
3212       break;
3213     case RegPairInfo::PPR:
3214       StrOpc = AArch64::STR_PXI;
3215       Size = 2;
3216       Alignment = Align(2);
3217       break;
3218     case RegPairInfo::VG:
3219       StrOpc = AArch64::STRXui;
3220       Size = 8;
3221       Alignment = Align(8);
3222       break;
3223     }
3224 
3225     unsigned X0Scratch = AArch64::NoRegister;
3226     if (Reg1 == AArch64::VG) {
3227       // Find an available register to store value of VG to.
3228       Reg1 = findScratchNonCalleeSaveRegister(&MBB);
3229       assert(Reg1 != AArch64::NoRegister);
3230       SMEAttrs Attrs(MF.getFunction());
3231 
3232       if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface() &&
3233           AFI->getStreamingVGIdx() == std::numeric_limits<int>::max()) {
3234         // For locally-streaming functions, we need to store both the streaming
3235         // & non-streaming VG. Spill the streaming value first.
3236         BuildMI(MBB, MI, DL, TII.get(AArch64::RDSVLI_XI), Reg1)
3237             .addImm(1)
3238             .setMIFlag(MachineInstr::FrameSetup);
3239         BuildMI(MBB, MI, DL, TII.get(AArch64::UBFMXri), Reg1)
3240             .addReg(Reg1)
3241             .addImm(3)
3242             .addImm(63)
3243             .setMIFlag(MachineInstr::FrameSetup);
3244 
3245         AFI->setStreamingVGIdx(RPI.FrameIdx);
3246       } else if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
3247         BuildMI(MBB, MI, DL, TII.get(AArch64::CNTD_XPiI), Reg1)
3248             .addImm(31)
3249             .addImm(1)
3250             .setMIFlag(MachineInstr::FrameSetup);
3251         AFI->setVGIdx(RPI.FrameIdx);
3252       } else {
3253         const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
3254         if (llvm::any_of(
3255                 MBB.liveins(),
3256                 [&STI](const MachineBasicBlock::RegisterMaskPair &LiveIn) {
3257                   return STI.getRegisterInfo()->isSuperOrSubRegisterEq(
3258                       AArch64::X0, LiveIn.PhysReg);
3259                 }))
3260           X0Scratch = Reg1;
3261 
3262         if (X0Scratch != AArch64::NoRegister)
3263           BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), Reg1)
3264               .addReg(AArch64::XZR)
3265               .addReg(AArch64::X0, RegState::Undef)
3266               .addReg(AArch64::X0, RegState::Implicit)
3267               .setMIFlag(MachineInstr::FrameSetup);
3268 
3269         const uint32_t *RegMask = TRI->getCallPreservedMask(
3270             MF,
3271             CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1);
3272         BuildMI(MBB, MI, DL, TII.get(AArch64::BL))
3273             .addExternalSymbol("__arm_get_current_vg")
3274             .addRegMask(RegMask)
3275             .addReg(AArch64::X0, RegState::ImplicitDefine)
3276             .setMIFlag(MachineInstr::FrameSetup);
3277         Reg1 = AArch64::X0;
3278         AFI->setVGIdx(RPI.FrameIdx);
3279       }
3280     }
3281 
3282     LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
3283                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
3284                dbgs() << ") -> fi#(" << RPI.FrameIdx;
3285                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
3286                dbgs() << ")\n");
3287 
3288     assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
3289            "Windows unwdinding requires a consecutive (FP,LR) pair");
3290     // Windows unwind codes require consecutive registers if registers are
3291     // paired.  Make the switch here, so that the code below will save (x,x+1)
3292     // and not (x+1,x).
3293     unsigned FrameIdxReg1 = RPI.FrameIdx;
3294     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
3295     if (NeedsWinCFI && RPI.isPaired()) {
3296       std::swap(Reg1, Reg2);
3297       std::swap(FrameIdxReg1, FrameIdxReg2);
3298     }
3299 
3300     if (RPI.isPaired() && RPI.isScalable()) {
3301       [[maybe_unused]] const AArch64Subtarget &Subtarget =
3302                               MF.getSubtarget<AArch64Subtarget>();
3303       AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3304       unsigned PnReg = AFI->getPredicateRegForFillSpill();
3305       assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) &&
3306              "Expects SVE2.1 or SME2 target and a predicate register");
3307 #ifdef EXPENSIVE_CHECKS
3308       auto IsPPR = [](const RegPairInfo &c) {
3309         return c.Reg1 == RegPairInfo::PPR;
3310       };
3311       auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR);
3312       auto IsZPR = [](const RegPairInfo &c) {
3313         return c.Type == RegPairInfo::ZPR;
3314       };
3315       auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR);
3316       assert(!(PPRBegin < ZPRBegin) &&
3317              "Expected callee save predicate to be handled first");
3318 #endif
3319       if (!PTrueCreated) {
3320         PTrueCreated = true;
3321         BuildMI(MBB, MI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
3322             .setMIFlags(MachineInstr::FrameSetup);
3323       }
3324       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
3325       if (!MRI.isReserved(Reg1))
3326         MBB.addLiveIn(Reg1);
3327       if (!MRI.isReserved(Reg2))
3328         MBB.addLiveIn(Reg2);
3329       MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0));
3330       MIB.addMemOperand(MF.getMachineMemOperand(
3331           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3332           MachineMemOperand::MOStore, Size, Alignment));
3333       MIB.addReg(PnReg);
3334       MIB.addReg(AArch64::SP)
3335           .addImm(RPI.Offset) // [sp, #offset*scale],
3336                               // where factor*scale is implicit
3337           .setMIFlag(MachineInstr::FrameSetup);
3338       MIB.addMemOperand(MF.getMachineMemOperand(
3339           MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3340           MachineMemOperand::MOStore, Size, Alignment));
3341       if (NeedsWinCFI)
3342         InsertSEH(MIB, TII, MachineInstr::FrameSetup);
3343     } else { // The code when the pair of ZReg is not present
3344       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
3345       if (!MRI.isReserved(Reg1))
3346         MBB.addLiveIn(Reg1);
3347       if (RPI.isPaired()) {
3348         if (!MRI.isReserved(Reg2))
3349           MBB.addLiveIn(Reg2);
3350         MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
3351         MIB.addMemOperand(MF.getMachineMemOperand(
3352             MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3353             MachineMemOperand::MOStore, Size, Alignment));
3354       }
3355       MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
3356           .addReg(AArch64::SP)
3357           .addImm(RPI.Offset) // [sp, #offset*scale],
3358                               // where factor*scale is implicit
3359           .setMIFlag(MachineInstr::FrameSetup);
3360       MIB.addMemOperand(MF.getMachineMemOperand(
3361           MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3362           MachineMemOperand::MOStore, Size, Alignment));
3363       if (NeedsWinCFI)
3364         InsertSEH(MIB, TII, MachineInstr::FrameSetup);
3365     }
3366     // Update the StackIDs of the SVE stack slots.
3367     MachineFrameInfo &MFI = MF.getFrameInfo();
3368     if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) {
3369       MFI.setStackID(FrameIdxReg1, TargetStackID::ScalableVector);
3370       if (RPI.isPaired())
3371         MFI.setStackID(FrameIdxReg2, TargetStackID::ScalableVector);
3372     }
3373 
3374     if (X0Scratch != AArch64::NoRegister)
3375       BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), AArch64::X0)
3376           .addReg(AArch64::XZR)
3377           .addReg(X0Scratch, RegState::Undef)
3378           .addReg(X0Scratch, RegState::Implicit)
3379           .setMIFlag(MachineInstr::FrameSetup);
3380   }
3381   return true;
3382 }
3383 
3384 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
3385     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3386     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3387   MachineFunction &MF = *MBB.getParent();
3388   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3389   DebugLoc DL;
3390   SmallVector<RegPairInfo, 8> RegPairs;
3391   bool NeedsWinCFI = needsWinCFI(MF);
3392 
3393   if (MBBI != MBB.end())
3394     DL = MBBI->getDebugLoc();
3395 
3396   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
3397   if (homogeneousPrologEpilog(MF, &MBB)) {
3398     auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
3399                    .setMIFlag(MachineInstr::FrameDestroy);
3400     for (auto &RPI : RegPairs) {
3401       MIB.addReg(RPI.Reg1, RegState::Define);
3402       MIB.addReg(RPI.Reg2, RegState::Define);
3403     }
3404     return true;
3405   }
3406 
3407   // For performance reasons restore SVE register in increasing order
3408   auto IsPPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::PPR; };
3409   auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR);
3410   auto PPREnd = std::find_if_not(PPRBegin, RegPairs.end(), IsPPR);
3411   std::reverse(PPRBegin, PPREnd);
3412   auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; };
3413   auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR);
3414   auto ZPREnd = std::find_if_not(ZPRBegin, RegPairs.end(), IsZPR);
3415   std::reverse(ZPRBegin, ZPREnd);
3416 
3417   bool PTrueCreated = false;
3418   for (const RegPairInfo &RPI : RegPairs) {
3419     unsigned Reg1 = RPI.Reg1;
3420     unsigned Reg2 = RPI.Reg2;
3421 
3422     // Issue sequence of restores for cs regs. The last restore may be converted
3423     // to a post-increment load later by emitEpilogue if the callee-save stack
3424     // area allocation can't be combined with the local stack area allocation.
3425     // For example:
3426     //    ldp     fp, lr, [sp, #32]       // addImm(+4)
3427     //    ldp     x20, x19, [sp, #16]     // addImm(+2)
3428     //    ldp     x22, x21, [sp, #0]      // addImm(+0)
3429     // Note: see comment in spillCalleeSavedRegisters()
3430     unsigned LdrOpc;
3431     unsigned Size;
3432     Align Alignment;
3433     switch (RPI.Type) {
3434     case RegPairInfo::GPR:
3435       LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
3436       Size = 8;
3437       Alignment = Align(8);
3438       break;
3439     case RegPairInfo::FPR64:
3440       LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
3441       Size = 8;
3442       Alignment = Align(8);
3443       break;
3444     case RegPairInfo::FPR128:
3445       LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
3446       Size = 16;
3447       Alignment = Align(16);
3448       break;
3449     case RegPairInfo::ZPR:
3450       LdrOpc = RPI.isPaired() ? AArch64::LD1B_2Z_IMM : AArch64::LDR_ZXI;
3451       Size = 16;
3452       Alignment = Align(16);
3453       break;
3454     case RegPairInfo::PPR:
3455       LdrOpc = AArch64::LDR_PXI;
3456       Size = 2;
3457       Alignment = Align(2);
3458       break;
3459     case RegPairInfo::VG:
3460       continue;
3461     }
3462     LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
3463                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
3464                dbgs() << ") -> fi#(" << RPI.FrameIdx;
3465                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
3466                dbgs() << ")\n");
3467 
3468     // Windows unwind codes require consecutive registers if registers are
3469     // paired.  Make the switch here, so that the code below will save (x,x+1)
3470     // and not (x+1,x).
3471     unsigned FrameIdxReg1 = RPI.FrameIdx;
3472     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
3473     if (NeedsWinCFI && RPI.isPaired()) {
3474       std::swap(Reg1, Reg2);
3475       std::swap(FrameIdxReg1, FrameIdxReg2);
3476     }
3477 
3478     AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3479     if (RPI.isPaired() && RPI.isScalable()) {
3480       [[maybe_unused]] const AArch64Subtarget &Subtarget =
3481                               MF.getSubtarget<AArch64Subtarget>();
3482       unsigned PnReg = AFI->getPredicateRegForFillSpill();
3483       assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) &&
3484              "Expects SVE2.1 or SME2 target and a predicate register");
3485 #ifdef EXPENSIVE_CHECKS
3486       assert(!(PPRBegin < ZPRBegin) &&
3487              "Expected callee save predicate to be handled first");
3488 #endif
3489       if (!PTrueCreated) {
3490         PTrueCreated = true;
3491         BuildMI(MBB, MBBI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
3492             .setMIFlags(MachineInstr::FrameDestroy);
3493       }
3494       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
3495       MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0),
3496                  getDefRegState(true));
3497       MIB.addMemOperand(MF.getMachineMemOperand(
3498           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3499           MachineMemOperand::MOLoad, Size, Alignment));
3500       MIB.addReg(PnReg);
3501       MIB.addReg(AArch64::SP)
3502           .addImm(RPI.Offset) // [sp, #offset*scale]
3503                               // where factor*scale is implicit
3504           .setMIFlag(MachineInstr::FrameDestroy);
3505       MIB.addMemOperand(MF.getMachineMemOperand(
3506           MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3507           MachineMemOperand::MOLoad, Size, Alignment));
3508       if (NeedsWinCFI)
3509         InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
3510     } else {
3511       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
3512       if (RPI.isPaired()) {
3513         MIB.addReg(Reg2, getDefRegState(true));
3514         MIB.addMemOperand(MF.getMachineMemOperand(
3515             MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3516             MachineMemOperand::MOLoad, Size, Alignment));
3517       }
3518       MIB.addReg(Reg1, getDefRegState(true));
3519       MIB.addReg(AArch64::SP)
3520           .addImm(RPI.Offset) // [sp, #offset*scale]
3521                               // where factor*scale is implicit
3522           .setMIFlag(MachineInstr::FrameDestroy);
3523       MIB.addMemOperand(MF.getMachineMemOperand(
3524           MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3525           MachineMemOperand::MOLoad, Size, Alignment));
3526       if (NeedsWinCFI)
3527         InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
3528     }
3529   }
3530   return true;
3531 }
3532 
3533 // Return the FrameID for a MMO.
3534 static std::optional<int> getMMOFrameID(MachineMemOperand *MMO,
3535                                         const MachineFrameInfo &MFI) {
3536   auto *PSV =
3537       dyn_cast_or_null<FixedStackPseudoSourceValue>(MMO->getPseudoValue());
3538   if (PSV)
3539     return std::optional<int>(PSV->getFrameIndex());
3540 
3541   if (MMO->getValue()) {
3542     if (auto *Al = dyn_cast<AllocaInst>(getUnderlyingObject(MMO->getValue()))) {
3543       for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd();
3544            FI++)
3545         if (MFI.getObjectAllocation(FI) == Al)
3546           return FI;
3547     }
3548   }
3549 
3550   return std::nullopt;
3551 }
3552 
3553 // Return the FrameID for a Load/Store instruction by looking at the first MMO.
3554 static std::optional<int> getLdStFrameID(const MachineInstr &MI,
3555                                          const MachineFrameInfo &MFI) {
3556   if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
3557     return std::nullopt;
3558 
3559   return getMMOFrameID(*MI.memoperands_begin(), MFI);
3560 }
3561 
3562 // Check if a Hazard slot is needed for the current function, and if so create
3563 // one for it. The index is stored in AArch64FunctionInfo->StackHazardSlotIndex,
3564 // which can be used to determine if any hazard padding is needed.
3565 void AArch64FrameLowering::determineStackHazardSlot(
3566     MachineFunction &MF, BitVector &SavedRegs) const {
3567   if (StackHazardSize == 0 || StackHazardSize % 16 != 0 ||
3568       MF.getInfo<AArch64FunctionInfo>()->hasStackHazardSlotIndex())
3569     return;
3570 
3571   // Stack hazards are only needed in streaming functions.
3572   SMEAttrs Attrs(MF.getFunction());
3573   if (!StackHazardInNonStreaming && Attrs.hasNonStreamingInterfaceAndBody())
3574     return;
3575 
3576   MachineFrameInfo &MFI = MF.getFrameInfo();
3577 
3578   // Add a hazard slot if there are any CSR FPR registers, or are any fp-only
3579   // stack objects.
3580   bool HasFPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) {
3581     return AArch64::FPR64RegClass.contains(Reg) ||
3582            AArch64::FPR128RegClass.contains(Reg) ||
3583            AArch64::ZPRRegClass.contains(Reg) ||
3584            AArch64::PPRRegClass.contains(Reg);
3585   });
3586   bool HasFPRStackObjects = false;
3587   if (!HasFPRCSRs) {
3588     std::vector<unsigned> FrameObjects(MFI.getObjectIndexEnd());
3589     for (auto &MBB : MF) {
3590       for (auto &MI : MBB) {
3591         std::optional<int> FI = getLdStFrameID(MI, MFI);
3592         if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) {
3593           if (MFI.getStackID(*FI) == TargetStackID::ScalableVector ||
3594               AArch64InstrInfo::isFpOrNEON(MI))
3595             FrameObjects[*FI] |= 2;
3596           else
3597             FrameObjects[*FI] |= 1;
3598         }
3599       }
3600     }
3601     HasFPRStackObjects =
3602         any_of(FrameObjects, [](unsigned B) { return (B & 3) == 2; });
3603   }
3604 
3605   if (HasFPRCSRs || HasFPRStackObjects) {
3606     int ID = MFI.CreateStackObject(StackHazardSize, Align(16), false);
3607     LLVM_DEBUG(dbgs() << "Created Hazard slot at " << ID << " size "
3608                       << StackHazardSize << "\n");
3609     MF.getInfo<AArch64FunctionInfo>()->setStackHazardSlotIndex(ID);
3610   }
3611 }
3612 
3613 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
3614                                                 BitVector &SavedRegs,
3615                                                 RegScavenger *RS) const {
3616   // All calls are tail calls in GHC calling conv, and functions have no
3617   // prologue/epilogue.
3618   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
3619     return;
3620 
3621   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3622   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
3623       MF.getSubtarget().getRegisterInfo());
3624   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
3625   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3626   unsigned UnspilledCSGPR = AArch64::NoRegister;
3627   unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
3628 
3629   MachineFrameInfo &MFI = MF.getFrameInfo();
3630   const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
3631 
3632   unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
3633                                 ? RegInfo->getBaseRegister()
3634                                 : (unsigned)AArch64::NoRegister;
3635 
3636   unsigned ExtraCSSpill = 0;
3637   bool HasUnpairedGPR64 = false;
3638   // Figure out which callee-saved registers to save/restore.
3639   for (unsigned i = 0; CSRegs[i]; ++i) {
3640     const unsigned Reg = CSRegs[i];
3641 
3642     // Add the base pointer register to SavedRegs if it is callee-save.
3643     if (Reg == BasePointerReg)
3644       SavedRegs.set(Reg);
3645 
3646     bool RegUsed = SavedRegs.test(Reg);
3647     unsigned PairedReg = AArch64::NoRegister;
3648     const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg);
3649     if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) ||
3650         AArch64::FPR128RegClass.contains(Reg)) {
3651       // Compensate for odd numbers of GP CSRs.
3652       // For now, all the known cases of odd number of CSRs are of GPRs.
3653       if (HasUnpairedGPR64)
3654         PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1];
3655       else
3656         PairedReg = CSRegs[i ^ 1];
3657     }
3658 
3659     // If the function requires all the GP registers to save (SavedRegs),
3660     // and there are an odd number of GP CSRs at the same time (CSRegs),
3661     // PairedReg could be in a different register class from Reg, which would
3662     // lead to a FPR (usually D8) accidentally being marked saved.
3663     if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) {
3664       PairedReg = AArch64::NoRegister;
3665       HasUnpairedGPR64 = true;
3666     }
3667     assert(PairedReg == AArch64::NoRegister ||
3668            AArch64::GPR64RegClass.contains(Reg, PairedReg) ||
3669            AArch64::FPR64RegClass.contains(Reg, PairedReg) ||
3670            AArch64::FPR128RegClass.contains(Reg, PairedReg));
3671 
3672     if (!RegUsed) {
3673       if (AArch64::GPR64RegClass.contains(Reg) &&
3674           !RegInfo->isReservedReg(MF, Reg)) {
3675         UnspilledCSGPR = Reg;
3676         UnspilledCSGPRPaired = PairedReg;
3677       }
3678       continue;
3679     }
3680 
3681     // MachO's compact unwind format relies on all registers being stored in
3682     // pairs.
3683     // FIXME: the usual format is actually better if unwinding isn't needed.
3684     if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3685         !SavedRegs.test(PairedReg)) {
3686       SavedRegs.set(PairedReg);
3687       if (AArch64::GPR64RegClass.contains(PairedReg) &&
3688           !RegInfo->isReservedReg(MF, PairedReg))
3689         ExtraCSSpill = PairedReg;
3690     }
3691   }
3692 
3693   if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3694       !Subtarget.isTargetWindows()) {
3695     // For Windows calling convention on a non-windows OS, where X18 is treated
3696     // as reserved, back up X18 when entering non-windows code (marked with the
3697     // Windows calling convention) and restore when returning regardless of
3698     // whether the individual function uses it - it might call other functions
3699     // that clobber it.
3700     SavedRegs.set(AArch64::X18);
3701   }
3702 
3703   // Calculates the callee saved stack size.
3704   unsigned CSStackSize = 0;
3705   unsigned SVECSStackSize = 0;
3706   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3707   const MachineRegisterInfo &MRI = MF.getRegInfo();
3708   for (unsigned Reg : SavedRegs.set_bits()) {
3709     auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3710     if (AArch64::PPRRegClass.contains(Reg) ||
3711         AArch64::ZPRRegClass.contains(Reg))
3712       SVECSStackSize += RegSize;
3713     else
3714       CSStackSize += RegSize;
3715   }
3716 
3717   // Increase the callee-saved stack size if the function has streaming mode
3718   // changes, as we will need to spill the value of the VG register.
3719   // For locally streaming functions, we spill both the streaming and
3720   // non-streaming VG value.
3721   const Function &F = MF.getFunction();
3722   SMEAttrs Attrs(F);
3723   if (AFI->hasStreamingModeChanges()) {
3724     if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface())
3725       CSStackSize += 16;
3726     else
3727       CSStackSize += 8;
3728   }
3729 
3730   // Determine if a Hazard slot should be used, and increase the CSStackSize by
3731   // StackHazardSize if so.
3732   determineStackHazardSlot(MF, SavedRegs);
3733   if (AFI->hasStackHazardSlotIndex())
3734     CSStackSize += StackHazardSize;
3735 
3736   // Save number of saved regs, so we can easily update CSStackSize later.
3737   unsigned NumSavedRegs = SavedRegs.count();
3738 
3739   // The frame record needs to be created by saving the appropriate registers
3740   uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3741   if (hasFP(MF) ||
3742       windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3743     SavedRegs.set(AArch64::FP);
3744     SavedRegs.set(AArch64::LR);
3745   }
3746 
3747   LLVM_DEBUG({
3748     dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3749     for (unsigned Reg : SavedRegs.set_bits())
3750       dbgs() << ' ' << printReg(Reg, RegInfo);
3751     dbgs() << "\n";
3752   });
3753 
3754   // If any callee-saved registers are used, the frame cannot be eliminated.
3755   int64_t SVEStackSize =
3756       alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3757   bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3758 
3759   // The CSR spill slots have not been allocated yet, so estimateStackSize
3760   // won't include them.
3761   unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3762 
3763   // We may address some of the stack above the canonical frame address, either
3764   // for our own arguments or during a call. Include that in calculating whether
3765   // we have complicated addressing concerns.
3766   int64_t CalleeStackUsed = 0;
3767   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) {
3768     int64_t FixedOff = MFI.getObjectOffset(I);
3769     if (FixedOff > CalleeStackUsed)
3770       CalleeStackUsed = FixedOff;
3771   }
3772 
3773   // Conservatively always assume BigStack when there are SVE spills.
3774   bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize +
3775                                    CalleeStackUsed) > EstimatedStackSizeLimit;
3776   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3777     AFI->setHasStackFrame(true);
3778 
3779   // Estimate if we might need to scavenge a register at some point in order
3780   // to materialize a stack offset. If so, either spill one additional
3781   // callee-saved register or reserve a special spill slot to facilitate
3782   // register scavenging. If we already spilled an extra callee-saved register
3783   // above to keep the number of spills even, we don't need to do anything else
3784   // here.
3785   if (BigStack) {
3786     if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3787       LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3788                         << " to get a scratch register.\n");
3789       SavedRegs.set(UnspilledCSGPR);
3790       ExtraCSSpill = UnspilledCSGPR;
3791 
3792       // MachO's compact unwind format relies on all registers being stored in
3793       // pairs, so if we need to spill one extra for BigStack, then we need to
3794       // store the pair.
3795       if (producePairRegisters(MF)) {
3796         if (UnspilledCSGPRPaired == AArch64::NoRegister) {
3797           // Failed to make a pair for compact unwind format, revert spilling.
3798           if (produceCompactUnwindFrame(MF)) {
3799             SavedRegs.reset(UnspilledCSGPR);
3800             ExtraCSSpill = AArch64::NoRegister;
3801           }
3802         } else
3803           SavedRegs.set(UnspilledCSGPRPaired);
3804       }
3805     }
3806 
3807     // If we didn't find an extra callee-saved register to spill, create
3808     // an emergency spill slot.
3809     if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3810       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3811       const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3812       unsigned Size = TRI->getSpillSize(RC);
3813       Align Alignment = TRI->getSpillAlign(RC);
3814       int FI = MFI.CreateStackObject(Size, Alignment, false);
3815       RS->addScavengingFrameIndex(FI);
3816       LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3817                         << " as the emergency spill slot.\n");
3818     }
3819   }
3820 
3821   // Adding the size of additional 64bit GPR saves.
3822   CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3823 
3824   // A Swift asynchronous context extends the frame record with a pointer
3825   // directly before FP.
3826   if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3827     CSStackSize += 8;
3828 
3829   uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3830   LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3831                     << EstimatedStackSize + AlignedCSStackSize << " bytes.\n");
3832 
3833   assert((!MFI.isCalleeSavedInfoValid() ||
3834           AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3835          "Should not invalidate callee saved info");
3836 
3837   // Round up to register pair alignment to avoid additional SP adjustment
3838   // instructions.
3839   AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3840   AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3841   AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3842 }
3843 
3844 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3845     MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3846     std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3847     unsigned &MaxCSFrameIndex) const {
3848   bool NeedsWinCFI = needsWinCFI(MF);
3849   // To match the canonical windows frame layout, reverse the list of
3850   // callee saved registers to get them laid out by PrologEpilogInserter
3851   // in the right order. (PrologEpilogInserter allocates stack objects top
3852   // down. Windows canonical prologs store higher numbered registers at
3853   // the top, thus have the CSI array start from the highest registers.)
3854   if (NeedsWinCFI)
3855     std::reverse(CSI.begin(), CSI.end());
3856 
3857   if (CSI.empty())
3858     return true; // Early exit if no callee saved registers are modified!
3859 
3860   // Now that we know which registers need to be saved and restored, allocate
3861   // stack slots for them.
3862   MachineFrameInfo &MFI = MF.getFrameInfo();
3863   auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3864 
3865   bool UsesWinAAPCS = isTargetWindows(MF);
3866   if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3867     int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3868     AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3869     if ((unsigned)FrameIdx < MinCSFrameIndex)
3870       MinCSFrameIndex = FrameIdx;
3871     if ((unsigned)FrameIdx > MaxCSFrameIndex)
3872       MaxCSFrameIndex = FrameIdx;
3873   }
3874 
3875   // Insert VG into the list of CSRs, immediately before LR if saved.
3876   if (AFI->hasStreamingModeChanges()) {
3877     std::vector<CalleeSavedInfo> VGSaves;
3878     SMEAttrs Attrs(MF.getFunction());
3879 
3880     auto VGInfo = CalleeSavedInfo(AArch64::VG);
3881     VGInfo.setRestored(false);
3882     VGSaves.push_back(VGInfo);
3883 
3884     // Add VG again if the function is locally-streaming, as we will spill two
3885     // values.
3886     if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface())
3887       VGSaves.push_back(VGInfo);
3888 
3889     bool InsertBeforeLR = false;
3890 
3891     for (unsigned I = 0; I < CSI.size(); I++)
3892       if (CSI[I].getReg() == AArch64::LR) {
3893         InsertBeforeLR = true;
3894         CSI.insert(CSI.begin() + I, VGSaves.begin(), VGSaves.end());
3895         break;
3896       }
3897 
3898     if (!InsertBeforeLR)
3899       CSI.insert(CSI.end(), VGSaves.begin(), VGSaves.end());
3900   }
3901 
3902   Register LastReg = 0;
3903   int HazardSlotIndex = std::numeric_limits<int>::max();
3904   for (auto &CS : CSI) {
3905     Register Reg = CS.getReg();
3906     const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3907 
3908     // Create a hazard slot as we switch between GPR and FPR CSRs.
3909     if (AFI->hasStackHazardSlotIndex() &&
3910         (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
3911         AArch64InstrInfo::isFpOrNEON(Reg)) {
3912       assert(HazardSlotIndex == std::numeric_limits<int>::max() &&
3913              "Unexpected register order for hazard slot");
3914       HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
3915       LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
3916                         << "\n");
3917       AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
3918       if ((unsigned)HazardSlotIndex < MinCSFrameIndex)
3919         MinCSFrameIndex = HazardSlotIndex;
3920       if ((unsigned)HazardSlotIndex > MaxCSFrameIndex)
3921         MaxCSFrameIndex = HazardSlotIndex;
3922     }
3923 
3924     unsigned Size = RegInfo->getSpillSize(*RC);
3925     Align Alignment(RegInfo->getSpillAlign(*RC));
3926     int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3927     CS.setFrameIdx(FrameIdx);
3928 
3929     if ((unsigned)FrameIdx < MinCSFrameIndex)
3930       MinCSFrameIndex = FrameIdx;
3931     if ((unsigned)FrameIdx > MaxCSFrameIndex)
3932       MaxCSFrameIndex = FrameIdx;
3933 
3934     // Grab 8 bytes below FP for the extended asynchronous frame info.
3935     if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3936         Reg == AArch64::FP) {
3937       FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3938       AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3939       if ((unsigned)FrameIdx < MinCSFrameIndex)
3940         MinCSFrameIndex = FrameIdx;
3941       if ((unsigned)FrameIdx > MaxCSFrameIndex)
3942         MaxCSFrameIndex = FrameIdx;
3943     }
3944     LastReg = Reg;
3945   }
3946 
3947   // Add hazard slot in the case where no FPR CSRs are present.
3948   if (AFI->hasStackHazardSlotIndex() &&
3949       HazardSlotIndex == std::numeric_limits<int>::max()) {
3950     HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
3951     LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
3952                       << "\n");
3953     AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
3954     if ((unsigned)HazardSlotIndex < MinCSFrameIndex)
3955       MinCSFrameIndex = HazardSlotIndex;
3956     if ((unsigned)HazardSlotIndex > MaxCSFrameIndex)
3957       MaxCSFrameIndex = HazardSlotIndex;
3958   }
3959 
3960   return true;
3961 }
3962 
3963 bool AArch64FrameLowering::enableStackSlotScavenging(
3964     const MachineFunction &MF) const {
3965   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3966   // If the function has streaming-mode changes, don't scavenge a
3967   // spillslot in the callee-save area, as that might require an
3968   // 'addvl' in the streaming-mode-changing call-sequence when the
3969   // function doesn't use a FP.
3970   if (AFI->hasStreamingModeChanges() && !hasFP(MF))
3971     return false;
3972   // Don't allow register salvaging with hazard slots, in case it moves objects
3973   // into the wrong place.
3974   if (AFI->hasStackHazardSlotIndex())
3975     return false;
3976   return AFI->hasCalleeSaveStackFreeSpace();
3977 }
3978 
3979 /// returns true if there are any SVE callee saves.
3980 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3981                                       int &Min, int &Max) {
3982   Min = std::numeric_limits<int>::max();
3983   Max = std::numeric_limits<int>::min();
3984 
3985   if (!MFI.isCalleeSavedInfoValid())
3986     return false;
3987 
3988   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3989   for (auto &CS : CSI) {
3990     if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
3991         AArch64::PPRRegClass.contains(CS.getReg())) {
3992       assert((Max == std::numeric_limits<int>::min() ||
3993               Max + 1 == CS.getFrameIdx()) &&
3994              "SVE CalleeSaves are not consecutive");
3995 
3996       Min = std::min(Min, CS.getFrameIdx());
3997       Max = std::max(Max, CS.getFrameIdx());
3998     }
3999   }
4000   return Min != std::numeric_limits<int>::max();
4001 }
4002 
4003 // Process all the SVE stack objects and determine offsets for each
4004 // object. If AssignOffsets is true, the offsets get assigned.
4005 // Fills in the first and last callee-saved frame indices into
4006 // Min/MaxCSFrameIndex, respectively.
4007 // Returns the size of the stack.
4008 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
4009                                               int &MinCSFrameIndex,
4010                                               int &MaxCSFrameIndex,
4011                                               bool AssignOffsets) {
4012 #ifndef NDEBUG
4013   // First process all fixed stack objects.
4014   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
4015     assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
4016            "SVE vectors should never be passed on the stack by value, only by "
4017            "reference.");
4018 #endif
4019 
4020   auto Assign = [&MFI](int FI, int64_t Offset) {
4021     LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
4022     MFI.setObjectOffset(FI, Offset);
4023   };
4024 
4025   int64_t Offset = 0;
4026 
4027   // Then process all callee saved slots.
4028   if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
4029     // Assign offsets to the callee save slots.
4030     for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
4031       Offset += MFI.getObjectSize(I);
4032       Offset = alignTo(Offset, MFI.getObjectAlign(I));
4033       if (AssignOffsets)
4034         Assign(I, -Offset);
4035     }
4036   }
4037 
4038   // Ensure that the Callee-save area is aligned to 16bytes.
4039   Offset = alignTo(Offset, Align(16U));
4040 
4041   // Create a buffer of SVE objects to allocate and sort it.
4042   SmallVector<int, 8> ObjectsToAllocate;
4043   // If we have a stack protector, and we've previously decided that we have SVE
4044   // objects on the stack and thus need it to go in the SVE stack area, then it
4045   // needs to go first.
4046   int StackProtectorFI = -1;
4047   if (MFI.hasStackProtectorIndex()) {
4048     StackProtectorFI = MFI.getStackProtectorIndex();
4049     if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
4050       ObjectsToAllocate.push_back(StackProtectorFI);
4051   }
4052   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
4053     unsigned StackID = MFI.getStackID(I);
4054     if (StackID != TargetStackID::ScalableVector)
4055       continue;
4056     if (I == StackProtectorFI)
4057       continue;
4058     if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
4059       continue;
4060     if (MFI.isDeadObjectIndex(I))
4061       continue;
4062 
4063     ObjectsToAllocate.push_back(I);
4064   }
4065 
4066   // Allocate all SVE locals and spills
4067   for (unsigned FI : ObjectsToAllocate) {
4068     Align Alignment = MFI.getObjectAlign(FI);
4069     // FIXME: Given that the length of SVE vectors is not necessarily a power of
4070     // two, we'd need to align every object dynamically at runtime if the
4071     // alignment is larger than 16. This is not yet supported.
4072     if (Alignment > Align(16))
4073       report_fatal_error(
4074           "Alignment of scalable vectors > 16 bytes is not yet supported");
4075 
4076     Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
4077     if (AssignOffsets)
4078       Assign(FI, -Offset);
4079   }
4080 
4081   return Offset;
4082 }
4083 
4084 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
4085     MachineFrameInfo &MFI) const {
4086   int MinCSFrameIndex, MaxCSFrameIndex;
4087   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
4088 }
4089 
4090 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
4091     MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
4092   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
4093                                         true);
4094 }
4095 
4096 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
4097     MachineFunction &MF, RegScavenger *RS) const {
4098   MachineFrameInfo &MFI = MF.getFrameInfo();
4099 
4100   assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
4101          "Upwards growing stack unsupported");
4102 
4103   int MinCSFrameIndex, MaxCSFrameIndex;
4104   int64_t SVEStackSize =
4105       assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
4106 
4107   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
4108   AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
4109   AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
4110 
4111   // If this function isn't doing Win64-style C++ EH, we don't need to do
4112   // anything.
4113   if (!MF.hasEHFunclets())
4114     return;
4115   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4116   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
4117 
4118   MachineBasicBlock &MBB = MF.front();
4119   auto MBBI = MBB.begin();
4120   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
4121     ++MBBI;
4122 
4123   // Create an UnwindHelp object.
4124   // The UnwindHelp object is allocated at the start of the fixed object area
4125   int64_t FixedObject =
4126       getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
4127   int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
4128                                            /*SPOffset*/ -FixedObject,
4129                                            /*IsImmutable=*/false);
4130   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
4131 
4132   // We need to store -2 into the UnwindHelp object at the start of the
4133   // function.
4134   DebugLoc DL;
4135   RS->enterBasicBlockEnd(MBB);
4136   RS->backward(MBBI);
4137   Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
4138   assert(DstReg && "There must be a free register after frame setup");
4139   BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
4140   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
4141       .addReg(DstReg, getKillRegState(true))
4142       .addFrameIndex(UnwindHelpFI)
4143       .addImm(0);
4144 }
4145 
4146 namespace {
4147 struct TagStoreInstr {
4148   MachineInstr *MI;
4149   int64_t Offset, Size;
4150   explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
4151       : MI(MI), Offset(Offset), Size(Size) {}
4152 };
4153 
4154 class TagStoreEdit {
4155   MachineFunction *MF;
4156   MachineBasicBlock *MBB;
4157   MachineRegisterInfo *MRI;
4158   // Tag store instructions that are being replaced.
4159   SmallVector<TagStoreInstr, 8> TagStores;
4160   // Combined memref arguments of the above instructions.
4161   SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
4162 
4163   // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
4164   // FrameRegOffset + Size) with the address tag of SP.
4165   Register FrameReg;
4166   StackOffset FrameRegOffset;
4167   int64_t Size;
4168   // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
4169   // end.
4170   std::optional<int64_t> FrameRegUpdate;
4171   // MIFlags for any FrameReg updating instructions.
4172   unsigned FrameRegUpdateFlags;
4173 
4174   // Use zeroing instruction variants.
4175   bool ZeroData;
4176   DebugLoc DL;
4177 
4178   void emitUnrolled(MachineBasicBlock::iterator InsertI);
4179   void emitLoop(MachineBasicBlock::iterator InsertI);
4180 
4181 public:
4182   TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
4183       : MBB(MBB), ZeroData(ZeroData) {
4184     MF = MBB->getParent();
4185     MRI = &MF->getRegInfo();
4186   }
4187   // Add an instruction to be replaced. Instructions must be added in the
4188   // ascending order of Offset, and have to be adjacent.
4189   void addInstruction(TagStoreInstr I) {
4190     assert((TagStores.empty() ||
4191             TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
4192            "Non-adjacent tag store instructions.");
4193     TagStores.push_back(I);
4194   }
4195   void clear() { TagStores.clear(); }
4196   // Emit equivalent code at the given location, and erase the current set of
4197   // instructions. May skip if the replacement is not profitable. May invalidate
4198   // the input iterator and replace it with a valid one.
4199   void emitCode(MachineBasicBlock::iterator &InsertI,
4200                 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
4201 };
4202 
4203 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
4204   const AArch64InstrInfo *TII =
4205       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4206 
4207   const int64_t kMinOffset = -256 * 16;
4208   const int64_t kMaxOffset = 255 * 16;
4209 
4210   Register BaseReg = FrameReg;
4211   int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
4212   if (BaseRegOffsetBytes < kMinOffset ||
4213       BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset ||
4214       // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
4215       // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
4216       // is required for the offset of ST2G.
4217       BaseRegOffsetBytes % 16 != 0) {
4218     Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4219     emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
4220                     StackOffset::getFixed(BaseRegOffsetBytes), TII);
4221     BaseReg = ScratchReg;
4222     BaseRegOffsetBytes = 0;
4223   }
4224 
4225   MachineInstr *LastI = nullptr;
4226   while (Size) {
4227     int64_t InstrSize = (Size > 16) ? 32 : 16;
4228     unsigned Opcode =
4229         InstrSize == 16
4230             ? (ZeroData ? AArch64::STZGi : AArch64::STGi)
4231             : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi);
4232     assert(BaseRegOffsetBytes % 16 == 0);
4233     MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
4234                           .addReg(AArch64::SP)
4235                           .addReg(BaseReg)
4236                           .addImm(BaseRegOffsetBytes / 16)
4237                           .setMemRefs(CombinedMemRefs);
4238     // A store to [BaseReg, #0] should go last for an opportunity to fold the
4239     // final SP adjustment in the epilogue.
4240     if (BaseRegOffsetBytes == 0)
4241       LastI = I;
4242     BaseRegOffsetBytes += InstrSize;
4243     Size -= InstrSize;
4244   }
4245 
4246   if (LastI)
4247     MBB->splice(InsertI, MBB, LastI);
4248 }
4249 
4250 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
4251   const AArch64InstrInfo *TII =
4252       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4253 
4254   Register BaseReg = FrameRegUpdate
4255                          ? FrameReg
4256                          : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4257   Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4258 
4259   emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
4260 
4261   int64_t LoopSize = Size;
4262   // If the loop size is not a multiple of 32, split off one 16-byte store at
4263   // the end to fold BaseReg update into.
4264   if (FrameRegUpdate && *FrameRegUpdate)
4265     LoopSize -= LoopSize % 32;
4266   MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
4267                                 TII->get(ZeroData ? AArch64::STZGloop_wback
4268                                                   : AArch64::STGloop_wback))
4269                             .addDef(SizeReg)
4270                             .addDef(BaseReg)
4271                             .addImm(LoopSize)
4272                             .addReg(BaseReg)
4273                             .setMemRefs(CombinedMemRefs);
4274   if (FrameRegUpdate)
4275     LoopI->setFlags(FrameRegUpdateFlags);
4276 
4277   int64_t ExtraBaseRegUpdate =
4278       FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
4279   if (LoopSize < Size) {
4280     assert(FrameRegUpdate);
4281     assert(Size - LoopSize == 16);
4282     // Tag 16 more bytes at BaseReg and update BaseReg.
4283     BuildMI(*MBB, InsertI, DL,
4284             TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
4285         .addDef(BaseReg)
4286         .addReg(BaseReg)
4287         .addReg(BaseReg)
4288         .addImm(1 + ExtraBaseRegUpdate / 16)
4289         .setMemRefs(CombinedMemRefs)
4290         .setMIFlags(FrameRegUpdateFlags);
4291   } else if (ExtraBaseRegUpdate) {
4292     // Update BaseReg.
4293     BuildMI(
4294         *MBB, InsertI, DL,
4295         TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
4296         .addDef(BaseReg)
4297         .addReg(BaseReg)
4298         .addImm(std::abs(ExtraBaseRegUpdate))
4299         .addImm(0)
4300         .setMIFlags(FrameRegUpdateFlags);
4301   }
4302 }
4303 
4304 // Check if *II is a register update that can be merged into STGloop that ends
4305 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
4306 // end of the loop.
4307 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
4308                        int64_t Size, int64_t *TotalOffset) {
4309   MachineInstr &MI = *II;
4310   if ((MI.getOpcode() == AArch64::ADDXri ||
4311        MI.getOpcode() == AArch64::SUBXri) &&
4312       MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
4313     unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
4314     int64_t Offset = MI.getOperand(2).getImm() << Shift;
4315     if (MI.getOpcode() == AArch64::SUBXri)
4316       Offset = -Offset;
4317     int64_t AbsPostOffset = std::abs(Offset - Size);
4318     const int64_t kMaxOffset =
4319         0xFFF; // Max encoding for unshifted ADDXri / SUBXri
4320     if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
4321       *TotalOffset = Offset;
4322       return true;
4323     }
4324   }
4325   return false;
4326 }
4327 
4328 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
4329                   SmallVectorImpl<MachineMemOperand *> &MemRefs) {
4330   MemRefs.clear();
4331   for (auto &TS : TSE) {
4332     MachineInstr *MI = TS.MI;
4333     // An instruction without memory operands may access anything. Be
4334     // conservative and return an empty list.
4335     if (MI->memoperands_empty()) {
4336       MemRefs.clear();
4337       return;
4338     }
4339     MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
4340   }
4341 }
4342 
4343 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
4344                             const AArch64FrameLowering *TFI,
4345                             bool TryMergeSPUpdate) {
4346   if (TagStores.empty())
4347     return;
4348   TagStoreInstr &FirstTagStore = TagStores[0];
4349   TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
4350   Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
4351   DL = TagStores[0].MI->getDebugLoc();
4352 
4353   Register Reg;
4354   FrameRegOffset = TFI->resolveFrameOffsetReference(
4355       *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
4356       /*PreferFP=*/false, /*ForSimm=*/true);
4357   FrameReg = Reg;
4358   FrameRegUpdate = std::nullopt;
4359 
4360   mergeMemRefs(TagStores, CombinedMemRefs);
4361 
4362   LLVM_DEBUG({
4363     dbgs() << "Replacing adjacent STG instructions:\n";
4364     for (const auto &Instr : TagStores) {
4365       dbgs() << "  " << *Instr.MI;
4366     }
4367   });
4368 
4369   // Size threshold where a loop becomes shorter than a linear sequence of
4370   // tagging instructions.
4371   const int kSetTagLoopThreshold = 176;
4372   if (Size < kSetTagLoopThreshold) {
4373     if (TagStores.size() < 2)
4374       return;
4375     emitUnrolled(InsertI);
4376   } else {
4377     MachineInstr *UpdateInstr = nullptr;
4378     int64_t TotalOffset = 0;
4379     if (TryMergeSPUpdate) {
4380       // See if we can merge base register update into the STGloop.
4381       // This is done in AArch64LoadStoreOptimizer for "normal" stores,
4382       // but STGloop is way too unusual for that, and also it only
4383       // realistically happens in function epilogue. Also, STGloop is expanded
4384       // before that pass.
4385       if (InsertI != MBB->end() &&
4386           canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
4387                             &TotalOffset)) {
4388         UpdateInstr = &*InsertI++;
4389         LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n  "
4390                           << *UpdateInstr);
4391       }
4392     }
4393 
4394     if (!UpdateInstr && TagStores.size() < 2)
4395       return;
4396 
4397     if (UpdateInstr) {
4398       FrameRegUpdate = TotalOffset;
4399       FrameRegUpdateFlags = UpdateInstr->getFlags();
4400     }
4401     emitLoop(InsertI);
4402     if (UpdateInstr)
4403       UpdateInstr->eraseFromParent();
4404   }
4405 
4406   for (auto &TS : TagStores)
4407     TS.MI->eraseFromParent();
4408 }
4409 
4410 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
4411                                         int64_t &Size, bool &ZeroData) {
4412   MachineFunction &MF = *MI.getParent()->getParent();
4413   const MachineFrameInfo &MFI = MF.getFrameInfo();
4414 
4415   unsigned Opcode = MI.getOpcode();
4416   ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi ||
4417               Opcode == AArch64::STZ2Gi);
4418 
4419   if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
4420     if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
4421       return false;
4422     if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
4423       return false;
4424     Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
4425     Size = MI.getOperand(2).getImm();
4426     return true;
4427   }
4428 
4429   if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi)
4430     Size = 16;
4431   else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi)
4432     Size = 32;
4433   else
4434     return false;
4435 
4436   if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
4437     return false;
4438 
4439   Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
4440            16 * MI.getOperand(2).getImm();
4441   return true;
4442 }
4443 
4444 // Detect a run of memory tagging instructions for adjacent stack frame slots,
4445 // and replace them with a shorter instruction sequence:
4446 // * replace STG + STG with ST2G
4447 // * replace STGloop + STGloop with STGloop
4448 // This code needs to run when stack slot offsets are already known, but before
4449 // FrameIndex operands in STG instructions are eliminated.
4450 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
4451                                                 const AArch64FrameLowering *TFI,
4452                                                 RegScavenger *RS) {
4453   bool FirstZeroData;
4454   int64_t Size, Offset;
4455   MachineInstr &MI = *II;
4456   MachineBasicBlock *MBB = MI.getParent();
4457   MachineBasicBlock::iterator NextI = ++II;
4458   if (&MI == &MBB->instr_back())
4459     return II;
4460   if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
4461     return II;
4462 
4463   SmallVector<TagStoreInstr, 4> Instrs;
4464   Instrs.emplace_back(&MI, Offset, Size);
4465 
4466   constexpr int kScanLimit = 10;
4467   int Count = 0;
4468   for (MachineBasicBlock::iterator E = MBB->end();
4469        NextI != E && Count < kScanLimit; ++NextI) {
4470     MachineInstr &MI = *NextI;
4471     bool ZeroData;
4472     int64_t Size, Offset;
4473     // Collect instructions that update memory tags with a FrameIndex operand
4474     // and (when applicable) constant size, and whose output registers are dead
4475     // (the latter is almost always the case in practice). Since these
4476     // instructions effectively have no inputs or outputs, we are free to skip
4477     // any non-aliasing instructions in between without tracking used registers.
4478     if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
4479       if (ZeroData != FirstZeroData)
4480         break;
4481       Instrs.emplace_back(&MI, Offset, Size);
4482       continue;
4483     }
4484 
4485     // Only count non-transient, non-tagging instructions toward the scan
4486     // limit.
4487     if (!MI.isTransient())
4488       ++Count;
4489 
4490     // Just in case, stop before the epilogue code starts.
4491     if (MI.getFlag(MachineInstr::FrameSetup) ||
4492         MI.getFlag(MachineInstr::FrameDestroy))
4493       break;
4494 
4495     // Reject anything that may alias the collected instructions.
4496     if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
4497       break;
4498   }
4499 
4500   // New code will be inserted after the last tagging instruction we've found.
4501   MachineBasicBlock::iterator InsertI = Instrs.back().MI;
4502 
4503   // All the gathered stack tag instructions are merged and placed after
4504   // last tag store in the list. The check should be made if the nzcv
4505   // flag is live at the point where we are trying to insert. Otherwise
4506   // the nzcv flag might get clobbered if any stg loops are present.
4507 
4508   // FIXME : This approach of bailing out from merge is conservative in
4509   // some ways like even if stg loops are not present after merge the
4510   // insert list, this liveness check is done (which is not needed).
4511   LivePhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().getRegisterInfo()));
4512   LiveRegs.addLiveOuts(*MBB);
4513   for (auto I = MBB->rbegin();; ++I) {
4514     MachineInstr &MI = *I;
4515     if (MI == InsertI)
4516       break;
4517     LiveRegs.stepBackward(*I);
4518   }
4519   InsertI++;
4520   if (LiveRegs.contains(AArch64::NZCV))
4521     return InsertI;
4522 
4523   llvm::stable_sort(Instrs,
4524                     [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
4525                       return Left.Offset < Right.Offset;
4526                     });
4527 
4528   // Make sure that we don't have any overlapping stores.
4529   int64_t CurOffset = Instrs[0].Offset;
4530   for (auto &Instr : Instrs) {
4531     if (CurOffset > Instr.Offset)
4532       return NextI;
4533     CurOffset = Instr.Offset + Instr.Size;
4534   }
4535 
4536   // Find contiguous runs of tagged memory and emit shorter instruction
4537   // sequencies for them when possible.
4538   TagStoreEdit TSE(MBB, FirstZeroData);
4539   std::optional<int64_t> EndOffset;
4540   for (auto &Instr : Instrs) {
4541     if (EndOffset && *EndOffset != Instr.Offset) {
4542       // Found a gap.
4543       TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
4544       TSE.clear();
4545     }
4546 
4547     TSE.addInstruction(Instr);
4548     EndOffset = Instr.Offset + Instr.Size;
4549   }
4550 
4551   const MachineFunction *MF = MBB->getParent();
4552   // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
4553   TSE.emitCode(
4554       InsertI, TFI, /*TryMergeSPUpdate = */
4555       !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
4556 
4557   return InsertI;
4558 }
4559 } // namespace
4560 
4561 MachineBasicBlock::iterator emitVGSaveRestore(MachineBasicBlock::iterator II,
4562                                               const AArch64FrameLowering *TFI) {
4563   MachineInstr &MI = *II;
4564   MachineBasicBlock *MBB = MI.getParent();
4565   MachineFunction *MF = MBB->getParent();
4566 
4567   if (MI.getOpcode() != AArch64::VGSavePseudo &&
4568       MI.getOpcode() != AArch64::VGRestorePseudo)
4569     return II;
4570 
4571   SMEAttrs FuncAttrs(MF->getFunction());
4572   bool LocallyStreaming =
4573       FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface();
4574   const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>();
4575   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
4576   const AArch64InstrInfo *TII =
4577       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4578 
4579   int64_t VGFrameIdx =
4580       LocallyStreaming ? AFI->getStreamingVGIdx() : AFI->getVGIdx();
4581   assert(VGFrameIdx != std::numeric_limits<int>::max() &&
4582          "Expected FrameIdx for VG");
4583 
4584   unsigned CFIIndex;
4585   if (MI.getOpcode() == AArch64::VGSavePseudo) {
4586     const MachineFrameInfo &MFI = MF->getFrameInfo();
4587     int64_t Offset =
4588         MFI.getObjectOffset(VGFrameIdx) - TFI->getOffsetOfLocalArea();
4589     CFIIndex = MF->addFrameInst(MCCFIInstruction::createOffset(
4590         nullptr, TRI->getDwarfRegNum(AArch64::VG, true), Offset));
4591   } else
4592     CFIIndex = MF->addFrameInst(MCCFIInstruction::createRestore(
4593         nullptr, TRI->getDwarfRegNum(AArch64::VG, true)));
4594 
4595   MachineInstr *UnwindInst = BuildMI(*MBB, II, II->getDebugLoc(),
4596                                      TII->get(TargetOpcode::CFI_INSTRUCTION))
4597                                  .addCFIIndex(CFIIndex);
4598 
4599   MI.eraseFromParent();
4600   return UnwindInst->getIterator();
4601 }
4602 
4603 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
4604     MachineFunction &MF, RegScavenger *RS = nullptr) const {
4605   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
4606   for (auto &BB : MF)
4607     for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) {
4608       if (AFI->hasStreamingModeChanges())
4609         II = emitVGSaveRestore(II, this);
4610       if (StackTaggingMergeSetTag)
4611         II = tryMergeAdjacentSTG(II, this, RS);
4612     }
4613 }
4614 
4615 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
4616 /// before the update.  This is easily retrieved as it is exactly the offset
4617 /// that is set in processFunctionBeforeFrameFinalized.
4618 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
4619     const MachineFunction &MF, int FI, Register &FrameReg,
4620     bool IgnoreSPUpdates) const {
4621   const MachineFrameInfo &MFI = MF.getFrameInfo();
4622   if (IgnoreSPUpdates) {
4623     LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
4624                       << MFI.getObjectOffset(FI) << "\n");
4625     FrameReg = AArch64::SP;
4626     return StackOffset::getFixed(MFI.getObjectOffset(FI));
4627   }
4628 
4629   // Go to common code if we cannot provide sp + offset.
4630   if (MFI.hasVarSizedObjects() ||
4631       MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
4632       MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
4633     return getFrameIndexReference(MF, FI, FrameReg);
4634 
4635   FrameReg = AArch64::SP;
4636   return getStackOffset(MF, MFI.getObjectOffset(FI));
4637 }
4638 
4639 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
4640 /// the parent's frame pointer
4641 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
4642     const MachineFunction &MF) const {
4643   return 0;
4644 }
4645 
4646 /// Funclets only need to account for space for the callee saved registers,
4647 /// as the locals are accounted for in the parent's stack frame.
4648 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
4649     const MachineFunction &MF) const {
4650   // This is the size of the pushed CSRs.
4651   unsigned CSSize =
4652       MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
4653   // This is the amount of stack a funclet needs to allocate.
4654   return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
4655                  getStackAlign());
4656 }
4657 
4658 namespace {
4659 struct FrameObject {
4660   bool IsValid = false;
4661   // Index of the object in MFI.
4662   int ObjectIndex = 0;
4663   // Group ID this object belongs to.
4664   int GroupIndex = -1;
4665   // This object should be placed first (closest to SP).
4666   bool ObjectFirst = false;
4667   // This object's group (which always contains the object with
4668   // ObjectFirst==true) should be placed first.
4669   bool GroupFirst = false;
4670 
4671   // Used to distinguish between FP and GPR accesses. The values are decided so
4672   // that they sort FPR < Hazard < GPR and they can be or'd together.
4673   unsigned Accesses = 0;
4674   enum { AccessFPR = 1, AccessHazard = 2, AccessGPR = 4 };
4675 };
4676 
4677 class GroupBuilder {
4678   SmallVector<int, 8> CurrentMembers;
4679   int NextGroupIndex = 0;
4680   std::vector<FrameObject> &Objects;
4681 
4682 public:
4683   GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
4684   void AddMember(int Index) { CurrentMembers.push_back(Index); }
4685   void EndCurrentGroup() {
4686     if (CurrentMembers.size() > 1) {
4687       // Create a new group with the current member list. This might remove them
4688       // from their pre-existing groups. That's OK, dealing with overlapping
4689       // groups is too hard and unlikely to make a difference.
4690       LLVM_DEBUG(dbgs() << "group:");
4691       for (int Index : CurrentMembers) {
4692         Objects[Index].GroupIndex = NextGroupIndex;
4693         LLVM_DEBUG(dbgs() << " " << Index);
4694       }
4695       LLVM_DEBUG(dbgs() << "\n");
4696       NextGroupIndex++;
4697     }
4698     CurrentMembers.clear();
4699   }
4700 };
4701 
4702 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
4703   // Objects at a lower index are closer to FP; objects at a higher index are
4704   // closer to SP.
4705   //
4706   // For consistency in our comparison, all invalid objects are placed
4707   // at the end. This also allows us to stop walking when we hit the
4708   // first invalid item after it's all sorted.
4709   //
4710   // If we want to include a stack hazard region, order FPR accesses < the
4711   // hazard object < GPRs accesses in order to create a separation between the
4712   // two. For the Accesses field 1 = FPR, 2 = Hazard Object, 4 = GPR.
4713   //
4714   // Otherwise the "first" object goes first (closest to SP), followed by the
4715   // members of the "first" group.
4716   //
4717   // The rest are sorted by the group index to keep the groups together.
4718   // Higher numbered groups are more likely to be around longer (i.e. untagged
4719   // in the function epilogue and not at some earlier point). Place them closer
4720   // to SP.
4721   //
4722   // If all else equal, sort by the object index to keep the objects in the
4723   // original order.
4724   return std::make_tuple(!A.IsValid, A.Accesses, A.ObjectFirst, A.GroupFirst,
4725                          A.GroupIndex, A.ObjectIndex) <
4726          std::make_tuple(!B.IsValid, B.Accesses, B.ObjectFirst, B.GroupFirst,
4727                          B.GroupIndex, B.ObjectIndex);
4728 }
4729 } // namespace
4730 
4731 void AArch64FrameLowering::orderFrameObjects(
4732     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
4733   if (!OrderFrameObjects || ObjectsToAllocate.empty())
4734     return;
4735 
4736   const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
4737   const MachineFrameInfo &MFI = MF.getFrameInfo();
4738   std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
4739   for (auto &Obj : ObjectsToAllocate) {
4740     FrameObjects[Obj].IsValid = true;
4741     FrameObjects[Obj].ObjectIndex = Obj;
4742   }
4743 
4744   // Identify FPR vs GPR slots for hazards, and stack slots that are tagged at
4745   // the same time.
4746   GroupBuilder GB(FrameObjects);
4747   for (auto &MBB : MF) {
4748     for (auto &MI : MBB) {
4749       if (MI.isDebugInstr())
4750         continue;
4751 
4752       if (AFI.hasStackHazardSlotIndex()) {
4753         std::optional<int> FI = getLdStFrameID(MI, MFI);
4754         if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) {
4755           if (MFI.getStackID(*FI) == TargetStackID::ScalableVector ||
4756               AArch64InstrInfo::isFpOrNEON(MI))
4757             FrameObjects[*FI].Accesses |= FrameObject::AccessFPR;
4758           else
4759             FrameObjects[*FI].Accesses |= FrameObject::AccessGPR;
4760         }
4761       }
4762 
4763       int OpIndex;
4764       switch (MI.getOpcode()) {
4765       case AArch64::STGloop:
4766       case AArch64::STZGloop:
4767         OpIndex = 3;
4768         break;
4769       case AArch64::STGi:
4770       case AArch64::STZGi:
4771       case AArch64::ST2Gi:
4772       case AArch64::STZ2Gi:
4773         OpIndex = 1;
4774         break;
4775       default:
4776         OpIndex = -1;
4777       }
4778 
4779       int TaggedFI = -1;
4780       if (OpIndex >= 0) {
4781         const MachineOperand &MO = MI.getOperand(OpIndex);
4782         if (MO.isFI()) {
4783           int FI = MO.getIndex();
4784           if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
4785               FrameObjects[FI].IsValid)
4786             TaggedFI = FI;
4787         }
4788       }
4789 
4790       // If this is a stack tagging instruction for a slot that is not part of a
4791       // group yet, either start a new group or add it to the current one.
4792       if (TaggedFI >= 0)
4793         GB.AddMember(TaggedFI);
4794       else
4795         GB.EndCurrentGroup();
4796     }
4797     // Groups should never span multiple basic blocks.
4798     GB.EndCurrentGroup();
4799   }
4800 
4801   if (AFI.hasStackHazardSlotIndex()) {
4802     FrameObjects[AFI.getStackHazardSlotIndex()].Accesses =
4803         FrameObject::AccessHazard;
4804     // If a stack object is unknown or both GPR and FPR, sort it into GPR.
4805     for (auto &Obj : FrameObjects)
4806       if (!Obj.Accesses ||
4807           Obj.Accesses == (FrameObject::AccessGPR | FrameObject::AccessFPR))
4808         Obj.Accesses = FrameObject::AccessGPR;
4809   }
4810 
4811   // If the function's tagged base pointer is pinned to a stack slot, we want to
4812   // put that slot first when possible. This will likely place it at SP + 0,
4813   // and save one instruction when generating the base pointer because IRG does
4814   // not allow an immediate offset.
4815   std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
4816   if (TBPI) {
4817     FrameObjects[*TBPI].ObjectFirst = true;
4818     FrameObjects[*TBPI].GroupFirst = true;
4819     int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
4820     if (FirstGroupIndex >= 0)
4821       for (FrameObject &Object : FrameObjects)
4822         if (Object.GroupIndex == FirstGroupIndex)
4823           Object.GroupFirst = true;
4824   }
4825 
4826   llvm::stable_sort(FrameObjects, FrameObjectCompare);
4827 
4828   int i = 0;
4829   for (auto &Obj : FrameObjects) {
4830     // All invalid items are sorted at the end, so it's safe to stop.
4831     if (!Obj.IsValid)
4832       break;
4833     ObjectsToAllocate[i++] = Obj.ObjectIndex;
4834   }
4835 
4836   LLVM_DEBUG({
4837     dbgs() << "Final frame order:\n";
4838     for (auto &Obj : FrameObjects) {
4839       if (!Obj.IsValid)
4840         break;
4841       dbgs() << "  " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
4842       if (Obj.ObjectFirst)
4843         dbgs() << ", first";
4844       if (Obj.GroupFirst)
4845         dbgs() << ", group-first";
4846       dbgs() << "\n";
4847     }
4848   });
4849 }
4850 
4851 /// Emit a loop to decrement SP until it is equal to TargetReg, with probes at
4852 /// least every ProbeSize bytes. Returns an iterator of the first instruction
4853 /// after the loop. The difference between SP and TargetReg must be an exact
4854 /// multiple of ProbeSize.
4855 MachineBasicBlock::iterator
4856 AArch64FrameLowering::inlineStackProbeLoopExactMultiple(
4857     MachineBasicBlock::iterator MBBI, int64_t ProbeSize,
4858     Register TargetReg) const {
4859   MachineBasicBlock &MBB = *MBBI->getParent();
4860   MachineFunction &MF = *MBB.getParent();
4861   const AArch64InstrInfo *TII =
4862       MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
4863   DebugLoc DL = MBB.findDebugLoc(MBBI);
4864 
4865   MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
4866   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
4867   MF.insert(MBBInsertPoint, LoopMBB);
4868   MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
4869   MF.insert(MBBInsertPoint, ExitMBB);
4870 
4871   // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable
4872   // in SUB).
4873   emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP,
4874                   StackOffset::getFixed(-ProbeSize), TII,
4875                   MachineInstr::FrameSetup);
4876   // STR XZR, [SP]
4877   BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui))
4878       .addReg(AArch64::XZR)
4879       .addReg(AArch64::SP)
4880       .addImm(0)
4881       .setMIFlags(MachineInstr::FrameSetup);
4882   // CMP SP, TargetReg
4883   BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64),
4884           AArch64::XZR)
4885       .addReg(AArch64::SP)
4886       .addReg(TargetReg)
4887       .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
4888       .setMIFlags(MachineInstr::FrameSetup);
4889   // B.CC Loop
4890   BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc))
4891       .addImm(AArch64CC::NE)
4892       .addMBB(LoopMBB)
4893       .setMIFlags(MachineInstr::FrameSetup);
4894 
4895   LoopMBB->addSuccessor(ExitMBB);
4896   LoopMBB->addSuccessor(LoopMBB);
4897   // Synthesize the exit MBB.
4898   ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end());
4899   ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
4900   MBB.addSuccessor(LoopMBB);
4901   // Update liveins.
4902   fullyRecomputeLiveIns({ExitMBB, LoopMBB});
4903 
4904   return ExitMBB->begin();
4905 }
4906 
4907 void AArch64FrameLowering::inlineStackProbeFixed(
4908     MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize,
4909     StackOffset CFAOffset) const {
4910   MachineBasicBlock *MBB = MBBI->getParent();
4911   MachineFunction &MF = *MBB->getParent();
4912   const AArch64InstrInfo *TII =
4913       MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
4914   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
4915   bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
4916   bool HasFP = hasFP(MF);
4917 
4918   DebugLoc DL;
4919   int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize();
4920   int64_t NumBlocks = FrameSize / ProbeSize;
4921   int64_t ResidualSize = FrameSize % ProbeSize;
4922 
4923   LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, "
4924                     << NumBlocks << " blocks of " << ProbeSize
4925                     << " bytes, plus " << ResidualSize << " bytes\n");
4926 
4927   // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or
4928   // ordinary loop.
4929   if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) {
4930     for (int i = 0; i < NumBlocks; ++i) {
4931       // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not
4932       // encodable in a SUB).
4933       emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
4934                       StackOffset::getFixed(-ProbeSize), TII,
4935                       MachineInstr::FrameSetup, false, false, nullptr,
4936                       EmitAsyncCFI && !HasFP, CFAOffset);
4937       CFAOffset += StackOffset::getFixed(ProbeSize);
4938       // STR XZR, [SP]
4939       BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
4940           .addReg(AArch64::XZR)
4941           .addReg(AArch64::SP)
4942           .addImm(0)
4943           .setMIFlags(MachineInstr::FrameSetup);
4944     }
4945   } else if (NumBlocks != 0) {
4946     // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not
4947     // encodable in ADD). ScrathReg may temporarily become the CFA register.
4948     emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP,
4949                     StackOffset::getFixed(-ProbeSize * NumBlocks), TII,
4950                     MachineInstr::FrameSetup, false, false, nullptr,
4951                     EmitAsyncCFI && !HasFP, CFAOffset);
4952     CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks);
4953     MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg);
4954     MBB = MBBI->getParent();
4955     if (EmitAsyncCFI && !HasFP) {
4956       // Set the CFA register back to SP.
4957       const AArch64RegisterInfo &RegInfo =
4958           *MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
4959       unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
4960       unsigned CFIIndex =
4961           MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
4962       BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
4963           .addCFIIndex(CFIIndex)
4964           .setMIFlags(MachineInstr::FrameSetup);
4965     }
4966   }
4967 
4968   if (ResidualSize != 0) {
4969     // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable
4970     // in SUB).
4971     emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
4972                     StackOffset::getFixed(-ResidualSize), TII,
4973                     MachineInstr::FrameSetup, false, false, nullptr,
4974                     EmitAsyncCFI && !HasFP, CFAOffset);
4975     if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) {
4976       // STR XZR, [SP]
4977       BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
4978           .addReg(AArch64::XZR)
4979           .addReg(AArch64::SP)
4980           .addImm(0)
4981           .setMIFlags(MachineInstr::FrameSetup);
4982     }
4983   }
4984 }
4985 
4986 void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF,
4987                                             MachineBasicBlock &MBB) const {
4988   // Get the instructions that need to be replaced. We emit at most two of
4989   // these. Remember them in order to avoid complications coming from the need
4990   // to traverse the block while potentially creating more blocks.
4991   SmallVector<MachineInstr *, 4> ToReplace;
4992   for (MachineInstr &MI : MBB)
4993     if (MI.getOpcode() == AArch64::PROBED_STACKALLOC ||
4994         MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR)
4995       ToReplace.push_back(&MI);
4996 
4997   for (MachineInstr *MI : ToReplace) {
4998     if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) {
4999       Register ScratchReg = MI->getOperand(0).getReg();
5000       int64_t FrameSize = MI->getOperand(1).getImm();
5001       StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(),
5002                                                MI->getOperand(3).getImm());
5003       inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize,
5004                             CFAOffset);
5005     } else {
5006       assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR &&
5007              "Stack probe pseudo-instruction expected");
5008       const AArch64InstrInfo *TII =
5009           MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo();
5010       Register TargetReg = MI->getOperand(0).getReg();
5011       (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true);
5012     }
5013     MI->eraseFromParent();
5014   }
5015 }
5016 
5017 struct StackAccess {
5018   enum AccessType {
5019     NotAccessed = 0, // Stack object not accessed by load/store instructions.
5020     GPR = 1 << 0,    // A general purpose register.
5021     PPR = 1 << 1,    // A predicate register.
5022     FPR = 1 << 2,    // A floating point/Neon/SVE register.
5023   };
5024 
5025   int Idx;
5026   StackOffset Offset;
5027   int64_t Size;
5028   unsigned AccessTypes;
5029 
5030   StackAccess() : Idx(0), Offset(), Size(0), AccessTypes(NotAccessed) {}
5031 
5032   bool operator<(const StackAccess &Rhs) const {
5033     return std::make_tuple(start(), Idx) <
5034            std::make_tuple(Rhs.start(), Rhs.Idx);
5035   }
5036 
5037   bool isCPU() const {
5038     // Predicate register load and store instructions execute on the CPU.
5039     return AccessTypes & (AccessType::GPR | AccessType::PPR);
5040   }
5041   bool isSME() const { return AccessTypes & AccessType::FPR; }
5042   bool isMixed() const { return isCPU() && isSME(); }
5043 
5044   int64_t start() const { return Offset.getFixed() + Offset.getScalable(); }
5045   int64_t end() const { return start() + Size; }
5046 
5047   std::string getTypeString() const {
5048     switch (AccessTypes) {
5049     case AccessType::FPR:
5050       return "FPR";
5051     case AccessType::PPR:
5052       return "PPR";
5053     case AccessType::GPR:
5054       return "GPR";
5055     case AccessType::NotAccessed:
5056       return "NA";
5057     default:
5058       return "Mixed";
5059     }
5060   }
5061 
5062   void print(raw_ostream &OS) const {
5063     OS << getTypeString() << " stack object at [SP"
5064        << (Offset.getFixed() < 0 ? "" : "+") << Offset.getFixed();
5065     if (Offset.getScalable())
5066       OS << (Offset.getScalable() < 0 ? "" : "+") << Offset.getScalable()
5067          << " * vscale";
5068     OS << "]";
5069   }
5070 };
5071 
5072 static inline raw_ostream &operator<<(raw_ostream &OS, const StackAccess &SA) {
5073   SA.print(OS);
5074   return OS;
5075 }
5076 
5077 void AArch64FrameLowering::emitRemarks(
5078     const MachineFunction &MF, MachineOptimizationRemarkEmitter *ORE) const {
5079 
5080   SMEAttrs Attrs(MF.getFunction());
5081   if (Attrs.hasNonStreamingInterfaceAndBody())
5082     return;
5083 
5084   const uint64_t HazardSize =
5085       (StackHazardSize) ? StackHazardSize : StackHazardRemarkSize;
5086 
5087   if (HazardSize == 0)
5088     return;
5089 
5090   const MachineFrameInfo &MFI = MF.getFrameInfo();
5091   // Bail if function has no stack objects.
5092   if (!MFI.hasStackObjects())
5093     return;
5094 
5095   std::vector<StackAccess> StackAccesses(MFI.getNumObjects());
5096 
5097   size_t NumFPLdSt = 0;
5098   size_t NumNonFPLdSt = 0;
5099 
5100   // Collect stack accesses via Load/Store instructions.
5101   for (const MachineBasicBlock &MBB : MF) {
5102     for (const MachineInstr &MI : MBB) {
5103       if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
5104         continue;
5105       for (MachineMemOperand *MMO : MI.memoperands()) {
5106         std::optional<int> FI = getMMOFrameID(MMO, MFI);
5107         if (FI && !MFI.isDeadObjectIndex(*FI)) {
5108           int FrameIdx = *FI;
5109 
5110           size_t ArrIdx = FrameIdx + MFI.getNumFixedObjects();
5111           if (StackAccesses[ArrIdx].AccessTypes == StackAccess::NotAccessed) {
5112             StackAccesses[ArrIdx].Idx = FrameIdx;
5113             StackAccesses[ArrIdx].Offset =
5114                 getFrameIndexReferenceFromSP(MF, FrameIdx);
5115             StackAccesses[ArrIdx].Size = MFI.getObjectSize(FrameIdx);
5116           }
5117 
5118           unsigned RegTy = StackAccess::AccessType::GPR;
5119           if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) {
5120             if (AArch64::PPRRegClass.contains(MI.getOperand(0).getReg()))
5121               RegTy = StackAccess::PPR;
5122             else
5123               RegTy = StackAccess::FPR;
5124           } else if (AArch64InstrInfo::isFpOrNEON(MI)) {
5125             RegTy = StackAccess::FPR;
5126           }
5127 
5128           StackAccesses[ArrIdx].AccessTypes |= RegTy;
5129 
5130           if (RegTy == StackAccess::FPR)
5131             ++NumFPLdSt;
5132           else
5133             ++NumNonFPLdSt;
5134         }
5135       }
5136     }
5137   }
5138 
5139   if (NumFPLdSt == 0 || NumNonFPLdSt == 0)
5140     return;
5141 
5142   llvm::sort(StackAccesses);
5143   StackAccesses.erase(llvm::remove_if(StackAccesses,
5144                                       [](const StackAccess &S) {
5145                                         return S.AccessTypes ==
5146                                                StackAccess::NotAccessed;
5147                                       }),
5148                       StackAccesses.end());
5149 
5150   SmallVector<const StackAccess *> MixedObjects;
5151   SmallVector<std::pair<const StackAccess *, const StackAccess *>> HazardPairs;
5152 
5153   if (StackAccesses.front().isMixed())
5154     MixedObjects.push_back(&StackAccesses.front());
5155 
5156   for (auto It = StackAccesses.begin(), End = std::prev(StackAccesses.end());
5157        It != End; ++It) {
5158     const auto &First = *It;
5159     const auto &Second = *(It + 1);
5160 
5161     if (Second.isMixed())
5162       MixedObjects.push_back(&Second);
5163 
5164     if ((First.isSME() && Second.isCPU()) ||
5165         (First.isCPU() && Second.isSME())) {
5166       uint64_t Distance = static_cast<uint64_t>(Second.start() - First.end());
5167       if (Distance < HazardSize)
5168         HazardPairs.emplace_back(&First, &Second);
5169     }
5170   }
5171 
5172   auto EmitRemark = [&](llvm::StringRef Str) {
5173     ORE->emit([&]() {
5174       auto R = MachineOptimizationRemarkAnalysis(
5175           "sme", "StackHazard", MF.getFunction().getSubprogram(), &MF.front());
5176       return R << formatv("stack hazard in '{0}': ", MF.getName()).str() << Str;
5177     });
5178   };
5179 
5180   for (const auto &P : HazardPairs)
5181     EmitRemark(formatv("{0} is too close to {1}", *P.first, *P.second).str());
5182 
5183   for (const auto *Obj : MixedObjects)
5184     EmitRemark(
5185         formatv("{0} accessed by both GP and FP instructions", *Obj).str());
5186 }
5187