xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // |                                   | Higher address
22 // |-----------------------------------|
23 // |                                   |
24 // | arguments passed on the stack     |
25 // |                                   |
26 // |-----------------------------------| <- sp
27 // |                                   | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // |                                   | Higher address
37 // |-----------------------------------|
38 // |                                   |
39 // | arguments passed on the stack     |
40 // |                                   |
41 // |-----------------------------------|
42 // |                                   |
43 // | (Win64 only) varargs from reg     |
44 // |                                   |
45 // |-----------------------------------|
46 // |                                   |
47 // | callee-saved gpr registers        | <--.
48 // |                                   |    | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -|    | callee saves are swapped,
50 // |                                   |    | (frame record first)
51 // | prev_fp, prev_lr                  | <--'
52 // | (a.k.a. "frame record")           |
53 // |-----------------------------------| <- fp(=x29)
54 // |                                   |
55 // | callee-saved fp/simd/SVE regs     |
56 // |                                   |
57 // |-----------------------------------|
58 // |                                   |
59 // |        SVE stack objects          |
60 // |                                   |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.16-byte.alignment....|  compile time; if present)
65 // |-----------------------------------|
66 // |                                   |
67 // | local variables of fixed size     |
68 // | including spill slots             |
69 // |-----------------------------------| <- bp(not defined by ABI,
70 // |.variable-sized.local.variables....|       LLVM chooses X19)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................|  compile time)
73 // |-----------------------------------| <- sp
74 // |                                   | Lower address
75 //
76 //
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
83 //
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 //   variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 //   more-than-default alignment requirements.
90 //
91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
92 // callee-saved area, since the unwind encoding does not allow for encoding
93 // this dynamically and existing tools depend on this layout. For other
94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
95 // area to allow SVE stack objects (allocated directly below the callee-saves,
96 // if available) to be accessed directly from the framepointer.
97 // The SVE spill/fill instructions have VL-scaled addressing modes such
98 // as:
99 //    ldr z8, [fp, #-7 mul vl]
100 // For SVE the size of the vector length (VL) is not known at compile-time, so
101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
102 // layout, we don't need to add an unscaled offset to the framepointer before
103 // accessing the SVE object in the frame.
104 //
105 // In some cases when a base pointer is not strictly needed, it is generated
106 // anyway when offsets from the frame pointer to access local variables become
107 // so large that the offset can't be encoded in the immediate fields of loads
108 // or stores.
109 //
110 // FIXME: also explain the redzone concept.
111 // FIXME: also explain the concept of reserved call frames.
112 //
113 //===----------------------------------------------------------------------===//
114 
115 #include "AArch64FrameLowering.h"
116 #include "AArch64InstrInfo.h"
117 #include "AArch64MachineFunctionInfo.h"
118 #include "AArch64RegisterInfo.h"
119 #include "AArch64Subtarget.h"
120 #include "AArch64TargetMachine.h"
121 #include "MCTargetDesc/AArch64AddressingModes.h"
122 #include "llvm/ADT/ScopeExit.h"
123 #include "llvm/ADT/SmallVector.h"
124 #include "llvm/ADT/Statistic.h"
125 #include "llvm/CodeGen/LivePhysRegs.h"
126 #include "llvm/CodeGen/MachineBasicBlock.h"
127 #include "llvm/CodeGen/MachineFrameInfo.h"
128 #include "llvm/CodeGen/MachineFunction.h"
129 #include "llvm/CodeGen/MachineInstr.h"
130 #include "llvm/CodeGen/MachineInstrBuilder.h"
131 #include "llvm/CodeGen/MachineMemOperand.h"
132 #include "llvm/CodeGen/MachineModuleInfo.h"
133 #include "llvm/CodeGen/MachineOperand.h"
134 #include "llvm/CodeGen/MachineRegisterInfo.h"
135 #include "llvm/CodeGen/RegisterScavenging.h"
136 #include "llvm/CodeGen/TargetInstrInfo.h"
137 #include "llvm/CodeGen/TargetRegisterInfo.h"
138 #include "llvm/CodeGen/TargetSubtargetInfo.h"
139 #include "llvm/CodeGen/WinEHFuncInfo.h"
140 #include "llvm/IR/Attributes.h"
141 #include "llvm/IR/CallingConv.h"
142 #include "llvm/IR/DataLayout.h"
143 #include "llvm/IR/DebugLoc.h"
144 #include "llvm/IR/Function.h"
145 #include "llvm/MC/MCAsmInfo.h"
146 #include "llvm/MC/MCDwarf.h"
147 #include "llvm/Support/CommandLine.h"
148 #include "llvm/Support/Debug.h"
149 #include "llvm/Support/ErrorHandling.h"
150 #include "llvm/Support/LEB128.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <cassert>
156 #include <cstdint>
157 #include <iterator>
158 #include <vector>
159 
160 using namespace llvm;
161 
162 #define DEBUG_TYPE "frame-info"
163 
164 static cl::opt<bool> EnableRedZone("aarch64-redzone",
165                                    cl::desc("enable use of redzone on AArch64"),
166                                    cl::init(false), cl::Hidden);
167 
168 static cl::opt<bool>
169     ReverseCSRRestoreSeq("reverse-csr-restore-seq",
170                          cl::desc("reverse the CSR restore sequence"),
171                          cl::init(false), cl::Hidden);
172 
173 static cl::opt<bool> StackTaggingMergeSetTag(
174     "stack-tagging-merge-settag",
175     cl::desc("merge settag instruction in function epilog"), cl::init(true),
176     cl::Hidden);
177 
178 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
179                                        cl::desc("sort stack allocations"),
180                                        cl::init(true), cl::Hidden);
181 
182 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
183 
184 /// Returns the argument pop size.
185 static uint64_t getArgumentPopSize(MachineFunction &MF,
186                                    MachineBasicBlock &MBB) {
187   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
188   bool IsTailCallReturn = false;
189   if (MBB.end() != MBBI) {
190     unsigned RetOpcode = MBBI->getOpcode();
191     IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
192                        RetOpcode == AArch64::TCRETURNri ||
193                        RetOpcode == AArch64::TCRETURNriBTI;
194   }
195   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
196 
197   uint64_t ArgumentPopSize = 0;
198   if (IsTailCallReturn) {
199     MachineOperand &StackAdjust = MBBI->getOperand(1);
200 
201     // For a tail-call in a callee-pops-arguments environment, some or all of
202     // the stack may actually be in use for the call's arguments, this is
203     // calculated during LowerCall and consumed here...
204     ArgumentPopSize = StackAdjust.getImm();
205   } else {
206     // ... otherwise the amount to pop is *all* of the argument space,
207     // conveniently stored in the MachineFunctionInfo by
208     // LowerFormalArguments. This will, of course, be zero for the C calling
209     // convention.
210     ArgumentPopSize = AFI->getArgumentStackToRestore();
211   }
212 
213   return ArgumentPopSize;
214 }
215 
216 /// This is the biggest offset to the stack pointer we can encode in aarch64
217 /// instructions (without using a separate calculation and a temp register).
218 /// Note that the exception here are vector stores/loads which cannot encode any
219 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
220 static const unsigned DefaultSafeSPDisplacement = 255;
221 
222 /// Look at each instruction that references stack frames and return the stack
223 /// size limit beyond which some of these instructions will require a scratch
224 /// register during their expansion later.
225 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
226   // FIXME: For now, just conservatively guestimate based on unscaled indexing
227   // range. We'll end up allocating an unnecessary spill slot a lot, but
228   // realistically that's not a big deal at this stage of the game.
229   for (MachineBasicBlock &MBB : MF) {
230     for (MachineInstr &MI : MBB) {
231       if (MI.isDebugInstr() || MI.isPseudo() ||
232           MI.getOpcode() == AArch64::ADDXri ||
233           MI.getOpcode() == AArch64::ADDSXri)
234         continue;
235 
236       for (const MachineOperand &MO : MI.operands()) {
237         if (!MO.isFI())
238           continue;
239 
240         StackOffset Offset;
241         if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
242             AArch64FrameOffsetCannotUpdate)
243           return 0;
244       }
245     }
246   }
247   return DefaultSafeSPDisplacement;
248 }
249 
250 TargetStackID::Value
251 AArch64FrameLowering::getStackIDForScalableVectors() const {
252   return TargetStackID::ScalableVector;
253 }
254 
255 /// Returns the size of the fixed object area (allocated next to sp on entry)
256 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
257 static unsigned getFixedObjectSize(const MachineFunction &MF,
258                                    const AArch64FunctionInfo *AFI, bool IsWin64,
259                                    bool IsFunclet) {
260   if (!IsWin64 || IsFunclet) {
261     // Only Win64 uses fixed objects, and then only for the function (not
262     // funclets)
263     return 0;
264   } else {
265     // Var args are stored here in the primary function.
266     const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
267     // To support EH funclets we allocate an UnwindHelp object
268     const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
269     return alignTo(VarArgsArea + UnwindHelpObject, 16);
270   }
271 }
272 
273 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
274 static StackOffset getSVEStackSize(const MachineFunction &MF) {
275   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
276   return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
277 }
278 
279 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
280   if (!EnableRedZone)
281     return false;
282   // Don't use the red zone if the function explicitly asks us not to.
283   // This is typically used for kernel code.
284   if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone))
285     return false;
286 
287   const MachineFrameInfo &MFI = MF.getFrameInfo();
288   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
289   uint64_t NumBytes = AFI->getLocalStackSize();
290 
291   return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 ||
292            getSVEStackSize(MF));
293 }
294 
295 /// hasFP - Return true if the specified function should have a dedicated frame
296 /// pointer register.
297 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
298   const MachineFrameInfo &MFI = MF.getFrameInfo();
299   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
300   // Win64 EH requires a frame pointer if funclets are present, as the locals
301   // are accessed off the frame pointer in both the parent function and the
302   // funclets.
303   if (MF.hasEHFunclets())
304     return true;
305   // Retain behavior of always omitting the FP for leaf functions when possible.
306   if (MF.getTarget().Options.DisableFramePointerElim(MF))
307     return true;
308   if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
309       MFI.hasStackMap() || MFI.hasPatchPoint() ||
310       RegInfo->needsStackRealignment(MF))
311     return true;
312   // With large callframes around we may need to use FP to access the scavenging
313   // emergency spillslot.
314   //
315   // Unfortunately some calls to hasFP() like machine verifier ->
316   // getReservedReg() -> hasFP in the middle of global isel are too early
317   // to know the max call frame size. Hopefully conservatively returning "true"
318   // in those cases is fine.
319   // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
320   if (!MFI.isMaxCallFrameSizeComputed() ||
321       MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
322     return true;
323 
324   return false;
325 }
326 
327 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
328 /// not required, we reserve argument space for call sites in the function
329 /// immediately on entry to the current function.  This eliminates the need for
330 /// add/sub sp brackets around call sites.  Returns true if the call frame is
331 /// included as part of the stack frame.
332 bool
333 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
334   return !MF.getFrameInfo().hasVarSizedObjects();
335 }
336 
337 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
338     MachineFunction &MF, MachineBasicBlock &MBB,
339     MachineBasicBlock::iterator I) const {
340   const AArch64InstrInfo *TII =
341       static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
342   DebugLoc DL = I->getDebugLoc();
343   unsigned Opc = I->getOpcode();
344   bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
345   uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
346 
347   if (!hasReservedCallFrame(MF)) {
348     int64_t Amount = I->getOperand(0).getImm();
349     Amount = alignTo(Amount, getStackAlign());
350     if (!IsDestroy)
351       Amount = -Amount;
352 
353     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
354     // doesn't have to pop anything), then the first operand will be zero too so
355     // this adjustment is a no-op.
356     if (CalleePopAmount == 0) {
357       // FIXME: in-function stack adjustment for calls is limited to 24-bits
358       // because there's no guaranteed temporary register available.
359       //
360       // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
361       // 1) For offset <= 12-bit, we use LSL #0
362       // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
363       // LSL #0, and the other uses LSL #12.
364       //
365       // Most call frames will be allocated at the start of a function so
366       // this is OK, but it is a limitation that needs dealing with.
367       assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
368       emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
369                       StackOffset::getFixed(Amount), TII);
370     }
371   } else if (CalleePopAmount != 0) {
372     // If the calling convention demands that the callee pops arguments from the
373     // stack, we want to add it back if we have a reserved call frame.
374     assert(CalleePopAmount < 0xffffff && "call frame too large");
375     emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
376                     StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
377   }
378   return MBB.erase(I);
379 }
380 
381 // Convenience function to create a DWARF expression for
382 //   Expr + NumBytes + NumVGScaledBytes * AArch64::VG
383 static void appendVGScaledOffsetExpr(SmallVectorImpl<char> &Expr,
384                                      int NumBytes, int NumVGScaledBytes, unsigned VG,
385                                      llvm::raw_string_ostream &Comment) {
386   uint8_t buffer[16];
387 
388   if (NumBytes) {
389     Expr.push_back(dwarf::DW_OP_consts);
390     Expr.append(buffer, buffer + encodeSLEB128(NumBytes, buffer));
391     Expr.push_back((uint8_t)dwarf::DW_OP_plus);
392     Comment << (NumBytes < 0 ? " - " : " + ") << std::abs(NumBytes);
393   }
394 
395   if (NumVGScaledBytes) {
396     Expr.push_back((uint8_t)dwarf::DW_OP_consts);
397     Expr.append(buffer, buffer + encodeSLEB128(NumVGScaledBytes, buffer));
398 
399     Expr.push_back((uint8_t)dwarf::DW_OP_bregx);
400     Expr.append(buffer, buffer + encodeULEB128(VG, buffer));
401     Expr.push_back(0);
402 
403     Expr.push_back((uint8_t)dwarf::DW_OP_mul);
404     Expr.push_back((uint8_t)dwarf::DW_OP_plus);
405 
406     Comment << (NumVGScaledBytes < 0 ? " - " : " + ")
407             << std::abs(NumVGScaledBytes) << " * VG";
408   }
409 }
410 
411 // Creates an MCCFIInstruction:
412 //    { DW_CFA_def_cfa_expression, ULEB128 (sizeof expr), expr }
413 MCCFIInstruction AArch64FrameLowering::createDefCFAExpressionFromSP(
414     const TargetRegisterInfo &TRI, const StackOffset &OffsetFromSP) const {
415   int64_t NumBytes, NumVGScaledBytes;
416   AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(OffsetFromSP, NumBytes,
417                                                         NumVGScaledBytes);
418 
419   std::string CommentBuffer = "sp";
420   llvm::raw_string_ostream Comment(CommentBuffer);
421 
422   // Build up the expression (SP + NumBytes + NumVGScaledBytes * AArch64::VG)
423   SmallString<64> Expr;
424   Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + /*SP*/ 31));
425   Expr.push_back(0);
426   appendVGScaledOffsetExpr(Expr, NumBytes, NumVGScaledBytes,
427                            TRI.getDwarfRegNum(AArch64::VG, true), Comment);
428 
429   // Wrap this into DW_CFA_def_cfa.
430   SmallString<64> DefCfaExpr;
431   DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
432   uint8_t buffer[16];
433   DefCfaExpr.append(buffer,
434                     buffer + encodeULEB128(Expr.size(), buffer));
435   DefCfaExpr.append(Expr.str());
436   return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(),
437                                         Comment.str());
438 }
439 
440 MCCFIInstruction AArch64FrameLowering::createCfaOffset(
441     const TargetRegisterInfo &TRI, unsigned Reg,
442     const StackOffset &OffsetFromDefCFA) const {
443   int64_t NumBytes, NumVGScaledBytes;
444   AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
445       OffsetFromDefCFA, NumBytes, NumVGScaledBytes);
446 
447   unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
448 
449   // Non-scalable offsets can use DW_CFA_offset directly.
450   if (!NumVGScaledBytes)
451     return MCCFIInstruction::createOffset(nullptr, DwarfReg, NumBytes);
452 
453   std::string CommentBuffer;
454   llvm::raw_string_ostream Comment(CommentBuffer);
455   Comment << printReg(Reg, &TRI) << "  @ cfa";
456 
457   // Build up expression (NumBytes + NumVGScaledBytes * AArch64::VG)
458   SmallString<64> OffsetExpr;
459   appendVGScaledOffsetExpr(OffsetExpr, NumBytes, NumVGScaledBytes,
460                            TRI.getDwarfRegNum(AArch64::VG, true), Comment);
461 
462   // Wrap this into DW_CFA_expression
463   SmallString<64> CfaExpr;
464   CfaExpr.push_back(dwarf::DW_CFA_expression);
465   uint8_t buffer[16];
466   CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer));
467   CfaExpr.append(buffer, buffer + encodeULEB128(OffsetExpr.size(), buffer));
468   CfaExpr.append(OffsetExpr.str());
469 
470   return MCCFIInstruction::createEscape(nullptr, CfaExpr.str(), Comment.str());
471 }
472 
473 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
474     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
475   MachineFunction &MF = *MBB.getParent();
476   MachineFrameInfo &MFI = MF.getFrameInfo();
477   const TargetSubtargetInfo &STI = MF.getSubtarget();
478   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
479   const TargetInstrInfo *TII = STI.getInstrInfo();
480   DebugLoc DL = MBB.findDebugLoc(MBBI);
481 
482   // Add callee saved registers to move list.
483   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
484   if (CSI.empty())
485     return;
486 
487   for (const auto &Info : CSI) {
488     unsigned Reg = Info.getReg();
489 
490     // Not all unwinders may know about SVE registers, so assume the lowest
491     // common demoninator.
492     unsigned NewReg;
493     if (static_cast<const AArch64RegisterInfo *>(TRI)->regNeedsCFI(Reg, NewReg))
494       Reg = NewReg;
495     else
496       continue;
497 
498     StackOffset Offset;
499     if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector) {
500       AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
501       Offset =
502           StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
503           StackOffset::getFixed(AFI->getCalleeSavedStackSize(MFI));
504     } else {
505       Offset = StackOffset::getFixed(MFI.getObjectOffset(Info.getFrameIdx()) -
506                                      getOffsetOfLocalArea());
507     }
508     unsigned CFIIndex = MF.addFrameInst(createCfaOffset(*TRI, Reg, Offset));
509     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
510         .addCFIIndex(CFIIndex)
511         .setMIFlags(MachineInstr::FrameSetup);
512   }
513 }
514 
515 // Find a scratch register that we can use at the start of the prologue to
516 // re-align the stack pointer.  We avoid using callee-save registers since they
517 // may appear to be free when this is called from canUseAsPrologue (during
518 // shrink wrapping), but then no longer be free when this is called from
519 // emitPrologue.
520 //
521 // FIXME: This is a bit conservative, since in the above case we could use one
522 // of the callee-save registers as a scratch temp to re-align the stack pointer,
523 // but we would then have to make sure that we were in fact saving at least one
524 // callee-save register in the prologue, which is additional complexity that
525 // doesn't seem worth the benefit.
526 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
527   MachineFunction *MF = MBB->getParent();
528 
529   // If MBB is an entry block, use X9 as the scratch register
530   if (&MF->front() == MBB)
531     return AArch64::X9;
532 
533   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
534   const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
535   LivePhysRegs LiveRegs(TRI);
536   LiveRegs.addLiveIns(*MBB);
537 
538   // Mark callee saved registers as used so we will not choose them.
539   const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
540   for (unsigned i = 0; CSRegs[i]; ++i)
541     LiveRegs.addReg(CSRegs[i]);
542 
543   // Prefer X9 since it was historically used for the prologue scratch reg.
544   const MachineRegisterInfo &MRI = MF->getRegInfo();
545   if (LiveRegs.available(MRI, AArch64::X9))
546     return AArch64::X9;
547 
548   for (unsigned Reg : AArch64::GPR64RegClass) {
549     if (LiveRegs.available(MRI, Reg))
550       return Reg;
551   }
552   return AArch64::NoRegister;
553 }
554 
555 bool AArch64FrameLowering::canUseAsPrologue(
556     const MachineBasicBlock &MBB) const {
557   const MachineFunction *MF = MBB.getParent();
558   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
559   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
560   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
561 
562   // Don't need a scratch register if we're not going to re-align the stack.
563   if (!RegInfo->needsStackRealignment(*MF))
564     return true;
565   // Otherwise, we can use any block as long as it has a scratch register
566   // available.
567   return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
568 }
569 
570 static bool windowsRequiresStackProbe(MachineFunction &MF,
571                                       uint64_t StackSizeInBytes) {
572   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
573   if (!Subtarget.isTargetWindows())
574     return false;
575   const Function &F = MF.getFunction();
576   // TODO: When implementing stack protectors, take that into account
577   // for the probe threshold.
578   unsigned StackProbeSize = 4096;
579   if (F.hasFnAttribute("stack-probe-size"))
580     F.getFnAttribute("stack-probe-size")
581         .getValueAsString()
582         .getAsInteger(0, StackProbeSize);
583   return (StackSizeInBytes >= StackProbeSize) &&
584          !F.hasFnAttribute("no-stack-arg-probe");
585 }
586 
587 static bool needsWinCFI(const MachineFunction &MF) {
588   const Function &F = MF.getFunction();
589   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
590          F.needsUnwindTableEntry();
591 }
592 
593 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
594     MachineFunction &MF, uint64_t StackBumpBytes) const {
595   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
596   const MachineFrameInfo &MFI = MF.getFrameInfo();
597   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
598   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
599 
600   if (AFI->getLocalStackSize() == 0)
601     return false;
602 
603   // For WinCFI, if optimizing for size, prefer to not combine the stack bump
604   // (to force a stp with predecrement) to match the packed unwind format,
605   // provided that there actually are any callee saved registers to merge the
606   // decrement with.
607   // This is potentially marginally slower, but allows using the packed
608   // unwind format for functions that both have a local area and callee saved
609   // registers. Using the packed unwind format notably reduces the size of
610   // the unwind info.
611   if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
612       MF.getFunction().hasOptSize())
613     return false;
614 
615   // 512 is the maximum immediate for stp/ldp that will be used for
616   // callee-save save/restores
617   if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
618     return false;
619 
620   if (MFI.hasVarSizedObjects())
621     return false;
622 
623   if (RegInfo->needsStackRealignment(MF))
624     return false;
625 
626   // This isn't strictly necessary, but it simplifies things a bit since the
627   // current RedZone handling code assumes the SP is adjusted by the
628   // callee-save save/restore code.
629   if (canUseRedZone(MF))
630     return false;
631 
632   // When there is an SVE area on the stack, always allocate the
633   // callee-saves and spills/locals separately.
634   if (getSVEStackSize(MF))
635     return false;
636 
637   return true;
638 }
639 
640 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
641     MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
642   if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
643     return false;
644 
645   if (MBB.empty())
646     return true;
647 
648   // Disable combined SP bump if the last instruction is an MTE tag store. It
649   // is almost always better to merge SP adjustment into those instructions.
650   MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
651   MachineBasicBlock::iterator Begin = MBB.begin();
652   while (LastI != Begin) {
653     --LastI;
654     if (LastI->isTransient())
655       continue;
656     if (!LastI->getFlag(MachineInstr::FrameDestroy))
657       break;
658   }
659   switch (LastI->getOpcode()) {
660   case AArch64::STGloop:
661   case AArch64::STZGloop:
662   case AArch64::STGOffset:
663   case AArch64::STZGOffset:
664   case AArch64::ST2GOffset:
665   case AArch64::STZ2GOffset:
666     return false;
667   default:
668     return true;
669   }
670   llvm_unreachable("unreachable");
671 }
672 
673 // Given a load or a store instruction, generate an appropriate unwinding SEH
674 // code on Windows.
675 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
676                                              const TargetInstrInfo &TII,
677                                              MachineInstr::MIFlag Flag) {
678   unsigned Opc = MBBI->getOpcode();
679   MachineBasicBlock *MBB = MBBI->getParent();
680   MachineFunction &MF = *MBB->getParent();
681   DebugLoc DL = MBBI->getDebugLoc();
682   unsigned ImmIdx = MBBI->getNumOperands() - 1;
683   int Imm = MBBI->getOperand(ImmIdx).getImm();
684   MachineInstrBuilder MIB;
685   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
686   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
687 
688   switch (Opc) {
689   default:
690     llvm_unreachable("No SEH Opcode for this instruction");
691   case AArch64::LDPDpost:
692     Imm = -Imm;
693     LLVM_FALLTHROUGH;
694   case AArch64::STPDpre: {
695     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
696     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
697     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
698               .addImm(Reg0)
699               .addImm(Reg1)
700               .addImm(Imm * 8)
701               .setMIFlag(Flag);
702     break;
703   }
704   case AArch64::LDPXpost:
705     Imm = -Imm;
706     LLVM_FALLTHROUGH;
707   case AArch64::STPXpre: {
708     Register Reg0 = MBBI->getOperand(1).getReg();
709     Register Reg1 = MBBI->getOperand(2).getReg();
710     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
711       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
712                 .addImm(Imm * 8)
713                 .setMIFlag(Flag);
714     else
715       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
716                 .addImm(RegInfo->getSEHRegNum(Reg0))
717                 .addImm(RegInfo->getSEHRegNum(Reg1))
718                 .addImm(Imm * 8)
719                 .setMIFlag(Flag);
720     break;
721   }
722   case AArch64::LDRDpost:
723     Imm = -Imm;
724     LLVM_FALLTHROUGH;
725   case AArch64::STRDpre: {
726     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
727     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
728               .addImm(Reg)
729               .addImm(Imm)
730               .setMIFlag(Flag);
731     break;
732   }
733   case AArch64::LDRXpost:
734     Imm = -Imm;
735     LLVM_FALLTHROUGH;
736   case AArch64::STRXpre: {
737     unsigned Reg =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
738     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
739               .addImm(Reg)
740               .addImm(Imm)
741               .setMIFlag(Flag);
742     break;
743   }
744   case AArch64::STPDi:
745   case AArch64::LDPDi: {
746     unsigned Reg0 =  RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
747     unsigned Reg1 =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
748     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
749               .addImm(Reg0)
750               .addImm(Reg1)
751               .addImm(Imm * 8)
752               .setMIFlag(Flag);
753     break;
754   }
755   case AArch64::STPXi:
756   case AArch64::LDPXi: {
757     Register Reg0 = MBBI->getOperand(0).getReg();
758     Register Reg1 = MBBI->getOperand(1).getReg();
759     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
760       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
761                 .addImm(Imm * 8)
762                 .setMIFlag(Flag);
763     else
764       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
765                 .addImm(RegInfo->getSEHRegNum(Reg0))
766                 .addImm(RegInfo->getSEHRegNum(Reg1))
767                 .addImm(Imm * 8)
768                 .setMIFlag(Flag);
769     break;
770   }
771   case AArch64::STRXui:
772   case AArch64::LDRXui: {
773     int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
774     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
775               .addImm(Reg)
776               .addImm(Imm * 8)
777               .setMIFlag(Flag);
778     break;
779   }
780   case AArch64::STRDui:
781   case AArch64::LDRDui: {
782     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
783     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
784               .addImm(Reg)
785               .addImm(Imm * 8)
786               .setMIFlag(Flag);
787     break;
788   }
789   }
790   auto I = MBB->insertAfter(MBBI, MIB);
791   return I;
792 }
793 
794 // Fix up the SEH opcode associated with the save/restore instruction.
795 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
796                            unsigned LocalStackSize) {
797   MachineOperand *ImmOpnd = nullptr;
798   unsigned ImmIdx = MBBI->getNumOperands() - 1;
799   switch (MBBI->getOpcode()) {
800   default:
801     llvm_unreachable("Fix the offset in the SEH instruction");
802   case AArch64::SEH_SaveFPLR:
803   case AArch64::SEH_SaveRegP:
804   case AArch64::SEH_SaveReg:
805   case AArch64::SEH_SaveFRegP:
806   case AArch64::SEH_SaveFReg:
807     ImmOpnd = &MBBI->getOperand(ImmIdx);
808     break;
809   }
810   if (ImmOpnd)
811     ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
812 }
813 
814 // Convert callee-save register save/restore instruction to do stack pointer
815 // decrement/increment to allocate/deallocate the callee-save stack area by
816 // converting store/load to use pre/post increment version.
817 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
818     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
819     const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
820     bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) {
821   // Ignore instructions that do not operate on SP, i.e. shadow call stack
822   // instructions and associated CFI instruction.
823   while (MBBI->getOpcode() == AArch64::STRXpost ||
824          MBBI->getOpcode() == AArch64::LDRXpre ||
825          MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) {
826     if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION)
827       assert(MBBI->getOperand(0).getReg() != AArch64::SP);
828     ++MBBI;
829   }
830   unsigned NewOpc;
831   int Scale = 1;
832   switch (MBBI->getOpcode()) {
833   default:
834     llvm_unreachable("Unexpected callee-save save/restore opcode!");
835   case AArch64::STPXi:
836     NewOpc = AArch64::STPXpre;
837     Scale = 8;
838     break;
839   case AArch64::STPDi:
840     NewOpc = AArch64::STPDpre;
841     Scale = 8;
842     break;
843   case AArch64::STPQi:
844     NewOpc = AArch64::STPQpre;
845     Scale = 16;
846     break;
847   case AArch64::STRXui:
848     NewOpc = AArch64::STRXpre;
849     break;
850   case AArch64::STRDui:
851     NewOpc = AArch64::STRDpre;
852     break;
853   case AArch64::STRQui:
854     NewOpc = AArch64::STRQpre;
855     break;
856   case AArch64::LDPXi:
857     NewOpc = AArch64::LDPXpost;
858     Scale = 8;
859     break;
860   case AArch64::LDPDi:
861     NewOpc = AArch64::LDPDpost;
862     Scale = 8;
863     break;
864   case AArch64::LDPQi:
865     NewOpc = AArch64::LDPQpost;
866     Scale = 16;
867     break;
868   case AArch64::LDRXui:
869     NewOpc = AArch64::LDRXpost;
870     break;
871   case AArch64::LDRDui:
872     NewOpc = AArch64::LDRDpost;
873     break;
874   case AArch64::LDRQui:
875     NewOpc = AArch64::LDRQpost;
876     break;
877   }
878   // Get rid of the SEH code associated with the old instruction.
879   if (NeedsWinCFI) {
880     auto SEH = std::next(MBBI);
881     if (AArch64InstrInfo::isSEHInstruction(*SEH))
882       SEH->eraseFromParent();
883   }
884 
885   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
886   MIB.addReg(AArch64::SP, RegState::Define);
887 
888   // Copy all operands other than the immediate offset.
889   unsigned OpndIdx = 0;
890   for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
891        ++OpndIdx)
892     MIB.add(MBBI->getOperand(OpndIdx));
893 
894   assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
895          "Unexpected immediate offset in first/last callee-save save/restore "
896          "instruction!");
897   assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
898          "Unexpected base register in callee-save save/restore instruction!");
899   assert(CSStackSizeInc % Scale == 0);
900   MIB.addImm(CSStackSizeInc / Scale);
901 
902   MIB.setMIFlags(MBBI->getFlags());
903   MIB.setMemRefs(MBBI->memoperands());
904 
905   // Generate a new SEH code that corresponds to the new instruction.
906   if (NeedsWinCFI) {
907     *HasWinCFI = true;
908     InsertSEH(*MIB, *TII,
909               InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy);
910   }
911 
912   return std::prev(MBB.erase(MBBI));
913 }
914 
915 // Fixup callee-save register save/restore instructions to take into account
916 // combined SP bump by adding the local stack size to the stack offsets.
917 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
918                                               uint64_t LocalStackSize,
919                                               bool NeedsWinCFI,
920                                               bool *HasWinCFI) {
921   if (AArch64InstrInfo::isSEHInstruction(MI))
922     return;
923 
924   unsigned Opc = MI.getOpcode();
925 
926   // Ignore instructions that do not operate on SP, i.e. shadow call stack
927   // instructions and associated CFI instruction.
928   if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre ||
929       Opc == AArch64::CFI_INSTRUCTION) {
930     if (Opc != AArch64::CFI_INSTRUCTION)
931       assert(MI.getOperand(0).getReg() != AArch64::SP);
932     return;
933   }
934 
935   unsigned Scale;
936   switch (Opc) {
937   case AArch64::STPXi:
938   case AArch64::STRXui:
939   case AArch64::STPDi:
940   case AArch64::STRDui:
941   case AArch64::LDPXi:
942   case AArch64::LDRXui:
943   case AArch64::LDPDi:
944   case AArch64::LDRDui:
945     Scale = 8;
946     break;
947   case AArch64::STPQi:
948   case AArch64::STRQui:
949   case AArch64::LDPQi:
950   case AArch64::LDRQui:
951     Scale = 16;
952     break;
953   default:
954     llvm_unreachable("Unexpected callee-save save/restore opcode!");
955   }
956 
957   unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
958   assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
959          "Unexpected base register in callee-save save/restore instruction!");
960   // Last operand is immediate offset that needs fixing.
961   MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
962   // All generated opcodes have scaled offsets.
963   assert(LocalStackSize % Scale == 0);
964   OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
965 
966   if (NeedsWinCFI) {
967     *HasWinCFI = true;
968     auto MBBI = std::next(MachineBasicBlock::iterator(MI));
969     assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
970     assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
971            "Expecting a SEH instruction");
972     fixupSEHOpcode(MBBI, LocalStackSize);
973   }
974 }
975 
976 static void adaptForLdStOpt(MachineBasicBlock &MBB,
977                             MachineBasicBlock::iterator FirstSPPopI,
978                             MachineBasicBlock::iterator LastPopI) {
979   // Sometimes (when we restore in the same order as we save), we can end up
980   // with code like this:
981   //
982   // ldp      x26, x25, [sp]
983   // ldp      x24, x23, [sp, #16]
984   // ldp      x22, x21, [sp, #32]
985   // ldp      x20, x19, [sp, #48]
986   // add      sp, sp, #64
987   //
988   // In this case, it is always better to put the first ldp at the end, so
989   // that the load-store optimizer can run and merge the ldp and the add into
990   // a post-index ldp.
991   // If we managed to grab the first pop instruction, move it to the end.
992   if (ReverseCSRRestoreSeq)
993     MBB.splice(FirstSPPopI, &MBB, LastPopI);
994   // We should end up with something like this now:
995   //
996   // ldp      x24, x23, [sp, #16]
997   // ldp      x22, x21, [sp, #32]
998   // ldp      x20, x19, [sp, #48]
999   // ldp      x26, x25, [sp]
1000   // add      sp, sp, #64
1001   //
1002   // and the load-store optimizer can merge the last two instructions into:
1003   //
1004   // ldp      x26, x25, [sp], #64
1005   //
1006 }
1007 
1008 static bool isTargetWindows(const MachineFunction &MF) {
1009   return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1010 }
1011 
1012 // Convenience function to determine whether I is an SVE callee save.
1013 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1014   switch (I->getOpcode()) {
1015   default:
1016     return false;
1017   case AArch64::STR_ZXI:
1018   case AArch64::STR_PXI:
1019   case AArch64::LDR_ZXI:
1020   case AArch64::LDR_PXI:
1021     return I->getFlag(MachineInstr::FrameSetup) ||
1022            I->getFlag(MachineInstr::FrameDestroy);
1023   }
1024 }
1025 
1026 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1027                                         MachineBasicBlock &MBB) const {
1028   MachineBasicBlock::iterator MBBI = MBB.begin();
1029   const MachineFrameInfo &MFI = MF.getFrameInfo();
1030   const Function &F = MF.getFunction();
1031   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1032   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1033   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1034   MachineModuleInfo &MMI = MF.getMMI();
1035   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1036   bool needsFrameMoves =
1037       MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1038   bool HasFP = hasFP(MF);
1039   bool NeedsWinCFI = needsWinCFI(MF);
1040   bool HasWinCFI = false;
1041   auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1042 
1043   bool IsFunclet = MBB.isEHFuncletEntry();
1044 
1045   // At this point, we're going to decide whether or not the function uses a
1046   // redzone. In most cases, the function doesn't have a redzone so let's
1047   // assume that's false and set it to true in the case that there's a redzone.
1048   AFI->setHasRedZone(false);
1049 
1050   // Debug location must be unknown since the first debug location is used
1051   // to determine the end of the prologue.
1052   DebugLoc DL;
1053 
1054   const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1055   if (MFnI.shouldSignReturnAddress()) {
1056     if (MFnI.shouldSignWithBKey()) {
1057       BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
1058           .setMIFlag(MachineInstr::FrameSetup);
1059       BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP))
1060           .setMIFlag(MachineInstr::FrameSetup);
1061     } else {
1062       BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP))
1063           .setMIFlag(MachineInstr::FrameSetup);
1064     }
1065 
1066     unsigned CFIIndex =
1067         MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1068     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1069         .addCFIIndex(CFIIndex)
1070         .setMIFlags(MachineInstr::FrameSetup);
1071   }
1072 
1073   // All calls are tail calls in GHC calling conv, and functions have no
1074   // prologue/epilogue.
1075   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1076     return;
1077 
1078   // Set tagged base pointer to the requested stack slot.
1079   // Ideally it should match SP value after prologue.
1080   Optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1081   if (TBPI)
1082     AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1083   else
1084     AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1085 
1086   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1087 
1088   // getStackSize() includes all the locals in its size calculation. We don't
1089   // include these locals when computing the stack size of a funclet, as they
1090   // are allocated in the parent's stack frame and accessed via the frame
1091   // pointer from the funclet.  We only save the callee saved registers in the
1092   // funclet, which are really the callee saved registers of the parent
1093   // function, including the funclet.
1094   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1095                                : MFI.getStackSize();
1096   if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1097     assert(!HasFP && "unexpected function without stack frame but with FP");
1098     assert(!SVEStackSize &&
1099            "unexpected function without stack frame but with SVE objects");
1100     // All of the stack allocation is for locals.
1101     AFI->setLocalStackSize(NumBytes);
1102     if (!NumBytes)
1103       return;
1104     // REDZONE: If the stack size is less than 128 bytes, we don't need
1105     // to actually allocate.
1106     if (canUseRedZone(MF)) {
1107       AFI->setHasRedZone(true);
1108       ++NumRedZoneFunctions;
1109     } else {
1110       emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1111                       StackOffset::getFixed(-NumBytes), TII,
1112                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1113       if (!NeedsWinCFI && needsFrameMoves) {
1114         // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1115         MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1116           // Encode the stack size of the leaf function.
1117         unsigned CFIIndex = MF.addFrameInst(
1118             MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1119         BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1120             .addCFIIndex(CFIIndex)
1121             .setMIFlags(MachineInstr::FrameSetup);
1122       }
1123     }
1124 
1125     if (NeedsWinCFI) {
1126       HasWinCFI = true;
1127       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1128           .setMIFlag(MachineInstr::FrameSetup);
1129     }
1130 
1131     return;
1132   }
1133 
1134   bool IsWin64 =
1135       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1136   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1137 
1138   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1139   // All of the remaining stack allocations are for locals.
1140   AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1141   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1142   if (CombineSPBump) {
1143     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1144     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1145                     StackOffset::getFixed(-NumBytes), TII,
1146                     MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1147     NumBytes = 0;
1148   } else if (PrologueSaveSize != 0) {
1149     MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1150         MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI);
1151     NumBytes -= PrologueSaveSize;
1152   }
1153   assert(NumBytes >= 0 && "Negative stack allocation size!?");
1154 
1155   // Move past the saves of the callee-saved registers, fixing up the offsets
1156   // and pre-inc if we decided to combine the callee-save and local stack
1157   // pointer bump above.
1158   MachineBasicBlock::iterator End = MBB.end();
1159   while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1160          !IsSVECalleeSave(MBBI)) {
1161     if (CombineSPBump)
1162       fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1163                                         NeedsWinCFI, &HasWinCFI);
1164     ++MBBI;
1165   }
1166 
1167   // For funclets the FP belongs to the containing function.
1168   if (!IsFunclet && HasFP) {
1169     // Only set up FP if we actually need to.
1170     int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1171 
1172     if (CombineSPBump)
1173       FPOffset += AFI->getLocalStackSize();
1174 
1175     // Issue    sub fp, sp, FPOffset or
1176     //          mov fp,sp          when FPOffset is zero.
1177     // Note: All stores of callee-saved registers are marked as "FrameSetup".
1178     // This code marks the instruction(s) that set the FP also.
1179     emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1180                     StackOffset::getFixed(FPOffset), TII,
1181                     MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1182   }
1183 
1184   if (windowsRequiresStackProbe(MF, NumBytes)) {
1185     uint64_t NumWords = NumBytes >> 4;
1186     if (NeedsWinCFI) {
1187       HasWinCFI = true;
1188       // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1189       // exceed this amount.  We need to move at most 2^24 - 1 into x15.
1190       // This is at most two instructions, MOVZ follwed by MOVK.
1191       // TODO: Fix to use multiple stack alloc unwind codes for stacks
1192       // exceeding 256MB in size.
1193       if (NumBytes >= (1 << 28))
1194         report_fatal_error("Stack size cannot exceed 256MB for stack "
1195                             "unwinding purposes");
1196 
1197       uint32_t LowNumWords = NumWords & 0xFFFF;
1198       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1199             .addImm(LowNumWords)
1200             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1201             .setMIFlag(MachineInstr::FrameSetup);
1202       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1203             .setMIFlag(MachineInstr::FrameSetup);
1204       if ((NumWords & 0xFFFF0000) != 0) {
1205           BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1206               .addReg(AArch64::X15)
1207               .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1208               .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1209               .setMIFlag(MachineInstr::FrameSetup);
1210           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1211             .setMIFlag(MachineInstr::FrameSetup);
1212       }
1213     } else {
1214       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1215           .addImm(NumWords)
1216           .setMIFlags(MachineInstr::FrameSetup);
1217     }
1218 
1219     switch (MF.getTarget().getCodeModel()) {
1220     case CodeModel::Tiny:
1221     case CodeModel::Small:
1222     case CodeModel::Medium:
1223     case CodeModel::Kernel:
1224       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1225           .addExternalSymbol("__chkstk")
1226           .addReg(AArch64::X15, RegState::Implicit)
1227           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1228           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1229           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1230           .setMIFlags(MachineInstr::FrameSetup);
1231       if (NeedsWinCFI) {
1232         HasWinCFI = true;
1233         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1234             .setMIFlag(MachineInstr::FrameSetup);
1235       }
1236       break;
1237     case CodeModel::Large:
1238       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1239           .addReg(AArch64::X16, RegState::Define)
1240           .addExternalSymbol("__chkstk")
1241           .addExternalSymbol("__chkstk")
1242           .setMIFlags(MachineInstr::FrameSetup);
1243       if (NeedsWinCFI) {
1244         HasWinCFI = true;
1245         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1246             .setMIFlag(MachineInstr::FrameSetup);
1247       }
1248 
1249       BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
1250           .addReg(AArch64::X16, RegState::Kill)
1251           .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1252           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1253           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1254           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1255           .setMIFlags(MachineInstr::FrameSetup);
1256       if (NeedsWinCFI) {
1257         HasWinCFI = true;
1258         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1259             .setMIFlag(MachineInstr::FrameSetup);
1260       }
1261       break;
1262     }
1263 
1264     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1265         .addReg(AArch64::SP, RegState::Kill)
1266         .addReg(AArch64::X15, RegState::Kill)
1267         .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1268         .setMIFlags(MachineInstr::FrameSetup);
1269     if (NeedsWinCFI) {
1270       HasWinCFI = true;
1271       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1272           .addImm(NumBytes)
1273           .setMIFlag(MachineInstr::FrameSetup);
1274     }
1275     NumBytes = 0;
1276   }
1277 
1278   StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1279   MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1280 
1281   // Process the SVE callee-saves to determine what space needs to be
1282   // allocated.
1283   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
1284     // Find callee save instructions in frame.
1285     CalleeSavesBegin = MBBI;
1286     assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1287     while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1288       ++MBBI;
1289     CalleeSavesEnd = MBBI;
1290 
1291     AllocateBefore = StackOffset::getScalable(CalleeSavedSize);
1292     AllocateAfter = SVEStackSize - AllocateBefore;
1293   }
1294 
1295   // Allocate space for the callee saves (if any).
1296   emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP,
1297                   -AllocateBefore, TII,
1298                   MachineInstr::FrameSetup);
1299 
1300   // Finally allocate remaining SVE stack space.
1301   emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1302                   -AllocateAfter, TII,
1303                   MachineInstr::FrameSetup);
1304 
1305   // Allocate space for the rest of the frame.
1306   if (NumBytes) {
1307     // Alignment is required for the parent frame, not the funclet
1308     const bool NeedsRealignment =
1309         !IsFunclet && RegInfo->needsStackRealignment(MF);
1310     unsigned scratchSPReg = AArch64::SP;
1311 
1312     if (NeedsRealignment) {
1313       scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1314       assert(scratchSPReg != AArch64::NoRegister);
1315     }
1316 
1317     // If we're a leaf function, try using the red zone.
1318     if (!canUseRedZone(MF))
1319       // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1320       // the correct value here, as NumBytes also includes padding bytes,
1321       // which shouldn't be counted here.
1322       emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1323                       StackOffset::getFixed(-NumBytes), TII,
1324                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1325 
1326     if (NeedsRealignment) {
1327       const unsigned NrBitsToZero = Log2(MFI.getMaxAlign());
1328       assert(NrBitsToZero > 1);
1329       assert(scratchSPReg != AArch64::SP);
1330 
1331       // SUB X9, SP, NumBytes
1332       //   -- X9 is temporary register, so shouldn't contain any live data here,
1333       //   -- free to use. This is already produced by emitFrameOffset above.
1334       // AND SP, X9, 0b11111...0000
1335       // The logical immediates have a non-trivial encoding. The following
1336       // formula computes the encoded immediate with all ones but
1337       // NrBitsToZero zero bits as least significant bits.
1338       uint32_t andMaskEncoded = (1 << 12)                         // = N
1339                                 | ((64 - NrBitsToZero) << 6)      // immr
1340                                 | ((64 - NrBitsToZero - 1) << 0); // imms
1341 
1342       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1343           .addReg(scratchSPReg, RegState::Kill)
1344           .addImm(andMaskEncoded);
1345       AFI->setStackRealigned(true);
1346       if (NeedsWinCFI) {
1347         HasWinCFI = true;
1348         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1349             .addImm(NumBytes & andMaskEncoded)
1350             .setMIFlag(MachineInstr::FrameSetup);
1351       }
1352     }
1353   }
1354 
1355   // If we need a base pointer, set it up here. It's whatever the value of the
1356   // stack pointer is at this point. Any variable size objects will be allocated
1357   // after this, so we can still use the base pointer to reference locals.
1358   //
1359   // FIXME: Clarify FrameSetup flags here.
1360   // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1361   // needed.
1362   // For funclets the BP belongs to the containing function.
1363   if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1364     TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1365                      false);
1366     if (NeedsWinCFI) {
1367       HasWinCFI = true;
1368       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1369           .setMIFlag(MachineInstr::FrameSetup);
1370     }
1371   }
1372 
1373   // The very last FrameSetup instruction indicates the end of prologue. Emit a
1374   // SEH opcode indicating the prologue end.
1375   if (NeedsWinCFI && HasWinCFI) {
1376     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1377         .setMIFlag(MachineInstr::FrameSetup);
1378   }
1379 
1380   // SEH funclets are passed the frame pointer in X1.  If the parent
1381   // function uses the base register, then the base register is used
1382   // directly, and is not retrieved from X1.
1383   if (IsFunclet && F.hasPersonalityFn()) {
1384     EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1385     if (isAsynchronousEHPersonality(Per)) {
1386       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1387           .addReg(AArch64::X1)
1388           .setMIFlag(MachineInstr::FrameSetup);
1389       MBB.addLiveIn(AArch64::X1);
1390     }
1391   }
1392 
1393   if (needsFrameMoves) {
1394     // An example of the prologue:
1395     //
1396     //     .globl __foo
1397     //     .align 2
1398     //  __foo:
1399     // Ltmp0:
1400     //     .cfi_startproc
1401     //     .cfi_personality 155, ___gxx_personality_v0
1402     // Leh_func_begin:
1403     //     .cfi_lsda 16, Lexception33
1404     //
1405     //     stp  xa,bx, [sp, -#offset]!
1406     //     ...
1407     //     stp  x28, x27, [sp, #offset-32]
1408     //     stp  fp, lr, [sp, #offset-16]
1409     //     add  fp, sp, #offset - 16
1410     //     sub  sp, sp, #1360
1411     //
1412     // The Stack:
1413     //       +-------------------------------------------+
1414     // 10000 | ........ | ........ | ........ | ........ |
1415     // 10004 | ........ | ........ | ........ | ........ |
1416     //       +-------------------------------------------+
1417     // 10008 | ........ | ........ | ........ | ........ |
1418     // 1000c | ........ | ........ | ........ | ........ |
1419     //       +===========================================+
1420     // 10010 |                X28 Register               |
1421     // 10014 |                X28 Register               |
1422     //       +-------------------------------------------+
1423     // 10018 |                X27 Register               |
1424     // 1001c |                X27 Register               |
1425     //       +===========================================+
1426     // 10020 |                Frame Pointer              |
1427     // 10024 |                Frame Pointer              |
1428     //       +-------------------------------------------+
1429     // 10028 |                Link Register              |
1430     // 1002c |                Link Register              |
1431     //       +===========================================+
1432     // 10030 | ........ | ........ | ........ | ........ |
1433     // 10034 | ........ | ........ | ........ | ........ |
1434     //       +-------------------------------------------+
1435     // 10038 | ........ | ........ | ........ | ........ |
1436     // 1003c | ........ | ........ | ........ | ........ |
1437     //       +-------------------------------------------+
1438     //
1439     //     [sp] = 10030        ::    >>initial value<<
1440     //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
1441     //     fp = sp == 10020    ::  mov fp, sp
1442     //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
1443     //     sp == 10010         ::    >>final value<<
1444     //
1445     // The frame pointer (w29) points to address 10020. If we use an offset of
1446     // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
1447     // for w27, and -32 for w28:
1448     //
1449     //  Ltmp1:
1450     //     .cfi_def_cfa w29, 16
1451     //  Ltmp2:
1452     //     .cfi_offset w30, -8
1453     //  Ltmp3:
1454     //     .cfi_offset w29, -16
1455     //  Ltmp4:
1456     //     .cfi_offset w27, -24
1457     //  Ltmp5:
1458     //     .cfi_offset w28, -32
1459 
1460     if (HasFP) {
1461       const int OffsetToFirstCalleeSaveFromFP =
1462           AFI->getCalleeSaveBaseToFrameRecordOffset() -
1463           AFI->getCalleeSavedStackSize();
1464       Register FramePtr = RegInfo->getFrameRegister(MF);
1465 
1466       // Define the current CFA rule to use the provided FP.
1467       unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1468       unsigned CFIIndex = MF.addFrameInst(
1469           MCCFIInstruction::cfiDefCfa(nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1470       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1471           .addCFIIndex(CFIIndex)
1472           .setMIFlags(MachineInstr::FrameSetup);
1473     } else {
1474       unsigned CFIIndex;
1475       if (SVEStackSize) {
1476         const TargetSubtargetInfo &STI = MF.getSubtarget();
1477         const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1478         StackOffset TotalSize =
1479             SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize());
1480         CFIIndex = MF.addFrameInst(createDefCFAExpressionFromSP(TRI, TotalSize));
1481       } else {
1482         // Encode the stack size of the leaf function.
1483         CFIIndex = MF.addFrameInst(
1484             MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize()));
1485       }
1486       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1487           .addCFIIndex(CFIIndex)
1488           .setMIFlags(MachineInstr::FrameSetup);
1489     }
1490 
1491     // Now emit the moves for whatever callee saved regs we have (including FP,
1492     // LR if those are saved).
1493     emitCalleeSavedFrameMoves(MBB, MBBI);
1494   }
1495 }
1496 
1497 static void InsertReturnAddressAuth(MachineFunction &MF,
1498                                     MachineBasicBlock &MBB) {
1499   const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
1500   if (!MFI.shouldSignReturnAddress())
1501     return;
1502   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1503   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1504 
1505   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1506   DebugLoc DL;
1507   if (MBBI != MBB.end())
1508     DL = MBBI->getDebugLoc();
1509 
1510   // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1511   // this instruction can safely used for any v8a architecture.
1512   // From v8.3a onwards there are optimised authenticate LR and return
1513   // instructions, namely RETA{A,B}, that can be used instead.
1514   if (Subtarget.hasPAuth() && MBBI != MBB.end() &&
1515       MBBI->getOpcode() == AArch64::RET_ReallyLR) {
1516     BuildMI(MBB, MBBI, DL,
1517             TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA))
1518         .copyImplicitOps(*MBBI);
1519     MBB.erase(MBBI);
1520   } else {
1521     BuildMI(
1522         MBB, MBBI, DL,
1523         TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP))
1524         .setMIFlag(MachineInstr::FrameDestroy);
1525   }
1526 }
1527 
1528 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1529   switch (MI.getOpcode()) {
1530   default:
1531     return false;
1532   case AArch64::CATCHRET:
1533   case AArch64::CLEANUPRET:
1534     return true;
1535   }
1536 }
1537 
1538 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1539                                         MachineBasicBlock &MBB) const {
1540   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1541   MachineFrameInfo &MFI = MF.getFrameInfo();
1542   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1543   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1544   DebugLoc DL;
1545   bool NeedsWinCFI = needsWinCFI(MF);
1546   bool HasWinCFI = false;
1547   bool IsFunclet = false;
1548   auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); });
1549 
1550   if (MBB.end() != MBBI) {
1551     DL = MBBI->getDebugLoc();
1552     IsFunclet = isFuncletReturnInstr(*MBBI);
1553   }
1554 
1555   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1556                                : MFI.getStackSize();
1557   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1558 
1559   // All calls are tail calls in GHC calling conv, and functions have no
1560   // prologue/epilogue.
1561   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1562     return;
1563 
1564   // Initial and residual are named for consistency with the prologue. Note that
1565   // in the epilogue, the residual adjustment is executed first.
1566   uint64_t ArgumentPopSize = getArgumentPopSize(MF, MBB);
1567 
1568   // The stack frame should be like below,
1569   //
1570   //      ----------------------                     ---
1571   //      |                    |                      |
1572   //      | BytesInStackArgArea|              CalleeArgStackSize
1573   //      | (NumReusableBytes) |                (of tail call)
1574   //      |                    |                     ---
1575   //      |                    |                      |
1576   //      ---------------------|        ---           |
1577   //      |                    |         |            |
1578   //      |   CalleeSavedReg   |         |            |
1579   //      | (CalleeSavedStackSize)|      |            |
1580   //      |                    |         |            |
1581   //      ---------------------|         |         NumBytes
1582   //      |                    |     StackSize  (StackAdjustUp)
1583   //      |   LocalStackSize   |         |            |
1584   //      | (covering callee   |         |            |
1585   //      |       args)        |         |            |
1586   //      |                    |         |            |
1587   //      ----------------------        ---          ---
1588   //
1589   // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
1590   //             = StackSize + ArgumentPopSize
1591   //
1592   // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
1593   // it as the 2nd argument of AArch64ISD::TC_RETURN.
1594 
1595   auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); });
1596 
1597   bool IsWin64 =
1598       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1599   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1600 
1601   uint64_t AfterCSRPopSize = ArgumentPopSize;
1602   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1603   // We cannot rely on the local stack size set in emitPrologue if the function
1604   // has funclets, as funclets have different local stack size requirements, and
1605   // the current value set in emitPrologue may be that of the containing
1606   // function.
1607   if (MF.hasEHFunclets())
1608     AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1609   bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
1610   // Assume we can't combine the last pop with the sp restore.
1611 
1612   if (!CombineSPBump && PrologueSaveSize != 0) {
1613     MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1614     while (AArch64InstrInfo::isSEHInstruction(*Pop))
1615       Pop = std::prev(Pop);
1616     // Converting the last ldp to a post-index ldp is valid only if the last
1617     // ldp's offset is 0.
1618     const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
1619     // If the offset is 0, convert it to a post-index ldp.
1620     if (OffsetOp.getImm() == 0)
1621       convertCalleeSaveRestoreToSPPrePostIncDec(
1622           MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false);
1623     else {
1624       // If not, make sure to emit an add after the last ldp.
1625       // We're doing this by transfering the size to be restored from the
1626       // adjustment *before* the CSR pops to the adjustment *after* the CSR
1627       // pops.
1628       AfterCSRPopSize += PrologueSaveSize;
1629     }
1630   }
1631 
1632   // Move past the restores of the callee-saved registers.
1633   // If we plan on combining the sp bump of the local stack size and the callee
1634   // save stack size, we might need to adjust the CSR save and restore offsets.
1635   MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
1636   MachineBasicBlock::iterator Begin = MBB.begin();
1637   while (LastPopI != Begin) {
1638     --LastPopI;
1639     if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
1640         IsSVECalleeSave(LastPopI)) {
1641       ++LastPopI;
1642       break;
1643     } else if (CombineSPBump)
1644       fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
1645                                         NeedsWinCFI, &HasWinCFI);
1646   }
1647 
1648   if (MF.hasWinCFI()) {
1649     // If the prologue didn't contain any SEH opcodes and didn't set the
1650     // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the
1651     // EpilogStart - to avoid generating CFI for functions that don't need it.
1652     // (And as we didn't generate any prologue at all, it would be asymmetrical
1653     // to the epilogue.) By the end of the function, we assert that
1654     // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption.
1655     HasWinCFI = true;
1656     BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
1657         .setMIFlag(MachineInstr::FrameDestroy);
1658   }
1659 
1660   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1661 
1662   // If there is a single SP update, insert it before the ret and we're done.
1663   if (CombineSPBump) {
1664     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1665     emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
1666                     StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
1667                     TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
1668                     &HasWinCFI);
1669     if (HasWinCFI)
1670       BuildMI(MBB, MBB.getFirstTerminator(), DL,
1671               TII->get(AArch64::SEH_EpilogEnd))
1672           .setMIFlag(MachineInstr::FrameDestroy);
1673     return;
1674   }
1675 
1676   NumBytes -= PrologueSaveSize;
1677   assert(NumBytes >= 0 && "Negative stack allocation size!?");
1678 
1679   // Process the SVE callee-saves to determine what space needs to be
1680   // deallocated.
1681   StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
1682   MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
1683   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
1684     RestoreBegin = std::prev(RestoreEnd);
1685     while (RestoreBegin != MBB.begin() &&
1686            IsSVECalleeSave(std::prev(RestoreBegin)))
1687       --RestoreBegin;
1688 
1689     assert(IsSVECalleeSave(RestoreBegin) &&
1690            IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
1691 
1692     StackOffset CalleeSavedSizeAsOffset =
1693         StackOffset::getScalable(CalleeSavedSize);
1694     DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
1695     DeallocateAfter = CalleeSavedSizeAsOffset;
1696   }
1697 
1698   // Deallocate the SVE area.
1699   if (SVEStackSize) {
1700     if (AFI->isStackRealigned()) {
1701       if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize())
1702         // Set SP to start of SVE callee-save area from which they can
1703         // be reloaded. The code below will deallocate the stack space
1704         // space by moving FP -> SP.
1705         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
1706                         StackOffset::getScalable(-CalleeSavedSize), TII,
1707                         MachineInstr::FrameDestroy);
1708     } else {
1709       if (AFI->getSVECalleeSavedStackSize()) {
1710         // Deallocate the non-SVE locals first before we can deallocate (and
1711         // restore callee saves) from the SVE area.
1712         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1713                         StackOffset::getFixed(NumBytes), TII,
1714                         MachineInstr::FrameDestroy);
1715         NumBytes = 0;
1716       }
1717 
1718       emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
1719                       DeallocateBefore, TII, MachineInstr::FrameDestroy);
1720 
1721       emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
1722                       DeallocateAfter, TII, MachineInstr::FrameDestroy);
1723     }
1724   }
1725 
1726   if (!hasFP(MF)) {
1727     bool RedZone = canUseRedZone(MF);
1728     // If this was a redzone leaf function, we don't need to restore the
1729     // stack pointer (but we may need to pop stack args for fastcc).
1730     if (RedZone && AfterCSRPopSize == 0)
1731       return;
1732 
1733     bool NoCalleeSaveRestore = PrologueSaveSize == 0;
1734     int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
1735     if (NoCalleeSaveRestore)
1736       StackRestoreBytes += AfterCSRPopSize;
1737 
1738     // If we were able to combine the local stack pop with the argument pop,
1739     // then we're done.
1740     bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0;
1741 
1742     // If we're done after this, make sure to help the load store optimizer.
1743     if (Done)
1744       adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI);
1745 
1746     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1747                     StackOffset::getFixed(StackRestoreBytes), TII,
1748                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1749     if (Done) {
1750       if (HasWinCFI) {
1751         BuildMI(MBB, MBB.getFirstTerminator(), DL,
1752                 TII->get(AArch64::SEH_EpilogEnd))
1753             .setMIFlag(MachineInstr::FrameDestroy);
1754       }
1755       return;
1756     }
1757 
1758     NumBytes = 0;
1759   }
1760 
1761   // Restore the original stack pointer.
1762   // FIXME: Rather than doing the math here, we should instead just use
1763   // non-post-indexed loads for the restores if we aren't actually going to
1764   // be able to save any instructions.
1765   if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
1766     emitFrameOffset(
1767         MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
1768         StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
1769         TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
1770   } else if (NumBytes)
1771     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1772                     StackOffset::getFixed(NumBytes), TII,
1773                     MachineInstr::FrameDestroy, false, NeedsWinCFI);
1774 
1775   // This must be placed after the callee-save restore code because that code
1776   // assumes the SP is at the same location as it was after the callee-save save
1777   // code in the prologue.
1778   if (AfterCSRPopSize) {
1779     // Find an insertion point for the first ldp so that it goes before the
1780     // shadow call stack epilog instruction. This ensures that the restore of
1781     // lr from x18 is placed after the restore from sp.
1782     auto FirstSPPopI = MBB.getFirstTerminator();
1783     while (FirstSPPopI != Begin) {
1784       auto Prev = std::prev(FirstSPPopI);
1785       if (Prev->getOpcode() != AArch64::LDRXpre ||
1786           Prev->getOperand(0).getReg() == AArch64::SP)
1787         break;
1788       FirstSPPopI = Prev;
1789     }
1790 
1791     adaptForLdStOpt(MBB, FirstSPPopI, LastPopI);
1792 
1793     emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP,
1794                     StackOffset::getFixed((int64_t)AfterCSRPopSize), TII,
1795                     MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
1796   }
1797   if (HasWinCFI)
1798     BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd))
1799         .setMIFlag(MachineInstr::FrameDestroy);
1800 }
1801 
1802 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1803 /// debug info.  It's the same as what we use for resolving the code-gen
1804 /// references for now.  FIXME: This can go wrong when references are
1805 /// SP-relative and simple call frames aren't used.
1806 StackOffset
1807 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1808                                              Register &FrameReg) const {
1809   return resolveFrameIndexReference(
1810       MF, FI, FrameReg,
1811       /*PreferFP=*/
1812       MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
1813       /*ForSimm=*/false);
1814 }
1815 
1816 StackOffset
1817 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
1818                                                      int FI) const {
1819   return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
1820 }
1821 
1822 static StackOffset getFPOffset(const MachineFunction &MF,
1823                                int64_t ObjectOffset) {
1824   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1825   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1826   bool IsWin64 =
1827       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1828   unsigned FixedObject =
1829       getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
1830   int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
1831   int64_t FPAdjust =
1832       CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
1833   return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
1834 }
1835 
1836 static StackOffset getStackOffset(const MachineFunction &MF,
1837                                   int64_t ObjectOffset) {
1838   const auto &MFI = MF.getFrameInfo();
1839   return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
1840 }
1841 
1842   // TODO: This function currently does not work for scalable vectors.
1843 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
1844                                                  int FI) const {
1845   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1846       MF.getSubtarget().getRegisterInfo());
1847   int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
1848   return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
1849              ? getFPOffset(MF, ObjectOffset).getFixed()
1850              : getStackOffset(MF, ObjectOffset).getFixed();
1851 }
1852 
1853 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
1854     const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
1855     bool ForSimm) const {
1856   const auto &MFI = MF.getFrameInfo();
1857   int64_t ObjectOffset = MFI.getObjectOffset(FI);
1858   bool isFixed = MFI.isFixedObjectIndex(FI);
1859   bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
1860   return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
1861                                      PreferFP, ForSimm);
1862 }
1863 
1864 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
1865     const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
1866     Register &FrameReg, bool PreferFP, bool ForSimm) const {
1867   const auto &MFI = MF.getFrameInfo();
1868   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
1869       MF.getSubtarget().getRegisterInfo());
1870   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1871   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1872 
1873   int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
1874   int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
1875   bool isCSR =
1876       !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1877 
1878   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1879 
1880   // Use frame pointer to reference fixed objects. Use it for locals if
1881   // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1882   // reliable as a base). Make sure useFPForScavengingIndex() does the
1883   // right thing for the emergency spill slot.
1884   bool UseFP = false;
1885   if (AFI->hasStackFrame() && !isSVE) {
1886     // We shouldn't prefer using the FP when there is an SVE area
1887     // in between the FP and the non-SVE locals/spills.
1888     PreferFP &= !SVEStackSize;
1889 
1890     // Note: Keeping the following as multiple 'if' statements rather than
1891     // merging to a single expression for readability.
1892     //
1893     // Argument access should always use the FP.
1894     if (isFixed) {
1895       UseFP = hasFP(MF);
1896     } else if (isCSR && RegInfo->needsStackRealignment(MF)) {
1897       // References to the CSR area must use FP if we're re-aligning the stack
1898       // since the dynamically-sized alignment padding is between the SP/BP and
1899       // the CSR area.
1900       assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1901       UseFP = true;
1902     } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) {
1903       // If the FPOffset is negative and we're producing a signed immediate, we
1904       // have to keep in mind that the available offset range for negative
1905       // offsets is smaller than for positive ones. If an offset is available
1906       // via the FP and the SP, use whichever is closest.
1907       bool FPOffsetFits = !ForSimm || FPOffset >= -256;
1908       PreferFP |= Offset > -FPOffset;
1909 
1910       if (MFI.hasVarSizedObjects()) {
1911         // If we have variable sized objects, we can use either FP or BP, as the
1912         // SP offset is unknown. We can use the base pointer if we have one and
1913         // FP is not preferred. If not, we're stuck with using FP.
1914         bool CanUseBP = RegInfo->hasBasePointer(MF);
1915         if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1916           UseFP = PreferFP;
1917         else if (!CanUseBP) // Can't use BP. Forced to use FP.
1918           UseFP = true;
1919         // else we can use BP and FP, but the offset from FP won't fit.
1920         // That will make us scavenge registers which we can probably avoid by
1921         // using BP. If it won't fit for BP either, we'll scavenge anyway.
1922       } else if (FPOffset >= 0) {
1923         // Use SP or FP, whichever gives us the best chance of the offset
1924         // being in range for direct access. If the FPOffset is positive,
1925         // that'll always be best, as the SP will be even further away.
1926         UseFP = true;
1927       } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
1928         // Funclets access the locals contained in the parent's stack frame
1929         // via the frame pointer, so we have to use the FP in the parent
1930         // function.
1931         (void) Subtarget;
1932         assert(
1933             Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
1934             "Funclets should only be present on Win64");
1935         UseFP = true;
1936       } else {
1937         // We have the choice between FP and (SP or BP).
1938         if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1939           UseFP = true;
1940       }
1941     }
1942   }
1943 
1944   assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
1945          "In the presence of dynamic stack pointer realignment, "
1946          "non-argument/CSR objects cannot be accessed through the frame pointer");
1947 
1948   if (isSVE) {
1949     StackOffset FPOffset =
1950         StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
1951     StackOffset SPOffset =
1952         SVEStackSize +
1953         StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
1954                          ObjectOffset);
1955     // Always use the FP for SVE spills if available and beneficial.
1956     if (hasFP(MF) &&
1957         (SPOffset.getFixed() ||
1958          FPOffset.getScalable() < SPOffset.getScalable() ||
1959          RegInfo->needsStackRealignment(MF))) {
1960       FrameReg = RegInfo->getFrameRegister(MF);
1961       return FPOffset;
1962     }
1963 
1964     FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
1965                                            : (unsigned)AArch64::SP;
1966     return SPOffset;
1967   }
1968 
1969   StackOffset ScalableOffset = {};
1970   if (UseFP && !(isFixed || isCSR))
1971     ScalableOffset = -SVEStackSize;
1972   if (!UseFP && (isFixed || isCSR))
1973     ScalableOffset = SVEStackSize;
1974 
1975   if (UseFP) {
1976     FrameReg = RegInfo->getFrameRegister(MF);
1977     return StackOffset::getFixed(FPOffset) + ScalableOffset;
1978   }
1979 
1980   // Use the base pointer if we have one.
1981   if (RegInfo->hasBasePointer(MF))
1982     FrameReg = RegInfo->getBaseRegister();
1983   else {
1984     assert(!MFI.hasVarSizedObjects() &&
1985            "Can't use SP when we have var sized objects.");
1986     FrameReg = AArch64::SP;
1987     // If we're using the red zone for this function, the SP won't actually
1988     // be adjusted, so the offsets will be negative. They're also all
1989     // within range of the signed 9-bit immediate instructions.
1990     if (canUseRedZone(MF))
1991       Offset -= AFI->getLocalStackSize();
1992   }
1993 
1994   return StackOffset::getFixed(Offset) + ScalableOffset;
1995 }
1996 
1997 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1998   // Do not set a kill flag on values that are also marked as live-in. This
1999   // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2000   // callee saved registers.
2001   // Omitting the kill flags is conservatively correct even if the live-in
2002   // is not used after all.
2003   bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2004   return getKillRegState(!IsLiveIn);
2005 }
2006 
2007 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2008   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2009   AttributeList Attrs = MF.getFunction().getAttributes();
2010   return Subtarget.isTargetMachO() &&
2011          !(Subtarget.getTargetLowering()->supportSwiftError() &&
2012            Attrs.hasAttrSomewhere(Attribute::SwiftError));
2013 }
2014 
2015 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2016                                              bool NeedsWinCFI, bool IsFirst) {
2017   // If we are generating register pairs for a Windows function that requires
2018   // EH support, then pair consecutive registers only.  There are no unwind
2019   // opcodes for saves/restores of non-consectuve register pairs.
2020   // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2021   // save_lrpair.
2022   // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2023 
2024   if (Reg2 == AArch64::FP)
2025     return true;
2026   if (!NeedsWinCFI)
2027     return false;
2028   if (Reg2 == Reg1 + 1)
2029     return false;
2030   // If pairing a GPR with LR, the pair can be described by the save_lrpair
2031   // opcode. If this is the first register pair, it would end up with a
2032   // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2033   // if LR is paired with something else than the first register.
2034   // The save_lrpair opcode requires the first register to be an odd one.
2035   if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2036       (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2037     return false;
2038   return true;
2039 }
2040 
2041 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2042 /// WindowsCFI requires that only consecutive registers can be paired.
2043 /// LR and FP need to be allocated together when the frame needs to save
2044 /// the frame-record. This means any other register pairing with LR is invalid.
2045 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2046                                       bool UsesWinAAPCS, bool NeedsWinCFI,
2047                                       bool NeedsFrameRecord, bool IsFirst) {
2048   if (UsesWinAAPCS)
2049     return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst);
2050 
2051   // If we need to store the frame record, don't pair any register
2052   // with LR other than FP.
2053   if (NeedsFrameRecord)
2054     return Reg2 == AArch64::LR;
2055 
2056   return false;
2057 }
2058 
2059 namespace {
2060 
2061 struct RegPairInfo {
2062   unsigned Reg1 = AArch64::NoRegister;
2063   unsigned Reg2 = AArch64::NoRegister;
2064   int FrameIdx;
2065   int Offset;
2066   enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
2067 
2068   RegPairInfo() = default;
2069 
2070   bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2071 
2072   unsigned getScale() const {
2073     switch (Type) {
2074     case PPR:
2075       return 2;
2076     case GPR:
2077     case FPR64:
2078       return 8;
2079     case ZPR:
2080     case FPR128:
2081       return 16;
2082     }
2083     llvm_unreachable("Unsupported type");
2084   }
2085 
2086   bool isScalable() const { return Type == PPR || Type == ZPR; }
2087 };
2088 
2089 } // end anonymous namespace
2090 
2091 static void computeCalleeSaveRegisterPairs(
2092     MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2093     const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2094     bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) {
2095 
2096   if (CSI.empty())
2097     return;
2098 
2099   bool IsWindows = isTargetWindows(MF);
2100   bool NeedsWinCFI = needsWinCFI(MF);
2101   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2102   MachineFrameInfo &MFI = MF.getFrameInfo();
2103   CallingConv::ID CC = MF.getFunction().getCallingConv();
2104   unsigned Count = CSI.size();
2105   (void)CC;
2106   // MachO's compact unwind format relies on all registers being stored in
2107   // pairs.
2108   assert((!produceCompactUnwindFrame(MF) ||
2109           CC == CallingConv::PreserveMost ||
2110           (Count & 1) == 0) &&
2111          "Odd number of callee-saved regs to spill!");
2112   int ByteOffset = AFI->getCalleeSavedStackSize();
2113   int StackFillDir = -1;
2114   int RegInc = 1;
2115   unsigned FirstReg = 0;
2116   if (NeedsWinCFI) {
2117     // For WinCFI, fill the stack from the bottom up.
2118     ByteOffset = 0;
2119     StackFillDir = 1;
2120     // As the CSI array is reversed to match PrologEpilogInserter, iterate
2121     // backwards, to pair up registers starting from lower numbered registers.
2122     RegInc = -1;
2123     FirstReg = Count - 1;
2124   }
2125   int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2126 
2127   // When iterating backwards, the loop condition relies on unsigned wraparound.
2128   for (unsigned i = FirstReg; i < Count; i += RegInc) {
2129     RegPairInfo RPI;
2130     RPI.Reg1 = CSI[i].getReg();
2131 
2132     if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2133       RPI.Type = RegPairInfo::GPR;
2134     else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2135       RPI.Type = RegPairInfo::FPR64;
2136     else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2137       RPI.Type = RegPairInfo::FPR128;
2138     else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2139       RPI.Type = RegPairInfo::ZPR;
2140     else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2141       RPI.Type = RegPairInfo::PPR;
2142     else
2143       llvm_unreachable("Unsupported register class.");
2144 
2145     // Add the next reg to the pair if it is in the same register class.
2146     if (unsigned(i + RegInc) < Count) {
2147       unsigned NextReg = CSI[i + RegInc].getReg();
2148       bool IsFirst = i == FirstReg;
2149       switch (RPI.Type) {
2150       case RegPairInfo::GPR:
2151         if (AArch64::GPR64RegClass.contains(NextReg) &&
2152             !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
2153                                        NeedsWinCFI, NeedsFrameRecord, IsFirst))
2154           RPI.Reg2 = NextReg;
2155         break;
2156       case RegPairInfo::FPR64:
2157         if (AArch64::FPR64RegClass.contains(NextReg) &&
2158             !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
2159                                               IsFirst))
2160           RPI.Reg2 = NextReg;
2161         break;
2162       case RegPairInfo::FPR128:
2163         if (AArch64::FPR128RegClass.contains(NextReg))
2164           RPI.Reg2 = NextReg;
2165         break;
2166       case RegPairInfo::PPR:
2167       case RegPairInfo::ZPR:
2168         break;
2169       }
2170     }
2171 
2172     // If either of the registers to be saved is the lr register, it means that
2173     // we also need to save lr in the shadow call stack.
2174     if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) &&
2175         MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
2176       if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
2177         report_fatal_error("Must reserve x18 to use shadow call stack");
2178       NeedShadowCallStackProlog = true;
2179     }
2180 
2181     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2182     // list to come in sorted by frame index so that we can issue the store
2183     // pair instructions directly. Assert if we see anything otherwise.
2184     //
2185     // The order of the registers in the list is controlled by
2186     // getCalleeSavedRegs(), so they will always be in-order, as well.
2187     assert((!RPI.isPaired() ||
2188             (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
2189            "Out of order callee saved regs!");
2190 
2191     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2192             RPI.Reg1 == AArch64::LR) &&
2193            "FrameRecord must be allocated together with LR");
2194 
2195     // Windows AAPCS has FP and LR reversed.
2196     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2197             RPI.Reg2 == AArch64::LR) &&
2198            "FrameRecord must be allocated together with LR");
2199 
2200     // MachO's compact unwind format relies on all registers being stored in
2201     // adjacent register pairs.
2202     assert((!produceCompactUnwindFrame(MF) ||
2203             CC == CallingConv::PreserveMost ||
2204             (RPI.isPaired() &&
2205              ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2206               RPI.Reg1 + 1 == RPI.Reg2))) &&
2207            "Callee-save registers not saved as adjacent register pair!");
2208 
2209     RPI.FrameIdx = CSI[i].getFrameIdx();
2210     if (NeedsWinCFI &&
2211         RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2212       RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
2213 
2214     int Scale = RPI.getScale();
2215 
2216     int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2217     assert(OffsetPre % Scale == 0);
2218 
2219     if (RPI.isScalable())
2220       ScalableByteOffset += StackFillDir * Scale;
2221     else
2222       ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
2223 
2224     assert(!(RPI.isScalable() && RPI.isPaired()) &&
2225            "Paired spill/fill instructions don't exist for SVE vectors");
2226 
2227     // Round up size of non-pair to pair size if we need to pad the
2228     // callee-save area to ensure 16-byte alignment.
2229     if (AFI->hasCalleeSaveStackFreeSpace() && !NeedsWinCFI &&
2230         !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2231         !RPI.isPaired()) {
2232       ByteOffset += 8 * StackFillDir;
2233       assert(ByteOffset % 16 == 0);
2234       assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
2235       // A stack frame with a gap looks like this, bottom up:
2236       // d9, d8. x21, gap, x20, x19.
2237       // Set extra alignment on the x21 object (the only unpaired register)
2238       // to create the gap above it.
2239       MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
2240     }
2241 
2242     int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2243     assert(OffsetPost % Scale == 0);
2244     // If filling top down (default), we want the offset after incrementing it.
2245     // If fillibg bootom up (WinCFI) we need the original offset.
2246     int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
2247     RPI.Offset = Offset / Scale;
2248 
2249     assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2250             (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2251            "Offset out of bounds for LDP/STP immediate");
2252 
2253     // Save the offset to frame record so that the FP register can point to the
2254     // innermost frame record (spilled FP and LR registers).
2255     if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
2256                               RPI.Reg2 == AArch64::FP) ||
2257                              (IsWindows && RPI.Reg1 == AArch64::FP &&
2258                               RPI.Reg2 == AArch64::LR)))
2259       AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
2260 
2261     RegPairs.push_back(RPI);
2262     if (RPI.isPaired())
2263       i += RegInc;
2264   }
2265   if (NeedsWinCFI) {
2266     // If we need an alignment gap in the stack, align the topmost stack
2267     // object. A stack frame with a gap looks like this, bottom up:
2268     // x19, d8. d9, gap.
2269     // Set extra alignment on the topmost stack object (the first element in
2270     // CSI, which goes top down), to create the gap above it.
2271     if (AFI->hasCalleeSaveStackFreeSpace())
2272       MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
2273     // We iterated bottom up over the registers; flip RegPairs back to top
2274     // down order.
2275     std::reverse(RegPairs.begin(), RegPairs.end());
2276   }
2277 }
2278 
2279 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2280     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2281     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2282   MachineFunction &MF = *MBB.getParent();
2283   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2284   bool NeedsWinCFI = needsWinCFI(MF);
2285   DebugLoc DL;
2286   SmallVector<RegPairInfo, 8> RegPairs;
2287 
2288   bool NeedShadowCallStackProlog = false;
2289   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2290                                  NeedShadowCallStackProlog, hasFP(MF));
2291   const MachineRegisterInfo &MRI = MF.getRegInfo();
2292 
2293   if (NeedShadowCallStackProlog) {
2294     // Shadow call stack prolog: str x30, [x18], #8
2295     BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost))
2296         .addReg(AArch64::X18, RegState::Define)
2297         .addReg(AArch64::LR)
2298         .addReg(AArch64::X18)
2299         .addImm(8)
2300         .setMIFlag(MachineInstr::FrameSetup);
2301 
2302     if (NeedsWinCFI)
2303       BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop))
2304           .setMIFlag(MachineInstr::FrameSetup);
2305 
2306     if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) {
2307       // Emit a CFI instruction that causes 8 to be subtracted from the value of
2308       // x18 when unwinding past this frame.
2309       static const char CFIInst[] = {
2310           dwarf::DW_CFA_val_expression,
2311           18, // register
2312           2,  // length
2313           static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
2314           static_cast<char>(-8) & 0x7f, // addend (sleb128)
2315       };
2316       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
2317           nullptr, StringRef(CFIInst, sizeof(CFIInst))));
2318       BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION))
2319           .addCFIIndex(CFIIndex)
2320           .setMIFlag(MachineInstr::FrameSetup);
2321     }
2322 
2323     // This instruction also makes x18 live-in to the entry block.
2324     MBB.addLiveIn(AArch64::X18);
2325   }
2326 
2327   for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE;
2328        ++RPII) {
2329     RegPairInfo RPI = *RPII;
2330     unsigned Reg1 = RPI.Reg1;
2331     unsigned Reg2 = RPI.Reg2;
2332     unsigned StrOpc;
2333 
2334     // Issue sequence of spills for cs regs.  The first spill may be converted
2335     // to a pre-decrement store later by emitPrologue if the callee-save stack
2336     // area allocation can't be combined with the local stack area allocation.
2337     // For example:
2338     //    stp     x22, x21, [sp, #0]     // addImm(+0)
2339     //    stp     x20, x19, [sp, #16]    // addImm(+2)
2340     //    stp     fp, lr, [sp, #32]      // addImm(+4)
2341     // Rationale: This sequence saves uop updates compared to a sequence of
2342     // pre-increment spills like stp xi,xj,[sp,#-16]!
2343     // Note: Similar rationale and sequence for restores in epilog.
2344     unsigned Size;
2345     Align Alignment;
2346     switch (RPI.Type) {
2347     case RegPairInfo::GPR:
2348        StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2349        Size = 8;
2350        Alignment = Align(8);
2351        break;
2352     case RegPairInfo::FPR64:
2353        StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2354        Size = 8;
2355        Alignment = Align(8);
2356        break;
2357     case RegPairInfo::FPR128:
2358        StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2359        Size = 16;
2360        Alignment = Align(16);
2361        break;
2362     case RegPairInfo::ZPR:
2363        StrOpc = AArch64::STR_ZXI;
2364        Size = 16;
2365        Alignment = Align(16);
2366        break;
2367     case RegPairInfo::PPR:
2368        StrOpc = AArch64::STR_PXI;
2369        Size = 2;
2370        Alignment = Align(2);
2371        break;
2372     }
2373     LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2374                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2375                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2376                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2377                dbgs() << ")\n");
2378 
2379     assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2380            "Windows unwdinding requires a consecutive (FP,LR) pair");
2381     // Windows unwind codes require consecutive registers if registers are
2382     // paired.  Make the switch here, so that the code below will save (x,x+1)
2383     // and not (x+1,x).
2384     unsigned FrameIdxReg1 = RPI.FrameIdx;
2385     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2386     if (NeedsWinCFI && RPI.isPaired()) {
2387       std::swap(Reg1, Reg2);
2388       std::swap(FrameIdxReg1, FrameIdxReg2);
2389     }
2390     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2391     if (!MRI.isReserved(Reg1))
2392       MBB.addLiveIn(Reg1);
2393     if (RPI.isPaired()) {
2394       if (!MRI.isReserved(Reg2))
2395         MBB.addLiveIn(Reg2);
2396       MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2397       MIB.addMemOperand(MF.getMachineMemOperand(
2398           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2399           MachineMemOperand::MOStore, Size, Alignment));
2400     }
2401     MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2402         .addReg(AArch64::SP)
2403         .addImm(RPI.Offset) // [sp, #offset*scale],
2404                             // where factor*scale is implicit
2405         .setMIFlag(MachineInstr::FrameSetup);
2406     MIB.addMemOperand(MF.getMachineMemOperand(
2407         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2408         MachineMemOperand::MOStore, Size, Alignment));
2409     if (NeedsWinCFI)
2410       InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2411 
2412     // Update the StackIDs of the SVE stack slots.
2413     MachineFrameInfo &MFI = MF.getFrameInfo();
2414     if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2415       MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
2416 
2417   }
2418   return true;
2419 }
2420 
2421 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2422     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2423     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2424   MachineFunction &MF = *MBB.getParent();
2425   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2426   DebugLoc DL;
2427   SmallVector<RegPairInfo, 8> RegPairs;
2428   bool NeedsWinCFI = needsWinCFI(MF);
2429 
2430   if (MI != MBB.end())
2431     DL = MI->getDebugLoc();
2432 
2433   bool NeedShadowCallStackProlog = false;
2434   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs,
2435                                  NeedShadowCallStackProlog, hasFP(MF));
2436 
2437   auto EmitMI = [&](const RegPairInfo &RPI) {
2438     unsigned Reg1 = RPI.Reg1;
2439     unsigned Reg2 = RPI.Reg2;
2440 
2441     // Issue sequence of restores for cs regs. The last restore may be converted
2442     // to a post-increment load later by emitEpilogue if the callee-save stack
2443     // area allocation can't be combined with the local stack area allocation.
2444     // For example:
2445     //    ldp     fp, lr, [sp, #32]       // addImm(+4)
2446     //    ldp     x20, x19, [sp, #16]     // addImm(+2)
2447     //    ldp     x22, x21, [sp, #0]      // addImm(+0)
2448     // Note: see comment in spillCalleeSavedRegisters()
2449     unsigned LdrOpc;
2450     unsigned Size;
2451     Align Alignment;
2452     switch (RPI.Type) {
2453     case RegPairInfo::GPR:
2454        LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2455        Size = 8;
2456        Alignment = Align(8);
2457        break;
2458     case RegPairInfo::FPR64:
2459        LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2460        Size = 8;
2461        Alignment = Align(8);
2462        break;
2463     case RegPairInfo::FPR128:
2464        LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2465        Size = 16;
2466        Alignment = Align(16);
2467        break;
2468     case RegPairInfo::ZPR:
2469        LdrOpc = AArch64::LDR_ZXI;
2470        Size = 16;
2471        Alignment = Align(16);
2472        break;
2473     case RegPairInfo::PPR:
2474        LdrOpc = AArch64::LDR_PXI;
2475        Size = 2;
2476        Alignment = Align(2);
2477        break;
2478     }
2479     LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2480                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2481                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2482                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2483                dbgs() << ")\n");
2484 
2485     // Windows unwind codes require consecutive registers if registers are
2486     // paired.  Make the switch here, so that the code below will save (x,x+1)
2487     // and not (x+1,x).
2488     unsigned FrameIdxReg1 = RPI.FrameIdx;
2489     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2490     if (NeedsWinCFI && RPI.isPaired()) {
2491       std::swap(Reg1, Reg2);
2492       std::swap(FrameIdxReg1, FrameIdxReg2);
2493     }
2494     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
2495     if (RPI.isPaired()) {
2496       MIB.addReg(Reg2, getDefRegState(true));
2497       MIB.addMemOperand(MF.getMachineMemOperand(
2498           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2499           MachineMemOperand::MOLoad, Size, Alignment));
2500     }
2501     MIB.addReg(Reg1, getDefRegState(true))
2502         .addReg(AArch64::SP)
2503         .addImm(RPI.Offset) // [sp, #offset*scale]
2504                             // where factor*scale is implicit
2505         .setMIFlag(MachineInstr::FrameDestroy);
2506     MIB.addMemOperand(MF.getMachineMemOperand(
2507         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2508         MachineMemOperand::MOLoad, Size, Alignment));
2509     if (NeedsWinCFI)
2510       InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2511   };
2512 
2513   // SVE objects are always restored in reverse order.
2514   for (const RegPairInfo &RPI : reverse(RegPairs))
2515     if (RPI.isScalable())
2516       EmitMI(RPI);
2517 
2518   if (ReverseCSRRestoreSeq) {
2519     for (const RegPairInfo &RPI : reverse(RegPairs))
2520       if (!RPI.isScalable())
2521         EmitMI(RPI);
2522   } else
2523     for (const RegPairInfo &RPI : RegPairs)
2524       if (!RPI.isScalable())
2525         EmitMI(RPI);
2526 
2527   if (NeedShadowCallStackProlog) {
2528     // Shadow call stack epilog: ldr x30, [x18, #-8]!
2529     BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre))
2530         .addReg(AArch64::X18, RegState::Define)
2531         .addReg(AArch64::LR, RegState::Define)
2532         .addReg(AArch64::X18)
2533         .addImm(-8)
2534         .setMIFlag(MachineInstr::FrameDestroy);
2535   }
2536 
2537   return true;
2538 }
2539 
2540 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2541                                                 BitVector &SavedRegs,
2542                                                 RegScavenger *RS) const {
2543   // All calls are tail calls in GHC calling conv, and functions have no
2544   // prologue/epilogue.
2545   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2546     return;
2547 
2548   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2549   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2550       MF.getSubtarget().getRegisterInfo());
2551   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2552   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2553   unsigned UnspilledCSGPR = AArch64::NoRegister;
2554   unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2555 
2556   MachineFrameInfo &MFI = MF.getFrameInfo();
2557   const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2558 
2559   unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2560                                 ? RegInfo->getBaseRegister()
2561                                 : (unsigned)AArch64::NoRegister;
2562 
2563   unsigned ExtraCSSpill = 0;
2564   // Figure out which callee-saved registers to save/restore.
2565   for (unsigned i = 0; CSRegs[i]; ++i) {
2566     const unsigned Reg = CSRegs[i];
2567 
2568     // Add the base pointer register to SavedRegs if it is callee-save.
2569     if (Reg == BasePointerReg)
2570       SavedRegs.set(Reg);
2571 
2572     bool RegUsed = SavedRegs.test(Reg);
2573     unsigned PairedReg = AArch64::NoRegister;
2574     if (AArch64::GPR64RegClass.contains(Reg) ||
2575         AArch64::FPR64RegClass.contains(Reg) ||
2576         AArch64::FPR128RegClass.contains(Reg))
2577       PairedReg = CSRegs[i ^ 1];
2578 
2579     if (!RegUsed) {
2580       if (AArch64::GPR64RegClass.contains(Reg) &&
2581           !RegInfo->isReservedReg(MF, Reg)) {
2582         UnspilledCSGPR = Reg;
2583         UnspilledCSGPRPaired = PairedReg;
2584       }
2585       continue;
2586     }
2587 
2588     // MachO's compact unwind format relies on all registers being stored in
2589     // pairs.
2590     // FIXME: the usual format is actually better if unwinding isn't needed.
2591     if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister &&
2592         !SavedRegs.test(PairedReg)) {
2593       SavedRegs.set(PairedReg);
2594       if (AArch64::GPR64RegClass.contains(PairedReg) &&
2595           !RegInfo->isReservedReg(MF, PairedReg))
2596         ExtraCSSpill = PairedReg;
2597     }
2598   }
2599 
2600   if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
2601       !Subtarget.isTargetWindows()) {
2602     // For Windows calling convention on a non-windows OS, where X18 is treated
2603     // as reserved, back up X18 when entering non-windows code (marked with the
2604     // Windows calling convention) and restore when returning regardless of
2605     // whether the individual function uses it - it might call other functions
2606     // that clobber it.
2607     SavedRegs.set(AArch64::X18);
2608   }
2609 
2610   // Calculates the callee saved stack size.
2611   unsigned CSStackSize = 0;
2612   unsigned SVECSStackSize = 0;
2613   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2614   const MachineRegisterInfo &MRI = MF.getRegInfo();
2615   for (unsigned Reg : SavedRegs.set_bits()) {
2616     auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
2617     if (AArch64::PPRRegClass.contains(Reg) ||
2618         AArch64::ZPRRegClass.contains(Reg))
2619       SVECSStackSize += RegSize;
2620     else
2621       CSStackSize += RegSize;
2622   }
2623 
2624   // Save number of saved regs, so we can easily update CSStackSize later.
2625   unsigned NumSavedRegs = SavedRegs.count();
2626 
2627   // The frame record needs to be created by saving the appropriate registers
2628   uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
2629   if (hasFP(MF) ||
2630       windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
2631     SavedRegs.set(AArch64::FP);
2632     SavedRegs.set(AArch64::LR);
2633   }
2634 
2635   LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2636              for (unsigned Reg
2637                   : SavedRegs.set_bits()) dbgs()
2638              << ' ' << printReg(Reg, RegInfo);
2639              dbgs() << "\n";);
2640 
2641   // If any callee-saved registers are used, the frame cannot be eliminated.
2642   int64_t SVEStackSize =
2643       alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
2644   bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
2645 
2646   // The CSR spill slots have not been allocated yet, so estimateStackSize
2647   // won't include them.
2648   unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
2649 
2650   // Conservatively always assume BigStack when there are SVE spills.
2651   bool BigStack = SVEStackSize ||
2652                   (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
2653   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
2654     AFI->setHasStackFrame(true);
2655 
2656   // Estimate if we might need to scavenge a register at some point in order
2657   // to materialize a stack offset. If so, either spill one additional
2658   // callee-saved register or reserve a special spill slot to facilitate
2659   // register scavenging. If we already spilled an extra callee-saved register
2660   // above to keep the number of spills even, we don't need to do anything else
2661   // here.
2662   if (BigStack) {
2663     if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
2664       LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
2665                         << " to get a scratch register.\n");
2666       SavedRegs.set(UnspilledCSGPR);
2667       // MachO's compact unwind format relies on all registers being stored in
2668       // pairs, so if we need to spill one extra for BigStack, then we need to
2669       // store the pair.
2670       if (produceCompactUnwindFrame(MF))
2671         SavedRegs.set(UnspilledCSGPRPaired);
2672       ExtraCSSpill = UnspilledCSGPR;
2673     }
2674 
2675     // If we didn't find an extra callee-saved register to spill, create
2676     // an emergency spill slot.
2677     if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
2678       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2679       const TargetRegisterClass &RC = AArch64::GPR64RegClass;
2680       unsigned Size = TRI->getSpillSize(RC);
2681       Align Alignment = TRI->getSpillAlign(RC);
2682       int FI = MFI.CreateStackObject(Size, Alignment, false);
2683       RS->addScavengingFrameIndex(FI);
2684       LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2685                         << " as the emergency spill slot.\n");
2686     }
2687   }
2688 
2689   // Adding the size of additional 64bit GPR saves.
2690   CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
2691   uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
2692   LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2693                << EstimatedStackSize + AlignedCSStackSize
2694                << " bytes.\n");
2695 
2696   assert((!MFI.isCalleeSavedInfoValid() ||
2697           AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
2698          "Should not invalidate callee saved info");
2699 
2700   // Round up to register pair alignment to avoid additional SP adjustment
2701   // instructions.
2702   AFI->setCalleeSavedStackSize(AlignedCSStackSize);
2703   AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
2704   AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
2705 }
2706 
2707 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
2708     MachineFunction &MF, const TargetRegisterInfo *TRI,
2709     std::vector<CalleeSavedInfo> &CSI) const {
2710   bool NeedsWinCFI = needsWinCFI(MF);
2711   // To match the canonical windows frame layout, reverse the list of
2712   // callee saved registers to get them laid out by PrologEpilogInserter
2713   // in the right order. (PrologEpilogInserter allocates stack objects top
2714   // down. Windows canonical prologs store higher numbered registers at
2715   // the top, thus have the CSI array start from the highest registers.)
2716   if (NeedsWinCFI)
2717     std::reverse(CSI.begin(), CSI.end());
2718   // Let the generic code do the rest of the setup.
2719   return false;
2720 }
2721 
2722 bool AArch64FrameLowering::enableStackSlotScavenging(
2723     const MachineFunction &MF) const {
2724   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2725   return AFI->hasCalleeSaveStackFreeSpace();
2726 }
2727 
2728 /// returns true if there are any SVE callee saves.
2729 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
2730                                       int &Min, int &Max) {
2731   Min = std::numeric_limits<int>::max();
2732   Max = std::numeric_limits<int>::min();
2733 
2734   if (!MFI.isCalleeSavedInfoValid())
2735     return false;
2736 
2737   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2738   for (auto &CS : CSI) {
2739     if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
2740         AArch64::PPRRegClass.contains(CS.getReg())) {
2741       assert((Max == std::numeric_limits<int>::min() ||
2742               Max + 1 == CS.getFrameIdx()) &&
2743              "SVE CalleeSaves are not consecutive");
2744 
2745       Min = std::min(Min, CS.getFrameIdx());
2746       Max = std::max(Max, CS.getFrameIdx());
2747     }
2748   }
2749   return Min != std::numeric_limits<int>::max();
2750 }
2751 
2752 // Process all the SVE stack objects and determine offsets for each
2753 // object. If AssignOffsets is true, the offsets get assigned.
2754 // Fills in the first and last callee-saved frame indices into
2755 // Min/MaxCSFrameIndex, respectively.
2756 // Returns the size of the stack.
2757 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
2758                                               int &MinCSFrameIndex,
2759                                               int &MaxCSFrameIndex,
2760                                               bool AssignOffsets) {
2761 #ifndef NDEBUG
2762   // First process all fixed stack objects.
2763   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
2764     assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
2765            "SVE vectors should never be passed on the stack by value, only by "
2766            "reference.");
2767 #endif
2768 
2769   auto Assign = [&MFI](int FI, int64_t Offset) {
2770     LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
2771     MFI.setObjectOffset(FI, Offset);
2772   };
2773 
2774   int64_t Offset = 0;
2775 
2776   // Then process all callee saved slots.
2777   if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
2778     // Assign offsets to the callee save slots.
2779     for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
2780       Offset += MFI.getObjectSize(I);
2781       Offset = alignTo(Offset, MFI.getObjectAlign(I));
2782       if (AssignOffsets)
2783         Assign(I, -Offset);
2784     }
2785   }
2786 
2787   // Ensure that the Callee-save area is aligned to 16bytes.
2788   Offset = alignTo(Offset, Align(16U));
2789 
2790   // Create a buffer of SVE objects to allocate and sort it.
2791   SmallVector<int, 8> ObjectsToAllocate;
2792   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
2793     unsigned StackID = MFI.getStackID(I);
2794     if (StackID != TargetStackID::ScalableVector)
2795       continue;
2796     if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
2797       continue;
2798     if (MFI.isDeadObjectIndex(I))
2799       continue;
2800 
2801     ObjectsToAllocate.push_back(I);
2802   }
2803 
2804   // Allocate all SVE locals and spills
2805   for (unsigned FI : ObjectsToAllocate) {
2806     Align Alignment = MFI.getObjectAlign(FI);
2807     // FIXME: Given that the length of SVE vectors is not necessarily a power of
2808     // two, we'd need to align every object dynamically at runtime if the
2809     // alignment is larger than 16. This is not yet supported.
2810     if (Alignment > Align(16))
2811       report_fatal_error(
2812           "Alignment of scalable vectors > 16 bytes is not yet supported");
2813 
2814     Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
2815     if (AssignOffsets)
2816       Assign(FI, -Offset);
2817   }
2818 
2819   return Offset;
2820 }
2821 
2822 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
2823     MachineFrameInfo &MFI) const {
2824   int MinCSFrameIndex, MaxCSFrameIndex;
2825   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
2826 }
2827 
2828 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
2829     MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
2830   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
2831                                         true);
2832 }
2833 
2834 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
2835     MachineFunction &MF, RegScavenger *RS) const {
2836   MachineFrameInfo &MFI = MF.getFrameInfo();
2837 
2838   assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
2839          "Upwards growing stack unsupported");
2840 
2841   int MinCSFrameIndex, MaxCSFrameIndex;
2842   int64_t SVEStackSize =
2843       assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
2844 
2845   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2846   AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
2847   AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
2848 
2849   // If this function isn't doing Win64-style C++ EH, we don't need to do
2850   // anything.
2851   if (!MF.hasEHFunclets())
2852     return;
2853   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2854   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2855 
2856   MachineBasicBlock &MBB = MF.front();
2857   auto MBBI = MBB.begin();
2858   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2859     ++MBBI;
2860 
2861   // Create an UnwindHelp object.
2862   // The UnwindHelp object is allocated at the start of the fixed object area
2863   int64_t FixedObject =
2864       getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
2865   int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
2866                                            /*SPOffset*/ -FixedObject,
2867                                            /*IsImmutable=*/false);
2868   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2869 
2870   // We need to store -2 into the UnwindHelp object at the start of the
2871   // function.
2872   DebugLoc DL;
2873   RS->enterBasicBlockEnd(MBB);
2874   RS->backward(std::prev(MBBI));
2875   unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
2876   assert(DstReg && "There must be a free register after frame setup");
2877   BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
2878   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
2879       .addReg(DstReg, getKillRegState(true))
2880       .addFrameIndex(UnwindHelpFI)
2881       .addImm(0);
2882 }
2883 
2884 namespace {
2885 struct TagStoreInstr {
2886   MachineInstr *MI;
2887   int64_t Offset, Size;
2888   explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
2889       : MI(MI), Offset(Offset), Size(Size) {}
2890 };
2891 
2892 class TagStoreEdit {
2893   MachineFunction *MF;
2894   MachineBasicBlock *MBB;
2895   MachineRegisterInfo *MRI;
2896   // Tag store instructions that are being replaced.
2897   SmallVector<TagStoreInstr, 8> TagStores;
2898   // Combined memref arguments of the above instructions.
2899   SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
2900 
2901   // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
2902   // FrameRegOffset + Size) with the address tag of SP.
2903   Register FrameReg;
2904   StackOffset FrameRegOffset;
2905   int64_t Size;
2906   // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
2907   Optional<int64_t> FrameRegUpdate;
2908   // MIFlags for any FrameReg updating instructions.
2909   unsigned FrameRegUpdateFlags;
2910 
2911   // Use zeroing instruction variants.
2912   bool ZeroData;
2913   DebugLoc DL;
2914 
2915   void emitUnrolled(MachineBasicBlock::iterator InsertI);
2916   void emitLoop(MachineBasicBlock::iterator InsertI);
2917 
2918 public:
2919   TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
2920       : MBB(MBB), ZeroData(ZeroData) {
2921     MF = MBB->getParent();
2922     MRI = &MF->getRegInfo();
2923   }
2924   // Add an instruction to be replaced. Instructions must be added in the
2925   // ascending order of Offset, and have to be adjacent.
2926   void addInstruction(TagStoreInstr I) {
2927     assert((TagStores.empty() ||
2928             TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
2929            "Non-adjacent tag store instructions.");
2930     TagStores.push_back(I);
2931   }
2932   void clear() { TagStores.clear(); }
2933   // Emit equivalent code at the given location, and erase the current set of
2934   // instructions. May skip if the replacement is not profitable. May invalidate
2935   // the input iterator and replace it with a valid one.
2936   void emitCode(MachineBasicBlock::iterator &InsertI,
2937                 const AArch64FrameLowering *TFI, bool IsLast);
2938 };
2939 
2940 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
2941   const AArch64InstrInfo *TII =
2942       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
2943 
2944   const int64_t kMinOffset = -256 * 16;
2945   const int64_t kMaxOffset = 255 * 16;
2946 
2947   Register BaseReg = FrameReg;
2948   int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
2949   if (BaseRegOffsetBytes < kMinOffset ||
2950       BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) {
2951     Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
2952     emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
2953                     StackOffset::getFixed(BaseRegOffsetBytes), TII);
2954     BaseReg = ScratchReg;
2955     BaseRegOffsetBytes = 0;
2956   }
2957 
2958   MachineInstr *LastI = nullptr;
2959   while (Size) {
2960     int64_t InstrSize = (Size > 16) ? 32 : 16;
2961     unsigned Opcode =
2962         InstrSize == 16
2963             ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset)
2964             : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset);
2965     MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
2966                           .addReg(AArch64::SP)
2967                           .addReg(BaseReg)
2968                           .addImm(BaseRegOffsetBytes / 16)
2969                           .setMemRefs(CombinedMemRefs);
2970     // A store to [BaseReg, #0] should go last for an opportunity to fold the
2971     // final SP adjustment in the epilogue.
2972     if (BaseRegOffsetBytes == 0)
2973       LastI = I;
2974     BaseRegOffsetBytes += InstrSize;
2975     Size -= InstrSize;
2976   }
2977 
2978   if (LastI)
2979     MBB->splice(InsertI, MBB, LastI);
2980 }
2981 
2982 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
2983   const AArch64InstrInfo *TII =
2984       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
2985 
2986   Register BaseReg = FrameRegUpdate
2987                          ? FrameReg
2988                          : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
2989   Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
2990 
2991   emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
2992 
2993   int64_t LoopSize = Size;
2994   // If the loop size is not a multiple of 32, split off one 16-byte store at
2995   // the end to fold BaseReg update into.
2996   if (FrameRegUpdate && *FrameRegUpdate)
2997     LoopSize -= LoopSize % 32;
2998   MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
2999                                 TII->get(ZeroData ? AArch64::STZGloop_wback
3000                                                   : AArch64::STGloop_wback))
3001                             .addDef(SizeReg)
3002                             .addDef(BaseReg)
3003                             .addImm(LoopSize)
3004                             .addReg(BaseReg)
3005                             .setMemRefs(CombinedMemRefs);
3006   if (FrameRegUpdate)
3007     LoopI->setFlags(FrameRegUpdateFlags);
3008 
3009   int64_t ExtraBaseRegUpdate =
3010       FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3011   if (LoopSize < Size) {
3012     assert(FrameRegUpdate);
3013     assert(Size - LoopSize == 16);
3014     // Tag 16 more bytes at BaseReg and update BaseReg.
3015     BuildMI(*MBB, InsertI, DL,
3016             TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3017         .addDef(BaseReg)
3018         .addReg(BaseReg)
3019         .addReg(BaseReg)
3020         .addImm(1 + ExtraBaseRegUpdate / 16)
3021         .setMemRefs(CombinedMemRefs)
3022         .setMIFlags(FrameRegUpdateFlags);
3023   } else if (ExtraBaseRegUpdate) {
3024     // Update BaseReg.
3025     BuildMI(
3026         *MBB, InsertI, DL,
3027         TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3028         .addDef(BaseReg)
3029         .addReg(BaseReg)
3030         .addImm(std::abs(ExtraBaseRegUpdate))
3031         .addImm(0)
3032         .setMIFlags(FrameRegUpdateFlags);
3033   }
3034 }
3035 
3036 // Check if *II is a register update that can be merged into STGloop that ends
3037 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3038 // end of the loop.
3039 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3040                        int64_t Size, int64_t *TotalOffset) {
3041   MachineInstr &MI = *II;
3042   if ((MI.getOpcode() == AArch64::ADDXri ||
3043        MI.getOpcode() == AArch64::SUBXri) &&
3044       MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3045     unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3046     int64_t Offset = MI.getOperand(2).getImm() << Shift;
3047     if (MI.getOpcode() == AArch64::SUBXri)
3048       Offset = -Offset;
3049     int64_t AbsPostOffset = std::abs(Offset - Size);
3050     const int64_t kMaxOffset =
3051         0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3052     if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
3053       *TotalOffset = Offset;
3054       return true;
3055     }
3056   }
3057   return false;
3058 }
3059 
3060 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3061                   SmallVectorImpl<MachineMemOperand *> &MemRefs) {
3062   MemRefs.clear();
3063   for (auto &TS : TSE) {
3064     MachineInstr *MI = TS.MI;
3065     // An instruction without memory operands may access anything. Be
3066     // conservative and return an empty list.
3067     if (MI->memoperands_empty()) {
3068       MemRefs.clear();
3069       return;
3070     }
3071     MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3072   }
3073 }
3074 
3075 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3076                             const AArch64FrameLowering *TFI, bool IsLast) {
3077   if (TagStores.empty())
3078     return;
3079   TagStoreInstr &FirstTagStore = TagStores[0];
3080   TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3081   Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3082   DL = TagStores[0].MI->getDebugLoc();
3083 
3084   Register Reg;
3085   FrameRegOffset = TFI->resolveFrameOffsetReference(
3086       *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
3087       /*PreferFP=*/false, /*ForSimm=*/true);
3088   FrameReg = Reg;
3089   FrameRegUpdate = None;
3090 
3091   mergeMemRefs(TagStores, CombinedMemRefs);
3092 
3093   LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3094              for (const auto &Instr
3095                   : TagStores) { dbgs() << "  " << *Instr.MI; });
3096 
3097   // Size threshold where a loop becomes shorter than a linear sequence of
3098   // tagging instructions.
3099   const int kSetTagLoopThreshold = 176;
3100   if (Size < kSetTagLoopThreshold) {
3101     if (TagStores.size() < 2)
3102       return;
3103     emitUnrolled(InsertI);
3104   } else {
3105     MachineInstr *UpdateInstr = nullptr;
3106     int64_t TotalOffset;
3107     if (IsLast) {
3108       // See if we can merge base register update into the STGloop.
3109       // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3110       // but STGloop is way too unusual for that, and also it only
3111       // realistically happens in function epilogue. Also, STGloop is expanded
3112       // before that pass.
3113       if (InsertI != MBB->end() &&
3114           canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3115                             &TotalOffset)) {
3116         UpdateInstr = &*InsertI++;
3117         LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n  "
3118                           << *UpdateInstr);
3119       }
3120     }
3121 
3122     if (!UpdateInstr && TagStores.size() < 2)
3123       return;
3124 
3125     if (UpdateInstr) {
3126       FrameRegUpdate = TotalOffset;
3127       FrameRegUpdateFlags = UpdateInstr->getFlags();
3128     }
3129     emitLoop(InsertI);
3130     if (UpdateInstr)
3131       UpdateInstr->eraseFromParent();
3132   }
3133 
3134   for (auto &TS : TagStores)
3135     TS.MI->eraseFromParent();
3136 }
3137 
3138 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3139                                         int64_t &Size, bool &ZeroData) {
3140   MachineFunction &MF = *MI.getParent()->getParent();
3141   const MachineFrameInfo &MFI = MF.getFrameInfo();
3142 
3143   unsigned Opcode = MI.getOpcode();
3144   ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset ||
3145               Opcode == AArch64::STZ2GOffset);
3146 
3147   if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3148     if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3149       return false;
3150     if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3151       return false;
3152     Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3153     Size = MI.getOperand(2).getImm();
3154     return true;
3155   }
3156 
3157   if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset)
3158     Size = 16;
3159   else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset)
3160     Size = 32;
3161   else
3162     return false;
3163 
3164   if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3165     return false;
3166 
3167   Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3168            16 * MI.getOperand(2).getImm();
3169   return true;
3170 }
3171 
3172 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3173 // and replace them with a shorter instruction sequence:
3174 // * replace STG + STG with ST2G
3175 // * replace STGloop + STGloop with STGloop
3176 // This code needs to run when stack slot offsets are already known, but before
3177 // FrameIndex operands in STG instructions are eliminated.
3178 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
3179                                                 const AArch64FrameLowering *TFI,
3180                                                 RegScavenger *RS) {
3181   bool FirstZeroData;
3182   int64_t Size, Offset;
3183   MachineInstr &MI = *II;
3184   MachineBasicBlock *MBB = MI.getParent();
3185   MachineBasicBlock::iterator NextI = ++II;
3186   if (&MI == &MBB->instr_back())
3187     return II;
3188   if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3189     return II;
3190 
3191   SmallVector<TagStoreInstr, 4> Instrs;
3192   Instrs.emplace_back(&MI, Offset, Size);
3193 
3194   constexpr int kScanLimit = 10;
3195   int Count = 0;
3196   for (MachineBasicBlock::iterator E = MBB->end();
3197        NextI != E && Count < kScanLimit; ++NextI) {
3198     MachineInstr &MI = *NextI;
3199     bool ZeroData;
3200     int64_t Size, Offset;
3201     // Collect instructions that update memory tags with a FrameIndex operand
3202     // and (when applicable) constant size, and whose output registers are dead
3203     // (the latter is almost always the case in practice). Since these
3204     // instructions effectively have no inputs or outputs, we are free to skip
3205     // any non-aliasing instructions in between without tracking used registers.
3206     if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3207       if (ZeroData != FirstZeroData)
3208         break;
3209       Instrs.emplace_back(&MI, Offset, Size);
3210       continue;
3211     }
3212 
3213     // Only count non-transient, non-tagging instructions toward the scan
3214     // limit.
3215     if (!MI.isTransient())
3216       ++Count;
3217 
3218     // Just in case, stop before the epilogue code starts.
3219     if (MI.getFlag(MachineInstr::FrameSetup) ||
3220         MI.getFlag(MachineInstr::FrameDestroy))
3221       break;
3222 
3223     // Reject anything that may alias the collected instructions.
3224     if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
3225       break;
3226   }
3227 
3228   // New code will be inserted after the last tagging instruction we've found.
3229   MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3230   InsertI++;
3231 
3232   llvm::stable_sort(Instrs,
3233                     [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3234                       return Left.Offset < Right.Offset;
3235                     });
3236 
3237   // Make sure that we don't have any overlapping stores.
3238   int64_t CurOffset = Instrs[0].Offset;
3239   for (auto &Instr : Instrs) {
3240     if (CurOffset > Instr.Offset)
3241       return NextI;
3242     CurOffset = Instr.Offset + Instr.Size;
3243   }
3244 
3245   // Find contiguous runs of tagged memory and emit shorter instruction
3246   // sequencies for them when possible.
3247   TagStoreEdit TSE(MBB, FirstZeroData);
3248   Optional<int64_t> EndOffset;
3249   for (auto &Instr : Instrs) {
3250     if (EndOffset && *EndOffset != Instr.Offset) {
3251       // Found a gap.
3252       TSE.emitCode(InsertI, TFI, /*IsLast = */ false);
3253       TSE.clear();
3254     }
3255 
3256     TSE.addInstruction(Instr);
3257     EndOffset = Instr.Offset + Instr.Size;
3258   }
3259 
3260   TSE.emitCode(InsertI, TFI, /*IsLast = */ true);
3261 
3262   return InsertI;
3263 }
3264 } // namespace
3265 
3266 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3267     MachineFunction &MF, RegScavenger *RS = nullptr) const {
3268   if (StackTaggingMergeSetTag)
3269     for (auto &BB : MF)
3270       for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
3271         II = tryMergeAdjacentSTG(II, this, RS);
3272 }
3273 
3274 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3275 /// before the update.  This is easily retrieved as it is exactly the offset
3276 /// that is set in processFunctionBeforeFrameFinalized.
3277 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
3278     const MachineFunction &MF, int FI, Register &FrameReg,
3279     bool IgnoreSPUpdates) const {
3280   const MachineFrameInfo &MFI = MF.getFrameInfo();
3281   if (IgnoreSPUpdates) {
3282     LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3283                       << MFI.getObjectOffset(FI) << "\n");
3284     FrameReg = AArch64::SP;
3285     return StackOffset::getFixed(MFI.getObjectOffset(FI));
3286   }
3287 
3288   return getFrameIndexReference(MF, FI, FrameReg);
3289 }
3290 
3291 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3292 /// the parent's frame pointer
3293 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3294     const MachineFunction &MF) const {
3295   return 0;
3296 }
3297 
3298 /// Funclets only need to account for space for the callee saved registers,
3299 /// as the locals are accounted for in the parent's stack frame.
3300 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3301     const MachineFunction &MF) const {
3302   // This is the size of the pushed CSRs.
3303   unsigned CSSize =
3304       MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3305   // This is the amount of stack a funclet needs to allocate.
3306   return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3307                  getStackAlign());
3308 }
3309 
3310 namespace {
3311 struct FrameObject {
3312   bool IsValid = false;
3313   // Index of the object in MFI.
3314   int ObjectIndex = 0;
3315   // Group ID this object belongs to.
3316   int GroupIndex = -1;
3317   // This object should be placed first (closest to SP).
3318   bool ObjectFirst = false;
3319   // This object's group (which always contains the object with
3320   // ObjectFirst==true) should be placed first.
3321   bool GroupFirst = false;
3322 };
3323 
3324 class GroupBuilder {
3325   SmallVector<int, 8> CurrentMembers;
3326   int NextGroupIndex = 0;
3327   std::vector<FrameObject> &Objects;
3328 
3329 public:
3330   GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
3331   void AddMember(int Index) { CurrentMembers.push_back(Index); }
3332   void EndCurrentGroup() {
3333     if (CurrentMembers.size() > 1) {
3334       // Create a new group with the current member list. This might remove them
3335       // from their pre-existing groups. That's OK, dealing with overlapping
3336       // groups is too hard and unlikely to make a difference.
3337       LLVM_DEBUG(dbgs() << "group:");
3338       for (int Index : CurrentMembers) {
3339         Objects[Index].GroupIndex = NextGroupIndex;
3340         LLVM_DEBUG(dbgs() << " " << Index);
3341       }
3342       LLVM_DEBUG(dbgs() << "\n");
3343       NextGroupIndex++;
3344     }
3345     CurrentMembers.clear();
3346   }
3347 };
3348 
3349 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3350   // Objects at a lower index are closer to FP; objects at a higher index are
3351   // closer to SP.
3352   //
3353   // For consistency in our comparison, all invalid objects are placed
3354   // at the end. This also allows us to stop walking when we hit the
3355   // first invalid item after it's all sorted.
3356   //
3357   // The "first" object goes first (closest to SP), followed by the members of
3358   // the "first" group.
3359   //
3360   // The rest are sorted by the group index to keep the groups together.
3361   // Higher numbered groups are more likely to be around longer (i.e. untagged
3362   // in the function epilogue and not at some earlier point). Place them closer
3363   // to SP.
3364   //
3365   // If all else equal, sort by the object index to keep the objects in the
3366   // original order.
3367   return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
3368                          A.ObjectIndex) <
3369          std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
3370                          B.ObjectIndex);
3371 }
3372 } // namespace
3373 
3374 void AArch64FrameLowering::orderFrameObjects(
3375     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3376   if (!OrderFrameObjects || ObjectsToAllocate.empty())
3377     return;
3378 
3379   const MachineFrameInfo &MFI = MF.getFrameInfo();
3380   std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3381   for (auto &Obj : ObjectsToAllocate) {
3382     FrameObjects[Obj].IsValid = true;
3383     FrameObjects[Obj].ObjectIndex = Obj;
3384   }
3385 
3386   // Identify stack slots that are tagged at the same time.
3387   GroupBuilder GB(FrameObjects);
3388   for (auto &MBB : MF) {
3389     for (auto &MI : MBB) {
3390       if (MI.isDebugInstr())
3391         continue;
3392       int OpIndex;
3393       switch (MI.getOpcode()) {
3394       case AArch64::STGloop:
3395       case AArch64::STZGloop:
3396         OpIndex = 3;
3397         break;
3398       case AArch64::STGOffset:
3399       case AArch64::STZGOffset:
3400       case AArch64::ST2GOffset:
3401       case AArch64::STZ2GOffset:
3402         OpIndex = 1;
3403         break;
3404       default:
3405         OpIndex = -1;
3406       }
3407 
3408       int TaggedFI = -1;
3409       if (OpIndex >= 0) {
3410         const MachineOperand &MO = MI.getOperand(OpIndex);
3411         if (MO.isFI()) {
3412           int FI = MO.getIndex();
3413           if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3414               FrameObjects[FI].IsValid)
3415             TaggedFI = FI;
3416         }
3417       }
3418 
3419       // If this is a stack tagging instruction for a slot that is not part of a
3420       // group yet, either start a new group or add it to the current one.
3421       if (TaggedFI >= 0)
3422         GB.AddMember(TaggedFI);
3423       else
3424         GB.EndCurrentGroup();
3425     }
3426     // Groups should never span multiple basic blocks.
3427     GB.EndCurrentGroup();
3428   }
3429 
3430   // If the function's tagged base pointer is pinned to a stack slot, we want to
3431   // put that slot first when possible. This will likely place it at SP + 0,
3432   // and save one instruction when generating the base pointer because IRG does
3433   // not allow an immediate offset.
3434   const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
3435   Optional<int> TBPI = AFI.getTaggedBasePointerIndex();
3436   if (TBPI) {
3437     FrameObjects[*TBPI].ObjectFirst = true;
3438     FrameObjects[*TBPI].GroupFirst = true;
3439     int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
3440     if (FirstGroupIndex >= 0)
3441       for (FrameObject &Object : FrameObjects)
3442         if (Object.GroupIndex == FirstGroupIndex)
3443           Object.GroupFirst = true;
3444   }
3445 
3446   llvm::stable_sort(FrameObjects, FrameObjectCompare);
3447 
3448   int i = 0;
3449   for (auto &Obj : FrameObjects) {
3450     // All invalid items are sorted at the end, so it's safe to stop.
3451     if (!Obj.IsValid)
3452       break;
3453     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3454   }
3455 
3456   LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
3457                                                     : FrameObjects) {
3458     if (!Obj.IsValid)
3459       break;
3460     dbgs() << "  " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
3461     if (Obj.ObjectFirst)
3462       dbgs() << ", first";
3463     if (Obj.GroupFirst)
3464       dbgs() << ", group-first";
3465     dbgs() << "\n";
3466   });
3467 }
3468