1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | | | (frame record first) 51 // | prev_fp, prev_lr | <--' 52 // | (a.k.a. "frame record") | 53 // |-----------------------------------| <- fp(=x29) 54 // | | 55 // | callee-saved fp/simd/SVE regs | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | SVE stack objects | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.16-byte.alignment....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- bp(not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses X19) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 92 // callee-saved area, since the unwind encoding does not allow for encoding 93 // this dynamically and existing tools depend on this layout. For other 94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 95 // area to allow SVE stack objects (allocated directly below the callee-saves, 96 // if available) to be accessed directly from the framepointer. 97 // The SVE spill/fill instructions have VL-scaled addressing modes such 98 // as: 99 // ldr z8, [fp, #-7 mul vl] 100 // For SVE the size of the vector length (VL) is not known at compile-time, so 101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 102 // layout, we don't need to add an unscaled offset to the framepointer before 103 // accessing the SVE object in the frame. 104 // 105 // In some cases when a base pointer is not strictly needed, it is generated 106 // anyway when offsets from the frame pointer to access local variables become 107 // so large that the offset can't be encoded in the immediate fields of loads 108 // or stores. 109 // 110 // FIXME: also explain the redzone concept. 111 // FIXME: also explain the concept of reserved call frames. 112 // 113 //===----------------------------------------------------------------------===// 114 115 #include "AArch64FrameLowering.h" 116 #include "AArch64InstrInfo.h" 117 #include "AArch64MachineFunctionInfo.h" 118 #include "AArch64RegisterInfo.h" 119 #include "AArch64Subtarget.h" 120 #include "AArch64TargetMachine.h" 121 #include "MCTargetDesc/AArch64AddressingModes.h" 122 #include "llvm/ADT/ScopeExit.h" 123 #include "llvm/ADT/SmallVector.h" 124 #include "llvm/ADT/Statistic.h" 125 #include "llvm/CodeGen/LivePhysRegs.h" 126 #include "llvm/CodeGen/MachineBasicBlock.h" 127 #include "llvm/CodeGen/MachineFrameInfo.h" 128 #include "llvm/CodeGen/MachineFunction.h" 129 #include "llvm/CodeGen/MachineInstr.h" 130 #include "llvm/CodeGen/MachineInstrBuilder.h" 131 #include "llvm/CodeGen/MachineMemOperand.h" 132 #include "llvm/CodeGen/MachineModuleInfo.h" 133 #include "llvm/CodeGen/MachineOperand.h" 134 #include "llvm/CodeGen/MachineRegisterInfo.h" 135 #include "llvm/CodeGen/RegisterScavenging.h" 136 #include "llvm/CodeGen/TargetInstrInfo.h" 137 #include "llvm/CodeGen/TargetRegisterInfo.h" 138 #include "llvm/CodeGen/TargetSubtargetInfo.h" 139 #include "llvm/CodeGen/WinEHFuncInfo.h" 140 #include "llvm/IR/Attributes.h" 141 #include "llvm/IR/CallingConv.h" 142 #include "llvm/IR/DataLayout.h" 143 #include "llvm/IR/DebugLoc.h" 144 #include "llvm/IR/Function.h" 145 #include "llvm/MC/MCAsmInfo.h" 146 #include "llvm/MC/MCDwarf.h" 147 #include "llvm/Support/CommandLine.h" 148 #include "llvm/Support/Debug.h" 149 #include "llvm/Support/ErrorHandling.h" 150 #include "llvm/Support/LEB128.h" 151 #include "llvm/Support/MathExtras.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include "llvm/Target/TargetOptions.h" 155 #include <cassert> 156 #include <cstdint> 157 #include <iterator> 158 #include <vector> 159 160 using namespace llvm; 161 162 #define DEBUG_TYPE "frame-info" 163 164 static cl::opt<bool> EnableRedZone("aarch64-redzone", 165 cl::desc("enable use of redzone on AArch64"), 166 cl::init(false), cl::Hidden); 167 168 static cl::opt<bool> 169 ReverseCSRRestoreSeq("reverse-csr-restore-seq", 170 cl::desc("reverse the CSR restore sequence"), 171 cl::init(false), cl::Hidden); 172 173 static cl::opt<bool> StackTaggingMergeSetTag( 174 "stack-tagging-merge-settag", 175 cl::desc("merge settag instruction in function epilog"), cl::init(true), 176 cl::Hidden); 177 178 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects", 179 cl::desc("sort stack allocations"), 180 cl::init(true), cl::Hidden); 181 182 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 183 184 /// Returns the argument pop size. 185 static uint64_t getArgumentPopSize(MachineFunction &MF, 186 MachineBasicBlock &MBB) { 187 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 188 bool IsTailCallReturn = false; 189 if (MBB.end() != MBBI) { 190 unsigned RetOpcode = MBBI->getOpcode(); 191 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi || 192 RetOpcode == AArch64::TCRETURNri || 193 RetOpcode == AArch64::TCRETURNriBTI; 194 } 195 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 196 197 uint64_t ArgumentPopSize = 0; 198 if (IsTailCallReturn) { 199 MachineOperand &StackAdjust = MBBI->getOperand(1); 200 201 // For a tail-call in a callee-pops-arguments environment, some or all of 202 // the stack may actually be in use for the call's arguments, this is 203 // calculated during LowerCall and consumed here... 204 ArgumentPopSize = StackAdjust.getImm(); 205 } else { 206 // ... otherwise the amount to pop is *all* of the argument space, 207 // conveniently stored in the MachineFunctionInfo by 208 // LowerFormalArguments. This will, of course, be zero for the C calling 209 // convention. 210 ArgumentPopSize = AFI->getArgumentStackToRestore(); 211 } 212 213 return ArgumentPopSize; 214 } 215 216 /// This is the biggest offset to the stack pointer we can encode in aarch64 217 /// instructions (without using a separate calculation and a temp register). 218 /// Note that the exception here are vector stores/loads which cannot encode any 219 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 220 static const unsigned DefaultSafeSPDisplacement = 255; 221 222 /// Look at each instruction that references stack frames and return the stack 223 /// size limit beyond which some of these instructions will require a scratch 224 /// register during their expansion later. 225 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 226 // FIXME: For now, just conservatively guestimate based on unscaled indexing 227 // range. We'll end up allocating an unnecessary spill slot a lot, but 228 // realistically that's not a big deal at this stage of the game. 229 for (MachineBasicBlock &MBB : MF) { 230 for (MachineInstr &MI : MBB) { 231 if (MI.isDebugInstr() || MI.isPseudo() || 232 MI.getOpcode() == AArch64::ADDXri || 233 MI.getOpcode() == AArch64::ADDSXri) 234 continue; 235 236 for (const MachineOperand &MO : MI.operands()) { 237 if (!MO.isFI()) 238 continue; 239 240 StackOffset Offset; 241 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 242 AArch64FrameOffsetCannotUpdate) 243 return 0; 244 } 245 } 246 } 247 return DefaultSafeSPDisplacement; 248 } 249 250 TargetStackID::Value 251 AArch64FrameLowering::getStackIDForScalableVectors() const { 252 return TargetStackID::ScalableVector; 253 } 254 255 /// Returns the size of the fixed object area (allocated next to sp on entry) 256 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 257 static unsigned getFixedObjectSize(const MachineFunction &MF, 258 const AArch64FunctionInfo *AFI, bool IsWin64, 259 bool IsFunclet) { 260 if (!IsWin64 || IsFunclet) { 261 // Only Win64 uses fixed objects, and then only for the function (not 262 // funclets) 263 return 0; 264 } else { 265 // Var args are stored here in the primary function. 266 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 267 // To support EH funclets we allocate an UnwindHelp object 268 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 269 return alignTo(VarArgsArea + UnwindHelpObject, 16); 270 } 271 } 272 273 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 274 static StackOffset getSVEStackSize(const MachineFunction &MF) { 275 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 276 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE()); 277 } 278 279 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 280 if (!EnableRedZone) 281 return false; 282 // Don't use the red zone if the function explicitly asks us not to. 283 // This is typically used for kernel code. 284 if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone)) 285 return false; 286 287 const MachineFrameInfo &MFI = MF.getFrameInfo(); 288 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 289 uint64_t NumBytes = AFI->getLocalStackSize(); 290 291 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 || 292 getSVEStackSize(MF)); 293 } 294 295 /// hasFP - Return true if the specified function should have a dedicated frame 296 /// pointer register. 297 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { 298 const MachineFrameInfo &MFI = MF.getFrameInfo(); 299 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 300 // Win64 EH requires a frame pointer if funclets are present, as the locals 301 // are accessed off the frame pointer in both the parent function and the 302 // funclets. 303 if (MF.hasEHFunclets()) 304 return true; 305 // Retain behavior of always omitting the FP for leaf functions when possible. 306 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 307 return true; 308 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 309 MFI.hasStackMap() || MFI.hasPatchPoint() || 310 RegInfo->needsStackRealignment(MF)) 311 return true; 312 // With large callframes around we may need to use FP to access the scavenging 313 // emergency spillslot. 314 // 315 // Unfortunately some calls to hasFP() like machine verifier -> 316 // getReservedReg() -> hasFP in the middle of global isel are too early 317 // to know the max call frame size. Hopefully conservatively returning "true" 318 // in those cases is fine. 319 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 320 if (!MFI.isMaxCallFrameSizeComputed() || 321 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 322 return true; 323 324 return false; 325 } 326 327 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 328 /// not required, we reserve argument space for call sites in the function 329 /// immediately on entry to the current function. This eliminates the need for 330 /// add/sub sp brackets around call sites. Returns true if the call frame is 331 /// included as part of the stack frame. 332 bool 333 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 334 return !MF.getFrameInfo().hasVarSizedObjects(); 335 } 336 337 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 338 MachineFunction &MF, MachineBasicBlock &MBB, 339 MachineBasicBlock::iterator I) const { 340 const AArch64InstrInfo *TII = 341 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 342 DebugLoc DL = I->getDebugLoc(); 343 unsigned Opc = I->getOpcode(); 344 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 345 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 346 347 if (!hasReservedCallFrame(MF)) { 348 int64_t Amount = I->getOperand(0).getImm(); 349 Amount = alignTo(Amount, getStackAlign()); 350 if (!IsDestroy) 351 Amount = -Amount; 352 353 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 354 // doesn't have to pop anything), then the first operand will be zero too so 355 // this adjustment is a no-op. 356 if (CalleePopAmount == 0) { 357 // FIXME: in-function stack adjustment for calls is limited to 24-bits 358 // because there's no guaranteed temporary register available. 359 // 360 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 361 // 1) For offset <= 12-bit, we use LSL #0 362 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 363 // LSL #0, and the other uses LSL #12. 364 // 365 // Most call frames will be allocated at the start of a function so 366 // this is OK, but it is a limitation that needs dealing with. 367 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 368 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 369 StackOffset::getFixed(Amount), TII); 370 } 371 } else if (CalleePopAmount != 0) { 372 // If the calling convention demands that the callee pops arguments from the 373 // stack, we want to add it back if we have a reserved call frame. 374 assert(CalleePopAmount < 0xffffff && "call frame too large"); 375 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 376 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII); 377 } 378 return MBB.erase(I); 379 } 380 381 // Convenience function to create a DWARF expression for 382 // Expr + NumBytes + NumVGScaledBytes * AArch64::VG 383 static void appendVGScaledOffsetExpr(SmallVectorImpl<char> &Expr, 384 int NumBytes, int NumVGScaledBytes, unsigned VG, 385 llvm::raw_string_ostream &Comment) { 386 uint8_t buffer[16]; 387 388 if (NumBytes) { 389 Expr.push_back(dwarf::DW_OP_consts); 390 Expr.append(buffer, buffer + encodeSLEB128(NumBytes, buffer)); 391 Expr.push_back((uint8_t)dwarf::DW_OP_plus); 392 Comment << (NumBytes < 0 ? " - " : " + ") << std::abs(NumBytes); 393 } 394 395 if (NumVGScaledBytes) { 396 Expr.push_back((uint8_t)dwarf::DW_OP_consts); 397 Expr.append(buffer, buffer + encodeSLEB128(NumVGScaledBytes, buffer)); 398 399 Expr.push_back((uint8_t)dwarf::DW_OP_bregx); 400 Expr.append(buffer, buffer + encodeULEB128(VG, buffer)); 401 Expr.push_back(0); 402 403 Expr.push_back((uint8_t)dwarf::DW_OP_mul); 404 Expr.push_back((uint8_t)dwarf::DW_OP_plus); 405 406 Comment << (NumVGScaledBytes < 0 ? " - " : " + ") 407 << std::abs(NumVGScaledBytes) << " * VG"; 408 } 409 } 410 411 // Creates an MCCFIInstruction: 412 // { DW_CFA_def_cfa_expression, ULEB128 (sizeof expr), expr } 413 MCCFIInstruction AArch64FrameLowering::createDefCFAExpressionFromSP( 414 const TargetRegisterInfo &TRI, const StackOffset &OffsetFromSP) const { 415 int64_t NumBytes, NumVGScaledBytes; 416 AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(OffsetFromSP, NumBytes, 417 NumVGScaledBytes); 418 419 std::string CommentBuffer = "sp"; 420 llvm::raw_string_ostream Comment(CommentBuffer); 421 422 // Build up the expression (SP + NumBytes + NumVGScaledBytes * AArch64::VG) 423 SmallString<64> Expr; 424 Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + /*SP*/ 31)); 425 Expr.push_back(0); 426 appendVGScaledOffsetExpr(Expr, NumBytes, NumVGScaledBytes, 427 TRI.getDwarfRegNum(AArch64::VG, true), Comment); 428 429 // Wrap this into DW_CFA_def_cfa. 430 SmallString<64> DefCfaExpr; 431 DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression); 432 uint8_t buffer[16]; 433 DefCfaExpr.append(buffer, 434 buffer + encodeULEB128(Expr.size(), buffer)); 435 DefCfaExpr.append(Expr.str()); 436 return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), 437 Comment.str()); 438 } 439 440 MCCFIInstruction AArch64FrameLowering::createCfaOffset( 441 const TargetRegisterInfo &TRI, unsigned Reg, 442 const StackOffset &OffsetFromDefCFA) const { 443 int64_t NumBytes, NumVGScaledBytes; 444 AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets( 445 OffsetFromDefCFA, NumBytes, NumVGScaledBytes); 446 447 unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true); 448 449 // Non-scalable offsets can use DW_CFA_offset directly. 450 if (!NumVGScaledBytes) 451 return MCCFIInstruction::createOffset(nullptr, DwarfReg, NumBytes); 452 453 std::string CommentBuffer; 454 llvm::raw_string_ostream Comment(CommentBuffer); 455 Comment << printReg(Reg, &TRI) << " @ cfa"; 456 457 // Build up expression (NumBytes + NumVGScaledBytes * AArch64::VG) 458 SmallString<64> OffsetExpr; 459 appendVGScaledOffsetExpr(OffsetExpr, NumBytes, NumVGScaledBytes, 460 TRI.getDwarfRegNum(AArch64::VG, true), Comment); 461 462 // Wrap this into DW_CFA_expression 463 SmallString<64> CfaExpr; 464 CfaExpr.push_back(dwarf::DW_CFA_expression); 465 uint8_t buffer[16]; 466 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 467 CfaExpr.append(buffer, buffer + encodeULEB128(OffsetExpr.size(), buffer)); 468 CfaExpr.append(OffsetExpr.str()); 469 470 return MCCFIInstruction::createEscape(nullptr, CfaExpr.str(), Comment.str()); 471 } 472 473 void AArch64FrameLowering::emitCalleeSavedFrameMoves( 474 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 475 MachineFunction &MF = *MBB.getParent(); 476 MachineFrameInfo &MFI = MF.getFrameInfo(); 477 const TargetSubtargetInfo &STI = MF.getSubtarget(); 478 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 479 const TargetInstrInfo *TII = STI.getInstrInfo(); 480 DebugLoc DL = MBB.findDebugLoc(MBBI); 481 482 // Add callee saved registers to move list. 483 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 484 if (CSI.empty()) 485 return; 486 487 for (const auto &Info : CSI) { 488 unsigned Reg = Info.getReg(); 489 490 // Not all unwinders may know about SVE registers, so assume the lowest 491 // common demoninator. 492 unsigned NewReg; 493 if (static_cast<const AArch64RegisterInfo *>(TRI)->regNeedsCFI(Reg, NewReg)) 494 Reg = NewReg; 495 else 496 continue; 497 498 StackOffset Offset; 499 if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector) { 500 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 501 Offset = 502 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) - 503 StackOffset::getFixed(AFI->getCalleeSavedStackSize(MFI)); 504 } else { 505 Offset = StackOffset::getFixed(MFI.getObjectOffset(Info.getFrameIdx()) - 506 getOffsetOfLocalArea()); 507 } 508 unsigned CFIIndex = MF.addFrameInst(createCfaOffset(*TRI, Reg, Offset)); 509 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 510 .addCFIIndex(CFIIndex) 511 .setMIFlags(MachineInstr::FrameSetup); 512 } 513 } 514 515 // Find a scratch register that we can use at the start of the prologue to 516 // re-align the stack pointer. We avoid using callee-save registers since they 517 // may appear to be free when this is called from canUseAsPrologue (during 518 // shrink wrapping), but then no longer be free when this is called from 519 // emitPrologue. 520 // 521 // FIXME: This is a bit conservative, since in the above case we could use one 522 // of the callee-save registers as a scratch temp to re-align the stack pointer, 523 // but we would then have to make sure that we were in fact saving at least one 524 // callee-save register in the prologue, which is additional complexity that 525 // doesn't seem worth the benefit. 526 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 527 MachineFunction *MF = MBB->getParent(); 528 529 // If MBB is an entry block, use X9 as the scratch register 530 if (&MF->front() == MBB) 531 return AArch64::X9; 532 533 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 534 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 535 LivePhysRegs LiveRegs(TRI); 536 LiveRegs.addLiveIns(*MBB); 537 538 // Mark callee saved registers as used so we will not choose them. 539 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 540 for (unsigned i = 0; CSRegs[i]; ++i) 541 LiveRegs.addReg(CSRegs[i]); 542 543 // Prefer X9 since it was historically used for the prologue scratch reg. 544 const MachineRegisterInfo &MRI = MF->getRegInfo(); 545 if (LiveRegs.available(MRI, AArch64::X9)) 546 return AArch64::X9; 547 548 for (unsigned Reg : AArch64::GPR64RegClass) { 549 if (LiveRegs.available(MRI, Reg)) 550 return Reg; 551 } 552 return AArch64::NoRegister; 553 } 554 555 bool AArch64FrameLowering::canUseAsPrologue( 556 const MachineBasicBlock &MBB) const { 557 const MachineFunction *MF = MBB.getParent(); 558 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 559 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 560 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 561 562 // Don't need a scratch register if we're not going to re-align the stack. 563 if (!RegInfo->needsStackRealignment(*MF)) 564 return true; 565 // Otherwise, we can use any block as long as it has a scratch register 566 // available. 567 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 568 } 569 570 static bool windowsRequiresStackProbe(MachineFunction &MF, 571 uint64_t StackSizeInBytes) { 572 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 573 if (!Subtarget.isTargetWindows()) 574 return false; 575 const Function &F = MF.getFunction(); 576 // TODO: When implementing stack protectors, take that into account 577 // for the probe threshold. 578 unsigned StackProbeSize = 4096; 579 if (F.hasFnAttribute("stack-probe-size")) 580 F.getFnAttribute("stack-probe-size") 581 .getValueAsString() 582 .getAsInteger(0, StackProbeSize); 583 return (StackSizeInBytes >= StackProbeSize) && 584 !F.hasFnAttribute("no-stack-arg-probe"); 585 } 586 587 static bool needsWinCFI(const MachineFunction &MF) { 588 const Function &F = MF.getFunction(); 589 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 590 F.needsUnwindTableEntry(); 591 } 592 593 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 594 MachineFunction &MF, uint64_t StackBumpBytes) const { 595 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 596 const MachineFrameInfo &MFI = MF.getFrameInfo(); 597 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 598 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 599 600 if (AFI->getLocalStackSize() == 0) 601 return false; 602 603 // For WinCFI, if optimizing for size, prefer to not combine the stack bump 604 // (to force a stp with predecrement) to match the packed unwind format, 605 // provided that there actually are any callee saved registers to merge the 606 // decrement with. 607 // This is potentially marginally slower, but allows using the packed 608 // unwind format for functions that both have a local area and callee saved 609 // registers. Using the packed unwind format notably reduces the size of 610 // the unwind info. 611 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 && 612 MF.getFunction().hasOptSize()) 613 return false; 614 615 // 512 is the maximum immediate for stp/ldp that will be used for 616 // callee-save save/restores 617 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 618 return false; 619 620 if (MFI.hasVarSizedObjects()) 621 return false; 622 623 if (RegInfo->needsStackRealignment(MF)) 624 return false; 625 626 // This isn't strictly necessary, but it simplifies things a bit since the 627 // current RedZone handling code assumes the SP is adjusted by the 628 // callee-save save/restore code. 629 if (canUseRedZone(MF)) 630 return false; 631 632 // When there is an SVE area on the stack, always allocate the 633 // callee-saves and spills/locals separately. 634 if (getSVEStackSize(MF)) 635 return false; 636 637 return true; 638 } 639 640 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( 641 MachineBasicBlock &MBB, unsigned StackBumpBytes) const { 642 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) 643 return false; 644 645 if (MBB.empty()) 646 return true; 647 648 // Disable combined SP bump if the last instruction is an MTE tag store. It 649 // is almost always better to merge SP adjustment into those instructions. 650 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); 651 MachineBasicBlock::iterator Begin = MBB.begin(); 652 while (LastI != Begin) { 653 --LastI; 654 if (LastI->isTransient()) 655 continue; 656 if (!LastI->getFlag(MachineInstr::FrameDestroy)) 657 break; 658 } 659 switch (LastI->getOpcode()) { 660 case AArch64::STGloop: 661 case AArch64::STZGloop: 662 case AArch64::STGOffset: 663 case AArch64::STZGOffset: 664 case AArch64::ST2GOffset: 665 case AArch64::STZ2GOffset: 666 return false; 667 default: 668 return true; 669 } 670 llvm_unreachable("unreachable"); 671 } 672 673 // Given a load or a store instruction, generate an appropriate unwinding SEH 674 // code on Windows. 675 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 676 const TargetInstrInfo &TII, 677 MachineInstr::MIFlag Flag) { 678 unsigned Opc = MBBI->getOpcode(); 679 MachineBasicBlock *MBB = MBBI->getParent(); 680 MachineFunction &MF = *MBB->getParent(); 681 DebugLoc DL = MBBI->getDebugLoc(); 682 unsigned ImmIdx = MBBI->getNumOperands() - 1; 683 int Imm = MBBI->getOperand(ImmIdx).getImm(); 684 MachineInstrBuilder MIB; 685 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 686 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 687 688 switch (Opc) { 689 default: 690 llvm_unreachable("No SEH Opcode for this instruction"); 691 case AArch64::LDPDpost: 692 Imm = -Imm; 693 LLVM_FALLTHROUGH; 694 case AArch64::STPDpre: { 695 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 696 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 697 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 698 .addImm(Reg0) 699 .addImm(Reg1) 700 .addImm(Imm * 8) 701 .setMIFlag(Flag); 702 break; 703 } 704 case AArch64::LDPXpost: 705 Imm = -Imm; 706 LLVM_FALLTHROUGH; 707 case AArch64::STPXpre: { 708 Register Reg0 = MBBI->getOperand(1).getReg(); 709 Register Reg1 = MBBI->getOperand(2).getReg(); 710 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 711 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 712 .addImm(Imm * 8) 713 .setMIFlag(Flag); 714 else 715 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 716 .addImm(RegInfo->getSEHRegNum(Reg0)) 717 .addImm(RegInfo->getSEHRegNum(Reg1)) 718 .addImm(Imm * 8) 719 .setMIFlag(Flag); 720 break; 721 } 722 case AArch64::LDRDpost: 723 Imm = -Imm; 724 LLVM_FALLTHROUGH; 725 case AArch64::STRDpre: { 726 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 727 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 728 .addImm(Reg) 729 .addImm(Imm) 730 .setMIFlag(Flag); 731 break; 732 } 733 case AArch64::LDRXpost: 734 Imm = -Imm; 735 LLVM_FALLTHROUGH; 736 case AArch64::STRXpre: { 737 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 738 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 739 .addImm(Reg) 740 .addImm(Imm) 741 .setMIFlag(Flag); 742 break; 743 } 744 case AArch64::STPDi: 745 case AArch64::LDPDi: { 746 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 747 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 748 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 749 .addImm(Reg0) 750 .addImm(Reg1) 751 .addImm(Imm * 8) 752 .setMIFlag(Flag); 753 break; 754 } 755 case AArch64::STPXi: 756 case AArch64::LDPXi: { 757 Register Reg0 = MBBI->getOperand(0).getReg(); 758 Register Reg1 = MBBI->getOperand(1).getReg(); 759 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 760 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 761 .addImm(Imm * 8) 762 .setMIFlag(Flag); 763 else 764 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 765 .addImm(RegInfo->getSEHRegNum(Reg0)) 766 .addImm(RegInfo->getSEHRegNum(Reg1)) 767 .addImm(Imm * 8) 768 .setMIFlag(Flag); 769 break; 770 } 771 case AArch64::STRXui: 772 case AArch64::LDRXui: { 773 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 774 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 775 .addImm(Reg) 776 .addImm(Imm * 8) 777 .setMIFlag(Flag); 778 break; 779 } 780 case AArch64::STRDui: 781 case AArch64::LDRDui: { 782 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 783 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 784 .addImm(Reg) 785 .addImm(Imm * 8) 786 .setMIFlag(Flag); 787 break; 788 } 789 } 790 auto I = MBB->insertAfter(MBBI, MIB); 791 return I; 792 } 793 794 // Fix up the SEH opcode associated with the save/restore instruction. 795 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 796 unsigned LocalStackSize) { 797 MachineOperand *ImmOpnd = nullptr; 798 unsigned ImmIdx = MBBI->getNumOperands() - 1; 799 switch (MBBI->getOpcode()) { 800 default: 801 llvm_unreachable("Fix the offset in the SEH instruction"); 802 case AArch64::SEH_SaveFPLR: 803 case AArch64::SEH_SaveRegP: 804 case AArch64::SEH_SaveReg: 805 case AArch64::SEH_SaveFRegP: 806 case AArch64::SEH_SaveFReg: 807 ImmOpnd = &MBBI->getOperand(ImmIdx); 808 break; 809 } 810 if (ImmOpnd) 811 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 812 } 813 814 // Convert callee-save register save/restore instruction to do stack pointer 815 // decrement/increment to allocate/deallocate the callee-save stack area by 816 // converting store/load to use pre/post increment version. 817 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 818 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 819 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 820 bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) { 821 // Ignore instructions that do not operate on SP, i.e. shadow call stack 822 // instructions and associated CFI instruction. 823 while (MBBI->getOpcode() == AArch64::STRXpost || 824 MBBI->getOpcode() == AArch64::LDRXpre || 825 MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) { 826 if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION) 827 assert(MBBI->getOperand(0).getReg() != AArch64::SP); 828 ++MBBI; 829 } 830 unsigned NewOpc; 831 int Scale = 1; 832 switch (MBBI->getOpcode()) { 833 default: 834 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 835 case AArch64::STPXi: 836 NewOpc = AArch64::STPXpre; 837 Scale = 8; 838 break; 839 case AArch64::STPDi: 840 NewOpc = AArch64::STPDpre; 841 Scale = 8; 842 break; 843 case AArch64::STPQi: 844 NewOpc = AArch64::STPQpre; 845 Scale = 16; 846 break; 847 case AArch64::STRXui: 848 NewOpc = AArch64::STRXpre; 849 break; 850 case AArch64::STRDui: 851 NewOpc = AArch64::STRDpre; 852 break; 853 case AArch64::STRQui: 854 NewOpc = AArch64::STRQpre; 855 break; 856 case AArch64::LDPXi: 857 NewOpc = AArch64::LDPXpost; 858 Scale = 8; 859 break; 860 case AArch64::LDPDi: 861 NewOpc = AArch64::LDPDpost; 862 Scale = 8; 863 break; 864 case AArch64::LDPQi: 865 NewOpc = AArch64::LDPQpost; 866 Scale = 16; 867 break; 868 case AArch64::LDRXui: 869 NewOpc = AArch64::LDRXpost; 870 break; 871 case AArch64::LDRDui: 872 NewOpc = AArch64::LDRDpost; 873 break; 874 case AArch64::LDRQui: 875 NewOpc = AArch64::LDRQpost; 876 break; 877 } 878 // Get rid of the SEH code associated with the old instruction. 879 if (NeedsWinCFI) { 880 auto SEH = std::next(MBBI); 881 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 882 SEH->eraseFromParent(); 883 } 884 885 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 886 MIB.addReg(AArch64::SP, RegState::Define); 887 888 // Copy all operands other than the immediate offset. 889 unsigned OpndIdx = 0; 890 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 891 ++OpndIdx) 892 MIB.add(MBBI->getOperand(OpndIdx)); 893 894 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 895 "Unexpected immediate offset in first/last callee-save save/restore " 896 "instruction!"); 897 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 898 "Unexpected base register in callee-save save/restore instruction!"); 899 assert(CSStackSizeInc % Scale == 0); 900 MIB.addImm(CSStackSizeInc / Scale); 901 902 MIB.setMIFlags(MBBI->getFlags()); 903 MIB.setMemRefs(MBBI->memoperands()); 904 905 // Generate a new SEH code that corresponds to the new instruction. 906 if (NeedsWinCFI) { 907 *HasWinCFI = true; 908 InsertSEH(*MIB, *TII, 909 InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy); 910 } 911 912 return std::prev(MBB.erase(MBBI)); 913 } 914 915 // Fixup callee-save register save/restore instructions to take into account 916 // combined SP bump by adding the local stack size to the stack offsets. 917 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 918 uint64_t LocalStackSize, 919 bool NeedsWinCFI, 920 bool *HasWinCFI) { 921 if (AArch64InstrInfo::isSEHInstruction(MI)) 922 return; 923 924 unsigned Opc = MI.getOpcode(); 925 926 // Ignore instructions that do not operate on SP, i.e. shadow call stack 927 // instructions and associated CFI instruction. 928 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre || 929 Opc == AArch64::CFI_INSTRUCTION) { 930 if (Opc != AArch64::CFI_INSTRUCTION) 931 assert(MI.getOperand(0).getReg() != AArch64::SP); 932 return; 933 } 934 935 unsigned Scale; 936 switch (Opc) { 937 case AArch64::STPXi: 938 case AArch64::STRXui: 939 case AArch64::STPDi: 940 case AArch64::STRDui: 941 case AArch64::LDPXi: 942 case AArch64::LDRXui: 943 case AArch64::LDPDi: 944 case AArch64::LDRDui: 945 Scale = 8; 946 break; 947 case AArch64::STPQi: 948 case AArch64::STRQui: 949 case AArch64::LDPQi: 950 case AArch64::LDRQui: 951 Scale = 16; 952 break; 953 default: 954 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 955 } 956 957 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 958 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 959 "Unexpected base register in callee-save save/restore instruction!"); 960 // Last operand is immediate offset that needs fixing. 961 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 962 // All generated opcodes have scaled offsets. 963 assert(LocalStackSize % Scale == 0); 964 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 965 966 if (NeedsWinCFI) { 967 *HasWinCFI = true; 968 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 969 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 970 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 971 "Expecting a SEH instruction"); 972 fixupSEHOpcode(MBBI, LocalStackSize); 973 } 974 } 975 976 static void adaptForLdStOpt(MachineBasicBlock &MBB, 977 MachineBasicBlock::iterator FirstSPPopI, 978 MachineBasicBlock::iterator LastPopI) { 979 // Sometimes (when we restore in the same order as we save), we can end up 980 // with code like this: 981 // 982 // ldp x26, x25, [sp] 983 // ldp x24, x23, [sp, #16] 984 // ldp x22, x21, [sp, #32] 985 // ldp x20, x19, [sp, #48] 986 // add sp, sp, #64 987 // 988 // In this case, it is always better to put the first ldp at the end, so 989 // that the load-store optimizer can run and merge the ldp and the add into 990 // a post-index ldp. 991 // If we managed to grab the first pop instruction, move it to the end. 992 if (ReverseCSRRestoreSeq) 993 MBB.splice(FirstSPPopI, &MBB, LastPopI); 994 // We should end up with something like this now: 995 // 996 // ldp x24, x23, [sp, #16] 997 // ldp x22, x21, [sp, #32] 998 // ldp x20, x19, [sp, #48] 999 // ldp x26, x25, [sp] 1000 // add sp, sp, #64 1001 // 1002 // and the load-store optimizer can merge the last two instructions into: 1003 // 1004 // ldp x26, x25, [sp], #64 1005 // 1006 } 1007 1008 static bool isTargetWindows(const MachineFunction &MF) { 1009 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 1010 } 1011 1012 // Convenience function to determine whether I is an SVE callee save. 1013 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 1014 switch (I->getOpcode()) { 1015 default: 1016 return false; 1017 case AArch64::STR_ZXI: 1018 case AArch64::STR_PXI: 1019 case AArch64::LDR_ZXI: 1020 case AArch64::LDR_PXI: 1021 return I->getFlag(MachineInstr::FrameSetup) || 1022 I->getFlag(MachineInstr::FrameDestroy); 1023 } 1024 } 1025 1026 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 1027 MachineBasicBlock &MBB) const { 1028 MachineBasicBlock::iterator MBBI = MBB.begin(); 1029 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1030 const Function &F = MF.getFunction(); 1031 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1032 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1033 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1034 MachineModuleInfo &MMI = MF.getMMI(); 1035 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1036 bool needsFrameMoves = 1037 MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1038 bool HasFP = hasFP(MF); 1039 bool NeedsWinCFI = needsWinCFI(MF); 1040 bool HasWinCFI = false; 1041 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 1042 1043 bool IsFunclet = MBB.isEHFuncletEntry(); 1044 1045 // At this point, we're going to decide whether or not the function uses a 1046 // redzone. In most cases, the function doesn't have a redzone so let's 1047 // assume that's false and set it to true in the case that there's a redzone. 1048 AFI->setHasRedZone(false); 1049 1050 // Debug location must be unknown since the first debug location is used 1051 // to determine the end of the prologue. 1052 DebugLoc DL; 1053 1054 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>(); 1055 if (MFnI.shouldSignReturnAddress()) { 1056 if (MFnI.shouldSignWithBKey()) { 1057 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY)) 1058 .setMIFlag(MachineInstr::FrameSetup); 1059 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP)) 1060 .setMIFlag(MachineInstr::FrameSetup); 1061 } else { 1062 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP)) 1063 .setMIFlag(MachineInstr::FrameSetup); 1064 } 1065 1066 unsigned CFIIndex = 1067 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 1068 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1069 .addCFIIndex(CFIIndex) 1070 .setMIFlags(MachineInstr::FrameSetup); 1071 } 1072 1073 // All calls are tail calls in GHC calling conv, and functions have no 1074 // prologue/epilogue. 1075 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1076 return; 1077 1078 // Set tagged base pointer to the requested stack slot. 1079 // Ideally it should match SP value after prologue. 1080 Optional<int> TBPI = AFI->getTaggedBasePointerIndex(); 1081 if (TBPI) 1082 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI)); 1083 else 1084 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 1085 1086 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1087 1088 // getStackSize() includes all the locals in its size calculation. We don't 1089 // include these locals when computing the stack size of a funclet, as they 1090 // are allocated in the parent's stack frame and accessed via the frame 1091 // pointer from the funclet. We only save the callee saved registers in the 1092 // funclet, which are really the callee saved registers of the parent 1093 // function, including the funclet. 1094 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1095 : MFI.getStackSize(); 1096 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 1097 assert(!HasFP && "unexpected function without stack frame but with FP"); 1098 assert(!SVEStackSize && 1099 "unexpected function without stack frame but with SVE objects"); 1100 // All of the stack allocation is for locals. 1101 AFI->setLocalStackSize(NumBytes); 1102 if (!NumBytes) 1103 return; 1104 // REDZONE: If the stack size is less than 128 bytes, we don't need 1105 // to actually allocate. 1106 if (canUseRedZone(MF)) { 1107 AFI->setHasRedZone(true); 1108 ++NumRedZoneFunctions; 1109 } else { 1110 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1111 StackOffset::getFixed(-NumBytes), TII, 1112 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1113 if (!NeedsWinCFI && needsFrameMoves) { 1114 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 1115 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 1116 // Encode the stack size of the leaf function. 1117 unsigned CFIIndex = MF.addFrameInst( 1118 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); 1119 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1120 .addCFIIndex(CFIIndex) 1121 .setMIFlags(MachineInstr::FrameSetup); 1122 } 1123 } 1124 1125 if (NeedsWinCFI) { 1126 HasWinCFI = true; 1127 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1128 .setMIFlag(MachineInstr::FrameSetup); 1129 } 1130 1131 return; 1132 } 1133 1134 bool IsWin64 = 1135 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1136 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1137 1138 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1139 // All of the remaining stack allocations are for locals. 1140 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1141 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1142 if (CombineSPBump) { 1143 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1144 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1145 StackOffset::getFixed(-NumBytes), TII, 1146 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1147 NumBytes = 0; 1148 } else if (PrologueSaveSize != 0) { 1149 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 1150 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI); 1151 NumBytes -= PrologueSaveSize; 1152 } 1153 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1154 1155 // Move past the saves of the callee-saved registers, fixing up the offsets 1156 // and pre-inc if we decided to combine the callee-save and local stack 1157 // pointer bump above. 1158 MachineBasicBlock::iterator End = MBB.end(); 1159 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1160 !IsSVECalleeSave(MBBI)) { 1161 if (CombineSPBump) 1162 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1163 NeedsWinCFI, &HasWinCFI); 1164 ++MBBI; 1165 } 1166 1167 // For funclets the FP belongs to the containing function. 1168 if (!IsFunclet && HasFP) { 1169 // Only set up FP if we actually need to. 1170 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset(); 1171 1172 if (CombineSPBump) 1173 FPOffset += AFI->getLocalStackSize(); 1174 1175 // Issue sub fp, sp, FPOffset or 1176 // mov fp,sp when FPOffset is zero. 1177 // Note: All stores of callee-saved registers are marked as "FrameSetup". 1178 // This code marks the instruction(s) that set the FP also. 1179 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 1180 StackOffset::getFixed(FPOffset), TII, 1181 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1182 } 1183 1184 if (windowsRequiresStackProbe(MF, NumBytes)) { 1185 uint64_t NumWords = NumBytes >> 4; 1186 if (NeedsWinCFI) { 1187 HasWinCFI = true; 1188 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 1189 // exceed this amount. We need to move at most 2^24 - 1 into x15. 1190 // This is at most two instructions, MOVZ follwed by MOVK. 1191 // TODO: Fix to use multiple stack alloc unwind codes for stacks 1192 // exceeding 256MB in size. 1193 if (NumBytes >= (1 << 28)) 1194 report_fatal_error("Stack size cannot exceed 256MB for stack " 1195 "unwinding purposes"); 1196 1197 uint32_t LowNumWords = NumWords & 0xFFFF; 1198 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 1199 .addImm(LowNumWords) 1200 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1201 .setMIFlag(MachineInstr::FrameSetup); 1202 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1203 .setMIFlag(MachineInstr::FrameSetup); 1204 if ((NumWords & 0xFFFF0000) != 0) { 1205 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 1206 .addReg(AArch64::X15) 1207 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 1208 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 1209 .setMIFlag(MachineInstr::FrameSetup); 1210 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1211 .setMIFlag(MachineInstr::FrameSetup); 1212 } 1213 } else { 1214 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 1215 .addImm(NumWords) 1216 .setMIFlags(MachineInstr::FrameSetup); 1217 } 1218 1219 switch (MF.getTarget().getCodeModel()) { 1220 case CodeModel::Tiny: 1221 case CodeModel::Small: 1222 case CodeModel::Medium: 1223 case CodeModel::Kernel: 1224 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 1225 .addExternalSymbol("__chkstk") 1226 .addReg(AArch64::X15, RegState::Implicit) 1227 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1228 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1229 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1230 .setMIFlags(MachineInstr::FrameSetup); 1231 if (NeedsWinCFI) { 1232 HasWinCFI = true; 1233 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1234 .setMIFlag(MachineInstr::FrameSetup); 1235 } 1236 break; 1237 case CodeModel::Large: 1238 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 1239 .addReg(AArch64::X16, RegState::Define) 1240 .addExternalSymbol("__chkstk") 1241 .addExternalSymbol("__chkstk") 1242 .setMIFlags(MachineInstr::FrameSetup); 1243 if (NeedsWinCFI) { 1244 HasWinCFI = true; 1245 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1246 .setMIFlag(MachineInstr::FrameSetup); 1247 } 1248 1249 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF))) 1250 .addReg(AArch64::X16, RegState::Kill) 1251 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 1252 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1253 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1254 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1255 .setMIFlags(MachineInstr::FrameSetup); 1256 if (NeedsWinCFI) { 1257 HasWinCFI = true; 1258 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1259 .setMIFlag(MachineInstr::FrameSetup); 1260 } 1261 break; 1262 } 1263 1264 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 1265 .addReg(AArch64::SP, RegState::Kill) 1266 .addReg(AArch64::X15, RegState::Kill) 1267 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 1268 .setMIFlags(MachineInstr::FrameSetup); 1269 if (NeedsWinCFI) { 1270 HasWinCFI = true; 1271 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1272 .addImm(NumBytes) 1273 .setMIFlag(MachineInstr::FrameSetup); 1274 } 1275 NumBytes = 0; 1276 } 1277 1278 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {}; 1279 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 1280 1281 // Process the SVE callee-saves to determine what space needs to be 1282 // allocated. 1283 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 1284 // Find callee save instructions in frame. 1285 CalleeSavesBegin = MBBI; 1286 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 1287 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 1288 ++MBBI; 1289 CalleeSavesEnd = MBBI; 1290 1291 AllocateBefore = StackOffset::getScalable(CalleeSavedSize); 1292 AllocateAfter = SVEStackSize - AllocateBefore; 1293 } 1294 1295 // Allocate space for the callee saves (if any). 1296 emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, 1297 -AllocateBefore, TII, 1298 MachineInstr::FrameSetup); 1299 1300 // Finally allocate remaining SVE stack space. 1301 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP, 1302 -AllocateAfter, TII, 1303 MachineInstr::FrameSetup); 1304 1305 // Allocate space for the rest of the frame. 1306 if (NumBytes) { 1307 // Alignment is required for the parent frame, not the funclet 1308 const bool NeedsRealignment = 1309 !IsFunclet && RegInfo->needsStackRealignment(MF); 1310 unsigned scratchSPReg = AArch64::SP; 1311 1312 if (NeedsRealignment) { 1313 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB); 1314 assert(scratchSPReg != AArch64::NoRegister); 1315 } 1316 1317 // If we're a leaf function, try using the red zone. 1318 if (!canUseRedZone(MF)) 1319 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 1320 // the correct value here, as NumBytes also includes padding bytes, 1321 // which shouldn't be counted here. 1322 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, 1323 StackOffset::getFixed(-NumBytes), TII, 1324 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1325 1326 if (NeedsRealignment) { 1327 const unsigned NrBitsToZero = Log2(MFI.getMaxAlign()); 1328 assert(NrBitsToZero > 1); 1329 assert(scratchSPReg != AArch64::SP); 1330 1331 // SUB X9, SP, NumBytes 1332 // -- X9 is temporary register, so shouldn't contain any live data here, 1333 // -- free to use. This is already produced by emitFrameOffset above. 1334 // AND SP, X9, 0b11111...0000 1335 // The logical immediates have a non-trivial encoding. The following 1336 // formula computes the encoded immediate with all ones but 1337 // NrBitsToZero zero bits as least significant bits. 1338 uint32_t andMaskEncoded = (1 << 12) // = N 1339 | ((64 - NrBitsToZero) << 6) // immr 1340 | ((64 - NrBitsToZero - 1) << 0); // imms 1341 1342 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 1343 .addReg(scratchSPReg, RegState::Kill) 1344 .addImm(andMaskEncoded); 1345 AFI->setStackRealigned(true); 1346 if (NeedsWinCFI) { 1347 HasWinCFI = true; 1348 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1349 .addImm(NumBytes & andMaskEncoded) 1350 .setMIFlag(MachineInstr::FrameSetup); 1351 } 1352 } 1353 } 1354 1355 // If we need a base pointer, set it up here. It's whatever the value of the 1356 // stack pointer is at this point. Any variable size objects will be allocated 1357 // after this, so we can still use the base pointer to reference locals. 1358 // 1359 // FIXME: Clarify FrameSetup flags here. 1360 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 1361 // needed. 1362 // For funclets the BP belongs to the containing function. 1363 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 1364 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 1365 false); 1366 if (NeedsWinCFI) { 1367 HasWinCFI = true; 1368 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1369 .setMIFlag(MachineInstr::FrameSetup); 1370 } 1371 } 1372 1373 // The very last FrameSetup instruction indicates the end of prologue. Emit a 1374 // SEH opcode indicating the prologue end. 1375 if (NeedsWinCFI && HasWinCFI) { 1376 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1377 .setMIFlag(MachineInstr::FrameSetup); 1378 } 1379 1380 // SEH funclets are passed the frame pointer in X1. If the parent 1381 // function uses the base register, then the base register is used 1382 // directly, and is not retrieved from X1. 1383 if (IsFunclet && F.hasPersonalityFn()) { 1384 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 1385 if (isAsynchronousEHPersonality(Per)) { 1386 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 1387 .addReg(AArch64::X1) 1388 .setMIFlag(MachineInstr::FrameSetup); 1389 MBB.addLiveIn(AArch64::X1); 1390 } 1391 } 1392 1393 if (needsFrameMoves) { 1394 // An example of the prologue: 1395 // 1396 // .globl __foo 1397 // .align 2 1398 // __foo: 1399 // Ltmp0: 1400 // .cfi_startproc 1401 // .cfi_personality 155, ___gxx_personality_v0 1402 // Leh_func_begin: 1403 // .cfi_lsda 16, Lexception33 1404 // 1405 // stp xa,bx, [sp, -#offset]! 1406 // ... 1407 // stp x28, x27, [sp, #offset-32] 1408 // stp fp, lr, [sp, #offset-16] 1409 // add fp, sp, #offset - 16 1410 // sub sp, sp, #1360 1411 // 1412 // The Stack: 1413 // +-------------------------------------------+ 1414 // 10000 | ........ | ........ | ........ | ........ | 1415 // 10004 | ........ | ........ | ........ | ........ | 1416 // +-------------------------------------------+ 1417 // 10008 | ........ | ........ | ........ | ........ | 1418 // 1000c | ........ | ........ | ........ | ........ | 1419 // +===========================================+ 1420 // 10010 | X28 Register | 1421 // 10014 | X28 Register | 1422 // +-------------------------------------------+ 1423 // 10018 | X27 Register | 1424 // 1001c | X27 Register | 1425 // +===========================================+ 1426 // 10020 | Frame Pointer | 1427 // 10024 | Frame Pointer | 1428 // +-------------------------------------------+ 1429 // 10028 | Link Register | 1430 // 1002c | Link Register | 1431 // +===========================================+ 1432 // 10030 | ........ | ........ | ........ | ........ | 1433 // 10034 | ........ | ........ | ........ | ........ | 1434 // +-------------------------------------------+ 1435 // 10038 | ........ | ........ | ........ | ........ | 1436 // 1003c | ........ | ........ | ........ | ........ | 1437 // +-------------------------------------------+ 1438 // 1439 // [sp] = 10030 :: >>initial value<< 1440 // sp = 10020 :: stp fp, lr, [sp, #-16]! 1441 // fp = sp == 10020 :: mov fp, sp 1442 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 1443 // sp == 10010 :: >>final value<< 1444 // 1445 // The frame pointer (w29) points to address 10020. If we use an offset of 1446 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 1447 // for w27, and -32 for w28: 1448 // 1449 // Ltmp1: 1450 // .cfi_def_cfa w29, 16 1451 // Ltmp2: 1452 // .cfi_offset w30, -8 1453 // Ltmp3: 1454 // .cfi_offset w29, -16 1455 // Ltmp4: 1456 // .cfi_offset w27, -24 1457 // Ltmp5: 1458 // .cfi_offset w28, -32 1459 1460 if (HasFP) { 1461 const int OffsetToFirstCalleeSaveFromFP = 1462 AFI->getCalleeSaveBaseToFrameRecordOffset() - 1463 AFI->getCalleeSavedStackSize(); 1464 Register FramePtr = RegInfo->getFrameRegister(MF); 1465 1466 // Define the current CFA rule to use the provided FP. 1467 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true); 1468 unsigned CFIIndex = MF.addFrameInst( 1469 MCCFIInstruction::cfiDefCfa(nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP)); 1470 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1471 .addCFIIndex(CFIIndex) 1472 .setMIFlags(MachineInstr::FrameSetup); 1473 } else { 1474 unsigned CFIIndex; 1475 if (SVEStackSize) { 1476 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1477 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1478 StackOffset TotalSize = 1479 SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize()); 1480 CFIIndex = MF.addFrameInst(createDefCFAExpressionFromSP(TRI, TotalSize)); 1481 } else { 1482 // Encode the stack size of the leaf function. 1483 CFIIndex = MF.addFrameInst( 1484 MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize())); 1485 } 1486 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1487 .addCFIIndex(CFIIndex) 1488 .setMIFlags(MachineInstr::FrameSetup); 1489 } 1490 1491 // Now emit the moves for whatever callee saved regs we have (including FP, 1492 // LR if those are saved). 1493 emitCalleeSavedFrameMoves(MBB, MBBI); 1494 } 1495 } 1496 1497 static void InsertReturnAddressAuth(MachineFunction &MF, 1498 MachineBasicBlock &MBB) { 1499 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>(); 1500 if (!MFI.shouldSignReturnAddress()) 1501 return; 1502 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1503 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1504 1505 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1506 DebugLoc DL; 1507 if (MBBI != MBB.end()) 1508 DL = MBBI->getDebugLoc(); 1509 1510 // The AUTIASP instruction assembles to a hint instruction before v8.3a so 1511 // this instruction can safely used for any v8a architecture. 1512 // From v8.3a onwards there are optimised authenticate LR and return 1513 // instructions, namely RETA{A,B}, that can be used instead. 1514 if (Subtarget.hasPAuth() && MBBI != MBB.end() && 1515 MBBI->getOpcode() == AArch64::RET_ReallyLR) { 1516 BuildMI(MBB, MBBI, DL, 1517 TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA)) 1518 .copyImplicitOps(*MBBI); 1519 MBB.erase(MBBI); 1520 } else { 1521 BuildMI( 1522 MBB, MBBI, DL, 1523 TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP)) 1524 .setMIFlag(MachineInstr::FrameDestroy); 1525 } 1526 } 1527 1528 static bool isFuncletReturnInstr(const MachineInstr &MI) { 1529 switch (MI.getOpcode()) { 1530 default: 1531 return false; 1532 case AArch64::CATCHRET: 1533 case AArch64::CLEANUPRET: 1534 return true; 1535 } 1536 } 1537 1538 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 1539 MachineBasicBlock &MBB) const { 1540 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 1541 MachineFrameInfo &MFI = MF.getFrameInfo(); 1542 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1543 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1544 DebugLoc DL; 1545 bool NeedsWinCFI = needsWinCFI(MF); 1546 bool HasWinCFI = false; 1547 bool IsFunclet = false; 1548 auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); }); 1549 1550 if (MBB.end() != MBBI) { 1551 DL = MBBI->getDebugLoc(); 1552 IsFunclet = isFuncletReturnInstr(*MBBI); 1553 } 1554 1555 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1556 : MFI.getStackSize(); 1557 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1558 1559 // All calls are tail calls in GHC calling conv, and functions have no 1560 // prologue/epilogue. 1561 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1562 return; 1563 1564 // Initial and residual are named for consistency with the prologue. Note that 1565 // in the epilogue, the residual adjustment is executed first. 1566 uint64_t ArgumentPopSize = getArgumentPopSize(MF, MBB); 1567 1568 // The stack frame should be like below, 1569 // 1570 // ---------------------- --- 1571 // | | | 1572 // | BytesInStackArgArea| CalleeArgStackSize 1573 // | (NumReusableBytes) | (of tail call) 1574 // | | --- 1575 // | | | 1576 // ---------------------| --- | 1577 // | | | | 1578 // | CalleeSavedReg | | | 1579 // | (CalleeSavedStackSize)| | | 1580 // | | | | 1581 // ---------------------| | NumBytes 1582 // | | StackSize (StackAdjustUp) 1583 // | LocalStackSize | | | 1584 // | (covering callee | | | 1585 // | args) | | | 1586 // | | | | 1587 // ---------------------- --- --- 1588 // 1589 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize 1590 // = StackSize + ArgumentPopSize 1591 // 1592 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps 1593 // it as the 2nd argument of AArch64ISD::TC_RETURN. 1594 1595 auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); }); 1596 1597 bool IsWin64 = 1598 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1599 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1600 1601 uint64_t AfterCSRPopSize = ArgumentPopSize; 1602 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1603 // We cannot rely on the local stack size set in emitPrologue if the function 1604 // has funclets, as funclets have different local stack size requirements, and 1605 // the current value set in emitPrologue may be that of the containing 1606 // function. 1607 if (MF.hasEHFunclets()) 1608 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1609 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); 1610 // Assume we can't combine the last pop with the sp restore. 1611 1612 if (!CombineSPBump && PrologueSaveSize != 0) { 1613 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 1614 while (AArch64InstrInfo::isSEHInstruction(*Pop)) 1615 Pop = std::prev(Pop); 1616 // Converting the last ldp to a post-index ldp is valid only if the last 1617 // ldp's offset is 0. 1618 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 1619 // If the offset is 0, convert it to a post-index ldp. 1620 if (OffsetOp.getImm() == 0) 1621 convertCalleeSaveRestoreToSPPrePostIncDec( 1622 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false); 1623 else { 1624 // If not, make sure to emit an add after the last ldp. 1625 // We're doing this by transfering the size to be restored from the 1626 // adjustment *before* the CSR pops to the adjustment *after* the CSR 1627 // pops. 1628 AfterCSRPopSize += PrologueSaveSize; 1629 } 1630 } 1631 1632 // Move past the restores of the callee-saved registers. 1633 // If we plan on combining the sp bump of the local stack size and the callee 1634 // save stack size, we might need to adjust the CSR save and restore offsets. 1635 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 1636 MachineBasicBlock::iterator Begin = MBB.begin(); 1637 while (LastPopI != Begin) { 1638 --LastPopI; 1639 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 1640 IsSVECalleeSave(LastPopI)) { 1641 ++LastPopI; 1642 break; 1643 } else if (CombineSPBump) 1644 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 1645 NeedsWinCFI, &HasWinCFI); 1646 } 1647 1648 if (MF.hasWinCFI()) { 1649 // If the prologue didn't contain any SEH opcodes and didn't set the 1650 // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the 1651 // EpilogStart - to avoid generating CFI for functions that don't need it. 1652 // (And as we didn't generate any prologue at all, it would be asymmetrical 1653 // to the epilogue.) By the end of the function, we assert that 1654 // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption. 1655 HasWinCFI = true; 1656 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 1657 .setMIFlag(MachineInstr::FrameDestroy); 1658 } 1659 1660 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1661 1662 // If there is a single SP update, insert it before the ret and we're done. 1663 if (CombineSPBump) { 1664 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1665 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 1666 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize), 1667 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, 1668 &HasWinCFI); 1669 if (HasWinCFI) 1670 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1671 TII->get(AArch64::SEH_EpilogEnd)) 1672 .setMIFlag(MachineInstr::FrameDestroy); 1673 return; 1674 } 1675 1676 NumBytes -= PrologueSaveSize; 1677 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1678 1679 // Process the SVE callee-saves to determine what space needs to be 1680 // deallocated. 1681 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 1682 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 1683 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 1684 RestoreBegin = std::prev(RestoreEnd); 1685 while (RestoreBegin != MBB.begin() && 1686 IsSVECalleeSave(std::prev(RestoreBegin))) 1687 --RestoreBegin; 1688 1689 assert(IsSVECalleeSave(RestoreBegin) && 1690 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 1691 1692 StackOffset CalleeSavedSizeAsOffset = 1693 StackOffset::getScalable(CalleeSavedSize); 1694 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset; 1695 DeallocateAfter = CalleeSavedSizeAsOffset; 1696 } 1697 1698 // Deallocate the SVE area. 1699 if (SVEStackSize) { 1700 if (AFI->isStackRealigned()) { 1701 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) 1702 // Set SP to start of SVE callee-save area from which they can 1703 // be reloaded. The code below will deallocate the stack space 1704 // space by moving FP -> SP. 1705 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 1706 StackOffset::getScalable(-CalleeSavedSize), TII, 1707 MachineInstr::FrameDestroy); 1708 } else { 1709 if (AFI->getSVECalleeSavedStackSize()) { 1710 // Deallocate the non-SVE locals first before we can deallocate (and 1711 // restore callee saves) from the SVE area. 1712 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1713 StackOffset::getFixed(NumBytes), TII, 1714 MachineInstr::FrameDestroy); 1715 NumBytes = 0; 1716 } 1717 1718 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1719 DeallocateBefore, TII, MachineInstr::FrameDestroy); 1720 1721 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 1722 DeallocateAfter, TII, MachineInstr::FrameDestroy); 1723 } 1724 } 1725 1726 if (!hasFP(MF)) { 1727 bool RedZone = canUseRedZone(MF); 1728 // If this was a redzone leaf function, we don't need to restore the 1729 // stack pointer (but we may need to pop stack args for fastcc). 1730 if (RedZone && AfterCSRPopSize == 0) 1731 return; 1732 1733 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 1734 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 1735 if (NoCalleeSaveRestore) 1736 StackRestoreBytes += AfterCSRPopSize; 1737 1738 // If we were able to combine the local stack pop with the argument pop, 1739 // then we're done. 1740 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0; 1741 1742 // If we're done after this, make sure to help the load store optimizer. 1743 if (Done) 1744 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI); 1745 1746 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1747 StackOffset::getFixed(StackRestoreBytes), TII, 1748 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1749 if (Done) { 1750 if (HasWinCFI) { 1751 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1752 TII->get(AArch64::SEH_EpilogEnd)) 1753 .setMIFlag(MachineInstr::FrameDestroy); 1754 } 1755 return; 1756 } 1757 1758 NumBytes = 0; 1759 } 1760 1761 // Restore the original stack pointer. 1762 // FIXME: Rather than doing the math here, we should instead just use 1763 // non-post-indexed loads for the restores if we aren't actually going to 1764 // be able to save any instructions. 1765 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 1766 emitFrameOffset( 1767 MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 1768 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()), 1769 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI); 1770 } else if (NumBytes) 1771 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1772 StackOffset::getFixed(NumBytes), TII, 1773 MachineInstr::FrameDestroy, false, NeedsWinCFI); 1774 1775 // This must be placed after the callee-save restore code because that code 1776 // assumes the SP is at the same location as it was after the callee-save save 1777 // code in the prologue. 1778 if (AfterCSRPopSize) { 1779 // Find an insertion point for the first ldp so that it goes before the 1780 // shadow call stack epilog instruction. This ensures that the restore of 1781 // lr from x18 is placed after the restore from sp. 1782 auto FirstSPPopI = MBB.getFirstTerminator(); 1783 while (FirstSPPopI != Begin) { 1784 auto Prev = std::prev(FirstSPPopI); 1785 if (Prev->getOpcode() != AArch64::LDRXpre || 1786 Prev->getOperand(0).getReg() == AArch64::SP) 1787 break; 1788 FirstSPPopI = Prev; 1789 } 1790 1791 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI); 1792 1793 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP, 1794 StackOffset::getFixed((int64_t)AfterCSRPopSize), TII, 1795 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1796 } 1797 if (HasWinCFI) 1798 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd)) 1799 .setMIFlag(MachineInstr::FrameDestroy); 1800 } 1801 1802 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1803 /// debug info. It's the same as what we use for resolving the code-gen 1804 /// references for now. FIXME: This can go wrong when references are 1805 /// SP-relative and simple call frames aren't used. 1806 StackOffset 1807 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1808 Register &FrameReg) const { 1809 return resolveFrameIndexReference( 1810 MF, FI, FrameReg, 1811 /*PreferFP=*/ 1812 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress), 1813 /*ForSimm=*/false); 1814 } 1815 1816 StackOffset 1817 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF, 1818 int FI) const { 1819 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI)); 1820 } 1821 1822 static StackOffset getFPOffset(const MachineFunction &MF, 1823 int64_t ObjectOffset) { 1824 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1825 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1826 bool IsWin64 = 1827 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1828 unsigned FixedObject = 1829 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 1830 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 1831 int64_t FPAdjust = 1832 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset(); 1833 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust); 1834 } 1835 1836 static StackOffset getStackOffset(const MachineFunction &MF, 1837 int64_t ObjectOffset) { 1838 const auto &MFI = MF.getFrameInfo(); 1839 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize()); 1840 } 1841 1842 // TODO: This function currently does not work for scalable vectors. 1843 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 1844 int FI) const { 1845 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1846 MF.getSubtarget().getRegisterInfo()); 1847 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 1848 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 1849 ? getFPOffset(MF, ObjectOffset).getFixed() 1850 : getStackOffset(MF, ObjectOffset).getFixed(); 1851 } 1852 1853 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 1854 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, 1855 bool ForSimm) const { 1856 const auto &MFI = MF.getFrameInfo(); 1857 int64_t ObjectOffset = MFI.getObjectOffset(FI); 1858 bool isFixed = MFI.isFixedObjectIndex(FI); 1859 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector; 1860 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 1861 PreferFP, ForSimm); 1862 } 1863 1864 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 1865 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 1866 Register &FrameReg, bool PreferFP, bool ForSimm) const { 1867 const auto &MFI = MF.getFrameInfo(); 1868 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1869 MF.getSubtarget().getRegisterInfo()); 1870 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1871 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1872 1873 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed(); 1874 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed(); 1875 bool isCSR = 1876 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 1877 1878 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1879 1880 // Use frame pointer to reference fixed objects. Use it for locals if 1881 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 1882 // reliable as a base). Make sure useFPForScavengingIndex() does the 1883 // right thing for the emergency spill slot. 1884 bool UseFP = false; 1885 if (AFI->hasStackFrame() && !isSVE) { 1886 // We shouldn't prefer using the FP when there is an SVE area 1887 // in between the FP and the non-SVE locals/spills. 1888 PreferFP &= !SVEStackSize; 1889 1890 // Note: Keeping the following as multiple 'if' statements rather than 1891 // merging to a single expression for readability. 1892 // 1893 // Argument access should always use the FP. 1894 if (isFixed) { 1895 UseFP = hasFP(MF); 1896 } else if (isCSR && RegInfo->needsStackRealignment(MF)) { 1897 // References to the CSR area must use FP if we're re-aligning the stack 1898 // since the dynamically-sized alignment padding is between the SP/BP and 1899 // the CSR area. 1900 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 1901 UseFP = true; 1902 } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) { 1903 // If the FPOffset is negative and we're producing a signed immediate, we 1904 // have to keep in mind that the available offset range for negative 1905 // offsets is smaller than for positive ones. If an offset is available 1906 // via the FP and the SP, use whichever is closest. 1907 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 1908 PreferFP |= Offset > -FPOffset; 1909 1910 if (MFI.hasVarSizedObjects()) { 1911 // If we have variable sized objects, we can use either FP or BP, as the 1912 // SP offset is unknown. We can use the base pointer if we have one and 1913 // FP is not preferred. If not, we're stuck with using FP. 1914 bool CanUseBP = RegInfo->hasBasePointer(MF); 1915 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 1916 UseFP = PreferFP; 1917 else if (!CanUseBP) // Can't use BP. Forced to use FP. 1918 UseFP = true; 1919 // else we can use BP and FP, but the offset from FP won't fit. 1920 // That will make us scavenge registers which we can probably avoid by 1921 // using BP. If it won't fit for BP either, we'll scavenge anyway. 1922 } else if (FPOffset >= 0) { 1923 // Use SP or FP, whichever gives us the best chance of the offset 1924 // being in range for direct access. If the FPOffset is positive, 1925 // that'll always be best, as the SP will be even further away. 1926 UseFP = true; 1927 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 1928 // Funclets access the locals contained in the parent's stack frame 1929 // via the frame pointer, so we have to use the FP in the parent 1930 // function. 1931 (void) Subtarget; 1932 assert( 1933 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) && 1934 "Funclets should only be present on Win64"); 1935 UseFP = true; 1936 } else { 1937 // We have the choice between FP and (SP or BP). 1938 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 1939 UseFP = true; 1940 } 1941 } 1942 } 1943 1944 assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) && 1945 "In the presence of dynamic stack pointer realignment, " 1946 "non-argument/CSR objects cannot be accessed through the frame pointer"); 1947 1948 if (isSVE) { 1949 StackOffset FPOffset = 1950 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset); 1951 StackOffset SPOffset = 1952 SVEStackSize + 1953 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(), 1954 ObjectOffset); 1955 // Always use the FP for SVE spills if available and beneficial. 1956 if (hasFP(MF) && 1957 (SPOffset.getFixed() || 1958 FPOffset.getScalable() < SPOffset.getScalable() || 1959 RegInfo->needsStackRealignment(MF))) { 1960 FrameReg = RegInfo->getFrameRegister(MF); 1961 return FPOffset; 1962 } 1963 1964 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 1965 : (unsigned)AArch64::SP; 1966 return SPOffset; 1967 } 1968 1969 StackOffset ScalableOffset = {}; 1970 if (UseFP && !(isFixed || isCSR)) 1971 ScalableOffset = -SVEStackSize; 1972 if (!UseFP && (isFixed || isCSR)) 1973 ScalableOffset = SVEStackSize; 1974 1975 if (UseFP) { 1976 FrameReg = RegInfo->getFrameRegister(MF); 1977 return StackOffset::getFixed(FPOffset) + ScalableOffset; 1978 } 1979 1980 // Use the base pointer if we have one. 1981 if (RegInfo->hasBasePointer(MF)) 1982 FrameReg = RegInfo->getBaseRegister(); 1983 else { 1984 assert(!MFI.hasVarSizedObjects() && 1985 "Can't use SP when we have var sized objects."); 1986 FrameReg = AArch64::SP; 1987 // If we're using the red zone for this function, the SP won't actually 1988 // be adjusted, so the offsets will be negative. They're also all 1989 // within range of the signed 9-bit immediate instructions. 1990 if (canUseRedZone(MF)) 1991 Offset -= AFI->getLocalStackSize(); 1992 } 1993 1994 return StackOffset::getFixed(Offset) + ScalableOffset; 1995 } 1996 1997 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 1998 // Do not set a kill flag on values that are also marked as live-in. This 1999 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 2000 // callee saved registers. 2001 // Omitting the kill flags is conservatively correct even if the live-in 2002 // is not used after all. 2003 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 2004 return getKillRegState(!IsLiveIn); 2005 } 2006 2007 static bool produceCompactUnwindFrame(MachineFunction &MF) { 2008 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2009 AttributeList Attrs = MF.getFunction().getAttributes(); 2010 return Subtarget.isTargetMachO() && 2011 !(Subtarget.getTargetLowering()->supportSwiftError() && 2012 Attrs.hasAttrSomewhere(Attribute::SwiftError)); 2013 } 2014 2015 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 2016 bool NeedsWinCFI, bool IsFirst) { 2017 // If we are generating register pairs for a Windows function that requires 2018 // EH support, then pair consecutive registers only. There are no unwind 2019 // opcodes for saves/restores of non-consectuve register pairs. 2020 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x, 2021 // save_lrpair. 2022 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 2023 2024 if (Reg2 == AArch64::FP) 2025 return true; 2026 if (!NeedsWinCFI) 2027 return false; 2028 if (Reg2 == Reg1 + 1) 2029 return false; 2030 // If pairing a GPR with LR, the pair can be described by the save_lrpair 2031 // opcode. If this is the first register pair, it would end up with a 2032 // predecrement, but there's no save_lrpair_x opcode, so we can only do this 2033 // if LR is paired with something else than the first register. 2034 // The save_lrpair opcode requires the first register to be an odd one. 2035 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 && 2036 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst) 2037 return false; 2038 return true; 2039 } 2040 2041 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 2042 /// WindowsCFI requires that only consecutive registers can be paired. 2043 /// LR and FP need to be allocated together when the frame needs to save 2044 /// the frame-record. This means any other register pairing with LR is invalid. 2045 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 2046 bool UsesWinAAPCS, bool NeedsWinCFI, 2047 bool NeedsFrameRecord, bool IsFirst) { 2048 if (UsesWinAAPCS) 2049 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst); 2050 2051 // If we need to store the frame record, don't pair any register 2052 // with LR other than FP. 2053 if (NeedsFrameRecord) 2054 return Reg2 == AArch64::LR; 2055 2056 return false; 2057 } 2058 2059 namespace { 2060 2061 struct RegPairInfo { 2062 unsigned Reg1 = AArch64::NoRegister; 2063 unsigned Reg2 = AArch64::NoRegister; 2064 int FrameIdx; 2065 int Offset; 2066 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type; 2067 2068 RegPairInfo() = default; 2069 2070 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 2071 2072 unsigned getScale() const { 2073 switch (Type) { 2074 case PPR: 2075 return 2; 2076 case GPR: 2077 case FPR64: 2078 return 8; 2079 case ZPR: 2080 case FPR128: 2081 return 16; 2082 } 2083 llvm_unreachable("Unsupported type"); 2084 } 2085 2086 bool isScalable() const { return Type == PPR || Type == ZPR; } 2087 }; 2088 2089 } // end anonymous namespace 2090 2091 static void computeCalleeSaveRegisterPairs( 2092 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI, 2093 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 2094 bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) { 2095 2096 if (CSI.empty()) 2097 return; 2098 2099 bool IsWindows = isTargetWindows(MF); 2100 bool NeedsWinCFI = needsWinCFI(MF); 2101 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2102 MachineFrameInfo &MFI = MF.getFrameInfo(); 2103 CallingConv::ID CC = MF.getFunction().getCallingConv(); 2104 unsigned Count = CSI.size(); 2105 (void)CC; 2106 // MachO's compact unwind format relies on all registers being stored in 2107 // pairs. 2108 assert((!produceCompactUnwindFrame(MF) || 2109 CC == CallingConv::PreserveMost || 2110 (Count & 1) == 0) && 2111 "Odd number of callee-saved regs to spill!"); 2112 int ByteOffset = AFI->getCalleeSavedStackSize(); 2113 int StackFillDir = -1; 2114 int RegInc = 1; 2115 unsigned FirstReg = 0; 2116 if (NeedsWinCFI) { 2117 // For WinCFI, fill the stack from the bottom up. 2118 ByteOffset = 0; 2119 StackFillDir = 1; 2120 // As the CSI array is reversed to match PrologEpilogInserter, iterate 2121 // backwards, to pair up registers starting from lower numbered registers. 2122 RegInc = -1; 2123 FirstReg = Count - 1; 2124 } 2125 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 2126 2127 // When iterating backwards, the loop condition relies on unsigned wraparound. 2128 for (unsigned i = FirstReg; i < Count; i += RegInc) { 2129 RegPairInfo RPI; 2130 RPI.Reg1 = CSI[i].getReg(); 2131 2132 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) 2133 RPI.Type = RegPairInfo::GPR; 2134 else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) 2135 RPI.Type = RegPairInfo::FPR64; 2136 else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) 2137 RPI.Type = RegPairInfo::FPR128; 2138 else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) 2139 RPI.Type = RegPairInfo::ZPR; 2140 else if (AArch64::PPRRegClass.contains(RPI.Reg1)) 2141 RPI.Type = RegPairInfo::PPR; 2142 else 2143 llvm_unreachable("Unsupported register class."); 2144 2145 // Add the next reg to the pair if it is in the same register class. 2146 if (unsigned(i + RegInc) < Count) { 2147 unsigned NextReg = CSI[i + RegInc].getReg(); 2148 bool IsFirst = i == FirstReg; 2149 switch (RPI.Type) { 2150 case RegPairInfo::GPR: 2151 if (AArch64::GPR64RegClass.contains(NextReg) && 2152 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, 2153 NeedsWinCFI, NeedsFrameRecord, IsFirst)) 2154 RPI.Reg2 = NextReg; 2155 break; 2156 case RegPairInfo::FPR64: 2157 if (AArch64::FPR64RegClass.contains(NextReg) && 2158 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI, 2159 IsFirst)) 2160 RPI.Reg2 = NextReg; 2161 break; 2162 case RegPairInfo::FPR128: 2163 if (AArch64::FPR128RegClass.contains(NextReg)) 2164 RPI.Reg2 = NextReg; 2165 break; 2166 case RegPairInfo::PPR: 2167 case RegPairInfo::ZPR: 2168 break; 2169 } 2170 } 2171 2172 // If either of the registers to be saved is the lr register, it means that 2173 // we also need to save lr in the shadow call stack. 2174 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) && 2175 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) { 2176 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18)) 2177 report_fatal_error("Must reserve x18 to use shadow call stack"); 2178 NeedShadowCallStackProlog = true; 2179 } 2180 2181 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 2182 // list to come in sorted by frame index so that we can issue the store 2183 // pair instructions directly. Assert if we see anything otherwise. 2184 // 2185 // The order of the registers in the list is controlled by 2186 // getCalleeSavedRegs(), so they will always be in-order, as well. 2187 assert((!RPI.isPaired() || 2188 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) && 2189 "Out of order callee saved regs!"); 2190 2191 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 2192 RPI.Reg1 == AArch64::LR) && 2193 "FrameRecord must be allocated together with LR"); 2194 2195 // Windows AAPCS has FP and LR reversed. 2196 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 2197 RPI.Reg2 == AArch64::LR) && 2198 "FrameRecord must be allocated together with LR"); 2199 2200 // MachO's compact unwind format relies on all registers being stored in 2201 // adjacent register pairs. 2202 assert((!produceCompactUnwindFrame(MF) || 2203 CC == CallingConv::PreserveMost || 2204 (RPI.isPaired() && 2205 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 2206 RPI.Reg1 + 1 == RPI.Reg2))) && 2207 "Callee-save registers not saved as adjacent register pair!"); 2208 2209 RPI.FrameIdx = CSI[i].getFrameIdx(); 2210 if (NeedsWinCFI && 2211 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair 2212 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx(); 2213 2214 int Scale = RPI.getScale(); 2215 2216 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2217 assert(OffsetPre % Scale == 0); 2218 2219 if (RPI.isScalable()) 2220 ScalableByteOffset += StackFillDir * Scale; 2221 else 2222 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); 2223 2224 assert(!(RPI.isScalable() && RPI.isPaired()) && 2225 "Paired spill/fill instructions don't exist for SVE vectors"); 2226 2227 // Round up size of non-pair to pair size if we need to pad the 2228 // callee-save area to ensure 16-byte alignment. 2229 if (AFI->hasCalleeSaveStackFreeSpace() && !NeedsWinCFI && 2230 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 && 2231 !RPI.isPaired()) { 2232 ByteOffset += 8 * StackFillDir; 2233 assert(ByteOffset % 16 == 0); 2234 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); 2235 // A stack frame with a gap looks like this, bottom up: 2236 // d9, d8. x21, gap, x20, x19. 2237 // Set extra alignment on the x21 object (the only unpaired register) 2238 // to create the gap above it. 2239 MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); 2240 } 2241 2242 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2243 assert(OffsetPost % Scale == 0); 2244 // If filling top down (default), we want the offset after incrementing it. 2245 // If fillibg bootom up (WinCFI) we need the original offset. 2246 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost; 2247 RPI.Offset = Offset / Scale; 2248 2249 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 2250 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 2251 "Offset out of bounds for LDP/STP immediate"); 2252 2253 // Save the offset to frame record so that the FP register can point to the 2254 // innermost frame record (spilled FP and LR registers). 2255 if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR && 2256 RPI.Reg2 == AArch64::FP) || 2257 (IsWindows && RPI.Reg1 == AArch64::FP && 2258 RPI.Reg2 == AArch64::LR))) 2259 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset); 2260 2261 RegPairs.push_back(RPI); 2262 if (RPI.isPaired()) 2263 i += RegInc; 2264 } 2265 if (NeedsWinCFI) { 2266 // If we need an alignment gap in the stack, align the topmost stack 2267 // object. A stack frame with a gap looks like this, bottom up: 2268 // x19, d8. d9, gap. 2269 // Set extra alignment on the topmost stack object (the first element in 2270 // CSI, which goes top down), to create the gap above it. 2271 if (AFI->hasCalleeSaveStackFreeSpace()) 2272 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16)); 2273 // We iterated bottom up over the registers; flip RegPairs back to top 2274 // down order. 2275 std::reverse(RegPairs.begin(), RegPairs.end()); 2276 } 2277 } 2278 2279 bool AArch64FrameLowering::spillCalleeSavedRegisters( 2280 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2281 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2282 MachineFunction &MF = *MBB.getParent(); 2283 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2284 bool NeedsWinCFI = needsWinCFI(MF); 2285 DebugLoc DL; 2286 SmallVector<RegPairInfo, 8> RegPairs; 2287 2288 bool NeedShadowCallStackProlog = false; 2289 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2290 NeedShadowCallStackProlog, hasFP(MF)); 2291 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2292 2293 if (NeedShadowCallStackProlog) { 2294 // Shadow call stack prolog: str x30, [x18], #8 2295 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost)) 2296 .addReg(AArch64::X18, RegState::Define) 2297 .addReg(AArch64::LR) 2298 .addReg(AArch64::X18) 2299 .addImm(8) 2300 .setMIFlag(MachineInstr::FrameSetup); 2301 2302 if (NeedsWinCFI) 2303 BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop)) 2304 .setMIFlag(MachineInstr::FrameSetup); 2305 2306 if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) { 2307 // Emit a CFI instruction that causes 8 to be subtracted from the value of 2308 // x18 when unwinding past this frame. 2309 static const char CFIInst[] = { 2310 dwarf::DW_CFA_val_expression, 2311 18, // register 2312 2, // length 2313 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 2314 static_cast<char>(-8) & 0x7f, // addend (sleb128) 2315 }; 2316 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 2317 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 2318 BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 2319 .addCFIIndex(CFIIndex) 2320 .setMIFlag(MachineInstr::FrameSetup); 2321 } 2322 2323 // This instruction also makes x18 live-in to the entry block. 2324 MBB.addLiveIn(AArch64::X18); 2325 } 2326 2327 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE; 2328 ++RPII) { 2329 RegPairInfo RPI = *RPII; 2330 unsigned Reg1 = RPI.Reg1; 2331 unsigned Reg2 = RPI.Reg2; 2332 unsigned StrOpc; 2333 2334 // Issue sequence of spills for cs regs. The first spill may be converted 2335 // to a pre-decrement store later by emitPrologue if the callee-save stack 2336 // area allocation can't be combined with the local stack area allocation. 2337 // For example: 2338 // stp x22, x21, [sp, #0] // addImm(+0) 2339 // stp x20, x19, [sp, #16] // addImm(+2) 2340 // stp fp, lr, [sp, #32] // addImm(+4) 2341 // Rationale: This sequence saves uop updates compared to a sequence of 2342 // pre-increment spills like stp xi,xj,[sp,#-16]! 2343 // Note: Similar rationale and sequence for restores in epilog. 2344 unsigned Size; 2345 Align Alignment; 2346 switch (RPI.Type) { 2347 case RegPairInfo::GPR: 2348 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 2349 Size = 8; 2350 Alignment = Align(8); 2351 break; 2352 case RegPairInfo::FPR64: 2353 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 2354 Size = 8; 2355 Alignment = Align(8); 2356 break; 2357 case RegPairInfo::FPR128: 2358 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 2359 Size = 16; 2360 Alignment = Align(16); 2361 break; 2362 case RegPairInfo::ZPR: 2363 StrOpc = AArch64::STR_ZXI; 2364 Size = 16; 2365 Alignment = Align(16); 2366 break; 2367 case RegPairInfo::PPR: 2368 StrOpc = AArch64::STR_PXI; 2369 Size = 2; 2370 Alignment = Align(2); 2371 break; 2372 } 2373 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 2374 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2375 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2376 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2377 dbgs() << ")\n"); 2378 2379 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 2380 "Windows unwdinding requires a consecutive (FP,LR) pair"); 2381 // Windows unwind codes require consecutive registers if registers are 2382 // paired. Make the switch here, so that the code below will save (x,x+1) 2383 // and not (x+1,x). 2384 unsigned FrameIdxReg1 = RPI.FrameIdx; 2385 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2386 if (NeedsWinCFI && RPI.isPaired()) { 2387 std::swap(Reg1, Reg2); 2388 std::swap(FrameIdxReg1, FrameIdxReg2); 2389 } 2390 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 2391 if (!MRI.isReserved(Reg1)) 2392 MBB.addLiveIn(Reg1); 2393 if (RPI.isPaired()) { 2394 if (!MRI.isReserved(Reg2)) 2395 MBB.addLiveIn(Reg2); 2396 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 2397 MIB.addMemOperand(MF.getMachineMemOperand( 2398 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2399 MachineMemOperand::MOStore, Size, Alignment)); 2400 } 2401 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 2402 .addReg(AArch64::SP) 2403 .addImm(RPI.Offset) // [sp, #offset*scale], 2404 // where factor*scale is implicit 2405 .setMIFlag(MachineInstr::FrameSetup); 2406 MIB.addMemOperand(MF.getMachineMemOperand( 2407 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2408 MachineMemOperand::MOStore, Size, Alignment)); 2409 if (NeedsWinCFI) 2410 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 2411 2412 // Update the StackIDs of the SVE stack slots. 2413 MachineFrameInfo &MFI = MF.getFrameInfo(); 2414 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) 2415 MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector); 2416 2417 } 2418 return true; 2419 } 2420 2421 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 2422 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2423 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2424 MachineFunction &MF = *MBB.getParent(); 2425 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2426 DebugLoc DL; 2427 SmallVector<RegPairInfo, 8> RegPairs; 2428 bool NeedsWinCFI = needsWinCFI(MF); 2429 2430 if (MI != MBB.end()) 2431 DL = MI->getDebugLoc(); 2432 2433 bool NeedShadowCallStackProlog = false; 2434 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2435 NeedShadowCallStackProlog, hasFP(MF)); 2436 2437 auto EmitMI = [&](const RegPairInfo &RPI) { 2438 unsigned Reg1 = RPI.Reg1; 2439 unsigned Reg2 = RPI.Reg2; 2440 2441 // Issue sequence of restores for cs regs. The last restore may be converted 2442 // to a post-increment load later by emitEpilogue if the callee-save stack 2443 // area allocation can't be combined with the local stack area allocation. 2444 // For example: 2445 // ldp fp, lr, [sp, #32] // addImm(+4) 2446 // ldp x20, x19, [sp, #16] // addImm(+2) 2447 // ldp x22, x21, [sp, #0] // addImm(+0) 2448 // Note: see comment in spillCalleeSavedRegisters() 2449 unsigned LdrOpc; 2450 unsigned Size; 2451 Align Alignment; 2452 switch (RPI.Type) { 2453 case RegPairInfo::GPR: 2454 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 2455 Size = 8; 2456 Alignment = Align(8); 2457 break; 2458 case RegPairInfo::FPR64: 2459 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 2460 Size = 8; 2461 Alignment = Align(8); 2462 break; 2463 case RegPairInfo::FPR128: 2464 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 2465 Size = 16; 2466 Alignment = Align(16); 2467 break; 2468 case RegPairInfo::ZPR: 2469 LdrOpc = AArch64::LDR_ZXI; 2470 Size = 16; 2471 Alignment = Align(16); 2472 break; 2473 case RegPairInfo::PPR: 2474 LdrOpc = AArch64::LDR_PXI; 2475 Size = 2; 2476 Alignment = Align(2); 2477 break; 2478 } 2479 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 2480 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2481 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2482 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2483 dbgs() << ")\n"); 2484 2485 // Windows unwind codes require consecutive registers if registers are 2486 // paired. Make the switch here, so that the code below will save (x,x+1) 2487 // and not (x+1,x). 2488 unsigned FrameIdxReg1 = RPI.FrameIdx; 2489 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2490 if (NeedsWinCFI && RPI.isPaired()) { 2491 std::swap(Reg1, Reg2); 2492 std::swap(FrameIdxReg1, FrameIdxReg2); 2493 } 2494 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc)); 2495 if (RPI.isPaired()) { 2496 MIB.addReg(Reg2, getDefRegState(true)); 2497 MIB.addMemOperand(MF.getMachineMemOperand( 2498 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2499 MachineMemOperand::MOLoad, Size, Alignment)); 2500 } 2501 MIB.addReg(Reg1, getDefRegState(true)) 2502 .addReg(AArch64::SP) 2503 .addImm(RPI.Offset) // [sp, #offset*scale] 2504 // where factor*scale is implicit 2505 .setMIFlag(MachineInstr::FrameDestroy); 2506 MIB.addMemOperand(MF.getMachineMemOperand( 2507 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2508 MachineMemOperand::MOLoad, Size, Alignment)); 2509 if (NeedsWinCFI) 2510 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 2511 }; 2512 2513 // SVE objects are always restored in reverse order. 2514 for (const RegPairInfo &RPI : reverse(RegPairs)) 2515 if (RPI.isScalable()) 2516 EmitMI(RPI); 2517 2518 if (ReverseCSRRestoreSeq) { 2519 for (const RegPairInfo &RPI : reverse(RegPairs)) 2520 if (!RPI.isScalable()) 2521 EmitMI(RPI); 2522 } else 2523 for (const RegPairInfo &RPI : RegPairs) 2524 if (!RPI.isScalable()) 2525 EmitMI(RPI); 2526 2527 if (NeedShadowCallStackProlog) { 2528 // Shadow call stack epilog: ldr x30, [x18, #-8]! 2529 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre)) 2530 .addReg(AArch64::X18, RegState::Define) 2531 .addReg(AArch64::LR, RegState::Define) 2532 .addReg(AArch64::X18) 2533 .addImm(-8) 2534 .setMIFlag(MachineInstr::FrameDestroy); 2535 } 2536 2537 return true; 2538 } 2539 2540 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 2541 BitVector &SavedRegs, 2542 RegScavenger *RS) const { 2543 // All calls are tail calls in GHC calling conv, and functions have no 2544 // prologue/epilogue. 2545 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2546 return; 2547 2548 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2549 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 2550 MF.getSubtarget().getRegisterInfo()); 2551 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2552 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2553 unsigned UnspilledCSGPR = AArch64::NoRegister; 2554 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 2555 2556 MachineFrameInfo &MFI = MF.getFrameInfo(); 2557 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 2558 2559 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 2560 ? RegInfo->getBaseRegister() 2561 : (unsigned)AArch64::NoRegister; 2562 2563 unsigned ExtraCSSpill = 0; 2564 // Figure out which callee-saved registers to save/restore. 2565 for (unsigned i = 0; CSRegs[i]; ++i) { 2566 const unsigned Reg = CSRegs[i]; 2567 2568 // Add the base pointer register to SavedRegs if it is callee-save. 2569 if (Reg == BasePointerReg) 2570 SavedRegs.set(Reg); 2571 2572 bool RegUsed = SavedRegs.test(Reg); 2573 unsigned PairedReg = AArch64::NoRegister; 2574 if (AArch64::GPR64RegClass.contains(Reg) || 2575 AArch64::FPR64RegClass.contains(Reg) || 2576 AArch64::FPR128RegClass.contains(Reg)) 2577 PairedReg = CSRegs[i ^ 1]; 2578 2579 if (!RegUsed) { 2580 if (AArch64::GPR64RegClass.contains(Reg) && 2581 !RegInfo->isReservedReg(MF, Reg)) { 2582 UnspilledCSGPR = Reg; 2583 UnspilledCSGPRPaired = PairedReg; 2584 } 2585 continue; 2586 } 2587 2588 // MachO's compact unwind format relies on all registers being stored in 2589 // pairs. 2590 // FIXME: the usual format is actually better if unwinding isn't needed. 2591 if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister && 2592 !SavedRegs.test(PairedReg)) { 2593 SavedRegs.set(PairedReg); 2594 if (AArch64::GPR64RegClass.contains(PairedReg) && 2595 !RegInfo->isReservedReg(MF, PairedReg)) 2596 ExtraCSSpill = PairedReg; 2597 } 2598 } 2599 2600 if (MF.getFunction().getCallingConv() == CallingConv::Win64 && 2601 !Subtarget.isTargetWindows()) { 2602 // For Windows calling convention on a non-windows OS, where X18 is treated 2603 // as reserved, back up X18 when entering non-windows code (marked with the 2604 // Windows calling convention) and restore when returning regardless of 2605 // whether the individual function uses it - it might call other functions 2606 // that clobber it. 2607 SavedRegs.set(AArch64::X18); 2608 } 2609 2610 // Calculates the callee saved stack size. 2611 unsigned CSStackSize = 0; 2612 unsigned SVECSStackSize = 0; 2613 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2614 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2615 for (unsigned Reg : SavedRegs.set_bits()) { 2616 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; 2617 if (AArch64::PPRRegClass.contains(Reg) || 2618 AArch64::ZPRRegClass.contains(Reg)) 2619 SVECSStackSize += RegSize; 2620 else 2621 CSStackSize += RegSize; 2622 } 2623 2624 // Save number of saved regs, so we can easily update CSStackSize later. 2625 unsigned NumSavedRegs = SavedRegs.count(); 2626 2627 // The frame record needs to be created by saving the appropriate registers 2628 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 2629 if (hasFP(MF) || 2630 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 2631 SavedRegs.set(AArch64::FP); 2632 SavedRegs.set(AArch64::LR); 2633 } 2634 2635 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 2636 for (unsigned Reg 2637 : SavedRegs.set_bits()) dbgs() 2638 << ' ' << printReg(Reg, RegInfo); 2639 dbgs() << "\n";); 2640 2641 // If any callee-saved registers are used, the frame cannot be eliminated. 2642 int64_t SVEStackSize = 2643 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 2644 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 2645 2646 // The CSR spill slots have not been allocated yet, so estimateStackSize 2647 // won't include them. 2648 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 2649 2650 // Conservatively always assume BigStack when there are SVE spills. 2651 bool BigStack = SVEStackSize || 2652 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit; 2653 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 2654 AFI->setHasStackFrame(true); 2655 2656 // Estimate if we might need to scavenge a register at some point in order 2657 // to materialize a stack offset. If so, either spill one additional 2658 // callee-saved register or reserve a special spill slot to facilitate 2659 // register scavenging. If we already spilled an extra callee-saved register 2660 // above to keep the number of spills even, we don't need to do anything else 2661 // here. 2662 if (BigStack) { 2663 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 2664 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 2665 << " to get a scratch register.\n"); 2666 SavedRegs.set(UnspilledCSGPR); 2667 // MachO's compact unwind format relies on all registers being stored in 2668 // pairs, so if we need to spill one extra for BigStack, then we need to 2669 // store the pair. 2670 if (produceCompactUnwindFrame(MF)) 2671 SavedRegs.set(UnspilledCSGPRPaired); 2672 ExtraCSSpill = UnspilledCSGPR; 2673 } 2674 2675 // If we didn't find an extra callee-saved register to spill, create 2676 // an emergency spill slot. 2677 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 2678 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2679 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 2680 unsigned Size = TRI->getSpillSize(RC); 2681 Align Alignment = TRI->getSpillAlign(RC); 2682 int FI = MFI.CreateStackObject(Size, Alignment, false); 2683 RS->addScavengingFrameIndex(FI); 2684 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 2685 << " as the emergency spill slot.\n"); 2686 } 2687 } 2688 2689 // Adding the size of additional 64bit GPR saves. 2690 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 2691 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 2692 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 2693 << EstimatedStackSize + AlignedCSStackSize 2694 << " bytes.\n"); 2695 2696 assert((!MFI.isCalleeSavedInfoValid() || 2697 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 2698 "Should not invalidate callee saved info"); 2699 2700 // Round up to register pair alignment to avoid additional SP adjustment 2701 // instructions. 2702 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 2703 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 2704 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 2705 } 2706 2707 bool AArch64FrameLowering::assignCalleeSavedSpillSlots( 2708 MachineFunction &MF, const TargetRegisterInfo *TRI, 2709 std::vector<CalleeSavedInfo> &CSI) const { 2710 bool NeedsWinCFI = needsWinCFI(MF); 2711 // To match the canonical windows frame layout, reverse the list of 2712 // callee saved registers to get them laid out by PrologEpilogInserter 2713 // in the right order. (PrologEpilogInserter allocates stack objects top 2714 // down. Windows canonical prologs store higher numbered registers at 2715 // the top, thus have the CSI array start from the highest registers.) 2716 if (NeedsWinCFI) 2717 std::reverse(CSI.begin(), CSI.end()); 2718 // Let the generic code do the rest of the setup. 2719 return false; 2720 } 2721 2722 bool AArch64FrameLowering::enableStackSlotScavenging( 2723 const MachineFunction &MF) const { 2724 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2725 return AFI->hasCalleeSaveStackFreeSpace(); 2726 } 2727 2728 /// returns true if there are any SVE callee saves. 2729 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 2730 int &Min, int &Max) { 2731 Min = std::numeric_limits<int>::max(); 2732 Max = std::numeric_limits<int>::min(); 2733 2734 if (!MFI.isCalleeSavedInfoValid()) 2735 return false; 2736 2737 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2738 for (auto &CS : CSI) { 2739 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 2740 AArch64::PPRRegClass.contains(CS.getReg())) { 2741 assert((Max == std::numeric_limits<int>::min() || 2742 Max + 1 == CS.getFrameIdx()) && 2743 "SVE CalleeSaves are not consecutive"); 2744 2745 Min = std::min(Min, CS.getFrameIdx()); 2746 Max = std::max(Max, CS.getFrameIdx()); 2747 } 2748 } 2749 return Min != std::numeric_limits<int>::max(); 2750 } 2751 2752 // Process all the SVE stack objects and determine offsets for each 2753 // object. If AssignOffsets is true, the offsets get assigned. 2754 // Fills in the first and last callee-saved frame indices into 2755 // Min/MaxCSFrameIndex, respectively. 2756 // Returns the size of the stack. 2757 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 2758 int &MinCSFrameIndex, 2759 int &MaxCSFrameIndex, 2760 bool AssignOffsets) { 2761 #ifndef NDEBUG 2762 // First process all fixed stack objects. 2763 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 2764 assert(MFI.getStackID(I) != TargetStackID::ScalableVector && 2765 "SVE vectors should never be passed on the stack by value, only by " 2766 "reference."); 2767 #endif 2768 2769 auto Assign = [&MFI](int FI, int64_t Offset) { 2770 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 2771 MFI.setObjectOffset(FI, Offset); 2772 }; 2773 2774 int64_t Offset = 0; 2775 2776 // Then process all callee saved slots. 2777 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 2778 // Assign offsets to the callee save slots. 2779 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 2780 Offset += MFI.getObjectSize(I); 2781 Offset = alignTo(Offset, MFI.getObjectAlign(I)); 2782 if (AssignOffsets) 2783 Assign(I, -Offset); 2784 } 2785 } 2786 2787 // Ensure that the Callee-save area is aligned to 16bytes. 2788 Offset = alignTo(Offset, Align(16U)); 2789 2790 // Create a buffer of SVE objects to allocate and sort it. 2791 SmallVector<int, 8> ObjectsToAllocate; 2792 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 2793 unsigned StackID = MFI.getStackID(I); 2794 if (StackID != TargetStackID::ScalableVector) 2795 continue; 2796 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 2797 continue; 2798 if (MFI.isDeadObjectIndex(I)) 2799 continue; 2800 2801 ObjectsToAllocate.push_back(I); 2802 } 2803 2804 // Allocate all SVE locals and spills 2805 for (unsigned FI : ObjectsToAllocate) { 2806 Align Alignment = MFI.getObjectAlign(FI); 2807 // FIXME: Given that the length of SVE vectors is not necessarily a power of 2808 // two, we'd need to align every object dynamically at runtime if the 2809 // alignment is larger than 16. This is not yet supported. 2810 if (Alignment > Align(16)) 2811 report_fatal_error( 2812 "Alignment of scalable vectors > 16 bytes is not yet supported"); 2813 2814 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); 2815 if (AssignOffsets) 2816 Assign(FI, -Offset); 2817 } 2818 2819 return Offset; 2820 } 2821 2822 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 2823 MachineFrameInfo &MFI) const { 2824 int MinCSFrameIndex, MaxCSFrameIndex; 2825 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 2826 } 2827 2828 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 2829 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 2830 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 2831 true); 2832 } 2833 2834 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 2835 MachineFunction &MF, RegScavenger *RS) const { 2836 MachineFrameInfo &MFI = MF.getFrameInfo(); 2837 2838 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 2839 "Upwards growing stack unsupported"); 2840 2841 int MinCSFrameIndex, MaxCSFrameIndex; 2842 int64_t SVEStackSize = 2843 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 2844 2845 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2846 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 2847 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 2848 2849 // If this function isn't doing Win64-style C++ EH, we don't need to do 2850 // anything. 2851 if (!MF.hasEHFunclets()) 2852 return; 2853 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2854 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 2855 2856 MachineBasicBlock &MBB = MF.front(); 2857 auto MBBI = MBB.begin(); 2858 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 2859 ++MBBI; 2860 2861 // Create an UnwindHelp object. 2862 // The UnwindHelp object is allocated at the start of the fixed object area 2863 int64_t FixedObject = 2864 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 2865 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 2866 /*SPOffset*/ -FixedObject, 2867 /*IsImmutable=*/false); 2868 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 2869 2870 // We need to store -2 into the UnwindHelp object at the start of the 2871 // function. 2872 DebugLoc DL; 2873 RS->enterBasicBlockEnd(MBB); 2874 RS->backward(std::prev(MBBI)); 2875 unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 2876 assert(DstReg && "There must be a free register after frame setup"); 2877 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 2878 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 2879 .addReg(DstReg, getKillRegState(true)) 2880 .addFrameIndex(UnwindHelpFI) 2881 .addImm(0); 2882 } 2883 2884 namespace { 2885 struct TagStoreInstr { 2886 MachineInstr *MI; 2887 int64_t Offset, Size; 2888 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) 2889 : MI(MI), Offset(Offset), Size(Size) {} 2890 }; 2891 2892 class TagStoreEdit { 2893 MachineFunction *MF; 2894 MachineBasicBlock *MBB; 2895 MachineRegisterInfo *MRI; 2896 // Tag store instructions that are being replaced. 2897 SmallVector<TagStoreInstr, 8> TagStores; 2898 // Combined memref arguments of the above instructions. 2899 SmallVector<MachineMemOperand *, 8> CombinedMemRefs; 2900 2901 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + 2902 // FrameRegOffset + Size) with the address tag of SP. 2903 Register FrameReg; 2904 StackOffset FrameRegOffset; 2905 int64_t Size; 2906 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end. 2907 Optional<int64_t> FrameRegUpdate; 2908 // MIFlags for any FrameReg updating instructions. 2909 unsigned FrameRegUpdateFlags; 2910 2911 // Use zeroing instruction variants. 2912 bool ZeroData; 2913 DebugLoc DL; 2914 2915 void emitUnrolled(MachineBasicBlock::iterator InsertI); 2916 void emitLoop(MachineBasicBlock::iterator InsertI); 2917 2918 public: 2919 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) 2920 : MBB(MBB), ZeroData(ZeroData) { 2921 MF = MBB->getParent(); 2922 MRI = &MF->getRegInfo(); 2923 } 2924 // Add an instruction to be replaced. Instructions must be added in the 2925 // ascending order of Offset, and have to be adjacent. 2926 void addInstruction(TagStoreInstr I) { 2927 assert((TagStores.empty() || 2928 TagStores.back().Offset + TagStores.back().Size == I.Offset) && 2929 "Non-adjacent tag store instructions."); 2930 TagStores.push_back(I); 2931 } 2932 void clear() { TagStores.clear(); } 2933 // Emit equivalent code at the given location, and erase the current set of 2934 // instructions. May skip if the replacement is not profitable. May invalidate 2935 // the input iterator and replace it with a valid one. 2936 void emitCode(MachineBasicBlock::iterator &InsertI, 2937 const AArch64FrameLowering *TFI, bool IsLast); 2938 }; 2939 2940 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { 2941 const AArch64InstrInfo *TII = 2942 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 2943 2944 const int64_t kMinOffset = -256 * 16; 2945 const int64_t kMaxOffset = 255 * 16; 2946 2947 Register BaseReg = FrameReg; 2948 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed(); 2949 if (BaseRegOffsetBytes < kMinOffset || 2950 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) { 2951 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2952 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, 2953 StackOffset::getFixed(BaseRegOffsetBytes), TII); 2954 BaseReg = ScratchReg; 2955 BaseRegOffsetBytes = 0; 2956 } 2957 2958 MachineInstr *LastI = nullptr; 2959 while (Size) { 2960 int64_t InstrSize = (Size > 16) ? 32 : 16; 2961 unsigned Opcode = 2962 InstrSize == 16 2963 ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset) 2964 : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset); 2965 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) 2966 .addReg(AArch64::SP) 2967 .addReg(BaseReg) 2968 .addImm(BaseRegOffsetBytes / 16) 2969 .setMemRefs(CombinedMemRefs); 2970 // A store to [BaseReg, #0] should go last for an opportunity to fold the 2971 // final SP adjustment in the epilogue. 2972 if (BaseRegOffsetBytes == 0) 2973 LastI = I; 2974 BaseRegOffsetBytes += InstrSize; 2975 Size -= InstrSize; 2976 } 2977 2978 if (LastI) 2979 MBB->splice(InsertI, MBB, LastI); 2980 } 2981 2982 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { 2983 const AArch64InstrInfo *TII = 2984 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 2985 2986 Register BaseReg = FrameRegUpdate 2987 ? FrameReg 2988 : MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2989 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2990 2991 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); 2992 2993 int64_t LoopSize = Size; 2994 // If the loop size is not a multiple of 32, split off one 16-byte store at 2995 // the end to fold BaseReg update into. 2996 if (FrameRegUpdate && *FrameRegUpdate) 2997 LoopSize -= LoopSize % 32; 2998 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, 2999 TII->get(ZeroData ? AArch64::STZGloop_wback 3000 : AArch64::STGloop_wback)) 3001 .addDef(SizeReg) 3002 .addDef(BaseReg) 3003 .addImm(LoopSize) 3004 .addReg(BaseReg) 3005 .setMemRefs(CombinedMemRefs); 3006 if (FrameRegUpdate) 3007 LoopI->setFlags(FrameRegUpdateFlags); 3008 3009 int64_t ExtraBaseRegUpdate = 3010 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0; 3011 if (LoopSize < Size) { 3012 assert(FrameRegUpdate); 3013 assert(Size - LoopSize == 16); 3014 // Tag 16 more bytes at BaseReg and update BaseReg. 3015 BuildMI(*MBB, InsertI, DL, 3016 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) 3017 .addDef(BaseReg) 3018 .addReg(BaseReg) 3019 .addReg(BaseReg) 3020 .addImm(1 + ExtraBaseRegUpdate / 16) 3021 .setMemRefs(CombinedMemRefs) 3022 .setMIFlags(FrameRegUpdateFlags); 3023 } else if (ExtraBaseRegUpdate) { 3024 // Update BaseReg. 3025 BuildMI( 3026 *MBB, InsertI, DL, 3027 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) 3028 .addDef(BaseReg) 3029 .addReg(BaseReg) 3030 .addImm(std::abs(ExtraBaseRegUpdate)) 3031 .addImm(0) 3032 .setMIFlags(FrameRegUpdateFlags); 3033 } 3034 } 3035 3036 // Check if *II is a register update that can be merged into STGloop that ends 3037 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the 3038 // end of the loop. 3039 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, 3040 int64_t Size, int64_t *TotalOffset) { 3041 MachineInstr &MI = *II; 3042 if ((MI.getOpcode() == AArch64::ADDXri || 3043 MI.getOpcode() == AArch64::SUBXri) && 3044 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { 3045 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); 3046 int64_t Offset = MI.getOperand(2).getImm() << Shift; 3047 if (MI.getOpcode() == AArch64::SUBXri) 3048 Offset = -Offset; 3049 int64_t AbsPostOffset = std::abs(Offset - Size); 3050 const int64_t kMaxOffset = 3051 0xFFF; // Max encoding for unshifted ADDXri / SUBXri 3052 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) { 3053 *TotalOffset = Offset; 3054 return true; 3055 } 3056 } 3057 return false; 3058 } 3059 3060 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE, 3061 SmallVectorImpl<MachineMemOperand *> &MemRefs) { 3062 MemRefs.clear(); 3063 for (auto &TS : TSE) { 3064 MachineInstr *MI = TS.MI; 3065 // An instruction without memory operands may access anything. Be 3066 // conservative and return an empty list. 3067 if (MI->memoperands_empty()) { 3068 MemRefs.clear(); 3069 return; 3070 } 3071 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); 3072 } 3073 } 3074 3075 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, 3076 const AArch64FrameLowering *TFI, bool IsLast) { 3077 if (TagStores.empty()) 3078 return; 3079 TagStoreInstr &FirstTagStore = TagStores[0]; 3080 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; 3081 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; 3082 DL = TagStores[0].MI->getDebugLoc(); 3083 3084 Register Reg; 3085 FrameRegOffset = TFI->resolveFrameOffsetReference( 3086 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, 3087 /*PreferFP=*/false, /*ForSimm=*/true); 3088 FrameReg = Reg; 3089 FrameRegUpdate = None; 3090 3091 mergeMemRefs(TagStores, CombinedMemRefs); 3092 3093 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n"; 3094 for (const auto &Instr 3095 : TagStores) { dbgs() << " " << *Instr.MI; }); 3096 3097 // Size threshold where a loop becomes shorter than a linear sequence of 3098 // tagging instructions. 3099 const int kSetTagLoopThreshold = 176; 3100 if (Size < kSetTagLoopThreshold) { 3101 if (TagStores.size() < 2) 3102 return; 3103 emitUnrolled(InsertI); 3104 } else { 3105 MachineInstr *UpdateInstr = nullptr; 3106 int64_t TotalOffset; 3107 if (IsLast) { 3108 // See if we can merge base register update into the STGloop. 3109 // This is done in AArch64LoadStoreOptimizer for "normal" stores, 3110 // but STGloop is way too unusual for that, and also it only 3111 // realistically happens in function epilogue. Also, STGloop is expanded 3112 // before that pass. 3113 if (InsertI != MBB->end() && 3114 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size, 3115 &TotalOffset)) { 3116 UpdateInstr = &*InsertI++; 3117 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " 3118 << *UpdateInstr); 3119 } 3120 } 3121 3122 if (!UpdateInstr && TagStores.size() < 2) 3123 return; 3124 3125 if (UpdateInstr) { 3126 FrameRegUpdate = TotalOffset; 3127 FrameRegUpdateFlags = UpdateInstr->getFlags(); 3128 } 3129 emitLoop(InsertI); 3130 if (UpdateInstr) 3131 UpdateInstr->eraseFromParent(); 3132 } 3133 3134 for (auto &TS : TagStores) 3135 TS.MI->eraseFromParent(); 3136 } 3137 3138 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, 3139 int64_t &Size, bool &ZeroData) { 3140 MachineFunction &MF = *MI.getParent()->getParent(); 3141 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3142 3143 unsigned Opcode = MI.getOpcode(); 3144 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset || 3145 Opcode == AArch64::STZ2GOffset); 3146 3147 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { 3148 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) 3149 return false; 3150 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) 3151 return false; 3152 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); 3153 Size = MI.getOperand(2).getImm(); 3154 return true; 3155 } 3156 3157 if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset) 3158 Size = 16; 3159 else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset) 3160 Size = 32; 3161 else 3162 return false; 3163 3164 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) 3165 return false; 3166 3167 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 3168 16 * MI.getOperand(2).getImm(); 3169 return true; 3170 } 3171 3172 // Detect a run of memory tagging instructions for adjacent stack frame slots, 3173 // and replace them with a shorter instruction sequence: 3174 // * replace STG + STG with ST2G 3175 // * replace STGloop + STGloop with STGloop 3176 // This code needs to run when stack slot offsets are already known, but before 3177 // FrameIndex operands in STG instructions are eliminated. 3178 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, 3179 const AArch64FrameLowering *TFI, 3180 RegScavenger *RS) { 3181 bool FirstZeroData; 3182 int64_t Size, Offset; 3183 MachineInstr &MI = *II; 3184 MachineBasicBlock *MBB = MI.getParent(); 3185 MachineBasicBlock::iterator NextI = ++II; 3186 if (&MI == &MBB->instr_back()) 3187 return II; 3188 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) 3189 return II; 3190 3191 SmallVector<TagStoreInstr, 4> Instrs; 3192 Instrs.emplace_back(&MI, Offset, Size); 3193 3194 constexpr int kScanLimit = 10; 3195 int Count = 0; 3196 for (MachineBasicBlock::iterator E = MBB->end(); 3197 NextI != E && Count < kScanLimit; ++NextI) { 3198 MachineInstr &MI = *NextI; 3199 bool ZeroData; 3200 int64_t Size, Offset; 3201 // Collect instructions that update memory tags with a FrameIndex operand 3202 // and (when applicable) constant size, and whose output registers are dead 3203 // (the latter is almost always the case in practice). Since these 3204 // instructions effectively have no inputs or outputs, we are free to skip 3205 // any non-aliasing instructions in between without tracking used registers. 3206 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { 3207 if (ZeroData != FirstZeroData) 3208 break; 3209 Instrs.emplace_back(&MI, Offset, Size); 3210 continue; 3211 } 3212 3213 // Only count non-transient, non-tagging instructions toward the scan 3214 // limit. 3215 if (!MI.isTransient()) 3216 ++Count; 3217 3218 // Just in case, stop before the epilogue code starts. 3219 if (MI.getFlag(MachineInstr::FrameSetup) || 3220 MI.getFlag(MachineInstr::FrameDestroy)) 3221 break; 3222 3223 // Reject anything that may alias the collected instructions. 3224 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects()) 3225 break; 3226 } 3227 3228 // New code will be inserted after the last tagging instruction we've found. 3229 MachineBasicBlock::iterator InsertI = Instrs.back().MI; 3230 InsertI++; 3231 3232 llvm::stable_sort(Instrs, 3233 [](const TagStoreInstr &Left, const TagStoreInstr &Right) { 3234 return Left.Offset < Right.Offset; 3235 }); 3236 3237 // Make sure that we don't have any overlapping stores. 3238 int64_t CurOffset = Instrs[0].Offset; 3239 for (auto &Instr : Instrs) { 3240 if (CurOffset > Instr.Offset) 3241 return NextI; 3242 CurOffset = Instr.Offset + Instr.Size; 3243 } 3244 3245 // Find contiguous runs of tagged memory and emit shorter instruction 3246 // sequencies for them when possible. 3247 TagStoreEdit TSE(MBB, FirstZeroData); 3248 Optional<int64_t> EndOffset; 3249 for (auto &Instr : Instrs) { 3250 if (EndOffset && *EndOffset != Instr.Offset) { 3251 // Found a gap. 3252 TSE.emitCode(InsertI, TFI, /*IsLast = */ false); 3253 TSE.clear(); 3254 } 3255 3256 TSE.addInstruction(Instr); 3257 EndOffset = Instr.Offset + Instr.Size; 3258 } 3259 3260 TSE.emitCode(InsertI, TFI, /*IsLast = */ true); 3261 3262 return InsertI; 3263 } 3264 } // namespace 3265 3266 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3267 MachineFunction &MF, RegScavenger *RS = nullptr) const { 3268 if (StackTaggingMergeSetTag) 3269 for (auto &BB : MF) 3270 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) 3271 II = tryMergeAdjacentSTG(II, this, RS); 3272 } 3273 3274 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP 3275 /// before the update. This is easily retrieved as it is exactly the offset 3276 /// that is set in processFunctionBeforeFrameFinalized. 3277 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP( 3278 const MachineFunction &MF, int FI, Register &FrameReg, 3279 bool IgnoreSPUpdates) const { 3280 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3281 if (IgnoreSPUpdates) { 3282 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 3283 << MFI.getObjectOffset(FI) << "\n"); 3284 FrameReg = AArch64::SP; 3285 return StackOffset::getFixed(MFI.getObjectOffset(FI)); 3286 } 3287 3288 return getFrameIndexReference(MF, FI, FrameReg); 3289 } 3290 3291 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 3292 /// the parent's frame pointer 3293 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 3294 const MachineFunction &MF) const { 3295 return 0; 3296 } 3297 3298 /// Funclets only need to account for space for the callee saved registers, 3299 /// as the locals are accounted for in the parent's stack frame. 3300 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 3301 const MachineFunction &MF) const { 3302 // This is the size of the pushed CSRs. 3303 unsigned CSSize = 3304 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 3305 // This is the amount of stack a funclet needs to allocate. 3306 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 3307 getStackAlign()); 3308 } 3309 3310 namespace { 3311 struct FrameObject { 3312 bool IsValid = false; 3313 // Index of the object in MFI. 3314 int ObjectIndex = 0; 3315 // Group ID this object belongs to. 3316 int GroupIndex = -1; 3317 // This object should be placed first (closest to SP). 3318 bool ObjectFirst = false; 3319 // This object's group (which always contains the object with 3320 // ObjectFirst==true) should be placed first. 3321 bool GroupFirst = false; 3322 }; 3323 3324 class GroupBuilder { 3325 SmallVector<int, 8> CurrentMembers; 3326 int NextGroupIndex = 0; 3327 std::vector<FrameObject> &Objects; 3328 3329 public: 3330 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {} 3331 void AddMember(int Index) { CurrentMembers.push_back(Index); } 3332 void EndCurrentGroup() { 3333 if (CurrentMembers.size() > 1) { 3334 // Create a new group with the current member list. This might remove them 3335 // from their pre-existing groups. That's OK, dealing with overlapping 3336 // groups is too hard and unlikely to make a difference. 3337 LLVM_DEBUG(dbgs() << "group:"); 3338 for (int Index : CurrentMembers) { 3339 Objects[Index].GroupIndex = NextGroupIndex; 3340 LLVM_DEBUG(dbgs() << " " << Index); 3341 } 3342 LLVM_DEBUG(dbgs() << "\n"); 3343 NextGroupIndex++; 3344 } 3345 CurrentMembers.clear(); 3346 } 3347 }; 3348 3349 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) { 3350 // Objects at a lower index are closer to FP; objects at a higher index are 3351 // closer to SP. 3352 // 3353 // For consistency in our comparison, all invalid objects are placed 3354 // at the end. This also allows us to stop walking when we hit the 3355 // first invalid item after it's all sorted. 3356 // 3357 // The "first" object goes first (closest to SP), followed by the members of 3358 // the "first" group. 3359 // 3360 // The rest are sorted by the group index to keep the groups together. 3361 // Higher numbered groups are more likely to be around longer (i.e. untagged 3362 // in the function epilogue and not at some earlier point). Place them closer 3363 // to SP. 3364 // 3365 // If all else equal, sort by the object index to keep the objects in the 3366 // original order. 3367 return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex, 3368 A.ObjectIndex) < 3369 std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex, 3370 B.ObjectIndex); 3371 } 3372 } // namespace 3373 3374 void AArch64FrameLowering::orderFrameObjects( 3375 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3376 if (!OrderFrameObjects || ObjectsToAllocate.empty()) 3377 return; 3378 3379 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3380 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd()); 3381 for (auto &Obj : ObjectsToAllocate) { 3382 FrameObjects[Obj].IsValid = true; 3383 FrameObjects[Obj].ObjectIndex = Obj; 3384 } 3385 3386 // Identify stack slots that are tagged at the same time. 3387 GroupBuilder GB(FrameObjects); 3388 for (auto &MBB : MF) { 3389 for (auto &MI : MBB) { 3390 if (MI.isDebugInstr()) 3391 continue; 3392 int OpIndex; 3393 switch (MI.getOpcode()) { 3394 case AArch64::STGloop: 3395 case AArch64::STZGloop: 3396 OpIndex = 3; 3397 break; 3398 case AArch64::STGOffset: 3399 case AArch64::STZGOffset: 3400 case AArch64::ST2GOffset: 3401 case AArch64::STZ2GOffset: 3402 OpIndex = 1; 3403 break; 3404 default: 3405 OpIndex = -1; 3406 } 3407 3408 int TaggedFI = -1; 3409 if (OpIndex >= 0) { 3410 const MachineOperand &MO = MI.getOperand(OpIndex); 3411 if (MO.isFI()) { 3412 int FI = MO.getIndex(); 3413 if (FI >= 0 && FI < MFI.getObjectIndexEnd() && 3414 FrameObjects[FI].IsValid) 3415 TaggedFI = FI; 3416 } 3417 } 3418 3419 // If this is a stack tagging instruction for a slot that is not part of a 3420 // group yet, either start a new group or add it to the current one. 3421 if (TaggedFI >= 0) 3422 GB.AddMember(TaggedFI); 3423 else 3424 GB.EndCurrentGroup(); 3425 } 3426 // Groups should never span multiple basic blocks. 3427 GB.EndCurrentGroup(); 3428 } 3429 3430 // If the function's tagged base pointer is pinned to a stack slot, we want to 3431 // put that slot first when possible. This will likely place it at SP + 0, 3432 // and save one instruction when generating the base pointer because IRG does 3433 // not allow an immediate offset. 3434 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 3435 Optional<int> TBPI = AFI.getTaggedBasePointerIndex(); 3436 if (TBPI) { 3437 FrameObjects[*TBPI].ObjectFirst = true; 3438 FrameObjects[*TBPI].GroupFirst = true; 3439 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex; 3440 if (FirstGroupIndex >= 0) 3441 for (FrameObject &Object : FrameObjects) 3442 if (Object.GroupIndex == FirstGroupIndex) 3443 Object.GroupFirst = true; 3444 } 3445 3446 llvm::stable_sort(FrameObjects, FrameObjectCompare); 3447 3448 int i = 0; 3449 for (auto &Obj : FrameObjects) { 3450 // All invalid items are sorted at the end, so it's safe to stop. 3451 if (!Obj.IsValid) 3452 break; 3453 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3454 } 3455 3456 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj 3457 : FrameObjects) { 3458 if (!Obj.IsValid) 3459 break; 3460 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex; 3461 if (Obj.ObjectFirst) 3462 dbgs() << ", first"; 3463 if (Obj.GroupFirst) 3464 dbgs() << ", group-first"; 3465 dbgs() << "\n"; 3466 }); 3467 } 3468