1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | | | (frame record first) 51 // | prev_fp, prev_lr | <--' 52 // | (a.k.a. "frame record") | 53 // |-----------------------------------| <- fp(=x29) 54 // | | 55 // | callee-saved fp/simd/SVE regs | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | SVE stack objects | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.16-byte.alignment....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- bp(not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses X19) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 92 // callee-saved area, since the unwind encoding does not allow for encoding 93 // this dynamically and existing tools depend on this layout. For other 94 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 95 // area to allow SVE stack objects (allocated directly below the callee-saves, 96 // if available) to be accessed directly from the framepointer. 97 // The SVE spill/fill instructions have VL-scaled addressing modes such 98 // as: 99 // ldr z8, [fp, #-7 mul vl] 100 // For SVE the size of the vector length (VL) is not known at compile-time, so 101 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 102 // layout, we don't need to add an unscaled offset to the framepointer before 103 // accessing the SVE object in the frame. 104 // 105 // In some cases when a base pointer is not strictly needed, it is generated 106 // anyway when offsets from the frame pointer to access local variables become 107 // so large that the offset can't be encoded in the immediate fields of loads 108 // or stores. 109 // 110 // FIXME: also explain the redzone concept. 111 // FIXME: also explain the concept of reserved call frames. 112 // 113 //===----------------------------------------------------------------------===// 114 115 #include "AArch64FrameLowering.h" 116 #include "AArch64InstrInfo.h" 117 #include "AArch64MachineFunctionInfo.h" 118 #include "AArch64RegisterInfo.h" 119 #include "AArch64StackOffset.h" 120 #include "AArch64Subtarget.h" 121 #include "AArch64TargetMachine.h" 122 #include "MCTargetDesc/AArch64AddressingModes.h" 123 #include "llvm/ADT/ScopeExit.h" 124 #include "llvm/ADT/SmallVector.h" 125 #include "llvm/ADT/Statistic.h" 126 #include "llvm/CodeGen/LivePhysRegs.h" 127 #include "llvm/CodeGen/MachineBasicBlock.h" 128 #include "llvm/CodeGen/MachineFrameInfo.h" 129 #include "llvm/CodeGen/MachineFunction.h" 130 #include "llvm/CodeGen/MachineInstr.h" 131 #include "llvm/CodeGen/MachineInstrBuilder.h" 132 #include "llvm/CodeGen/MachineMemOperand.h" 133 #include "llvm/CodeGen/MachineModuleInfo.h" 134 #include "llvm/CodeGen/MachineOperand.h" 135 #include "llvm/CodeGen/MachineRegisterInfo.h" 136 #include "llvm/CodeGen/RegisterScavenging.h" 137 #include "llvm/CodeGen/TargetInstrInfo.h" 138 #include "llvm/CodeGen/TargetRegisterInfo.h" 139 #include "llvm/CodeGen/TargetSubtargetInfo.h" 140 #include "llvm/CodeGen/WinEHFuncInfo.h" 141 #include "llvm/IR/Attributes.h" 142 #include "llvm/IR/CallingConv.h" 143 #include "llvm/IR/DataLayout.h" 144 #include "llvm/IR/DebugLoc.h" 145 #include "llvm/IR/Function.h" 146 #include "llvm/MC/MCAsmInfo.h" 147 #include "llvm/MC/MCDwarf.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Debug.h" 150 #include "llvm/Support/ErrorHandling.h" 151 #include "llvm/Support/MathExtras.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include "llvm/Target/TargetOptions.h" 155 #include <cassert> 156 #include <cstdint> 157 #include <iterator> 158 #include <vector> 159 160 using namespace llvm; 161 162 #define DEBUG_TYPE "frame-info" 163 164 static cl::opt<bool> EnableRedZone("aarch64-redzone", 165 cl::desc("enable use of redzone on AArch64"), 166 cl::init(false), cl::Hidden); 167 168 static cl::opt<bool> 169 ReverseCSRRestoreSeq("reverse-csr-restore-seq", 170 cl::desc("reverse the CSR restore sequence"), 171 cl::init(false), cl::Hidden); 172 173 static cl::opt<bool> StackTaggingMergeSetTag( 174 "stack-tagging-merge-settag", 175 cl::desc("merge settag instruction in function epilog"), cl::init(true), 176 cl::Hidden); 177 178 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 179 180 /// Returns the argument pop size. 181 static uint64_t getArgumentPopSize(MachineFunction &MF, 182 MachineBasicBlock &MBB) { 183 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 184 bool IsTailCallReturn = false; 185 if (MBB.end() != MBBI) { 186 unsigned RetOpcode = MBBI->getOpcode(); 187 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi || 188 RetOpcode == AArch64::TCRETURNri || 189 RetOpcode == AArch64::TCRETURNriBTI; 190 } 191 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 192 193 uint64_t ArgumentPopSize = 0; 194 if (IsTailCallReturn) { 195 MachineOperand &StackAdjust = MBBI->getOperand(1); 196 197 // For a tail-call in a callee-pops-arguments environment, some or all of 198 // the stack may actually be in use for the call's arguments, this is 199 // calculated during LowerCall and consumed here... 200 ArgumentPopSize = StackAdjust.getImm(); 201 } else { 202 // ... otherwise the amount to pop is *all* of the argument space, 203 // conveniently stored in the MachineFunctionInfo by 204 // LowerFormalArguments. This will, of course, be zero for the C calling 205 // convention. 206 ArgumentPopSize = AFI->getArgumentStackToRestore(); 207 } 208 209 return ArgumentPopSize; 210 } 211 212 /// This is the biggest offset to the stack pointer we can encode in aarch64 213 /// instructions (without using a separate calculation and a temp register). 214 /// Note that the exception here are vector stores/loads which cannot encode any 215 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 216 static const unsigned DefaultSafeSPDisplacement = 255; 217 218 /// Look at each instruction that references stack frames and return the stack 219 /// size limit beyond which some of these instructions will require a scratch 220 /// register during their expansion later. 221 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 222 // FIXME: For now, just conservatively guestimate based on unscaled indexing 223 // range. We'll end up allocating an unnecessary spill slot a lot, but 224 // realistically that's not a big deal at this stage of the game. 225 for (MachineBasicBlock &MBB : MF) { 226 for (MachineInstr &MI : MBB) { 227 if (MI.isDebugInstr() || MI.isPseudo() || 228 MI.getOpcode() == AArch64::ADDXri || 229 MI.getOpcode() == AArch64::ADDSXri) 230 continue; 231 232 for (const MachineOperand &MO : MI.operands()) { 233 if (!MO.isFI()) 234 continue; 235 236 StackOffset Offset; 237 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 238 AArch64FrameOffsetCannotUpdate) 239 return 0; 240 } 241 } 242 } 243 return DefaultSafeSPDisplacement; 244 } 245 246 TargetStackID::Value 247 AArch64FrameLowering::getStackIDForScalableVectors() const { 248 return TargetStackID::SVEVector; 249 } 250 251 /// Returns the size of the fixed object area (allocated next to sp on entry) 252 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 253 static unsigned getFixedObjectSize(const MachineFunction &MF, 254 const AArch64FunctionInfo *AFI, bool IsWin64, 255 bool IsFunclet) { 256 if (!IsWin64 || IsFunclet) { 257 // Only Win64 uses fixed objects, and then only for the function (not 258 // funclets) 259 return 0; 260 } else { 261 // Var args are stored here in the primary function. 262 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 263 // To support EH funclets we allocate an UnwindHelp object 264 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 265 return alignTo(VarArgsArea + UnwindHelpObject, 16); 266 } 267 } 268 269 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 270 static StackOffset getSVEStackSize(const MachineFunction &MF) { 271 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 272 return {(int64_t)AFI->getStackSizeSVE(), MVT::nxv1i8}; 273 } 274 275 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 276 if (!EnableRedZone) 277 return false; 278 // Don't use the red zone if the function explicitly asks us not to. 279 // This is typically used for kernel code. 280 if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone)) 281 return false; 282 283 const MachineFrameInfo &MFI = MF.getFrameInfo(); 284 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 285 uint64_t NumBytes = AFI->getLocalStackSize(); 286 287 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128 || 288 getSVEStackSize(MF)); 289 } 290 291 /// hasFP - Return true if the specified function should have a dedicated frame 292 /// pointer register. 293 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { 294 const MachineFrameInfo &MFI = MF.getFrameInfo(); 295 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 296 // Win64 EH requires a frame pointer if funclets are present, as the locals 297 // are accessed off the frame pointer in both the parent function and the 298 // funclets. 299 if (MF.hasEHFunclets()) 300 return true; 301 // Retain behavior of always omitting the FP for leaf functions when possible. 302 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 303 return true; 304 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 305 MFI.hasStackMap() || MFI.hasPatchPoint() || 306 RegInfo->needsStackRealignment(MF)) 307 return true; 308 // With large callframes around we may need to use FP to access the scavenging 309 // emergency spillslot. 310 // 311 // Unfortunately some calls to hasFP() like machine verifier -> 312 // getReservedReg() -> hasFP in the middle of global isel are too early 313 // to know the max call frame size. Hopefully conservatively returning "true" 314 // in those cases is fine. 315 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 316 if (!MFI.isMaxCallFrameSizeComputed() || 317 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 318 return true; 319 320 return false; 321 } 322 323 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 324 /// not required, we reserve argument space for call sites in the function 325 /// immediately on entry to the current function. This eliminates the need for 326 /// add/sub sp brackets around call sites. Returns true if the call frame is 327 /// included as part of the stack frame. 328 bool 329 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 330 return !MF.getFrameInfo().hasVarSizedObjects(); 331 } 332 333 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 334 MachineFunction &MF, MachineBasicBlock &MBB, 335 MachineBasicBlock::iterator I) const { 336 const AArch64InstrInfo *TII = 337 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 338 DebugLoc DL = I->getDebugLoc(); 339 unsigned Opc = I->getOpcode(); 340 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 341 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 342 343 if (!hasReservedCallFrame(MF)) { 344 int64_t Amount = I->getOperand(0).getImm(); 345 Amount = alignTo(Amount, getStackAlign()); 346 if (!IsDestroy) 347 Amount = -Amount; 348 349 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 350 // doesn't have to pop anything), then the first operand will be zero too so 351 // this adjustment is a no-op. 352 if (CalleePopAmount == 0) { 353 // FIXME: in-function stack adjustment for calls is limited to 24-bits 354 // because there's no guaranteed temporary register available. 355 // 356 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 357 // 1) For offset <= 12-bit, we use LSL #0 358 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 359 // LSL #0, and the other uses LSL #12. 360 // 361 // Most call frames will be allocated at the start of a function so 362 // this is OK, but it is a limitation that needs dealing with. 363 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 364 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, {Amount, MVT::i8}, 365 TII); 366 } 367 } else if (CalleePopAmount != 0) { 368 // If the calling convention demands that the callee pops arguments from the 369 // stack, we want to add it back if we have a reserved call frame. 370 assert(CalleePopAmount < 0xffffff && "call frame too large"); 371 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 372 {-(int64_t)CalleePopAmount, MVT::i8}, TII); 373 } 374 return MBB.erase(I); 375 } 376 377 static bool ShouldSignReturnAddress(MachineFunction &MF) { 378 // The function should be signed in the following situations: 379 // - sign-return-address=all 380 // - sign-return-address=non-leaf and the functions spills the LR 381 382 const Function &F = MF.getFunction(); 383 if (!F.hasFnAttribute("sign-return-address")) 384 return false; 385 386 StringRef Scope = F.getFnAttribute("sign-return-address").getValueAsString(); 387 if (Scope.equals("none")) 388 return false; 389 390 if (Scope.equals("all")) 391 return true; 392 393 assert(Scope.equals("non-leaf") && "Expected all, none or non-leaf"); 394 395 for (const auto &Info : MF.getFrameInfo().getCalleeSavedInfo()) 396 if (Info.getReg() == AArch64::LR) 397 return true; 398 399 return false; 400 } 401 402 void AArch64FrameLowering::emitCalleeSavedFrameMoves( 403 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 404 MachineFunction &MF = *MBB.getParent(); 405 MachineFrameInfo &MFI = MF.getFrameInfo(); 406 const TargetSubtargetInfo &STI = MF.getSubtarget(); 407 const MCRegisterInfo *MRI = STI.getRegisterInfo(); 408 const TargetInstrInfo *TII = STI.getInstrInfo(); 409 DebugLoc DL = MBB.findDebugLoc(MBBI); 410 411 // Add callee saved registers to move list. 412 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 413 if (CSI.empty()) 414 return; 415 416 for (const auto &Info : CSI) { 417 unsigned Reg = Info.getReg(); 418 int64_t Offset = 419 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea(); 420 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 421 unsigned CFIIndex = MF.addFrameInst( 422 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 423 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 424 .addCFIIndex(CFIIndex) 425 .setMIFlags(MachineInstr::FrameSetup); 426 } 427 } 428 429 // Find a scratch register that we can use at the start of the prologue to 430 // re-align the stack pointer. We avoid using callee-save registers since they 431 // may appear to be free when this is called from canUseAsPrologue (during 432 // shrink wrapping), but then no longer be free when this is called from 433 // emitPrologue. 434 // 435 // FIXME: This is a bit conservative, since in the above case we could use one 436 // of the callee-save registers as a scratch temp to re-align the stack pointer, 437 // but we would then have to make sure that we were in fact saving at least one 438 // callee-save register in the prologue, which is additional complexity that 439 // doesn't seem worth the benefit. 440 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 441 MachineFunction *MF = MBB->getParent(); 442 443 // If MBB is an entry block, use X9 as the scratch register 444 if (&MF->front() == MBB) 445 return AArch64::X9; 446 447 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 448 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 449 LivePhysRegs LiveRegs(TRI); 450 LiveRegs.addLiveIns(*MBB); 451 452 // Mark callee saved registers as used so we will not choose them. 453 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 454 for (unsigned i = 0; CSRegs[i]; ++i) 455 LiveRegs.addReg(CSRegs[i]); 456 457 // Prefer X9 since it was historically used for the prologue scratch reg. 458 const MachineRegisterInfo &MRI = MF->getRegInfo(); 459 if (LiveRegs.available(MRI, AArch64::X9)) 460 return AArch64::X9; 461 462 for (unsigned Reg : AArch64::GPR64RegClass) { 463 if (LiveRegs.available(MRI, Reg)) 464 return Reg; 465 } 466 return AArch64::NoRegister; 467 } 468 469 bool AArch64FrameLowering::canUseAsPrologue( 470 const MachineBasicBlock &MBB) const { 471 const MachineFunction *MF = MBB.getParent(); 472 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 473 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 474 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 475 476 // Don't need a scratch register if we're not going to re-align the stack. 477 if (!RegInfo->needsStackRealignment(*MF)) 478 return true; 479 // Otherwise, we can use any block as long as it has a scratch register 480 // available. 481 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 482 } 483 484 static bool windowsRequiresStackProbe(MachineFunction &MF, 485 uint64_t StackSizeInBytes) { 486 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 487 if (!Subtarget.isTargetWindows()) 488 return false; 489 const Function &F = MF.getFunction(); 490 // TODO: When implementing stack protectors, take that into account 491 // for the probe threshold. 492 unsigned StackProbeSize = 4096; 493 if (F.hasFnAttribute("stack-probe-size")) 494 F.getFnAttribute("stack-probe-size") 495 .getValueAsString() 496 .getAsInteger(0, StackProbeSize); 497 return (StackSizeInBytes >= StackProbeSize) && 498 !F.hasFnAttribute("no-stack-arg-probe"); 499 } 500 501 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 502 MachineFunction &MF, uint64_t StackBumpBytes) const { 503 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 504 const MachineFrameInfo &MFI = MF.getFrameInfo(); 505 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 506 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 507 508 if (AFI->getLocalStackSize() == 0) 509 return false; 510 511 // 512 is the maximum immediate for stp/ldp that will be used for 512 // callee-save save/restores 513 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 514 return false; 515 516 if (MFI.hasVarSizedObjects()) 517 return false; 518 519 if (RegInfo->needsStackRealignment(MF)) 520 return false; 521 522 // This isn't strictly necessary, but it simplifies things a bit since the 523 // current RedZone handling code assumes the SP is adjusted by the 524 // callee-save save/restore code. 525 if (canUseRedZone(MF)) 526 return false; 527 528 // When there is an SVE area on the stack, always allocate the 529 // callee-saves and spills/locals separately. 530 if (getSVEStackSize(MF)) 531 return false; 532 533 return true; 534 } 535 536 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( 537 MachineBasicBlock &MBB, unsigned StackBumpBytes) const { 538 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) 539 return false; 540 541 if (MBB.empty()) 542 return true; 543 544 // Disable combined SP bump if the last instruction is an MTE tag store. It 545 // is almost always better to merge SP adjustment into those instructions. 546 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); 547 MachineBasicBlock::iterator Begin = MBB.begin(); 548 while (LastI != Begin) { 549 --LastI; 550 if (LastI->isTransient()) 551 continue; 552 if (!LastI->getFlag(MachineInstr::FrameDestroy)) 553 break; 554 } 555 switch (LastI->getOpcode()) { 556 case AArch64::STGloop: 557 case AArch64::STZGloop: 558 case AArch64::STGOffset: 559 case AArch64::STZGOffset: 560 case AArch64::ST2GOffset: 561 case AArch64::STZ2GOffset: 562 return false; 563 default: 564 return true; 565 } 566 llvm_unreachable("unreachable"); 567 } 568 569 // Given a load or a store instruction, generate an appropriate unwinding SEH 570 // code on Windows. 571 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 572 const TargetInstrInfo &TII, 573 MachineInstr::MIFlag Flag) { 574 unsigned Opc = MBBI->getOpcode(); 575 MachineBasicBlock *MBB = MBBI->getParent(); 576 MachineFunction &MF = *MBB->getParent(); 577 DebugLoc DL = MBBI->getDebugLoc(); 578 unsigned ImmIdx = MBBI->getNumOperands() - 1; 579 int Imm = MBBI->getOperand(ImmIdx).getImm(); 580 MachineInstrBuilder MIB; 581 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 582 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 583 584 switch (Opc) { 585 default: 586 llvm_unreachable("No SEH Opcode for this instruction"); 587 case AArch64::LDPDpost: 588 Imm = -Imm; 589 LLVM_FALLTHROUGH; 590 case AArch64::STPDpre: { 591 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 592 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 593 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 594 .addImm(Reg0) 595 .addImm(Reg1) 596 .addImm(Imm * 8) 597 .setMIFlag(Flag); 598 break; 599 } 600 case AArch64::LDPXpost: 601 Imm = -Imm; 602 LLVM_FALLTHROUGH; 603 case AArch64::STPXpre: { 604 Register Reg0 = MBBI->getOperand(1).getReg(); 605 Register Reg1 = MBBI->getOperand(2).getReg(); 606 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 607 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 608 .addImm(Imm * 8) 609 .setMIFlag(Flag); 610 else 611 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 612 .addImm(RegInfo->getSEHRegNum(Reg0)) 613 .addImm(RegInfo->getSEHRegNum(Reg1)) 614 .addImm(Imm * 8) 615 .setMIFlag(Flag); 616 break; 617 } 618 case AArch64::LDRDpost: 619 Imm = -Imm; 620 LLVM_FALLTHROUGH; 621 case AArch64::STRDpre: { 622 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 623 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 624 .addImm(Reg) 625 .addImm(Imm) 626 .setMIFlag(Flag); 627 break; 628 } 629 case AArch64::LDRXpost: 630 Imm = -Imm; 631 LLVM_FALLTHROUGH; 632 case AArch64::STRXpre: { 633 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 634 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 635 .addImm(Reg) 636 .addImm(Imm) 637 .setMIFlag(Flag); 638 break; 639 } 640 case AArch64::STPDi: 641 case AArch64::LDPDi: { 642 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 643 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 644 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 645 .addImm(Reg0) 646 .addImm(Reg1) 647 .addImm(Imm * 8) 648 .setMIFlag(Flag); 649 break; 650 } 651 case AArch64::STPXi: 652 case AArch64::LDPXi: { 653 Register Reg0 = MBBI->getOperand(0).getReg(); 654 Register Reg1 = MBBI->getOperand(1).getReg(); 655 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 656 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 657 .addImm(Imm * 8) 658 .setMIFlag(Flag); 659 else 660 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 661 .addImm(RegInfo->getSEHRegNum(Reg0)) 662 .addImm(RegInfo->getSEHRegNum(Reg1)) 663 .addImm(Imm * 8) 664 .setMIFlag(Flag); 665 break; 666 } 667 case AArch64::STRXui: 668 case AArch64::LDRXui: { 669 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 670 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 671 .addImm(Reg) 672 .addImm(Imm * 8) 673 .setMIFlag(Flag); 674 break; 675 } 676 case AArch64::STRDui: 677 case AArch64::LDRDui: { 678 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 679 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 680 .addImm(Reg) 681 .addImm(Imm * 8) 682 .setMIFlag(Flag); 683 break; 684 } 685 } 686 auto I = MBB->insertAfter(MBBI, MIB); 687 return I; 688 } 689 690 // Fix up the SEH opcode associated with the save/restore instruction. 691 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 692 unsigned LocalStackSize) { 693 MachineOperand *ImmOpnd = nullptr; 694 unsigned ImmIdx = MBBI->getNumOperands() - 1; 695 switch (MBBI->getOpcode()) { 696 default: 697 llvm_unreachable("Fix the offset in the SEH instruction"); 698 case AArch64::SEH_SaveFPLR: 699 case AArch64::SEH_SaveRegP: 700 case AArch64::SEH_SaveReg: 701 case AArch64::SEH_SaveFRegP: 702 case AArch64::SEH_SaveFReg: 703 ImmOpnd = &MBBI->getOperand(ImmIdx); 704 break; 705 } 706 if (ImmOpnd) 707 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 708 } 709 710 // Convert callee-save register save/restore instruction to do stack pointer 711 // decrement/increment to allocate/deallocate the callee-save stack area by 712 // converting store/load to use pre/post increment version. 713 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 714 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 715 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 716 bool NeedsWinCFI, bool *HasWinCFI, bool InProlog = true) { 717 // Ignore instructions that do not operate on SP, i.e. shadow call stack 718 // instructions and associated CFI instruction. 719 while (MBBI->getOpcode() == AArch64::STRXpost || 720 MBBI->getOpcode() == AArch64::LDRXpre || 721 MBBI->getOpcode() == AArch64::CFI_INSTRUCTION) { 722 if (MBBI->getOpcode() != AArch64::CFI_INSTRUCTION) 723 assert(MBBI->getOperand(0).getReg() != AArch64::SP); 724 ++MBBI; 725 } 726 unsigned NewOpc; 727 int Scale = 1; 728 switch (MBBI->getOpcode()) { 729 default: 730 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 731 case AArch64::STPXi: 732 NewOpc = AArch64::STPXpre; 733 Scale = 8; 734 break; 735 case AArch64::STPDi: 736 NewOpc = AArch64::STPDpre; 737 Scale = 8; 738 break; 739 case AArch64::STPQi: 740 NewOpc = AArch64::STPQpre; 741 Scale = 16; 742 break; 743 case AArch64::STRXui: 744 NewOpc = AArch64::STRXpre; 745 break; 746 case AArch64::STRDui: 747 NewOpc = AArch64::STRDpre; 748 break; 749 case AArch64::STRQui: 750 NewOpc = AArch64::STRQpre; 751 break; 752 case AArch64::LDPXi: 753 NewOpc = AArch64::LDPXpost; 754 Scale = 8; 755 break; 756 case AArch64::LDPDi: 757 NewOpc = AArch64::LDPDpost; 758 Scale = 8; 759 break; 760 case AArch64::LDPQi: 761 NewOpc = AArch64::LDPQpost; 762 Scale = 16; 763 break; 764 case AArch64::LDRXui: 765 NewOpc = AArch64::LDRXpost; 766 break; 767 case AArch64::LDRDui: 768 NewOpc = AArch64::LDRDpost; 769 break; 770 case AArch64::LDRQui: 771 NewOpc = AArch64::LDRQpost; 772 break; 773 } 774 // Get rid of the SEH code associated with the old instruction. 775 if (NeedsWinCFI) { 776 auto SEH = std::next(MBBI); 777 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 778 SEH->eraseFromParent(); 779 } 780 781 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 782 MIB.addReg(AArch64::SP, RegState::Define); 783 784 // Copy all operands other than the immediate offset. 785 unsigned OpndIdx = 0; 786 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 787 ++OpndIdx) 788 MIB.add(MBBI->getOperand(OpndIdx)); 789 790 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 791 "Unexpected immediate offset in first/last callee-save save/restore " 792 "instruction!"); 793 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 794 "Unexpected base register in callee-save save/restore instruction!"); 795 assert(CSStackSizeInc % Scale == 0); 796 MIB.addImm(CSStackSizeInc / Scale); 797 798 MIB.setMIFlags(MBBI->getFlags()); 799 MIB.setMemRefs(MBBI->memoperands()); 800 801 // Generate a new SEH code that corresponds to the new instruction. 802 if (NeedsWinCFI) { 803 *HasWinCFI = true; 804 InsertSEH(*MIB, *TII, 805 InProlog ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy); 806 } 807 808 return std::prev(MBB.erase(MBBI)); 809 } 810 811 // Fixup callee-save register save/restore instructions to take into account 812 // combined SP bump by adding the local stack size to the stack offsets. 813 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 814 uint64_t LocalStackSize, 815 bool NeedsWinCFI, 816 bool *HasWinCFI) { 817 if (AArch64InstrInfo::isSEHInstruction(MI)) 818 return; 819 820 unsigned Opc = MI.getOpcode(); 821 822 // Ignore instructions that do not operate on SP, i.e. shadow call stack 823 // instructions and associated CFI instruction. 824 if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre || 825 Opc == AArch64::CFI_INSTRUCTION) { 826 if (Opc != AArch64::CFI_INSTRUCTION) 827 assert(MI.getOperand(0).getReg() != AArch64::SP); 828 return; 829 } 830 831 unsigned Scale; 832 switch (Opc) { 833 case AArch64::STPXi: 834 case AArch64::STRXui: 835 case AArch64::STPDi: 836 case AArch64::STRDui: 837 case AArch64::LDPXi: 838 case AArch64::LDRXui: 839 case AArch64::LDPDi: 840 case AArch64::LDRDui: 841 Scale = 8; 842 break; 843 case AArch64::STPQi: 844 case AArch64::STRQui: 845 case AArch64::LDPQi: 846 case AArch64::LDRQui: 847 Scale = 16; 848 break; 849 default: 850 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 851 } 852 853 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 854 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 855 "Unexpected base register in callee-save save/restore instruction!"); 856 // Last operand is immediate offset that needs fixing. 857 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 858 // All generated opcodes have scaled offsets. 859 assert(LocalStackSize % Scale == 0); 860 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 861 862 if (NeedsWinCFI) { 863 *HasWinCFI = true; 864 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 865 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 866 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 867 "Expecting a SEH instruction"); 868 fixupSEHOpcode(MBBI, LocalStackSize); 869 } 870 } 871 872 static void adaptForLdStOpt(MachineBasicBlock &MBB, 873 MachineBasicBlock::iterator FirstSPPopI, 874 MachineBasicBlock::iterator LastPopI) { 875 // Sometimes (when we restore in the same order as we save), we can end up 876 // with code like this: 877 // 878 // ldp x26, x25, [sp] 879 // ldp x24, x23, [sp, #16] 880 // ldp x22, x21, [sp, #32] 881 // ldp x20, x19, [sp, #48] 882 // add sp, sp, #64 883 // 884 // In this case, it is always better to put the first ldp at the end, so 885 // that the load-store optimizer can run and merge the ldp and the add into 886 // a post-index ldp. 887 // If we managed to grab the first pop instruction, move it to the end. 888 if (ReverseCSRRestoreSeq) 889 MBB.splice(FirstSPPopI, &MBB, LastPopI); 890 // We should end up with something like this now: 891 // 892 // ldp x24, x23, [sp, #16] 893 // ldp x22, x21, [sp, #32] 894 // ldp x20, x19, [sp, #48] 895 // ldp x26, x25, [sp] 896 // add sp, sp, #64 897 // 898 // and the load-store optimizer can merge the last two instructions into: 899 // 900 // ldp x26, x25, [sp], #64 901 // 902 } 903 904 static bool ShouldSignWithAKey(MachineFunction &MF) { 905 const Function &F = MF.getFunction(); 906 if (!F.hasFnAttribute("sign-return-address-key")) 907 return true; 908 909 const StringRef Key = 910 F.getFnAttribute("sign-return-address-key").getValueAsString(); 911 assert(Key.equals_lower("a_key") || Key.equals_lower("b_key")); 912 return Key.equals_lower("a_key"); 913 } 914 915 static bool needsWinCFI(const MachineFunction &MF) { 916 const Function &F = MF.getFunction(); 917 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 918 F.needsUnwindTableEntry(); 919 } 920 921 static bool isTargetDarwin(const MachineFunction &MF) { 922 return MF.getSubtarget<AArch64Subtarget>().isTargetDarwin(); 923 } 924 925 static bool isTargetWindows(const MachineFunction &MF) { 926 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 927 } 928 929 // Convenience function to determine whether I is an SVE callee save. 930 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 931 switch (I->getOpcode()) { 932 default: 933 return false; 934 case AArch64::STR_ZXI: 935 case AArch64::STR_PXI: 936 case AArch64::LDR_ZXI: 937 case AArch64::LDR_PXI: 938 return I->getFlag(MachineInstr::FrameSetup) || 939 I->getFlag(MachineInstr::FrameDestroy); 940 } 941 } 942 943 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 944 MachineBasicBlock &MBB) const { 945 MachineBasicBlock::iterator MBBI = MBB.begin(); 946 const MachineFrameInfo &MFI = MF.getFrameInfo(); 947 const Function &F = MF.getFunction(); 948 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 949 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 950 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 951 MachineModuleInfo &MMI = MF.getMMI(); 952 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 953 bool needsFrameMoves = 954 MF.needsFrameMoves() && !MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 955 bool HasFP = hasFP(MF); 956 bool NeedsWinCFI = needsWinCFI(MF); 957 bool HasWinCFI = false; 958 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 959 960 bool IsFunclet = MBB.isEHFuncletEntry(); 961 962 // At this point, we're going to decide whether or not the function uses a 963 // redzone. In most cases, the function doesn't have a redzone so let's 964 // assume that's false and set it to true in the case that there's a redzone. 965 AFI->setHasRedZone(false); 966 967 // Debug location must be unknown since the first debug location is used 968 // to determine the end of the prologue. 969 DebugLoc DL; 970 971 if (ShouldSignReturnAddress(MF)) { 972 if (ShouldSignWithAKey(MF)) 973 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIASP)) 974 .setMIFlag(MachineInstr::FrameSetup); 975 else { 976 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY)) 977 .setMIFlag(MachineInstr::FrameSetup); 978 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACIBSP)) 979 .setMIFlag(MachineInstr::FrameSetup); 980 } 981 982 unsigned CFIIndex = 983 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 984 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 985 .addCFIIndex(CFIIndex) 986 .setMIFlags(MachineInstr::FrameSetup); 987 } 988 989 // All calls are tail calls in GHC calling conv, and functions have no 990 // prologue/epilogue. 991 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 992 return; 993 994 // Set tagged base pointer to the bottom of the stack frame. 995 // Ideally it should match SP value after prologue. 996 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 997 998 const StackOffset &SVEStackSize = getSVEStackSize(MF); 999 1000 // getStackSize() includes all the locals in its size calculation. We don't 1001 // include these locals when computing the stack size of a funclet, as they 1002 // are allocated in the parent's stack frame and accessed via the frame 1003 // pointer from the funclet. We only save the callee saved registers in the 1004 // funclet, which are really the callee saved registers of the parent 1005 // function, including the funclet. 1006 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1007 : MFI.getStackSize(); 1008 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 1009 assert(!HasFP && "unexpected function without stack frame but with FP"); 1010 assert(!SVEStackSize && 1011 "unexpected function without stack frame but with SVE objects"); 1012 // All of the stack allocation is for locals. 1013 AFI->setLocalStackSize(NumBytes); 1014 if (!NumBytes) 1015 return; 1016 // REDZONE: If the stack size is less than 128 bytes, we don't need 1017 // to actually allocate. 1018 if (canUseRedZone(MF)) { 1019 AFI->setHasRedZone(true); 1020 ++NumRedZoneFunctions; 1021 } else { 1022 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1023 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, 1024 false, NeedsWinCFI, &HasWinCFI); 1025 if (!NeedsWinCFI && needsFrameMoves) { 1026 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 1027 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); 1028 // Encode the stack size of the leaf function. 1029 unsigned CFIIndex = MF.addFrameInst( 1030 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); 1031 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1032 .addCFIIndex(CFIIndex) 1033 .setMIFlags(MachineInstr::FrameSetup); 1034 } 1035 } 1036 1037 if (NeedsWinCFI) { 1038 HasWinCFI = true; 1039 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1040 .setMIFlag(MachineInstr::FrameSetup); 1041 } 1042 1043 return; 1044 } 1045 1046 bool IsWin64 = 1047 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1048 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1049 1050 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1051 // All of the remaining stack allocations are for locals. 1052 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1053 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1054 if (CombineSPBump) { 1055 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1056 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1057 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, false, 1058 NeedsWinCFI, &HasWinCFI); 1059 NumBytes = 0; 1060 } else if (PrologueSaveSize != 0) { 1061 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 1062 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI); 1063 NumBytes -= PrologueSaveSize; 1064 } 1065 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1066 1067 // Move past the saves of the callee-saved registers, fixing up the offsets 1068 // and pre-inc if we decided to combine the callee-save and local stack 1069 // pointer bump above. 1070 MachineBasicBlock::iterator End = MBB.end(); 1071 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1072 !IsSVECalleeSave(MBBI)) { 1073 if (CombineSPBump) 1074 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1075 NeedsWinCFI, &HasWinCFI); 1076 ++MBBI; 1077 } 1078 1079 // For funclets the FP belongs to the containing function. 1080 if (!IsFunclet && HasFP) { 1081 // Only set up FP if we actually need to. 1082 int64_t FPOffset = isTargetDarwin(MF) ? (AFI->getCalleeSavedStackSize() - 16) : 0; 1083 1084 if (CombineSPBump) 1085 FPOffset += AFI->getLocalStackSize(); 1086 1087 // Issue sub fp, sp, FPOffset or 1088 // mov fp,sp when FPOffset is zero. 1089 // Note: All stores of callee-saved registers are marked as "FrameSetup". 1090 // This code marks the instruction(s) that set the FP also. 1091 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 1092 {FPOffset, MVT::i8}, TII, MachineInstr::FrameSetup, false, 1093 NeedsWinCFI, &HasWinCFI); 1094 } 1095 1096 if (windowsRequiresStackProbe(MF, NumBytes)) { 1097 uint64_t NumWords = NumBytes >> 4; 1098 if (NeedsWinCFI) { 1099 HasWinCFI = true; 1100 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 1101 // exceed this amount. We need to move at most 2^24 - 1 into x15. 1102 // This is at most two instructions, MOVZ follwed by MOVK. 1103 // TODO: Fix to use multiple stack alloc unwind codes for stacks 1104 // exceeding 256MB in size. 1105 if (NumBytes >= (1 << 28)) 1106 report_fatal_error("Stack size cannot exceed 256MB for stack " 1107 "unwinding purposes"); 1108 1109 uint32_t LowNumWords = NumWords & 0xFFFF; 1110 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 1111 .addImm(LowNumWords) 1112 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1113 .setMIFlag(MachineInstr::FrameSetup); 1114 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1115 .setMIFlag(MachineInstr::FrameSetup); 1116 if ((NumWords & 0xFFFF0000) != 0) { 1117 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 1118 .addReg(AArch64::X15) 1119 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 1120 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 1121 .setMIFlag(MachineInstr::FrameSetup); 1122 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1123 .setMIFlag(MachineInstr::FrameSetup); 1124 } 1125 } else { 1126 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 1127 .addImm(NumWords) 1128 .setMIFlags(MachineInstr::FrameSetup); 1129 } 1130 1131 switch (MF.getTarget().getCodeModel()) { 1132 case CodeModel::Tiny: 1133 case CodeModel::Small: 1134 case CodeModel::Medium: 1135 case CodeModel::Kernel: 1136 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 1137 .addExternalSymbol("__chkstk") 1138 .addReg(AArch64::X15, RegState::Implicit) 1139 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1140 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1141 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1142 .setMIFlags(MachineInstr::FrameSetup); 1143 if (NeedsWinCFI) { 1144 HasWinCFI = true; 1145 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1146 .setMIFlag(MachineInstr::FrameSetup); 1147 } 1148 break; 1149 case CodeModel::Large: 1150 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 1151 .addReg(AArch64::X16, RegState::Define) 1152 .addExternalSymbol("__chkstk") 1153 .addExternalSymbol("__chkstk") 1154 .setMIFlags(MachineInstr::FrameSetup); 1155 if (NeedsWinCFI) { 1156 HasWinCFI = true; 1157 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1158 .setMIFlag(MachineInstr::FrameSetup); 1159 } 1160 1161 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF))) 1162 .addReg(AArch64::X16, RegState::Kill) 1163 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 1164 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 1165 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 1166 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 1167 .setMIFlags(MachineInstr::FrameSetup); 1168 if (NeedsWinCFI) { 1169 HasWinCFI = true; 1170 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1171 .setMIFlag(MachineInstr::FrameSetup); 1172 } 1173 break; 1174 } 1175 1176 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 1177 .addReg(AArch64::SP, RegState::Kill) 1178 .addReg(AArch64::X15, RegState::Kill) 1179 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 1180 .setMIFlags(MachineInstr::FrameSetup); 1181 if (NeedsWinCFI) { 1182 HasWinCFI = true; 1183 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1184 .addImm(NumBytes) 1185 .setMIFlag(MachineInstr::FrameSetup); 1186 } 1187 NumBytes = 0; 1188 } 1189 1190 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {}; 1191 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 1192 1193 // Process the SVE callee-saves to determine what space needs to be 1194 // allocated. 1195 if (AFI->getSVECalleeSavedStackSize()) { 1196 // Find callee save instructions in frame. 1197 CalleeSavesBegin = MBBI; 1198 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 1199 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 1200 ++MBBI; 1201 CalleeSavesEnd = MBBI; 1202 1203 int64_t OffsetToFirstCalleeSaveFromSP = 1204 MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex()); 1205 StackOffset OffsetToCalleeSavesFromSP = 1206 StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize; 1207 AllocateBefore -= OffsetToCalleeSavesFromSP; 1208 AllocateAfter = SVEStackSize - AllocateBefore; 1209 } 1210 1211 // Allocate space for the callee saves (if any). 1212 emitFrameOffset(MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, 1213 -AllocateBefore, TII, 1214 MachineInstr::FrameSetup); 1215 1216 // Finally allocate remaining SVE stack space. 1217 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP, 1218 -AllocateAfter, TII, 1219 MachineInstr::FrameSetup); 1220 1221 // Allocate space for the rest of the frame. 1222 if (NumBytes) { 1223 // Alignment is required for the parent frame, not the funclet 1224 const bool NeedsRealignment = 1225 !IsFunclet && RegInfo->needsStackRealignment(MF); 1226 unsigned scratchSPReg = AArch64::SP; 1227 1228 if (NeedsRealignment) { 1229 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB); 1230 assert(scratchSPReg != AArch64::NoRegister); 1231 } 1232 1233 // If we're a leaf function, try using the red zone. 1234 if (!canUseRedZone(MF)) 1235 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 1236 // the correct value here, as NumBytes also includes padding bytes, 1237 // which shouldn't be counted here. 1238 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, 1239 {-NumBytes, MVT::i8}, TII, MachineInstr::FrameSetup, 1240 false, NeedsWinCFI, &HasWinCFI); 1241 1242 if (NeedsRealignment) { 1243 const unsigned NrBitsToZero = Log2(MFI.getMaxAlign()); 1244 assert(NrBitsToZero > 1); 1245 assert(scratchSPReg != AArch64::SP); 1246 1247 // SUB X9, SP, NumBytes 1248 // -- X9 is temporary register, so shouldn't contain any live data here, 1249 // -- free to use. This is already produced by emitFrameOffset above. 1250 // AND SP, X9, 0b11111...0000 1251 // The logical immediates have a non-trivial encoding. The following 1252 // formula computes the encoded immediate with all ones but 1253 // NrBitsToZero zero bits as least significant bits. 1254 uint32_t andMaskEncoded = (1 << 12) // = N 1255 | ((64 - NrBitsToZero) << 6) // immr 1256 | ((64 - NrBitsToZero - 1) << 0); // imms 1257 1258 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 1259 .addReg(scratchSPReg, RegState::Kill) 1260 .addImm(andMaskEncoded); 1261 AFI->setStackRealigned(true); 1262 if (NeedsWinCFI) { 1263 HasWinCFI = true; 1264 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 1265 .addImm(NumBytes & andMaskEncoded) 1266 .setMIFlag(MachineInstr::FrameSetup); 1267 } 1268 } 1269 } 1270 1271 // If we need a base pointer, set it up here. It's whatever the value of the 1272 // stack pointer is at this point. Any variable size objects will be allocated 1273 // after this, so we can still use the base pointer to reference locals. 1274 // 1275 // FIXME: Clarify FrameSetup flags here. 1276 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 1277 // needed. 1278 // For funclets the BP belongs to the containing function. 1279 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 1280 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 1281 false); 1282 if (NeedsWinCFI) { 1283 HasWinCFI = true; 1284 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1285 .setMIFlag(MachineInstr::FrameSetup); 1286 } 1287 } 1288 1289 // The very last FrameSetup instruction indicates the end of prologue. Emit a 1290 // SEH opcode indicating the prologue end. 1291 if (NeedsWinCFI && HasWinCFI) { 1292 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1293 .setMIFlag(MachineInstr::FrameSetup); 1294 } 1295 1296 // SEH funclets are passed the frame pointer in X1. If the parent 1297 // function uses the base register, then the base register is used 1298 // directly, and is not retrieved from X1. 1299 if (IsFunclet && F.hasPersonalityFn()) { 1300 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 1301 if (isAsynchronousEHPersonality(Per)) { 1302 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 1303 .addReg(AArch64::X1) 1304 .setMIFlag(MachineInstr::FrameSetup); 1305 MBB.addLiveIn(AArch64::X1); 1306 } 1307 } 1308 1309 if (needsFrameMoves) { 1310 const DataLayout &TD = MF.getDataLayout(); 1311 const int StackGrowth = isTargetDarwin(MF) 1312 ? (2 * -TD.getPointerSize(0)) 1313 : -AFI->getCalleeSavedStackSize(); 1314 Register FramePtr = RegInfo->getFrameRegister(MF); 1315 // An example of the prologue: 1316 // 1317 // .globl __foo 1318 // .align 2 1319 // __foo: 1320 // Ltmp0: 1321 // .cfi_startproc 1322 // .cfi_personality 155, ___gxx_personality_v0 1323 // Leh_func_begin: 1324 // .cfi_lsda 16, Lexception33 1325 // 1326 // stp xa,bx, [sp, -#offset]! 1327 // ... 1328 // stp x28, x27, [sp, #offset-32] 1329 // stp fp, lr, [sp, #offset-16] 1330 // add fp, sp, #offset - 16 1331 // sub sp, sp, #1360 1332 // 1333 // The Stack: 1334 // +-------------------------------------------+ 1335 // 10000 | ........ | ........ | ........ | ........ | 1336 // 10004 | ........ | ........ | ........ | ........ | 1337 // +-------------------------------------------+ 1338 // 10008 | ........ | ........ | ........ | ........ | 1339 // 1000c | ........ | ........ | ........ | ........ | 1340 // +===========================================+ 1341 // 10010 | X28 Register | 1342 // 10014 | X28 Register | 1343 // +-------------------------------------------+ 1344 // 10018 | X27 Register | 1345 // 1001c | X27 Register | 1346 // +===========================================+ 1347 // 10020 | Frame Pointer | 1348 // 10024 | Frame Pointer | 1349 // +-------------------------------------------+ 1350 // 10028 | Link Register | 1351 // 1002c | Link Register | 1352 // +===========================================+ 1353 // 10030 | ........ | ........ | ........ | ........ | 1354 // 10034 | ........ | ........ | ........ | ........ | 1355 // +-------------------------------------------+ 1356 // 10038 | ........ | ........ | ........ | ........ | 1357 // 1003c | ........ | ........ | ........ | ........ | 1358 // +-------------------------------------------+ 1359 // 1360 // [sp] = 10030 :: >>initial value<< 1361 // sp = 10020 :: stp fp, lr, [sp, #-16]! 1362 // fp = sp == 10020 :: mov fp, sp 1363 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 1364 // sp == 10010 :: >>final value<< 1365 // 1366 // The frame pointer (w29) points to address 10020. If we use an offset of 1367 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 1368 // for w27, and -32 for w28: 1369 // 1370 // Ltmp1: 1371 // .cfi_def_cfa w29, 16 1372 // Ltmp2: 1373 // .cfi_offset w30, -8 1374 // Ltmp3: 1375 // .cfi_offset w29, -16 1376 // Ltmp4: 1377 // .cfi_offset w27, -24 1378 // Ltmp5: 1379 // .cfi_offset w28, -32 1380 1381 if (HasFP) { 1382 // Define the current CFA rule to use the provided FP. 1383 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true); 1384 unsigned CFIIndex = MF.addFrameInst( 1385 MCCFIInstruction::cfiDefCfa(nullptr, Reg, FixedObject - StackGrowth)); 1386 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1387 .addCFIIndex(CFIIndex) 1388 .setMIFlags(MachineInstr::FrameSetup); 1389 } else { 1390 // Encode the stack size of the leaf function. 1391 unsigned CFIIndex = MF.addFrameInst( 1392 MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI.getStackSize())); 1393 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1394 .addCFIIndex(CFIIndex) 1395 .setMIFlags(MachineInstr::FrameSetup); 1396 } 1397 1398 // Now emit the moves for whatever callee saved regs we have (including FP, 1399 // LR if those are saved). 1400 emitCalleeSavedFrameMoves(MBB, MBBI); 1401 } 1402 } 1403 1404 static void InsertReturnAddressAuth(MachineFunction &MF, 1405 MachineBasicBlock &MBB) { 1406 if (!ShouldSignReturnAddress(MF)) 1407 return; 1408 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1409 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1410 1411 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1412 DebugLoc DL; 1413 if (MBBI != MBB.end()) 1414 DL = MBBI->getDebugLoc(); 1415 1416 // The AUTIASP instruction assembles to a hint instruction before v8.3a so 1417 // this instruction can safely used for any v8a architecture. 1418 // From v8.3a onwards there are optimised authenticate LR and return 1419 // instructions, namely RETA{A,B}, that can be used instead. 1420 if (Subtarget.hasV8_3aOps() && MBBI != MBB.end() && 1421 MBBI->getOpcode() == AArch64::RET_ReallyLR) { 1422 BuildMI(MBB, MBBI, DL, 1423 TII->get(ShouldSignWithAKey(MF) ? AArch64::RETAA : AArch64::RETAB)) 1424 .copyImplicitOps(*MBBI); 1425 MBB.erase(MBBI); 1426 } else { 1427 BuildMI( 1428 MBB, MBBI, DL, 1429 TII->get(ShouldSignWithAKey(MF) ? AArch64::AUTIASP : AArch64::AUTIBSP)) 1430 .setMIFlag(MachineInstr::FrameDestroy); 1431 } 1432 } 1433 1434 static bool isFuncletReturnInstr(const MachineInstr &MI) { 1435 switch (MI.getOpcode()) { 1436 default: 1437 return false; 1438 case AArch64::CATCHRET: 1439 case AArch64::CLEANUPRET: 1440 return true; 1441 } 1442 } 1443 1444 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 1445 MachineBasicBlock &MBB) const { 1446 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 1447 MachineFrameInfo &MFI = MF.getFrameInfo(); 1448 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1449 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1450 DebugLoc DL; 1451 bool NeedsWinCFI = needsWinCFI(MF); 1452 bool HasWinCFI = false; 1453 bool IsFunclet = false; 1454 auto WinCFI = make_scope_exit([&]() { 1455 if (!MF.hasWinCFI()) 1456 MF.setHasWinCFI(HasWinCFI); 1457 }); 1458 1459 if (MBB.end() != MBBI) { 1460 DL = MBBI->getDebugLoc(); 1461 IsFunclet = isFuncletReturnInstr(*MBBI); 1462 } 1463 1464 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 1465 : MFI.getStackSize(); 1466 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1467 1468 // All calls are tail calls in GHC calling conv, and functions have no 1469 // prologue/epilogue. 1470 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1471 return; 1472 1473 // Initial and residual are named for consistency with the prologue. Note that 1474 // in the epilogue, the residual adjustment is executed first. 1475 uint64_t ArgumentPopSize = getArgumentPopSize(MF, MBB); 1476 1477 // The stack frame should be like below, 1478 // 1479 // ---------------------- --- 1480 // | | | 1481 // | BytesInStackArgArea| CalleeArgStackSize 1482 // | (NumReusableBytes) | (of tail call) 1483 // | | --- 1484 // | | | 1485 // ---------------------| --- | 1486 // | | | | 1487 // | CalleeSavedReg | | | 1488 // | (CalleeSavedStackSize)| | | 1489 // | | | | 1490 // ---------------------| | NumBytes 1491 // | | StackSize (StackAdjustUp) 1492 // | LocalStackSize | | | 1493 // | (covering callee | | | 1494 // | args) | | | 1495 // | | | | 1496 // ---------------------- --- --- 1497 // 1498 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize 1499 // = StackSize + ArgumentPopSize 1500 // 1501 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps 1502 // it as the 2nd argument of AArch64ISD::TC_RETURN. 1503 1504 auto Cleanup = make_scope_exit([&] { InsertReturnAddressAuth(MF, MBB); }); 1505 1506 bool IsWin64 = 1507 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1508 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1509 1510 uint64_t AfterCSRPopSize = ArgumentPopSize; 1511 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1512 // We cannot rely on the local stack size set in emitPrologue if the function 1513 // has funclets, as funclets have different local stack size requirements, and 1514 // the current value set in emitPrologue may be that of the containing 1515 // function. 1516 if (MF.hasEHFunclets()) 1517 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1518 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); 1519 // Assume we can't combine the last pop with the sp restore. 1520 1521 if (!CombineSPBump && PrologueSaveSize != 0) { 1522 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 1523 while (AArch64InstrInfo::isSEHInstruction(*Pop)) 1524 Pop = std::prev(Pop); 1525 // Converting the last ldp to a post-index ldp is valid only if the last 1526 // ldp's offset is 0. 1527 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 1528 // If the offset is 0, convert it to a post-index ldp. 1529 if (OffsetOp.getImm() == 0) 1530 convertCalleeSaveRestoreToSPPrePostIncDec( 1531 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, false); 1532 else { 1533 // If not, make sure to emit an add after the last ldp. 1534 // We're doing this by transfering the size to be restored from the 1535 // adjustment *before* the CSR pops to the adjustment *after* the CSR 1536 // pops. 1537 AfterCSRPopSize += PrologueSaveSize; 1538 } 1539 } 1540 1541 // Move past the restores of the callee-saved registers. 1542 // If we plan on combining the sp bump of the local stack size and the callee 1543 // save stack size, we might need to adjust the CSR save and restore offsets. 1544 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 1545 MachineBasicBlock::iterator Begin = MBB.begin(); 1546 while (LastPopI != Begin) { 1547 --LastPopI; 1548 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 1549 IsSVECalleeSave(LastPopI)) { 1550 ++LastPopI; 1551 break; 1552 } else if (CombineSPBump) 1553 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 1554 NeedsWinCFI, &HasWinCFI); 1555 } 1556 1557 if (NeedsWinCFI) { 1558 HasWinCFI = true; 1559 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 1560 .setMIFlag(MachineInstr::FrameDestroy); 1561 } 1562 1563 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1564 1565 // If there is a single SP update, insert it before the ret and we're done. 1566 if (CombineSPBump) { 1567 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1568 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 1569 {NumBytes + (int64_t)AfterCSRPopSize, MVT::i8}, TII, 1570 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1571 if (NeedsWinCFI && HasWinCFI) 1572 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1573 TII->get(AArch64::SEH_EpilogEnd)) 1574 .setMIFlag(MachineInstr::FrameDestroy); 1575 return; 1576 } 1577 1578 NumBytes -= PrologueSaveSize; 1579 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1580 1581 // Process the SVE callee-saves to determine what space needs to be 1582 // deallocated. 1583 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 1584 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 1585 if (AFI->getSVECalleeSavedStackSize()) { 1586 RestoreBegin = std::prev(RestoreEnd);; 1587 while (IsSVECalleeSave(RestoreBegin) && 1588 RestoreBegin != MBB.begin()) 1589 --RestoreBegin; 1590 ++RestoreBegin; 1591 1592 assert(IsSVECalleeSave(RestoreBegin) && 1593 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 1594 1595 int64_t OffsetToFirstCalleeSaveFromSP = 1596 MFI.getObjectOffset(AFI->getMaxSVECSFrameIndex()); 1597 StackOffset OffsetToCalleeSavesFromSP = 1598 StackOffset(OffsetToFirstCalleeSaveFromSP, MVT::nxv1i8) + SVEStackSize; 1599 DeallocateBefore = OffsetToCalleeSavesFromSP; 1600 DeallocateAfter = SVEStackSize - DeallocateBefore; 1601 } 1602 1603 // Deallocate the SVE area. 1604 if (SVEStackSize) { 1605 if (AFI->isStackRealigned()) { 1606 if (AFI->getSVECalleeSavedStackSize()) 1607 // Set SP to start of SVE area, from which the callee-save reloads 1608 // can be done. The code below will deallocate the stack space 1609 // space by moving FP -> SP. 1610 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 1611 -SVEStackSize, TII, MachineInstr::FrameDestroy); 1612 } else { 1613 if (AFI->getSVECalleeSavedStackSize()) { 1614 // Deallocate the non-SVE locals first before we can deallocate (and 1615 // restore callee saves) from the SVE area. 1616 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1617 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy); 1618 NumBytes = 0; 1619 } 1620 1621 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 1622 DeallocateBefore, TII, MachineInstr::FrameDestroy); 1623 1624 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 1625 DeallocateAfter, TII, MachineInstr::FrameDestroy); 1626 } 1627 } 1628 1629 if (!hasFP(MF)) { 1630 bool RedZone = canUseRedZone(MF); 1631 // If this was a redzone leaf function, we don't need to restore the 1632 // stack pointer (but we may need to pop stack args for fastcc). 1633 if (RedZone && AfterCSRPopSize == 0) 1634 return; 1635 1636 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 1637 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 1638 if (NoCalleeSaveRestore) 1639 StackRestoreBytes += AfterCSRPopSize; 1640 1641 // If we were able to combine the local stack pop with the argument pop, 1642 // then we're done. 1643 bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0; 1644 1645 // If we're done after this, make sure to help the load store optimizer. 1646 if (Done) 1647 adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI); 1648 1649 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1650 {StackRestoreBytes, MVT::i8}, TII, 1651 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1652 if (Done) { 1653 if (NeedsWinCFI) { 1654 HasWinCFI = true; 1655 BuildMI(MBB, MBB.getFirstTerminator(), DL, 1656 TII->get(AArch64::SEH_EpilogEnd)) 1657 .setMIFlag(MachineInstr::FrameDestroy); 1658 } 1659 return; 1660 } 1661 1662 NumBytes = 0; 1663 } 1664 1665 // Restore the original stack pointer. 1666 // FIXME: Rather than doing the math here, we should instead just use 1667 // non-post-indexed loads for the restores if we aren't actually going to 1668 // be able to save any instructions. 1669 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 1670 int64_t OffsetToFrameRecord = 1671 isTargetDarwin(MF) ? (-(int64_t)AFI->getCalleeSavedStackSize() + 16) : 0; 1672 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 1673 {OffsetToFrameRecord, MVT::i8}, 1674 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI); 1675 } else if (NumBytes) 1676 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 1677 {NumBytes, MVT::i8}, TII, MachineInstr::FrameDestroy, false, 1678 NeedsWinCFI); 1679 1680 // This must be placed after the callee-save restore code because that code 1681 // assumes the SP is at the same location as it was after the callee-save save 1682 // code in the prologue. 1683 if (AfterCSRPopSize) { 1684 // Find an insertion point for the first ldp so that it goes before the 1685 // shadow call stack epilog instruction. This ensures that the restore of 1686 // lr from x18 is placed after the restore from sp. 1687 auto FirstSPPopI = MBB.getFirstTerminator(); 1688 while (FirstSPPopI != Begin) { 1689 auto Prev = std::prev(FirstSPPopI); 1690 if (Prev->getOpcode() != AArch64::LDRXpre || 1691 Prev->getOperand(0).getReg() == AArch64::SP) 1692 break; 1693 FirstSPPopI = Prev; 1694 } 1695 1696 adaptForLdStOpt(MBB, FirstSPPopI, LastPopI); 1697 1698 emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP, 1699 {(int64_t)AfterCSRPopSize, MVT::i8}, TII, 1700 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 1701 } 1702 if (NeedsWinCFI && HasWinCFI) 1703 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd)) 1704 .setMIFlag(MachineInstr::FrameDestroy); 1705 1706 MF.setHasWinCFI(HasWinCFI); 1707 } 1708 1709 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1710 /// debug info. It's the same as what we use for resolving the code-gen 1711 /// references for now. FIXME: This can go wrong when references are 1712 /// SP-relative and simple call frames aren't used. 1713 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, 1714 int FI, 1715 Register &FrameReg) const { 1716 return resolveFrameIndexReference( 1717 MF, FI, FrameReg, 1718 /*PreferFP=*/ 1719 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress), 1720 /*ForSimm=*/false) 1721 .getBytes(); 1722 } 1723 1724 int AArch64FrameLowering::getNonLocalFrameIndexReference( 1725 const MachineFunction &MF, int FI) const { 1726 return getSEHFrameIndexOffset(MF, FI); 1727 } 1728 1729 static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) { 1730 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1731 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1732 bool IsWin64 = 1733 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); 1734 1735 unsigned FixedObject = 1736 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 1737 unsigned FPAdjust = isTargetDarwin(MF) 1738 ? 16 : AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 1739 return {ObjectOffset + FixedObject + FPAdjust, MVT::i8}; 1740 } 1741 1742 static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) { 1743 const auto &MFI = MF.getFrameInfo(); 1744 return {ObjectOffset + (int64_t)MFI.getStackSize(), MVT::i8}; 1745 } 1746 1747 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 1748 int FI) const { 1749 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1750 MF.getSubtarget().getRegisterInfo()); 1751 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 1752 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 1753 ? getFPOffset(MF, ObjectOffset).getBytes() 1754 : getStackOffset(MF, ObjectOffset).getBytes(); 1755 } 1756 1757 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 1758 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, 1759 bool ForSimm) const { 1760 const auto &MFI = MF.getFrameInfo(); 1761 int64_t ObjectOffset = MFI.getObjectOffset(FI); 1762 bool isFixed = MFI.isFixedObjectIndex(FI); 1763 bool isSVE = MFI.getStackID(FI) == TargetStackID::SVEVector; 1764 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 1765 PreferFP, ForSimm); 1766 } 1767 1768 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 1769 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 1770 Register &FrameReg, bool PreferFP, bool ForSimm) const { 1771 const auto &MFI = MF.getFrameInfo(); 1772 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 1773 MF.getSubtarget().getRegisterInfo()); 1774 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 1775 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1776 1777 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getBytes(); 1778 int64_t Offset = getStackOffset(MF, ObjectOffset).getBytes(); 1779 bool isCSR = 1780 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 1781 1782 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1783 1784 // Use frame pointer to reference fixed objects. Use it for locals if 1785 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 1786 // reliable as a base). Make sure useFPForScavengingIndex() does the 1787 // right thing for the emergency spill slot. 1788 bool UseFP = false; 1789 if (AFI->hasStackFrame() && !isSVE) { 1790 // We shouldn't prefer using the FP when there is an SVE area 1791 // in between the FP and the non-SVE locals/spills. 1792 PreferFP &= !SVEStackSize; 1793 1794 // Note: Keeping the following as multiple 'if' statements rather than 1795 // merging to a single expression for readability. 1796 // 1797 // Argument access should always use the FP. 1798 if (isFixed) { 1799 UseFP = hasFP(MF); 1800 } else if (isCSR && RegInfo->needsStackRealignment(MF)) { 1801 // References to the CSR area must use FP if we're re-aligning the stack 1802 // since the dynamically-sized alignment padding is between the SP/BP and 1803 // the CSR area. 1804 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 1805 UseFP = true; 1806 } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) { 1807 // If the FPOffset is negative and we're producing a signed immediate, we 1808 // have to keep in mind that the available offset range for negative 1809 // offsets is smaller than for positive ones. If an offset is available 1810 // via the FP and the SP, use whichever is closest. 1811 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 1812 PreferFP |= Offset > -FPOffset; 1813 1814 if (MFI.hasVarSizedObjects()) { 1815 // If we have variable sized objects, we can use either FP or BP, as the 1816 // SP offset is unknown. We can use the base pointer if we have one and 1817 // FP is not preferred. If not, we're stuck with using FP. 1818 bool CanUseBP = RegInfo->hasBasePointer(MF); 1819 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 1820 UseFP = PreferFP; 1821 else if (!CanUseBP) // Can't use BP. Forced to use FP. 1822 UseFP = true; 1823 // else we can use BP and FP, but the offset from FP won't fit. 1824 // That will make us scavenge registers which we can probably avoid by 1825 // using BP. If it won't fit for BP either, we'll scavenge anyway. 1826 } else if (FPOffset >= 0) { 1827 // Use SP or FP, whichever gives us the best chance of the offset 1828 // being in range for direct access. If the FPOffset is positive, 1829 // that'll always be best, as the SP will be even further away. 1830 UseFP = true; 1831 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 1832 // Funclets access the locals contained in the parent's stack frame 1833 // via the frame pointer, so we have to use the FP in the parent 1834 // function. 1835 (void) Subtarget; 1836 assert( 1837 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) && 1838 "Funclets should only be present on Win64"); 1839 UseFP = true; 1840 } else { 1841 // We have the choice between FP and (SP or BP). 1842 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 1843 UseFP = true; 1844 } 1845 } 1846 } 1847 1848 assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) && 1849 "In the presence of dynamic stack pointer realignment, " 1850 "non-argument/CSR objects cannot be accessed through the frame pointer"); 1851 1852 if (isSVE) { 1853 int64_t OffsetToSVEArea = 1854 MFI.getStackSize() - AFI->getCalleeSavedStackSize(); 1855 StackOffset FPOffset = {ObjectOffset, MVT::nxv1i8}; 1856 StackOffset SPOffset = SVEStackSize + 1857 StackOffset(ObjectOffset, MVT::nxv1i8) + 1858 StackOffset(OffsetToSVEArea, MVT::i8); 1859 // Always use the FP for SVE spills if available and beneficial. 1860 if (hasFP(MF) && 1861 (SPOffset.getBytes() || 1862 FPOffset.getScalableBytes() < SPOffset.getScalableBytes() || 1863 RegInfo->needsStackRealignment(MF))) { 1864 FrameReg = RegInfo->getFrameRegister(MF); 1865 return FPOffset; 1866 } 1867 1868 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 1869 : (unsigned)AArch64::SP; 1870 return SPOffset; 1871 } 1872 1873 StackOffset ScalableOffset = {}; 1874 if (UseFP && !(isFixed || isCSR)) 1875 ScalableOffset = -SVEStackSize; 1876 if (!UseFP && (isFixed || isCSR)) 1877 ScalableOffset = SVEStackSize; 1878 1879 if (UseFP) { 1880 FrameReg = RegInfo->getFrameRegister(MF); 1881 return StackOffset(FPOffset, MVT::i8) + ScalableOffset; 1882 } 1883 1884 // Use the base pointer if we have one. 1885 if (RegInfo->hasBasePointer(MF)) 1886 FrameReg = RegInfo->getBaseRegister(); 1887 else { 1888 assert(!MFI.hasVarSizedObjects() && 1889 "Can't use SP when we have var sized objects."); 1890 FrameReg = AArch64::SP; 1891 // If we're using the red zone for this function, the SP won't actually 1892 // be adjusted, so the offsets will be negative. They're also all 1893 // within range of the signed 9-bit immediate instructions. 1894 if (canUseRedZone(MF)) 1895 Offset -= AFI->getLocalStackSize(); 1896 } 1897 1898 return StackOffset(Offset, MVT::i8) + ScalableOffset; 1899 } 1900 1901 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 1902 // Do not set a kill flag on values that are also marked as live-in. This 1903 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 1904 // callee saved registers. 1905 // Omitting the kill flags is conservatively correct even if the live-in 1906 // is not used after all. 1907 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 1908 return getKillRegState(!IsLiveIn); 1909 } 1910 1911 static bool produceCompactUnwindFrame(MachineFunction &MF) { 1912 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1913 AttributeList Attrs = MF.getFunction().getAttributes(); 1914 return Subtarget.isTargetMachO() && 1915 !(Subtarget.getTargetLowering()->supportSwiftError() && 1916 Attrs.hasAttrSomewhere(Attribute::SwiftError)); 1917 } 1918 1919 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 1920 bool NeedsWinCFI) { 1921 // If we are generating register pairs for a Windows function that requires 1922 // EH support, then pair consecutive registers only. There are no unwind 1923 // opcodes for saves/restores of non-consectuve register pairs. 1924 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x. 1925 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 1926 1927 // TODO: LR can be paired with any register. We don't support this yet in 1928 // the MCLayer. We need to add support for the save_lrpair unwind code. 1929 if (Reg2 == AArch64::FP) 1930 return true; 1931 if (!NeedsWinCFI) 1932 return false; 1933 if (Reg2 == Reg1 + 1) 1934 return false; 1935 return true; 1936 } 1937 1938 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 1939 /// WindowsCFI requires that only consecutive registers can be paired. 1940 /// LR and FP need to be allocated together when the frame needs to save 1941 /// the frame-record. This means any other register pairing with LR is invalid. 1942 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 1943 bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord) { 1944 if (UsesWinAAPCS) 1945 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI); 1946 1947 // If we need to store the frame record, don't pair any register 1948 // with LR other than FP. 1949 if (NeedsFrameRecord) 1950 return Reg2 == AArch64::LR; 1951 1952 return false; 1953 } 1954 1955 namespace { 1956 1957 struct RegPairInfo { 1958 unsigned Reg1 = AArch64::NoRegister; 1959 unsigned Reg2 = AArch64::NoRegister; 1960 int FrameIdx; 1961 int Offset; 1962 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type; 1963 1964 RegPairInfo() = default; 1965 1966 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 1967 1968 unsigned getScale() const { 1969 switch (Type) { 1970 case PPR: 1971 return 2; 1972 case GPR: 1973 case FPR64: 1974 return 8; 1975 case ZPR: 1976 case FPR128: 1977 return 16; 1978 } 1979 llvm_unreachable("Unsupported type"); 1980 } 1981 1982 bool isScalable() const { return Type == PPR || Type == ZPR; } 1983 }; 1984 1985 } // end anonymous namespace 1986 1987 static void computeCalleeSaveRegisterPairs( 1988 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI, 1989 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 1990 bool &NeedShadowCallStackProlog, bool NeedsFrameRecord) { 1991 1992 if (CSI.empty()) 1993 return; 1994 1995 bool IsWindows = isTargetWindows(MF); 1996 bool NeedsWinCFI = needsWinCFI(MF); 1997 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1998 MachineFrameInfo &MFI = MF.getFrameInfo(); 1999 CallingConv::ID CC = MF.getFunction().getCallingConv(); 2000 unsigned Count = CSI.size(); 2001 (void)CC; 2002 // MachO's compact unwind format relies on all registers being stored in 2003 // pairs. 2004 assert((!produceCompactUnwindFrame(MF) || 2005 CC == CallingConv::PreserveMost || 2006 (Count & 1) == 0) && 2007 "Odd number of callee-saved regs to spill!"); 2008 int ByteOffset = AFI->getCalleeSavedStackSize(); 2009 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 2010 // On Linux, we will have either one or zero non-paired register. On Windows 2011 // with CFI, we can have multiple unpaired registers in order to utilize the 2012 // available unwind codes. This flag assures that the alignment fixup is done 2013 // only once, as intened. 2014 bool FixupDone = false; 2015 for (unsigned i = 0; i < Count; ++i) { 2016 RegPairInfo RPI; 2017 RPI.Reg1 = CSI[i].getReg(); 2018 2019 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) 2020 RPI.Type = RegPairInfo::GPR; 2021 else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) 2022 RPI.Type = RegPairInfo::FPR64; 2023 else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) 2024 RPI.Type = RegPairInfo::FPR128; 2025 else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) 2026 RPI.Type = RegPairInfo::ZPR; 2027 else if (AArch64::PPRRegClass.contains(RPI.Reg1)) 2028 RPI.Type = RegPairInfo::PPR; 2029 else 2030 llvm_unreachable("Unsupported register class."); 2031 2032 // Add the next reg to the pair if it is in the same register class. 2033 if (i + 1 < Count) { 2034 unsigned NextReg = CSI[i + 1].getReg(); 2035 switch (RPI.Type) { 2036 case RegPairInfo::GPR: 2037 if (AArch64::GPR64RegClass.contains(NextReg) && 2038 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI, 2039 NeedsFrameRecord)) 2040 RPI.Reg2 = NextReg; 2041 break; 2042 case RegPairInfo::FPR64: 2043 if (AArch64::FPR64RegClass.contains(NextReg) && 2044 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI)) 2045 RPI.Reg2 = NextReg; 2046 break; 2047 case RegPairInfo::FPR128: 2048 if (AArch64::FPR128RegClass.contains(NextReg)) 2049 RPI.Reg2 = NextReg; 2050 break; 2051 case RegPairInfo::PPR: 2052 case RegPairInfo::ZPR: 2053 break; 2054 } 2055 } 2056 2057 // If either of the registers to be saved is the lr register, it means that 2058 // we also need to save lr in the shadow call stack. 2059 if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) && 2060 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) { 2061 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18)) 2062 report_fatal_error("Must reserve x18 to use shadow call stack"); 2063 NeedShadowCallStackProlog = true; 2064 } 2065 2066 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 2067 // list to come in sorted by frame index so that we can issue the store 2068 // pair instructions directly. Assert if we see anything otherwise. 2069 // 2070 // The order of the registers in the list is controlled by 2071 // getCalleeSavedRegs(), so they will always be in-order, as well. 2072 assert((!RPI.isPaired() || 2073 (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) && 2074 "Out of order callee saved regs!"); 2075 2076 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 2077 RPI.Reg1 == AArch64::LR) && 2078 "FrameRecord must be allocated together with LR"); 2079 2080 // Windows AAPCS has FP and LR reversed. 2081 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 2082 RPI.Reg2 == AArch64::LR) && 2083 "FrameRecord must be allocated together with LR"); 2084 2085 // MachO's compact unwind format relies on all registers being stored in 2086 // adjacent register pairs. 2087 assert((!produceCompactUnwindFrame(MF) || 2088 CC == CallingConv::PreserveMost || 2089 (RPI.isPaired() && 2090 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 2091 RPI.Reg1 + 1 == RPI.Reg2))) && 2092 "Callee-save registers not saved as adjacent register pair!"); 2093 2094 RPI.FrameIdx = CSI[i].getFrameIdx(); 2095 2096 int Scale = RPI.getScale(); 2097 if (RPI.isScalable()) 2098 ScalableByteOffset -= Scale; 2099 else 2100 ByteOffset -= RPI.isPaired() ? 2 * Scale : Scale; 2101 2102 assert(!(RPI.isScalable() && RPI.isPaired()) && 2103 "Paired spill/fill instructions don't exist for SVE vectors"); 2104 2105 // Round up size of non-pair to pair size if we need to pad the 2106 // callee-save area to ensure 16-byte alignment. 2107 if (AFI->hasCalleeSaveStackFreeSpace() && !FixupDone && 2108 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 && 2109 !RPI.isPaired()) { 2110 FixupDone = true; 2111 ByteOffset -= 8; 2112 assert(ByteOffset % 16 == 0); 2113 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); 2114 MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); 2115 } 2116 2117 int Offset = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 2118 assert(Offset % Scale == 0); 2119 RPI.Offset = Offset / Scale; 2120 2121 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 2122 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 2123 "Offset out of bounds for LDP/STP immediate"); 2124 2125 RegPairs.push_back(RPI); 2126 if (RPI.isPaired()) 2127 ++i; 2128 } 2129 } 2130 2131 bool AArch64FrameLowering::spillCalleeSavedRegisters( 2132 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2133 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2134 MachineFunction &MF = *MBB.getParent(); 2135 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2136 bool NeedsWinCFI = needsWinCFI(MF); 2137 DebugLoc DL; 2138 SmallVector<RegPairInfo, 8> RegPairs; 2139 2140 bool NeedShadowCallStackProlog = false; 2141 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2142 NeedShadowCallStackProlog, hasFP(MF)); 2143 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2144 2145 if (NeedShadowCallStackProlog) { 2146 // Shadow call stack prolog: str x30, [x18], #8 2147 BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost)) 2148 .addReg(AArch64::X18, RegState::Define) 2149 .addReg(AArch64::LR) 2150 .addReg(AArch64::X18) 2151 .addImm(8) 2152 .setMIFlag(MachineInstr::FrameSetup); 2153 2154 if (NeedsWinCFI) 2155 BuildMI(MBB, MI, DL, TII.get(AArch64::SEH_Nop)) 2156 .setMIFlag(MachineInstr::FrameSetup); 2157 2158 if (!MF.getFunction().hasFnAttribute(Attribute::NoUnwind)) { 2159 // Emit a CFI instruction that causes 8 to be subtracted from the value of 2160 // x18 when unwinding past this frame. 2161 static const char CFIInst[] = { 2162 dwarf::DW_CFA_val_expression, 2163 18, // register 2164 2, // length 2165 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 2166 static_cast<char>(-8) & 0x7f, // addend (sleb128) 2167 }; 2168 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 2169 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 2170 BuildMI(MBB, MI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 2171 .addCFIIndex(CFIIndex) 2172 .setMIFlag(MachineInstr::FrameSetup); 2173 } 2174 2175 // This instruction also makes x18 live-in to the entry block. 2176 MBB.addLiveIn(AArch64::X18); 2177 } 2178 2179 for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE; 2180 ++RPII) { 2181 RegPairInfo RPI = *RPII; 2182 unsigned Reg1 = RPI.Reg1; 2183 unsigned Reg2 = RPI.Reg2; 2184 unsigned StrOpc; 2185 2186 // Issue sequence of spills for cs regs. The first spill may be converted 2187 // to a pre-decrement store later by emitPrologue if the callee-save stack 2188 // area allocation can't be combined with the local stack area allocation. 2189 // For example: 2190 // stp x22, x21, [sp, #0] // addImm(+0) 2191 // stp x20, x19, [sp, #16] // addImm(+2) 2192 // stp fp, lr, [sp, #32] // addImm(+4) 2193 // Rationale: This sequence saves uop updates compared to a sequence of 2194 // pre-increment spills like stp xi,xj,[sp,#-16]! 2195 // Note: Similar rationale and sequence for restores in epilog. 2196 unsigned Size; 2197 Align Alignment; 2198 switch (RPI.Type) { 2199 case RegPairInfo::GPR: 2200 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 2201 Size = 8; 2202 Alignment = Align(8); 2203 break; 2204 case RegPairInfo::FPR64: 2205 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 2206 Size = 8; 2207 Alignment = Align(8); 2208 break; 2209 case RegPairInfo::FPR128: 2210 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 2211 Size = 16; 2212 Alignment = Align(16); 2213 break; 2214 case RegPairInfo::ZPR: 2215 StrOpc = AArch64::STR_ZXI; 2216 Size = 16; 2217 Alignment = Align(16); 2218 break; 2219 case RegPairInfo::PPR: 2220 StrOpc = AArch64::STR_PXI; 2221 Size = 2; 2222 Alignment = Align(2); 2223 break; 2224 } 2225 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 2226 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2227 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2228 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2229 dbgs() << ")\n"); 2230 2231 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 2232 "Windows unwdinding requires a consecutive (FP,LR) pair"); 2233 // Windows unwind codes require consecutive registers if registers are 2234 // paired. Make the switch here, so that the code below will save (x,x+1) 2235 // and not (x+1,x). 2236 unsigned FrameIdxReg1 = RPI.FrameIdx; 2237 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2238 if (NeedsWinCFI && RPI.isPaired()) { 2239 std::swap(Reg1, Reg2); 2240 std::swap(FrameIdxReg1, FrameIdxReg2); 2241 } 2242 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 2243 if (!MRI.isReserved(Reg1)) 2244 MBB.addLiveIn(Reg1); 2245 if (RPI.isPaired()) { 2246 if (!MRI.isReserved(Reg2)) 2247 MBB.addLiveIn(Reg2); 2248 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 2249 MIB.addMemOperand(MF.getMachineMemOperand( 2250 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2251 MachineMemOperand::MOStore, Size, Alignment)); 2252 } 2253 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 2254 .addReg(AArch64::SP) 2255 .addImm(RPI.Offset) // [sp, #offset*scale], 2256 // where factor*scale is implicit 2257 .setMIFlag(MachineInstr::FrameSetup); 2258 MIB.addMemOperand(MF.getMachineMemOperand( 2259 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2260 MachineMemOperand::MOStore, Size, Alignment)); 2261 if (NeedsWinCFI) 2262 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 2263 2264 // Update the StackIDs of the SVE stack slots. 2265 MachineFrameInfo &MFI = MF.getFrameInfo(); 2266 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) 2267 MFI.setStackID(RPI.FrameIdx, TargetStackID::SVEVector); 2268 2269 } 2270 return true; 2271 } 2272 2273 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 2274 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2275 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2276 MachineFunction &MF = *MBB.getParent(); 2277 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2278 DebugLoc DL; 2279 SmallVector<RegPairInfo, 8> RegPairs; 2280 bool NeedsWinCFI = needsWinCFI(MF); 2281 2282 if (MI != MBB.end()) 2283 DL = MI->getDebugLoc(); 2284 2285 bool NeedShadowCallStackProlog = false; 2286 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, 2287 NeedShadowCallStackProlog, hasFP(MF)); 2288 2289 auto EmitMI = [&](const RegPairInfo &RPI) { 2290 unsigned Reg1 = RPI.Reg1; 2291 unsigned Reg2 = RPI.Reg2; 2292 2293 // Issue sequence of restores for cs regs. The last restore may be converted 2294 // to a post-increment load later by emitEpilogue if the callee-save stack 2295 // area allocation can't be combined with the local stack area allocation. 2296 // For example: 2297 // ldp fp, lr, [sp, #32] // addImm(+4) 2298 // ldp x20, x19, [sp, #16] // addImm(+2) 2299 // ldp x22, x21, [sp, #0] // addImm(+0) 2300 // Note: see comment in spillCalleeSavedRegisters() 2301 unsigned LdrOpc; 2302 unsigned Size; 2303 Align Alignment; 2304 switch (RPI.Type) { 2305 case RegPairInfo::GPR: 2306 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 2307 Size = 8; 2308 Alignment = Align(8); 2309 break; 2310 case RegPairInfo::FPR64: 2311 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 2312 Size = 8; 2313 Alignment = Align(8); 2314 break; 2315 case RegPairInfo::FPR128: 2316 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 2317 Size = 16; 2318 Alignment = Align(16); 2319 break; 2320 case RegPairInfo::ZPR: 2321 LdrOpc = AArch64::LDR_ZXI; 2322 Size = 16; 2323 Alignment = Align(16); 2324 break; 2325 case RegPairInfo::PPR: 2326 LdrOpc = AArch64::LDR_PXI; 2327 Size = 2; 2328 Alignment = Align(2); 2329 break; 2330 } 2331 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 2332 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 2333 dbgs() << ") -> fi#(" << RPI.FrameIdx; 2334 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 2335 dbgs() << ")\n"); 2336 2337 // Windows unwind codes require consecutive registers if registers are 2338 // paired. Make the switch here, so that the code below will save (x,x+1) 2339 // and not (x+1,x). 2340 unsigned FrameIdxReg1 = RPI.FrameIdx; 2341 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 2342 if (NeedsWinCFI && RPI.isPaired()) { 2343 std::swap(Reg1, Reg2); 2344 std::swap(FrameIdxReg1, FrameIdxReg2); 2345 } 2346 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc)); 2347 if (RPI.isPaired()) { 2348 MIB.addReg(Reg2, getDefRegState(true)); 2349 MIB.addMemOperand(MF.getMachineMemOperand( 2350 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 2351 MachineMemOperand::MOLoad, Size, Alignment)); 2352 } 2353 MIB.addReg(Reg1, getDefRegState(true)) 2354 .addReg(AArch64::SP) 2355 .addImm(RPI.Offset) // [sp, #offset*scale] 2356 // where factor*scale is implicit 2357 .setMIFlag(MachineInstr::FrameDestroy); 2358 MIB.addMemOperand(MF.getMachineMemOperand( 2359 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 2360 MachineMemOperand::MOLoad, Size, Alignment)); 2361 if (NeedsWinCFI) 2362 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 2363 }; 2364 2365 // SVE objects are always restored in reverse order. 2366 for (const RegPairInfo &RPI : reverse(RegPairs)) 2367 if (RPI.isScalable()) 2368 EmitMI(RPI); 2369 2370 if (ReverseCSRRestoreSeq) { 2371 for (const RegPairInfo &RPI : reverse(RegPairs)) 2372 if (!RPI.isScalable()) 2373 EmitMI(RPI); 2374 } else 2375 for (const RegPairInfo &RPI : RegPairs) 2376 if (!RPI.isScalable()) 2377 EmitMI(RPI); 2378 2379 if (NeedShadowCallStackProlog) { 2380 // Shadow call stack epilog: ldr x30, [x18, #-8]! 2381 BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre)) 2382 .addReg(AArch64::X18, RegState::Define) 2383 .addReg(AArch64::LR, RegState::Define) 2384 .addReg(AArch64::X18) 2385 .addImm(-8) 2386 .setMIFlag(MachineInstr::FrameDestroy); 2387 } 2388 2389 return true; 2390 } 2391 2392 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 2393 BitVector &SavedRegs, 2394 RegScavenger *RS) const { 2395 // All calls are tail calls in GHC calling conv, and functions have no 2396 // prologue/epilogue. 2397 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2398 return; 2399 2400 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2401 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 2402 MF.getSubtarget().getRegisterInfo()); 2403 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2404 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2405 unsigned UnspilledCSGPR = AArch64::NoRegister; 2406 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 2407 2408 MachineFrameInfo &MFI = MF.getFrameInfo(); 2409 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 2410 2411 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 2412 ? RegInfo->getBaseRegister() 2413 : (unsigned)AArch64::NoRegister; 2414 2415 unsigned ExtraCSSpill = 0; 2416 // Figure out which callee-saved registers to save/restore. 2417 for (unsigned i = 0; CSRegs[i]; ++i) { 2418 const unsigned Reg = CSRegs[i]; 2419 2420 // Add the base pointer register to SavedRegs if it is callee-save. 2421 if (Reg == BasePointerReg) 2422 SavedRegs.set(Reg); 2423 2424 bool RegUsed = SavedRegs.test(Reg); 2425 unsigned PairedReg = AArch64::NoRegister; 2426 if (AArch64::GPR64RegClass.contains(Reg) || 2427 AArch64::FPR64RegClass.contains(Reg) || 2428 AArch64::FPR128RegClass.contains(Reg)) 2429 PairedReg = CSRegs[i ^ 1]; 2430 2431 if (!RegUsed) { 2432 if (AArch64::GPR64RegClass.contains(Reg) && 2433 !RegInfo->isReservedReg(MF, Reg)) { 2434 UnspilledCSGPR = Reg; 2435 UnspilledCSGPRPaired = PairedReg; 2436 } 2437 continue; 2438 } 2439 2440 // MachO's compact unwind format relies on all registers being stored in 2441 // pairs. 2442 // FIXME: the usual format is actually better if unwinding isn't needed. 2443 if (produceCompactUnwindFrame(MF) && PairedReg != AArch64::NoRegister && 2444 !SavedRegs.test(PairedReg)) { 2445 SavedRegs.set(PairedReg); 2446 if (AArch64::GPR64RegClass.contains(PairedReg) && 2447 !RegInfo->isReservedReg(MF, PairedReg)) 2448 ExtraCSSpill = PairedReg; 2449 } 2450 } 2451 2452 if (MF.getFunction().getCallingConv() == CallingConv::Win64 && 2453 !Subtarget.isTargetWindows()) { 2454 // For Windows calling convention on a non-windows OS, where X18 is treated 2455 // as reserved, back up X18 when entering non-windows code (marked with the 2456 // Windows calling convention) and restore when returning regardless of 2457 // whether the individual function uses it - it might call other functions 2458 // that clobber it. 2459 SavedRegs.set(AArch64::X18); 2460 } 2461 2462 // Calculates the callee saved stack size. 2463 unsigned CSStackSize = 0; 2464 unsigned SVECSStackSize = 0; 2465 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2466 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2467 for (unsigned Reg : SavedRegs.set_bits()) { 2468 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; 2469 if (AArch64::PPRRegClass.contains(Reg) || 2470 AArch64::ZPRRegClass.contains(Reg)) 2471 SVECSStackSize += RegSize; 2472 else 2473 CSStackSize += RegSize; 2474 } 2475 2476 // Save number of saved regs, so we can easily update CSStackSize later. 2477 unsigned NumSavedRegs = SavedRegs.count(); 2478 2479 // The frame record needs to be created by saving the appropriate registers 2480 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 2481 if (hasFP(MF) || 2482 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 2483 SavedRegs.set(AArch64::FP); 2484 SavedRegs.set(AArch64::LR); 2485 } 2486 2487 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 2488 for (unsigned Reg 2489 : SavedRegs.set_bits()) dbgs() 2490 << ' ' << printReg(Reg, RegInfo); 2491 dbgs() << "\n";); 2492 2493 // If any callee-saved registers are used, the frame cannot be eliminated. 2494 int64_t SVEStackSize = 2495 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 2496 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 2497 2498 // The CSR spill slots have not been allocated yet, so estimateStackSize 2499 // won't include them. 2500 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 2501 2502 // Conservatively always assume BigStack when there are SVE spills. 2503 bool BigStack = SVEStackSize || 2504 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit; 2505 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 2506 AFI->setHasStackFrame(true); 2507 2508 // Estimate if we might need to scavenge a register at some point in order 2509 // to materialize a stack offset. If so, either spill one additional 2510 // callee-saved register or reserve a special spill slot to facilitate 2511 // register scavenging. If we already spilled an extra callee-saved register 2512 // above to keep the number of spills even, we don't need to do anything else 2513 // here. 2514 if (BigStack) { 2515 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 2516 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 2517 << " to get a scratch register.\n"); 2518 SavedRegs.set(UnspilledCSGPR); 2519 // MachO's compact unwind format relies on all registers being stored in 2520 // pairs, so if we need to spill one extra for BigStack, then we need to 2521 // store the pair. 2522 if (produceCompactUnwindFrame(MF)) 2523 SavedRegs.set(UnspilledCSGPRPaired); 2524 ExtraCSSpill = UnspilledCSGPR; 2525 } 2526 2527 // If we didn't find an extra callee-saved register to spill, create 2528 // an emergency spill slot. 2529 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 2530 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2531 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 2532 unsigned Size = TRI->getSpillSize(RC); 2533 Align Alignment = TRI->getSpillAlign(RC); 2534 int FI = MFI.CreateStackObject(Size, Alignment, false); 2535 RS->addScavengingFrameIndex(FI); 2536 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 2537 << " as the emergency spill slot.\n"); 2538 } 2539 } 2540 2541 // Adding the size of additional 64bit GPR saves. 2542 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 2543 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 2544 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 2545 << EstimatedStackSize + AlignedCSStackSize 2546 << " bytes.\n"); 2547 2548 assert((!MFI.isCalleeSavedInfoValid() || 2549 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 2550 "Should not invalidate callee saved info"); 2551 2552 // Round up to register pair alignment to avoid additional SP adjustment 2553 // instructions. 2554 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 2555 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 2556 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 2557 } 2558 2559 bool AArch64FrameLowering::enableStackSlotScavenging( 2560 const MachineFunction &MF) const { 2561 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2562 return AFI->hasCalleeSaveStackFreeSpace(); 2563 } 2564 2565 /// returns true if there are any SVE callee saves. 2566 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 2567 int &Min, int &Max) { 2568 Min = std::numeric_limits<int>::max(); 2569 Max = std::numeric_limits<int>::min(); 2570 2571 if (!MFI.isCalleeSavedInfoValid()) 2572 return false; 2573 2574 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2575 for (auto &CS : CSI) { 2576 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 2577 AArch64::PPRRegClass.contains(CS.getReg())) { 2578 assert((Max == std::numeric_limits<int>::min() || 2579 Max + 1 == CS.getFrameIdx()) && 2580 "SVE CalleeSaves are not consecutive"); 2581 2582 Min = std::min(Min, CS.getFrameIdx()); 2583 Max = std::max(Max, CS.getFrameIdx()); 2584 } 2585 } 2586 return Min != std::numeric_limits<int>::max(); 2587 } 2588 2589 // Process all the SVE stack objects and determine offsets for each 2590 // object. If AssignOffsets is true, the offsets get assigned. 2591 // Fills in the first and last callee-saved frame indices into 2592 // Min/MaxCSFrameIndex, respectively. 2593 // Returns the size of the stack. 2594 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 2595 int &MinCSFrameIndex, 2596 int &MaxCSFrameIndex, 2597 bool AssignOffsets) { 2598 // First process all fixed stack objects. 2599 int64_t Offset = 0; 2600 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 2601 if (MFI.getStackID(I) == TargetStackID::SVEVector) { 2602 int64_t FixedOffset = -MFI.getObjectOffset(I); 2603 if (FixedOffset > Offset) 2604 Offset = FixedOffset; 2605 } 2606 2607 auto Assign = [&MFI](int FI, int64_t Offset) { 2608 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 2609 MFI.setObjectOffset(FI, Offset); 2610 }; 2611 2612 // Then process all callee saved slots. 2613 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 2614 // Make sure to align the last callee save slot. 2615 MFI.setObjectAlignment(MaxCSFrameIndex, Align(16)); 2616 2617 // Assign offsets to the callee save slots. 2618 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 2619 Offset += MFI.getObjectSize(I); 2620 Offset = alignTo(Offset, MFI.getObjectAlign(I)); 2621 if (AssignOffsets) 2622 Assign(I, -Offset); 2623 } 2624 } 2625 2626 // Create a buffer of SVE objects to allocate and sort it. 2627 SmallVector<int, 8> ObjectsToAllocate; 2628 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 2629 unsigned StackID = MFI.getStackID(I); 2630 if (StackID != TargetStackID::SVEVector) 2631 continue; 2632 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 2633 continue; 2634 if (MFI.isDeadObjectIndex(I)) 2635 continue; 2636 2637 ObjectsToAllocate.push_back(I); 2638 } 2639 2640 // Allocate all SVE locals and spills 2641 for (unsigned FI : ObjectsToAllocate) { 2642 Align Alignment = MFI.getObjectAlign(FI); 2643 // FIXME: Given that the length of SVE vectors is not necessarily a power of 2644 // two, we'd need to align every object dynamically at runtime if the 2645 // alignment is larger than 16. This is not yet supported. 2646 if (Alignment > Align(16)) 2647 report_fatal_error( 2648 "Alignment of scalable vectors > 16 bytes is not yet supported"); 2649 2650 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); 2651 if (AssignOffsets) 2652 Assign(FI, -Offset); 2653 } 2654 2655 return Offset; 2656 } 2657 2658 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 2659 MachineFrameInfo &MFI) const { 2660 int MinCSFrameIndex, MaxCSFrameIndex; 2661 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 2662 } 2663 2664 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 2665 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 2666 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 2667 true); 2668 } 2669 2670 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 2671 MachineFunction &MF, RegScavenger *RS) const { 2672 MachineFrameInfo &MFI = MF.getFrameInfo(); 2673 2674 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 2675 "Upwards growing stack unsupported"); 2676 2677 int MinCSFrameIndex, MaxCSFrameIndex; 2678 int64_t SVEStackSize = 2679 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 2680 2681 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2682 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 2683 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 2684 2685 // If this function isn't doing Win64-style C++ EH, we don't need to do 2686 // anything. 2687 if (!MF.hasEHFunclets()) 2688 return; 2689 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2690 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 2691 2692 MachineBasicBlock &MBB = MF.front(); 2693 auto MBBI = MBB.begin(); 2694 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 2695 ++MBBI; 2696 2697 // Create an UnwindHelp object. 2698 // The UnwindHelp object is allocated at the start of the fixed object area 2699 int64_t FixedObject = 2700 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 2701 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 2702 /*SPOffset*/ -FixedObject, 2703 /*IsImmutable=*/false); 2704 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 2705 2706 // We need to store -2 into the UnwindHelp object at the start of the 2707 // function. 2708 DebugLoc DL; 2709 RS->enterBasicBlockEnd(MBB); 2710 RS->backward(std::prev(MBBI)); 2711 unsigned DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 2712 assert(DstReg && "There must be a free register after frame setup"); 2713 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 2714 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 2715 .addReg(DstReg, getKillRegState(true)) 2716 .addFrameIndex(UnwindHelpFI) 2717 .addImm(0); 2718 } 2719 2720 namespace { 2721 struct TagStoreInstr { 2722 MachineInstr *MI; 2723 int64_t Offset, Size; 2724 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) 2725 : MI(MI), Offset(Offset), Size(Size) {} 2726 }; 2727 2728 class TagStoreEdit { 2729 MachineFunction *MF; 2730 MachineBasicBlock *MBB; 2731 MachineRegisterInfo *MRI; 2732 // Tag store instructions that are being replaced. 2733 SmallVector<TagStoreInstr, 8> TagStores; 2734 // Combined memref arguments of the above instructions. 2735 SmallVector<MachineMemOperand *, 8> CombinedMemRefs; 2736 2737 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + 2738 // FrameRegOffset + Size) with the address tag of SP. 2739 Register FrameReg; 2740 StackOffset FrameRegOffset; 2741 int64_t Size; 2742 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end. 2743 Optional<int64_t> FrameRegUpdate; 2744 // MIFlags for any FrameReg updating instructions. 2745 unsigned FrameRegUpdateFlags; 2746 2747 // Use zeroing instruction variants. 2748 bool ZeroData; 2749 DebugLoc DL; 2750 2751 void emitUnrolled(MachineBasicBlock::iterator InsertI); 2752 void emitLoop(MachineBasicBlock::iterator InsertI); 2753 2754 public: 2755 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) 2756 : MBB(MBB), ZeroData(ZeroData) { 2757 MF = MBB->getParent(); 2758 MRI = &MF->getRegInfo(); 2759 } 2760 // Add an instruction to be replaced. Instructions must be added in the 2761 // ascending order of Offset, and have to be adjacent. 2762 void addInstruction(TagStoreInstr I) { 2763 assert((TagStores.empty() || 2764 TagStores.back().Offset + TagStores.back().Size == I.Offset) && 2765 "Non-adjacent tag store instructions."); 2766 TagStores.push_back(I); 2767 } 2768 void clear() { TagStores.clear(); } 2769 // Emit equivalent code at the given location, and erase the current set of 2770 // instructions. May skip if the replacement is not profitable. May invalidate 2771 // the input iterator and replace it with a valid one. 2772 void emitCode(MachineBasicBlock::iterator &InsertI, 2773 const AArch64FrameLowering *TFI, bool IsLast); 2774 }; 2775 2776 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { 2777 const AArch64InstrInfo *TII = 2778 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 2779 2780 const int64_t kMinOffset = -256 * 16; 2781 const int64_t kMaxOffset = 255 * 16; 2782 2783 Register BaseReg = FrameReg; 2784 int64_t BaseRegOffsetBytes = FrameRegOffset.getBytes(); 2785 if (BaseRegOffsetBytes < kMinOffset || 2786 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) { 2787 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2788 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, 2789 {BaseRegOffsetBytes, MVT::i8}, TII); 2790 BaseReg = ScratchReg; 2791 BaseRegOffsetBytes = 0; 2792 } 2793 2794 MachineInstr *LastI = nullptr; 2795 while (Size) { 2796 int64_t InstrSize = (Size > 16) ? 32 : 16; 2797 unsigned Opcode = 2798 InstrSize == 16 2799 ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset) 2800 : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset); 2801 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) 2802 .addReg(AArch64::SP) 2803 .addReg(BaseReg) 2804 .addImm(BaseRegOffsetBytes / 16) 2805 .setMemRefs(CombinedMemRefs); 2806 // A store to [BaseReg, #0] should go last for an opportunity to fold the 2807 // final SP adjustment in the epilogue. 2808 if (BaseRegOffsetBytes == 0) 2809 LastI = I; 2810 BaseRegOffsetBytes += InstrSize; 2811 Size -= InstrSize; 2812 } 2813 2814 if (LastI) 2815 MBB->splice(InsertI, MBB, LastI); 2816 } 2817 2818 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { 2819 const AArch64InstrInfo *TII = 2820 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 2821 2822 Register BaseReg = FrameRegUpdate 2823 ? FrameReg 2824 : MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2825 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 2826 2827 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); 2828 2829 int64_t LoopSize = Size; 2830 // If the loop size is not a multiple of 32, split off one 16-byte store at 2831 // the end to fold BaseReg update into. 2832 if (FrameRegUpdate && *FrameRegUpdate) 2833 LoopSize -= LoopSize % 32; 2834 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, 2835 TII->get(ZeroData ? AArch64::STZGloop_wback 2836 : AArch64::STGloop_wback)) 2837 .addDef(SizeReg) 2838 .addDef(BaseReg) 2839 .addImm(LoopSize) 2840 .addReg(BaseReg) 2841 .setMemRefs(CombinedMemRefs); 2842 if (FrameRegUpdate) 2843 LoopI->setFlags(FrameRegUpdateFlags); 2844 2845 int64_t ExtraBaseRegUpdate = 2846 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getBytes() - Size) : 0; 2847 if (LoopSize < Size) { 2848 assert(FrameRegUpdate); 2849 assert(Size - LoopSize == 16); 2850 // Tag 16 more bytes at BaseReg and update BaseReg. 2851 BuildMI(*MBB, InsertI, DL, 2852 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) 2853 .addDef(BaseReg) 2854 .addReg(BaseReg) 2855 .addReg(BaseReg) 2856 .addImm(1 + ExtraBaseRegUpdate / 16) 2857 .setMemRefs(CombinedMemRefs) 2858 .setMIFlags(FrameRegUpdateFlags); 2859 } else if (ExtraBaseRegUpdate) { 2860 // Update BaseReg. 2861 BuildMI( 2862 *MBB, InsertI, DL, 2863 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) 2864 .addDef(BaseReg) 2865 .addReg(BaseReg) 2866 .addImm(std::abs(ExtraBaseRegUpdate)) 2867 .addImm(0) 2868 .setMIFlags(FrameRegUpdateFlags); 2869 } 2870 } 2871 2872 // Check if *II is a register update that can be merged into STGloop that ends 2873 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the 2874 // end of the loop. 2875 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, 2876 int64_t Size, int64_t *TotalOffset) { 2877 MachineInstr &MI = *II; 2878 if ((MI.getOpcode() == AArch64::ADDXri || 2879 MI.getOpcode() == AArch64::SUBXri) && 2880 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { 2881 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); 2882 int64_t Offset = MI.getOperand(2).getImm() << Shift; 2883 if (MI.getOpcode() == AArch64::SUBXri) 2884 Offset = -Offset; 2885 int64_t AbsPostOffset = std::abs(Offset - Size); 2886 const int64_t kMaxOffset = 2887 0xFFF; // Max encoding for unshifted ADDXri / SUBXri 2888 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) { 2889 *TotalOffset = Offset; 2890 return true; 2891 } 2892 } 2893 return false; 2894 } 2895 2896 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE, 2897 SmallVectorImpl<MachineMemOperand *> &MemRefs) { 2898 MemRefs.clear(); 2899 for (auto &TS : TSE) { 2900 MachineInstr *MI = TS.MI; 2901 // An instruction without memory operands may access anything. Be 2902 // conservative and return an empty list. 2903 if (MI->memoperands_empty()) { 2904 MemRefs.clear(); 2905 return; 2906 } 2907 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); 2908 } 2909 } 2910 2911 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, 2912 const AArch64FrameLowering *TFI, bool IsLast) { 2913 if (TagStores.empty()) 2914 return; 2915 TagStoreInstr &FirstTagStore = TagStores[0]; 2916 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; 2917 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; 2918 DL = TagStores[0].MI->getDebugLoc(); 2919 2920 Register Reg; 2921 FrameRegOffset = TFI->resolveFrameOffsetReference( 2922 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, 2923 /*PreferFP=*/false, /*ForSimm=*/true); 2924 FrameReg = Reg; 2925 FrameRegUpdate = None; 2926 2927 mergeMemRefs(TagStores, CombinedMemRefs); 2928 2929 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n"; 2930 for (const auto &Instr 2931 : TagStores) { dbgs() << " " << *Instr.MI; }); 2932 2933 // Size threshold where a loop becomes shorter than a linear sequence of 2934 // tagging instructions. 2935 const int kSetTagLoopThreshold = 176; 2936 if (Size < kSetTagLoopThreshold) { 2937 if (TagStores.size() < 2) 2938 return; 2939 emitUnrolled(InsertI); 2940 } else { 2941 MachineInstr *UpdateInstr = nullptr; 2942 int64_t TotalOffset; 2943 if (IsLast) { 2944 // See if we can merge base register update into the STGloop. 2945 // This is done in AArch64LoadStoreOptimizer for "normal" stores, 2946 // but STGloop is way too unusual for that, and also it only 2947 // realistically happens in function epilogue. Also, STGloop is expanded 2948 // before that pass. 2949 if (InsertI != MBB->end() && 2950 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getBytes() + Size, 2951 &TotalOffset)) { 2952 UpdateInstr = &*InsertI++; 2953 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " 2954 << *UpdateInstr); 2955 } 2956 } 2957 2958 if (!UpdateInstr && TagStores.size() < 2) 2959 return; 2960 2961 if (UpdateInstr) { 2962 FrameRegUpdate = TotalOffset; 2963 FrameRegUpdateFlags = UpdateInstr->getFlags(); 2964 } 2965 emitLoop(InsertI); 2966 if (UpdateInstr) 2967 UpdateInstr->eraseFromParent(); 2968 } 2969 2970 for (auto &TS : TagStores) 2971 TS.MI->eraseFromParent(); 2972 } 2973 2974 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, 2975 int64_t &Size, bool &ZeroData) { 2976 MachineFunction &MF = *MI.getParent()->getParent(); 2977 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2978 2979 unsigned Opcode = MI.getOpcode(); 2980 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset || 2981 Opcode == AArch64::STZ2GOffset); 2982 2983 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { 2984 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) 2985 return false; 2986 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) 2987 return false; 2988 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); 2989 Size = MI.getOperand(2).getImm(); 2990 return true; 2991 } 2992 2993 if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset) 2994 Size = 16; 2995 else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset) 2996 Size = 32; 2997 else 2998 return false; 2999 3000 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) 3001 return false; 3002 3003 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 3004 16 * MI.getOperand(2).getImm(); 3005 return true; 3006 } 3007 3008 // Detect a run of memory tagging instructions for adjacent stack frame slots, 3009 // and replace them with a shorter instruction sequence: 3010 // * replace STG + STG with ST2G 3011 // * replace STGloop + STGloop with STGloop 3012 // This code needs to run when stack slot offsets are already known, but before 3013 // FrameIndex operands in STG instructions are eliminated. 3014 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, 3015 const AArch64FrameLowering *TFI, 3016 RegScavenger *RS) { 3017 bool FirstZeroData; 3018 int64_t Size, Offset; 3019 MachineInstr &MI = *II; 3020 MachineBasicBlock *MBB = MI.getParent(); 3021 MachineBasicBlock::iterator NextI = ++II; 3022 if (&MI == &MBB->instr_back()) 3023 return II; 3024 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) 3025 return II; 3026 3027 SmallVector<TagStoreInstr, 4> Instrs; 3028 Instrs.emplace_back(&MI, Offset, Size); 3029 3030 constexpr int kScanLimit = 10; 3031 int Count = 0; 3032 for (MachineBasicBlock::iterator E = MBB->end(); 3033 NextI != E && Count < kScanLimit; ++NextI) { 3034 MachineInstr &MI = *NextI; 3035 bool ZeroData; 3036 int64_t Size, Offset; 3037 // Collect instructions that update memory tags with a FrameIndex operand 3038 // and (when applicable) constant size, and whose output registers are dead 3039 // (the latter is almost always the case in practice). Since these 3040 // instructions effectively have no inputs or outputs, we are free to skip 3041 // any non-aliasing instructions in between without tracking used registers. 3042 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { 3043 if (ZeroData != FirstZeroData) 3044 break; 3045 Instrs.emplace_back(&MI, Offset, Size); 3046 continue; 3047 } 3048 3049 // Only count non-transient, non-tagging instructions toward the scan 3050 // limit. 3051 if (!MI.isTransient()) 3052 ++Count; 3053 3054 // Just in case, stop before the epilogue code starts. 3055 if (MI.getFlag(MachineInstr::FrameSetup) || 3056 MI.getFlag(MachineInstr::FrameDestroy)) 3057 break; 3058 3059 // Reject anything that may alias the collected instructions. 3060 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects()) 3061 break; 3062 } 3063 3064 // New code will be inserted after the last tagging instruction we've found. 3065 MachineBasicBlock::iterator InsertI = Instrs.back().MI; 3066 InsertI++; 3067 3068 llvm::stable_sort(Instrs, 3069 [](const TagStoreInstr &Left, const TagStoreInstr &Right) { 3070 return Left.Offset < Right.Offset; 3071 }); 3072 3073 // Make sure that we don't have any overlapping stores. 3074 int64_t CurOffset = Instrs[0].Offset; 3075 for (auto &Instr : Instrs) { 3076 if (CurOffset > Instr.Offset) 3077 return NextI; 3078 CurOffset = Instr.Offset + Instr.Size; 3079 } 3080 3081 // Find contiguous runs of tagged memory and emit shorter instruction 3082 // sequencies for them when possible. 3083 TagStoreEdit TSE(MBB, FirstZeroData); 3084 Optional<int64_t> EndOffset; 3085 for (auto &Instr : Instrs) { 3086 if (EndOffset && *EndOffset != Instr.Offset) { 3087 // Found a gap. 3088 TSE.emitCode(InsertI, TFI, /*IsLast = */ false); 3089 TSE.clear(); 3090 } 3091 3092 TSE.addInstruction(Instr); 3093 EndOffset = Instr.Offset + Instr.Size; 3094 } 3095 3096 TSE.emitCode(InsertI, TFI, /*IsLast = */ true); 3097 3098 return InsertI; 3099 } 3100 } // namespace 3101 3102 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3103 MachineFunction &MF, RegScavenger *RS = nullptr) const { 3104 if (StackTaggingMergeSetTag) 3105 for (auto &BB : MF) 3106 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) 3107 II = tryMergeAdjacentSTG(II, this, RS); 3108 } 3109 3110 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP 3111 /// before the update. This is easily retrieved as it is exactly the offset 3112 /// that is set in processFunctionBeforeFrameFinalized. 3113 int AArch64FrameLowering::getFrameIndexReferencePreferSP( 3114 const MachineFunction &MF, int FI, Register &FrameReg, 3115 bool IgnoreSPUpdates) const { 3116 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3117 if (IgnoreSPUpdates) { 3118 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 3119 << MFI.getObjectOffset(FI) << "\n"); 3120 FrameReg = AArch64::SP; 3121 return MFI.getObjectOffset(FI); 3122 } 3123 3124 return getFrameIndexReference(MF, FI, FrameReg); 3125 } 3126 3127 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 3128 /// the parent's frame pointer 3129 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 3130 const MachineFunction &MF) const { 3131 return 0; 3132 } 3133 3134 /// Funclets only need to account for space for the callee saved registers, 3135 /// as the locals are accounted for in the parent's stack frame. 3136 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 3137 const MachineFunction &MF) const { 3138 // This is the size of the pushed CSRs. 3139 unsigned CSSize = 3140 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 3141 // This is the amount of stack a funclet needs to allocate. 3142 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 3143 getStackAlign()); 3144 } 3145