xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp (revision 02e9120893770924227138ba49df1edb3896112a)
1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // |                                   | Higher address
22 // |-----------------------------------|
23 // |                                   |
24 // | arguments passed on the stack     |
25 // |                                   |
26 // |-----------------------------------| <- sp
27 // |                                   | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // |                                   | Higher address
37 // |-----------------------------------|
38 // |                                   |
39 // | arguments passed on the stack     |
40 // |                                   |
41 // |-----------------------------------|
42 // |                                   |
43 // | (Win64 only) varargs from reg     |
44 // |                                   |
45 // |-----------------------------------|
46 // |                                   |
47 // | callee-saved gpr registers        | <--.
48 // |                                   |    | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -|    | callee saves are swapped,
50 // | prev_lr                           |    | (frame record first)
51 // | prev_fp                           | <--'
52 // | async context if needed           |
53 // | (a.k.a. "frame record")           |
54 // |-----------------------------------| <- fp(=x29)
55 // |                                   |
56 // | callee-saved fp/simd/SVE regs     |
57 // |                                   |
58 // |-----------------------------------|
59 // |                                   |
60 // |        SVE stack objects          |
61 // |                                   |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....|  compile time; if present)
66 // |-----------------------------------|
67 // |                                   |
68 // | local variables of fixed size     |
69 // | including spill slots             |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....|       LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................|  compile time)
74 // |-----------------------------------| <- sp
75 // |                                   | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 //   variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 //   more-than-default alignment requirements.
91 //
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
99 // as:
100 //    ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
105 //
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
109 // or stores.
110 //
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
117 //
118 // FIXME: also explain the redzone concept.
119 //
120 // An example of the prologue:
121 //
122 //     .globl __foo
123 //     .align 2
124 //  __foo:
125 // Ltmp0:
126 //     .cfi_startproc
127 //     .cfi_personality 155, ___gxx_personality_v0
128 // Leh_func_begin:
129 //     .cfi_lsda 16, Lexception33
130 //
131 //     stp  xa,bx, [sp, -#offset]!
132 //     ...
133 //     stp  x28, x27, [sp, #offset-32]
134 //     stp  fp, lr, [sp, #offset-16]
135 //     add  fp, sp, #offset - 16
136 //     sub  sp, sp, #1360
137 //
138 // The Stack:
139 //       +-------------------------------------------+
140 // 10000 | ........ | ........ | ........ | ........ |
141 // 10004 | ........ | ........ | ........ | ........ |
142 //       +-------------------------------------------+
143 // 10008 | ........ | ........ | ........ | ........ |
144 // 1000c | ........ | ........ | ........ | ........ |
145 //       +===========================================+
146 // 10010 |                X28 Register               |
147 // 10014 |                X28 Register               |
148 //       +-------------------------------------------+
149 // 10018 |                X27 Register               |
150 // 1001c |                X27 Register               |
151 //       +===========================================+
152 // 10020 |                Frame Pointer              |
153 // 10024 |                Frame Pointer              |
154 //       +-------------------------------------------+
155 // 10028 |                Link Register              |
156 // 1002c |                Link Register              |
157 //       +===========================================+
158 // 10030 | ........ | ........ | ........ | ........ |
159 // 10034 | ........ | ........ | ........ | ........ |
160 //       +-------------------------------------------+
161 // 10038 | ........ | ........ | ........ | ........ |
162 // 1003c | ........ | ........ | ........ | ........ |
163 //       +-------------------------------------------+
164 //
165 //     [sp] = 10030        ::    >>initial value<<
166 //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
167 //     fp = sp == 10020    ::  mov fp, sp
168 //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
169 //     sp == 10010         ::    >>final value<<
170 //
171 // The frame pointer (w29) points to address 10020. If we use an offset of
172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
173 // for w27, and -32 for w28:
174 //
175 //  Ltmp1:
176 //     .cfi_def_cfa w29, 16
177 //  Ltmp2:
178 //     .cfi_offset w30, -8
179 //  Ltmp3:
180 //     .cfi_offset w29, -16
181 //  Ltmp4:
182 //     .cfi_offset w27, -24
183 //  Ltmp5:
184 //     .cfi_offset w28, -32
185 //
186 //===----------------------------------------------------------------------===//
187 
188 #include "AArch64FrameLowering.h"
189 #include "AArch64InstrInfo.h"
190 #include "AArch64MachineFunctionInfo.h"
191 #include "AArch64RegisterInfo.h"
192 #include "AArch64Subtarget.h"
193 #include "AArch64TargetMachine.h"
194 #include "MCTargetDesc/AArch64AddressingModes.h"
195 #include "MCTargetDesc/AArch64MCTargetDesc.h"
196 #include "llvm/ADT/ScopeExit.h"
197 #include "llvm/ADT/SmallVector.h"
198 #include "llvm/ADT/Statistic.h"
199 #include "llvm/CodeGen/LivePhysRegs.h"
200 #include "llvm/CodeGen/MachineBasicBlock.h"
201 #include "llvm/CodeGen/MachineFrameInfo.h"
202 #include "llvm/CodeGen/MachineFunction.h"
203 #include "llvm/CodeGen/MachineInstr.h"
204 #include "llvm/CodeGen/MachineInstrBuilder.h"
205 #include "llvm/CodeGen/MachineMemOperand.h"
206 #include "llvm/CodeGen/MachineModuleInfo.h"
207 #include "llvm/CodeGen/MachineOperand.h"
208 #include "llvm/CodeGen/MachineRegisterInfo.h"
209 #include "llvm/CodeGen/RegisterScavenging.h"
210 #include "llvm/CodeGen/TargetInstrInfo.h"
211 #include "llvm/CodeGen/TargetRegisterInfo.h"
212 #include "llvm/CodeGen/TargetSubtargetInfo.h"
213 #include "llvm/CodeGen/WinEHFuncInfo.h"
214 #include "llvm/IR/Attributes.h"
215 #include "llvm/IR/CallingConv.h"
216 #include "llvm/IR/DataLayout.h"
217 #include "llvm/IR/DebugLoc.h"
218 #include "llvm/IR/Function.h"
219 #include "llvm/MC/MCAsmInfo.h"
220 #include "llvm/MC/MCDwarf.h"
221 #include "llvm/Support/CommandLine.h"
222 #include "llvm/Support/Debug.h"
223 #include "llvm/Support/ErrorHandling.h"
224 #include "llvm/Support/MathExtras.h"
225 #include "llvm/Support/raw_ostream.h"
226 #include "llvm/Target/TargetMachine.h"
227 #include "llvm/Target/TargetOptions.h"
228 #include <cassert>
229 #include <cstdint>
230 #include <iterator>
231 #include <optional>
232 #include <vector>
233 
234 using namespace llvm;
235 
236 #define DEBUG_TYPE "frame-info"
237 
238 static cl::opt<bool> EnableRedZone("aarch64-redzone",
239                                    cl::desc("enable use of redzone on AArch64"),
240                                    cl::init(false), cl::Hidden);
241 
242 static cl::opt<bool>
243     ReverseCSRRestoreSeq("reverse-csr-restore-seq",
244                          cl::desc("reverse the CSR restore sequence"),
245                          cl::init(false), cl::Hidden);
246 
247 static cl::opt<bool> StackTaggingMergeSetTag(
248     "stack-tagging-merge-settag",
249     cl::desc("merge settag instruction in function epilog"), cl::init(true),
250     cl::Hidden);
251 
252 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
253                                        cl::desc("sort stack allocations"),
254                                        cl::init(true), cl::Hidden);
255 
256 cl::opt<bool> EnableHomogeneousPrologEpilog(
257     "homogeneous-prolog-epilog", cl::Hidden,
258     cl::desc("Emit homogeneous prologue and epilogue for the size "
259              "optimization (default = off)"));
260 
261 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
262 
263 /// Returns how much of the incoming argument stack area (in bytes) we should
264 /// clean up in an epilogue. For the C calling convention this will be 0, for
265 /// guaranteed tail call conventions it can be positive (a normal return or a
266 /// tail call to a function that uses less stack space for arguments) or
267 /// negative (for a tail call to a function that needs more stack space than us
268 /// for arguments).
269 static int64_t getArgumentStackToRestore(MachineFunction &MF,
270                                          MachineBasicBlock &MBB) {
271   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
272   bool IsTailCallReturn = false;
273   if (MBB.end() != MBBI) {
274     unsigned RetOpcode = MBBI->getOpcode();
275     IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
276                        RetOpcode == AArch64::TCRETURNri ||
277                        RetOpcode == AArch64::TCRETURNriBTI;
278   }
279   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
280 
281   int64_t ArgumentPopSize = 0;
282   if (IsTailCallReturn) {
283     MachineOperand &StackAdjust = MBBI->getOperand(1);
284 
285     // For a tail-call in a callee-pops-arguments environment, some or all of
286     // the stack may actually be in use for the call's arguments, this is
287     // calculated during LowerCall and consumed here...
288     ArgumentPopSize = StackAdjust.getImm();
289   } else {
290     // ... otherwise the amount to pop is *all* of the argument space,
291     // conveniently stored in the MachineFunctionInfo by
292     // LowerFormalArguments. This will, of course, be zero for the C calling
293     // convention.
294     ArgumentPopSize = AFI->getArgumentStackToRestore();
295   }
296 
297   return ArgumentPopSize;
298 }
299 
300 static bool produceCompactUnwindFrame(MachineFunction &MF);
301 static bool needsWinCFI(const MachineFunction &MF);
302 static StackOffset getSVEStackSize(const MachineFunction &MF);
303 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF);
304 
305 /// Returns true if a homogeneous prolog or epilog code can be emitted
306 /// for the size optimization. If possible, a frame helper call is injected.
307 /// When Exit block is given, this check is for epilog.
308 bool AArch64FrameLowering::homogeneousPrologEpilog(
309     MachineFunction &MF, MachineBasicBlock *Exit) const {
310   if (!MF.getFunction().hasMinSize())
311     return false;
312   if (!EnableHomogeneousPrologEpilog)
313     return false;
314   if (ReverseCSRRestoreSeq)
315     return false;
316   if (EnableRedZone)
317     return false;
318 
319   // TODO: Window is supported yet.
320   if (needsWinCFI(MF))
321     return false;
322   // TODO: SVE is not supported yet.
323   if (getSVEStackSize(MF))
324     return false;
325 
326   // Bail on stack adjustment needed on return for simplicity.
327   const MachineFrameInfo &MFI = MF.getFrameInfo();
328   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
329   if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
330     return false;
331   if (Exit && getArgumentStackToRestore(MF, *Exit))
332     return false;
333 
334   return true;
335 }
336 
337 /// Returns true if CSRs should be paired.
338 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
339   return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
340 }
341 
342 /// This is the biggest offset to the stack pointer we can encode in aarch64
343 /// instructions (without using a separate calculation and a temp register).
344 /// Note that the exception here are vector stores/loads which cannot encode any
345 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
346 static const unsigned DefaultSafeSPDisplacement = 255;
347 
348 /// Look at each instruction that references stack frames and return the stack
349 /// size limit beyond which some of these instructions will require a scratch
350 /// register during their expansion later.
351 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
352   // FIXME: For now, just conservatively guestimate based on unscaled indexing
353   // range. We'll end up allocating an unnecessary spill slot a lot, but
354   // realistically that's not a big deal at this stage of the game.
355   for (MachineBasicBlock &MBB : MF) {
356     for (MachineInstr &MI : MBB) {
357       if (MI.isDebugInstr() || MI.isPseudo() ||
358           MI.getOpcode() == AArch64::ADDXri ||
359           MI.getOpcode() == AArch64::ADDSXri)
360         continue;
361 
362       for (const MachineOperand &MO : MI.operands()) {
363         if (!MO.isFI())
364           continue;
365 
366         StackOffset Offset;
367         if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
368             AArch64FrameOffsetCannotUpdate)
369           return 0;
370       }
371     }
372   }
373   return DefaultSafeSPDisplacement;
374 }
375 
376 TargetStackID::Value
377 AArch64FrameLowering::getStackIDForScalableVectors() const {
378   return TargetStackID::ScalableVector;
379 }
380 
381 /// Returns the size of the fixed object area (allocated next to sp on entry)
382 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
383 static unsigned getFixedObjectSize(const MachineFunction &MF,
384                                    const AArch64FunctionInfo *AFI, bool IsWin64,
385                                    bool IsFunclet) {
386   if (!IsWin64 || IsFunclet) {
387     return AFI->getTailCallReservedStack();
388   } else {
389     if (AFI->getTailCallReservedStack() != 0)
390       report_fatal_error("cannot generate ABI-changing tail call for Win64");
391     // Var args are stored here in the primary function.
392     const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
393     // To support EH funclets we allocate an UnwindHelp object
394     const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
395     return alignTo(VarArgsArea + UnwindHelpObject, 16);
396   }
397 }
398 
399 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
400 static StackOffset getSVEStackSize(const MachineFunction &MF) {
401   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
402   return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
403 }
404 
405 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
406   if (!EnableRedZone)
407     return false;
408 
409   // Don't use the red zone if the function explicitly asks us not to.
410   // This is typically used for kernel code.
411   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
412   const unsigned RedZoneSize =
413       Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
414   if (!RedZoneSize)
415     return false;
416 
417   const MachineFrameInfo &MFI = MF.getFrameInfo();
418   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
419   uint64_t NumBytes = AFI->getLocalStackSize();
420 
421   return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
422            getSVEStackSize(MF));
423 }
424 
425 /// hasFP - Return true if the specified function should have a dedicated frame
426 /// pointer register.
427 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
428   const MachineFrameInfo &MFI = MF.getFrameInfo();
429   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
430   // Win64 EH requires a frame pointer if funclets are present, as the locals
431   // are accessed off the frame pointer in both the parent function and the
432   // funclets.
433   if (MF.hasEHFunclets())
434     return true;
435   // Retain behavior of always omitting the FP for leaf functions when possible.
436   if (MF.getTarget().Options.DisableFramePointerElim(MF))
437     return true;
438   if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
439       MFI.hasStackMap() || MFI.hasPatchPoint() ||
440       RegInfo->hasStackRealignment(MF))
441     return true;
442   // With large callframes around we may need to use FP to access the scavenging
443   // emergency spillslot.
444   //
445   // Unfortunately some calls to hasFP() like machine verifier ->
446   // getReservedReg() -> hasFP in the middle of global isel are too early
447   // to know the max call frame size. Hopefully conservatively returning "true"
448   // in those cases is fine.
449   // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
450   if (!MFI.isMaxCallFrameSizeComputed() ||
451       MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
452     return true;
453 
454   return false;
455 }
456 
457 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
458 /// not required, we reserve argument space for call sites in the function
459 /// immediately on entry to the current function.  This eliminates the need for
460 /// add/sub sp brackets around call sites.  Returns true if the call frame is
461 /// included as part of the stack frame.
462 bool
463 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
464   return !MF.getFrameInfo().hasVarSizedObjects();
465 }
466 
467 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
468     MachineFunction &MF, MachineBasicBlock &MBB,
469     MachineBasicBlock::iterator I) const {
470   const AArch64InstrInfo *TII =
471       static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
472   DebugLoc DL = I->getDebugLoc();
473   unsigned Opc = I->getOpcode();
474   bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
475   uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
476 
477   if (!hasReservedCallFrame(MF)) {
478     int64_t Amount = I->getOperand(0).getImm();
479     Amount = alignTo(Amount, getStackAlign());
480     if (!IsDestroy)
481       Amount = -Amount;
482 
483     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
484     // doesn't have to pop anything), then the first operand will be zero too so
485     // this adjustment is a no-op.
486     if (CalleePopAmount == 0) {
487       // FIXME: in-function stack adjustment for calls is limited to 24-bits
488       // because there's no guaranteed temporary register available.
489       //
490       // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
491       // 1) For offset <= 12-bit, we use LSL #0
492       // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
493       // LSL #0, and the other uses LSL #12.
494       //
495       // Most call frames will be allocated at the start of a function so
496       // this is OK, but it is a limitation that needs dealing with.
497       assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
498       emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
499                       StackOffset::getFixed(Amount), TII);
500     }
501   } else if (CalleePopAmount != 0) {
502     // If the calling convention demands that the callee pops arguments from the
503     // stack, we want to add it back if we have a reserved call frame.
504     assert(CalleePopAmount < 0xffffff && "call frame too large");
505     emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
506                     StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
507   }
508   return MBB.erase(I);
509 }
510 
511 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
512     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
513   MachineFunction &MF = *MBB.getParent();
514   MachineFrameInfo &MFI = MF.getFrameInfo();
515 
516   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
517   if (CSI.empty())
518     return;
519 
520   const TargetSubtargetInfo &STI = MF.getSubtarget();
521   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
522   const TargetInstrInfo &TII = *STI.getInstrInfo();
523   DebugLoc DL = MBB.findDebugLoc(MBBI);
524 
525   for (const auto &Info : CSI) {
526     if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)
527       continue;
528 
529     assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
530     unsigned DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
531 
532     int64_t Offset =
533         MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
534     unsigned CFIIndex = MF.addFrameInst(
535         MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
536     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
537         .addCFIIndex(CFIIndex)
538         .setMIFlags(MachineInstr::FrameSetup);
539   }
540 }
541 
542 void AArch64FrameLowering::emitCalleeSavedSVELocations(
543     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
544   MachineFunction &MF = *MBB.getParent();
545   MachineFrameInfo &MFI = MF.getFrameInfo();
546 
547   // Add callee saved registers to move list.
548   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
549   if (CSI.empty())
550     return;
551 
552   const TargetSubtargetInfo &STI = MF.getSubtarget();
553   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
554   const TargetInstrInfo &TII = *STI.getInstrInfo();
555   DebugLoc DL = MBB.findDebugLoc(MBBI);
556   AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
557 
558   for (const auto &Info : CSI) {
559     if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
560       continue;
561 
562     // Not all unwinders may know about SVE registers, so assume the lowest
563     // common demoninator.
564     assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
565     unsigned Reg = Info.getReg();
566     if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
567       continue;
568 
569     StackOffset Offset =
570         StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
571         StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
572 
573     unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
574     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
575         .addCFIIndex(CFIIndex)
576         .setMIFlags(MachineInstr::FrameSetup);
577   }
578 }
579 
580 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
581                                MachineBasicBlock &MBB,
582                                MachineBasicBlock::iterator InsertPt,
583                                unsigned DwarfReg) {
584   unsigned CFIIndex =
585       MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
586   BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
587 }
588 
589 void AArch64FrameLowering::resetCFIToInitialState(
590     MachineBasicBlock &MBB) const {
591 
592   MachineFunction &MF = *MBB.getParent();
593   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
594   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
595   const auto &TRI =
596       static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
597   const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
598 
599   const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
600   DebugLoc DL;
601 
602   // Reset the CFA to `SP + 0`.
603   MachineBasicBlock::iterator InsertPt = MBB.begin();
604   unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
605       nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
606   BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
607 
608   // Flip the RA sign state.
609   if (MFI.shouldSignReturnAddress(MF)) {
610     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
611     BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
612   }
613 
614   // Shadow call stack uses X18, reset it.
615   if (needsShadowCallStackPrologueEpilogue(MF))
616     insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
617                        TRI.getDwarfRegNum(AArch64::X18, true));
618 
619   // Emit .cfi_same_value for callee-saved registers.
620   const std::vector<CalleeSavedInfo> &CSI =
621       MF.getFrameInfo().getCalleeSavedInfo();
622   for (const auto &Info : CSI) {
623     unsigned Reg = Info.getReg();
624     if (!TRI.regNeedsCFI(Reg, Reg))
625       continue;
626     insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
627                        TRI.getDwarfRegNum(Reg, true));
628   }
629 }
630 
631 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
632                                     MachineBasicBlock::iterator MBBI,
633                                     bool SVE) {
634   MachineFunction &MF = *MBB.getParent();
635   MachineFrameInfo &MFI = MF.getFrameInfo();
636 
637   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
638   if (CSI.empty())
639     return;
640 
641   const TargetSubtargetInfo &STI = MF.getSubtarget();
642   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
643   const TargetInstrInfo &TII = *STI.getInstrInfo();
644   DebugLoc DL = MBB.findDebugLoc(MBBI);
645 
646   for (const auto &Info : CSI) {
647     if (SVE !=
648         (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
649       continue;
650 
651     unsigned Reg = Info.getReg();
652     if (SVE &&
653         !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
654       continue;
655 
656     unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
657         nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
658     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
659         .addCFIIndex(CFIIndex)
660         .setMIFlags(MachineInstr::FrameDestroy);
661   }
662 }
663 
664 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
665     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
666   emitCalleeSavedRestores(MBB, MBBI, false);
667 }
668 
669 void AArch64FrameLowering::emitCalleeSavedSVERestores(
670     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
671   emitCalleeSavedRestores(MBB, MBBI, true);
672 }
673 
674 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
675   switch (Reg.id()) {
676   default:
677     // The called routine is expected to preserve r19-r28
678     // r29 and r30 are used as frame pointer and link register resp.
679     return 0;
680 
681     // GPRs
682 #define CASE(n)                                                                \
683   case AArch64::W##n:                                                          \
684   case AArch64::X##n:                                                          \
685     return AArch64::X##n
686   CASE(0);
687   CASE(1);
688   CASE(2);
689   CASE(3);
690   CASE(4);
691   CASE(5);
692   CASE(6);
693   CASE(7);
694   CASE(8);
695   CASE(9);
696   CASE(10);
697   CASE(11);
698   CASE(12);
699   CASE(13);
700   CASE(14);
701   CASE(15);
702   CASE(16);
703   CASE(17);
704   CASE(18);
705 #undef CASE
706 
707     // FPRs
708 #define CASE(n)                                                                \
709   case AArch64::B##n:                                                          \
710   case AArch64::H##n:                                                          \
711   case AArch64::S##n:                                                          \
712   case AArch64::D##n:                                                          \
713   case AArch64::Q##n:                                                          \
714     return HasSVE ? AArch64::Z##n : AArch64::Q##n
715   CASE(0);
716   CASE(1);
717   CASE(2);
718   CASE(3);
719   CASE(4);
720   CASE(5);
721   CASE(6);
722   CASE(7);
723   CASE(8);
724   CASE(9);
725   CASE(10);
726   CASE(11);
727   CASE(12);
728   CASE(13);
729   CASE(14);
730   CASE(15);
731   CASE(16);
732   CASE(17);
733   CASE(18);
734   CASE(19);
735   CASE(20);
736   CASE(21);
737   CASE(22);
738   CASE(23);
739   CASE(24);
740   CASE(25);
741   CASE(26);
742   CASE(27);
743   CASE(28);
744   CASE(29);
745   CASE(30);
746   CASE(31);
747 #undef CASE
748   }
749 }
750 
751 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
752                                                 MachineBasicBlock &MBB) const {
753   // Insertion point.
754   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
755 
756   // Fake a debug loc.
757   DebugLoc DL;
758   if (MBBI != MBB.end())
759     DL = MBBI->getDebugLoc();
760 
761   const MachineFunction &MF = *MBB.getParent();
762   const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
763   const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
764 
765   BitVector GPRsToZero(TRI.getNumRegs());
766   BitVector FPRsToZero(TRI.getNumRegs());
767   bool HasSVE = STI.hasSVE();
768   for (MCRegister Reg : RegsToZero.set_bits()) {
769     if (TRI.isGeneralPurposeRegister(MF, Reg)) {
770       // For GPRs, we only care to clear out the 64-bit register.
771       if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
772         GPRsToZero.set(XReg);
773     } else if (AArch64::FPR128RegClass.contains(Reg) ||
774                AArch64::FPR64RegClass.contains(Reg) ||
775                AArch64::FPR32RegClass.contains(Reg) ||
776                AArch64::FPR16RegClass.contains(Reg) ||
777                AArch64::FPR8RegClass.contains(Reg)) {
778       // For FPRs,
779       if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
780         FPRsToZero.set(XReg);
781     }
782   }
783 
784   const AArch64InstrInfo &TII = *STI.getInstrInfo();
785 
786   // Zero out GPRs.
787   for (MCRegister Reg : GPRsToZero.set_bits())
788     BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), Reg).addImm(0);
789 
790   // Zero out FP/vector registers.
791   for (MCRegister Reg : FPRsToZero.set_bits())
792     if (HasSVE)
793       BuildMI(MBB, MBBI, DL, TII.get(AArch64::DUP_ZI_D), Reg)
794         .addImm(0)
795         .addImm(0);
796     else
797       BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVIv2d_ns), Reg).addImm(0);
798 
799   if (HasSVE) {
800     for (MCRegister PReg :
801          {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
802           AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
803           AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
804           AArch64::P15}) {
805       if (RegsToZero[PReg])
806         BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
807     }
808   }
809 }
810 
811 // Find a scratch register that we can use at the start of the prologue to
812 // re-align the stack pointer.  We avoid using callee-save registers since they
813 // may appear to be free when this is called from canUseAsPrologue (during
814 // shrink wrapping), but then no longer be free when this is called from
815 // emitPrologue.
816 //
817 // FIXME: This is a bit conservative, since in the above case we could use one
818 // of the callee-save registers as a scratch temp to re-align the stack pointer,
819 // but we would then have to make sure that we were in fact saving at least one
820 // callee-save register in the prologue, which is additional complexity that
821 // doesn't seem worth the benefit.
822 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
823   MachineFunction *MF = MBB->getParent();
824 
825   // If MBB is an entry block, use X9 as the scratch register
826   if (&MF->front() == MBB)
827     return AArch64::X9;
828 
829   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
830   const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
831   LivePhysRegs LiveRegs(TRI);
832   LiveRegs.addLiveIns(*MBB);
833 
834   // Mark callee saved registers as used so we will not choose them.
835   const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
836   for (unsigned i = 0; CSRegs[i]; ++i)
837     LiveRegs.addReg(CSRegs[i]);
838 
839   // Prefer X9 since it was historically used for the prologue scratch reg.
840   const MachineRegisterInfo &MRI = MF->getRegInfo();
841   if (LiveRegs.available(MRI, AArch64::X9))
842     return AArch64::X9;
843 
844   for (unsigned Reg : AArch64::GPR64RegClass) {
845     if (LiveRegs.available(MRI, Reg))
846       return Reg;
847   }
848   return AArch64::NoRegister;
849 }
850 
851 bool AArch64FrameLowering::canUseAsPrologue(
852     const MachineBasicBlock &MBB) const {
853   const MachineFunction *MF = MBB.getParent();
854   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
855   const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
856   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
857 
858   // Don't need a scratch register if we're not going to re-align the stack.
859   if (!RegInfo->hasStackRealignment(*MF))
860     return true;
861   // Otherwise, we can use any block as long as it has a scratch register
862   // available.
863   return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
864 }
865 
866 static bool windowsRequiresStackProbe(MachineFunction &MF,
867                                       uint64_t StackSizeInBytes) {
868   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
869   if (!Subtarget.isTargetWindows())
870     return false;
871   const Function &F = MF.getFunction();
872   // TODO: When implementing stack protectors, take that into account
873   // for the probe threshold.
874   unsigned StackProbeSize =
875       F.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
876   return (StackSizeInBytes >= StackProbeSize) &&
877          !F.hasFnAttribute("no-stack-arg-probe");
878 }
879 
880 static bool needsWinCFI(const MachineFunction &MF) {
881   const Function &F = MF.getFunction();
882   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
883          F.needsUnwindTableEntry();
884 }
885 
886 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
887     MachineFunction &MF, uint64_t StackBumpBytes) const {
888   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
889   const MachineFrameInfo &MFI = MF.getFrameInfo();
890   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
891   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
892   if (homogeneousPrologEpilog(MF))
893     return false;
894 
895   if (AFI->getLocalStackSize() == 0)
896     return false;
897 
898   // For WinCFI, if optimizing for size, prefer to not combine the stack bump
899   // (to force a stp with predecrement) to match the packed unwind format,
900   // provided that there actually are any callee saved registers to merge the
901   // decrement with.
902   // This is potentially marginally slower, but allows using the packed
903   // unwind format for functions that both have a local area and callee saved
904   // registers. Using the packed unwind format notably reduces the size of
905   // the unwind info.
906   if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
907       MF.getFunction().hasOptSize())
908     return false;
909 
910   // 512 is the maximum immediate for stp/ldp that will be used for
911   // callee-save save/restores
912   if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
913     return false;
914 
915   if (MFI.hasVarSizedObjects())
916     return false;
917 
918   if (RegInfo->hasStackRealignment(MF))
919     return false;
920 
921   // This isn't strictly necessary, but it simplifies things a bit since the
922   // current RedZone handling code assumes the SP is adjusted by the
923   // callee-save save/restore code.
924   if (canUseRedZone(MF))
925     return false;
926 
927   // When there is an SVE area on the stack, always allocate the
928   // callee-saves and spills/locals separately.
929   if (getSVEStackSize(MF))
930     return false;
931 
932   return true;
933 }
934 
935 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
936     MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
937   if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
938     return false;
939 
940   if (MBB.empty())
941     return true;
942 
943   // Disable combined SP bump if the last instruction is an MTE tag store. It
944   // is almost always better to merge SP adjustment into those instructions.
945   MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
946   MachineBasicBlock::iterator Begin = MBB.begin();
947   while (LastI != Begin) {
948     --LastI;
949     if (LastI->isTransient())
950       continue;
951     if (!LastI->getFlag(MachineInstr::FrameDestroy))
952       break;
953   }
954   switch (LastI->getOpcode()) {
955   case AArch64::STGloop:
956   case AArch64::STZGloop:
957   case AArch64::STGi:
958   case AArch64::STZGi:
959   case AArch64::ST2Gi:
960   case AArch64::STZ2Gi:
961     return false;
962   default:
963     return true;
964   }
965   llvm_unreachable("unreachable");
966 }
967 
968 // Given a load or a store instruction, generate an appropriate unwinding SEH
969 // code on Windows.
970 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
971                                              const TargetInstrInfo &TII,
972                                              MachineInstr::MIFlag Flag) {
973   unsigned Opc = MBBI->getOpcode();
974   MachineBasicBlock *MBB = MBBI->getParent();
975   MachineFunction &MF = *MBB->getParent();
976   DebugLoc DL = MBBI->getDebugLoc();
977   unsigned ImmIdx = MBBI->getNumOperands() - 1;
978   int Imm = MBBI->getOperand(ImmIdx).getImm();
979   MachineInstrBuilder MIB;
980   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
981   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
982 
983   switch (Opc) {
984   default:
985     llvm_unreachable("No SEH Opcode for this instruction");
986   case AArch64::LDPDpost:
987     Imm = -Imm;
988     [[fallthrough]];
989   case AArch64::STPDpre: {
990     unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
991     unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
992     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
993               .addImm(Reg0)
994               .addImm(Reg1)
995               .addImm(Imm * 8)
996               .setMIFlag(Flag);
997     break;
998   }
999   case AArch64::LDPXpost:
1000     Imm = -Imm;
1001     [[fallthrough]];
1002   case AArch64::STPXpre: {
1003     Register Reg0 = MBBI->getOperand(1).getReg();
1004     Register Reg1 = MBBI->getOperand(2).getReg();
1005     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1006       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1007                 .addImm(Imm * 8)
1008                 .setMIFlag(Flag);
1009     else
1010       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1011                 .addImm(RegInfo->getSEHRegNum(Reg0))
1012                 .addImm(RegInfo->getSEHRegNum(Reg1))
1013                 .addImm(Imm * 8)
1014                 .setMIFlag(Flag);
1015     break;
1016   }
1017   case AArch64::LDRDpost:
1018     Imm = -Imm;
1019     [[fallthrough]];
1020   case AArch64::STRDpre: {
1021     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1022     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1023               .addImm(Reg)
1024               .addImm(Imm)
1025               .setMIFlag(Flag);
1026     break;
1027   }
1028   case AArch64::LDRXpost:
1029     Imm = -Imm;
1030     [[fallthrough]];
1031   case AArch64::STRXpre: {
1032     unsigned Reg =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1033     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1034               .addImm(Reg)
1035               .addImm(Imm)
1036               .setMIFlag(Flag);
1037     break;
1038   }
1039   case AArch64::STPDi:
1040   case AArch64::LDPDi: {
1041     unsigned Reg0 =  RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1042     unsigned Reg1 =  RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1043     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1044               .addImm(Reg0)
1045               .addImm(Reg1)
1046               .addImm(Imm * 8)
1047               .setMIFlag(Flag);
1048     break;
1049   }
1050   case AArch64::STPXi:
1051   case AArch64::LDPXi: {
1052     Register Reg0 = MBBI->getOperand(0).getReg();
1053     Register Reg1 = MBBI->getOperand(1).getReg();
1054     if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1055       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1056                 .addImm(Imm * 8)
1057                 .setMIFlag(Flag);
1058     else
1059       MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1060                 .addImm(RegInfo->getSEHRegNum(Reg0))
1061                 .addImm(RegInfo->getSEHRegNum(Reg1))
1062                 .addImm(Imm * 8)
1063                 .setMIFlag(Flag);
1064     break;
1065   }
1066   case AArch64::STRXui:
1067   case AArch64::LDRXui: {
1068     int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1069     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1070               .addImm(Reg)
1071               .addImm(Imm * 8)
1072               .setMIFlag(Flag);
1073     break;
1074   }
1075   case AArch64::STRDui:
1076   case AArch64::LDRDui: {
1077     unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1078     MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1079               .addImm(Reg)
1080               .addImm(Imm * 8)
1081               .setMIFlag(Flag);
1082     break;
1083   }
1084   }
1085   auto I = MBB->insertAfter(MBBI, MIB);
1086   return I;
1087 }
1088 
1089 // Fix up the SEH opcode associated with the save/restore instruction.
1090 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1091                            unsigned LocalStackSize) {
1092   MachineOperand *ImmOpnd = nullptr;
1093   unsigned ImmIdx = MBBI->getNumOperands() - 1;
1094   switch (MBBI->getOpcode()) {
1095   default:
1096     llvm_unreachable("Fix the offset in the SEH instruction");
1097   case AArch64::SEH_SaveFPLR:
1098   case AArch64::SEH_SaveRegP:
1099   case AArch64::SEH_SaveReg:
1100   case AArch64::SEH_SaveFRegP:
1101   case AArch64::SEH_SaveFReg:
1102     ImmOpnd = &MBBI->getOperand(ImmIdx);
1103     break;
1104   }
1105   if (ImmOpnd)
1106     ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1107 }
1108 
1109 // Convert callee-save register save/restore instruction to do stack pointer
1110 // decrement/increment to allocate/deallocate the callee-save stack area by
1111 // converting store/load to use pre/post increment version.
1112 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1113     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1114     const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1115     bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1116     MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1117     int CFAOffset = 0) {
1118   unsigned NewOpc;
1119   switch (MBBI->getOpcode()) {
1120   default:
1121     llvm_unreachable("Unexpected callee-save save/restore opcode!");
1122   case AArch64::STPXi:
1123     NewOpc = AArch64::STPXpre;
1124     break;
1125   case AArch64::STPDi:
1126     NewOpc = AArch64::STPDpre;
1127     break;
1128   case AArch64::STPQi:
1129     NewOpc = AArch64::STPQpre;
1130     break;
1131   case AArch64::STRXui:
1132     NewOpc = AArch64::STRXpre;
1133     break;
1134   case AArch64::STRDui:
1135     NewOpc = AArch64::STRDpre;
1136     break;
1137   case AArch64::STRQui:
1138     NewOpc = AArch64::STRQpre;
1139     break;
1140   case AArch64::LDPXi:
1141     NewOpc = AArch64::LDPXpost;
1142     break;
1143   case AArch64::LDPDi:
1144     NewOpc = AArch64::LDPDpost;
1145     break;
1146   case AArch64::LDPQi:
1147     NewOpc = AArch64::LDPQpost;
1148     break;
1149   case AArch64::LDRXui:
1150     NewOpc = AArch64::LDRXpost;
1151     break;
1152   case AArch64::LDRDui:
1153     NewOpc = AArch64::LDRDpost;
1154     break;
1155   case AArch64::LDRQui:
1156     NewOpc = AArch64::LDRQpost;
1157     break;
1158   }
1159   // Get rid of the SEH code associated with the old instruction.
1160   if (NeedsWinCFI) {
1161     auto SEH = std::next(MBBI);
1162     if (AArch64InstrInfo::isSEHInstruction(*SEH))
1163       SEH->eraseFromParent();
1164   }
1165 
1166   TypeSize Scale = TypeSize::Fixed(1);
1167   unsigned Width;
1168   int64_t MinOffset, MaxOffset;
1169   bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1170       NewOpc, Scale, Width, MinOffset, MaxOffset);
1171   (void)Success;
1172   assert(Success && "unknown load/store opcode");
1173 
1174   // If the first store isn't right where we want SP then we can't fold the
1175   // update in so create a normal arithmetic instruction instead.
1176   MachineFunction &MF = *MBB.getParent();
1177   if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1178       CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1179     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1180                     StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1181                     false, false, nullptr, EmitCFI,
1182                     StackOffset::getFixed(CFAOffset));
1183 
1184     return std::prev(MBBI);
1185   }
1186 
1187   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1188   MIB.addReg(AArch64::SP, RegState::Define);
1189 
1190   // Copy all operands other than the immediate offset.
1191   unsigned OpndIdx = 0;
1192   for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1193        ++OpndIdx)
1194     MIB.add(MBBI->getOperand(OpndIdx));
1195 
1196   assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1197          "Unexpected immediate offset in first/last callee-save save/restore "
1198          "instruction!");
1199   assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1200          "Unexpected base register in callee-save save/restore instruction!");
1201   assert(CSStackSizeInc % Scale == 0);
1202   MIB.addImm(CSStackSizeInc / (int)Scale);
1203 
1204   MIB.setMIFlags(MBBI->getFlags());
1205   MIB.setMemRefs(MBBI->memoperands());
1206 
1207   // Generate a new SEH code that corresponds to the new instruction.
1208   if (NeedsWinCFI) {
1209     *HasWinCFI = true;
1210     InsertSEH(*MIB, *TII, FrameFlag);
1211   }
1212 
1213   if (EmitCFI) {
1214     unsigned CFIIndex = MF.addFrameInst(
1215         MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1216     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1217         .addCFIIndex(CFIIndex)
1218         .setMIFlags(FrameFlag);
1219   }
1220 
1221   return std::prev(MBB.erase(MBBI));
1222 }
1223 
1224 // Fixup callee-save register save/restore instructions to take into account
1225 // combined SP bump by adding the local stack size to the stack offsets.
1226 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1227                                               uint64_t LocalStackSize,
1228                                               bool NeedsWinCFI,
1229                                               bool *HasWinCFI) {
1230   if (AArch64InstrInfo::isSEHInstruction(MI))
1231     return;
1232 
1233   unsigned Opc = MI.getOpcode();
1234   unsigned Scale;
1235   switch (Opc) {
1236   case AArch64::STPXi:
1237   case AArch64::STRXui:
1238   case AArch64::STPDi:
1239   case AArch64::STRDui:
1240   case AArch64::LDPXi:
1241   case AArch64::LDRXui:
1242   case AArch64::LDPDi:
1243   case AArch64::LDRDui:
1244     Scale = 8;
1245     break;
1246   case AArch64::STPQi:
1247   case AArch64::STRQui:
1248   case AArch64::LDPQi:
1249   case AArch64::LDRQui:
1250     Scale = 16;
1251     break;
1252   default:
1253     llvm_unreachable("Unexpected callee-save save/restore opcode!");
1254   }
1255 
1256   unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1257   assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1258          "Unexpected base register in callee-save save/restore instruction!");
1259   // Last operand is immediate offset that needs fixing.
1260   MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1261   // All generated opcodes have scaled offsets.
1262   assert(LocalStackSize % Scale == 0);
1263   OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1264 
1265   if (NeedsWinCFI) {
1266     *HasWinCFI = true;
1267     auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1268     assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1269     assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1270            "Expecting a SEH instruction");
1271     fixupSEHOpcode(MBBI, LocalStackSize);
1272   }
1273 }
1274 
1275 static bool isTargetWindows(const MachineFunction &MF) {
1276   return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1277 }
1278 
1279 // Convenience function to determine whether I is an SVE callee save.
1280 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1281   switch (I->getOpcode()) {
1282   default:
1283     return false;
1284   case AArch64::STR_ZXI:
1285   case AArch64::STR_PXI:
1286   case AArch64::LDR_ZXI:
1287   case AArch64::LDR_PXI:
1288     return I->getFlag(MachineInstr::FrameSetup) ||
1289            I->getFlag(MachineInstr::FrameDestroy);
1290   }
1291 }
1292 
1293 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF) {
1294   if (!(llvm::any_of(
1295             MF.getFrameInfo().getCalleeSavedInfo(),
1296             [](const auto &Info) { return Info.getReg() == AArch64::LR; }) &&
1297         MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)))
1298     return false;
1299 
1300   if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
1301     report_fatal_error("Must reserve x18 to use shadow call stack");
1302 
1303   return true;
1304 }
1305 
1306 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1307                                         MachineFunction &MF,
1308                                         MachineBasicBlock &MBB,
1309                                         MachineBasicBlock::iterator MBBI,
1310                                         const DebugLoc &DL, bool NeedsWinCFI,
1311                                         bool NeedsUnwindInfo) {
1312   // Shadow call stack prolog: str x30, [x18], #8
1313   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1314       .addReg(AArch64::X18, RegState::Define)
1315       .addReg(AArch64::LR)
1316       .addReg(AArch64::X18)
1317       .addImm(8)
1318       .setMIFlag(MachineInstr::FrameSetup);
1319 
1320   // This instruction also makes x18 live-in to the entry block.
1321   MBB.addLiveIn(AArch64::X18);
1322 
1323   if (NeedsWinCFI)
1324     BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1325         .setMIFlag(MachineInstr::FrameSetup);
1326 
1327   if (NeedsUnwindInfo) {
1328     // Emit a CFI instruction that causes 8 to be subtracted from the value of
1329     // x18 when unwinding past this frame.
1330     static const char CFIInst[] = {
1331         dwarf::DW_CFA_val_expression,
1332         18, // register
1333         2,  // length
1334         static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1335         static_cast<char>(-8) & 0x7f, // addend (sleb128)
1336     };
1337     unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1338         nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1339     BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1340         .addCFIIndex(CFIIndex)
1341         .setMIFlag(MachineInstr::FrameSetup);
1342   }
1343 }
1344 
1345 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1346                                         MachineFunction &MF,
1347                                         MachineBasicBlock &MBB,
1348                                         MachineBasicBlock::iterator MBBI,
1349                                         const DebugLoc &DL) {
1350   // Shadow call stack epilog: ldr x30, [x18, #-8]!
1351   BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1352       .addReg(AArch64::X18, RegState::Define)
1353       .addReg(AArch64::LR, RegState::Define)
1354       .addReg(AArch64::X18)
1355       .addImm(-8)
1356       .setMIFlag(MachineInstr::FrameDestroy);
1357 
1358   if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1359     unsigned CFIIndex =
1360         MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1361     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1362         .addCFIIndex(CFIIndex)
1363         .setMIFlags(MachineInstr::FrameDestroy);
1364   }
1365 }
1366 
1367 // Define the current CFA rule to use the provided FP.
1368 static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB,
1369                                 MachineBasicBlock::iterator MBBI,
1370                                 const DebugLoc &DL, unsigned FixedObject) {
1371   const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1372   const AArch64RegisterInfo *TRI = STI.getRegisterInfo();
1373   const TargetInstrInfo *TII = STI.getInstrInfo();
1374   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1375 
1376   const int OffsetToFirstCalleeSaveFromFP =
1377       AFI->getCalleeSaveBaseToFrameRecordOffset() -
1378       AFI->getCalleeSavedStackSize();
1379   Register FramePtr = TRI->getFrameRegister(MF);
1380   unsigned Reg = TRI->getDwarfRegNum(FramePtr, true);
1381   unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1382       nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1383   BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1384       .addCFIIndex(CFIIndex)
1385       .setMIFlags(MachineInstr::FrameSetup);
1386 }
1387 
1388 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1389                                         MachineBasicBlock &MBB) const {
1390   MachineBasicBlock::iterator MBBI = MBB.begin();
1391   const MachineFrameInfo &MFI = MF.getFrameInfo();
1392   const Function &F = MF.getFunction();
1393   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1394   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1395   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1396   MachineModuleInfo &MMI = MF.getMMI();
1397   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1398   bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1399   bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
1400   bool HasFP = hasFP(MF);
1401   bool NeedsWinCFI = needsWinCFI(MF);
1402   bool HasWinCFI = false;
1403   auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1404 
1405   bool IsFunclet = MBB.isEHFuncletEntry();
1406 
1407   // At this point, we're going to decide whether or not the function uses a
1408   // redzone. In most cases, the function doesn't have a redzone so let's
1409   // assume that's false and set it to true in the case that there's a redzone.
1410   AFI->setHasRedZone(false);
1411 
1412   // Debug location must be unknown since the first debug location is used
1413   // to determine the end of the prologue.
1414   DebugLoc DL;
1415 
1416   const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1417   if (needsShadowCallStackPrologueEpilogue(MF))
1418     emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1419                                 MFnI.needsDwarfUnwindInfo(MF));
1420 
1421   if (MFnI.shouldSignReturnAddress(MF)) {
1422     if (MFnI.shouldSignWithBKey()) {
1423       BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
1424           .setMIFlag(MachineInstr::FrameSetup);
1425     }
1426 
1427     // No SEH opcode for this one; it doesn't materialize into an
1428     // instruction on Windows.
1429     BuildMI(MBB, MBBI, DL,
1430             TII->get(MFnI.shouldSignWithBKey() ? AArch64::PACIBSP
1431                                                : AArch64::PACIASP))
1432         .setMIFlag(MachineInstr::FrameSetup);
1433 
1434     if (EmitCFI) {
1435       unsigned CFIIndex =
1436           MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1437       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1438           .addCFIIndex(CFIIndex)
1439           .setMIFlags(MachineInstr::FrameSetup);
1440     } else if (NeedsWinCFI) {
1441       HasWinCFI = true;
1442       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
1443           .setMIFlag(MachineInstr::FrameSetup);
1444     }
1445   }
1446   if (EmitCFI && MFnI.isMTETagged()) {
1447     BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1448         .setMIFlag(MachineInstr::FrameSetup);
1449   }
1450 
1451   // We signal the presence of a Swift extended frame to external tools by
1452   // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1453   // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1454   // bits so that is still true.
1455   if (HasFP && AFI->hasSwiftAsyncContext()) {
1456     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1457     case SwiftAsyncFramePointerMode::DeploymentBased:
1458       if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1459         // The special symbol below is absolute and has a *value* that can be
1460         // combined with the frame pointer to signal an extended frame.
1461         BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1462             .addExternalSymbol("swift_async_extendedFramePointerFlags",
1463                                AArch64II::MO_GOT);
1464         BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1465             .addUse(AArch64::FP)
1466             .addUse(AArch64::X16)
1467             .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1468         break;
1469       }
1470       [[fallthrough]];
1471 
1472     case SwiftAsyncFramePointerMode::Always:
1473       // ORR x29, x29, #0x1000_0000_0000_0000
1474       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1475           .addUse(AArch64::FP)
1476           .addImm(0x1100)
1477           .setMIFlag(MachineInstr::FrameSetup);
1478       break;
1479 
1480     case SwiftAsyncFramePointerMode::Never:
1481       break;
1482     }
1483   }
1484 
1485   // All calls are tail calls in GHC calling conv, and functions have no
1486   // prologue/epilogue.
1487   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1488     return;
1489 
1490   // Set tagged base pointer to the requested stack slot.
1491   // Ideally it should match SP value after prologue.
1492   std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1493   if (TBPI)
1494     AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1495   else
1496     AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1497 
1498   const StackOffset &SVEStackSize = getSVEStackSize(MF);
1499 
1500   // getStackSize() includes all the locals in its size calculation. We don't
1501   // include these locals when computing the stack size of a funclet, as they
1502   // are allocated in the parent's stack frame and accessed via the frame
1503   // pointer from the funclet.  We only save the callee saved registers in the
1504   // funclet, which are really the callee saved registers of the parent
1505   // function, including the funclet.
1506   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1507                                : MFI.getStackSize();
1508   if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1509     assert(!HasFP && "unexpected function without stack frame but with FP");
1510     assert(!SVEStackSize &&
1511            "unexpected function without stack frame but with SVE objects");
1512     // All of the stack allocation is for locals.
1513     AFI->setLocalStackSize(NumBytes);
1514     if (!NumBytes)
1515       return;
1516     // REDZONE: If the stack size is less than 128 bytes, we don't need
1517     // to actually allocate.
1518     if (canUseRedZone(MF)) {
1519       AFI->setHasRedZone(true);
1520       ++NumRedZoneFunctions;
1521     } else {
1522       emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1523                       StackOffset::getFixed(-NumBytes), TII,
1524                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1525       if (EmitCFI) {
1526         // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1527         MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1528           // Encode the stack size of the leaf function.
1529         unsigned CFIIndex = MF.addFrameInst(
1530             MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1531         BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1532             .addCFIIndex(CFIIndex)
1533             .setMIFlags(MachineInstr::FrameSetup);
1534       }
1535     }
1536 
1537     if (NeedsWinCFI) {
1538       HasWinCFI = true;
1539       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1540           .setMIFlag(MachineInstr::FrameSetup);
1541     }
1542 
1543     return;
1544   }
1545 
1546   bool IsWin64 =
1547       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1548   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1549 
1550   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1551   // All of the remaining stack allocations are for locals.
1552   AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1553   bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1554   bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1555   if (CombineSPBump) {
1556     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1557     emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1558                     StackOffset::getFixed(-NumBytes), TII,
1559                     MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1560                     EmitAsyncCFI);
1561     NumBytes = 0;
1562   } else if (HomPrologEpilog) {
1563     // Stack has been already adjusted.
1564     NumBytes -= PrologueSaveSize;
1565   } else if (PrologueSaveSize != 0) {
1566     MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1567         MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1568         EmitAsyncCFI);
1569     NumBytes -= PrologueSaveSize;
1570   }
1571   assert(NumBytes >= 0 && "Negative stack allocation size!?");
1572 
1573   // Move past the saves of the callee-saved registers, fixing up the offsets
1574   // and pre-inc if we decided to combine the callee-save and local stack
1575   // pointer bump above.
1576   MachineBasicBlock::iterator End = MBB.end();
1577   while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1578          !IsSVECalleeSave(MBBI)) {
1579     if (CombineSPBump)
1580       fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1581                                         NeedsWinCFI, &HasWinCFI);
1582     ++MBBI;
1583   }
1584 
1585   // For funclets the FP belongs to the containing function.
1586   if (!IsFunclet && HasFP) {
1587     // Only set up FP if we actually need to.
1588     int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1589 
1590     if (CombineSPBump)
1591       FPOffset += AFI->getLocalStackSize();
1592 
1593     if (AFI->hasSwiftAsyncContext()) {
1594       // Before we update the live FP we have to ensure there's a valid (or
1595       // null) asynchronous context in its slot just before FP in the frame
1596       // record, so store it now.
1597       const auto &Attrs = MF.getFunction().getAttributes();
1598       bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1599       if (HaveInitialContext)
1600         MBB.addLiveIn(AArch64::X22);
1601       BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1602           .addUse(HaveInitialContext ? AArch64::X22 : AArch64::XZR)
1603           .addUse(AArch64::SP)
1604           .addImm(FPOffset - 8)
1605           .setMIFlags(MachineInstr::FrameSetup);
1606     }
1607 
1608     if (HomPrologEpilog) {
1609       auto Prolog = MBBI;
1610       --Prolog;
1611       assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1612       Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1613     } else {
1614       // Issue    sub fp, sp, FPOffset or
1615       //          mov fp,sp          when FPOffset is zero.
1616       // Note: All stores of callee-saved registers are marked as "FrameSetup".
1617       // This code marks the instruction(s) that set the FP also.
1618       emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1619                       StackOffset::getFixed(FPOffset), TII,
1620                       MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1621       if (NeedsWinCFI && HasWinCFI) {
1622         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1623             .setMIFlag(MachineInstr::FrameSetup);
1624         // After setting up the FP, the rest of the prolog doesn't need to be
1625         // included in the SEH unwind info.
1626         NeedsWinCFI = false;
1627       }
1628     }
1629     if (EmitAsyncCFI)
1630       emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
1631   }
1632 
1633   // Now emit the moves for whatever callee saved regs we have (including FP,
1634   // LR if those are saved). Frame instructions for SVE register are emitted
1635   // later, after the instruction which actually save SVE regs.
1636   if (EmitAsyncCFI)
1637     emitCalleeSavedGPRLocations(MBB, MBBI);
1638 
1639   // Alignment is required for the parent frame, not the funclet
1640   const bool NeedsRealignment =
1641       NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
1642   int64_t RealignmentPadding =
1643       (NeedsRealignment && MFI.getMaxAlign() > Align(16))
1644           ? MFI.getMaxAlign().value() - 16
1645           : 0;
1646 
1647   if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
1648     uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
1649     if (NeedsWinCFI) {
1650       HasWinCFI = true;
1651       // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1652       // exceed this amount.  We need to move at most 2^24 - 1 into x15.
1653       // This is at most two instructions, MOVZ follwed by MOVK.
1654       // TODO: Fix to use multiple stack alloc unwind codes for stacks
1655       // exceeding 256MB in size.
1656       if (NumBytes >= (1 << 28))
1657         report_fatal_error("Stack size cannot exceed 256MB for stack "
1658                             "unwinding purposes");
1659 
1660       uint32_t LowNumWords = NumWords & 0xFFFF;
1661       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1662             .addImm(LowNumWords)
1663             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1664             .setMIFlag(MachineInstr::FrameSetup);
1665       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1666             .setMIFlag(MachineInstr::FrameSetup);
1667       if ((NumWords & 0xFFFF0000) != 0) {
1668           BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1669               .addReg(AArch64::X15)
1670               .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1671               .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1672               .setMIFlag(MachineInstr::FrameSetup);
1673           BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1674             .setMIFlag(MachineInstr::FrameSetup);
1675       }
1676     } else {
1677       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1678           .addImm(NumWords)
1679           .setMIFlags(MachineInstr::FrameSetup);
1680     }
1681 
1682     const char* ChkStk = Subtarget.getChkStkName();
1683     switch (MF.getTarget().getCodeModel()) {
1684     case CodeModel::Tiny:
1685     case CodeModel::Small:
1686     case CodeModel::Medium:
1687     case CodeModel::Kernel:
1688       BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1689           .addExternalSymbol(ChkStk)
1690           .addReg(AArch64::X15, RegState::Implicit)
1691           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1692           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1693           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1694           .setMIFlags(MachineInstr::FrameSetup);
1695       if (NeedsWinCFI) {
1696         HasWinCFI = true;
1697         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1698             .setMIFlag(MachineInstr::FrameSetup);
1699       }
1700       break;
1701     case CodeModel::Large:
1702       BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1703           .addReg(AArch64::X16, RegState::Define)
1704           .addExternalSymbol(ChkStk)
1705           .addExternalSymbol(ChkStk)
1706           .setMIFlags(MachineInstr::FrameSetup);
1707       if (NeedsWinCFI) {
1708         HasWinCFI = true;
1709         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1710             .setMIFlag(MachineInstr::FrameSetup);
1711       }
1712 
1713       BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
1714           .addReg(AArch64::X16, RegState::Kill)
1715           .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1716           .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1717           .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1718           .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1719           .setMIFlags(MachineInstr::FrameSetup);
1720       if (NeedsWinCFI) {
1721         HasWinCFI = true;
1722         BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1723             .setMIFlag(MachineInstr::FrameSetup);
1724       }
1725       break;
1726     }
1727 
1728     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1729         .addReg(AArch64::SP, RegState::Kill)
1730         .addReg(AArch64::X15, RegState::Kill)
1731         .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1732         .setMIFlags(MachineInstr::FrameSetup);
1733     if (NeedsWinCFI) {
1734       HasWinCFI = true;
1735       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1736           .addImm(NumBytes)
1737           .setMIFlag(MachineInstr::FrameSetup);
1738     }
1739     NumBytes = 0;
1740 
1741     if (RealignmentPadding > 0) {
1742       if (RealignmentPadding >= 4096) {
1743         BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm))
1744             .addReg(AArch64::X16, RegState::Define)
1745             .addImm(RealignmentPadding)
1746             .setMIFlags(MachineInstr::FrameSetup);
1747         BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15)
1748             .addReg(AArch64::SP)
1749             .addReg(AArch64::X16, RegState::Kill)
1750             .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
1751             .setMIFlag(MachineInstr::FrameSetup);
1752       } else {
1753         BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
1754             .addReg(AArch64::SP)
1755             .addImm(RealignmentPadding)
1756             .addImm(0)
1757             .setMIFlag(MachineInstr::FrameSetup);
1758       }
1759 
1760       uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1761       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1762           .addReg(AArch64::X15, RegState::Kill)
1763           .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1764       AFI->setStackRealigned(true);
1765 
1766       // No need for SEH instructions here; if we're realigning the stack,
1767       // we've set a frame pointer and already finished the SEH prologue.
1768       assert(!NeedsWinCFI);
1769     }
1770   }
1771 
1772   StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1773   MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1774 
1775   // Process the SVE callee-saves to determine what space needs to be
1776   // allocated.
1777   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
1778     // Find callee save instructions in frame.
1779     CalleeSavesBegin = MBBI;
1780     assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1781     while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1782       ++MBBI;
1783     CalleeSavesEnd = MBBI;
1784 
1785     AllocateBefore = StackOffset::getScalable(CalleeSavedSize);
1786     AllocateAfter = SVEStackSize - AllocateBefore;
1787   }
1788 
1789   // Allocate space for the callee saves (if any).
1790   emitFrameOffset(
1791       MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, -AllocateBefore, TII,
1792       MachineInstr::FrameSetup, false, false, nullptr,
1793       EmitAsyncCFI && !HasFP && AllocateBefore,
1794       StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1795 
1796   if (EmitAsyncCFI)
1797     emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
1798 
1799   // Finally allocate remaining SVE stack space.
1800   emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1801                   -AllocateAfter, TII, MachineInstr::FrameSetup, false, false,
1802                   nullptr, EmitAsyncCFI && !HasFP && AllocateAfter,
1803                   AllocateBefore + StackOffset::getFixed(
1804                                        (int64_t)MFI.getStackSize() - NumBytes));
1805 
1806   // Allocate space for the rest of the frame.
1807   if (NumBytes) {
1808     unsigned scratchSPReg = AArch64::SP;
1809 
1810     if (NeedsRealignment) {
1811       scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1812       assert(scratchSPReg != AArch64::NoRegister);
1813     }
1814 
1815     // If we're a leaf function, try using the red zone.
1816     if (!canUseRedZone(MF)) {
1817       // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1818       // the correct value here, as NumBytes also includes padding bytes,
1819       // which shouldn't be counted here.
1820       emitFrameOffset(
1821           MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1822           StackOffset::getFixed(-NumBytes), TII, MachineInstr::FrameSetup,
1823           false, NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP,
1824           SVEStackSize +
1825               StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1826     }
1827     if (NeedsRealignment) {
1828       assert(MFI.getMaxAlign() > Align(1));
1829       assert(scratchSPReg != AArch64::SP);
1830 
1831       // SUB X9, SP, NumBytes
1832       //   -- X9 is temporary register, so shouldn't contain any live data here,
1833       //   -- free to use. This is already produced by emitFrameOffset above.
1834       // AND SP, X9, 0b11111...0000
1835       uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1836 
1837       BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1838           .addReg(scratchSPReg, RegState::Kill)
1839           .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1840       AFI->setStackRealigned(true);
1841 
1842       // No need for SEH instructions here; if we're realigning the stack,
1843       // we've set a frame pointer and already finished the SEH prologue.
1844       assert(!NeedsWinCFI);
1845     }
1846   }
1847 
1848   // If we need a base pointer, set it up here. It's whatever the value of the
1849   // stack pointer is at this point. Any variable size objects will be allocated
1850   // after this, so we can still use the base pointer to reference locals.
1851   //
1852   // FIXME: Clarify FrameSetup flags here.
1853   // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1854   // needed.
1855   // For funclets the BP belongs to the containing function.
1856   if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1857     TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1858                      false);
1859     if (NeedsWinCFI) {
1860       HasWinCFI = true;
1861       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1862           .setMIFlag(MachineInstr::FrameSetup);
1863     }
1864   }
1865 
1866   // The very last FrameSetup instruction indicates the end of prologue. Emit a
1867   // SEH opcode indicating the prologue end.
1868   if (NeedsWinCFI && HasWinCFI) {
1869     BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1870         .setMIFlag(MachineInstr::FrameSetup);
1871   }
1872 
1873   // SEH funclets are passed the frame pointer in X1.  If the parent
1874   // function uses the base register, then the base register is used
1875   // directly, and is not retrieved from X1.
1876   if (IsFunclet && F.hasPersonalityFn()) {
1877     EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1878     if (isAsynchronousEHPersonality(Per)) {
1879       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1880           .addReg(AArch64::X1)
1881           .setMIFlag(MachineInstr::FrameSetup);
1882       MBB.addLiveIn(AArch64::X1);
1883     }
1884   }
1885 
1886   if (EmitCFI && !EmitAsyncCFI) {
1887     if (HasFP) {
1888       emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
1889     } else {
1890       StackOffset TotalSize =
1891           SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize());
1892       unsigned CFIIndex = MF.addFrameInst(createDefCFA(
1893           *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize,
1894           /*LastAdjustmentWasScalable=*/false));
1895       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1896           .addCFIIndex(CFIIndex)
1897           .setMIFlags(MachineInstr::FrameSetup);
1898     }
1899     emitCalleeSavedGPRLocations(MBB, MBBI);
1900     emitCalleeSavedSVELocations(MBB, MBBI);
1901   }
1902 }
1903 
1904 static void InsertReturnAddressAuth(MachineFunction &MF, MachineBasicBlock &MBB,
1905                                     bool NeedsWinCFI, bool *HasWinCFI) {
1906   const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
1907   if (!MFI.shouldSignReturnAddress(MF))
1908     return;
1909   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1910   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1911   bool EmitAsyncCFI = MFI.needsAsyncDwarfUnwindInfo(MF);
1912 
1913   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1914   DebugLoc DL;
1915   if (MBBI != MBB.end())
1916     DL = MBBI->getDebugLoc();
1917 
1918   // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1919   // this instruction can safely used for any v8a architecture.
1920   // From v8.3a onwards there are optimised authenticate LR and return
1921   // instructions, namely RETA{A,B}, that can be used instead. In this case the
1922   // DW_CFA_AARCH64_negate_ra_state can't be emitted.
1923   if (Subtarget.hasPAuth() &&
1924       !MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack) &&
1925       MBBI != MBB.end() && MBBI->getOpcode() == AArch64::RET_ReallyLR &&
1926       !NeedsWinCFI) {
1927     BuildMI(MBB, MBBI, DL,
1928             TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA))
1929         .copyImplicitOps(*MBBI);
1930     MBB.erase(MBBI);
1931   } else {
1932     BuildMI(
1933         MBB, MBBI, DL,
1934         TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP))
1935         .setMIFlag(MachineInstr::FrameDestroy);
1936 
1937     if (EmitAsyncCFI) {
1938       unsigned CFIIndex =
1939           MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1940       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1941           .addCFIIndex(CFIIndex)
1942           .setMIFlags(MachineInstr::FrameDestroy);
1943     }
1944     if (NeedsWinCFI) {
1945       *HasWinCFI = true;
1946       BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
1947           .setMIFlag(MachineInstr::FrameDestroy);
1948     }
1949   }
1950 }
1951 
1952 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1953   switch (MI.getOpcode()) {
1954   default:
1955     return false;
1956   case AArch64::CATCHRET:
1957   case AArch64::CLEANUPRET:
1958     return true;
1959   }
1960 }
1961 
1962 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1963                                         MachineBasicBlock &MBB) const {
1964   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1965   MachineFrameInfo &MFI = MF.getFrameInfo();
1966   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1967   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1968   DebugLoc DL;
1969   bool NeedsWinCFI = needsWinCFI(MF);
1970   bool EmitCFI =
1971       MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
1972   bool HasWinCFI = false;
1973   bool IsFunclet = false;
1974   auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); });
1975 
1976   if (MBB.end() != MBBI) {
1977     DL = MBBI->getDebugLoc();
1978     IsFunclet = isFuncletReturnInstr(*MBBI);
1979   }
1980 
1981   auto FinishingTouches = make_scope_exit([&]() {
1982     InsertReturnAddressAuth(MF, MBB, NeedsWinCFI, &HasWinCFI);
1983     if (needsShadowCallStackPrologueEpilogue(MF))
1984       emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
1985     if (EmitCFI)
1986       emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
1987     if (HasWinCFI)
1988       BuildMI(MBB, MBB.getFirstTerminator(), DL,
1989               TII->get(AArch64::SEH_EpilogEnd))
1990           .setMIFlag(MachineInstr::FrameDestroy);
1991   });
1992 
1993   int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1994                                : MFI.getStackSize();
1995   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1996 
1997   // All calls are tail calls in GHC calling conv, and functions have no
1998   // prologue/epilogue.
1999   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2000     return;
2001 
2002   // How much of the stack used by incoming arguments this function is expected
2003   // to restore in this particular epilogue.
2004   int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
2005   bool IsWin64 =
2006       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2007   unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
2008 
2009   int64_t AfterCSRPopSize = ArgumentStackToRestore;
2010   auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
2011   // We cannot rely on the local stack size set in emitPrologue if the function
2012   // has funclets, as funclets have different local stack size requirements, and
2013   // the current value set in emitPrologue may be that of the containing
2014   // function.
2015   if (MF.hasEHFunclets())
2016     AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
2017   if (homogeneousPrologEpilog(MF, &MBB)) {
2018     assert(!NeedsWinCFI);
2019     auto LastPopI = MBB.getFirstTerminator();
2020     if (LastPopI != MBB.begin()) {
2021       auto HomogeneousEpilog = std::prev(LastPopI);
2022       if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
2023         LastPopI = HomogeneousEpilog;
2024     }
2025 
2026     // Adjust local stack
2027     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2028                     StackOffset::getFixed(AFI->getLocalStackSize()), TII,
2029                     MachineInstr::FrameDestroy, false, NeedsWinCFI);
2030 
2031     // SP has been already adjusted while restoring callee save regs.
2032     // We've bailed-out the case with adjusting SP for arguments.
2033     assert(AfterCSRPopSize == 0);
2034     return;
2035   }
2036   bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
2037   // Assume we can't combine the last pop with the sp restore.
2038 
2039   bool CombineAfterCSRBump = false;
2040   if (!CombineSPBump && PrologueSaveSize != 0) {
2041     MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
2042     while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
2043            AArch64InstrInfo::isSEHInstruction(*Pop))
2044       Pop = std::prev(Pop);
2045     // Converting the last ldp to a post-index ldp is valid only if the last
2046     // ldp's offset is 0.
2047     const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2048     // If the offset is 0 and the AfterCSR pop is not actually trying to
2049     // allocate more stack for arguments (in space that an untimely interrupt
2050     // may clobber), convert it to a post-index ldp.
2051     if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2052       convertCalleeSaveRestoreToSPPrePostIncDec(
2053           MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2054           MachineInstr::FrameDestroy, PrologueSaveSize);
2055     } else {
2056       // If not, make sure to emit an add after the last ldp.
2057       // We're doing this by transfering the size to be restored from the
2058       // adjustment *before* the CSR pops to the adjustment *after* the CSR
2059       // pops.
2060       AfterCSRPopSize += PrologueSaveSize;
2061       CombineAfterCSRBump = true;
2062     }
2063   }
2064 
2065   // Move past the restores of the callee-saved registers.
2066   // If we plan on combining the sp bump of the local stack size and the callee
2067   // save stack size, we might need to adjust the CSR save and restore offsets.
2068   MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2069   MachineBasicBlock::iterator Begin = MBB.begin();
2070   while (LastPopI != Begin) {
2071     --LastPopI;
2072     if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2073         IsSVECalleeSave(LastPopI)) {
2074       ++LastPopI;
2075       break;
2076     } else if (CombineSPBump)
2077       fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2078                                         NeedsWinCFI, &HasWinCFI);
2079   }
2080 
2081   if (MF.hasWinCFI()) {
2082     // If the prologue didn't contain any SEH opcodes and didn't set the
2083     // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the
2084     // EpilogStart - to avoid generating CFI for functions that don't need it.
2085     // (And as we didn't generate any prologue at all, it would be asymmetrical
2086     // to the epilogue.) By the end of the function, we assert that
2087     // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption.
2088     HasWinCFI = true;
2089     BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2090         .setMIFlag(MachineInstr::FrameDestroy);
2091   }
2092 
2093   if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2094     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2095     case SwiftAsyncFramePointerMode::DeploymentBased:
2096       // Avoid the reload as it is GOT relative, and instead fall back to the
2097       // hardcoded value below.  This allows a mismatch between the OS and
2098       // application without immediately terminating on the difference.
2099       [[fallthrough]];
2100     case SwiftAsyncFramePointerMode::Always:
2101       // We need to reset FP to its untagged state on return. Bit 60 is
2102       // currently used to show the presence of an extended frame.
2103 
2104       // BIC x29, x29, #0x1000_0000_0000_0000
2105       BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2106               AArch64::FP)
2107           .addUse(AArch64::FP)
2108           .addImm(0x10fe)
2109           .setMIFlag(MachineInstr::FrameDestroy);
2110       break;
2111 
2112     case SwiftAsyncFramePointerMode::Never:
2113       break;
2114     }
2115   }
2116 
2117   const StackOffset &SVEStackSize = getSVEStackSize(MF);
2118 
2119   // If there is a single SP update, insert it before the ret and we're done.
2120   if (CombineSPBump) {
2121     assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2122 
2123     // When we are about to restore the CSRs, the CFA register is SP again.
2124     if (EmitCFI && hasFP(MF)) {
2125       const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2126       unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2127       unsigned CFIIndex =
2128           MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2129       BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2130           .addCFIIndex(CFIIndex)
2131           .setMIFlags(MachineInstr::FrameDestroy);
2132     }
2133 
2134     emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2135                     StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2136                     TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2137                     &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2138     return;
2139   }
2140 
2141   NumBytes -= PrologueSaveSize;
2142   assert(NumBytes >= 0 && "Negative stack allocation size!?");
2143 
2144   // Process the SVE callee-saves to determine what space needs to be
2145   // deallocated.
2146   StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2147   MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2148   if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2149     RestoreBegin = std::prev(RestoreEnd);
2150     while (RestoreBegin != MBB.begin() &&
2151            IsSVECalleeSave(std::prev(RestoreBegin)))
2152       --RestoreBegin;
2153 
2154     assert(IsSVECalleeSave(RestoreBegin) &&
2155            IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2156 
2157     StackOffset CalleeSavedSizeAsOffset =
2158         StackOffset::getScalable(CalleeSavedSize);
2159     DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2160     DeallocateAfter = CalleeSavedSizeAsOffset;
2161   }
2162 
2163   // Deallocate the SVE area.
2164   if (SVEStackSize) {
2165     // If we have stack realignment or variable sized objects on the stack,
2166     // restore the stack pointer from the frame pointer prior to SVE CSR
2167     // restoration.
2168     if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2169       if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2170         // Set SP to start of SVE callee-save area from which they can
2171         // be reloaded. The code below will deallocate the stack space
2172         // space by moving FP -> SP.
2173         emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2174                         StackOffset::getScalable(-CalleeSavedSize), TII,
2175                         MachineInstr::FrameDestroy);
2176       }
2177     } else {
2178       if (AFI->getSVECalleeSavedStackSize()) {
2179         // Deallocate the non-SVE locals first before we can deallocate (and
2180         // restore callee saves) from the SVE area.
2181         emitFrameOffset(
2182             MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2183             StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2184             false, false, nullptr, EmitCFI && !hasFP(MF),
2185             SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2186         NumBytes = 0;
2187       }
2188 
2189       emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2190                       DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2191                       false, nullptr, EmitCFI && !hasFP(MF),
2192                       SVEStackSize +
2193                           StackOffset::getFixed(NumBytes + PrologueSaveSize));
2194 
2195       emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2196                       DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2197                       false, nullptr, EmitCFI && !hasFP(MF),
2198                       DeallocateAfter +
2199                           StackOffset::getFixed(NumBytes + PrologueSaveSize));
2200     }
2201     if (EmitCFI)
2202       emitCalleeSavedSVERestores(MBB, RestoreEnd);
2203   }
2204 
2205   if (!hasFP(MF)) {
2206     bool RedZone = canUseRedZone(MF);
2207     // If this was a redzone leaf function, we don't need to restore the
2208     // stack pointer (but we may need to pop stack args for fastcc).
2209     if (RedZone && AfterCSRPopSize == 0)
2210       return;
2211 
2212     // Pop the local variables off the stack. If there are no callee-saved
2213     // registers, it means we are actually positioned at the terminator and can
2214     // combine stack increment for the locals and the stack increment for
2215     // callee-popped arguments into (possibly) a single instruction and be done.
2216     bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2217     int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2218     if (NoCalleeSaveRestore)
2219       StackRestoreBytes += AfterCSRPopSize;
2220 
2221     emitFrameOffset(
2222         MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2223         StackOffset::getFixed(StackRestoreBytes), TII,
2224         MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2225         StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2226 
2227     // If we were able to combine the local stack pop with the argument pop,
2228     // then we're done.
2229     if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2230       return;
2231     }
2232 
2233     NumBytes = 0;
2234   }
2235 
2236   // Restore the original stack pointer.
2237   // FIXME: Rather than doing the math here, we should instead just use
2238   // non-post-indexed loads for the restores if we aren't actually going to
2239   // be able to save any instructions.
2240   if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2241     emitFrameOffset(
2242         MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2243         StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2244         TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
2245   } else if (NumBytes)
2246     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2247                     StackOffset::getFixed(NumBytes), TII,
2248                     MachineInstr::FrameDestroy, false, NeedsWinCFI);
2249 
2250   // When we are about to restore the CSRs, the CFA register is SP again.
2251   if (EmitCFI && hasFP(MF)) {
2252     const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2253     unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2254     unsigned CFIIndex = MF.addFrameInst(
2255         MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2256     BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2257         .addCFIIndex(CFIIndex)
2258         .setMIFlags(MachineInstr::FrameDestroy);
2259   }
2260 
2261   // This must be placed after the callee-save restore code because that code
2262   // assumes the SP is at the same location as it was after the callee-save save
2263   // code in the prologue.
2264   if (AfterCSRPopSize) {
2265     assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2266                                   "interrupt may have clobbered");
2267 
2268     emitFrameOffset(
2269         MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2270         StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2271         false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2272         StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2273   }
2274 }
2275 
2276 bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const {
2277   return TargetFrameLowering::enableCFIFixup(MF) &&
2278          MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
2279 }
2280 
2281 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2282 /// debug info.  It's the same as what we use for resolving the code-gen
2283 /// references for now.  FIXME: This can go wrong when references are
2284 /// SP-relative and simple call frames aren't used.
2285 StackOffset
2286 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2287                                              Register &FrameReg) const {
2288   return resolveFrameIndexReference(
2289       MF, FI, FrameReg,
2290       /*PreferFP=*/
2291       MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
2292       /*ForSimm=*/false);
2293 }
2294 
2295 StackOffset
2296 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2297                                                      int FI) const {
2298   return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2299 }
2300 
2301 static StackOffset getFPOffset(const MachineFunction &MF,
2302                                int64_t ObjectOffset) {
2303   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2304   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2305   bool IsWin64 =
2306       Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2307   unsigned FixedObject =
2308       getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2309   int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2310   int64_t FPAdjust =
2311       CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2312   return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2313 }
2314 
2315 static StackOffset getStackOffset(const MachineFunction &MF,
2316                                   int64_t ObjectOffset) {
2317   const auto &MFI = MF.getFrameInfo();
2318   return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2319 }
2320 
2321   // TODO: This function currently does not work for scalable vectors.
2322 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2323                                                  int FI) const {
2324   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2325       MF.getSubtarget().getRegisterInfo());
2326   int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2327   return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2328              ? getFPOffset(MF, ObjectOffset).getFixed()
2329              : getStackOffset(MF, ObjectOffset).getFixed();
2330 }
2331 
2332 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2333     const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2334     bool ForSimm) const {
2335   const auto &MFI = MF.getFrameInfo();
2336   int64_t ObjectOffset = MFI.getObjectOffset(FI);
2337   bool isFixed = MFI.isFixedObjectIndex(FI);
2338   bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2339   return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2340                                      PreferFP, ForSimm);
2341 }
2342 
2343 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2344     const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2345     Register &FrameReg, bool PreferFP, bool ForSimm) const {
2346   const auto &MFI = MF.getFrameInfo();
2347   const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2348       MF.getSubtarget().getRegisterInfo());
2349   const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2350   const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2351 
2352   int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2353   int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2354   bool isCSR =
2355       !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2356 
2357   const StackOffset &SVEStackSize = getSVEStackSize(MF);
2358 
2359   // Use frame pointer to reference fixed objects. Use it for locals if
2360   // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2361   // reliable as a base). Make sure useFPForScavengingIndex() does the
2362   // right thing for the emergency spill slot.
2363   bool UseFP = false;
2364   if (AFI->hasStackFrame() && !isSVE) {
2365     // We shouldn't prefer using the FP to access fixed-sized stack objects when
2366     // there are scalable (SVE) objects in between the FP and the fixed-sized
2367     // objects.
2368     PreferFP &= !SVEStackSize;
2369 
2370     // Note: Keeping the following as multiple 'if' statements rather than
2371     // merging to a single expression for readability.
2372     //
2373     // Argument access should always use the FP.
2374     if (isFixed) {
2375       UseFP = hasFP(MF);
2376     } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2377       // References to the CSR area must use FP if we're re-aligning the stack
2378       // since the dynamically-sized alignment padding is between the SP/BP and
2379       // the CSR area.
2380       assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2381       UseFP = true;
2382     } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2383       // If the FPOffset is negative and we're producing a signed immediate, we
2384       // have to keep in mind that the available offset range for negative
2385       // offsets is smaller than for positive ones. If an offset is available
2386       // via the FP and the SP, use whichever is closest.
2387       bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2388       PreferFP |= Offset > -FPOffset && !SVEStackSize;
2389 
2390       if (MFI.hasVarSizedObjects()) {
2391         // If we have variable sized objects, we can use either FP or BP, as the
2392         // SP offset is unknown. We can use the base pointer if we have one and
2393         // FP is not preferred. If not, we're stuck with using FP.
2394         bool CanUseBP = RegInfo->hasBasePointer(MF);
2395         if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2396           UseFP = PreferFP;
2397         else if (!CanUseBP) // Can't use BP. Forced to use FP.
2398           UseFP = true;
2399         // else we can use BP and FP, but the offset from FP won't fit.
2400         // That will make us scavenge registers which we can probably avoid by
2401         // using BP. If it won't fit for BP either, we'll scavenge anyway.
2402       } else if (FPOffset >= 0) {
2403         // Use SP or FP, whichever gives us the best chance of the offset
2404         // being in range for direct access. If the FPOffset is positive,
2405         // that'll always be best, as the SP will be even further away.
2406         UseFP = true;
2407       } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2408         // Funclets access the locals contained in the parent's stack frame
2409         // via the frame pointer, so we have to use the FP in the parent
2410         // function.
2411         (void) Subtarget;
2412         assert(
2413             Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
2414             "Funclets should only be present on Win64");
2415         UseFP = true;
2416       } else {
2417         // We have the choice between FP and (SP or BP).
2418         if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2419           UseFP = true;
2420       }
2421     }
2422   }
2423 
2424   assert(
2425       ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2426       "In the presence of dynamic stack pointer realignment, "
2427       "non-argument/CSR objects cannot be accessed through the frame pointer");
2428 
2429   if (isSVE) {
2430     StackOffset FPOffset =
2431         StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2432     StackOffset SPOffset =
2433         SVEStackSize +
2434         StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2435                          ObjectOffset);
2436     // Always use the FP for SVE spills if available and beneficial.
2437     if (hasFP(MF) && (SPOffset.getFixed() ||
2438                       FPOffset.getScalable() < SPOffset.getScalable() ||
2439                       RegInfo->hasStackRealignment(MF))) {
2440       FrameReg = RegInfo->getFrameRegister(MF);
2441       return FPOffset;
2442     }
2443 
2444     FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2445                                            : (unsigned)AArch64::SP;
2446     return SPOffset;
2447   }
2448 
2449   StackOffset ScalableOffset = {};
2450   if (UseFP && !(isFixed || isCSR))
2451     ScalableOffset = -SVEStackSize;
2452   if (!UseFP && (isFixed || isCSR))
2453     ScalableOffset = SVEStackSize;
2454 
2455   if (UseFP) {
2456     FrameReg = RegInfo->getFrameRegister(MF);
2457     return StackOffset::getFixed(FPOffset) + ScalableOffset;
2458   }
2459 
2460   // Use the base pointer if we have one.
2461   if (RegInfo->hasBasePointer(MF))
2462     FrameReg = RegInfo->getBaseRegister();
2463   else {
2464     assert(!MFI.hasVarSizedObjects() &&
2465            "Can't use SP when we have var sized objects.");
2466     FrameReg = AArch64::SP;
2467     // If we're using the red zone for this function, the SP won't actually
2468     // be adjusted, so the offsets will be negative. They're also all
2469     // within range of the signed 9-bit immediate instructions.
2470     if (canUseRedZone(MF))
2471       Offset -= AFI->getLocalStackSize();
2472   }
2473 
2474   return StackOffset::getFixed(Offset) + ScalableOffset;
2475 }
2476 
2477 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2478   // Do not set a kill flag on values that are also marked as live-in. This
2479   // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2480   // callee saved registers.
2481   // Omitting the kill flags is conservatively correct even if the live-in
2482   // is not used after all.
2483   bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2484   return getKillRegState(!IsLiveIn);
2485 }
2486 
2487 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2488   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2489   AttributeList Attrs = MF.getFunction().getAttributes();
2490   return Subtarget.isTargetMachO() &&
2491          !(Subtarget.getTargetLowering()->supportSwiftError() &&
2492            Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2493          MF.getFunction().getCallingConv() != CallingConv::SwiftTail;
2494 }
2495 
2496 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2497                                              bool NeedsWinCFI, bool IsFirst,
2498                                              const TargetRegisterInfo *TRI) {
2499   // If we are generating register pairs for a Windows function that requires
2500   // EH support, then pair consecutive registers only.  There are no unwind
2501   // opcodes for saves/restores of non-consectuve register pairs.
2502   // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2503   // save_lrpair.
2504   // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2505 
2506   if (Reg2 == AArch64::FP)
2507     return true;
2508   if (!NeedsWinCFI)
2509     return false;
2510   if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2511     return false;
2512   // If pairing a GPR with LR, the pair can be described by the save_lrpair
2513   // opcode. If this is the first register pair, it would end up with a
2514   // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2515   // if LR is paired with something else than the first register.
2516   // The save_lrpair opcode requires the first register to be an odd one.
2517   if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2518       (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2519     return false;
2520   return true;
2521 }
2522 
2523 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2524 /// WindowsCFI requires that only consecutive registers can be paired.
2525 /// LR and FP need to be allocated together when the frame needs to save
2526 /// the frame-record. This means any other register pairing with LR is invalid.
2527 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2528                                       bool UsesWinAAPCS, bool NeedsWinCFI,
2529                                       bool NeedsFrameRecord, bool IsFirst,
2530                                       const TargetRegisterInfo *TRI) {
2531   if (UsesWinAAPCS)
2532     return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2533                                             TRI);
2534 
2535   // If we need to store the frame record, don't pair any register
2536   // with LR other than FP.
2537   if (NeedsFrameRecord)
2538     return Reg2 == AArch64::LR;
2539 
2540   return false;
2541 }
2542 
2543 namespace {
2544 
2545 struct RegPairInfo {
2546   unsigned Reg1 = AArch64::NoRegister;
2547   unsigned Reg2 = AArch64::NoRegister;
2548   int FrameIdx;
2549   int Offset;
2550   enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
2551 
2552   RegPairInfo() = default;
2553 
2554   bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2555 
2556   unsigned getScale() const {
2557     switch (Type) {
2558     case PPR:
2559       return 2;
2560     case GPR:
2561     case FPR64:
2562       return 8;
2563     case ZPR:
2564     case FPR128:
2565       return 16;
2566     }
2567     llvm_unreachable("Unsupported type");
2568   }
2569 
2570   bool isScalable() const { return Type == PPR || Type == ZPR; }
2571 };
2572 
2573 } // end anonymous namespace
2574 
2575 static void computeCalleeSaveRegisterPairs(
2576     MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2577     const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2578     bool NeedsFrameRecord) {
2579 
2580   if (CSI.empty())
2581     return;
2582 
2583   bool IsWindows = isTargetWindows(MF);
2584   bool NeedsWinCFI = needsWinCFI(MF);
2585   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2586   MachineFrameInfo &MFI = MF.getFrameInfo();
2587   CallingConv::ID CC = MF.getFunction().getCallingConv();
2588   unsigned Count = CSI.size();
2589   (void)CC;
2590   // MachO's compact unwind format relies on all registers being stored in
2591   // pairs.
2592   assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2593           CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2594           CC == CallingConv::Win64 || (Count & 1) == 0) &&
2595          "Odd number of callee-saved regs to spill!");
2596   int ByteOffset = AFI->getCalleeSavedStackSize();
2597   int StackFillDir = -1;
2598   int RegInc = 1;
2599   unsigned FirstReg = 0;
2600   if (NeedsWinCFI) {
2601     // For WinCFI, fill the stack from the bottom up.
2602     ByteOffset = 0;
2603     StackFillDir = 1;
2604     // As the CSI array is reversed to match PrologEpilogInserter, iterate
2605     // backwards, to pair up registers starting from lower numbered registers.
2606     RegInc = -1;
2607     FirstReg = Count - 1;
2608   }
2609   int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2610   bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2611 
2612   // When iterating backwards, the loop condition relies on unsigned wraparound.
2613   for (unsigned i = FirstReg; i < Count; i += RegInc) {
2614     RegPairInfo RPI;
2615     RPI.Reg1 = CSI[i].getReg();
2616 
2617     if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2618       RPI.Type = RegPairInfo::GPR;
2619     else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2620       RPI.Type = RegPairInfo::FPR64;
2621     else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2622       RPI.Type = RegPairInfo::FPR128;
2623     else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2624       RPI.Type = RegPairInfo::ZPR;
2625     else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2626       RPI.Type = RegPairInfo::PPR;
2627     else
2628       llvm_unreachable("Unsupported register class.");
2629 
2630     // Add the next reg to the pair if it is in the same register class.
2631     if (unsigned(i + RegInc) < Count) {
2632       Register NextReg = CSI[i + RegInc].getReg();
2633       bool IsFirst = i == FirstReg;
2634       switch (RPI.Type) {
2635       case RegPairInfo::GPR:
2636         if (AArch64::GPR64RegClass.contains(NextReg) &&
2637             !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
2638                                        NeedsWinCFI, NeedsFrameRecord, IsFirst,
2639                                        TRI))
2640           RPI.Reg2 = NextReg;
2641         break;
2642       case RegPairInfo::FPR64:
2643         if (AArch64::FPR64RegClass.contains(NextReg) &&
2644             !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
2645                                               IsFirst, TRI))
2646           RPI.Reg2 = NextReg;
2647         break;
2648       case RegPairInfo::FPR128:
2649         if (AArch64::FPR128RegClass.contains(NextReg))
2650           RPI.Reg2 = NextReg;
2651         break;
2652       case RegPairInfo::PPR:
2653       case RegPairInfo::ZPR:
2654         break;
2655       }
2656     }
2657 
2658     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2659     // list to come in sorted by frame index so that we can issue the store
2660     // pair instructions directly. Assert if we see anything otherwise.
2661     //
2662     // The order of the registers in the list is controlled by
2663     // getCalleeSavedRegs(), so they will always be in-order, as well.
2664     assert((!RPI.isPaired() ||
2665             (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
2666            "Out of order callee saved regs!");
2667 
2668     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2669             RPI.Reg1 == AArch64::LR) &&
2670            "FrameRecord must be allocated together with LR");
2671 
2672     // Windows AAPCS has FP and LR reversed.
2673     assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2674             RPI.Reg2 == AArch64::LR) &&
2675            "FrameRecord must be allocated together with LR");
2676 
2677     // MachO's compact unwind format relies on all registers being stored in
2678     // adjacent register pairs.
2679     assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2680             CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2681             CC == CallingConv::Win64 ||
2682             (RPI.isPaired() &&
2683              ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2684               RPI.Reg1 + 1 == RPI.Reg2))) &&
2685            "Callee-save registers not saved as adjacent register pair!");
2686 
2687     RPI.FrameIdx = CSI[i].getFrameIdx();
2688     if (NeedsWinCFI &&
2689         RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2690       RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
2691 
2692     int Scale = RPI.getScale();
2693 
2694     int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2695     assert(OffsetPre % Scale == 0);
2696 
2697     if (RPI.isScalable())
2698       ScalableByteOffset += StackFillDir * Scale;
2699     else
2700       ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
2701 
2702     // Swift's async context is directly before FP, so allocate an extra
2703     // 8 bytes for it.
2704     if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2705         RPI.Reg2 == AArch64::FP)
2706       ByteOffset += StackFillDir * 8;
2707 
2708     assert(!(RPI.isScalable() && RPI.isPaired()) &&
2709            "Paired spill/fill instructions don't exist for SVE vectors");
2710 
2711     // Round up size of non-pair to pair size if we need to pad the
2712     // callee-save area to ensure 16-byte alignment.
2713     if (NeedGapToAlignStack && !NeedsWinCFI &&
2714         !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2715         !RPI.isPaired() && ByteOffset % 16 != 0) {
2716       ByteOffset += 8 * StackFillDir;
2717       assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
2718       // A stack frame with a gap looks like this, bottom up:
2719       // d9, d8. x21, gap, x20, x19.
2720       // Set extra alignment on the x21 object to create the gap above it.
2721       MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
2722       NeedGapToAlignStack = false;
2723     }
2724 
2725     int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2726     assert(OffsetPost % Scale == 0);
2727     // If filling top down (default), we want the offset after incrementing it.
2728     // If fillibg bootom up (WinCFI) we need the original offset.
2729     int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
2730 
2731     // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2732     // Swift context can directly precede FP.
2733     if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2734         RPI.Reg2 == AArch64::FP)
2735       Offset += 8;
2736     RPI.Offset = Offset / Scale;
2737 
2738     assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2739             (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2740            "Offset out of bounds for LDP/STP immediate");
2741 
2742     // Save the offset to frame record so that the FP register can point to the
2743     // innermost frame record (spilled FP and LR registers).
2744     if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
2745                               RPI.Reg2 == AArch64::FP) ||
2746                              (IsWindows && RPI.Reg1 == AArch64::FP &&
2747                               RPI.Reg2 == AArch64::LR)))
2748       AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
2749 
2750     RegPairs.push_back(RPI);
2751     if (RPI.isPaired())
2752       i += RegInc;
2753   }
2754   if (NeedsWinCFI) {
2755     // If we need an alignment gap in the stack, align the topmost stack
2756     // object. A stack frame with a gap looks like this, bottom up:
2757     // x19, d8. d9, gap.
2758     // Set extra alignment on the topmost stack object (the first element in
2759     // CSI, which goes top down), to create the gap above it.
2760     if (AFI->hasCalleeSaveStackFreeSpace())
2761       MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
2762     // We iterated bottom up over the registers; flip RegPairs back to top
2763     // down order.
2764     std::reverse(RegPairs.begin(), RegPairs.end());
2765   }
2766 }
2767 
2768 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2769     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2770     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2771   MachineFunction &MF = *MBB.getParent();
2772   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2773   bool NeedsWinCFI = needsWinCFI(MF);
2774   DebugLoc DL;
2775   SmallVector<RegPairInfo, 8> RegPairs;
2776 
2777   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2778 
2779   const MachineRegisterInfo &MRI = MF.getRegInfo();
2780   if (homogeneousPrologEpilog(MF)) {
2781     auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
2782                    .setMIFlag(MachineInstr::FrameSetup);
2783 
2784     for (auto &RPI : RegPairs) {
2785       MIB.addReg(RPI.Reg1);
2786       MIB.addReg(RPI.Reg2);
2787 
2788       // Update register live in.
2789       if (!MRI.isReserved(RPI.Reg1))
2790         MBB.addLiveIn(RPI.Reg1);
2791       if (!MRI.isReserved(RPI.Reg2))
2792         MBB.addLiveIn(RPI.Reg2);
2793     }
2794     return true;
2795   }
2796   for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
2797     unsigned Reg1 = RPI.Reg1;
2798     unsigned Reg2 = RPI.Reg2;
2799     unsigned StrOpc;
2800 
2801     // Issue sequence of spills for cs regs.  The first spill may be converted
2802     // to a pre-decrement store later by emitPrologue if the callee-save stack
2803     // area allocation can't be combined with the local stack area allocation.
2804     // For example:
2805     //    stp     x22, x21, [sp, #0]     // addImm(+0)
2806     //    stp     x20, x19, [sp, #16]    // addImm(+2)
2807     //    stp     fp, lr, [sp, #32]      // addImm(+4)
2808     // Rationale: This sequence saves uop updates compared to a sequence of
2809     // pre-increment spills like stp xi,xj,[sp,#-16]!
2810     // Note: Similar rationale and sequence for restores in epilog.
2811     unsigned Size;
2812     Align Alignment;
2813     switch (RPI.Type) {
2814     case RegPairInfo::GPR:
2815        StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2816        Size = 8;
2817        Alignment = Align(8);
2818        break;
2819     case RegPairInfo::FPR64:
2820        StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2821        Size = 8;
2822        Alignment = Align(8);
2823        break;
2824     case RegPairInfo::FPR128:
2825        StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2826        Size = 16;
2827        Alignment = Align(16);
2828        break;
2829     case RegPairInfo::ZPR:
2830        StrOpc = AArch64::STR_ZXI;
2831        Size = 16;
2832        Alignment = Align(16);
2833        break;
2834     case RegPairInfo::PPR:
2835        StrOpc = AArch64::STR_PXI;
2836        Size = 2;
2837        Alignment = Align(2);
2838        break;
2839     }
2840     LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2841                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2842                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2843                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2844                dbgs() << ")\n");
2845 
2846     assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2847            "Windows unwdinding requires a consecutive (FP,LR) pair");
2848     // Windows unwind codes require consecutive registers if registers are
2849     // paired.  Make the switch here, so that the code below will save (x,x+1)
2850     // and not (x+1,x).
2851     unsigned FrameIdxReg1 = RPI.FrameIdx;
2852     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2853     if (NeedsWinCFI && RPI.isPaired()) {
2854       std::swap(Reg1, Reg2);
2855       std::swap(FrameIdxReg1, FrameIdxReg2);
2856     }
2857     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2858     if (!MRI.isReserved(Reg1))
2859       MBB.addLiveIn(Reg1);
2860     if (RPI.isPaired()) {
2861       if (!MRI.isReserved(Reg2))
2862         MBB.addLiveIn(Reg2);
2863       MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2864       MIB.addMemOperand(MF.getMachineMemOperand(
2865           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2866           MachineMemOperand::MOStore, Size, Alignment));
2867     }
2868     MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2869         .addReg(AArch64::SP)
2870         .addImm(RPI.Offset) // [sp, #offset*scale],
2871                             // where factor*scale is implicit
2872         .setMIFlag(MachineInstr::FrameSetup);
2873     MIB.addMemOperand(MF.getMachineMemOperand(
2874         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2875         MachineMemOperand::MOStore, Size, Alignment));
2876     if (NeedsWinCFI)
2877       InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2878 
2879     // Update the StackIDs of the SVE stack slots.
2880     MachineFrameInfo &MFI = MF.getFrameInfo();
2881     if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2882       MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
2883 
2884   }
2885   return true;
2886 }
2887 
2888 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2889     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2890     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2891   MachineFunction &MF = *MBB.getParent();
2892   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2893   DebugLoc DL;
2894   SmallVector<RegPairInfo, 8> RegPairs;
2895   bool NeedsWinCFI = needsWinCFI(MF);
2896 
2897   if (MBBI != MBB.end())
2898     DL = MBBI->getDebugLoc();
2899 
2900   computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2901 
2902   auto EmitMI = [&](const RegPairInfo &RPI) -> MachineBasicBlock::iterator {
2903     unsigned Reg1 = RPI.Reg1;
2904     unsigned Reg2 = RPI.Reg2;
2905 
2906     // Issue sequence of restores for cs regs. The last restore may be converted
2907     // to a post-increment load later by emitEpilogue if the callee-save stack
2908     // area allocation can't be combined with the local stack area allocation.
2909     // For example:
2910     //    ldp     fp, lr, [sp, #32]       // addImm(+4)
2911     //    ldp     x20, x19, [sp, #16]     // addImm(+2)
2912     //    ldp     x22, x21, [sp, #0]      // addImm(+0)
2913     // Note: see comment in spillCalleeSavedRegisters()
2914     unsigned LdrOpc;
2915     unsigned Size;
2916     Align Alignment;
2917     switch (RPI.Type) {
2918     case RegPairInfo::GPR:
2919        LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2920        Size = 8;
2921        Alignment = Align(8);
2922        break;
2923     case RegPairInfo::FPR64:
2924        LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2925        Size = 8;
2926        Alignment = Align(8);
2927        break;
2928     case RegPairInfo::FPR128:
2929        LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2930        Size = 16;
2931        Alignment = Align(16);
2932        break;
2933     case RegPairInfo::ZPR:
2934        LdrOpc = AArch64::LDR_ZXI;
2935        Size = 16;
2936        Alignment = Align(16);
2937        break;
2938     case RegPairInfo::PPR:
2939        LdrOpc = AArch64::LDR_PXI;
2940        Size = 2;
2941        Alignment = Align(2);
2942        break;
2943     }
2944     LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2945                if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2946                dbgs() << ") -> fi#(" << RPI.FrameIdx;
2947                if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2948                dbgs() << ")\n");
2949 
2950     // Windows unwind codes require consecutive registers if registers are
2951     // paired.  Make the switch here, so that the code below will save (x,x+1)
2952     // and not (x+1,x).
2953     unsigned FrameIdxReg1 = RPI.FrameIdx;
2954     unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2955     if (NeedsWinCFI && RPI.isPaired()) {
2956       std::swap(Reg1, Reg2);
2957       std::swap(FrameIdxReg1, FrameIdxReg2);
2958     }
2959     MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2960     if (RPI.isPaired()) {
2961       MIB.addReg(Reg2, getDefRegState(true));
2962       MIB.addMemOperand(MF.getMachineMemOperand(
2963           MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2964           MachineMemOperand::MOLoad, Size, Alignment));
2965     }
2966     MIB.addReg(Reg1, getDefRegState(true))
2967         .addReg(AArch64::SP)
2968         .addImm(RPI.Offset) // [sp, #offset*scale]
2969                             // where factor*scale is implicit
2970         .setMIFlag(MachineInstr::FrameDestroy);
2971     MIB.addMemOperand(MF.getMachineMemOperand(
2972         MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2973         MachineMemOperand::MOLoad, Size, Alignment));
2974     if (NeedsWinCFI)
2975       InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2976 
2977     return MIB->getIterator();
2978   };
2979 
2980   // SVE objects are always restored in reverse order.
2981   for (const RegPairInfo &RPI : reverse(RegPairs))
2982     if (RPI.isScalable())
2983       EmitMI(RPI);
2984 
2985   if (homogeneousPrologEpilog(MF, &MBB)) {
2986     auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
2987                    .setMIFlag(MachineInstr::FrameDestroy);
2988     for (auto &RPI : RegPairs) {
2989       MIB.addReg(RPI.Reg1, RegState::Define);
2990       MIB.addReg(RPI.Reg2, RegState::Define);
2991     }
2992     return true;
2993   }
2994 
2995   if (ReverseCSRRestoreSeq) {
2996     MachineBasicBlock::iterator First = MBB.end();
2997     for (const RegPairInfo &RPI : reverse(RegPairs)) {
2998       if (RPI.isScalable())
2999         continue;
3000       MachineBasicBlock::iterator It = EmitMI(RPI);
3001       if (First == MBB.end())
3002         First = It;
3003     }
3004     if (First != MBB.end())
3005       MBB.splice(MBBI, &MBB, First);
3006   } else {
3007     for (const RegPairInfo &RPI : RegPairs) {
3008       if (RPI.isScalable())
3009         continue;
3010       (void)EmitMI(RPI);
3011     }
3012   }
3013 
3014   return true;
3015 }
3016 
3017 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
3018                                                 BitVector &SavedRegs,
3019                                                 RegScavenger *RS) const {
3020   // All calls are tail calls in GHC calling conv, and functions have no
3021   // prologue/epilogue.
3022   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
3023     return;
3024 
3025   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3026   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
3027       MF.getSubtarget().getRegisterInfo());
3028   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
3029   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3030   unsigned UnspilledCSGPR = AArch64::NoRegister;
3031   unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
3032 
3033   MachineFrameInfo &MFI = MF.getFrameInfo();
3034   const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
3035 
3036   unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
3037                                 ? RegInfo->getBaseRegister()
3038                                 : (unsigned)AArch64::NoRegister;
3039 
3040   unsigned ExtraCSSpill = 0;
3041   // Figure out which callee-saved registers to save/restore.
3042   for (unsigned i = 0; CSRegs[i]; ++i) {
3043     const unsigned Reg = CSRegs[i];
3044 
3045     // Add the base pointer register to SavedRegs if it is callee-save.
3046     if (Reg == BasePointerReg)
3047       SavedRegs.set(Reg);
3048 
3049     bool RegUsed = SavedRegs.test(Reg);
3050     unsigned PairedReg = AArch64::NoRegister;
3051     if (AArch64::GPR64RegClass.contains(Reg) ||
3052         AArch64::FPR64RegClass.contains(Reg) ||
3053         AArch64::FPR128RegClass.contains(Reg))
3054       PairedReg = CSRegs[i ^ 1];
3055 
3056     if (!RegUsed) {
3057       if (AArch64::GPR64RegClass.contains(Reg) &&
3058           !RegInfo->isReservedReg(MF, Reg)) {
3059         UnspilledCSGPR = Reg;
3060         UnspilledCSGPRPaired = PairedReg;
3061       }
3062       continue;
3063     }
3064 
3065     // MachO's compact unwind format relies on all registers being stored in
3066     // pairs.
3067     // FIXME: the usual format is actually better if unwinding isn't needed.
3068     if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3069         !SavedRegs.test(PairedReg)) {
3070       SavedRegs.set(PairedReg);
3071       if (AArch64::GPR64RegClass.contains(PairedReg) &&
3072           !RegInfo->isReservedReg(MF, PairedReg))
3073         ExtraCSSpill = PairedReg;
3074     }
3075   }
3076 
3077   if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3078       !Subtarget.isTargetWindows()) {
3079     // For Windows calling convention on a non-windows OS, where X18 is treated
3080     // as reserved, back up X18 when entering non-windows code (marked with the
3081     // Windows calling convention) and restore when returning regardless of
3082     // whether the individual function uses it - it might call other functions
3083     // that clobber it.
3084     SavedRegs.set(AArch64::X18);
3085   }
3086 
3087   // Calculates the callee saved stack size.
3088   unsigned CSStackSize = 0;
3089   unsigned SVECSStackSize = 0;
3090   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3091   const MachineRegisterInfo &MRI = MF.getRegInfo();
3092   for (unsigned Reg : SavedRegs.set_bits()) {
3093     auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3094     if (AArch64::PPRRegClass.contains(Reg) ||
3095         AArch64::ZPRRegClass.contains(Reg))
3096       SVECSStackSize += RegSize;
3097     else
3098       CSStackSize += RegSize;
3099   }
3100 
3101   // Save number of saved regs, so we can easily update CSStackSize later.
3102   unsigned NumSavedRegs = SavedRegs.count();
3103 
3104   // The frame record needs to be created by saving the appropriate registers
3105   uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3106   if (hasFP(MF) ||
3107       windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3108     SavedRegs.set(AArch64::FP);
3109     SavedRegs.set(AArch64::LR);
3110   }
3111 
3112   LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3113              for (unsigned Reg
3114                   : SavedRegs.set_bits()) dbgs()
3115              << ' ' << printReg(Reg, RegInfo);
3116              dbgs() << "\n";);
3117 
3118   // If any callee-saved registers are used, the frame cannot be eliminated.
3119   int64_t SVEStackSize =
3120       alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3121   bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3122 
3123   // The CSR spill slots have not been allocated yet, so estimateStackSize
3124   // won't include them.
3125   unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3126 
3127   // We may address some of the stack above the canonical frame address, either
3128   // for our own arguments or during a call. Include that in calculating whether
3129   // we have complicated addressing concerns.
3130   int64_t CalleeStackUsed = 0;
3131   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) {
3132     int64_t FixedOff = MFI.getObjectOffset(I);
3133     if (FixedOff > CalleeStackUsed) CalleeStackUsed = FixedOff;
3134   }
3135 
3136   // Conservatively always assume BigStack when there are SVE spills.
3137   bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize +
3138                                    CalleeStackUsed) > EstimatedStackSizeLimit;
3139   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3140     AFI->setHasStackFrame(true);
3141 
3142   // Estimate if we might need to scavenge a register at some point in order
3143   // to materialize a stack offset. If so, either spill one additional
3144   // callee-saved register or reserve a special spill slot to facilitate
3145   // register scavenging. If we already spilled an extra callee-saved register
3146   // above to keep the number of spills even, we don't need to do anything else
3147   // here.
3148   if (BigStack) {
3149     if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3150       LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3151                         << " to get a scratch register.\n");
3152       SavedRegs.set(UnspilledCSGPR);
3153       // MachO's compact unwind format relies on all registers being stored in
3154       // pairs, so if we need to spill one extra for BigStack, then we need to
3155       // store the pair.
3156       if (producePairRegisters(MF))
3157         SavedRegs.set(UnspilledCSGPRPaired);
3158       ExtraCSSpill = UnspilledCSGPR;
3159     }
3160 
3161     // If we didn't find an extra callee-saved register to spill, create
3162     // an emergency spill slot.
3163     if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3164       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3165       const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3166       unsigned Size = TRI->getSpillSize(RC);
3167       Align Alignment = TRI->getSpillAlign(RC);
3168       int FI = MFI.CreateStackObject(Size, Alignment, false);
3169       RS->addScavengingFrameIndex(FI);
3170       LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3171                         << " as the emergency spill slot.\n");
3172     }
3173   }
3174 
3175   // Adding the size of additional 64bit GPR saves.
3176   CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3177 
3178   // A Swift asynchronous context extends the frame record with a pointer
3179   // directly before FP.
3180   if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3181     CSStackSize += 8;
3182 
3183   uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3184   LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3185                << EstimatedStackSize + AlignedCSStackSize
3186                << " bytes.\n");
3187 
3188   assert((!MFI.isCalleeSavedInfoValid() ||
3189           AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3190          "Should not invalidate callee saved info");
3191 
3192   // Round up to register pair alignment to avoid additional SP adjustment
3193   // instructions.
3194   AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3195   AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3196   AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3197 }
3198 
3199 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3200     MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3201     std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3202     unsigned &MaxCSFrameIndex) const {
3203   bool NeedsWinCFI = needsWinCFI(MF);
3204   // To match the canonical windows frame layout, reverse the list of
3205   // callee saved registers to get them laid out by PrologEpilogInserter
3206   // in the right order. (PrologEpilogInserter allocates stack objects top
3207   // down. Windows canonical prologs store higher numbered registers at
3208   // the top, thus have the CSI array start from the highest registers.)
3209   if (NeedsWinCFI)
3210     std::reverse(CSI.begin(), CSI.end());
3211 
3212   if (CSI.empty())
3213     return true; // Early exit if no callee saved registers are modified!
3214 
3215   // Now that we know which registers need to be saved and restored, allocate
3216   // stack slots for them.
3217   MachineFrameInfo &MFI = MF.getFrameInfo();
3218   auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3219 
3220   bool UsesWinAAPCS = isTargetWindows(MF);
3221   if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3222     int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3223     AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3224     if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3225     if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3226   }
3227 
3228   for (auto &CS : CSI) {
3229     Register Reg = CS.getReg();
3230     const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3231 
3232     unsigned Size = RegInfo->getSpillSize(*RC);
3233     Align Alignment(RegInfo->getSpillAlign(*RC));
3234     int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3235     CS.setFrameIdx(FrameIdx);
3236 
3237     if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3238     if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3239 
3240     // Grab 8 bytes below FP for the extended asynchronous frame info.
3241     if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3242         Reg == AArch64::FP) {
3243       FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3244       AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3245       if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3246       if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3247     }
3248   }
3249   return true;
3250 }
3251 
3252 bool AArch64FrameLowering::enableStackSlotScavenging(
3253     const MachineFunction &MF) const {
3254   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3255   return AFI->hasCalleeSaveStackFreeSpace();
3256 }
3257 
3258 /// returns true if there are any SVE callee saves.
3259 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3260                                       int &Min, int &Max) {
3261   Min = std::numeric_limits<int>::max();
3262   Max = std::numeric_limits<int>::min();
3263 
3264   if (!MFI.isCalleeSavedInfoValid())
3265     return false;
3266 
3267   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3268   for (auto &CS : CSI) {
3269     if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
3270         AArch64::PPRRegClass.contains(CS.getReg())) {
3271       assert((Max == std::numeric_limits<int>::min() ||
3272               Max + 1 == CS.getFrameIdx()) &&
3273              "SVE CalleeSaves are not consecutive");
3274 
3275       Min = std::min(Min, CS.getFrameIdx());
3276       Max = std::max(Max, CS.getFrameIdx());
3277     }
3278   }
3279   return Min != std::numeric_limits<int>::max();
3280 }
3281 
3282 // Process all the SVE stack objects and determine offsets for each
3283 // object. If AssignOffsets is true, the offsets get assigned.
3284 // Fills in the first and last callee-saved frame indices into
3285 // Min/MaxCSFrameIndex, respectively.
3286 // Returns the size of the stack.
3287 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
3288                                               int &MinCSFrameIndex,
3289                                               int &MaxCSFrameIndex,
3290                                               bool AssignOffsets) {
3291 #ifndef NDEBUG
3292   // First process all fixed stack objects.
3293   for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
3294     assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
3295            "SVE vectors should never be passed on the stack by value, only by "
3296            "reference.");
3297 #endif
3298 
3299   auto Assign = [&MFI](int FI, int64_t Offset) {
3300     LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
3301     MFI.setObjectOffset(FI, Offset);
3302   };
3303 
3304   int64_t Offset = 0;
3305 
3306   // Then process all callee saved slots.
3307   if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
3308     // Assign offsets to the callee save slots.
3309     for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
3310       Offset += MFI.getObjectSize(I);
3311       Offset = alignTo(Offset, MFI.getObjectAlign(I));
3312       if (AssignOffsets)
3313         Assign(I, -Offset);
3314     }
3315   }
3316 
3317   // Ensure that the Callee-save area is aligned to 16bytes.
3318   Offset = alignTo(Offset, Align(16U));
3319 
3320   // Create a buffer of SVE objects to allocate and sort it.
3321   SmallVector<int, 8> ObjectsToAllocate;
3322   // If we have a stack protector, and we've previously decided that we have SVE
3323   // objects on the stack and thus need it to go in the SVE stack area, then it
3324   // needs to go first.
3325   int StackProtectorFI = -1;
3326   if (MFI.hasStackProtectorIndex()) {
3327     StackProtectorFI = MFI.getStackProtectorIndex();
3328     if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
3329       ObjectsToAllocate.push_back(StackProtectorFI);
3330   }
3331   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
3332     unsigned StackID = MFI.getStackID(I);
3333     if (StackID != TargetStackID::ScalableVector)
3334       continue;
3335     if (I == StackProtectorFI)
3336       continue;
3337     if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
3338       continue;
3339     if (MFI.isDeadObjectIndex(I))
3340       continue;
3341 
3342     ObjectsToAllocate.push_back(I);
3343   }
3344 
3345   // Allocate all SVE locals and spills
3346   for (unsigned FI : ObjectsToAllocate) {
3347     Align Alignment = MFI.getObjectAlign(FI);
3348     // FIXME: Given that the length of SVE vectors is not necessarily a power of
3349     // two, we'd need to align every object dynamically at runtime if the
3350     // alignment is larger than 16. This is not yet supported.
3351     if (Alignment > Align(16))
3352       report_fatal_error(
3353           "Alignment of scalable vectors > 16 bytes is not yet supported");
3354 
3355     Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
3356     if (AssignOffsets)
3357       Assign(FI, -Offset);
3358   }
3359 
3360   return Offset;
3361 }
3362 
3363 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3364     MachineFrameInfo &MFI) const {
3365   int MinCSFrameIndex, MaxCSFrameIndex;
3366   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
3367 }
3368 
3369 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3370     MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
3371   return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
3372                                         true);
3373 }
3374 
3375 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3376     MachineFunction &MF, RegScavenger *RS) const {
3377   MachineFrameInfo &MFI = MF.getFrameInfo();
3378 
3379   assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
3380          "Upwards growing stack unsupported");
3381 
3382   int MinCSFrameIndex, MaxCSFrameIndex;
3383   int64_t SVEStackSize =
3384       assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
3385 
3386   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3387   AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
3388   AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
3389 
3390   // If this function isn't doing Win64-style C++ EH, we don't need to do
3391   // anything.
3392   if (!MF.hasEHFunclets())
3393     return;
3394   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3395   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3396 
3397   MachineBasicBlock &MBB = MF.front();
3398   auto MBBI = MBB.begin();
3399   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3400     ++MBBI;
3401 
3402   // Create an UnwindHelp object.
3403   // The UnwindHelp object is allocated at the start of the fixed object area
3404   int64_t FixedObject =
3405       getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
3406   int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
3407                                            /*SPOffset*/ -FixedObject,
3408                                            /*IsImmutable=*/false);
3409   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3410 
3411   // We need to store -2 into the UnwindHelp object at the start of the
3412   // function.
3413   DebugLoc DL;
3414   RS->enterBasicBlockEnd(MBB);
3415   RS->backward(std::prev(MBBI));
3416   Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3417   assert(DstReg && "There must be a free register after frame setup");
3418   BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3419   BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3420       .addReg(DstReg, getKillRegState(true))
3421       .addFrameIndex(UnwindHelpFI)
3422       .addImm(0);
3423 }
3424 
3425 namespace {
3426 struct TagStoreInstr {
3427   MachineInstr *MI;
3428   int64_t Offset, Size;
3429   explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3430       : MI(MI), Offset(Offset), Size(Size) {}
3431 };
3432 
3433 class TagStoreEdit {
3434   MachineFunction *MF;
3435   MachineBasicBlock *MBB;
3436   MachineRegisterInfo *MRI;
3437   // Tag store instructions that are being replaced.
3438   SmallVector<TagStoreInstr, 8> TagStores;
3439   // Combined memref arguments of the above instructions.
3440   SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
3441 
3442   // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3443   // FrameRegOffset + Size) with the address tag of SP.
3444   Register FrameReg;
3445   StackOffset FrameRegOffset;
3446   int64_t Size;
3447   // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
3448   // end.
3449   std::optional<int64_t> FrameRegUpdate;
3450   // MIFlags for any FrameReg updating instructions.
3451   unsigned FrameRegUpdateFlags;
3452 
3453   // Use zeroing instruction variants.
3454   bool ZeroData;
3455   DebugLoc DL;
3456 
3457   void emitUnrolled(MachineBasicBlock::iterator InsertI);
3458   void emitLoop(MachineBasicBlock::iterator InsertI);
3459 
3460 public:
3461   TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3462       : MBB(MBB), ZeroData(ZeroData) {
3463     MF = MBB->getParent();
3464     MRI = &MF->getRegInfo();
3465   }
3466   // Add an instruction to be replaced. Instructions must be added in the
3467   // ascending order of Offset, and have to be adjacent.
3468   void addInstruction(TagStoreInstr I) {
3469     assert((TagStores.empty() ||
3470             TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3471            "Non-adjacent tag store instructions.");
3472     TagStores.push_back(I);
3473   }
3474   void clear() { TagStores.clear(); }
3475   // Emit equivalent code at the given location, and erase the current set of
3476   // instructions. May skip if the replacement is not profitable. May invalidate
3477   // the input iterator and replace it with a valid one.
3478   void emitCode(MachineBasicBlock::iterator &InsertI,
3479                 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3480 };
3481 
3482 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3483   const AArch64InstrInfo *TII =
3484       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3485 
3486   const int64_t kMinOffset = -256 * 16;
3487   const int64_t kMaxOffset = 255 * 16;
3488 
3489   Register BaseReg = FrameReg;
3490   int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3491   if (BaseRegOffsetBytes < kMinOffset ||
3492       BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset ||
3493       // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
3494       // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
3495       // is required for the offset of ST2G.
3496       BaseRegOffsetBytes % 16 != 0) {
3497     Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3498     emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3499                     StackOffset::getFixed(BaseRegOffsetBytes), TII);
3500     BaseReg = ScratchReg;
3501     BaseRegOffsetBytes = 0;
3502   }
3503 
3504   MachineInstr *LastI = nullptr;
3505   while (Size) {
3506     int64_t InstrSize = (Size > 16) ? 32 : 16;
3507     unsigned Opcode =
3508         InstrSize == 16
3509             ? (ZeroData ? AArch64::STZGi : AArch64::STGi)
3510             : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi);
3511     assert(BaseRegOffsetBytes % 16 == 0);
3512     MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3513                           .addReg(AArch64::SP)
3514                           .addReg(BaseReg)
3515                           .addImm(BaseRegOffsetBytes / 16)
3516                           .setMemRefs(CombinedMemRefs);
3517     // A store to [BaseReg, #0] should go last for an opportunity to fold the
3518     // final SP adjustment in the epilogue.
3519     if (BaseRegOffsetBytes == 0)
3520       LastI = I;
3521     BaseRegOffsetBytes += InstrSize;
3522     Size -= InstrSize;
3523   }
3524 
3525   if (LastI)
3526     MBB->splice(InsertI, MBB, LastI);
3527 }
3528 
3529 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3530   const AArch64InstrInfo *TII =
3531       MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3532 
3533   Register BaseReg = FrameRegUpdate
3534                          ? FrameReg
3535                          : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3536   Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3537 
3538   emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3539 
3540   int64_t LoopSize = Size;
3541   // If the loop size is not a multiple of 32, split off one 16-byte store at
3542   // the end to fold BaseReg update into.
3543   if (FrameRegUpdate && *FrameRegUpdate)
3544     LoopSize -= LoopSize % 32;
3545   MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3546                                 TII->get(ZeroData ? AArch64::STZGloop_wback
3547                                                   : AArch64::STGloop_wback))
3548                             .addDef(SizeReg)
3549                             .addDef(BaseReg)
3550                             .addImm(LoopSize)
3551                             .addReg(BaseReg)
3552                             .setMemRefs(CombinedMemRefs);
3553   if (FrameRegUpdate)
3554     LoopI->setFlags(FrameRegUpdateFlags);
3555 
3556   int64_t ExtraBaseRegUpdate =
3557       FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3558   if (LoopSize < Size) {
3559     assert(FrameRegUpdate);
3560     assert(Size - LoopSize == 16);
3561     // Tag 16 more bytes at BaseReg and update BaseReg.
3562     BuildMI(*MBB, InsertI, DL,
3563             TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3564         .addDef(BaseReg)
3565         .addReg(BaseReg)
3566         .addReg(BaseReg)
3567         .addImm(1 + ExtraBaseRegUpdate / 16)
3568         .setMemRefs(CombinedMemRefs)
3569         .setMIFlags(FrameRegUpdateFlags);
3570   } else if (ExtraBaseRegUpdate) {
3571     // Update BaseReg.
3572     BuildMI(
3573         *MBB, InsertI, DL,
3574         TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3575         .addDef(BaseReg)
3576         .addReg(BaseReg)
3577         .addImm(std::abs(ExtraBaseRegUpdate))
3578         .addImm(0)
3579         .setMIFlags(FrameRegUpdateFlags);
3580   }
3581 }
3582 
3583 // Check if *II is a register update that can be merged into STGloop that ends
3584 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3585 // end of the loop.
3586 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3587                        int64_t Size, int64_t *TotalOffset) {
3588   MachineInstr &MI = *II;
3589   if ((MI.getOpcode() == AArch64::ADDXri ||
3590        MI.getOpcode() == AArch64::SUBXri) &&
3591       MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3592     unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3593     int64_t Offset = MI.getOperand(2).getImm() << Shift;
3594     if (MI.getOpcode() == AArch64::SUBXri)
3595       Offset = -Offset;
3596     int64_t AbsPostOffset = std::abs(Offset - Size);
3597     const int64_t kMaxOffset =
3598         0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3599     if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
3600       *TotalOffset = Offset;
3601       return true;
3602     }
3603   }
3604   return false;
3605 }
3606 
3607 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3608                   SmallVectorImpl<MachineMemOperand *> &MemRefs) {
3609   MemRefs.clear();
3610   for (auto &TS : TSE) {
3611     MachineInstr *MI = TS.MI;
3612     // An instruction without memory operands may access anything. Be
3613     // conservative and return an empty list.
3614     if (MI->memoperands_empty()) {
3615       MemRefs.clear();
3616       return;
3617     }
3618     MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3619   }
3620 }
3621 
3622 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3623                             const AArch64FrameLowering *TFI,
3624                             bool TryMergeSPUpdate) {
3625   if (TagStores.empty())
3626     return;
3627   TagStoreInstr &FirstTagStore = TagStores[0];
3628   TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3629   Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3630   DL = TagStores[0].MI->getDebugLoc();
3631 
3632   Register Reg;
3633   FrameRegOffset = TFI->resolveFrameOffsetReference(
3634       *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
3635       /*PreferFP=*/false, /*ForSimm=*/true);
3636   FrameReg = Reg;
3637   FrameRegUpdate = std::nullopt;
3638 
3639   mergeMemRefs(TagStores, CombinedMemRefs);
3640 
3641   LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3642              for (const auto &Instr
3643                   : TagStores) { dbgs() << "  " << *Instr.MI; });
3644 
3645   // Size threshold where a loop becomes shorter than a linear sequence of
3646   // tagging instructions.
3647   const int kSetTagLoopThreshold = 176;
3648   if (Size < kSetTagLoopThreshold) {
3649     if (TagStores.size() < 2)
3650       return;
3651     emitUnrolled(InsertI);
3652   } else {
3653     MachineInstr *UpdateInstr = nullptr;
3654     int64_t TotalOffset = 0;
3655     if (TryMergeSPUpdate) {
3656       // See if we can merge base register update into the STGloop.
3657       // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3658       // but STGloop is way too unusual for that, and also it only
3659       // realistically happens in function epilogue. Also, STGloop is expanded
3660       // before that pass.
3661       if (InsertI != MBB->end() &&
3662           canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3663                             &TotalOffset)) {
3664         UpdateInstr = &*InsertI++;
3665         LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n  "
3666                           << *UpdateInstr);
3667       }
3668     }
3669 
3670     if (!UpdateInstr && TagStores.size() < 2)
3671       return;
3672 
3673     if (UpdateInstr) {
3674       FrameRegUpdate = TotalOffset;
3675       FrameRegUpdateFlags = UpdateInstr->getFlags();
3676     }
3677     emitLoop(InsertI);
3678     if (UpdateInstr)
3679       UpdateInstr->eraseFromParent();
3680   }
3681 
3682   for (auto &TS : TagStores)
3683     TS.MI->eraseFromParent();
3684 }
3685 
3686 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3687                                         int64_t &Size, bool &ZeroData) {
3688   MachineFunction &MF = *MI.getParent()->getParent();
3689   const MachineFrameInfo &MFI = MF.getFrameInfo();
3690 
3691   unsigned Opcode = MI.getOpcode();
3692   ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi ||
3693               Opcode == AArch64::STZ2Gi);
3694 
3695   if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3696     if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3697       return false;
3698     if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3699       return false;
3700     Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3701     Size = MI.getOperand(2).getImm();
3702     return true;
3703   }
3704 
3705   if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi)
3706     Size = 16;
3707   else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi)
3708     Size = 32;
3709   else
3710     return false;
3711 
3712   if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3713     return false;
3714 
3715   Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3716            16 * MI.getOperand(2).getImm();
3717   return true;
3718 }
3719 
3720 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3721 // and replace them with a shorter instruction sequence:
3722 // * replace STG + STG with ST2G
3723 // * replace STGloop + STGloop with STGloop
3724 // This code needs to run when stack slot offsets are already known, but before
3725 // FrameIndex operands in STG instructions are eliminated.
3726 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
3727                                                 const AArch64FrameLowering *TFI,
3728                                                 RegScavenger *RS) {
3729   bool FirstZeroData;
3730   int64_t Size, Offset;
3731   MachineInstr &MI = *II;
3732   MachineBasicBlock *MBB = MI.getParent();
3733   MachineBasicBlock::iterator NextI = ++II;
3734   if (&MI == &MBB->instr_back())
3735     return II;
3736   if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3737     return II;
3738 
3739   SmallVector<TagStoreInstr, 4> Instrs;
3740   Instrs.emplace_back(&MI, Offset, Size);
3741 
3742   constexpr int kScanLimit = 10;
3743   int Count = 0;
3744   for (MachineBasicBlock::iterator E = MBB->end();
3745        NextI != E && Count < kScanLimit; ++NextI) {
3746     MachineInstr &MI = *NextI;
3747     bool ZeroData;
3748     int64_t Size, Offset;
3749     // Collect instructions that update memory tags with a FrameIndex operand
3750     // and (when applicable) constant size, and whose output registers are dead
3751     // (the latter is almost always the case in practice). Since these
3752     // instructions effectively have no inputs or outputs, we are free to skip
3753     // any non-aliasing instructions in between without tracking used registers.
3754     if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3755       if (ZeroData != FirstZeroData)
3756         break;
3757       Instrs.emplace_back(&MI, Offset, Size);
3758       continue;
3759     }
3760 
3761     // Only count non-transient, non-tagging instructions toward the scan
3762     // limit.
3763     if (!MI.isTransient())
3764       ++Count;
3765 
3766     // Just in case, stop before the epilogue code starts.
3767     if (MI.getFlag(MachineInstr::FrameSetup) ||
3768         MI.getFlag(MachineInstr::FrameDestroy))
3769       break;
3770 
3771     // Reject anything that may alias the collected instructions.
3772     if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
3773       break;
3774   }
3775 
3776   // New code will be inserted after the last tagging instruction we've found.
3777   MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3778   InsertI++;
3779 
3780   llvm::stable_sort(Instrs,
3781                     [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3782                       return Left.Offset < Right.Offset;
3783                     });
3784 
3785   // Make sure that we don't have any overlapping stores.
3786   int64_t CurOffset = Instrs[0].Offset;
3787   for (auto &Instr : Instrs) {
3788     if (CurOffset > Instr.Offset)
3789       return NextI;
3790     CurOffset = Instr.Offset + Instr.Size;
3791   }
3792 
3793   // Find contiguous runs of tagged memory and emit shorter instruction
3794   // sequencies for them when possible.
3795   TagStoreEdit TSE(MBB, FirstZeroData);
3796   std::optional<int64_t> EndOffset;
3797   for (auto &Instr : Instrs) {
3798     if (EndOffset && *EndOffset != Instr.Offset) {
3799       // Found a gap.
3800       TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
3801       TSE.clear();
3802     }
3803 
3804     TSE.addInstruction(Instr);
3805     EndOffset = Instr.Offset + Instr.Size;
3806   }
3807 
3808   const MachineFunction *MF = MBB->getParent();
3809   // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
3810   TSE.emitCode(
3811       InsertI, TFI, /*TryMergeSPUpdate = */
3812       !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
3813 
3814   return InsertI;
3815 }
3816 } // namespace
3817 
3818 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3819     MachineFunction &MF, RegScavenger *RS = nullptr) const {
3820   if (StackTaggingMergeSetTag)
3821     for (auto &BB : MF)
3822       for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
3823         II = tryMergeAdjacentSTG(II, this, RS);
3824 }
3825 
3826 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3827 /// before the update.  This is easily retrieved as it is exactly the offset
3828 /// that is set in processFunctionBeforeFrameFinalized.
3829 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
3830     const MachineFunction &MF, int FI, Register &FrameReg,
3831     bool IgnoreSPUpdates) const {
3832   const MachineFrameInfo &MFI = MF.getFrameInfo();
3833   if (IgnoreSPUpdates) {
3834     LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3835                       << MFI.getObjectOffset(FI) << "\n");
3836     FrameReg = AArch64::SP;
3837     return StackOffset::getFixed(MFI.getObjectOffset(FI));
3838   }
3839 
3840   // Go to common code if we cannot provide sp + offset.
3841   if (MFI.hasVarSizedObjects() ||
3842       MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
3843       MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
3844     return getFrameIndexReference(MF, FI, FrameReg);
3845 
3846   FrameReg = AArch64::SP;
3847   return getStackOffset(MF, MFI.getObjectOffset(FI));
3848 }
3849 
3850 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3851 /// the parent's frame pointer
3852 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3853     const MachineFunction &MF) const {
3854   return 0;
3855 }
3856 
3857 /// Funclets only need to account for space for the callee saved registers,
3858 /// as the locals are accounted for in the parent's stack frame.
3859 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3860     const MachineFunction &MF) const {
3861   // This is the size of the pushed CSRs.
3862   unsigned CSSize =
3863       MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3864   // This is the amount of stack a funclet needs to allocate.
3865   return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3866                  getStackAlign());
3867 }
3868 
3869 namespace {
3870 struct FrameObject {
3871   bool IsValid = false;
3872   // Index of the object in MFI.
3873   int ObjectIndex = 0;
3874   // Group ID this object belongs to.
3875   int GroupIndex = -1;
3876   // This object should be placed first (closest to SP).
3877   bool ObjectFirst = false;
3878   // This object's group (which always contains the object with
3879   // ObjectFirst==true) should be placed first.
3880   bool GroupFirst = false;
3881 };
3882 
3883 class GroupBuilder {
3884   SmallVector<int, 8> CurrentMembers;
3885   int NextGroupIndex = 0;
3886   std::vector<FrameObject> &Objects;
3887 
3888 public:
3889   GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
3890   void AddMember(int Index) { CurrentMembers.push_back(Index); }
3891   void EndCurrentGroup() {
3892     if (CurrentMembers.size() > 1) {
3893       // Create a new group with the current member list. This might remove them
3894       // from their pre-existing groups. That's OK, dealing with overlapping
3895       // groups is too hard and unlikely to make a difference.
3896       LLVM_DEBUG(dbgs() << "group:");
3897       for (int Index : CurrentMembers) {
3898         Objects[Index].GroupIndex = NextGroupIndex;
3899         LLVM_DEBUG(dbgs() << " " << Index);
3900       }
3901       LLVM_DEBUG(dbgs() << "\n");
3902       NextGroupIndex++;
3903     }
3904     CurrentMembers.clear();
3905   }
3906 };
3907 
3908 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3909   // Objects at a lower index are closer to FP; objects at a higher index are
3910   // closer to SP.
3911   //
3912   // For consistency in our comparison, all invalid objects are placed
3913   // at the end. This also allows us to stop walking when we hit the
3914   // first invalid item after it's all sorted.
3915   //
3916   // The "first" object goes first (closest to SP), followed by the members of
3917   // the "first" group.
3918   //
3919   // The rest are sorted by the group index to keep the groups together.
3920   // Higher numbered groups are more likely to be around longer (i.e. untagged
3921   // in the function epilogue and not at some earlier point). Place them closer
3922   // to SP.
3923   //
3924   // If all else equal, sort by the object index to keep the objects in the
3925   // original order.
3926   return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
3927                          A.ObjectIndex) <
3928          std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
3929                          B.ObjectIndex);
3930 }
3931 } // namespace
3932 
3933 void AArch64FrameLowering::orderFrameObjects(
3934     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3935   if (!OrderFrameObjects || ObjectsToAllocate.empty())
3936     return;
3937 
3938   const MachineFrameInfo &MFI = MF.getFrameInfo();
3939   std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3940   for (auto &Obj : ObjectsToAllocate) {
3941     FrameObjects[Obj].IsValid = true;
3942     FrameObjects[Obj].ObjectIndex = Obj;
3943   }
3944 
3945   // Identify stack slots that are tagged at the same time.
3946   GroupBuilder GB(FrameObjects);
3947   for (auto &MBB : MF) {
3948     for (auto &MI : MBB) {
3949       if (MI.isDebugInstr())
3950         continue;
3951       int OpIndex;
3952       switch (MI.getOpcode()) {
3953       case AArch64::STGloop:
3954       case AArch64::STZGloop:
3955         OpIndex = 3;
3956         break;
3957       case AArch64::STGi:
3958       case AArch64::STZGi:
3959       case AArch64::ST2Gi:
3960       case AArch64::STZ2Gi:
3961         OpIndex = 1;
3962         break;
3963       default:
3964         OpIndex = -1;
3965       }
3966 
3967       int TaggedFI = -1;
3968       if (OpIndex >= 0) {
3969         const MachineOperand &MO = MI.getOperand(OpIndex);
3970         if (MO.isFI()) {
3971           int FI = MO.getIndex();
3972           if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3973               FrameObjects[FI].IsValid)
3974             TaggedFI = FI;
3975         }
3976       }
3977 
3978       // If this is a stack tagging instruction for a slot that is not part of a
3979       // group yet, either start a new group or add it to the current one.
3980       if (TaggedFI >= 0)
3981         GB.AddMember(TaggedFI);
3982       else
3983         GB.EndCurrentGroup();
3984     }
3985     // Groups should never span multiple basic blocks.
3986     GB.EndCurrentGroup();
3987   }
3988 
3989   // If the function's tagged base pointer is pinned to a stack slot, we want to
3990   // put that slot first when possible. This will likely place it at SP + 0,
3991   // and save one instruction when generating the base pointer because IRG does
3992   // not allow an immediate offset.
3993   const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
3994   std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
3995   if (TBPI) {
3996     FrameObjects[*TBPI].ObjectFirst = true;
3997     FrameObjects[*TBPI].GroupFirst = true;
3998     int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
3999     if (FirstGroupIndex >= 0)
4000       for (FrameObject &Object : FrameObjects)
4001         if (Object.GroupIndex == FirstGroupIndex)
4002           Object.GroupFirst = true;
4003   }
4004 
4005   llvm::stable_sort(FrameObjects, FrameObjectCompare);
4006 
4007   int i = 0;
4008   for (auto &Obj : FrameObjects) {
4009     // All invalid items are sorted at the end, so it's safe to stop.
4010     if (!Obj.IsValid)
4011       break;
4012     ObjectsToAllocate[i++] = Obj.ObjectIndex;
4013   }
4014 
4015   LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
4016                                                     : FrameObjects) {
4017     if (!Obj.IsValid)
4018       break;
4019     dbgs() << "  " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
4020     if (Obj.ObjectFirst)
4021       dbgs() << ", first";
4022     if (Obj.GroupFirst)
4023       dbgs() << ", group-first";
4024     dbgs() << "\n";
4025   });
4026 }
4027