xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64ExpandImm.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64ExpandImm stuff.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AArch64.h"
14 #include "AArch64ExpandImm.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
16 
17 namespace llvm {
18 
19 namespace AArch64_IMM {
20 
21 /// Helper function which extracts the specified 16-bit chunk from a
22 /// 64-bit value.
23 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
24   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
25 
26   return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
27 }
28 
29 /// Check whether the given 16-bit chunk replicated to full 64-bit width
30 /// can be materialized with an ORR instruction.
31 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
32   Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
33 
34   return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
35 }
36 
37 /// Check for identical 16-bit chunks within the constant and if so
38 /// materialize them with a single ORR instruction. The remaining one or two
39 /// 16-bit chunks will be materialized with MOVK instructions.
40 ///
41 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
42 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
43 /// an ORR instruction.
44 static bool tryToreplicateChunks(uint64_t UImm,
45 				 SmallVectorImpl<ImmInsnModel> &Insn) {
46   using CountMap = DenseMap<uint64_t, unsigned>;
47 
48   CountMap Counts;
49 
50   // Scan the constant and count how often every chunk occurs.
51   for (unsigned Idx = 0; Idx < 4; ++Idx)
52     ++Counts[getChunk(UImm, Idx)];
53 
54   // Traverse the chunks to find one which occurs more than once.
55   for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
56        Chunk != End; ++Chunk) {
57     const uint64_t ChunkVal = Chunk->first;
58     const unsigned Count = Chunk->second;
59 
60     uint64_t Encoding = 0;
61 
62     // We are looking for chunks which have two or three instances and can be
63     // materialized with an ORR instruction.
64     if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
65       continue;
66 
67     const bool CountThree = Count == 3;
68 
69     Insn.push_back({ AArch64::ORRXri, 0, Encoding });
70 
71     unsigned ShiftAmt = 0;
72     uint64_t Imm16 = 0;
73     // Find the first chunk not materialized with the ORR instruction.
74     for (; ShiftAmt < 64; ShiftAmt += 16) {
75       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
76 
77       if (Imm16 != ChunkVal)
78         break;
79     }
80 
81     // Create the first MOVK instruction.
82     Insn.push_back({ AArch64::MOVKXi, Imm16,
83 		     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
84 
85     // In case we have three instances the whole constant is now materialized
86     // and we can exit.
87     if (CountThree)
88       return true;
89 
90     // Find the remaining chunk which needs to be materialized.
91     for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
92       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
93 
94       if (Imm16 != ChunkVal)
95         break;
96     }
97     Insn.push_back({ AArch64::MOVKXi, Imm16,
98                      AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
99     return true;
100   }
101 
102   return false;
103 }
104 
105 /// Check whether this chunk matches the pattern '1...0...'. This pattern
106 /// starts a contiguous sequence of ones if we look at the bits from the LSB
107 /// towards the MSB.
108 static bool isStartChunk(uint64_t Chunk) {
109   if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
110     return false;
111 
112   return isMask_64(~Chunk);
113 }
114 
115 /// Check whether this chunk matches the pattern '0...1...' This pattern
116 /// ends a contiguous sequence of ones if we look at the bits from the LSB
117 /// towards the MSB.
118 static bool isEndChunk(uint64_t Chunk) {
119   if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
120     return false;
121 
122   return isMask_64(Chunk);
123 }
124 
125 /// Clear or set all bits in the chunk at the given index.
126 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
127   const uint64_t Mask = 0xFFFF;
128 
129   if (Clear)
130     // Clear chunk in the immediate.
131     Imm &= ~(Mask << (Idx * 16));
132   else
133     // Set all bits in the immediate for the particular chunk.
134     Imm |= Mask << (Idx * 16);
135 
136   return Imm;
137 }
138 
139 /// Check whether the constant contains a sequence of contiguous ones,
140 /// which might be interrupted by one or two chunks. If so, materialize the
141 /// sequence of contiguous ones with an ORR instruction.
142 /// Materialize the chunks which are either interrupting the sequence or outside
143 /// of the sequence with a MOVK instruction.
144 ///
145 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
146 /// which ends the sequence (0...1...). Then we are looking for constants which
147 /// contain at least one S and E chunk.
148 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
149 ///
150 /// We are also looking for constants like |S|A|B|E| where the contiguous
151 /// sequence of ones wraps around the MSB into the LSB.
152 static bool trySequenceOfOnes(uint64_t UImm,
153                               SmallVectorImpl<ImmInsnModel> &Insn) {
154   const int NotSet = -1;
155   const uint64_t Mask = 0xFFFF;
156 
157   int StartIdx = NotSet;
158   int EndIdx = NotSet;
159   // Try to find the chunks which start/end a contiguous sequence of ones.
160   for (int Idx = 0; Idx < 4; ++Idx) {
161     int64_t Chunk = getChunk(UImm, Idx);
162     // Sign extend the 16-bit chunk to 64-bit.
163     Chunk = (Chunk << 48) >> 48;
164 
165     if (isStartChunk(Chunk))
166       StartIdx = Idx;
167     else if (isEndChunk(Chunk))
168       EndIdx = Idx;
169   }
170 
171   // Early exit in case we can't find a start/end chunk.
172   if (StartIdx == NotSet || EndIdx == NotSet)
173     return false;
174 
175   // Outside of the contiguous sequence of ones everything needs to be zero.
176   uint64_t Outside = 0;
177   // Chunks between the start and end chunk need to have all their bits set.
178   uint64_t Inside = Mask;
179 
180   // If our contiguous sequence of ones wraps around from the MSB into the LSB,
181   // just swap indices and pretend we are materializing a contiguous sequence
182   // of zeros surrounded by a contiguous sequence of ones.
183   if (StartIdx > EndIdx) {
184     std::swap(StartIdx, EndIdx);
185     std::swap(Outside, Inside);
186   }
187 
188   uint64_t OrrImm = UImm;
189   int FirstMovkIdx = NotSet;
190   int SecondMovkIdx = NotSet;
191 
192   // Find out which chunks we need to patch up to obtain a contiguous sequence
193   // of ones.
194   for (int Idx = 0; Idx < 4; ++Idx) {
195     const uint64_t Chunk = getChunk(UImm, Idx);
196 
197     // Check whether we are looking at a chunk which is not part of the
198     // contiguous sequence of ones.
199     if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
200       OrrImm = updateImm(OrrImm, Idx, Outside == 0);
201 
202       // Remember the index we need to patch.
203       if (FirstMovkIdx == NotSet)
204         FirstMovkIdx = Idx;
205       else
206         SecondMovkIdx = Idx;
207 
208       // Check whether we are looking a chunk which is part of the contiguous
209       // sequence of ones.
210     } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
211       OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
212 
213       // Remember the index we need to patch.
214       if (FirstMovkIdx == NotSet)
215         FirstMovkIdx = Idx;
216       else
217         SecondMovkIdx = Idx;
218     }
219   }
220   assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
221 
222   // Create the ORR-immediate instruction.
223   uint64_t Encoding = 0;
224   AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
225   Insn.push_back({ AArch64::ORRXri, 0, Encoding });
226 
227   const bool SingleMovk = SecondMovkIdx == NotSet;
228   Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
229                    AArch64_AM::getShifterImm(AArch64_AM::LSL,
230                                              FirstMovkIdx * 16) });
231 
232   // Early exit in case we only need to emit a single MOVK instruction.
233   if (SingleMovk)
234     return true;
235 
236   // Create the second MOVK instruction.
237   Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
238 	           AArch64_AM::getShifterImm(AArch64_AM::LSL,
239                                              SecondMovkIdx * 16) });
240 
241   return true;
242 }
243 
244 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
245 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
246 static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
247 				      unsigned OneChunks, unsigned ZeroChunks,
248 				      SmallVectorImpl<ImmInsnModel> &Insn) {
249   const unsigned Mask = 0xFFFF;
250 
251   // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
252   // more MOVK instructions to insert additional 16-bit portions into the
253   // lower bits.
254   bool isNeg = false;
255 
256   // Use MOVN to materialize the high bits if we have more all one chunks
257   // than all zero chunks.
258   if (OneChunks > ZeroChunks) {
259     isNeg = true;
260     Imm = ~Imm;
261   }
262 
263   unsigned FirstOpc;
264   if (BitSize == 32) {
265     Imm &= (1LL << 32) - 1;
266     FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
267   } else {
268     FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
269   }
270   unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
271   unsigned LastShift = 0; // LSL amount for last MOVK
272   if (Imm != 0) {
273     unsigned LZ = countLeadingZeros(Imm);
274     unsigned TZ = countTrailingZeros(Imm);
275     Shift = (TZ / 16) * 16;
276     LastShift = ((63 - LZ) / 16) * 16;
277   }
278   unsigned Imm16 = (Imm >> Shift) & Mask;
279 
280   Insn.push_back({ FirstOpc, Imm16,
281                    AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
282 
283   if (Shift == LastShift)
284     return;
285 
286   // If a MOVN was used for the high bits of a negative value, flip the rest
287   // of the bits back for use with MOVK.
288   if (isNeg)
289     Imm = ~Imm;
290 
291   unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
292   while (Shift < LastShift) {
293     Shift += 16;
294     Imm16 = (Imm >> Shift) & Mask;
295     if (Imm16 == (isNeg ? Mask : 0))
296       continue; // This 16-bit portion is already set correctly.
297 
298     Insn.push_back({ Opc, Imm16,
299                      AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
300   }
301 }
302 
303 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
304 /// real move-immediate instructions to synthesize the immediate.
305 void expandMOVImm(uint64_t Imm, unsigned BitSize,
306 		  SmallVectorImpl<ImmInsnModel> &Insn) {
307   const unsigned Mask = 0xFFFF;
308 
309   // Scan the immediate and count the number of 16-bit chunks which are either
310   // all ones or all zeros.
311   unsigned OneChunks = 0;
312   unsigned ZeroChunks = 0;
313   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
314     const unsigned Chunk = (Imm >> Shift) & Mask;
315     if (Chunk == Mask)
316       OneChunks++;
317     else if (Chunk == 0)
318       ZeroChunks++;
319   }
320 
321   // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
322   if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
323     expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
324     return;
325   }
326 
327   // Try a single ORR.
328   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
329   uint64_t Encoding;
330   if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
331     unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
332     Insn.push_back({ Opc, 0, Encoding });
333     return;
334   }
335 
336   // One to up three instruction sequences.
337   //
338   // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
339   // fastest sequence with fast literal generation.
340   if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
341     expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
342     return;
343   }
344 
345   assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
346                           "MOVZ/MOVK pair");
347 
348   // Try other two-instruction sequences.
349 
350   // 64-bit ORR followed by MOVK.
351   // We try to construct the ORR immediate in three different ways: either we
352   // zero out the chunk which will be replaced, we fill the chunk which will
353   // be replaced with ones, or we take the bit pattern from the other half of
354   // the 64-bit immediate. This is comprehensive because of the way ORR
355   // immediates are constructed.
356   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
357     uint64_t ShiftedMask = (0xFFFFULL << Shift);
358     uint64_t ZeroChunk = UImm & ~ShiftedMask;
359     uint64_t OneChunk = UImm | ShiftedMask;
360     uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
361     uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
362     if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
363         AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
364         AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
365                                             Encoding)) {
366       // Create the ORR-immediate instruction.
367       Insn.push_back({ AArch64::ORRXri, 0, Encoding });
368 
369       // Create the MOVK instruction.
370       const unsigned Imm16 = getChunk(UImm, Shift / 16);
371       Insn.push_back({ AArch64::MOVKXi, Imm16,
372 		       AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
373       return;
374     }
375   }
376 
377   // FIXME: Add more two-instruction sequences.
378 
379   // Three instruction sequences.
380   //
381   // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
382   // the fastest sequence with fast literal generation. (If neither MOVK is
383   // part of a fast literal generation pair, it could be slower than the
384   // four-instruction sequence, but we won't worry about that for now.)
385   if (OneChunks || ZeroChunks) {
386     expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
387     return;
388   }
389 
390   // Check for identical 16-bit chunks within the constant and if so materialize
391   // them with a single ORR instruction. The remaining one or two 16-bit chunks
392   // will be materialized with MOVK instructions.
393   if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
394     return;
395 
396   // Check whether the constant contains a sequence of contiguous ones, which
397   // might be interrupted by one or two chunks. If so, materialize the sequence
398   // of contiguous ones with an ORR instruction. Materialize the chunks which
399   // are either interrupting the sequence or outside of the sequence with a
400   // MOVK instruction.
401   if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
402     return;
403 
404   // We found no possible two or three instruction sequence; use the general
405   // four-instruction sequence.
406   expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
407 }
408 
409 } // end namespace AArch64_AM
410 
411 } // end namespace llvm
412