1 //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AArch64ExpandImm stuff. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64.h" 14 #include "AArch64ExpandImm.h" 15 #include "MCTargetDesc/AArch64AddressingModes.h" 16 17 using namespace llvm; 18 using namespace llvm::AArch64_IMM; 19 20 /// Helper function which extracts the specified 16-bit chunk from a 21 /// 64-bit value. 22 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) { 23 assert(ChunkIdx < 4 && "Out of range chunk index specified!"); 24 25 return (Imm >> (ChunkIdx * 16)) & 0xFFFF; 26 } 27 28 /// Check whether the given 16-bit chunk replicated to full 64-bit width 29 /// can be materialized with an ORR instruction. 30 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) { 31 Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk; 32 33 return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding); 34 } 35 36 /// Check for identical 16-bit chunks within the constant and if so 37 /// materialize them with a single ORR instruction. The remaining one or two 38 /// 16-bit chunks will be materialized with MOVK instructions. 39 /// 40 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order 41 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with 42 /// an ORR instruction. 43 static bool tryToreplicateChunks(uint64_t UImm, 44 SmallVectorImpl<ImmInsnModel> &Insn) { 45 using CountMap = DenseMap<uint64_t, unsigned>; 46 47 CountMap Counts; 48 49 // Scan the constant and count how often every chunk occurs. 50 for (unsigned Idx = 0; Idx < 4; ++Idx) 51 ++Counts[getChunk(UImm, Idx)]; 52 53 // Traverse the chunks to find one which occurs more than once. 54 for (const auto &Chunk : Counts) { 55 const uint64_t ChunkVal = Chunk.first; 56 const unsigned Count = Chunk.second; 57 58 uint64_t Encoding = 0; 59 60 // We are looking for chunks which have two or three instances and can be 61 // materialized with an ORR instruction. 62 if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding)) 63 continue; 64 65 const bool CountThree = Count == 3; 66 67 Insn.push_back({ AArch64::ORRXri, 0, Encoding }); 68 69 unsigned ShiftAmt = 0; 70 uint64_t Imm16 = 0; 71 // Find the first chunk not materialized with the ORR instruction. 72 for (; ShiftAmt < 64; ShiftAmt += 16) { 73 Imm16 = (UImm >> ShiftAmt) & 0xFFFF; 74 75 if (Imm16 != ChunkVal) 76 break; 77 } 78 79 // Create the first MOVK instruction. 80 Insn.push_back({ AArch64::MOVKXi, Imm16, 81 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) }); 82 83 // In case we have three instances the whole constant is now materialized 84 // and we can exit. 85 if (CountThree) 86 return true; 87 88 // Find the remaining chunk which needs to be materialized. 89 for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) { 90 Imm16 = (UImm >> ShiftAmt) & 0xFFFF; 91 92 if (Imm16 != ChunkVal) 93 break; 94 } 95 Insn.push_back({ AArch64::MOVKXi, Imm16, 96 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) }); 97 return true; 98 } 99 100 return false; 101 } 102 103 /// Check whether this chunk matches the pattern '1...0...'. This pattern 104 /// starts a contiguous sequence of ones if we look at the bits from the LSB 105 /// towards the MSB. 106 static bool isStartChunk(uint64_t Chunk) { 107 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) 108 return false; 109 110 return isMask_64(~Chunk); 111 } 112 113 /// Check whether this chunk matches the pattern '0...1...' This pattern 114 /// ends a contiguous sequence of ones if we look at the bits from the LSB 115 /// towards the MSB. 116 static bool isEndChunk(uint64_t Chunk) { 117 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) 118 return false; 119 120 return isMask_64(Chunk); 121 } 122 123 /// Clear or set all bits in the chunk at the given index. 124 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) { 125 const uint64_t Mask = 0xFFFF; 126 127 if (Clear) 128 // Clear chunk in the immediate. 129 Imm &= ~(Mask << (Idx * 16)); 130 else 131 // Set all bits in the immediate for the particular chunk. 132 Imm |= Mask << (Idx * 16); 133 134 return Imm; 135 } 136 137 /// Check whether the constant contains a sequence of contiguous ones, 138 /// which might be interrupted by one or two chunks. If so, materialize the 139 /// sequence of contiguous ones with an ORR instruction. 140 /// Materialize the chunks which are either interrupting the sequence or outside 141 /// of the sequence with a MOVK instruction. 142 /// 143 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk 144 /// which ends the sequence (0...1...). Then we are looking for constants which 145 /// contain at least one S and E chunk. 146 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|. 147 /// 148 /// We are also looking for constants like |S|A|B|E| where the contiguous 149 /// sequence of ones wraps around the MSB into the LSB. 150 static bool trySequenceOfOnes(uint64_t UImm, 151 SmallVectorImpl<ImmInsnModel> &Insn) { 152 const int NotSet = -1; 153 const uint64_t Mask = 0xFFFF; 154 155 int StartIdx = NotSet; 156 int EndIdx = NotSet; 157 // Try to find the chunks which start/end a contiguous sequence of ones. 158 for (int Idx = 0; Idx < 4; ++Idx) { 159 int64_t Chunk = getChunk(UImm, Idx); 160 // Sign extend the 16-bit chunk to 64-bit. 161 Chunk = (Chunk << 48) >> 48; 162 163 if (isStartChunk(Chunk)) 164 StartIdx = Idx; 165 else if (isEndChunk(Chunk)) 166 EndIdx = Idx; 167 } 168 169 // Early exit in case we can't find a start/end chunk. 170 if (StartIdx == NotSet || EndIdx == NotSet) 171 return false; 172 173 // Outside of the contiguous sequence of ones everything needs to be zero. 174 uint64_t Outside = 0; 175 // Chunks between the start and end chunk need to have all their bits set. 176 uint64_t Inside = Mask; 177 178 // If our contiguous sequence of ones wraps around from the MSB into the LSB, 179 // just swap indices and pretend we are materializing a contiguous sequence 180 // of zeros surrounded by a contiguous sequence of ones. 181 if (StartIdx > EndIdx) { 182 std::swap(StartIdx, EndIdx); 183 std::swap(Outside, Inside); 184 } 185 186 uint64_t OrrImm = UImm; 187 int FirstMovkIdx = NotSet; 188 int SecondMovkIdx = NotSet; 189 190 // Find out which chunks we need to patch up to obtain a contiguous sequence 191 // of ones. 192 for (int Idx = 0; Idx < 4; ++Idx) { 193 const uint64_t Chunk = getChunk(UImm, Idx); 194 195 // Check whether we are looking at a chunk which is not part of the 196 // contiguous sequence of ones. 197 if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) { 198 OrrImm = updateImm(OrrImm, Idx, Outside == 0); 199 200 // Remember the index we need to patch. 201 if (FirstMovkIdx == NotSet) 202 FirstMovkIdx = Idx; 203 else 204 SecondMovkIdx = Idx; 205 206 // Check whether we are looking a chunk which is part of the contiguous 207 // sequence of ones. 208 } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) { 209 OrrImm = updateImm(OrrImm, Idx, Inside != Mask); 210 211 // Remember the index we need to patch. 212 if (FirstMovkIdx == NotSet) 213 FirstMovkIdx = Idx; 214 else 215 SecondMovkIdx = Idx; 216 } 217 } 218 assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!"); 219 220 // Create the ORR-immediate instruction. 221 uint64_t Encoding = 0; 222 AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding); 223 Insn.push_back({ AArch64::ORRXri, 0, Encoding }); 224 225 const bool SingleMovk = SecondMovkIdx == NotSet; 226 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx), 227 AArch64_AM::getShifterImm(AArch64_AM::LSL, 228 FirstMovkIdx * 16) }); 229 230 // Early exit in case we only need to emit a single MOVK instruction. 231 if (SingleMovk) 232 return true; 233 234 // Create the second MOVK instruction. 235 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx), 236 AArch64_AM::getShifterImm(AArch64_AM::LSL, 237 SecondMovkIdx * 16) }); 238 239 return true; 240 } 241 242 static uint64_t GetRunOfOnesStartingAt(uint64_t V, uint64_t StartPosition) { 243 uint64_t NumOnes = llvm::countr_one(V >> StartPosition); 244 245 uint64_t UnshiftedOnes; 246 if (NumOnes == 64) { 247 UnshiftedOnes = ~0ULL; 248 } else { 249 UnshiftedOnes = (1ULL << NumOnes) - 1; 250 } 251 return UnshiftedOnes << StartPosition; 252 } 253 254 static uint64_t MaximallyReplicateSubImmediate(uint64_t V, uint64_t Subset) { 255 uint64_t Result = Subset; 256 257 // 64, 32, 16, 8, 4, 2 258 for (uint64_t i = 0; i < 6; ++i) { 259 uint64_t Rotation = 1ULL << (6 - i); 260 uint64_t Closure = Result | llvm::rotl<uint64_t>(Result, Rotation); 261 if (Closure != (Closure & V)) { 262 break; 263 } 264 Result = Closure; 265 } 266 267 return Result; 268 } 269 270 // Find the logical immediate that covers the most bits in RemainingBits, 271 // allowing for additional bits to be set that were set in OriginalBits. 272 static uint64_t maximalLogicalImmWithin(uint64_t RemainingBits, 273 uint64_t OriginalBits) { 274 // Find the first set bit. 275 uint32_t Position = llvm::countr_zero(RemainingBits); 276 277 // Get the first run of set bits. 278 uint64_t FirstRun = GetRunOfOnesStartingAt(OriginalBits, Position); 279 280 // Replicate the run as many times as possible, as long as the bits are set in 281 // RemainingBits. 282 uint64_t MaximalImm = MaximallyReplicateSubImmediate(OriginalBits, FirstRun); 283 284 return MaximalImm; 285 } 286 287 static std::optional<std::pair<uint64_t, uint64_t>> 288 decomposeIntoOrrOfLogicalImmediates(uint64_t UImm) { 289 if (UImm == 0 || ~UImm == 0) 290 return std::nullopt; 291 292 // Make sure we don't have a run of ones split around the rotation boundary. 293 uint32_t InitialTrailingOnes = llvm::countr_one(UImm); 294 uint64_t RotatedBits = llvm::rotr<uint64_t>(UImm, InitialTrailingOnes); 295 296 // Find the largest logical immediate that fits within the full immediate. 297 uint64_t MaximalImm1 = maximalLogicalImmWithin(RotatedBits, RotatedBits); 298 299 // Remove all bits that are set by this mask. 300 uint64_t RemainingBits = RotatedBits & ~MaximalImm1; 301 302 // Find the largest logical immediate covering the remaining bits, allowing 303 // for additional bits to be set that were also set in the original immediate. 304 uint64_t MaximalImm2 = maximalLogicalImmWithin(RemainingBits, RotatedBits); 305 306 // If any bits still haven't been covered, then give up. 307 if (RemainingBits & ~MaximalImm2) 308 return std::nullopt; 309 310 // Make sure to un-rotate the immediates. 311 return std::make_pair(rotl(MaximalImm1, InitialTrailingOnes), 312 rotl(MaximalImm2, InitialTrailingOnes)); 313 } 314 315 // Attempt to expand an immediate as the ORR of a pair of logical immediates. 316 static bool tryOrrOfLogicalImmediates(uint64_t UImm, 317 SmallVectorImpl<ImmInsnModel> &Insn) { 318 auto MaybeDecomposition = decomposeIntoOrrOfLogicalImmediates(UImm); 319 if (MaybeDecomposition == std::nullopt) 320 return false; 321 uint64_t Imm1 = MaybeDecomposition->first; 322 uint64_t Imm2 = MaybeDecomposition->second; 323 324 uint64_t Encoding1, Encoding2; 325 bool Imm1Success = AArch64_AM::processLogicalImmediate(Imm1, 64, Encoding1); 326 bool Imm2Success = AArch64_AM::processLogicalImmediate(Imm2, 64, Encoding2); 327 328 if (Imm1Success && Imm2Success) { 329 // Create the ORR-immediate instructions. 330 Insn.push_back({AArch64::ORRXri, 0, Encoding1}); 331 Insn.push_back({AArch64::ORRXri, 1, Encoding2}); 332 return true; 333 } 334 335 return false; 336 } 337 338 // Attempt to expand an immediate as the AND of a pair of logical immediates. 339 // This is done by applying DeMorgan's law, under which logical immediates 340 // are closed. 341 static bool tryAndOfLogicalImmediates(uint64_t UImm, 342 SmallVectorImpl<ImmInsnModel> &Insn) { 343 // Apply DeMorgan's law to turn this into an ORR problem. 344 auto MaybeDecomposition = decomposeIntoOrrOfLogicalImmediates(~UImm); 345 if (MaybeDecomposition == std::nullopt) 346 return false; 347 uint64_t Imm1 = MaybeDecomposition->first; 348 uint64_t Imm2 = MaybeDecomposition->second; 349 350 uint64_t Encoding1, Encoding2; 351 bool Imm1Success = AArch64_AM::processLogicalImmediate(~Imm1, 64, Encoding1); 352 bool Imm2Success = AArch64_AM::processLogicalImmediate(~Imm2, 64, Encoding2); 353 354 if (Imm1Success && Imm2Success) { 355 // Materialize Imm1, the LHS of the AND 356 Insn.push_back({AArch64::ORRXri, 0, Encoding1}); 357 // AND Imm1 with Imm2 358 Insn.push_back({AArch64::ANDXri, 1, Encoding2}); 359 return true; 360 } 361 362 return false; 363 } 364 365 // Check whether the constant can be represented by exclusive-or of two 64-bit 366 // logical immediates. If so, materialize it with an ORR instruction followed 367 // by an EOR instruction. 368 // 369 // This encoding allows all remaining repeated byte patterns, and many repeated 370 // 16-bit values, to be encoded without needing four instructions. It can also 371 // represent some irregular bitmasks (although those would mostly only need 372 // three instructions otherwise). 373 static bool tryEorOfLogicalImmediates(uint64_t Imm, 374 SmallVectorImpl<ImmInsnModel> &Insn) { 375 // Determine the larger repetition size of the two possible logical 376 // immediates, by finding the repetition size of Imm. 377 unsigned BigSize = 64; 378 379 do { 380 BigSize /= 2; 381 uint64_t Mask = (1ULL << BigSize) - 1; 382 383 if ((Imm & Mask) != ((Imm >> BigSize) & Mask)) { 384 BigSize *= 2; 385 break; 386 } 387 } while (BigSize > 2); 388 389 uint64_t BigMask = ((uint64_t)-1LL) >> (64 - BigSize); 390 391 // Find the last bit of each run of ones, circularly. For runs which wrap 392 // around from bit 0 to bit 63, this is the bit before the most-significant 393 // zero, otherwise it is the least-significant bit in the run of ones. 394 uint64_t RunStarts = Imm & ~rotl<uint64_t>(Imm, 1); 395 396 // Find the smaller repetition size of the two possible logical immediates by 397 // counting the number of runs of one-bits within the BigSize-bit value. Both 398 // sizes may be the same. The EOR may add one or subtract one from the 399 // power-of-two count that can be represented by a logical immediate, or it 400 // may be left unchanged. 401 int RunsPerBigChunk = popcount(RunStarts & BigMask); 402 403 static const int8_t BigToSmallSizeTable[32] = { 404 -1, -1, 0, 1, 2, 2, -1, 3, 3, 3, -1, -1, -1, -1, -1, 4, 405 4, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, 406 }; 407 408 int BigToSmallShift = BigToSmallSizeTable[RunsPerBigChunk]; 409 410 // Early-exit if the big chunk couldn't be a power-of-two number of runs 411 // EORed with another single run. 412 if (BigToSmallShift == -1) 413 return false; 414 415 unsigned SmallSize = BigSize >> BigToSmallShift; 416 417 // 64-bit values with a bit set every (1 << index) bits. 418 static const uint64_t RepeatedOnesTable[] = { 419 0xffffffffffffffff, 0x5555555555555555, 0x1111111111111111, 420 0x0101010101010101, 0x0001000100010001, 0x0000000100000001, 421 0x0000000000000001, 422 }; 423 424 // This RepeatedOnesTable lookup is a faster implementation of the division 425 // 0xffffffffffffffff / ((1 << SmallSize) - 1), and can be thought of as 426 // dividing the 64-bit value into fields of width SmallSize, and placing a 427 // one in the least significant bit of each field. 428 uint64_t SmallOnes = RepeatedOnesTable[countr_zero(SmallSize)]; 429 430 // Now we try to find the number of ones in each of the smaller repetitions, 431 // by looking at runs of ones in Imm. This can take three attempts, as the 432 // EOR may have changed the length of the first two runs we find. 433 434 // Rotate a run of ones so we can count the number of trailing set bits. 435 int Rotation = countr_zero(RunStarts); 436 uint64_t RotatedImm = rotr<uint64_t>(Imm, Rotation); 437 for (int Attempt = 0; Attempt < 3; ++Attempt) { 438 unsigned RunLength = countr_one(RotatedImm); 439 440 // Construct candidate values BigImm and SmallImm, such that if these two 441 // values are encodable, we have a solution. (SmallImm is constructed to be 442 // encodable, but this isn't guaranteed when RunLength >= SmallSize) 443 uint64_t SmallImm = 444 rotl<uint64_t>((SmallOnes << RunLength) - SmallOnes, Rotation); 445 uint64_t BigImm = Imm ^ SmallImm; 446 447 uint64_t BigEncoding = 0; 448 uint64_t SmallEncoding = 0; 449 if (AArch64_AM::processLogicalImmediate(BigImm, 64, BigEncoding) && 450 AArch64_AM::processLogicalImmediate(SmallImm, 64, SmallEncoding)) { 451 Insn.push_back({AArch64::ORRXri, 0, SmallEncoding}); 452 Insn.push_back({AArch64::EORXri, 1, BigEncoding}); 453 return true; 454 } 455 456 // Rotate to the next run of ones 457 Rotation += countr_zero(rotr<uint64_t>(RunStarts, Rotation) & ~1); 458 RotatedImm = rotr<uint64_t>(Imm, Rotation); 459 } 460 461 return false; 462 } 463 464 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a 465 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions. 466 static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize, 467 unsigned OneChunks, unsigned ZeroChunks, 468 SmallVectorImpl<ImmInsnModel> &Insn) { 469 const unsigned Mask = 0xFFFF; 470 471 // Use a MOVZ or MOVN instruction to set the high bits, followed by one or 472 // more MOVK instructions to insert additional 16-bit portions into the 473 // lower bits. 474 bool isNeg = false; 475 476 // Use MOVN to materialize the high bits if we have more all one chunks 477 // than all zero chunks. 478 if (OneChunks > ZeroChunks) { 479 isNeg = true; 480 Imm = ~Imm; 481 } 482 483 unsigned FirstOpc; 484 if (BitSize == 32) { 485 Imm &= (1LL << 32) - 1; 486 FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi); 487 } else { 488 FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi); 489 } 490 unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN 491 unsigned LastShift = 0; // LSL amount for last MOVK 492 if (Imm != 0) { 493 unsigned LZ = llvm::countl_zero(Imm); 494 unsigned TZ = llvm::countr_zero(Imm); 495 Shift = (TZ / 16) * 16; 496 LastShift = ((63 - LZ) / 16) * 16; 497 } 498 unsigned Imm16 = (Imm >> Shift) & Mask; 499 500 Insn.push_back({ FirstOpc, Imm16, 501 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); 502 503 if (Shift == LastShift) 504 return; 505 506 // If a MOVN was used for the high bits of a negative value, flip the rest 507 // of the bits back for use with MOVK. 508 if (isNeg) 509 Imm = ~Imm; 510 511 unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi); 512 while (Shift < LastShift) { 513 Shift += 16; 514 Imm16 = (Imm >> Shift) & Mask; 515 if (Imm16 == (isNeg ? Mask : 0)) 516 continue; // This 16-bit portion is already set correctly. 517 518 Insn.push_back({ Opc, Imm16, 519 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); 520 } 521 522 // Now, we get 16-bit divided Imm. If high and low bits are same in 523 // 32-bit, there is an opportunity to reduce instruction. 524 if (Insn.size() > 2 && (Imm >> 32) == (Imm & 0xffffffffULL)) { 525 for (int Size = Insn.size(); Size > 2; Size--) 526 Insn.pop_back(); 527 Insn.push_back({AArch64::ORRXrs, 0, 32}); 528 } 529 } 530 531 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more 532 /// real move-immediate instructions to synthesize the immediate. 533 void AArch64_IMM::expandMOVImm(uint64_t Imm, unsigned BitSize, 534 SmallVectorImpl<ImmInsnModel> &Insn) { 535 const unsigned Mask = 0xFFFF; 536 537 // Scan the immediate and count the number of 16-bit chunks which are either 538 // all ones or all zeros. 539 unsigned OneChunks = 0; 540 unsigned ZeroChunks = 0; 541 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { 542 const unsigned Chunk = (Imm >> Shift) & Mask; 543 if (Chunk == Mask) 544 OneChunks++; 545 else if (Chunk == 0) 546 ZeroChunks++; 547 } 548 549 // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias. 550 if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) { 551 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); 552 return; 553 } 554 555 // Try a single ORR. 556 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); 557 uint64_t Encoding; 558 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) { 559 unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri); 560 Insn.push_back({ Opc, 0, Encoding }); 561 return; 562 } 563 564 // One to up three instruction sequences. 565 // 566 // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the 567 // fastest sequence with fast literal generation. 568 if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) { 569 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); 570 return; 571 } 572 573 assert(BitSize == 64 && "All 32-bit immediates can be expanded with a" 574 "MOVZ/MOVK pair"); 575 576 // Try other two-instruction sequences. 577 578 // 64-bit ORR followed by MOVK. 579 // We try to construct the ORR immediate in three different ways: either we 580 // zero out the chunk which will be replaced, we fill the chunk which will 581 // be replaced with ones, or we take the bit pattern from the other half of 582 // the 64-bit immediate. This is comprehensive because of the way ORR 583 // immediates are constructed. 584 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { 585 uint64_t ShiftedMask = (0xFFFFULL << Shift); 586 uint64_t ZeroChunk = UImm & ~ShiftedMask; 587 uint64_t OneChunk = UImm | ShiftedMask; 588 uint64_t RotatedImm = (UImm << 32) | (UImm >> 32); 589 uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask); 590 if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) || 591 AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) || 592 AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize, 593 Encoding)) { 594 // Create the ORR-immediate instruction. 595 Insn.push_back({ AArch64::ORRXri, 0, Encoding }); 596 597 // Create the MOVK instruction. 598 const unsigned Imm16 = getChunk(UImm, Shift / 16); 599 Insn.push_back({ AArch64::MOVKXi, Imm16, 600 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); 601 return; 602 } 603 } 604 605 // Attempt to use a sequence of two ORR-immediate instructions. 606 if (tryOrrOfLogicalImmediates(Imm, Insn)) 607 return; 608 609 // Attempt to use a sequence of ORR-immediate followed by AND-immediate. 610 if (tryAndOfLogicalImmediates(Imm, Insn)) 611 return; 612 613 // Attempt to use a sequence of ORR-immediate followed by EOR-immediate. 614 if (tryEorOfLogicalImmediates(UImm, Insn)) 615 return; 616 617 // FIXME: Add more two-instruction sequences. 618 619 // Three instruction sequences. 620 // 621 // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly 622 // the fastest sequence with fast literal generation. (If neither MOVK is 623 // part of a fast literal generation pair, it could be slower than the 624 // four-instruction sequence, but we won't worry about that for now.) 625 if (OneChunks || ZeroChunks) { 626 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); 627 return; 628 } 629 630 // Check for identical 16-bit chunks within the constant and if so materialize 631 // them with a single ORR instruction. The remaining one or two 16-bit chunks 632 // will be materialized with MOVK instructions. 633 if (BitSize == 64 && tryToreplicateChunks(UImm, Insn)) 634 return; 635 636 // Check whether the constant contains a sequence of contiguous ones, which 637 // might be interrupted by one or two chunks. If so, materialize the sequence 638 // of contiguous ones with an ORR instruction. Materialize the chunks which 639 // are either interrupting the sequence or outside of the sequence with a 640 // MOVK instruction. 641 if (BitSize == 64 && trySequenceOfOnes(UImm, Insn)) 642 return; 643 644 // We found no possible two or three instruction sequence; use the general 645 // four-instruction sequence. 646 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); 647 } 648