1 //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AArch64ExpandImm stuff. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "AArch64.h" 14 #include "AArch64ExpandImm.h" 15 #include "MCTargetDesc/AArch64AddressingModes.h" 16 17 using namespace llvm; 18 using namespace llvm::AArch64_IMM; 19 20 /// Helper function which extracts the specified 16-bit chunk from a 21 /// 64-bit value. 22 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) { 23 assert(ChunkIdx < 4 && "Out of range chunk index specified!"); 24 25 return (Imm >> (ChunkIdx * 16)) & 0xFFFF; 26 } 27 28 /// Check whether the given 16-bit chunk replicated to full 64-bit width 29 /// can be materialized with an ORR instruction. 30 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) { 31 Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk; 32 33 return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding); 34 } 35 36 /// Check for identical 16-bit chunks within the constant and if so 37 /// materialize them with a single ORR instruction. The remaining one or two 38 /// 16-bit chunks will be materialized with MOVK instructions. 39 /// 40 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order 41 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with 42 /// an ORR instruction. 43 static bool tryToreplicateChunks(uint64_t UImm, 44 SmallVectorImpl<ImmInsnModel> &Insn) { 45 using CountMap = DenseMap<uint64_t, unsigned>; 46 47 CountMap Counts; 48 49 // Scan the constant and count how often every chunk occurs. 50 for (unsigned Idx = 0; Idx < 4; ++Idx) 51 ++Counts[getChunk(UImm, Idx)]; 52 53 // Traverse the chunks to find one which occurs more than once. 54 for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end(); 55 Chunk != End; ++Chunk) { 56 const uint64_t ChunkVal = Chunk->first; 57 const unsigned Count = Chunk->second; 58 59 uint64_t Encoding = 0; 60 61 // We are looking for chunks which have two or three instances and can be 62 // materialized with an ORR instruction. 63 if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding)) 64 continue; 65 66 const bool CountThree = Count == 3; 67 68 Insn.push_back({ AArch64::ORRXri, 0, Encoding }); 69 70 unsigned ShiftAmt = 0; 71 uint64_t Imm16 = 0; 72 // Find the first chunk not materialized with the ORR instruction. 73 for (; ShiftAmt < 64; ShiftAmt += 16) { 74 Imm16 = (UImm >> ShiftAmt) & 0xFFFF; 75 76 if (Imm16 != ChunkVal) 77 break; 78 } 79 80 // Create the first MOVK instruction. 81 Insn.push_back({ AArch64::MOVKXi, Imm16, 82 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) }); 83 84 // In case we have three instances the whole constant is now materialized 85 // and we can exit. 86 if (CountThree) 87 return true; 88 89 // Find the remaining chunk which needs to be materialized. 90 for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) { 91 Imm16 = (UImm >> ShiftAmt) & 0xFFFF; 92 93 if (Imm16 != ChunkVal) 94 break; 95 } 96 Insn.push_back({ AArch64::MOVKXi, Imm16, 97 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) }); 98 return true; 99 } 100 101 return false; 102 } 103 104 /// Check whether this chunk matches the pattern '1...0...'. This pattern 105 /// starts a contiguous sequence of ones if we look at the bits from the LSB 106 /// towards the MSB. 107 static bool isStartChunk(uint64_t Chunk) { 108 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) 109 return false; 110 111 return isMask_64(~Chunk); 112 } 113 114 /// Check whether this chunk matches the pattern '0...1...' This pattern 115 /// ends a contiguous sequence of ones if we look at the bits from the LSB 116 /// towards the MSB. 117 static bool isEndChunk(uint64_t Chunk) { 118 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) 119 return false; 120 121 return isMask_64(Chunk); 122 } 123 124 /// Clear or set all bits in the chunk at the given index. 125 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) { 126 const uint64_t Mask = 0xFFFF; 127 128 if (Clear) 129 // Clear chunk in the immediate. 130 Imm &= ~(Mask << (Idx * 16)); 131 else 132 // Set all bits in the immediate for the particular chunk. 133 Imm |= Mask << (Idx * 16); 134 135 return Imm; 136 } 137 138 /// Check whether the constant contains a sequence of contiguous ones, 139 /// which might be interrupted by one or two chunks. If so, materialize the 140 /// sequence of contiguous ones with an ORR instruction. 141 /// Materialize the chunks which are either interrupting the sequence or outside 142 /// of the sequence with a MOVK instruction. 143 /// 144 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk 145 /// which ends the sequence (0...1...). Then we are looking for constants which 146 /// contain at least one S and E chunk. 147 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|. 148 /// 149 /// We are also looking for constants like |S|A|B|E| where the contiguous 150 /// sequence of ones wraps around the MSB into the LSB. 151 static bool trySequenceOfOnes(uint64_t UImm, 152 SmallVectorImpl<ImmInsnModel> &Insn) { 153 const int NotSet = -1; 154 const uint64_t Mask = 0xFFFF; 155 156 int StartIdx = NotSet; 157 int EndIdx = NotSet; 158 // Try to find the chunks which start/end a contiguous sequence of ones. 159 for (int Idx = 0; Idx < 4; ++Idx) { 160 int64_t Chunk = getChunk(UImm, Idx); 161 // Sign extend the 16-bit chunk to 64-bit. 162 Chunk = (Chunk << 48) >> 48; 163 164 if (isStartChunk(Chunk)) 165 StartIdx = Idx; 166 else if (isEndChunk(Chunk)) 167 EndIdx = Idx; 168 } 169 170 // Early exit in case we can't find a start/end chunk. 171 if (StartIdx == NotSet || EndIdx == NotSet) 172 return false; 173 174 // Outside of the contiguous sequence of ones everything needs to be zero. 175 uint64_t Outside = 0; 176 // Chunks between the start and end chunk need to have all their bits set. 177 uint64_t Inside = Mask; 178 179 // If our contiguous sequence of ones wraps around from the MSB into the LSB, 180 // just swap indices and pretend we are materializing a contiguous sequence 181 // of zeros surrounded by a contiguous sequence of ones. 182 if (StartIdx > EndIdx) { 183 std::swap(StartIdx, EndIdx); 184 std::swap(Outside, Inside); 185 } 186 187 uint64_t OrrImm = UImm; 188 int FirstMovkIdx = NotSet; 189 int SecondMovkIdx = NotSet; 190 191 // Find out which chunks we need to patch up to obtain a contiguous sequence 192 // of ones. 193 for (int Idx = 0; Idx < 4; ++Idx) { 194 const uint64_t Chunk = getChunk(UImm, Idx); 195 196 // Check whether we are looking at a chunk which is not part of the 197 // contiguous sequence of ones. 198 if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) { 199 OrrImm = updateImm(OrrImm, Idx, Outside == 0); 200 201 // Remember the index we need to patch. 202 if (FirstMovkIdx == NotSet) 203 FirstMovkIdx = Idx; 204 else 205 SecondMovkIdx = Idx; 206 207 // Check whether we are looking a chunk which is part of the contiguous 208 // sequence of ones. 209 } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) { 210 OrrImm = updateImm(OrrImm, Idx, Inside != Mask); 211 212 // Remember the index we need to patch. 213 if (FirstMovkIdx == NotSet) 214 FirstMovkIdx = Idx; 215 else 216 SecondMovkIdx = Idx; 217 } 218 } 219 assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!"); 220 221 // Create the ORR-immediate instruction. 222 uint64_t Encoding = 0; 223 AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding); 224 Insn.push_back({ AArch64::ORRXri, 0, Encoding }); 225 226 const bool SingleMovk = SecondMovkIdx == NotSet; 227 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx), 228 AArch64_AM::getShifterImm(AArch64_AM::LSL, 229 FirstMovkIdx * 16) }); 230 231 // Early exit in case we only need to emit a single MOVK instruction. 232 if (SingleMovk) 233 return true; 234 235 // Create the second MOVK instruction. 236 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx), 237 AArch64_AM::getShifterImm(AArch64_AM::LSL, 238 SecondMovkIdx * 16) }); 239 240 return true; 241 } 242 243 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a 244 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions. 245 static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize, 246 unsigned OneChunks, unsigned ZeroChunks, 247 SmallVectorImpl<ImmInsnModel> &Insn) { 248 const unsigned Mask = 0xFFFF; 249 250 // Use a MOVZ or MOVN instruction to set the high bits, followed by one or 251 // more MOVK instructions to insert additional 16-bit portions into the 252 // lower bits. 253 bool isNeg = false; 254 255 // Use MOVN to materialize the high bits if we have more all one chunks 256 // than all zero chunks. 257 if (OneChunks > ZeroChunks) { 258 isNeg = true; 259 Imm = ~Imm; 260 } 261 262 unsigned FirstOpc; 263 if (BitSize == 32) { 264 Imm &= (1LL << 32) - 1; 265 FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi); 266 } else { 267 FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi); 268 } 269 unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN 270 unsigned LastShift = 0; // LSL amount for last MOVK 271 if (Imm != 0) { 272 unsigned LZ = countLeadingZeros(Imm); 273 unsigned TZ = countTrailingZeros(Imm); 274 Shift = (TZ / 16) * 16; 275 LastShift = ((63 - LZ) / 16) * 16; 276 } 277 unsigned Imm16 = (Imm >> Shift) & Mask; 278 279 Insn.push_back({ FirstOpc, Imm16, 280 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); 281 282 if (Shift == LastShift) 283 return; 284 285 // If a MOVN was used for the high bits of a negative value, flip the rest 286 // of the bits back for use with MOVK. 287 if (isNeg) 288 Imm = ~Imm; 289 290 unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi); 291 while (Shift < LastShift) { 292 Shift += 16; 293 Imm16 = (Imm >> Shift) & Mask; 294 if (Imm16 == (isNeg ? Mask : 0)) 295 continue; // This 16-bit portion is already set correctly. 296 297 Insn.push_back({ Opc, Imm16, 298 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); 299 } 300 } 301 302 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more 303 /// real move-immediate instructions to synthesize the immediate. 304 void AArch64_IMM::expandMOVImm(uint64_t Imm, unsigned BitSize, 305 SmallVectorImpl<ImmInsnModel> &Insn) { 306 const unsigned Mask = 0xFFFF; 307 308 // Scan the immediate and count the number of 16-bit chunks which are either 309 // all ones or all zeros. 310 unsigned OneChunks = 0; 311 unsigned ZeroChunks = 0; 312 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { 313 const unsigned Chunk = (Imm >> Shift) & Mask; 314 if (Chunk == Mask) 315 OneChunks++; 316 else if (Chunk == 0) 317 ZeroChunks++; 318 } 319 320 // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias. 321 if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) { 322 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); 323 return; 324 } 325 326 // Try a single ORR. 327 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); 328 uint64_t Encoding; 329 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) { 330 unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri); 331 Insn.push_back({ Opc, 0, Encoding }); 332 return; 333 } 334 335 // One to up three instruction sequences. 336 // 337 // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the 338 // fastest sequence with fast literal generation. 339 if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) { 340 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); 341 return; 342 } 343 344 assert(BitSize == 64 && "All 32-bit immediates can be expanded with a" 345 "MOVZ/MOVK pair"); 346 347 // Try other two-instruction sequences. 348 349 // 64-bit ORR followed by MOVK. 350 // We try to construct the ORR immediate in three different ways: either we 351 // zero out the chunk which will be replaced, we fill the chunk which will 352 // be replaced with ones, or we take the bit pattern from the other half of 353 // the 64-bit immediate. This is comprehensive because of the way ORR 354 // immediates are constructed. 355 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { 356 uint64_t ShiftedMask = (0xFFFFULL << Shift); 357 uint64_t ZeroChunk = UImm & ~ShiftedMask; 358 uint64_t OneChunk = UImm | ShiftedMask; 359 uint64_t RotatedImm = (UImm << 32) | (UImm >> 32); 360 uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask); 361 if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) || 362 AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) || 363 AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize, 364 Encoding)) { 365 // Create the ORR-immediate instruction. 366 Insn.push_back({ AArch64::ORRXri, 0, Encoding }); 367 368 // Create the MOVK instruction. 369 const unsigned Imm16 = getChunk(UImm, Shift / 16); 370 Insn.push_back({ AArch64::MOVKXi, Imm16, 371 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); 372 return; 373 } 374 } 375 376 // FIXME: Add more two-instruction sequences. 377 378 // Three instruction sequences. 379 // 380 // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly 381 // the fastest sequence with fast literal generation. (If neither MOVK is 382 // part of a fast literal generation pair, it could be slower than the 383 // four-instruction sequence, but we won't worry about that for now.) 384 if (OneChunks || ZeroChunks) { 385 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); 386 return; 387 } 388 389 // Check for identical 16-bit chunks within the constant and if so materialize 390 // them with a single ORR instruction. The remaining one or two 16-bit chunks 391 // will be materialized with MOVK instructions. 392 if (BitSize == 64 && tryToreplicateChunks(UImm, Insn)) 393 return; 394 395 // Check whether the constant contains a sequence of contiguous ones, which 396 // might be interrupted by one or two chunks. If so, materialize the sequence 397 // of contiguous ones with an ORR instruction. Materialize the chunks which 398 // are either interrupting the sequence or outside of the sequence with a 399 // MOVK instruction. 400 if (BitSize == 64 && trySequenceOfOnes(UImm, Insn)) 401 return; 402 403 // We found no possible two or three instruction sequence; use the general 404 // four-instruction sequence. 405 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); 406 } 407