xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64CollectLOH.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that collect the Linker Optimization Hint (LOH).
10 // This pass should be run at the very end of the compilation flow, just before
11 // assembly printer.
12 // To be useful for the linker, the LOH must be printed into the assembly file.
13 //
14 // A LOH describes a sequence of instructions that may be optimized by the
15 // linker.
16 // This same sequence cannot be optimized by the compiler because some of
17 // the information will be known at link time.
18 // For instance, consider the following sequence:
19 //     L1: adrp xA, sym@PAGE
20 //     L2: add xB, xA, sym@PAGEOFF
21 //     L3: ldr xC, [xB, #imm]
22 // This sequence can be turned into:
23 // A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
24 //     L3: ldr xC, sym+#imm
25 // It may also be turned into either the following more efficient
26 // code sequences:
27 // - If sym@PAGEOFF + #imm fits the encoding space of L3.
28 //     L1: adrp xA, sym@PAGE
29 //     L3: ldr xC, [xB, sym@PAGEOFF + #imm]
30 // - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
31 //     L1: adr xA, sym
32 //     L3: ldr xC, [xB, #imm]
33 //
34 // To be valid a LOH must meet all the requirements needed by all the related
35 // possible linker transformations.
36 // For instance, using the running example, the constraints to emit
37 // ".loh AdrpAddLdr" are:
38 // - L1, L2, and L3 instructions are of the expected type, i.e.,
39 //   respectively ADRP, ADD (immediate), and LD.
40 // - The result of L1 is used only by L2.
41 // - The register argument (xA) used in the ADD instruction is defined
42 //   only by L1.
43 // - The result of L2 is used only by L3.
44 // - The base address (xB) in L3 is defined only L2.
45 // - The ADRP in L1 and the ADD in L2 must reference the same symbol using
46 //   @PAGE/@PAGEOFF with no additional constants
47 //
48 // Currently supported LOHs are:
49 // * So called non-ADRP-related:
50 //   - .loh AdrpAddLdr L1, L2, L3:
51 //     L1: adrp xA, sym@PAGE
52 //     L2: add xB, xA, sym@PAGEOFF
53 //     L3: ldr xC, [xB, #imm]
54 //   - .loh AdrpLdrGotLdr L1, L2, L3:
55 //     L1: adrp xA, sym@GOTPAGE
56 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
57 //     L3: ldr xC, [xB, #imm]
58 //   - .loh AdrpLdr L1, L3:
59 //     L1: adrp xA, sym@PAGE
60 //     L3: ldr xC, [xA, sym@PAGEOFF]
61 //   - .loh AdrpAddStr L1, L2, L3:
62 //     L1: adrp xA, sym@PAGE
63 //     L2: add xB, xA, sym@PAGEOFF
64 //     L3: str xC, [xB, #imm]
65 //   - .loh AdrpLdrGotStr L1, L2, L3:
66 //     L1: adrp xA, sym@GOTPAGE
67 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
68 //     L3: str xC, [xB, #imm]
69 //   - .loh AdrpAdd L1, L2:
70 //     L1: adrp xA, sym@PAGE
71 //     L2: add xB, xA, sym@PAGEOFF
72 //   For all these LOHs, L1, L2, L3 form a simple chain:
73 //   L1 result is used only by L2 and L2 result by L3.
74 //   L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
75 //   by L1.
76 // All these LOHs aim at using more efficient load/store patterns by folding
77 // some instructions used to compute the address directly into the load/store.
78 //
79 // * So called ADRP-related:
80 //  - .loh AdrpAdrp L2, L1:
81 //    L2: ADRP xA, sym1@PAGE
82 //    L1: ADRP xA, sym2@PAGE
83 //    L2 dominates L1 and xA is not redifined between L2 and L1
84 // This LOH aims at getting rid of redundant ADRP instructions.
85 //
86 // The overall design for emitting the LOHs is:
87 // 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
88 // 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
89 //     1. Associates them a label.
90 //     2. Emits them in a MCStreamer (EmitLOHDirective).
91 //         - The MCMachOStreamer records them into the MCAssembler.
92 //         - The MCAsmStreamer prints them.
93 //         - Other MCStreamers ignore them.
94 //     3. Closes the MCStreamer:
95 //         - The MachObjectWriter gets them from the MCAssembler and writes
96 //           them in the object file.
97 //         - Other ObjectWriters ignore them.
98 //===----------------------------------------------------------------------===//
99 
100 #include "AArch64.h"
101 #include "AArch64InstrInfo.h"
102 #include "AArch64MachineFunctionInfo.h"
103 #include "llvm/ADT/BitVector.h"
104 #include "llvm/ADT/DenseMap.h"
105 #include "llvm/ADT/MapVector.h"
106 #include "llvm/ADT/SmallSet.h"
107 #include "llvm/ADT/SmallVector.h"
108 #include "llvm/ADT/Statistic.h"
109 #include "llvm/CodeGen/MachineBasicBlock.h"
110 #include "llvm/CodeGen/MachineFunctionPass.h"
111 #include "llvm/CodeGen/MachineInstr.h"
112 #include "llvm/CodeGen/TargetRegisterInfo.h"
113 #include "llvm/Support/Debug.h"
114 #include "llvm/Support/ErrorHandling.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 using namespace llvm;
118 
119 #define DEBUG_TYPE "aarch64-collect-loh"
120 
121 STATISTIC(NumADRPSimpleCandidate,
122           "Number of simplifiable ADRP dominate by another");
123 STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
124 STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
125 STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
126 STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
127 STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
128 STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
129 
130 #define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"
131 
132 namespace {
133 
134 struct AArch64CollectLOH : public MachineFunctionPass {
135   static char ID;
136   AArch64CollectLOH() : MachineFunctionPass(ID) {}
137 
138   bool runOnMachineFunction(MachineFunction &MF) override;
139 
140   MachineFunctionProperties getRequiredProperties() const override {
141     return MachineFunctionProperties().set(
142         MachineFunctionProperties::Property::NoVRegs);
143   }
144 
145   StringRef getPassName() const override { return AARCH64_COLLECT_LOH_NAME; }
146 
147   void getAnalysisUsage(AnalysisUsage &AU) const override {
148     MachineFunctionPass::getAnalysisUsage(AU);
149     AU.setPreservesAll();
150   }
151 };
152 
153 char AArch64CollectLOH::ID = 0;
154 
155 } // end anonymous namespace.
156 
157 INITIALIZE_PASS(AArch64CollectLOH, "aarch64-collect-loh",
158                 AARCH64_COLLECT_LOH_NAME, false, false)
159 
160 static bool canAddBePartOfLOH(const MachineInstr &MI) {
161   // Check immediate to see if the immediate is an address.
162   switch (MI.getOperand(2).getType()) {
163   default:
164     return false;
165   case MachineOperand::MO_GlobalAddress:
166   case MachineOperand::MO_JumpTableIndex:
167   case MachineOperand::MO_ConstantPoolIndex:
168   case MachineOperand::MO_BlockAddress:
169     return true;
170   }
171 }
172 
173 /// Answer the following question: Can Def be one of the definition
174 /// involved in a part of a LOH?
175 static bool canDefBePartOfLOH(const MachineInstr &MI) {
176   // Accept ADRP, ADDLow and LOADGot.
177   switch (MI.getOpcode()) {
178   default:
179     return false;
180   case AArch64::ADRP:
181     return true;
182   case AArch64::ADDXri:
183     return canAddBePartOfLOH(MI);
184   case AArch64::LDRXui:
185   case AArch64::LDRWui:
186     // Check immediate to see if the immediate is an address.
187     switch (MI.getOperand(2).getType()) {
188     default:
189       return false;
190     case MachineOperand::MO_GlobalAddress:
191       return MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT;
192     }
193   }
194 }
195 
196 /// Check whether the given instruction can the end of a LOH chain involving a
197 /// store.
198 static bool isCandidateStore(const MachineInstr &MI, const MachineOperand &MO) {
199   switch (MI.getOpcode()) {
200   default:
201     return false;
202   case AArch64::STRBBui:
203   case AArch64::STRHHui:
204   case AArch64::STRBui:
205   case AArch64::STRHui:
206   case AArch64::STRWui:
207   case AArch64::STRXui:
208   case AArch64::STRSui:
209   case AArch64::STRDui:
210   case AArch64::STRQui:
211     // We can only optimize the index operand.
212     // In case we have str xA, [xA, #imm], this is two different uses
213     // of xA and we cannot fold, otherwise the xA stored may be wrong,
214     // even if #imm == 0.
215     return MI.getOperandNo(&MO) == 1 &&
216            MI.getOperand(0).getReg() != MI.getOperand(1).getReg();
217   }
218 }
219 
220 /// Check whether the given instruction can be the end of a LOH chain
221 /// involving a load.
222 static bool isCandidateLoad(const MachineInstr &MI) {
223   switch (MI.getOpcode()) {
224   default:
225     return false;
226   case AArch64::LDRSBWui:
227   case AArch64::LDRSBXui:
228   case AArch64::LDRSHWui:
229   case AArch64::LDRSHXui:
230   case AArch64::LDRSWui:
231   case AArch64::LDRBui:
232   case AArch64::LDRHui:
233   case AArch64::LDRWui:
234   case AArch64::LDRXui:
235   case AArch64::LDRSui:
236   case AArch64::LDRDui:
237   case AArch64::LDRQui:
238     return !(MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT);
239   }
240 }
241 
242 /// Check whether the given instruction can load a litteral.
243 static bool supportLoadFromLiteral(const MachineInstr &MI) {
244   switch (MI.getOpcode()) {
245   default:
246     return false;
247   case AArch64::LDRSWui:
248   case AArch64::LDRWui:
249   case AArch64::LDRXui:
250   case AArch64::LDRSui:
251   case AArch64::LDRDui:
252   case AArch64::LDRQui:
253     return true;
254   }
255 }
256 
257 /// Number of GPR registers traked by mapRegToGPRIndex()
258 static const unsigned N_GPR_REGS = 31;
259 /// Map register number to index from 0-30.
260 static int mapRegToGPRIndex(MCPhysReg Reg) {
261   static_assert(AArch64::X28 - AArch64::X0 + 3 == N_GPR_REGS, "Number of GPRs");
262   static_assert(AArch64::W30 - AArch64::W0 + 1 == N_GPR_REGS, "Number of GPRs");
263   if (AArch64::X0 <= Reg && Reg <= AArch64::X28)
264     return Reg - AArch64::X0;
265   if (AArch64::W0 <= Reg && Reg <= AArch64::W30)
266     return Reg - AArch64::W0;
267   // TableGen gives "FP" and "LR" an index not adjacent to X28 so we have to
268   // handle them as special cases.
269   if (Reg == AArch64::FP)
270     return 29;
271   if (Reg == AArch64::LR)
272     return 30;
273   return -1;
274 }
275 
276 /// State tracked per register.
277 /// The main algorithm walks backwards over a basic block maintaining this
278 /// datastructure for each tracked general purpose register.
279 struct LOHInfo {
280   MCLOHType Type : 8;           ///< "Best" type of LOH possible.
281   bool IsCandidate : 1;         ///< Possible LOH candidate.
282   bool OneUser : 1;             ///< Found exactly one user (yet).
283   bool MultiUsers : 1;          ///< Found multiple users.
284   const MachineInstr *MI0;      ///< First instruction involved in the LOH.
285   const MachineInstr *MI1;      ///< Second instruction involved in the LOH
286                                 ///  (if any).
287   const MachineInstr *LastADRP; ///< Last ADRP in same register.
288 };
289 
290 /// Update state \p Info given \p MI uses the tracked register.
291 static void handleUse(const MachineInstr &MI, const MachineOperand &MO,
292                       LOHInfo &Info) {
293   // We have multiple uses if we already found one before.
294   if (Info.MultiUsers || Info.OneUser) {
295     Info.IsCandidate = false;
296     Info.MultiUsers = true;
297     return;
298   }
299   Info.OneUser = true;
300 
301   // Start new LOHInfo if applicable.
302   if (isCandidateLoad(MI)) {
303     Info.Type = MCLOH_AdrpLdr;
304     Info.IsCandidate = true;
305     Info.MI0 = &MI;
306     // Note that even this is AdrpLdr now, we can switch to a Ldr variant
307     // later.
308   } else if (isCandidateStore(MI, MO)) {
309     Info.Type = MCLOH_AdrpAddStr;
310     Info.IsCandidate = true;
311     Info.MI0 = &MI;
312     Info.MI1 = nullptr;
313   } else if (MI.getOpcode() == AArch64::ADDXri) {
314     Info.Type = MCLOH_AdrpAdd;
315     Info.IsCandidate = true;
316     Info.MI0 = &MI;
317   } else if ((MI.getOpcode() == AArch64::LDRXui ||
318               MI.getOpcode() == AArch64::LDRWui) &&
319              MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) {
320     Info.Type = MCLOH_AdrpLdrGot;
321     Info.IsCandidate = true;
322     Info.MI0 = &MI;
323   }
324 }
325 
326 /// Update state \p Info given the tracked register is clobbered.
327 static void handleClobber(LOHInfo &Info) {
328   Info.IsCandidate = false;
329   Info.OneUser = false;
330   Info.MultiUsers = false;
331   Info.LastADRP = nullptr;
332 }
333 
334 /// Update state \p Info given that \p MI is possibly the middle instruction
335 /// of an LOH involving 3 instructions.
336 static bool handleMiddleInst(const MachineInstr &MI, LOHInfo &DefInfo,
337                              LOHInfo &OpInfo) {
338   if (!DefInfo.IsCandidate || (&DefInfo != &OpInfo && OpInfo.OneUser))
339     return false;
340   // Copy LOHInfo for dest register to LOHInfo for source register.
341   if (&DefInfo != &OpInfo) {
342     OpInfo = DefInfo;
343     // Invalidate \p DefInfo because we track it in \p OpInfo now.
344     handleClobber(DefInfo);
345   } else
346     DefInfo.LastADRP = nullptr;
347 
348   // Advance state machine.
349   assert(OpInfo.IsCandidate && "Expect valid state");
350   if (MI.getOpcode() == AArch64::ADDXri && canAddBePartOfLOH(MI)) {
351     if (OpInfo.Type == MCLOH_AdrpLdr) {
352       OpInfo.Type = MCLOH_AdrpAddLdr;
353       OpInfo.IsCandidate = true;
354       OpInfo.MI1 = &MI;
355       return true;
356     } else if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
357       OpInfo.Type = MCLOH_AdrpAddStr;
358       OpInfo.IsCandidate = true;
359       OpInfo.MI1 = &MI;
360       return true;
361     }
362   } else {
363     assert((MI.getOpcode() == AArch64::LDRXui ||
364             MI.getOpcode() == AArch64::LDRWui) &&
365            "Expect LDRXui or LDRWui");
366     assert((MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) &&
367            "Expected GOT relocation");
368     if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
369       OpInfo.Type = MCLOH_AdrpLdrGotStr;
370       OpInfo.IsCandidate = true;
371       OpInfo.MI1 = &MI;
372       return true;
373     } else if (OpInfo.Type == MCLOH_AdrpLdr) {
374       OpInfo.Type = MCLOH_AdrpLdrGotLdr;
375       OpInfo.IsCandidate = true;
376       OpInfo.MI1 = &MI;
377       return true;
378     }
379   }
380   return false;
381 }
382 
383 /// Update state when seeing and ADRP instruction.
384 static void handleADRP(const MachineInstr &MI, AArch64FunctionInfo &AFI,
385                        LOHInfo &Info) {
386   if (Info.LastADRP != nullptr) {
387     LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdrp:\n"
388                       << '\t' << MI << '\t' << *Info.LastADRP);
389     AFI.addLOHDirective(MCLOH_AdrpAdrp, {&MI, Info.LastADRP});
390     ++NumADRPSimpleCandidate;
391   }
392 
393   // Produce LOH directive if possible.
394   if (Info.IsCandidate) {
395     switch (Info.Type) {
396     case MCLOH_AdrpAdd:
397       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdd:\n"
398                         << '\t' << MI << '\t' << *Info.MI0);
399       AFI.addLOHDirective(MCLOH_AdrpAdd, {&MI, Info.MI0});
400       ++NumADRSimpleCandidate;
401       break;
402     case MCLOH_AdrpLdr:
403       if (supportLoadFromLiteral(*Info.MI0)) {
404         LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdr:\n"
405                           << '\t' << MI << '\t' << *Info.MI0);
406         AFI.addLOHDirective(MCLOH_AdrpLdr, {&MI, Info.MI0});
407         ++NumADRPToLDR;
408       }
409       break;
410     case MCLOH_AdrpAddLdr:
411       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddLdr:\n"
412                         << '\t' << MI << '\t' << *Info.MI1 << '\t'
413                         << *Info.MI0);
414       AFI.addLOHDirective(MCLOH_AdrpAddLdr, {&MI, Info.MI1, Info.MI0});
415       ++NumADDToLDR;
416       break;
417     case MCLOH_AdrpAddStr:
418       if (Info.MI1 != nullptr) {
419         LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddStr:\n"
420                           << '\t' << MI << '\t' << *Info.MI1 << '\t'
421                           << *Info.MI0);
422         AFI.addLOHDirective(MCLOH_AdrpAddStr, {&MI, Info.MI1, Info.MI0});
423         ++NumADDToSTR;
424       }
425       break;
426     case MCLOH_AdrpLdrGotLdr:
427       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotLdr:\n"
428                         << '\t' << MI << '\t' << *Info.MI1 << '\t'
429                         << *Info.MI0);
430       AFI.addLOHDirective(MCLOH_AdrpLdrGotLdr, {&MI, Info.MI1, Info.MI0});
431       ++NumLDRToLDR;
432       break;
433     case MCLOH_AdrpLdrGotStr:
434       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotStr:\n"
435                         << '\t' << MI << '\t' << *Info.MI1 << '\t'
436                         << *Info.MI0);
437       AFI.addLOHDirective(MCLOH_AdrpLdrGotStr, {&MI, Info.MI1, Info.MI0});
438       ++NumLDRToSTR;
439       break;
440     case MCLOH_AdrpLdrGot:
441       LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGot:\n"
442                         << '\t' << MI << '\t' << *Info.MI0);
443       AFI.addLOHDirective(MCLOH_AdrpLdrGot, {&MI, Info.MI0});
444       break;
445     case MCLOH_AdrpAdrp:
446       llvm_unreachable("MCLOH_AdrpAdrp not used in state machine");
447     }
448   }
449 
450   handleClobber(Info);
451   Info.LastADRP = &MI;
452 }
453 
454 static void handleRegMaskClobber(const uint32_t *RegMask, MCPhysReg Reg,
455                                  LOHInfo *LOHInfos) {
456   if (!MachineOperand::clobbersPhysReg(RegMask, Reg))
457     return;
458   int Idx = mapRegToGPRIndex(Reg);
459   if (Idx >= 0)
460     handleClobber(LOHInfos[Idx]);
461 }
462 
463 static void handleNormalInst(const MachineInstr &MI, LOHInfo *LOHInfos) {
464   // Handle defs and regmasks.
465   for (const MachineOperand &MO : MI.operands()) {
466     if (MO.isRegMask()) {
467       const uint32_t *RegMask = MO.getRegMask();
468       for (MCPhysReg Reg : AArch64::GPR32RegClass)
469         handleRegMaskClobber(RegMask, Reg, LOHInfos);
470       for (MCPhysReg Reg : AArch64::GPR64RegClass)
471         handleRegMaskClobber(RegMask, Reg, LOHInfos);
472       continue;
473     }
474     if (!MO.isReg() || !MO.isDef())
475       continue;
476     int Idx = mapRegToGPRIndex(MO.getReg());
477     if (Idx < 0)
478       continue;
479     handleClobber(LOHInfos[Idx]);
480   }
481   // Handle uses.
482 
483   SmallSet<int, 4> UsesSeen;
484   for (const MachineOperand &MO : MI.uses()) {
485     if (!MO.isReg() || !MO.readsReg())
486       continue;
487     int Idx = mapRegToGPRIndex(MO.getReg());
488     if (Idx < 0)
489       continue;
490 
491     // Multiple uses of the same register within a single instruction don't
492     // count as MultiUser or block optimization. This is especially important on
493     // arm64_32, where any memory operation is likely to be an explicit use of
494     // xN and an implicit use of wN (the base address register).
495     if (!UsesSeen.count(Idx)) {
496       handleUse(MI, MO, LOHInfos[Idx]);
497       UsesSeen.insert(Idx);
498     }
499   }
500 }
501 
502 bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
503   if (skipFunction(MF.getFunction()))
504     return false;
505 
506   LLVM_DEBUG(dbgs() << "********** AArch64 Collect LOH **********\n"
507                     << "Looking in function " << MF.getName() << '\n');
508 
509   LOHInfo LOHInfos[N_GPR_REGS];
510   AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
511   for (const MachineBasicBlock &MBB : MF) {
512     // Reset register tracking state.
513     memset(LOHInfos, 0, sizeof(LOHInfos));
514     // Live-out registers are used.
515     for (const MachineBasicBlock *Succ : MBB.successors()) {
516       for (const auto &LI : Succ->liveins()) {
517         int RegIdx = mapRegToGPRIndex(LI.PhysReg);
518         if (RegIdx >= 0)
519           LOHInfos[RegIdx].OneUser = true;
520       }
521     }
522 
523     // Walk the basic block backwards and update the per register state machine
524     // in the process.
525     for (const MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
526       unsigned Opcode = MI.getOpcode();
527       switch (Opcode) {
528       case AArch64::ADDXri:
529       case AArch64::LDRXui:
530       case AArch64::LDRWui:
531         if (canDefBePartOfLOH(MI)) {
532           const MachineOperand &Def = MI.getOperand(0);
533           const MachineOperand &Op = MI.getOperand(1);
534           assert(Def.isReg() && Def.isDef() && "Expected reg def");
535           assert(Op.isReg() && Op.isUse() && "Expected reg use");
536           int DefIdx = mapRegToGPRIndex(Def.getReg());
537           int OpIdx = mapRegToGPRIndex(Op.getReg());
538           if (DefIdx >= 0 && OpIdx >= 0 &&
539               handleMiddleInst(MI, LOHInfos[DefIdx], LOHInfos[OpIdx]))
540             continue;
541         }
542         break;
543       case AArch64::ADRP:
544         const MachineOperand &Op0 = MI.getOperand(0);
545         int Idx = mapRegToGPRIndex(Op0.getReg());
546         if (Idx >= 0) {
547           handleADRP(MI, AFI, LOHInfos[Idx]);
548           continue;
549         }
550         break;
551       }
552       handleNormalInst(MI, LOHInfos);
553     }
554   }
555 
556   // Return "no change": The pass only collects information.
557   return false;
558 }
559 
560 FunctionPass *llvm::createAArch64CollectLOHPass() {
561   return new AArch64CollectLOH();
562 }
563