1 //===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Local-dynamic access to thread-local variables proceeds in three stages. 10 // 11 // 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated 12 // in much the same way as a general-dynamic TLS-descriptor access against 13 // the special symbol _TLS_MODULE_BASE. 14 // 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using 15 // instructions with "dtprel" modifiers. 16 // 3. These two are added, together with TPIDR_EL0, to obtain the variable's 17 // true address. 18 // 19 // This is only better than general-dynamic access to the variable if two or 20 // more of the first stage TLS-descriptor calculations can be combined. This 21 // pass looks through a function and performs such combinations. 22 // 23 //===----------------------------------------------------------------------===// 24 #include "AArch64.h" 25 #include "AArch64InstrInfo.h" 26 #include "AArch64MachineFunctionInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 using namespace llvm; 33 34 #define TLSCLEANUP_PASS_NAME "AArch64 Local Dynamic TLS Access Clean-up" 35 36 namespace { 37 struct LDTLSCleanup : public MachineFunctionPass { 38 static char ID; 39 LDTLSCleanup() : MachineFunctionPass(ID) { 40 initializeLDTLSCleanupPass(*PassRegistry::getPassRegistry()); 41 } 42 43 bool runOnMachineFunction(MachineFunction &MF) override { 44 if (skipFunction(MF.getFunction())) 45 return false; 46 47 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 48 if (AFI->getNumLocalDynamicTLSAccesses() < 2) { 49 // No point folding accesses if there isn't at least two. 50 return false; 51 } 52 53 MachineDominatorTree *DT = 54 &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 55 return VisitNode(DT->getRootNode(), 0); 56 } 57 58 // Visit the dominator subtree rooted at Node in pre-order. 59 // If TLSBaseAddrReg is non-null, then use that to replace any 60 // TLS_base_addr instructions. Otherwise, create the register 61 // when the first such instruction is seen, and then use it 62 // as we encounter more instructions. 63 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 64 MachineBasicBlock *BB = Node->getBlock(); 65 bool Changed = false; 66 67 // Traverse the current block. 68 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 69 ++I) { 70 switch (I->getOpcode()) { 71 case AArch64::TLSDESC_CALLSEQ: 72 // Make sure it's a local dynamic access. 73 if (!I->getOperand(0).isSymbol() || 74 strcmp(I->getOperand(0).getSymbolName(), "_TLS_MODULE_BASE_")) 75 break; 76 77 if (TLSBaseAddrReg) 78 I = replaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 79 else 80 I = setRegister(*I, &TLSBaseAddrReg); 81 Changed = true; 82 break; 83 default: 84 break; 85 } 86 } 87 88 // Visit the children of this block in the dominator tree. 89 for (MachineDomTreeNode *N : *Node) { 90 Changed |= VisitNode(N, TLSBaseAddrReg); 91 } 92 93 return Changed; 94 } 95 96 // Replace the TLS_base_addr instruction I with a copy from 97 // TLSBaseAddrReg, returning the new instruction. 98 MachineInstr *replaceTLSBaseAddrCall(MachineInstr &I, 99 unsigned TLSBaseAddrReg) { 100 MachineFunction *MF = I.getParent()->getParent(); 101 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 102 103 // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the 104 // code sequence assumes the address will be. 105 MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(), 106 TII->get(TargetOpcode::COPY), AArch64::X0) 107 .addReg(TLSBaseAddrReg); 108 109 // Update the call site info. 110 if (I.shouldUpdateCallSiteInfo()) 111 I.getMF()->eraseCallSiteInfo(&I); 112 113 // Erase the TLS_base_addr instruction. 114 I.eraseFromParent(); 115 116 return Copy; 117 } 118 119 // Create a virtual register in *TLSBaseAddrReg, and populate it by 120 // inserting a copy instruction after I. Returns the new instruction. 121 MachineInstr *setRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 122 MachineFunction *MF = I.getParent()->getParent(); 123 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 124 125 // Create a virtual register for the TLS base address. 126 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 127 *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass); 128 129 // Insert a copy from X0 to TLSBaseAddrReg for later. 130 MachineInstr *Copy = 131 BuildMI(*I.getParent(), ++I.getIterator(), I.getDebugLoc(), 132 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 133 .addReg(AArch64::X0); 134 135 return Copy; 136 } 137 138 StringRef getPassName() const override { return TLSCLEANUP_PASS_NAME; } 139 140 void getAnalysisUsage(AnalysisUsage &AU) const override { 141 AU.setPreservesCFG(); 142 AU.addRequired<MachineDominatorTreeWrapperPass>(); 143 MachineFunctionPass::getAnalysisUsage(AU); 144 } 145 }; 146 } 147 148 INITIALIZE_PASS(LDTLSCleanup, "aarch64-local-dynamic-tls-cleanup", 149 TLSCLEANUP_PASS_NAME, false, false) 150 151 char LDTLSCleanup::ID = 0; 152 FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() { 153 return new LDTLSCleanup(); 154 } 155