1 //===- AArch64AsmPrinter.cpp - AArch64 LLVM assembly writer ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to the AArch64 assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64.h" 15 #include "AArch64MCInstLower.h" 16 #include "AArch64MachineFunctionInfo.h" 17 #include "AArch64RegisterInfo.h" 18 #include "AArch64Subtarget.h" 19 #include "AArch64TargetObjectFile.h" 20 #include "MCTargetDesc/AArch64AddressingModes.h" 21 #include "MCTargetDesc/AArch64InstPrinter.h" 22 #include "MCTargetDesc/AArch64MCExpr.h" 23 #include "MCTargetDesc/AArch64MCTargetDesc.h" 24 #include "MCTargetDesc/AArch64TargetStreamer.h" 25 #include "TargetInfo/AArch64TargetInfo.h" 26 #include "Utils/AArch64BaseInfo.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/COFF.h" 33 #include "llvm/BinaryFormat/ELF.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/FaultMaps.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineJumpTableInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/MC/MCAsmInfo.h" 47 #include "llvm/MC/MCContext.h" 48 #include "llvm/MC/MCInst.h" 49 #include "llvm/MC/MCInstBuilder.h" 50 #include "llvm/MC/MCSectionELF.h" 51 #include "llvm/MC/MCStreamer.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/MC/TargetRegistry.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <map> 63 #include <memory> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "asm-printer" 68 69 namespace { 70 71 class AArch64AsmPrinter : public AsmPrinter { 72 AArch64MCInstLower MCInstLowering; 73 StackMaps SM; 74 FaultMaps FM; 75 const AArch64Subtarget *STI; 76 bool ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = false; 77 78 public: 79 AArch64AsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) 80 : AsmPrinter(TM, std::move(Streamer)), MCInstLowering(OutContext, *this), 81 SM(*this), FM(*this) {} 82 83 StringRef getPassName() const override { return "AArch64 Assembly Printer"; } 84 85 /// Wrapper for MCInstLowering.lowerOperand() for the 86 /// tblgen'erated pseudo lowering. 87 bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp) const { 88 return MCInstLowering.lowerOperand(MO, MCOp); 89 } 90 91 void emitStartOfAsmFile(Module &M) override; 92 void emitJumpTableInfo() override; 93 94 void emitFunctionEntryLabel() override; 95 96 void LowerJumpTableDest(MCStreamer &OutStreamer, const MachineInstr &MI); 97 98 void LowerMOPS(MCStreamer &OutStreamer, const MachineInstr &MI); 99 100 void LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM, 101 const MachineInstr &MI); 102 void LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM, 103 const MachineInstr &MI); 104 void LowerSTATEPOINT(MCStreamer &OutStreamer, StackMaps &SM, 105 const MachineInstr &MI); 106 void LowerFAULTING_OP(const MachineInstr &MI); 107 108 void LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI); 109 void LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI); 110 void LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI); 111 112 typedef std::tuple<unsigned, bool, uint32_t> HwasanMemaccessTuple; 113 std::map<HwasanMemaccessTuple, MCSymbol *> HwasanMemaccessSymbols; 114 void LowerHWASAN_CHECK_MEMACCESS(const MachineInstr &MI); 115 void emitHwasanMemaccessSymbols(Module &M); 116 117 void emitSled(const MachineInstr &MI, SledKind Kind); 118 119 /// tblgen'erated driver function for lowering simple MI->MC 120 /// pseudo instructions. 121 bool emitPseudoExpansionLowering(MCStreamer &OutStreamer, 122 const MachineInstr *MI); 123 124 void emitInstruction(const MachineInstr *MI) override; 125 126 void emitFunctionHeaderComment() override; 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override { 129 AsmPrinter::getAnalysisUsage(AU); 130 AU.setPreservesAll(); 131 } 132 133 bool runOnMachineFunction(MachineFunction &MF) override { 134 AArch64FI = MF.getInfo<AArch64FunctionInfo>(); 135 STI = &MF.getSubtarget<AArch64Subtarget>(); 136 137 SetupMachineFunction(MF); 138 139 if (STI->isTargetCOFF()) { 140 bool Internal = MF.getFunction().hasInternalLinkage(); 141 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 142 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 143 int Type = 144 COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 145 146 OutStreamer->beginCOFFSymbolDef(CurrentFnSym); 147 OutStreamer->emitCOFFSymbolStorageClass(Scl); 148 OutStreamer->emitCOFFSymbolType(Type); 149 OutStreamer->endCOFFSymbolDef(); 150 } 151 152 // Emit the rest of the function body. 153 emitFunctionBody(); 154 155 // Emit the XRay table for this function. 156 emitXRayTable(); 157 158 // We didn't modify anything. 159 return false; 160 } 161 162 private: 163 void printOperand(const MachineInstr *MI, unsigned OpNum, raw_ostream &O); 164 bool printAsmMRegister(const MachineOperand &MO, char Mode, raw_ostream &O); 165 bool printAsmRegInClass(const MachineOperand &MO, 166 const TargetRegisterClass *RC, unsigned AltName, 167 raw_ostream &O); 168 169 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 170 const char *ExtraCode, raw_ostream &O) override; 171 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, 172 const char *ExtraCode, raw_ostream &O) override; 173 174 void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS); 175 176 void emitFunctionBodyEnd() override; 177 178 MCSymbol *GetCPISymbol(unsigned CPID) const override; 179 void emitEndOfAsmFile(Module &M) override; 180 181 AArch64FunctionInfo *AArch64FI = nullptr; 182 183 /// Emit the LOHs contained in AArch64FI. 184 void emitLOHs(); 185 186 /// Emit instruction to set float register to zero. 187 void emitFMov0(const MachineInstr &MI); 188 189 using MInstToMCSymbol = std::map<const MachineInstr *, MCSymbol *>; 190 191 MInstToMCSymbol LOHInstToLabel; 192 193 bool shouldEmitWeakSwiftAsyncExtendedFramePointerFlags() const override { 194 return ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags; 195 } 196 }; 197 198 } // end anonymous namespace 199 200 void AArch64AsmPrinter::emitStartOfAsmFile(Module &M) { 201 const Triple &TT = TM.getTargetTriple(); 202 203 if (TT.isOSBinFormatCOFF()) { 204 // Emit an absolute @feat.00 symbol. This appears to be some kind of 205 // compiler features bitfield read by link.exe. 206 MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00")); 207 OutStreamer->beginCOFFSymbolDef(S); 208 OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC); 209 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL); 210 OutStreamer->endCOFFSymbolDef(); 211 int64_t Feat00Flags = 0; 212 213 if (M.getModuleFlag("cfguard")) { 214 Feat00Flags |= 0x800; // Object is CFG-aware. 215 } 216 217 if (M.getModuleFlag("ehcontguard")) { 218 Feat00Flags |= 0x4000; // Object also has EHCont. 219 } 220 221 OutStreamer->emitSymbolAttribute(S, MCSA_Global); 222 OutStreamer->emitAssignment( 223 S, MCConstantExpr::create(Feat00Flags, MMI->getContext())); 224 } 225 226 if (!TT.isOSBinFormatELF()) 227 return; 228 229 // Assemble feature flags that may require creation of a note section. 230 unsigned Flags = 0; 231 if (const auto *BTE = mdconst::extract_or_null<ConstantInt>( 232 M.getModuleFlag("branch-target-enforcement"))) 233 if (BTE->getZExtValue()) 234 Flags |= ELF::GNU_PROPERTY_AARCH64_FEATURE_1_BTI; 235 236 if (const auto *Sign = mdconst::extract_or_null<ConstantInt>( 237 M.getModuleFlag("sign-return-address"))) 238 if (Sign->getZExtValue()) 239 Flags |= ELF::GNU_PROPERTY_AARCH64_FEATURE_1_PAC; 240 241 if (Flags == 0) 242 return; 243 244 // Emit a .note.gnu.property section with the flags. 245 if (auto *TS = static_cast<AArch64TargetStreamer *>( 246 OutStreamer->getTargetStreamer())) 247 TS->emitNoteSection(Flags); 248 } 249 250 void AArch64AsmPrinter::emitFunctionHeaderComment() { 251 const AArch64FunctionInfo *FI = MF->getInfo<AArch64FunctionInfo>(); 252 Optional<std::string> OutlinerString = FI->getOutliningStyle(); 253 if (OutlinerString != None) 254 OutStreamer->getCommentOS() << ' ' << OutlinerString; 255 } 256 257 void AArch64AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) 258 { 259 const Function &F = MF->getFunction(); 260 if (F.hasFnAttribute("patchable-function-entry")) { 261 unsigned Num; 262 if (F.getFnAttribute("patchable-function-entry") 263 .getValueAsString() 264 .getAsInteger(10, Num)) 265 return; 266 emitNops(Num); 267 return; 268 } 269 270 emitSled(MI, SledKind::FUNCTION_ENTER); 271 } 272 273 void AArch64AsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) { 274 emitSled(MI, SledKind::FUNCTION_EXIT); 275 } 276 277 void AArch64AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) { 278 emitSled(MI, SledKind::TAIL_CALL); 279 } 280 281 void AArch64AsmPrinter::emitSled(const MachineInstr &MI, SledKind Kind) { 282 static const int8_t NoopsInSledCount = 7; 283 // We want to emit the following pattern: 284 // 285 // .Lxray_sled_N: 286 // ALIGN 287 // B #32 288 // ; 7 NOP instructions (28 bytes) 289 // .tmpN 290 // 291 // We need the 28 bytes (7 instructions) because at runtime, we'd be patching 292 // over the full 32 bytes (8 instructions) with the following pattern: 293 // 294 // STP X0, X30, [SP, #-16]! ; push X0 and the link register to the stack 295 // LDR W0, #12 ; W0 := function ID 296 // LDR X16,#12 ; X16 := addr of __xray_FunctionEntry or __xray_FunctionExit 297 // BLR X16 ; call the tracing trampoline 298 // ;DATA: 32 bits of function ID 299 // ;DATA: lower 32 bits of the address of the trampoline 300 // ;DATA: higher 32 bits of the address of the trampoline 301 // LDP X0, X30, [SP], #16 ; pop X0 and the link register from the stack 302 // 303 OutStreamer->emitCodeAlignment(4, &getSubtargetInfo()); 304 auto CurSled = OutContext.createTempSymbol("xray_sled_", true); 305 OutStreamer->emitLabel(CurSled); 306 auto Target = OutContext.createTempSymbol(); 307 308 // Emit "B #32" instruction, which jumps over the next 28 bytes. 309 // The operand has to be the number of 4-byte instructions to jump over, 310 // including the current instruction. 311 EmitToStreamer(*OutStreamer, MCInstBuilder(AArch64::B).addImm(8)); 312 313 for (int8_t I = 0; I < NoopsInSledCount; I++) 314 EmitToStreamer(*OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0)); 315 316 OutStreamer->emitLabel(Target); 317 recordSled(CurSled, MI, Kind, 2); 318 } 319 320 void AArch64AsmPrinter::LowerHWASAN_CHECK_MEMACCESS(const MachineInstr &MI) { 321 Register Reg = MI.getOperand(0).getReg(); 322 bool IsShort = 323 MI.getOpcode() == AArch64::HWASAN_CHECK_MEMACCESS_SHORTGRANULES; 324 uint32_t AccessInfo = MI.getOperand(1).getImm(); 325 MCSymbol *&Sym = 326 HwasanMemaccessSymbols[HwasanMemaccessTuple(Reg, IsShort, AccessInfo)]; 327 if (!Sym) { 328 // FIXME: Make this work on non-ELF. 329 if (!TM.getTargetTriple().isOSBinFormatELF()) 330 report_fatal_error("llvm.hwasan.check.memaccess only supported on ELF"); 331 332 std::string SymName = "__hwasan_check_x" + utostr(Reg - AArch64::X0) + "_" + 333 utostr(AccessInfo); 334 if (IsShort) 335 SymName += "_short_v2"; 336 Sym = OutContext.getOrCreateSymbol(SymName); 337 } 338 339 EmitToStreamer(*OutStreamer, 340 MCInstBuilder(AArch64::BL) 341 .addExpr(MCSymbolRefExpr::create(Sym, OutContext))); 342 } 343 344 void AArch64AsmPrinter::emitHwasanMemaccessSymbols(Module &M) { 345 if (HwasanMemaccessSymbols.empty()) 346 return; 347 348 const Triple &TT = TM.getTargetTriple(); 349 assert(TT.isOSBinFormatELF()); 350 std::unique_ptr<MCSubtargetInfo> STI( 351 TM.getTarget().createMCSubtargetInfo(TT.str(), "", "")); 352 assert(STI && "Unable to create subtarget info"); 353 354 MCSymbol *HwasanTagMismatchV1Sym = 355 OutContext.getOrCreateSymbol("__hwasan_tag_mismatch"); 356 MCSymbol *HwasanTagMismatchV2Sym = 357 OutContext.getOrCreateSymbol("__hwasan_tag_mismatch_v2"); 358 359 const MCSymbolRefExpr *HwasanTagMismatchV1Ref = 360 MCSymbolRefExpr::create(HwasanTagMismatchV1Sym, OutContext); 361 const MCSymbolRefExpr *HwasanTagMismatchV2Ref = 362 MCSymbolRefExpr::create(HwasanTagMismatchV2Sym, OutContext); 363 364 for (auto &P : HwasanMemaccessSymbols) { 365 unsigned Reg = std::get<0>(P.first); 366 bool IsShort = std::get<1>(P.first); 367 uint32_t AccessInfo = std::get<2>(P.first); 368 const MCSymbolRefExpr *HwasanTagMismatchRef = 369 IsShort ? HwasanTagMismatchV2Ref : HwasanTagMismatchV1Ref; 370 MCSymbol *Sym = P.second; 371 372 bool HasMatchAllTag = 373 (AccessInfo >> HWASanAccessInfo::HasMatchAllShift) & 1; 374 uint8_t MatchAllTag = 375 (AccessInfo >> HWASanAccessInfo::MatchAllShift) & 0xff; 376 unsigned Size = 377 1 << ((AccessInfo >> HWASanAccessInfo::AccessSizeShift) & 0xf); 378 bool CompileKernel = 379 (AccessInfo >> HWASanAccessInfo::CompileKernelShift) & 1; 380 381 OutStreamer->switchSection(OutContext.getELFSection( 382 ".text.hot", ELF::SHT_PROGBITS, 383 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, Sym->getName(), 384 /*IsComdat=*/true)); 385 386 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction); 387 OutStreamer->emitSymbolAttribute(Sym, MCSA_Weak); 388 OutStreamer->emitSymbolAttribute(Sym, MCSA_Hidden); 389 OutStreamer->emitLabel(Sym); 390 391 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SBFMXri) 392 .addReg(AArch64::X16) 393 .addReg(Reg) 394 .addImm(4) 395 .addImm(55), 396 *STI); 397 OutStreamer->emitInstruction( 398 MCInstBuilder(AArch64::LDRBBroX) 399 .addReg(AArch64::W16) 400 .addReg(IsShort ? AArch64::X20 : AArch64::X9) 401 .addReg(AArch64::X16) 402 .addImm(0) 403 .addImm(0), 404 *STI); 405 OutStreamer->emitInstruction( 406 MCInstBuilder(AArch64::SUBSXrs) 407 .addReg(AArch64::XZR) 408 .addReg(AArch64::X16) 409 .addReg(Reg) 410 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSR, 56)), 411 *STI); 412 MCSymbol *HandleMismatchOrPartialSym = OutContext.createTempSymbol(); 413 OutStreamer->emitInstruction( 414 MCInstBuilder(AArch64::Bcc) 415 .addImm(AArch64CC::NE) 416 .addExpr(MCSymbolRefExpr::create(HandleMismatchOrPartialSym, 417 OutContext)), 418 *STI); 419 MCSymbol *ReturnSym = OutContext.createTempSymbol(); 420 OutStreamer->emitLabel(ReturnSym); 421 OutStreamer->emitInstruction( 422 MCInstBuilder(AArch64::RET).addReg(AArch64::LR), *STI); 423 OutStreamer->emitLabel(HandleMismatchOrPartialSym); 424 425 if (HasMatchAllTag) { 426 OutStreamer->emitInstruction(MCInstBuilder(AArch64::UBFMXri) 427 .addReg(AArch64::X16) 428 .addReg(Reg) 429 .addImm(56) 430 .addImm(63), 431 *STI); 432 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSXri) 433 .addReg(AArch64::XZR) 434 .addReg(AArch64::X16) 435 .addImm(MatchAllTag) 436 .addImm(0), 437 *STI); 438 OutStreamer->emitInstruction( 439 MCInstBuilder(AArch64::Bcc) 440 .addImm(AArch64CC::EQ) 441 .addExpr(MCSymbolRefExpr::create(ReturnSym, OutContext)), 442 *STI); 443 } 444 445 if (IsShort) { 446 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSWri) 447 .addReg(AArch64::WZR) 448 .addReg(AArch64::W16) 449 .addImm(15) 450 .addImm(0), 451 *STI); 452 MCSymbol *HandleMismatchSym = OutContext.createTempSymbol(); 453 OutStreamer->emitInstruction( 454 MCInstBuilder(AArch64::Bcc) 455 .addImm(AArch64CC::HI) 456 .addExpr(MCSymbolRefExpr::create(HandleMismatchSym, OutContext)), 457 *STI); 458 459 OutStreamer->emitInstruction( 460 MCInstBuilder(AArch64::ANDXri) 461 .addReg(AArch64::X17) 462 .addReg(Reg) 463 .addImm(AArch64_AM::encodeLogicalImmediate(0xf, 64)), 464 *STI); 465 if (Size != 1) 466 OutStreamer->emitInstruction(MCInstBuilder(AArch64::ADDXri) 467 .addReg(AArch64::X17) 468 .addReg(AArch64::X17) 469 .addImm(Size - 1) 470 .addImm(0), 471 *STI); 472 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSWrs) 473 .addReg(AArch64::WZR) 474 .addReg(AArch64::W16) 475 .addReg(AArch64::W17) 476 .addImm(0), 477 *STI); 478 OutStreamer->emitInstruction( 479 MCInstBuilder(AArch64::Bcc) 480 .addImm(AArch64CC::LS) 481 .addExpr(MCSymbolRefExpr::create(HandleMismatchSym, OutContext)), 482 *STI); 483 484 OutStreamer->emitInstruction( 485 MCInstBuilder(AArch64::ORRXri) 486 .addReg(AArch64::X16) 487 .addReg(Reg) 488 .addImm(AArch64_AM::encodeLogicalImmediate(0xf, 64)), 489 *STI); 490 OutStreamer->emitInstruction(MCInstBuilder(AArch64::LDRBBui) 491 .addReg(AArch64::W16) 492 .addReg(AArch64::X16) 493 .addImm(0), 494 *STI); 495 OutStreamer->emitInstruction( 496 MCInstBuilder(AArch64::SUBSXrs) 497 .addReg(AArch64::XZR) 498 .addReg(AArch64::X16) 499 .addReg(Reg) 500 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSR, 56)), 501 *STI); 502 OutStreamer->emitInstruction( 503 MCInstBuilder(AArch64::Bcc) 504 .addImm(AArch64CC::EQ) 505 .addExpr(MCSymbolRefExpr::create(ReturnSym, OutContext)), 506 *STI); 507 508 OutStreamer->emitLabel(HandleMismatchSym); 509 } 510 511 OutStreamer->emitInstruction(MCInstBuilder(AArch64::STPXpre) 512 .addReg(AArch64::SP) 513 .addReg(AArch64::X0) 514 .addReg(AArch64::X1) 515 .addReg(AArch64::SP) 516 .addImm(-32), 517 *STI); 518 OutStreamer->emitInstruction(MCInstBuilder(AArch64::STPXi) 519 .addReg(AArch64::FP) 520 .addReg(AArch64::LR) 521 .addReg(AArch64::SP) 522 .addImm(29), 523 *STI); 524 525 if (Reg != AArch64::X0) 526 OutStreamer->emitInstruction(MCInstBuilder(AArch64::ORRXrs) 527 .addReg(AArch64::X0) 528 .addReg(AArch64::XZR) 529 .addReg(Reg) 530 .addImm(0), 531 *STI); 532 OutStreamer->emitInstruction( 533 MCInstBuilder(AArch64::MOVZXi) 534 .addReg(AArch64::X1) 535 .addImm(AccessInfo & HWASanAccessInfo::RuntimeMask) 536 .addImm(0), 537 *STI); 538 539 if (CompileKernel) { 540 // The Linux kernel's dynamic loader doesn't support GOT relative 541 // relocations, but it doesn't support late binding either, so just call 542 // the function directly. 543 OutStreamer->emitInstruction( 544 MCInstBuilder(AArch64::B).addExpr(HwasanTagMismatchRef), *STI); 545 } else { 546 // Intentionally load the GOT entry and branch to it, rather than possibly 547 // late binding the function, which may clobber the registers before we 548 // have a chance to save them. 549 OutStreamer->emitInstruction( 550 MCInstBuilder(AArch64::ADRP) 551 .addReg(AArch64::X16) 552 .addExpr(AArch64MCExpr::create( 553 HwasanTagMismatchRef, AArch64MCExpr::VariantKind::VK_GOT_PAGE, 554 OutContext)), 555 *STI); 556 OutStreamer->emitInstruction( 557 MCInstBuilder(AArch64::LDRXui) 558 .addReg(AArch64::X16) 559 .addReg(AArch64::X16) 560 .addExpr(AArch64MCExpr::create( 561 HwasanTagMismatchRef, AArch64MCExpr::VariantKind::VK_GOT_LO12, 562 OutContext)), 563 *STI); 564 OutStreamer->emitInstruction( 565 MCInstBuilder(AArch64::BR).addReg(AArch64::X16), *STI); 566 } 567 } 568 } 569 570 void AArch64AsmPrinter::emitEndOfAsmFile(Module &M) { 571 emitHwasanMemaccessSymbols(M); 572 573 const Triple &TT = TM.getTargetTriple(); 574 if (TT.isOSBinFormatMachO()) { 575 // Funny Darwin hack: This flag tells the linker that no global symbols 576 // contain code that falls through to other global symbols (e.g. the obvious 577 // implementation of multiple entry points). If this doesn't occur, the 578 // linker can safely perform dead code stripping. Since LLVM never 579 // generates code that does this, it is always safe to set. 580 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 581 } 582 583 // Emit stack and fault map information. 584 emitStackMaps(SM); 585 FM.serializeToFaultMapSection(); 586 587 } 588 589 void AArch64AsmPrinter::emitLOHs() { 590 SmallVector<MCSymbol *, 3> MCArgs; 591 592 for (const auto &D : AArch64FI->getLOHContainer()) { 593 for (const MachineInstr *MI : D.getArgs()) { 594 MInstToMCSymbol::iterator LabelIt = LOHInstToLabel.find(MI); 595 assert(LabelIt != LOHInstToLabel.end() && 596 "Label hasn't been inserted for LOH related instruction"); 597 MCArgs.push_back(LabelIt->second); 598 } 599 OutStreamer->emitLOHDirective(D.getKind(), MCArgs); 600 MCArgs.clear(); 601 } 602 } 603 604 void AArch64AsmPrinter::emitFunctionBodyEnd() { 605 if (!AArch64FI->getLOHRelated().empty()) 606 emitLOHs(); 607 } 608 609 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 610 MCSymbol *AArch64AsmPrinter::GetCPISymbol(unsigned CPID) const { 611 // Darwin uses a linker-private symbol name for constant-pools (to 612 // avoid addends on the relocation?), ELF has no such concept and 613 // uses a normal private symbol. 614 if (!getDataLayout().getLinkerPrivateGlobalPrefix().empty()) 615 return OutContext.getOrCreateSymbol( 616 Twine(getDataLayout().getLinkerPrivateGlobalPrefix()) + "CPI" + 617 Twine(getFunctionNumber()) + "_" + Twine(CPID)); 618 619 return AsmPrinter::GetCPISymbol(CPID); 620 } 621 622 void AArch64AsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum, 623 raw_ostream &O) { 624 const MachineOperand &MO = MI->getOperand(OpNum); 625 switch (MO.getType()) { 626 default: 627 llvm_unreachable("<unknown operand type>"); 628 case MachineOperand::MO_Register: { 629 Register Reg = MO.getReg(); 630 assert(Register::isPhysicalRegister(Reg)); 631 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 632 O << AArch64InstPrinter::getRegisterName(Reg); 633 break; 634 } 635 case MachineOperand::MO_Immediate: { 636 O << MO.getImm(); 637 break; 638 } 639 case MachineOperand::MO_GlobalAddress: { 640 PrintSymbolOperand(MO, O); 641 break; 642 } 643 case MachineOperand::MO_BlockAddress: { 644 MCSymbol *Sym = GetBlockAddressSymbol(MO.getBlockAddress()); 645 Sym->print(O, MAI); 646 break; 647 } 648 } 649 } 650 651 bool AArch64AsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode, 652 raw_ostream &O) { 653 Register Reg = MO.getReg(); 654 switch (Mode) { 655 default: 656 return true; // Unknown mode. 657 case 'w': 658 Reg = getWRegFromXReg(Reg); 659 break; 660 case 'x': 661 Reg = getXRegFromWReg(Reg); 662 break; 663 case 't': 664 Reg = getXRegFromXRegTuple(Reg); 665 break; 666 } 667 668 O << AArch64InstPrinter::getRegisterName(Reg); 669 return false; 670 } 671 672 // Prints the register in MO using class RC using the offset in the 673 // new register class. This should not be used for cross class 674 // printing. 675 bool AArch64AsmPrinter::printAsmRegInClass(const MachineOperand &MO, 676 const TargetRegisterClass *RC, 677 unsigned AltName, raw_ostream &O) { 678 assert(MO.isReg() && "Should only get here with a register!"); 679 const TargetRegisterInfo *RI = STI->getRegisterInfo(); 680 Register Reg = MO.getReg(); 681 unsigned RegToPrint = RC->getRegister(RI->getEncodingValue(Reg)); 682 if (!RI->regsOverlap(RegToPrint, Reg)) 683 return true; 684 O << AArch64InstPrinter::getRegisterName(RegToPrint, AltName); 685 return false; 686 } 687 688 bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 689 const char *ExtraCode, raw_ostream &O) { 690 const MachineOperand &MO = MI->getOperand(OpNum); 691 692 // First try the generic code, which knows about modifiers like 'c' and 'n'. 693 if (!AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O)) 694 return false; 695 696 // Does this asm operand have a single letter operand modifier? 697 if (ExtraCode && ExtraCode[0]) { 698 if (ExtraCode[1] != 0) 699 return true; // Unknown modifier. 700 701 switch (ExtraCode[0]) { 702 default: 703 return true; // Unknown modifier. 704 case 'w': // Print W register 705 case 'x': // Print X register 706 if (MO.isReg()) 707 return printAsmMRegister(MO, ExtraCode[0], O); 708 if (MO.isImm() && MO.getImm() == 0) { 709 unsigned Reg = ExtraCode[0] == 'w' ? AArch64::WZR : AArch64::XZR; 710 O << AArch64InstPrinter::getRegisterName(Reg); 711 return false; 712 } 713 printOperand(MI, OpNum, O); 714 return false; 715 case 'b': // Print B register. 716 case 'h': // Print H register. 717 case 's': // Print S register. 718 case 'd': // Print D register. 719 case 'q': // Print Q register. 720 case 'z': // Print Z register. 721 if (MO.isReg()) { 722 const TargetRegisterClass *RC; 723 switch (ExtraCode[0]) { 724 case 'b': 725 RC = &AArch64::FPR8RegClass; 726 break; 727 case 'h': 728 RC = &AArch64::FPR16RegClass; 729 break; 730 case 's': 731 RC = &AArch64::FPR32RegClass; 732 break; 733 case 'd': 734 RC = &AArch64::FPR64RegClass; 735 break; 736 case 'q': 737 RC = &AArch64::FPR128RegClass; 738 break; 739 case 'z': 740 RC = &AArch64::ZPRRegClass; 741 break; 742 default: 743 return true; 744 } 745 return printAsmRegInClass(MO, RC, AArch64::NoRegAltName, O); 746 } 747 printOperand(MI, OpNum, O); 748 return false; 749 } 750 } 751 752 // According to ARM, we should emit x and v registers unless we have a 753 // modifier. 754 if (MO.isReg()) { 755 Register Reg = MO.getReg(); 756 757 // If this is a w or x register, print an x register. 758 if (AArch64::GPR32allRegClass.contains(Reg) || 759 AArch64::GPR64allRegClass.contains(Reg)) 760 return printAsmMRegister(MO, 'x', O); 761 762 // If this is an x register tuple, print an x register. 763 if (AArch64::GPR64x8ClassRegClass.contains(Reg)) 764 return printAsmMRegister(MO, 't', O); 765 766 unsigned AltName = AArch64::NoRegAltName; 767 const TargetRegisterClass *RegClass; 768 if (AArch64::ZPRRegClass.contains(Reg)) { 769 RegClass = &AArch64::ZPRRegClass; 770 } else if (AArch64::PPRRegClass.contains(Reg)) { 771 RegClass = &AArch64::PPRRegClass; 772 } else { 773 RegClass = &AArch64::FPR128RegClass; 774 AltName = AArch64::vreg; 775 } 776 777 // If this is a b, h, s, d, or q register, print it as a v register. 778 return printAsmRegInClass(MO, RegClass, AltName, O); 779 } 780 781 printOperand(MI, OpNum, O); 782 return false; 783 } 784 785 bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 786 unsigned OpNum, 787 const char *ExtraCode, 788 raw_ostream &O) { 789 if (ExtraCode && ExtraCode[0] && ExtraCode[0] != 'a') 790 return true; // Unknown modifier. 791 792 const MachineOperand &MO = MI->getOperand(OpNum); 793 assert(MO.isReg() && "unexpected inline asm memory operand"); 794 O << "[" << AArch64InstPrinter::getRegisterName(MO.getReg()) << "]"; 795 return false; 796 } 797 798 void AArch64AsmPrinter::PrintDebugValueComment(const MachineInstr *MI, 799 raw_ostream &OS) { 800 unsigned NOps = MI->getNumOperands(); 801 assert(NOps == 4); 802 OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: "; 803 // cast away const; DIetc do not take const operands for some reason. 804 OS << MI->getDebugVariable()->getName(); 805 OS << " <- "; 806 // Frame address. Currently handles register +- offset only. 807 assert(MI->isIndirectDebugValue()); 808 OS << '['; 809 for (unsigned I = 0, E = std::distance(MI->debug_operands().begin(), 810 MI->debug_operands().end()); 811 I < E; ++I) { 812 if (I != 0) 813 OS << ", "; 814 printOperand(MI, I, OS); 815 } 816 OS << ']'; 817 OS << "+"; 818 printOperand(MI, NOps - 2, OS); 819 } 820 821 void AArch64AsmPrinter::emitJumpTableInfo() { 822 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 823 if (!MJTI) return; 824 825 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 826 if (JT.empty()) return; 827 828 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 829 MCSection *ReadOnlySec = TLOF.getSectionForJumpTable(MF->getFunction(), TM); 830 OutStreamer->switchSection(ReadOnlySec); 831 832 auto AFI = MF->getInfo<AArch64FunctionInfo>(); 833 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 834 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 835 836 // If this jump table was deleted, ignore it. 837 if (JTBBs.empty()) continue; 838 839 unsigned Size = AFI->getJumpTableEntrySize(JTI); 840 emitAlignment(Align(Size)); 841 OutStreamer->emitLabel(GetJTISymbol(JTI)); 842 843 const MCSymbol *BaseSym = AArch64FI->getJumpTableEntryPCRelSymbol(JTI); 844 const MCExpr *Base = MCSymbolRefExpr::create(BaseSym, OutContext); 845 846 for (auto *JTBB : JTBBs) { 847 const MCExpr *Value = 848 MCSymbolRefExpr::create(JTBB->getSymbol(), OutContext); 849 850 // Each entry is: 851 // .byte/.hword (LBB - Lbase)>>2 852 // or plain: 853 // .word LBB - Lbase 854 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 855 if (Size != 4) 856 Value = MCBinaryExpr::createLShr( 857 Value, MCConstantExpr::create(2, OutContext), OutContext); 858 859 OutStreamer->emitValue(Value, Size); 860 } 861 } 862 } 863 864 void AArch64AsmPrinter::emitFunctionEntryLabel() { 865 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall || 866 MF->getFunction().getCallingConv() == 867 CallingConv::AArch64_SVE_VectorCall || 868 MF->getInfo<AArch64FunctionInfo>()->isSVECC()) { 869 auto *TS = 870 static_cast<AArch64TargetStreamer *>(OutStreamer->getTargetStreamer()); 871 TS->emitDirectiveVariantPCS(CurrentFnSym); 872 } 873 874 return AsmPrinter::emitFunctionEntryLabel(); 875 } 876 877 /// Small jump tables contain an unsigned byte or half, representing the offset 878 /// from the lowest-addressed possible destination to the desired basic 879 /// block. Since all instructions are 4-byte aligned, this is further compressed 880 /// by counting in instructions rather than bytes (i.e. divided by 4). So, to 881 /// materialize the correct destination we need: 882 /// 883 /// adr xDest, .LBB0_0 884 /// ldrb wScratch, [xTable, xEntry] (with "lsl #1" for ldrh). 885 /// add xDest, xDest, xScratch (with "lsl #2" for smaller entries) 886 void AArch64AsmPrinter::LowerJumpTableDest(llvm::MCStreamer &OutStreamer, 887 const llvm::MachineInstr &MI) { 888 Register DestReg = MI.getOperand(0).getReg(); 889 Register ScratchReg = MI.getOperand(1).getReg(); 890 Register ScratchRegW = 891 STI->getRegisterInfo()->getSubReg(ScratchReg, AArch64::sub_32); 892 Register TableReg = MI.getOperand(2).getReg(); 893 Register EntryReg = MI.getOperand(3).getReg(); 894 int JTIdx = MI.getOperand(4).getIndex(); 895 int Size = AArch64FI->getJumpTableEntrySize(JTIdx); 896 897 // This has to be first because the compression pass based its reachability 898 // calculations on the start of the JumpTableDest instruction. 899 auto Label = 900 MF->getInfo<AArch64FunctionInfo>()->getJumpTableEntryPCRelSymbol(JTIdx); 901 902 // If we don't already have a symbol to use as the base, use the ADR 903 // instruction itself. 904 if (!Label) { 905 Label = MF->getContext().createTempSymbol(); 906 AArch64FI->setJumpTableEntryInfo(JTIdx, Size, Label); 907 OutStreamer.emitLabel(Label); 908 } 909 910 auto LabelExpr = MCSymbolRefExpr::create(Label, MF->getContext()); 911 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::ADR) 912 .addReg(DestReg) 913 .addExpr(LabelExpr)); 914 915 // Load the number of instruction-steps to offset from the label. 916 unsigned LdrOpcode; 917 switch (Size) { 918 case 1: LdrOpcode = AArch64::LDRBBroX; break; 919 case 2: LdrOpcode = AArch64::LDRHHroX; break; 920 case 4: LdrOpcode = AArch64::LDRSWroX; break; 921 default: 922 llvm_unreachable("Unknown jump table size"); 923 } 924 925 EmitToStreamer(OutStreamer, MCInstBuilder(LdrOpcode) 926 .addReg(Size == 4 ? ScratchReg : ScratchRegW) 927 .addReg(TableReg) 928 .addReg(EntryReg) 929 .addImm(0) 930 .addImm(Size == 1 ? 0 : 1)); 931 932 // Add to the already materialized base label address, multiplying by 4 if 933 // compressed. 934 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::ADDXrs) 935 .addReg(DestReg) 936 .addReg(DestReg) 937 .addReg(ScratchReg) 938 .addImm(Size == 4 ? 0 : 2)); 939 } 940 941 void AArch64AsmPrinter::LowerMOPS(llvm::MCStreamer &OutStreamer, 942 const llvm::MachineInstr &MI) { 943 unsigned Opcode = MI.getOpcode(); 944 assert(STI->hasMOPS()); 945 assert(STI->hasMTE() || Opcode != AArch64::MOPSMemorySetTaggingPseudo); 946 947 const auto Ops = [Opcode]() -> std::array<unsigned, 3> { 948 if (Opcode == AArch64::MOPSMemoryCopyPseudo) 949 return {AArch64::CPYFP, AArch64::CPYFM, AArch64::CPYFE}; 950 if (Opcode == AArch64::MOPSMemoryMovePseudo) 951 return {AArch64::CPYP, AArch64::CPYM, AArch64::CPYE}; 952 if (Opcode == AArch64::MOPSMemorySetPseudo) 953 return {AArch64::SETP, AArch64::SETM, AArch64::SETE}; 954 if (Opcode == AArch64::MOPSMemorySetTaggingPseudo) 955 return {AArch64::SETGP, AArch64::SETGM, AArch64::MOPSSETGE}; 956 llvm_unreachable("Unhandled memory operation pseudo"); 957 }(); 958 const bool IsSet = Opcode == AArch64::MOPSMemorySetPseudo || 959 Opcode == AArch64::MOPSMemorySetTaggingPseudo; 960 961 for (auto Op : Ops) { 962 int i = 0; 963 auto MCIB = MCInstBuilder(Op); 964 // Destination registers 965 MCIB.addReg(MI.getOperand(i++).getReg()); 966 MCIB.addReg(MI.getOperand(i++).getReg()); 967 if (!IsSet) 968 MCIB.addReg(MI.getOperand(i++).getReg()); 969 // Input registers 970 MCIB.addReg(MI.getOperand(i++).getReg()); 971 MCIB.addReg(MI.getOperand(i++).getReg()); 972 MCIB.addReg(MI.getOperand(i++).getReg()); 973 974 EmitToStreamer(OutStreamer, MCIB); 975 } 976 } 977 978 void AArch64AsmPrinter::LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM, 979 const MachineInstr &MI) { 980 unsigned NumNOPBytes = StackMapOpers(&MI).getNumPatchBytes(); 981 982 auto &Ctx = OutStreamer.getContext(); 983 MCSymbol *MILabel = Ctx.createTempSymbol(); 984 OutStreamer.emitLabel(MILabel); 985 986 SM.recordStackMap(*MILabel, MI); 987 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 988 989 // Scan ahead to trim the shadow. 990 const MachineBasicBlock &MBB = *MI.getParent(); 991 MachineBasicBlock::const_iterator MII(MI); 992 ++MII; 993 while (NumNOPBytes > 0) { 994 if (MII == MBB.end() || MII->isCall() || 995 MII->getOpcode() == AArch64::DBG_VALUE || 996 MII->getOpcode() == TargetOpcode::PATCHPOINT || 997 MII->getOpcode() == TargetOpcode::STACKMAP) 998 break; 999 ++MII; 1000 NumNOPBytes -= 4; 1001 } 1002 1003 // Emit nops. 1004 for (unsigned i = 0; i < NumNOPBytes; i += 4) 1005 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0)); 1006 } 1007 1008 // Lower a patchpoint of the form: 1009 // [<def>], <id>, <numBytes>, <target>, <numArgs> 1010 void AArch64AsmPrinter::LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM, 1011 const MachineInstr &MI) { 1012 auto &Ctx = OutStreamer.getContext(); 1013 MCSymbol *MILabel = Ctx.createTempSymbol(); 1014 OutStreamer.emitLabel(MILabel); 1015 SM.recordPatchPoint(*MILabel, MI); 1016 1017 PatchPointOpers Opers(&MI); 1018 1019 int64_t CallTarget = Opers.getCallTarget().getImm(); 1020 unsigned EncodedBytes = 0; 1021 if (CallTarget) { 1022 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget && 1023 "High 16 bits of call target should be zero."); 1024 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg(); 1025 EncodedBytes = 16; 1026 // Materialize the jump address: 1027 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVZXi) 1028 .addReg(ScratchReg) 1029 .addImm((CallTarget >> 32) & 0xFFFF) 1030 .addImm(32)); 1031 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKXi) 1032 .addReg(ScratchReg) 1033 .addReg(ScratchReg) 1034 .addImm((CallTarget >> 16) & 0xFFFF) 1035 .addImm(16)); 1036 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKXi) 1037 .addReg(ScratchReg) 1038 .addReg(ScratchReg) 1039 .addImm(CallTarget & 0xFFFF) 1040 .addImm(0)); 1041 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::BLR).addReg(ScratchReg)); 1042 } 1043 // Emit padding. 1044 unsigned NumBytes = Opers.getNumPatchBytes(); 1045 assert(NumBytes >= EncodedBytes && 1046 "Patchpoint can't request size less than the length of a call."); 1047 assert((NumBytes - EncodedBytes) % 4 == 0 && 1048 "Invalid number of NOP bytes requested!"); 1049 for (unsigned i = EncodedBytes; i < NumBytes; i += 4) 1050 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0)); 1051 } 1052 1053 void AArch64AsmPrinter::LowerSTATEPOINT(MCStreamer &OutStreamer, StackMaps &SM, 1054 const MachineInstr &MI) { 1055 StatepointOpers SOpers(&MI); 1056 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) { 1057 assert(PatchBytes % 4 == 0 && "Invalid number of NOP bytes requested!"); 1058 for (unsigned i = 0; i < PatchBytes; i += 4) 1059 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0)); 1060 } else { 1061 // Lower call target and choose correct opcode 1062 const MachineOperand &CallTarget = SOpers.getCallTarget(); 1063 MCOperand CallTargetMCOp; 1064 unsigned CallOpcode; 1065 switch (CallTarget.getType()) { 1066 case MachineOperand::MO_GlobalAddress: 1067 case MachineOperand::MO_ExternalSymbol: 1068 MCInstLowering.lowerOperand(CallTarget, CallTargetMCOp); 1069 CallOpcode = AArch64::BL; 1070 break; 1071 case MachineOperand::MO_Immediate: 1072 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm()); 1073 CallOpcode = AArch64::BL; 1074 break; 1075 case MachineOperand::MO_Register: 1076 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg()); 1077 CallOpcode = AArch64::BLR; 1078 break; 1079 default: 1080 llvm_unreachable("Unsupported operand type in statepoint call target"); 1081 break; 1082 } 1083 1084 EmitToStreamer(OutStreamer, 1085 MCInstBuilder(CallOpcode).addOperand(CallTargetMCOp)); 1086 } 1087 1088 auto &Ctx = OutStreamer.getContext(); 1089 MCSymbol *MILabel = Ctx.createTempSymbol(); 1090 OutStreamer.emitLabel(MILabel); 1091 SM.recordStatepoint(*MILabel, MI); 1092 } 1093 1094 void AArch64AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI) { 1095 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>, 1096 // <opcode>, <operands> 1097 1098 Register DefRegister = FaultingMI.getOperand(0).getReg(); 1099 FaultMaps::FaultKind FK = 1100 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm()); 1101 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol(); 1102 unsigned Opcode = FaultingMI.getOperand(3).getImm(); 1103 unsigned OperandsBeginIdx = 4; 1104 1105 auto &Ctx = OutStreamer->getContext(); 1106 MCSymbol *FaultingLabel = Ctx.createTempSymbol(); 1107 OutStreamer->emitLabel(FaultingLabel); 1108 1109 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!"); 1110 FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel); 1111 1112 MCInst MI; 1113 MI.setOpcode(Opcode); 1114 1115 if (DefRegister != (Register)0) 1116 MI.addOperand(MCOperand::createReg(DefRegister)); 1117 1118 for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx, 1119 E = FaultingMI.operands_end(); 1120 I != E; ++I) { 1121 MCOperand Dest; 1122 lowerOperand(*I, Dest); 1123 MI.addOperand(Dest); 1124 } 1125 1126 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName()); 1127 OutStreamer->emitInstruction(MI, getSubtargetInfo()); 1128 } 1129 1130 void AArch64AsmPrinter::emitFMov0(const MachineInstr &MI) { 1131 Register DestReg = MI.getOperand(0).getReg(); 1132 if (STI->hasZeroCycleZeroingFP() && !STI->hasZeroCycleZeroingFPWorkaround() && 1133 STI->hasNEON()) { 1134 // Convert H/S register to corresponding D register 1135 if (AArch64::H0 <= DestReg && DestReg <= AArch64::H31) 1136 DestReg = AArch64::D0 + (DestReg - AArch64::H0); 1137 else if (AArch64::S0 <= DestReg && DestReg <= AArch64::S31) 1138 DestReg = AArch64::D0 + (DestReg - AArch64::S0); 1139 else 1140 assert(AArch64::D0 <= DestReg && DestReg <= AArch64::D31); 1141 1142 MCInst MOVI; 1143 MOVI.setOpcode(AArch64::MOVID); 1144 MOVI.addOperand(MCOperand::createReg(DestReg)); 1145 MOVI.addOperand(MCOperand::createImm(0)); 1146 EmitToStreamer(*OutStreamer, MOVI); 1147 } else { 1148 MCInst FMov; 1149 switch (MI.getOpcode()) { 1150 default: llvm_unreachable("Unexpected opcode"); 1151 case AArch64::FMOVH0: 1152 FMov.setOpcode(AArch64::FMOVWHr); 1153 FMov.addOperand(MCOperand::createReg(DestReg)); 1154 FMov.addOperand(MCOperand::createReg(AArch64::WZR)); 1155 break; 1156 case AArch64::FMOVS0: 1157 FMov.setOpcode(AArch64::FMOVWSr); 1158 FMov.addOperand(MCOperand::createReg(DestReg)); 1159 FMov.addOperand(MCOperand::createReg(AArch64::WZR)); 1160 break; 1161 case AArch64::FMOVD0: 1162 FMov.setOpcode(AArch64::FMOVXDr); 1163 FMov.addOperand(MCOperand::createReg(DestReg)); 1164 FMov.addOperand(MCOperand::createReg(AArch64::XZR)); 1165 break; 1166 } 1167 EmitToStreamer(*OutStreamer, FMov); 1168 } 1169 } 1170 1171 // Simple pseudo-instructions have their lowering (with expansion to real 1172 // instructions) auto-generated. 1173 #include "AArch64GenMCPseudoLowering.inc" 1174 1175 void AArch64AsmPrinter::emitInstruction(const MachineInstr *MI) { 1176 AArch64_MC::verifyInstructionPredicates(MI->getOpcode(), STI->getFeatureBits()); 1177 1178 // Do any auto-generated pseudo lowerings. 1179 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1180 return; 1181 1182 if (MI->getOpcode() == AArch64::ADRP) { 1183 for (auto &Opd : MI->operands()) { 1184 if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) == 1185 "swift_async_extendedFramePointerFlags") { 1186 ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true; 1187 } 1188 } 1189 } 1190 1191 if (AArch64FI->getLOHRelated().count(MI)) { 1192 // Generate a label for LOH related instruction 1193 MCSymbol *LOHLabel = createTempSymbol("loh"); 1194 // Associate the instruction with the label 1195 LOHInstToLabel[MI] = LOHLabel; 1196 OutStreamer->emitLabel(LOHLabel); 1197 } 1198 1199 AArch64TargetStreamer *TS = 1200 static_cast<AArch64TargetStreamer *>(OutStreamer->getTargetStreamer()); 1201 // Do any manual lowerings. 1202 switch (MI->getOpcode()) { 1203 default: 1204 break; 1205 case AArch64::HINT: { 1206 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for 1207 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be 1208 // non-empty. If MI is the initial BTI, place the 1209 // __patchable_function_entries label after BTI. 1210 if (CurrentPatchableFunctionEntrySym && 1211 CurrentPatchableFunctionEntrySym == CurrentFnBegin && 1212 MI == &MF->front().front()) { 1213 int64_t Imm = MI->getOperand(0).getImm(); 1214 if ((Imm & 32) && (Imm & 6)) { 1215 MCInst Inst; 1216 MCInstLowering.Lower(MI, Inst); 1217 EmitToStreamer(*OutStreamer, Inst); 1218 CurrentPatchableFunctionEntrySym = createTempSymbol("patch"); 1219 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 1220 return; 1221 } 1222 } 1223 break; 1224 } 1225 case AArch64::MOVMCSym: { 1226 Register DestReg = MI->getOperand(0).getReg(); 1227 const MachineOperand &MO_Sym = MI->getOperand(1); 1228 MachineOperand Hi_MOSym(MO_Sym), Lo_MOSym(MO_Sym); 1229 MCOperand Hi_MCSym, Lo_MCSym; 1230 1231 Hi_MOSym.setTargetFlags(AArch64II::MO_G1 | AArch64II::MO_S); 1232 Lo_MOSym.setTargetFlags(AArch64II::MO_G0 | AArch64II::MO_NC); 1233 1234 MCInstLowering.lowerOperand(Hi_MOSym, Hi_MCSym); 1235 MCInstLowering.lowerOperand(Lo_MOSym, Lo_MCSym); 1236 1237 MCInst MovZ; 1238 MovZ.setOpcode(AArch64::MOVZXi); 1239 MovZ.addOperand(MCOperand::createReg(DestReg)); 1240 MovZ.addOperand(Hi_MCSym); 1241 MovZ.addOperand(MCOperand::createImm(16)); 1242 EmitToStreamer(*OutStreamer, MovZ); 1243 1244 MCInst MovK; 1245 MovK.setOpcode(AArch64::MOVKXi); 1246 MovK.addOperand(MCOperand::createReg(DestReg)); 1247 MovK.addOperand(MCOperand::createReg(DestReg)); 1248 MovK.addOperand(Lo_MCSym); 1249 MovK.addOperand(MCOperand::createImm(0)); 1250 EmitToStreamer(*OutStreamer, MovK); 1251 return; 1252 } 1253 case AArch64::MOVIv2d_ns: 1254 // If the target has <rdar://problem/16473581>, lower this 1255 // instruction to movi.16b instead. 1256 if (STI->hasZeroCycleZeroingFPWorkaround() && 1257 MI->getOperand(1).getImm() == 0) { 1258 MCInst TmpInst; 1259 TmpInst.setOpcode(AArch64::MOVIv16b_ns); 1260 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1261 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(1).getImm())); 1262 EmitToStreamer(*OutStreamer, TmpInst); 1263 return; 1264 } 1265 break; 1266 1267 case AArch64::DBG_VALUE: 1268 case AArch64::DBG_VALUE_LIST: 1269 if (isVerbose() && OutStreamer->hasRawTextSupport()) { 1270 SmallString<128> TmpStr; 1271 raw_svector_ostream OS(TmpStr); 1272 PrintDebugValueComment(MI, OS); 1273 OutStreamer->emitRawText(StringRef(OS.str())); 1274 } 1275 return; 1276 1277 case AArch64::EMITBKEY: { 1278 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1279 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1280 ExceptionHandlingType != ExceptionHandling::ARM) 1281 return; 1282 1283 if (getFunctionCFISectionType(*MF) == CFISection::None) 1284 return; 1285 1286 OutStreamer->emitCFIBKeyFrame(); 1287 return; 1288 } 1289 1290 case AArch64::EMITMTETAGGED: { 1291 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1292 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1293 ExceptionHandlingType != ExceptionHandling::ARM) 1294 return; 1295 1296 if (getFunctionCFISectionType(*MF) != CFISection::None) 1297 OutStreamer->emitCFIMTETaggedFrame(); 1298 return; 1299 } 1300 1301 // Tail calls use pseudo instructions so they have the proper code-gen 1302 // attributes (isCall, isReturn, etc.). We lower them to the real 1303 // instruction here. 1304 case AArch64::TCRETURNri: 1305 case AArch64::TCRETURNriBTI: 1306 case AArch64::TCRETURNriALL: { 1307 MCInst TmpInst; 1308 TmpInst.setOpcode(AArch64::BR); 1309 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1310 EmitToStreamer(*OutStreamer, TmpInst); 1311 return; 1312 } 1313 case AArch64::TCRETURNdi: { 1314 MCOperand Dest; 1315 MCInstLowering.lowerOperand(MI->getOperand(0), Dest); 1316 MCInst TmpInst; 1317 TmpInst.setOpcode(AArch64::B); 1318 TmpInst.addOperand(Dest); 1319 EmitToStreamer(*OutStreamer, TmpInst); 1320 return; 1321 } 1322 case AArch64::SpeculationBarrierISBDSBEndBB: { 1323 // Print DSB SYS + ISB 1324 MCInst TmpInstDSB; 1325 TmpInstDSB.setOpcode(AArch64::DSB); 1326 TmpInstDSB.addOperand(MCOperand::createImm(0xf)); 1327 EmitToStreamer(*OutStreamer, TmpInstDSB); 1328 MCInst TmpInstISB; 1329 TmpInstISB.setOpcode(AArch64::ISB); 1330 TmpInstISB.addOperand(MCOperand::createImm(0xf)); 1331 EmitToStreamer(*OutStreamer, TmpInstISB); 1332 return; 1333 } 1334 case AArch64::SpeculationBarrierSBEndBB: { 1335 // Print SB 1336 MCInst TmpInstSB; 1337 TmpInstSB.setOpcode(AArch64::SB); 1338 EmitToStreamer(*OutStreamer, TmpInstSB); 1339 return; 1340 } 1341 case AArch64::TLSDESC_CALLSEQ: { 1342 /// lower this to: 1343 /// adrp x0, :tlsdesc:var 1344 /// ldr x1, [x0, #:tlsdesc_lo12:var] 1345 /// add x0, x0, #:tlsdesc_lo12:var 1346 /// .tlsdesccall var 1347 /// blr x1 1348 /// (TPIDR_EL0 offset now in x0) 1349 const MachineOperand &MO_Sym = MI->getOperand(0); 1350 MachineOperand MO_TLSDESC_LO12(MO_Sym), MO_TLSDESC(MO_Sym); 1351 MCOperand Sym, SymTLSDescLo12, SymTLSDesc; 1352 MO_TLSDESC_LO12.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGEOFF); 1353 MO_TLSDESC.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGE); 1354 MCInstLowering.lowerOperand(MO_Sym, Sym); 1355 MCInstLowering.lowerOperand(MO_TLSDESC_LO12, SymTLSDescLo12); 1356 MCInstLowering.lowerOperand(MO_TLSDESC, SymTLSDesc); 1357 1358 MCInst Adrp; 1359 Adrp.setOpcode(AArch64::ADRP); 1360 Adrp.addOperand(MCOperand::createReg(AArch64::X0)); 1361 Adrp.addOperand(SymTLSDesc); 1362 EmitToStreamer(*OutStreamer, Adrp); 1363 1364 MCInst Ldr; 1365 if (STI->isTargetILP32()) { 1366 Ldr.setOpcode(AArch64::LDRWui); 1367 Ldr.addOperand(MCOperand::createReg(AArch64::W1)); 1368 } else { 1369 Ldr.setOpcode(AArch64::LDRXui); 1370 Ldr.addOperand(MCOperand::createReg(AArch64::X1)); 1371 } 1372 Ldr.addOperand(MCOperand::createReg(AArch64::X0)); 1373 Ldr.addOperand(SymTLSDescLo12); 1374 Ldr.addOperand(MCOperand::createImm(0)); 1375 EmitToStreamer(*OutStreamer, Ldr); 1376 1377 MCInst Add; 1378 if (STI->isTargetILP32()) { 1379 Add.setOpcode(AArch64::ADDWri); 1380 Add.addOperand(MCOperand::createReg(AArch64::W0)); 1381 Add.addOperand(MCOperand::createReg(AArch64::W0)); 1382 } else { 1383 Add.setOpcode(AArch64::ADDXri); 1384 Add.addOperand(MCOperand::createReg(AArch64::X0)); 1385 Add.addOperand(MCOperand::createReg(AArch64::X0)); 1386 } 1387 Add.addOperand(SymTLSDescLo12); 1388 Add.addOperand(MCOperand::createImm(AArch64_AM::getShiftValue(0))); 1389 EmitToStreamer(*OutStreamer, Add); 1390 1391 // Emit a relocation-annotation. This expands to no code, but requests 1392 // the following instruction gets an R_AARCH64_TLSDESC_CALL. 1393 MCInst TLSDescCall; 1394 TLSDescCall.setOpcode(AArch64::TLSDESCCALL); 1395 TLSDescCall.addOperand(Sym); 1396 EmitToStreamer(*OutStreamer, TLSDescCall); 1397 1398 MCInst Blr; 1399 Blr.setOpcode(AArch64::BLR); 1400 Blr.addOperand(MCOperand::createReg(AArch64::X1)); 1401 EmitToStreamer(*OutStreamer, Blr); 1402 1403 return; 1404 } 1405 1406 case AArch64::JumpTableDest32: 1407 case AArch64::JumpTableDest16: 1408 case AArch64::JumpTableDest8: 1409 LowerJumpTableDest(*OutStreamer, *MI); 1410 return; 1411 1412 case AArch64::FMOVH0: 1413 case AArch64::FMOVS0: 1414 case AArch64::FMOVD0: 1415 emitFMov0(*MI); 1416 return; 1417 1418 case AArch64::MOPSMemoryCopyPseudo: 1419 case AArch64::MOPSMemoryMovePseudo: 1420 case AArch64::MOPSMemorySetPseudo: 1421 case AArch64::MOPSMemorySetTaggingPseudo: 1422 LowerMOPS(*OutStreamer, *MI); 1423 return; 1424 1425 case TargetOpcode::STACKMAP: 1426 return LowerSTACKMAP(*OutStreamer, SM, *MI); 1427 1428 case TargetOpcode::PATCHPOINT: 1429 return LowerPATCHPOINT(*OutStreamer, SM, *MI); 1430 1431 case TargetOpcode::STATEPOINT: 1432 return LowerSTATEPOINT(*OutStreamer, SM, *MI); 1433 1434 case TargetOpcode::FAULTING_OP: 1435 return LowerFAULTING_OP(*MI); 1436 1437 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: 1438 LowerPATCHABLE_FUNCTION_ENTER(*MI); 1439 return; 1440 1441 case TargetOpcode::PATCHABLE_FUNCTION_EXIT: 1442 LowerPATCHABLE_FUNCTION_EXIT(*MI); 1443 return; 1444 1445 case TargetOpcode::PATCHABLE_TAIL_CALL: 1446 LowerPATCHABLE_TAIL_CALL(*MI); 1447 return; 1448 1449 case AArch64::HWASAN_CHECK_MEMACCESS: 1450 case AArch64::HWASAN_CHECK_MEMACCESS_SHORTGRANULES: 1451 LowerHWASAN_CHECK_MEMACCESS(*MI); 1452 return; 1453 1454 case AArch64::SEH_StackAlloc: 1455 TS->emitARM64WinCFIAllocStack(MI->getOperand(0).getImm()); 1456 return; 1457 1458 case AArch64::SEH_SaveFPLR: 1459 TS->emitARM64WinCFISaveFPLR(MI->getOperand(0).getImm()); 1460 return; 1461 1462 case AArch64::SEH_SaveFPLR_X: 1463 assert(MI->getOperand(0).getImm() < 0 && 1464 "Pre increment SEH opcode must have a negative offset"); 1465 TS->emitARM64WinCFISaveFPLRX(-MI->getOperand(0).getImm()); 1466 return; 1467 1468 case AArch64::SEH_SaveReg: 1469 TS->emitARM64WinCFISaveReg(MI->getOperand(0).getImm(), 1470 MI->getOperand(1).getImm()); 1471 return; 1472 1473 case AArch64::SEH_SaveReg_X: 1474 assert(MI->getOperand(1).getImm() < 0 && 1475 "Pre increment SEH opcode must have a negative offset"); 1476 TS->emitARM64WinCFISaveRegX(MI->getOperand(0).getImm(), 1477 -MI->getOperand(1).getImm()); 1478 return; 1479 1480 case AArch64::SEH_SaveRegP: 1481 if (MI->getOperand(1).getImm() == 30 && MI->getOperand(0).getImm() >= 19 && 1482 MI->getOperand(0).getImm() <= 28) { 1483 assert((MI->getOperand(0).getImm() - 19) % 2 == 0 && 1484 "Register paired with LR must be odd"); 1485 TS->emitARM64WinCFISaveLRPair(MI->getOperand(0).getImm(), 1486 MI->getOperand(2).getImm()); 1487 return; 1488 } 1489 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) && 1490 "Non-consecutive registers not allowed for save_regp"); 1491 TS->emitARM64WinCFISaveRegP(MI->getOperand(0).getImm(), 1492 MI->getOperand(2).getImm()); 1493 return; 1494 1495 case AArch64::SEH_SaveRegP_X: 1496 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) && 1497 "Non-consecutive registers not allowed for save_regp_x"); 1498 assert(MI->getOperand(2).getImm() < 0 && 1499 "Pre increment SEH opcode must have a negative offset"); 1500 TS->emitARM64WinCFISaveRegPX(MI->getOperand(0).getImm(), 1501 -MI->getOperand(2).getImm()); 1502 return; 1503 1504 case AArch64::SEH_SaveFReg: 1505 TS->emitARM64WinCFISaveFReg(MI->getOperand(0).getImm(), 1506 MI->getOperand(1).getImm()); 1507 return; 1508 1509 case AArch64::SEH_SaveFReg_X: 1510 assert(MI->getOperand(1).getImm() < 0 && 1511 "Pre increment SEH opcode must have a negative offset"); 1512 TS->emitARM64WinCFISaveFRegX(MI->getOperand(0).getImm(), 1513 -MI->getOperand(1).getImm()); 1514 return; 1515 1516 case AArch64::SEH_SaveFRegP: 1517 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) && 1518 "Non-consecutive registers not allowed for save_regp"); 1519 TS->emitARM64WinCFISaveFRegP(MI->getOperand(0).getImm(), 1520 MI->getOperand(2).getImm()); 1521 return; 1522 1523 case AArch64::SEH_SaveFRegP_X: 1524 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) && 1525 "Non-consecutive registers not allowed for save_regp_x"); 1526 assert(MI->getOperand(2).getImm() < 0 && 1527 "Pre increment SEH opcode must have a negative offset"); 1528 TS->emitARM64WinCFISaveFRegPX(MI->getOperand(0).getImm(), 1529 -MI->getOperand(2).getImm()); 1530 return; 1531 1532 case AArch64::SEH_SetFP: 1533 TS->emitARM64WinCFISetFP(); 1534 return; 1535 1536 case AArch64::SEH_AddFP: 1537 TS->emitARM64WinCFIAddFP(MI->getOperand(0).getImm()); 1538 return; 1539 1540 case AArch64::SEH_Nop: 1541 TS->emitARM64WinCFINop(); 1542 return; 1543 1544 case AArch64::SEH_PrologEnd: 1545 TS->emitARM64WinCFIPrologEnd(); 1546 return; 1547 1548 case AArch64::SEH_EpilogStart: 1549 TS->emitARM64WinCFIEpilogStart(); 1550 return; 1551 1552 case AArch64::SEH_EpilogEnd: 1553 TS->emitARM64WinCFIEpilogEnd(); 1554 return; 1555 } 1556 1557 // Finally, do the automated lowerings for everything else. 1558 MCInst TmpInst; 1559 MCInstLowering.Lower(MI, TmpInst); 1560 EmitToStreamer(*OutStreamer, TmpInst); 1561 } 1562 1563 // Force static initialization. 1564 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64AsmPrinter() { 1565 RegisterAsmPrinter<AArch64AsmPrinter> X(getTheAArch64leTarget()); 1566 RegisterAsmPrinter<AArch64AsmPrinter> Y(getTheAArch64beTarget()); 1567 RegisterAsmPrinter<AArch64AsmPrinter> Z(getTheARM64Target()); 1568 RegisterAsmPrinter<AArch64AsmPrinter> W(getTheARM64_32Target()); 1569 RegisterAsmPrinter<AArch64AsmPrinter> V(getTheAArch64_32Target()); 1570 } 1571