xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // When profitable, replace GPR targeting i64 instructions with their
9 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
10 // as minimizing the number of cross-class register copies.
11 //===----------------------------------------------------------------------===//
12 
13 //===----------------------------------------------------------------------===//
14 // TODO: Graph based predicate heuristics.
15 // Walking the instruction list linearly will get many, perhaps most, of
16 // the cases, but to do a truly thorough job of this, we need a more
17 // wholistic approach.
18 //
19 // This optimization is very similar in spirit to the register allocator's
20 // spill placement, only here we're determining where to place cross-class
21 // register copies rather than spills. As such, a similar approach is
22 // called for.
23 //
24 // We want to build up a set of graphs of all instructions which are candidates
25 // for transformation along with instructions which generate their inputs and
26 // consume their outputs. For each edge in the graph, we assign a weight
27 // based on whether there is a copy required there (weight zero if not) and
28 // the block frequency of the block containing the defining or using
29 // instruction, whichever is less. Our optimization is then a graph problem
30 // to minimize the total weight of all the graphs, then transform instructions
31 // and add or remove copy instructions as called for to implement the
32 // solution.
33 //===----------------------------------------------------------------------===//
34 
35 #include "AArch64.h"
36 #include "AArch64InstrInfo.h"
37 #include "AArch64RegisterInfo.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "aarch64-simd-scalar"
50 
51 // Allow forcing all i64 operations with equivalent SIMD instructions to use
52 // them. For stress-testing the transformation function.
53 static cl::opt<bool>
54 TransformAll("aarch64-simd-scalar-force-all",
55              cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
56              cl::init(false), cl::Hidden);
57 
58 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
59 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
60 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
61 
62 #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
63 
64 namespace {
65 class AArch64AdvSIMDScalar : public MachineFunctionPass {
66   MachineRegisterInfo *MRI;
67   const TargetInstrInfo *TII;
68 
69 private:
70   // isProfitableToTransform - Predicate function to determine whether an
71   // instruction should be transformed to its equivalent AdvSIMD scalar
72   // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
73   bool isProfitableToTransform(const MachineInstr &MI) const;
74 
75   // transformInstruction - Perform the transformation of an instruction
76   // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
77   // to be the correct register class, minimizing cross-class copies.
78   void transformInstruction(MachineInstr &MI);
79 
80   // processMachineBasicBlock - Main optimzation loop.
81   bool processMachineBasicBlock(MachineBasicBlock *MBB);
82 
83 public:
84   static char ID; // Pass identification, replacement for typeid.
85   explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {
86     initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry());
87   }
88 
89   bool runOnMachineFunction(MachineFunction &F) override;
90 
91   StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; }
92 
93   void getAnalysisUsage(AnalysisUsage &AU) const override {
94     AU.setPreservesCFG();
95     MachineFunctionPass::getAnalysisUsage(AU);
96   }
97 };
98 char AArch64AdvSIMDScalar::ID = 0;
99 } // end anonymous namespace
100 
101 INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar",
102                 AARCH64_ADVSIMD_NAME, false, false)
103 
104 static bool isGPR64(unsigned Reg, unsigned SubReg,
105                     const MachineRegisterInfo *MRI) {
106   if (SubReg)
107     return false;
108   if (Register::isVirtualRegister(Reg))
109     return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
110   return AArch64::GPR64RegClass.contains(Reg);
111 }
112 
113 static bool isFPR64(unsigned Reg, unsigned SubReg,
114                     const MachineRegisterInfo *MRI) {
115   if (Register::isVirtualRegister(Reg))
116     return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
117             SubReg == 0) ||
118            (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
119             SubReg == AArch64::dsub);
120   // Physical register references just check the register class directly.
121   return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
122          (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
123 }
124 
125 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
126 // copy instruction. Return nullptr if the instruction is not a copy.
127 static MachineOperand *getSrcFromCopy(MachineInstr *MI,
128                                       const MachineRegisterInfo *MRI,
129                                       unsigned &SubReg) {
130   SubReg = 0;
131   // The "FMOV Xd, Dn" instruction is the typical form.
132   if (MI->getOpcode() == AArch64::FMOVDXr ||
133       MI->getOpcode() == AArch64::FMOVXDr)
134     return &MI->getOperand(1);
135   // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
136   // these at this stage, but it's easy to check for.
137   if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
138     SubReg = AArch64::dsub;
139     return &MI->getOperand(1);
140   }
141   // Or just a plain COPY instruction. This can be directly to/from FPR64,
142   // or it can be a dsub subreg reference to an FPR128.
143   if (MI->getOpcode() == AArch64::COPY) {
144     if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
145                 MRI) &&
146         isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
147       return &MI->getOperand(1);
148     if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
149                 MRI) &&
150         isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
151                 MRI)) {
152       SubReg = MI->getOperand(1).getSubReg();
153       return &MI->getOperand(1);
154     }
155   }
156 
157   // Otherwise, this is some other kind of instruction.
158   return nullptr;
159 }
160 
161 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
162 // that we're considering transforming to, return that AdvSIMD opcode. For all
163 // others, return the original opcode.
164 static unsigned getTransformOpcode(unsigned Opc) {
165   switch (Opc) {
166   default:
167     break;
168   // FIXME: Lots more possibilities.
169   case AArch64::ADDXrr:
170     return AArch64::ADDv1i64;
171   case AArch64::SUBXrr:
172     return AArch64::SUBv1i64;
173   case AArch64::ANDXrr:
174     return AArch64::ANDv8i8;
175   case AArch64::EORXrr:
176     return AArch64::EORv8i8;
177   case AArch64::ORRXrr:
178     return AArch64::ORRv8i8;
179   }
180   // No AdvSIMD equivalent, so just return the original opcode.
181   return Opc;
182 }
183 
184 static bool isTransformable(const MachineInstr &MI) {
185   unsigned Opc = MI.getOpcode();
186   return Opc != getTransformOpcode(Opc);
187 }
188 
189 // isProfitableToTransform - Predicate function to determine whether an
190 // instruction should be transformed to its equivalent AdvSIMD scalar
191 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
192 bool AArch64AdvSIMDScalar::isProfitableToTransform(
193     const MachineInstr &MI) const {
194   // If this instruction isn't eligible to be transformed (no SIMD equivalent),
195   // early exit since that's the common case.
196   if (!isTransformable(MI))
197     return false;
198 
199   // Count the number of copies we'll need to add and approximate the number
200   // of copies that a transform will enable us to remove.
201   unsigned NumNewCopies = 3;
202   unsigned NumRemovableCopies = 0;
203 
204   Register OrigSrc0 = MI.getOperand(1).getReg();
205   Register OrigSrc1 = MI.getOperand(2).getReg();
206   unsigned SubReg0;
207   unsigned SubReg1;
208   if (!MRI->def_empty(OrigSrc0)) {
209     MachineRegisterInfo::def_instr_iterator Def =
210         MRI->def_instr_begin(OrigSrc0);
211     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
212     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
213     // If the source was from a copy, we don't need to insert a new copy.
214     if (MOSrc0)
215       --NumNewCopies;
216     // If there are no other users of the original source, we can delete
217     // that instruction.
218     if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0))
219       ++NumRemovableCopies;
220   }
221   if (!MRI->def_empty(OrigSrc1)) {
222     MachineRegisterInfo::def_instr_iterator Def =
223         MRI->def_instr_begin(OrigSrc1);
224     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
225     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
226     if (MOSrc1)
227       --NumNewCopies;
228     // If there are no other users of the original source, we can delete
229     // that instruction.
230     if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1))
231       ++NumRemovableCopies;
232   }
233 
234   // If any of the uses of the original instructions is a cross class copy,
235   // that's a copy that will be removable if we transform. Likewise, if
236   // any of the uses is a transformable instruction, it's likely the tranforms
237   // will chain, enabling us to save a copy there, too. This is an aggressive
238   // heuristic that approximates the graph based cost analysis described above.
239   Register Dst = MI.getOperand(0).getReg();
240   bool AllUsesAreCopies = true;
241   for (MachineRegisterInfo::use_instr_nodbg_iterator
242            Use = MRI->use_instr_nodbg_begin(Dst),
243            E = MRI->use_instr_nodbg_end();
244        Use != E; ++Use) {
245     unsigned SubReg;
246     if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use))
247       ++NumRemovableCopies;
248     // If the use is an INSERT_SUBREG, that's still something that can
249     // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
250     // preferable to have it use the FPR64 in most cases, as if the source
251     // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
252     // Ditto for a lane insert.
253     else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
254              Use->getOpcode() == AArch64::INSvi64gpr)
255       ;
256     else
257       AllUsesAreCopies = false;
258   }
259   // If all of the uses of the original destination register are copies to
260   // FPR64, then we won't end up having a new copy back to GPR64 either.
261   if (AllUsesAreCopies)
262     --NumNewCopies;
263 
264   // If a transform will not increase the number of cross-class copies required,
265   // return true.
266   if (NumNewCopies <= NumRemovableCopies)
267     return true;
268 
269   // Finally, even if we otherwise wouldn't transform, check if we're forcing
270   // transformation of everything.
271   return TransformAll;
272 }
273 
274 static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI,
275                                 unsigned Dst, unsigned Src, bool IsKill) {
276   MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
277                                     TII->get(AArch64::COPY), Dst)
278                                 .addReg(Src, getKillRegState(IsKill));
279   LLVM_DEBUG(dbgs() << "    adding copy: " << *MIB);
280   ++NumCopiesInserted;
281   return MIB;
282 }
283 
284 // transformInstruction - Perform the transformation of an instruction
285 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
286 // to be the correct register class, minimizing cross-class copies.
287 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) {
288   LLVM_DEBUG(dbgs() << "Scalar transform: " << MI);
289 
290   MachineBasicBlock *MBB = MI.getParent();
291   unsigned OldOpc = MI.getOpcode();
292   unsigned NewOpc = getTransformOpcode(OldOpc);
293   assert(OldOpc != NewOpc && "transform an instruction to itself?!");
294 
295   // Check if we need a copy for the source registers.
296   Register OrigSrc0 = MI.getOperand(1).getReg();
297   Register OrigSrc1 = MI.getOperand(2).getReg();
298   unsigned Src0 = 0, SubReg0;
299   unsigned Src1 = 0, SubReg1;
300   bool KillSrc0 = false, KillSrc1 = false;
301   if (!MRI->def_empty(OrigSrc0)) {
302     MachineRegisterInfo::def_instr_iterator Def =
303         MRI->def_instr_begin(OrigSrc0);
304     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
305     MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
306     // If there are no other users of the original source, we can delete
307     // that instruction.
308     if (MOSrc0) {
309       Src0 = MOSrc0->getReg();
310       KillSrc0 = MOSrc0->isKill();
311       // Src0 is going to be reused, thus, it cannot be killed anymore.
312       MOSrc0->setIsKill(false);
313       if (MRI->hasOneNonDBGUse(OrigSrc0)) {
314         assert(MOSrc0 && "Can't delete copy w/o a valid original source!");
315         Def->eraseFromParent();
316         ++NumCopiesDeleted;
317       }
318     }
319   }
320   if (!MRI->def_empty(OrigSrc1)) {
321     MachineRegisterInfo::def_instr_iterator Def =
322         MRI->def_instr_begin(OrigSrc1);
323     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
324     MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
325     // If there are no other users of the original source, we can delete
326     // that instruction.
327     if (MOSrc1) {
328       Src1 = MOSrc1->getReg();
329       KillSrc1 = MOSrc1->isKill();
330       // Src0 is going to be reused, thus, it cannot be killed anymore.
331       MOSrc1->setIsKill(false);
332       if (MRI->hasOneNonDBGUse(OrigSrc1)) {
333         assert(MOSrc1 && "Can't delete copy w/o a valid original source!");
334         Def->eraseFromParent();
335         ++NumCopiesDeleted;
336       }
337     }
338   }
339   // If we weren't able to reference the original source directly, create a
340   // copy.
341   if (!Src0) {
342     SubReg0 = 0;
343     Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
344     insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0);
345     KillSrc0 = true;
346   }
347   if (!Src1) {
348     SubReg1 = 0;
349     Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
350     insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1);
351     KillSrc1 = true;
352   }
353 
354   // Create a vreg for the destination.
355   // FIXME: No need to do this if the ultimate user expects an FPR64.
356   // Check for that and avoid the copy if possible.
357   Register Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
358 
359   // For now, all of the new instructions have the same simple three-register
360   // form, so no need to special case based on what instruction we're
361   // building.
362   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst)
363       .addReg(Src0, getKillRegState(KillSrc0), SubReg0)
364       .addReg(Src1, getKillRegState(KillSrc1), SubReg1);
365 
366   // Now copy the result back out to a GPR.
367   // FIXME: Try to avoid this if all uses could actually just use the FPR64
368   // directly.
369   insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true);
370 
371   // Erase the old instruction.
372   MI.eraseFromParent();
373 
374   ++NumScalarInsnsUsed;
375 }
376 
377 // processMachineBasicBlock - Main optimzation loop.
378 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
379   bool Changed = false;
380   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
381     if (isProfitableToTransform(MI)) {
382       transformInstruction(MI);
383       Changed = true;
384     }
385   }
386   return Changed;
387 }
388 
389 // runOnMachineFunction - Pass entry point from PassManager.
390 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
391   bool Changed = false;
392   LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
393 
394   if (skipFunction(mf.getFunction()))
395     return false;
396 
397   MRI = &mf.getRegInfo();
398   TII = mf.getSubtarget().getInstrInfo();
399 
400   // Just check things on a one-block-at-a-time basis.
401   for (MachineBasicBlock &MBB : mf)
402     if (processMachineBasicBlock(&MBB))
403       Changed = true;
404   return Changed;
405 }
406 
407 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
408 // to add the pass to the PassManager.
409 FunctionPass *llvm::createAArch64AdvSIMDScalar() {
410   return new AArch64AdvSIMDScalar();
411 }
412