1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // For best-case performance on Cortex-A57, we should try to use a balanced 9 // mix of odd and even D-registers when performing a critical sequence of 10 // independent, non-quadword FP/ASIMD floating-point multiply or 11 // multiply-accumulate operations. 12 // 13 // This pass attempts to detect situations where the register allocation may 14 // adversely affect this load balancing and to change the registers used so as 15 // to better utilize the CPU. 16 // 17 // Ideally we'd just take each multiply or multiply-accumulate in turn and 18 // allocate it alternating even or odd registers. However, multiply-accumulates 19 // are most efficiently performed in the same functional unit as their 20 // accumulation operand. Therefore this pass tries to find maximal sequences 21 // ("Chains") of multiply-accumulates linked via their accumulation operand, 22 // and assign them all the same "color" (oddness/evenness). 23 // 24 // This optimization affects S-register and D-register floating point 25 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and 26 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are 27 // not affected. 28 //===----------------------------------------------------------------------===// 29 30 #include "AArch64.h" 31 #include "AArch64InstrInfo.h" 32 #include "AArch64Subtarget.h" 33 #include "llvm/ADT/BitVector.h" 34 #include "llvm/ADT/EquivalenceClasses.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/RegisterClassInfo.h" 41 #include "llvm/CodeGen/RegisterScavenging.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 using namespace llvm; 46 47 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing" 48 49 // Enforce the algorithm to use the scavenged register even when the original 50 // destination register is the correct color. Used for testing. 51 static cl::opt<bool> 52 TransformAll("aarch64-a57-fp-load-balancing-force-all", 53 cl::desc("Always modify dest registers regardless of color"), 54 cl::init(false), cl::Hidden); 55 56 // Never use the balance information obtained from chains - return a specific 57 // color always. Used for testing. 58 static cl::opt<unsigned> 59 OverrideBalance("aarch64-a57-fp-load-balancing-override", 60 cl::desc("Ignore balance information, always return " 61 "(1: Even, 2: Odd)."), 62 cl::init(0), cl::Hidden); 63 64 //===----------------------------------------------------------------------===// 65 // Helper functions 66 67 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs? 68 static bool isMul(MachineInstr *MI) { 69 switch (MI->getOpcode()) { 70 case AArch64::FMULSrr: 71 case AArch64::FNMULSrr: 72 case AArch64::FMULDrr: 73 case AArch64::FNMULDrr: 74 return true; 75 default: 76 return false; 77 } 78 } 79 80 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs? 81 static bool isMla(MachineInstr *MI) { 82 switch (MI->getOpcode()) { 83 case AArch64::FMSUBSrrr: 84 case AArch64::FMADDSrrr: 85 case AArch64::FNMSUBSrrr: 86 case AArch64::FNMADDSrrr: 87 case AArch64::FMSUBDrrr: 88 case AArch64::FMADDDrrr: 89 case AArch64::FNMSUBDrrr: 90 case AArch64::FNMADDDrrr: 91 return true; 92 default: 93 return false; 94 } 95 } 96 97 //===----------------------------------------------------------------------===// 98 99 namespace { 100 /// A "color", which is either even or odd. Yes, these aren't really colors 101 /// but the algorithm is conceptually doing two-color graph coloring. 102 enum class Color { Even, Odd }; 103 #ifndef NDEBUG 104 static const char *ColorNames[2] = { "Even", "Odd" }; 105 #endif 106 107 class Chain; 108 109 class AArch64A57FPLoadBalancing : public MachineFunctionPass { 110 MachineRegisterInfo *MRI; 111 const TargetRegisterInfo *TRI; 112 RegisterClassInfo RCI; 113 114 public: 115 static char ID; 116 explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) { 117 initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry()); 118 } 119 120 bool runOnMachineFunction(MachineFunction &F) override; 121 122 MachineFunctionProperties getRequiredProperties() const override { 123 return MachineFunctionProperties().set( 124 MachineFunctionProperties::Property::NoVRegs); 125 } 126 127 StringRef getPassName() const override { 128 return "A57 FP Anti-dependency breaker"; 129 } 130 131 void getAnalysisUsage(AnalysisUsage &AU) const override { 132 AU.setPreservesCFG(); 133 MachineFunctionPass::getAnalysisUsage(AU); 134 } 135 136 private: 137 bool runOnBasicBlock(MachineBasicBlock &MBB); 138 bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB, 139 int &Balance); 140 bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB); 141 int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB); 142 void scanInstruction(MachineInstr *MI, unsigned Idx, 143 std::map<unsigned, Chain*> &Active, 144 std::vector<std::unique_ptr<Chain>> &AllChains); 145 void maybeKillChain(MachineOperand &MO, unsigned Idx, 146 std::map<unsigned, Chain*> &RegChains); 147 Color getColor(unsigned Register); 148 Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L); 149 }; 150 } 151 152 char AArch64A57FPLoadBalancing::ID = 0; 153 154 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE, 155 "AArch64 A57 FP Load-Balancing", false, false) 156 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE, 157 "AArch64 A57 FP Load-Balancing", false, false) 158 159 namespace { 160 /// A Chain is a sequence of instructions that are linked together by 161 /// an accumulation operand. For example: 162 /// 163 /// fmul def d0, ? 164 /// fmla def d1, ?, ?, killed d0 165 /// fmla def d2, ?, ?, killed d1 166 /// 167 /// There may be other instructions interleaved in the sequence that 168 /// do not belong to the chain. These other instructions must not use 169 /// the "chain" register at any point. 170 /// 171 /// We currently only support chains where the "chain" operand is killed 172 /// at each link in the chain for simplicity. 173 /// A chain has three important instructions - Start, Last and Kill. 174 /// * The start instruction is the first instruction in the chain. 175 /// * Last is the final instruction in the chain. 176 /// * Kill may or may not be defined. If defined, Kill is the instruction 177 /// where the outgoing value of the Last instruction is killed. 178 /// This information is important as if we know the outgoing value is 179 /// killed with no intervening uses, we can safely change its register. 180 /// 181 /// Without a kill instruction, we must assume the outgoing value escapes 182 /// beyond our model and either must not change its register or must 183 /// create a fixup FMOV to keep the old register value consistent. 184 /// 185 class Chain { 186 public: 187 /// The important (marker) instructions. 188 MachineInstr *StartInst, *LastInst, *KillInst; 189 /// The index, from the start of the basic block, that each marker 190 /// appears. These are stored so we can do quick interval tests. 191 unsigned StartInstIdx, LastInstIdx, KillInstIdx; 192 /// All instructions in the chain. 193 std::set<MachineInstr*> Insts; 194 /// True if KillInst cannot be modified. If this is true, 195 /// we cannot change LastInst's outgoing register. 196 /// This will be true for tied values and regmasks. 197 bool KillIsImmutable; 198 /// The "color" of LastInst. This will be the preferred chain color, 199 /// as changing intermediate nodes is easy but changing the last 200 /// instruction can be more tricky. 201 Color LastColor; 202 203 Chain(MachineInstr *MI, unsigned Idx, Color C) 204 : StartInst(MI), LastInst(MI), KillInst(nullptr), 205 StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0), 206 LastColor(C) { 207 Insts.insert(MI); 208 } 209 210 /// Add a new instruction into the chain. The instruction's dest operand 211 /// has the given color. 212 void add(MachineInstr *MI, unsigned Idx, Color C) { 213 LastInst = MI; 214 LastInstIdx = Idx; 215 LastColor = C; 216 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && 217 "Chain: broken invariant. A Chain can only be killed after its last " 218 "def"); 219 220 Insts.insert(MI); 221 } 222 223 /// Return true if MI is a member of the chain. 224 bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; } 225 226 /// Return the number of instructions in the chain. 227 unsigned size() const { 228 return Insts.size(); 229 } 230 231 /// Inform the chain that its last active register (the dest register of 232 /// LastInst) is killed by MI with no intervening uses or defs. 233 void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) { 234 KillInst = MI; 235 KillInstIdx = Idx; 236 KillIsImmutable = Immutable; 237 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) && 238 "Chain: broken invariant. A Chain can only be killed after its last " 239 "def"); 240 } 241 242 /// Return the first instruction in the chain. 243 MachineInstr *getStart() const { return StartInst; } 244 /// Return the last instruction in the chain. 245 MachineInstr *getLast() const { return LastInst; } 246 /// Return the "kill" instruction (as set with setKill()) or NULL. 247 MachineInstr *getKill() const { return KillInst; } 248 /// Return an instruction that can be used as an iterator for the end 249 /// of the chain. This is the maximum of KillInst (if set) and LastInst. 250 MachineBasicBlock::iterator end() const { 251 return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst); 252 } 253 MachineBasicBlock::iterator begin() const { return getStart(); } 254 255 /// Can the Kill instruction (assuming one exists) be modified? 256 bool isKillImmutable() const { return KillIsImmutable; } 257 258 /// Return the preferred color of this chain. 259 Color getPreferredColor() { 260 if (OverrideBalance != 0) 261 return OverrideBalance == 1 ? Color::Even : Color::Odd; 262 return LastColor; 263 } 264 265 /// Return true if this chain (StartInst..KillInst) overlaps with Other. 266 bool rangeOverlapsWith(const Chain &Other) const { 267 unsigned End = KillInst ? KillInstIdx : LastInstIdx; 268 unsigned OtherEnd = Other.KillInst ? 269 Other.KillInstIdx : Other.LastInstIdx; 270 271 return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End; 272 } 273 274 /// Return true if this chain starts before Other. 275 bool startsBefore(const Chain *Other) const { 276 return StartInstIdx < Other->StartInstIdx; 277 } 278 279 /// Return true if the group will require a fixup MOV at the end. 280 bool requiresFixup() const { 281 return (getKill() && isKillImmutable()) || !getKill(); 282 } 283 284 /// Return a simple string representation of the chain. 285 std::string str() const { 286 std::string S; 287 raw_string_ostream OS(S); 288 289 OS << "{"; 290 StartInst->print(OS, /* SkipOpers= */true); 291 OS << " -> "; 292 LastInst->print(OS, /* SkipOpers= */true); 293 if (KillInst) { 294 OS << " (kill @ "; 295 KillInst->print(OS, /* SkipOpers= */true); 296 OS << ")"; 297 } 298 OS << "}"; 299 300 return OS.str(); 301 } 302 303 }; 304 305 } // end anonymous namespace 306 307 //===----------------------------------------------------------------------===// 308 309 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) { 310 if (skipFunction(F.getFunction())) 311 return false; 312 313 if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps()) 314 return false; 315 316 bool Changed = false; 317 LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n"); 318 319 MRI = &F.getRegInfo(); 320 TRI = F.getRegInfo().getTargetRegisterInfo(); 321 RCI.runOnMachineFunction(F); 322 323 for (auto &MBB : F) { 324 Changed |= runOnBasicBlock(MBB); 325 } 326 327 return Changed; 328 } 329 330 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) { 331 bool Changed = false; 332 LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB 333 << " - scanning instructions...\n"); 334 335 // First, scan the basic block producing a set of chains. 336 337 // The currently "active" chains - chains that can be added to and haven't 338 // been killed yet. This is keyed by register - all chains can only have one 339 // "link" register between each inst in the chain. 340 std::map<unsigned, Chain*> ActiveChains; 341 std::vector<std::unique_ptr<Chain>> AllChains; 342 unsigned Idx = 0; 343 for (auto &MI : MBB) 344 scanInstruction(&MI, Idx++, ActiveChains, AllChains); 345 346 LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size() 347 << " chains created.\n"); 348 349 // Group the chains into disjoint sets based on their liveness range. This is 350 // a poor-man's version of graph coloring. Ideally we'd create an interference 351 // graph and perform full-on graph coloring on that, but; 352 // (a) That's rather heavyweight for only two colors. 353 // (b) We expect multiple disjoint interference regions - in practice the live 354 // range of chains is quite small and they are clustered between loads 355 // and stores. 356 EquivalenceClasses<Chain*> EC; 357 for (auto &I : AllChains) 358 EC.insert(I.get()); 359 360 for (auto &I : AllChains) 361 for (auto &J : AllChains) 362 if (I != J && I->rangeOverlapsWith(*J)) 363 EC.unionSets(I.get(), J.get()); 364 LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n"); 365 366 // Now we assume that every member of an equivalence class interferes 367 // with every other member of that class, and with no members of other classes. 368 369 // Convert the EquivalenceClasses to a simpler set of sets. 370 std::vector<std::vector<Chain*> > V; 371 for (auto I = EC.begin(), E = EC.end(); I != E; ++I) { 372 std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end()); 373 if (Cs.empty()) continue; 374 V.push_back(std::move(Cs)); 375 } 376 377 // Now we have a set of sets, order them by start address so 378 // we can iterate over them sequentially. 379 llvm::sort(V, 380 [](const std::vector<Chain *> &A, const std::vector<Chain *> &B) { 381 return A.front()->startsBefore(B.front()); 382 }); 383 384 // As we only have two colors, we can track the global (BB-level) balance of 385 // odds versus evens. We aim to keep this near zero to keep both execution 386 // units fed. 387 // Positive means we're even-heavy, negative we're odd-heavy. 388 // 389 // FIXME: If chains have interdependencies, for example: 390 // mul r0, r1, r2 391 // mul r3, r0, r1 392 // We do not model this and may color each one differently, assuming we'll 393 // get ILP when we obviously can't. This hasn't been seen to be a problem 394 // in practice so far, so we simplify the algorithm by ignoring it. 395 int Parity = 0; 396 397 for (auto &I : V) 398 Changed |= colorChainSet(std::move(I), MBB, Parity); 399 400 return Changed; 401 } 402 403 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor, 404 std::vector<Chain*> &L) { 405 if (L.empty()) 406 return nullptr; 407 408 // We try and get the best candidate from L to color next, given that our 409 // preferred color is "PreferredColor". L is ordered from larger to smaller 410 // chains. It is beneficial to color the large chains before the small chains, 411 // but if we can't find a chain of the maximum length with the preferred color, 412 // we fuzz the size and look for slightly smaller chains before giving up and 413 // returning a chain that must be recolored. 414 415 // FIXME: Does this need to be configurable? 416 const unsigned SizeFuzz = 1; 417 unsigned MinSize = L.front()->size() - SizeFuzz; 418 for (auto I = L.begin(), E = L.end(); I != E; ++I) { 419 if ((*I)->size() <= MinSize) { 420 // We've gone past the size limit. Return the previous item. 421 Chain *Ch = *--I; 422 L.erase(I); 423 return Ch; 424 } 425 426 if ((*I)->getPreferredColor() == PreferredColor) { 427 Chain *Ch = *I; 428 L.erase(I); 429 return Ch; 430 } 431 } 432 433 // Bailout case - just return the first item. 434 Chain *Ch = L.front(); 435 L.erase(L.begin()); 436 return Ch; 437 } 438 439 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV, 440 MachineBasicBlock &MBB, 441 int &Parity) { 442 bool Changed = false; 443 LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n"); 444 445 // Sort by descending size order so that we allocate the most important 446 // sets first. 447 // Tie-break equivalent sizes by sorting chains requiring fixups before 448 // those without fixups. The logic here is that we should look at the 449 // chains that we cannot change before we look at those we can, 450 // so the parity counter is updated and we know what color we should 451 // change them to! 452 // Final tie-break with instruction order so pass output is stable (i.e. not 453 // dependent on malloc'd pointer values). 454 llvm::sort(GV, [](const Chain *G1, const Chain *G2) { 455 if (G1->size() != G2->size()) 456 return G1->size() > G2->size(); 457 if (G1->requiresFixup() != G2->requiresFixup()) 458 return G1->requiresFixup() > G2->requiresFixup(); 459 // Make sure startsBefore() produces a stable final order. 460 assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) && 461 "Starts before not total order!"); 462 return G1->startsBefore(G2); 463 }); 464 465 Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd; 466 while (Chain *G = getAndEraseNext(PreferredColor, GV)) { 467 // Start off by assuming we'll color to our own preferred color. 468 Color C = PreferredColor; 469 if (Parity == 0) 470 // But if we really don't care, use the chain's preferred color. 471 C = G->getPreferredColor(); 472 473 LLVM_DEBUG(dbgs() << " - Parity=" << Parity 474 << ", Color=" << ColorNames[(int)C] << "\n"); 475 476 // If we'll need a fixup FMOV, don't bother. Testing has shown that this 477 // happens infrequently and when it does it has at least a 50% chance of 478 // slowing code down instead of speeding it up. 479 if (G->requiresFixup() && C != G->getPreferredColor()) { 480 C = G->getPreferredColor(); 481 LLVM_DEBUG(dbgs() << " - " << G->str() 482 << " - not worthwhile changing; " 483 "color remains " 484 << ColorNames[(int)C] << "\n"); 485 } 486 487 Changed |= colorChain(G, C, MBB); 488 489 Parity += (C == Color::Even) ? G->size() : -G->size(); 490 PreferredColor = Parity < 0 ? Color::Even : Color::Odd; 491 } 492 493 return Changed; 494 } 495 496 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C, 497 MachineBasicBlock &MBB) { 498 // Can we find an appropriate register that is available throughout the life 499 // of the chain? Simulate liveness backwards until the end of the chain. 500 LiveRegUnits Units(*TRI); 501 Units.addLiveOuts(MBB); 502 MachineBasicBlock::iterator I = MBB.end(); 503 MachineBasicBlock::iterator ChainEnd = G->end(); 504 while (I != ChainEnd) { 505 --I; 506 Units.stepBackward(*I); 507 } 508 509 // Check which register units are alive throughout the chain. 510 MachineBasicBlock::iterator ChainBegin = G->begin(); 511 assert(ChainBegin != ChainEnd && "Chain should contain instructions"); 512 do { 513 --I; 514 Units.accumulate(*I); 515 } while (I != ChainBegin); 516 517 // Make sure we allocate in-order, to get the cheapest registers first. 518 unsigned RegClassID = ChainBegin->getDesc().operands()[0].RegClass; 519 auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID)); 520 for (auto Reg : Ord) { 521 if (!Units.available(Reg)) 522 continue; 523 if (C == getColor(Reg)) 524 return Reg; 525 } 526 527 return -1; 528 } 529 530 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C, 531 MachineBasicBlock &MBB) { 532 bool Changed = false; 533 LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", " 534 << ColorNames[(int)C] << ")\n"); 535 536 // Try and obtain a free register of the right class. Without a register 537 // to play with we cannot continue. 538 int Reg = scavengeRegister(G, C, MBB); 539 if (Reg == -1) { 540 LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n"); 541 return false; 542 } 543 LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n"); 544 545 std::map<unsigned, unsigned> Substs; 546 for (MachineInstr &I : *G) { 547 if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable())) 548 continue; 549 550 // I is a member of G, or I is a mutable instruction that kills G. 551 552 std::vector<unsigned> ToErase; 553 for (auto &U : I.operands()) { 554 if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) { 555 Register OrigReg = U.getReg(); 556 U.setReg(Substs[OrigReg]); 557 if (U.isKill()) 558 // Don't erase straight away, because there may be other operands 559 // that also reference this substitution! 560 ToErase.push_back(OrigReg); 561 } else if (U.isRegMask()) { 562 for (auto J : Substs) { 563 if (U.clobbersPhysReg(J.first)) 564 ToErase.push_back(J.first); 565 } 566 } 567 } 568 // Now it's safe to remove the substs identified earlier. 569 for (auto J : ToErase) 570 Substs.erase(J); 571 572 // Only change the def if this isn't the last instruction. 573 if (&I != G->getKill()) { 574 MachineOperand &MO = I.getOperand(0); 575 576 bool Change = TransformAll || getColor(MO.getReg()) != C; 577 if (G->requiresFixup() && &I == G->getLast()) 578 Change = false; 579 580 if (Change) { 581 Substs[MO.getReg()] = Reg; 582 MO.setReg(Reg); 583 584 Changed = true; 585 } 586 } 587 } 588 assert(Substs.size() == 0 && "No substitutions should be left active!"); 589 590 if (G->getKill()) { 591 LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n"); 592 } else { 593 // We didn't have a kill instruction, but we didn't seem to need to change 594 // the destination register anyway. 595 LLVM_DEBUG(dbgs() << " - Destination register not changed.\n"); 596 } 597 return Changed; 598 } 599 600 void AArch64A57FPLoadBalancing::scanInstruction( 601 MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains, 602 std::vector<std::unique_ptr<Chain>> &AllChains) { 603 // Inspect "MI", updating ActiveChains and AllChains. 604 605 if (isMul(MI)) { 606 607 for (auto &I : MI->uses()) 608 maybeKillChain(I, Idx, ActiveChains); 609 for (auto &I : MI->defs()) 610 maybeKillChain(I, Idx, ActiveChains); 611 612 // Create a new chain. Multiplies don't require forwarding so can go on any 613 // unit. 614 Register DestReg = MI->getOperand(0).getReg(); 615 616 LLVM_DEBUG(dbgs() << "New chain started for register " 617 << printReg(DestReg, TRI) << " at " << *MI); 618 619 auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg)); 620 ActiveChains[DestReg] = G.get(); 621 AllChains.push_back(std::move(G)); 622 623 } else if (isMla(MI)) { 624 625 // It is beneficial to keep MLAs on the same functional unit as their 626 // accumulator operand. 627 Register DestReg = MI->getOperand(0).getReg(); 628 Register AccumReg = MI->getOperand(3).getReg(); 629 630 maybeKillChain(MI->getOperand(1), Idx, ActiveChains); 631 maybeKillChain(MI->getOperand(2), Idx, ActiveChains); 632 if (DestReg != AccumReg) 633 maybeKillChain(MI->getOperand(0), Idx, ActiveChains); 634 635 if (ActiveChains.find(AccumReg) != ActiveChains.end()) { 636 LLVM_DEBUG(dbgs() << "Chain found for accumulator register " 637 << printReg(AccumReg, TRI) << " in MI " << *MI); 638 639 // For simplicity we only chain together sequences of MULs/MLAs where the 640 // accumulator register is killed on each instruction. This means we don't 641 // need to track other uses of the registers we want to rewrite. 642 // 643 // FIXME: We could extend to handle the non-kill cases for more coverage. 644 if (MI->getOperand(3).isKill()) { 645 // Add to chain. 646 LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n"); 647 ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg)); 648 // Handle cases where the destination is not the same as the accumulator. 649 if (DestReg != AccumReg) { 650 ActiveChains[DestReg] = ActiveChains[AccumReg]; 651 ActiveChains.erase(AccumReg); 652 } 653 return; 654 } 655 656 LLVM_DEBUG( 657 dbgs() << "Cannot add to chain because accumulator operand wasn't " 658 << "marked <kill>!\n"); 659 maybeKillChain(MI->getOperand(3), Idx, ActiveChains); 660 } 661 662 LLVM_DEBUG(dbgs() << "Creating new chain for dest register " 663 << printReg(DestReg, TRI) << "\n"); 664 auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg)); 665 ActiveChains[DestReg] = G.get(); 666 AllChains.push_back(std::move(G)); 667 668 } else { 669 670 // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs 671 // lists. 672 for (auto &I : MI->uses()) 673 maybeKillChain(I, Idx, ActiveChains); 674 for (auto &I : MI->defs()) 675 maybeKillChain(I, Idx, ActiveChains); 676 677 } 678 } 679 680 void AArch64A57FPLoadBalancing:: 681 maybeKillChain(MachineOperand &MO, unsigned Idx, 682 std::map<unsigned, Chain*> &ActiveChains) { 683 // Given an operand and the set of active chains (keyed by register), 684 // determine if a chain should be ended and remove from ActiveChains. 685 MachineInstr *MI = MO.getParent(); 686 687 if (MO.isReg()) { 688 689 // If this is a KILL of a current chain, record it. 690 if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) { 691 LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI) 692 << "\n"); 693 ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied()); 694 } 695 ActiveChains.erase(MO.getReg()); 696 697 } else if (MO.isRegMask()) { 698 699 for (auto I = ActiveChains.begin(), E = ActiveChains.end(); 700 I != E;) { 701 if (MO.clobbersPhysReg(I->first)) { 702 LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain " 703 << printReg(I->first, TRI) << "\n"); 704 I->second->setKill(MI, Idx, /*Immutable=*/true); 705 ActiveChains.erase(I++); 706 } else 707 ++I; 708 } 709 710 } 711 } 712 713 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) { 714 if ((TRI->getEncodingValue(Reg) % 2) == 0) 715 return Color::Even; 716 else 717 return Color::Odd; 718 } 719 720 // Factory function used by AArch64TargetMachine to add the pass to the passmanager. 721 FunctionPass *llvm::createAArch64A57FPLoadBalancing() { 722 return new AArch64A57FPLoadBalancing(); 723 } 724