xref: /freebsd/contrib/llvm-project/llvm/lib/Support/YAMLTraits.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Support/YAMLTraits.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/Support/Casting.h"
16 #include "llvm/Support/Errc.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/Format.h"
19 #include "llvm/Support/LineIterator.h"
20 #include "llvm/Support/MemoryBuffer.h"
21 #include "llvm/Support/Unicode.h"
22 #include "llvm/Support/YAMLParser.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cassert>
26 #include <cstdint>
27 #include <cstdlib>
28 #include <cstring>
29 #include <string>
30 #include <vector>
31 
32 using namespace llvm;
33 using namespace yaml;
34 
35 //===----------------------------------------------------------------------===//
36 //  IO
37 //===----------------------------------------------------------------------===//
38 
39 IO::IO(void *Context) : Ctxt(Context) {}
40 
41 IO::~IO() = default;
42 
43 void *IO::getContext() const {
44   return Ctxt;
45 }
46 
47 void IO::setContext(void *Context) {
48   Ctxt = Context;
49 }
50 
51 //===----------------------------------------------------------------------===//
52 //  Input
53 //===----------------------------------------------------------------------===//
54 
55 Input::Input(StringRef InputContent, void *Ctxt,
56              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
57     : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
58   if (DiagHandler)
59     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
60   DocIterator = Strm->begin();
61 }
62 
63 Input::Input(MemoryBufferRef Input, void *Ctxt,
64              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
65     : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
66   if (DiagHandler)
67     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
68   DocIterator = Strm->begin();
69 }
70 
71 Input::~Input() = default;
72 
73 std::error_code Input::error() { return EC; }
74 
75 // Pin the vtables to this file.
76 void Input::HNode::anchor() {}
77 void Input::EmptyHNode::anchor() {}
78 void Input::ScalarHNode::anchor() {}
79 void Input::MapHNode::anchor() {}
80 void Input::SequenceHNode::anchor() {}
81 
82 bool Input::outputting() const {
83   return false;
84 }
85 
86 bool Input::setCurrentDocument() {
87   if (DocIterator != Strm->end()) {
88     Node *N = DocIterator->getRoot();
89     if (!N) {
90       EC = make_error_code(errc::invalid_argument);
91       return false;
92     }
93 
94     if (isa<NullNode>(N)) {
95       // Empty files are allowed and ignored
96       ++DocIterator;
97       return setCurrentDocument();
98     }
99     TopNode = createHNodes(N);
100     CurrentNode = TopNode.get();
101     return true;
102   }
103   return false;
104 }
105 
106 bool Input::nextDocument() {
107   return ++DocIterator != Strm->end();
108 }
109 
110 const Node *Input::getCurrentNode() const {
111   return CurrentNode ? CurrentNode->_node : nullptr;
112 }
113 
114 bool Input::mapTag(StringRef Tag, bool Default) {
115   // CurrentNode can be null if setCurrentDocument() was unable to
116   // parse the document because it was invalid or empty.
117   if (!CurrentNode)
118     return false;
119 
120   std::string foundTag = CurrentNode->_node->getVerbatimTag();
121   if (foundTag.empty()) {
122     // If no tag found and 'Tag' is the default, say it was found.
123     return Default;
124   }
125   // Return true iff found tag matches supplied tag.
126   return Tag.equals(foundTag);
127 }
128 
129 void Input::beginMapping() {
130   if (EC)
131     return;
132   // CurrentNode can be null if the document is empty.
133   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
134   if (MN) {
135     MN->ValidKeys.clear();
136   }
137 }
138 
139 std::vector<StringRef> Input::keys() {
140   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
141   std::vector<StringRef> Ret;
142   if (!MN) {
143     setError(CurrentNode, "not a mapping");
144     return Ret;
145   }
146   for (auto &P : MN->Mapping)
147     Ret.push_back(P.first());
148   return Ret;
149 }
150 
151 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
152                          void *&SaveInfo) {
153   UseDefault = false;
154   if (EC)
155     return false;
156 
157   // CurrentNode is null for empty documents, which is an error in case required
158   // nodes are present.
159   if (!CurrentNode) {
160     if (Required)
161       EC = make_error_code(errc::invalid_argument);
162     return false;
163   }
164 
165   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
166   if (!MN) {
167     if (Required || !isa<EmptyHNode>(CurrentNode))
168       setError(CurrentNode, "not a mapping");
169     else
170       UseDefault = true;
171     return false;
172   }
173   MN->ValidKeys.push_back(Key);
174   HNode *Value = MN->Mapping[Key].get();
175   if (!Value) {
176     if (Required)
177       setError(CurrentNode, Twine("missing required key '") + Key + "'");
178     else
179       UseDefault = true;
180     return false;
181   }
182   SaveInfo = CurrentNode;
183   CurrentNode = Value;
184   return true;
185 }
186 
187 void Input::postflightKey(void *saveInfo) {
188   CurrentNode = reinterpret_cast<HNode *>(saveInfo);
189 }
190 
191 void Input::endMapping() {
192   if (EC)
193     return;
194   // CurrentNode can be null if the document is empty.
195   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
196   if (!MN)
197     return;
198   for (const auto &NN : MN->Mapping) {
199     if (!is_contained(MN->ValidKeys, NN.first())) {
200       setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
201       break;
202     }
203   }
204 }
205 
206 void Input::beginFlowMapping() { beginMapping(); }
207 
208 void Input::endFlowMapping() { endMapping(); }
209 
210 unsigned Input::beginSequence() {
211   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
212     return SQ->Entries.size();
213   if (isa<EmptyHNode>(CurrentNode))
214     return 0;
215   // Treat case where there's a scalar "null" value as an empty sequence.
216   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
217     if (isNull(SN->value()))
218       return 0;
219   }
220   // Any other type of HNode is an error.
221   setError(CurrentNode, "not a sequence");
222   return 0;
223 }
224 
225 void Input::endSequence() {
226 }
227 
228 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
229   if (EC)
230     return false;
231   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
232     SaveInfo = CurrentNode;
233     CurrentNode = SQ->Entries[Index].get();
234     return true;
235   }
236   return false;
237 }
238 
239 void Input::postflightElement(void *SaveInfo) {
240   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
241 }
242 
243 unsigned Input::beginFlowSequence() { return beginSequence(); }
244 
245 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
246   if (EC)
247     return false;
248   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
249     SaveInfo = CurrentNode;
250     CurrentNode = SQ->Entries[index].get();
251     return true;
252   }
253   return false;
254 }
255 
256 void Input::postflightFlowElement(void *SaveInfo) {
257   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
258 }
259 
260 void Input::endFlowSequence() {
261 }
262 
263 void Input::beginEnumScalar() {
264   ScalarMatchFound = false;
265 }
266 
267 bool Input::matchEnumScalar(const char *Str, bool) {
268   if (ScalarMatchFound)
269     return false;
270   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
271     if (SN->value().equals(Str)) {
272       ScalarMatchFound = true;
273       return true;
274     }
275   }
276   return false;
277 }
278 
279 bool Input::matchEnumFallback() {
280   if (ScalarMatchFound)
281     return false;
282   ScalarMatchFound = true;
283   return true;
284 }
285 
286 void Input::endEnumScalar() {
287   if (!ScalarMatchFound) {
288     setError(CurrentNode, "unknown enumerated scalar");
289   }
290 }
291 
292 bool Input::beginBitSetScalar(bool &DoClear) {
293   BitValuesUsed.clear();
294   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
295     BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
296   } else {
297     setError(CurrentNode, "expected sequence of bit values");
298   }
299   DoClear = true;
300   return true;
301 }
302 
303 bool Input::bitSetMatch(const char *Str, bool) {
304   if (EC)
305     return false;
306   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
307     unsigned Index = 0;
308     for (auto &N : SQ->Entries) {
309       if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
310         if (SN->value().equals(Str)) {
311           BitValuesUsed[Index] = true;
312           return true;
313         }
314       } else {
315         setError(CurrentNode, "unexpected scalar in sequence of bit values");
316       }
317       ++Index;
318     }
319   } else {
320     setError(CurrentNode, "expected sequence of bit values");
321   }
322   return false;
323 }
324 
325 void Input::endBitSetScalar() {
326   if (EC)
327     return;
328   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
329     assert(BitValuesUsed.size() == SQ->Entries.size());
330     for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
331       if (!BitValuesUsed[i]) {
332         setError(SQ->Entries[i].get(), "unknown bit value");
333         return;
334       }
335     }
336   }
337 }
338 
339 void Input::scalarString(StringRef &S, QuotingType) {
340   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
341     S = SN->value();
342   } else {
343     setError(CurrentNode, "unexpected scalar");
344   }
345 }
346 
347 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
348 
349 void Input::scalarTag(std::string &Tag) {
350   Tag = CurrentNode->_node->getVerbatimTag();
351 }
352 
353 void Input::setError(HNode *hnode, const Twine &message) {
354   assert(hnode && "HNode must not be NULL");
355   setError(hnode->_node, message);
356 }
357 
358 NodeKind Input::getNodeKind() {
359   if (isa<ScalarHNode>(CurrentNode))
360     return NodeKind::Scalar;
361   else if (isa<MapHNode>(CurrentNode))
362     return NodeKind::Map;
363   else if (isa<SequenceHNode>(CurrentNode))
364     return NodeKind::Sequence;
365   llvm_unreachable("Unsupported node kind");
366 }
367 
368 void Input::setError(Node *node, const Twine &message) {
369   Strm->printError(node, message);
370   EC = make_error_code(errc::invalid_argument);
371 }
372 
373 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
374   SmallString<128> StringStorage;
375   if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
376     StringRef KeyStr = SN->getValue(StringStorage);
377     if (!StringStorage.empty()) {
378       // Copy string to permanent storage
379       KeyStr = StringStorage.str().copy(StringAllocator);
380     }
381     return std::make_unique<ScalarHNode>(N, KeyStr);
382   } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
383     StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
384     return std::make_unique<ScalarHNode>(N, ValueCopy);
385   } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
386     auto SQHNode = std::make_unique<SequenceHNode>(N);
387     for (Node &SN : *SQ) {
388       auto Entry = createHNodes(&SN);
389       if (EC)
390         break;
391       SQHNode->Entries.push_back(std::move(Entry));
392     }
393     return std::move(SQHNode);
394   } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
395     auto mapHNode = std::make_unique<MapHNode>(N);
396     for (KeyValueNode &KVN : *Map) {
397       Node *KeyNode = KVN.getKey();
398       ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
399       Node *Value = KVN.getValue();
400       if (!Key || !Value) {
401         if (!Key)
402           setError(KeyNode, "Map key must be a scalar");
403         if (!Value)
404           setError(KeyNode, "Map value must not be empty");
405         break;
406       }
407       StringStorage.clear();
408       StringRef KeyStr = Key->getValue(StringStorage);
409       if (!StringStorage.empty()) {
410         // Copy string to permanent storage
411         KeyStr = StringStorage.str().copy(StringAllocator);
412       }
413       auto ValueHNode = createHNodes(Value);
414       if (EC)
415         break;
416       mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
417     }
418     return std::move(mapHNode);
419   } else if (isa<NullNode>(N)) {
420     return std::make_unique<EmptyHNode>(N);
421   } else {
422     setError(N, "unknown node kind");
423     return nullptr;
424   }
425 }
426 
427 void Input::setError(const Twine &Message) {
428   setError(CurrentNode, Message);
429 }
430 
431 bool Input::canElideEmptySequence() {
432   return false;
433 }
434 
435 //===----------------------------------------------------------------------===//
436 //  Output
437 //===----------------------------------------------------------------------===//
438 
439 Output::Output(raw_ostream &yout, void *context, int WrapColumn)
440     : IO(context), Out(yout), WrapColumn(WrapColumn) {}
441 
442 Output::~Output() = default;
443 
444 bool Output::outputting() const {
445   return true;
446 }
447 
448 void Output::beginMapping() {
449   StateStack.push_back(inMapFirstKey);
450   PaddingBeforeContainer = Padding;
451   Padding = "\n";
452 }
453 
454 bool Output::mapTag(StringRef Tag, bool Use) {
455   if (Use) {
456     // If this tag is being written inside a sequence we should write the start
457     // of the sequence before writing the tag, otherwise the tag won't be
458     // attached to the element in the sequence, but rather the sequence itself.
459     bool SequenceElement = false;
460     if (StateStack.size() > 1) {
461       auto &E = StateStack[StateStack.size() - 2];
462       SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
463     }
464     if (SequenceElement && StateStack.back() == inMapFirstKey) {
465       newLineCheck();
466     } else {
467       output(" ");
468     }
469     output(Tag);
470     if (SequenceElement) {
471       // If we're writing the tag during the first element of a map, the tag
472       // takes the place of the first element in the sequence.
473       if (StateStack.back() == inMapFirstKey) {
474         StateStack.pop_back();
475         StateStack.push_back(inMapOtherKey);
476       }
477       // Tags inside maps in sequences should act as keys in the map from a
478       // formatting perspective, so we always want a newline in a sequence.
479       Padding = "\n";
480     }
481   }
482   return Use;
483 }
484 
485 void Output::endMapping() {
486   // If we did not map anything, we should explicitly emit an empty map
487   if (StateStack.back() == inMapFirstKey) {
488     Padding = PaddingBeforeContainer;
489     newLineCheck();
490     output("{}");
491     Padding = "\n";
492   }
493   StateStack.pop_back();
494 }
495 
496 std::vector<StringRef> Output::keys() {
497   report_fatal_error("invalid call");
498 }
499 
500 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
501                           bool &UseDefault, void *&) {
502   UseDefault = false;
503   if (Required || !SameAsDefault || WriteDefaultValues) {
504     auto State = StateStack.back();
505     if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
506       flowKey(Key);
507     } else {
508       newLineCheck();
509       paddedKey(Key);
510     }
511     return true;
512   }
513   return false;
514 }
515 
516 void Output::postflightKey(void *) {
517   if (StateStack.back() == inMapFirstKey) {
518     StateStack.pop_back();
519     StateStack.push_back(inMapOtherKey);
520   } else if (StateStack.back() == inFlowMapFirstKey) {
521     StateStack.pop_back();
522     StateStack.push_back(inFlowMapOtherKey);
523   }
524 }
525 
526 void Output::beginFlowMapping() {
527   StateStack.push_back(inFlowMapFirstKey);
528   newLineCheck();
529   ColumnAtMapFlowStart = Column;
530   output("{ ");
531 }
532 
533 void Output::endFlowMapping() {
534   StateStack.pop_back();
535   outputUpToEndOfLine(" }");
536 }
537 
538 void Output::beginDocuments() {
539   outputUpToEndOfLine("---");
540 }
541 
542 bool Output::preflightDocument(unsigned index) {
543   if (index > 0)
544     outputUpToEndOfLine("\n---");
545   return true;
546 }
547 
548 void Output::postflightDocument() {
549 }
550 
551 void Output::endDocuments() {
552   output("\n...\n");
553 }
554 
555 unsigned Output::beginSequence() {
556   StateStack.push_back(inSeqFirstElement);
557   PaddingBeforeContainer = Padding;
558   Padding = "\n";
559   return 0;
560 }
561 
562 void Output::endSequence() {
563   // If we did not emit anything, we should explicitly emit an empty sequence
564   if (StateStack.back() == inSeqFirstElement) {
565     Padding = PaddingBeforeContainer;
566     newLineCheck();
567     output("[]");
568     Padding = "\n";
569   }
570   StateStack.pop_back();
571 }
572 
573 bool Output::preflightElement(unsigned, void *&) {
574   return true;
575 }
576 
577 void Output::postflightElement(void *) {
578   if (StateStack.back() == inSeqFirstElement) {
579     StateStack.pop_back();
580     StateStack.push_back(inSeqOtherElement);
581   } else if (StateStack.back() == inFlowSeqFirstElement) {
582     StateStack.pop_back();
583     StateStack.push_back(inFlowSeqOtherElement);
584   }
585 }
586 
587 unsigned Output::beginFlowSequence() {
588   StateStack.push_back(inFlowSeqFirstElement);
589   newLineCheck();
590   ColumnAtFlowStart = Column;
591   output("[ ");
592   NeedFlowSequenceComma = false;
593   return 0;
594 }
595 
596 void Output::endFlowSequence() {
597   StateStack.pop_back();
598   outputUpToEndOfLine(" ]");
599 }
600 
601 bool Output::preflightFlowElement(unsigned, void *&) {
602   if (NeedFlowSequenceComma)
603     output(", ");
604   if (WrapColumn && Column > WrapColumn) {
605     output("\n");
606     for (int i = 0; i < ColumnAtFlowStart; ++i)
607       output(" ");
608     Column = ColumnAtFlowStart;
609     output("  ");
610   }
611   return true;
612 }
613 
614 void Output::postflightFlowElement(void *) {
615   NeedFlowSequenceComma = true;
616 }
617 
618 void Output::beginEnumScalar() {
619   EnumerationMatchFound = false;
620 }
621 
622 bool Output::matchEnumScalar(const char *Str, bool Match) {
623   if (Match && !EnumerationMatchFound) {
624     newLineCheck();
625     outputUpToEndOfLine(Str);
626     EnumerationMatchFound = true;
627   }
628   return false;
629 }
630 
631 bool Output::matchEnumFallback() {
632   if (EnumerationMatchFound)
633     return false;
634   EnumerationMatchFound = true;
635   return true;
636 }
637 
638 void Output::endEnumScalar() {
639   if (!EnumerationMatchFound)
640     llvm_unreachable("bad runtime enum value");
641 }
642 
643 bool Output::beginBitSetScalar(bool &DoClear) {
644   newLineCheck();
645   output("[ ");
646   NeedBitValueComma = false;
647   DoClear = false;
648   return true;
649 }
650 
651 bool Output::bitSetMatch(const char *Str, bool Matches) {
652   if (Matches) {
653     if (NeedBitValueComma)
654       output(", ");
655     output(Str);
656     NeedBitValueComma = true;
657   }
658   return false;
659 }
660 
661 void Output::endBitSetScalar() {
662   outputUpToEndOfLine(" ]");
663 }
664 
665 void Output::scalarString(StringRef &S, QuotingType MustQuote) {
666   newLineCheck();
667   if (S.empty()) {
668     // Print '' for the empty string because leaving the field empty is not
669     // allowed.
670     outputUpToEndOfLine("''");
671     return;
672   }
673   if (MustQuote == QuotingType::None) {
674     // Only quote if we must.
675     outputUpToEndOfLine(S);
676     return;
677   }
678 
679   const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
680   output(Quote); // Starting quote.
681 
682   // When using double-quoted strings (and only in that case), non-printable characters may be
683   // present, and will be escaped using a variety of unicode-scalar and special short-form
684   // escapes. This is handled in yaml::escape.
685   if (MustQuote == QuotingType::Double) {
686     output(yaml::escape(S, /* EscapePrintable= */ false));
687     outputUpToEndOfLine(Quote);
688     return;
689   }
690 
691   unsigned i = 0;
692   unsigned j = 0;
693   unsigned End = S.size();
694   const char *Base = S.data();
695 
696   // When using single-quoted strings, any single quote ' must be doubled to be escaped.
697   while (j < End) {
698     if (S[j] == '\'') {                    // Escape quotes.
699       output(StringRef(&Base[i], j - i));  // "flush".
700       output(StringLiteral("''"));         // Print it as ''
701       i = j + 1;
702     }
703     ++j;
704   }
705   output(StringRef(&Base[i], j - i));
706   outputUpToEndOfLine(Quote); // Ending quote.
707 }
708 
709 void Output::blockScalarString(StringRef &S) {
710   if (!StateStack.empty())
711     newLineCheck();
712   output(" |");
713   outputNewLine();
714 
715   unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
716 
717   auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
718   for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
719     for (unsigned I = 0; I < Indent; ++I) {
720       output("  ");
721     }
722     output(*Lines);
723     outputNewLine();
724   }
725 }
726 
727 void Output::scalarTag(std::string &Tag) {
728   if (Tag.empty())
729     return;
730   newLineCheck();
731   output(Tag);
732   output(" ");
733 }
734 
735 void Output::setError(const Twine &message) {
736 }
737 
738 bool Output::canElideEmptySequence() {
739   // Normally, with an optional key/value where the value is an empty sequence,
740   // the whole key/value can be not written.  But, that produces wrong yaml
741   // if the key/value is the only thing in the map and the map is used in
742   // a sequence.  This detects if the this sequence is the first key/value
743   // in map that itself is embedded in a sequence.
744   if (StateStack.size() < 2)
745     return true;
746   if (StateStack.back() != inMapFirstKey)
747     return true;
748   return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
749 }
750 
751 void Output::output(StringRef s) {
752   Column += s.size();
753   Out << s;
754 }
755 
756 void Output::outputUpToEndOfLine(StringRef s) {
757   output(s);
758   if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
759                              !inFlowMapAnyKey(StateStack.back())))
760     Padding = "\n";
761 }
762 
763 void Output::outputNewLine() {
764   Out << "\n";
765   Column = 0;
766 }
767 
768 // if seq at top, indent as if map, then add "- "
769 // if seq in middle, use "- " if firstKey, else use "  "
770 //
771 
772 void Output::newLineCheck() {
773   if (Padding != "\n") {
774     output(Padding);
775     Padding = {};
776     return;
777   }
778   outputNewLine();
779   Padding = {};
780 
781   if (StateStack.size() == 0)
782     return;
783 
784   unsigned Indent = StateStack.size() - 1;
785   bool OutputDash = false;
786 
787   if (StateStack.back() == inSeqFirstElement ||
788       StateStack.back() == inSeqOtherElement) {
789     OutputDash = true;
790   } else if ((StateStack.size() > 1) &&
791              ((StateStack.back() == inMapFirstKey) ||
792               inFlowSeqAnyElement(StateStack.back()) ||
793               (StateStack.back() == inFlowMapFirstKey)) &&
794              inSeqAnyElement(StateStack[StateStack.size() - 2])) {
795     --Indent;
796     OutputDash = true;
797   }
798 
799   for (unsigned i = 0; i < Indent; ++i) {
800     output("  ");
801   }
802   if (OutputDash) {
803     output("- ");
804   }
805 
806 }
807 
808 void Output::paddedKey(StringRef key) {
809   output(key);
810   output(":");
811   const char *spaces = "                ";
812   if (key.size() < strlen(spaces))
813     Padding = &spaces[key.size()];
814   else
815     Padding = " ";
816 }
817 
818 void Output::flowKey(StringRef Key) {
819   if (StateStack.back() == inFlowMapOtherKey)
820     output(", ");
821   if (WrapColumn && Column > WrapColumn) {
822     output("\n");
823     for (int I = 0; I < ColumnAtMapFlowStart; ++I)
824       output(" ");
825     Column = ColumnAtMapFlowStart;
826     output("  ");
827   }
828   output(Key);
829   output(": ");
830 }
831 
832 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
833 
834 bool Output::inSeqAnyElement(InState State) {
835   return State == inSeqFirstElement || State == inSeqOtherElement;
836 }
837 
838 bool Output::inFlowSeqAnyElement(InState State) {
839   return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
840 }
841 
842 bool Output::inMapAnyKey(InState State) {
843   return State == inMapFirstKey || State == inMapOtherKey;
844 }
845 
846 bool Output::inFlowMapAnyKey(InState State) {
847   return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
848 }
849 
850 //===----------------------------------------------------------------------===//
851 //  traits for built-in types
852 //===----------------------------------------------------------------------===//
853 
854 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
855   Out << (Val ? "true" : "false");
856 }
857 
858 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
859   if (Scalar.equals("true")) {
860     Val = true;
861     return StringRef();
862   } else if (Scalar.equals("false")) {
863     Val = false;
864     return StringRef();
865   }
866   return "invalid boolean";
867 }
868 
869 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
870                                      raw_ostream &Out) {
871   Out << Val;
872 }
873 
874 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
875                                          StringRef &Val) {
876   Val = Scalar;
877   return StringRef();
878 }
879 
880 void ScalarTraits<std::string>::output(const std::string &Val, void *,
881                                        raw_ostream &Out) {
882   Out << Val;
883 }
884 
885 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
886                                            std::string &Val) {
887   Val = Scalar.str();
888   return StringRef();
889 }
890 
891 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
892                                    raw_ostream &Out) {
893   // use temp uin32_t because ostream thinks uint8_t is a character
894   uint32_t Num = Val;
895   Out << Num;
896 }
897 
898 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
899   unsigned long long n;
900   if (getAsUnsignedInteger(Scalar, 0, n))
901     return "invalid number";
902   if (n > 0xFF)
903     return "out of range number";
904   Val = n;
905   return StringRef();
906 }
907 
908 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
909                                     raw_ostream &Out) {
910   Out << Val;
911 }
912 
913 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
914                                         uint16_t &Val) {
915   unsigned long long n;
916   if (getAsUnsignedInteger(Scalar, 0, n))
917     return "invalid number";
918   if (n > 0xFFFF)
919     return "out of range number";
920   Val = n;
921   return StringRef();
922 }
923 
924 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
925                                     raw_ostream &Out) {
926   Out << Val;
927 }
928 
929 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
930                                         uint32_t &Val) {
931   unsigned long long n;
932   if (getAsUnsignedInteger(Scalar, 0, n))
933     return "invalid number";
934   if (n > 0xFFFFFFFFUL)
935     return "out of range number";
936   Val = n;
937   return StringRef();
938 }
939 
940 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
941                                     raw_ostream &Out) {
942   Out << Val;
943 }
944 
945 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
946                                         uint64_t &Val) {
947   unsigned long long N;
948   if (getAsUnsignedInteger(Scalar, 0, N))
949     return "invalid number";
950   Val = N;
951   return StringRef();
952 }
953 
954 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
955   // use temp in32_t because ostream thinks int8_t is a character
956   int32_t Num = Val;
957   Out << Num;
958 }
959 
960 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
961   long long N;
962   if (getAsSignedInteger(Scalar, 0, N))
963     return "invalid number";
964   if ((N > 127) || (N < -128))
965     return "out of range number";
966   Val = N;
967   return StringRef();
968 }
969 
970 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
971                                    raw_ostream &Out) {
972   Out << Val;
973 }
974 
975 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
976   long long N;
977   if (getAsSignedInteger(Scalar, 0, N))
978     return "invalid number";
979   if ((N > INT16_MAX) || (N < INT16_MIN))
980     return "out of range number";
981   Val = N;
982   return StringRef();
983 }
984 
985 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
986                                    raw_ostream &Out) {
987   Out << Val;
988 }
989 
990 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
991   long long N;
992   if (getAsSignedInteger(Scalar, 0, N))
993     return "invalid number";
994   if ((N > INT32_MAX) || (N < INT32_MIN))
995     return "out of range number";
996   Val = N;
997   return StringRef();
998 }
999 
1000 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
1001                                    raw_ostream &Out) {
1002   Out << Val;
1003 }
1004 
1005 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
1006   long long N;
1007   if (getAsSignedInteger(Scalar, 0, N))
1008     return "invalid number";
1009   Val = N;
1010   return StringRef();
1011 }
1012 
1013 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
1014   Out << format("%g", Val);
1015 }
1016 
1017 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
1018   if (to_float(Scalar, Val))
1019     return StringRef();
1020   return "invalid floating point number";
1021 }
1022 
1023 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
1024   Out << format("%g", Val);
1025 }
1026 
1027 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
1028   if (to_float(Scalar, Val))
1029     return StringRef();
1030   return "invalid floating point number";
1031 }
1032 
1033 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
1034   uint8_t Num = Val;
1035   Out << format("0x%02X", Num);
1036 }
1037 
1038 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
1039   unsigned long long n;
1040   if (getAsUnsignedInteger(Scalar, 0, n))
1041     return "invalid hex8 number";
1042   if (n > 0xFF)
1043     return "out of range hex8 number";
1044   Val = n;
1045   return StringRef();
1046 }
1047 
1048 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
1049   uint16_t Num = Val;
1050   Out << format("0x%04X", Num);
1051 }
1052 
1053 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
1054   unsigned long long n;
1055   if (getAsUnsignedInteger(Scalar, 0, n))
1056     return "invalid hex16 number";
1057   if (n > 0xFFFF)
1058     return "out of range hex16 number";
1059   Val = n;
1060   return StringRef();
1061 }
1062 
1063 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
1064   uint32_t Num = Val;
1065   Out << format("0x%08X", Num);
1066 }
1067 
1068 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
1069   unsigned long long n;
1070   if (getAsUnsignedInteger(Scalar, 0, n))
1071     return "invalid hex32 number";
1072   if (n > 0xFFFFFFFFUL)
1073     return "out of range hex32 number";
1074   Val = n;
1075   return StringRef();
1076 }
1077 
1078 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
1079   uint64_t Num = Val;
1080   Out << format("0x%016llX", Num);
1081 }
1082 
1083 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
1084   unsigned long long Num;
1085   if (getAsUnsignedInteger(Scalar, 0, Num))
1086     return "invalid hex64 number";
1087   Val = Num;
1088   return StringRef();
1089 }
1090