1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/YAMLTraits.h" 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/StringExtras.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/ADT/Twine.h" 15 #include "llvm/Support/Casting.h" 16 #include "llvm/Support/Errc.h" 17 #include "llvm/Support/ErrorHandling.h" 18 #include "llvm/Support/Format.h" 19 #include "llvm/Support/LineIterator.h" 20 #include "llvm/Support/MemoryBuffer.h" 21 #include "llvm/Support/Unicode.h" 22 #include "llvm/Support/YAMLParser.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <cassert> 26 #include <cstdint> 27 #include <cstdlib> 28 #include <cstring> 29 #include <string> 30 #include <vector> 31 32 using namespace llvm; 33 using namespace yaml; 34 35 //===----------------------------------------------------------------------===// 36 // IO 37 //===----------------------------------------------------------------------===// 38 39 IO::IO(void *Context) : Ctxt(Context) {} 40 41 IO::~IO() = default; 42 43 void *IO::getContext() const { 44 return Ctxt; 45 } 46 47 void IO::setContext(void *Context) { 48 Ctxt = Context; 49 } 50 51 //===----------------------------------------------------------------------===// 52 // Input 53 //===----------------------------------------------------------------------===// 54 55 Input::Input(StringRef InputContent, void *Ctxt, 56 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) 57 : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) { 58 if (DiagHandler) 59 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); 60 DocIterator = Strm->begin(); 61 } 62 63 Input::Input(MemoryBufferRef Input, void *Ctxt, 64 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) 65 : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) { 66 if (DiagHandler) 67 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); 68 DocIterator = Strm->begin(); 69 } 70 71 Input::~Input() = default; 72 73 std::error_code Input::error() { return EC; } 74 75 // Pin the vtables to this file. 76 void Input::HNode::anchor() {} 77 void Input::EmptyHNode::anchor() {} 78 void Input::ScalarHNode::anchor() {} 79 void Input::MapHNode::anchor() {} 80 void Input::SequenceHNode::anchor() {} 81 82 bool Input::outputting() const { 83 return false; 84 } 85 86 bool Input::setCurrentDocument() { 87 if (DocIterator != Strm->end()) { 88 Node *N = DocIterator->getRoot(); 89 if (!N) { 90 EC = make_error_code(errc::invalid_argument); 91 return false; 92 } 93 94 if (isa<NullNode>(N)) { 95 // Empty files are allowed and ignored 96 ++DocIterator; 97 return setCurrentDocument(); 98 } 99 TopNode = createHNodes(N); 100 CurrentNode = TopNode.get(); 101 return true; 102 } 103 return false; 104 } 105 106 bool Input::nextDocument() { 107 return ++DocIterator != Strm->end(); 108 } 109 110 const Node *Input::getCurrentNode() const { 111 return CurrentNode ? CurrentNode->_node : nullptr; 112 } 113 114 bool Input::mapTag(StringRef Tag, bool Default) { 115 // CurrentNode can be null if setCurrentDocument() was unable to 116 // parse the document because it was invalid or empty. 117 if (!CurrentNode) 118 return false; 119 120 std::string foundTag = CurrentNode->_node->getVerbatimTag(); 121 if (foundTag.empty()) { 122 // If no tag found and 'Tag' is the default, say it was found. 123 return Default; 124 } 125 // Return true iff found tag matches supplied tag. 126 return Tag.equals(foundTag); 127 } 128 129 void Input::beginMapping() { 130 if (EC) 131 return; 132 // CurrentNode can be null if the document is empty. 133 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); 134 if (MN) { 135 MN->ValidKeys.clear(); 136 } 137 } 138 139 std::vector<StringRef> Input::keys() { 140 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); 141 std::vector<StringRef> Ret; 142 if (!MN) { 143 setError(CurrentNode, "not a mapping"); 144 return Ret; 145 } 146 for (auto &P : MN->Mapping) 147 Ret.push_back(P.first()); 148 return Ret; 149 } 150 151 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, 152 void *&SaveInfo) { 153 UseDefault = false; 154 if (EC) 155 return false; 156 157 // CurrentNode is null for empty documents, which is an error in case required 158 // nodes are present. 159 if (!CurrentNode) { 160 if (Required) 161 EC = make_error_code(errc::invalid_argument); 162 return false; 163 } 164 165 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); 166 if (!MN) { 167 if (Required || !isa<EmptyHNode>(CurrentNode)) 168 setError(CurrentNode, "not a mapping"); 169 else 170 UseDefault = true; 171 return false; 172 } 173 MN->ValidKeys.push_back(Key); 174 HNode *Value = MN->Mapping[Key].get(); 175 if (!Value) { 176 if (Required) 177 setError(CurrentNode, Twine("missing required key '") + Key + "'"); 178 else 179 UseDefault = true; 180 return false; 181 } 182 SaveInfo = CurrentNode; 183 CurrentNode = Value; 184 return true; 185 } 186 187 void Input::postflightKey(void *saveInfo) { 188 CurrentNode = reinterpret_cast<HNode *>(saveInfo); 189 } 190 191 void Input::endMapping() { 192 if (EC) 193 return; 194 // CurrentNode can be null if the document is empty. 195 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); 196 if (!MN) 197 return; 198 for (const auto &NN : MN->Mapping) { 199 if (!is_contained(MN->ValidKeys, NN.first())) { 200 setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'"); 201 break; 202 } 203 } 204 } 205 206 void Input::beginFlowMapping() { beginMapping(); } 207 208 void Input::endFlowMapping() { endMapping(); } 209 210 unsigned Input::beginSequence() { 211 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) 212 return SQ->Entries.size(); 213 if (isa<EmptyHNode>(CurrentNode)) 214 return 0; 215 // Treat case where there's a scalar "null" value as an empty sequence. 216 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 217 if (isNull(SN->value())) 218 return 0; 219 } 220 // Any other type of HNode is an error. 221 setError(CurrentNode, "not a sequence"); 222 return 0; 223 } 224 225 void Input::endSequence() { 226 } 227 228 bool Input::preflightElement(unsigned Index, void *&SaveInfo) { 229 if (EC) 230 return false; 231 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 232 SaveInfo = CurrentNode; 233 CurrentNode = SQ->Entries[Index].get(); 234 return true; 235 } 236 return false; 237 } 238 239 void Input::postflightElement(void *SaveInfo) { 240 CurrentNode = reinterpret_cast<HNode *>(SaveInfo); 241 } 242 243 unsigned Input::beginFlowSequence() { return beginSequence(); } 244 245 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { 246 if (EC) 247 return false; 248 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 249 SaveInfo = CurrentNode; 250 CurrentNode = SQ->Entries[index].get(); 251 return true; 252 } 253 return false; 254 } 255 256 void Input::postflightFlowElement(void *SaveInfo) { 257 CurrentNode = reinterpret_cast<HNode *>(SaveInfo); 258 } 259 260 void Input::endFlowSequence() { 261 } 262 263 void Input::beginEnumScalar() { 264 ScalarMatchFound = false; 265 } 266 267 bool Input::matchEnumScalar(const char *Str, bool) { 268 if (ScalarMatchFound) 269 return false; 270 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 271 if (SN->value().equals(Str)) { 272 ScalarMatchFound = true; 273 return true; 274 } 275 } 276 return false; 277 } 278 279 bool Input::matchEnumFallback() { 280 if (ScalarMatchFound) 281 return false; 282 ScalarMatchFound = true; 283 return true; 284 } 285 286 void Input::endEnumScalar() { 287 if (!ScalarMatchFound) { 288 setError(CurrentNode, "unknown enumerated scalar"); 289 } 290 } 291 292 bool Input::beginBitSetScalar(bool &DoClear) { 293 BitValuesUsed.clear(); 294 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 295 BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false); 296 } else { 297 setError(CurrentNode, "expected sequence of bit values"); 298 } 299 DoClear = true; 300 return true; 301 } 302 303 bool Input::bitSetMatch(const char *Str, bool) { 304 if (EC) 305 return false; 306 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 307 unsigned Index = 0; 308 for (auto &N : SQ->Entries) { 309 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) { 310 if (SN->value().equals(Str)) { 311 BitValuesUsed[Index] = true; 312 return true; 313 } 314 } else { 315 setError(CurrentNode, "unexpected scalar in sequence of bit values"); 316 } 317 ++Index; 318 } 319 } else { 320 setError(CurrentNode, "expected sequence of bit values"); 321 } 322 return false; 323 } 324 325 void Input::endBitSetScalar() { 326 if (EC) 327 return; 328 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 329 assert(BitValuesUsed.size() == SQ->Entries.size()); 330 for (unsigned i = 0; i < SQ->Entries.size(); ++i) { 331 if (!BitValuesUsed[i]) { 332 setError(SQ->Entries[i].get(), "unknown bit value"); 333 return; 334 } 335 } 336 } 337 } 338 339 void Input::scalarString(StringRef &S, QuotingType) { 340 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 341 S = SN->value(); 342 } else { 343 setError(CurrentNode, "unexpected scalar"); 344 } 345 } 346 347 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); } 348 349 void Input::scalarTag(std::string &Tag) { 350 Tag = CurrentNode->_node->getVerbatimTag(); 351 } 352 353 void Input::setError(HNode *hnode, const Twine &message) { 354 assert(hnode && "HNode must not be NULL"); 355 setError(hnode->_node, message); 356 } 357 358 NodeKind Input::getNodeKind() { 359 if (isa<ScalarHNode>(CurrentNode)) 360 return NodeKind::Scalar; 361 else if (isa<MapHNode>(CurrentNode)) 362 return NodeKind::Map; 363 else if (isa<SequenceHNode>(CurrentNode)) 364 return NodeKind::Sequence; 365 llvm_unreachable("Unsupported node kind"); 366 } 367 368 void Input::setError(Node *node, const Twine &message) { 369 Strm->printError(node, message); 370 EC = make_error_code(errc::invalid_argument); 371 } 372 373 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) { 374 SmallString<128> StringStorage; 375 if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) { 376 StringRef KeyStr = SN->getValue(StringStorage); 377 if (!StringStorage.empty()) { 378 // Copy string to permanent storage 379 KeyStr = StringStorage.str().copy(StringAllocator); 380 } 381 return std::make_unique<ScalarHNode>(N, KeyStr); 382 } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) { 383 StringRef ValueCopy = BSN->getValue().copy(StringAllocator); 384 return std::make_unique<ScalarHNode>(N, ValueCopy); 385 } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) { 386 auto SQHNode = std::make_unique<SequenceHNode>(N); 387 for (Node &SN : *SQ) { 388 auto Entry = createHNodes(&SN); 389 if (EC) 390 break; 391 SQHNode->Entries.push_back(std::move(Entry)); 392 } 393 return std::move(SQHNode); 394 } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) { 395 auto mapHNode = std::make_unique<MapHNode>(N); 396 for (KeyValueNode &KVN : *Map) { 397 Node *KeyNode = KVN.getKey(); 398 ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode); 399 Node *Value = KVN.getValue(); 400 if (!Key || !Value) { 401 if (!Key) 402 setError(KeyNode, "Map key must be a scalar"); 403 if (!Value) 404 setError(KeyNode, "Map value must not be empty"); 405 break; 406 } 407 StringStorage.clear(); 408 StringRef KeyStr = Key->getValue(StringStorage); 409 if (!StringStorage.empty()) { 410 // Copy string to permanent storage 411 KeyStr = StringStorage.str().copy(StringAllocator); 412 } 413 auto ValueHNode = createHNodes(Value); 414 if (EC) 415 break; 416 mapHNode->Mapping[KeyStr] = std::move(ValueHNode); 417 } 418 return std::move(mapHNode); 419 } else if (isa<NullNode>(N)) { 420 return std::make_unique<EmptyHNode>(N); 421 } else { 422 setError(N, "unknown node kind"); 423 return nullptr; 424 } 425 } 426 427 void Input::setError(const Twine &Message) { 428 setError(CurrentNode, Message); 429 } 430 431 bool Input::canElideEmptySequence() { 432 return false; 433 } 434 435 //===----------------------------------------------------------------------===// 436 // Output 437 //===----------------------------------------------------------------------===// 438 439 Output::Output(raw_ostream &yout, void *context, int WrapColumn) 440 : IO(context), Out(yout), WrapColumn(WrapColumn) {} 441 442 Output::~Output() = default; 443 444 bool Output::outputting() const { 445 return true; 446 } 447 448 void Output::beginMapping() { 449 StateStack.push_back(inMapFirstKey); 450 PaddingBeforeContainer = Padding; 451 Padding = "\n"; 452 } 453 454 bool Output::mapTag(StringRef Tag, bool Use) { 455 if (Use) { 456 // If this tag is being written inside a sequence we should write the start 457 // of the sequence before writing the tag, otherwise the tag won't be 458 // attached to the element in the sequence, but rather the sequence itself. 459 bool SequenceElement = false; 460 if (StateStack.size() > 1) { 461 auto &E = StateStack[StateStack.size() - 2]; 462 SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E); 463 } 464 if (SequenceElement && StateStack.back() == inMapFirstKey) { 465 newLineCheck(); 466 } else { 467 output(" "); 468 } 469 output(Tag); 470 if (SequenceElement) { 471 // If we're writing the tag during the first element of a map, the tag 472 // takes the place of the first element in the sequence. 473 if (StateStack.back() == inMapFirstKey) { 474 StateStack.pop_back(); 475 StateStack.push_back(inMapOtherKey); 476 } 477 // Tags inside maps in sequences should act as keys in the map from a 478 // formatting perspective, so we always want a newline in a sequence. 479 Padding = "\n"; 480 } 481 } 482 return Use; 483 } 484 485 void Output::endMapping() { 486 // If we did not map anything, we should explicitly emit an empty map 487 if (StateStack.back() == inMapFirstKey) { 488 Padding = PaddingBeforeContainer; 489 newLineCheck(); 490 output("{}"); 491 Padding = "\n"; 492 } 493 StateStack.pop_back(); 494 } 495 496 std::vector<StringRef> Output::keys() { 497 report_fatal_error("invalid call"); 498 } 499 500 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, 501 bool &UseDefault, void *&) { 502 UseDefault = false; 503 if (Required || !SameAsDefault || WriteDefaultValues) { 504 auto State = StateStack.back(); 505 if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) { 506 flowKey(Key); 507 } else { 508 newLineCheck(); 509 paddedKey(Key); 510 } 511 return true; 512 } 513 return false; 514 } 515 516 void Output::postflightKey(void *) { 517 if (StateStack.back() == inMapFirstKey) { 518 StateStack.pop_back(); 519 StateStack.push_back(inMapOtherKey); 520 } else if (StateStack.back() == inFlowMapFirstKey) { 521 StateStack.pop_back(); 522 StateStack.push_back(inFlowMapOtherKey); 523 } 524 } 525 526 void Output::beginFlowMapping() { 527 StateStack.push_back(inFlowMapFirstKey); 528 newLineCheck(); 529 ColumnAtMapFlowStart = Column; 530 output("{ "); 531 } 532 533 void Output::endFlowMapping() { 534 StateStack.pop_back(); 535 outputUpToEndOfLine(" }"); 536 } 537 538 void Output::beginDocuments() { 539 outputUpToEndOfLine("---"); 540 } 541 542 bool Output::preflightDocument(unsigned index) { 543 if (index > 0) 544 outputUpToEndOfLine("\n---"); 545 return true; 546 } 547 548 void Output::postflightDocument() { 549 } 550 551 void Output::endDocuments() { 552 output("\n...\n"); 553 } 554 555 unsigned Output::beginSequence() { 556 StateStack.push_back(inSeqFirstElement); 557 PaddingBeforeContainer = Padding; 558 Padding = "\n"; 559 return 0; 560 } 561 562 void Output::endSequence() { 563 // If we did not emit anything, we should explicitly emit an empty sequence 564 if (StateStack.back() == inSeqFirstElement) { 565 Padding = PaddingBeforeContainer; 566 newLineCheck(); 567 output("[]"); 568 Padding = "\n"; 569 } 570 StateStack.pop_back(); 571 } 572 573 bool Output::preflightElement(unsigned, void *&) { 574 return true; 575 } 576 577 void Output::postflightElement(void *) { 578 if (StateStack.back() == inSeqFirstElement) { 579 StateStack.pop_back(); 580 StateStack.push_back(inSeqOtherElement); 581 } else if (StateStack.back() == inFlowSeqFirstElement) { 582 StateStack.pop_back(); 583 StateStack.push_back(inFlowSeqOtherElement); 584 } 585 } 586 587 unsigned Output::beginFlowSequence() { 588 StateStack.push_back(inFlowSeqFirstElement); 589 newLineCheck(); 590 ColumnAtFlowStart = Column; 591 output("[ "); 592 NeedFlowSequenceComma = false; 593 return 0; 594 } 595 596 void Output::endFlowSequence() { 597 StateStack.pop_back(); 598 outputUpToEndOfLine(" ]"); 599 } 600 601 bool Output::preflightFlowElement(unsigned, void *&) { 602 if (NeedFlowSequenceComma) 603 output(", "); 604 if (WrapColumn && Column > WrapColumn) { 605 output("\n"); 606 for (int i = 0; i < ColumnAtFlowStart; ++i) 607 output(" "); 608 Column = ColumnAtFlowStart; 609 output(" "); 610 } 611 return true; 612 } 613 614 void Output::postflightFlowElement(void *) { 615 NeedFlowSequenceComma = true; 616 } 617 618 void Output::beginEnumScalar() { 619 EnumerationMatchFound = false; 620 } 621 622 bool Output::matchEnumScalar(const char *Str, bool Match) { 623 if (Match && !EnumerationMatchFound) { 624 newLineCheck(); 625 outputUpToEndOfLine(Str); 626 EnumerationMatchFound = true; 627 } 628 return false; 629 } 630 631 bool Output::matchEnumFallback() { 632 if (EnumerationMatchFound) 633 return false; 634 EnumerationMatchFound = true; 635 return true; 636 } 637 638 void Output::endEnumScalar() { 639 if (!EnumerationMatchFound) 640 llvm_unreachable("bad runtime enum value"); 641 } 642 643 bool Output::beginBitSetScalar(bool &DoClear) { 644 newLineCheck(); 645 output("[ "); 646 NeedBitValueComma = false; 647 DoClear = false; 648 return true; 649 } 650 651 bool Output::bitSetMatch(const char *Str, bool Matches) { 652 if (Matches) { 653 if (NeedBitValueComma) 654 output(", "); 655 output(Str); 656 NeedBitValueComma = true; 657 } 658 return false; 659 } 660 661 void Output::endBitSetScalar() { 662 outputUpToEndOfLine(" ]"); 663 } 664 665 void Output::scalarString(StringRef &S, QuotingType MustQuote) { 666 newLineCheck(); 667 if (S.empty()) { 668 // Print '' for the empty string because leaving the field empty is not 669 // allowed. 670 outputUpToEndOfLine("''"); 671 return; 672 } 673 if (MustQuote == QuotingType::None) { 674 // Only quote if we must. 675 outputUpToEndOfLine(S); 676 return; 677 } 678 679 const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\""; 680 output(Quote); // Starting quote. 681 682 // When using double-quoted strings (and only in that case), non-printable characters may be 683 // present, and will be escaped using a variety of unicode-scalar and special short-form 684 // escapes. This is handled in yaml::escape. 685 if (MustQuote == QuotingType::Double) { 686 output(yaml::escape(S, /* EscapePrintable= */ false)); 687 outputUpToEndOfLine(Quote); 688 return; 689 } 690 691 unsigned i = 0; 692 unsigned j = 0; 693 unsigned End = S.size(); 694 const char *Base = S.data(); 695 696 // When using single-quoted strings, any single quote ' must be doubled to be escaped. 697 while (j < End) { 698 if (S[j] == '\'') { // Escape quotes. 699 output(StringRef(&Base[i], j - i)); // "flush". 700 output(StringLiteral("''")); // Print it as '' 701 i = j + 1; 702 } 703 ++j; 704 } 705 output(StringRef(&Base[i], j - i)); 706 outputUpToEndOfLine(Quote); // Ending quote. 707 } 708 709 void Output::blockScalarString(StringRef &S) { 710 if (!StateStack.empty()) 711 newLineCheck(); 712 output(" |"); 713 outputNewLine(); 714 715 unsigned Indent = StateStack.empty() ? 1 : StateStack.size(); 716 717 auto Buffer = MemoryBuffer::getMemBuffer(S, "", false); 718 for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) { 719 for (unsigned I = 0; I < Indent; ++I) { 720 output(" "); 721 } 722 output(*Lines); 723 outputNewLine(); 724 } 725 } 726 727 void Output::scalarTag(std::string &Tag) { 728 if (Tag.empty()) 729 return; 730 newLineCheck(); 731 output(Tag); 732 output(" "); 733 } 734 735 void Output::setError(const Twine &message) { 736 } 737 738 bool Output::canElideEmptySequence() { 739 // Normally, with an optional key/value where the value is an empty sequence, 740 // the whole key/value can be not written. But, that produces wrong yaml 741 // if the key/value is the only thing in the map and the map is used in 742 // a sequence. This detects if the this sequence is the first key/value 743 // in map that itself is embedded in a sequence. 744 if (StateStack.size() < 2) 745 return true; 746 if (StateStack.back() != inMapFirstKey) 747 return true; 748 return !inSeqAnyElement(StateStack[StateStack.size() - 2]); 749 } 750 751 void Output::output(StringRef s) { 752 Column += s.size(); 753 Out << s; 754 } 755 756 void Output::outputUpToEndOfLine(StringRef s) { 757 output(s); 758 if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) && 759 !inFlowMapAnyKey(StateStack.back()))) 760 Padding = "\n"; 761 } 762 763 void Output::outputNewLine() { 764 Out << "\n"; 765 Column = 0; 766 } 767 768 // if seq at top, indent as if map, then add "- " 769 // if seq in middle, use "- " if firstKey, else use " " 770 // 771 772 void Output::newLineCheck() { 773 if (Padding != "\n") { 774 output(Padding); 775 Padding = {}; 776 return; 777 } 778 outputNewLine(); 779 Padding = {}; 780 781 if (StateStack.size() == 0) 782 return; 783 784 unsigned Indent = StateStack.size() - 1; 785 bool OutputDash = false; 786 787 if (StateStack.back() == inSeqFirstElement || 788 StateStack.back() == inSeqOtherElement) { 789 OutputDash = true; 790 } else if ((StateStack.size() > 1) && 791 ((StateStack.back() == inMapFirstKey) || 792 inFlowSeqAnyElement(StateStack.back()) || 793 (StateStack.back() == inFlowMapFirstKey)) && 794 inSeqAnyElement(StateStack[StateStack.size() - 2])) { 795 --Indent; 796 OutputDash = true; 797 } 798 799 for (unsigned i = 0; i < Indent; ++i) { 800 output(" "); 801 } 802 if (OutputDash) { 803 output("- "); 804 } 805 806 } 807 808 void Output::paddedKey(StringRef key) { 809 output(key); 810 output(":"); 811 const char *spaces = " "; 812 if (key.size() < strlen(spaces)) 813 Padding = &spaces[key.size()]; 814 else 815 Padding = " "; 816 } 817 818 void Output::flowKey(StringRef Key) { 819 if (StateStack.back() == inFlowMapOtherKey) 820 output(", "); 821 if (WrapColumn && Column > WrapColumn) { 822 output("\n"); 823 for (int I = 0; I < ColumnAtMapFlowStart; ++I) 824 output(" "); 825 Column = ColumnAtMapFlowStart; 826 output(" "); 827 } 828 output(Key); 829 output(": "); 830 } 831 832 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); } 833 834 bool Output::inSeqAnyElement(InState State) { 835 return State == inSeqFirstElement || State == inSeqOtherElement; 836 } 837 838 bool Output::inFlowSeqAnyElement(InState State) { 839 return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement; 840 } 841 842 bool Output::inMapAnyKey(InState State) { 843 return State == inMapFirstKey || State == inMapOtherKey; 844 } 845 846 bool Output::inFlowMapAnyKey(InState State) { 847 return State == inFlowMapFirstKey || State == inFlowMapOtherKey; 848 } 849 850 //===----------------------------------------------------------------------===// 851 // traits for built-in types 852 //===----------------------------------------------------------------------===// 853 854 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) { 855 Out << (Val ? "true" : "false"); 856 } 857 858 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) { 859 if (Scalar.equals("true")) { 860 Val = true; 861 return StringRef(); 862 } else if (Scalar.equals("false")) { 863 Val = false; 864 return StringRef(); 865 } 866 return "invalid boolean"; 867 } 868 869 void ScalarTraits<StringRef>::output(const StringRef &Val, void *, 870 raw_ostream &Out) { 871 Out << Val; 872 } 873 874 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *, 875 StringRef &Val) { 876 Val = Scalar; 877 return StringRef(); 878 } 879 880 void ScalarTraits<std::string>::output(const std::string &Val, void *, 881 raw_ostream &Out) { 882 Out << Val; 883 } 884 885 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *, 886 std::string &Val) { 887 Val = Scalar.str(); 888 return StringRef(); 889 } 890 891 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *, 892 raw_ostream &Out) { 893 // use temp uin32_t because ostream thinks uint8_t is a character 894 uint32_t Num = Val; 895 Out << Num; 896 } 897 898 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) { 899 unsigned long long n; 900 if (getAsUnsignedInteger(Scalar, 0, n)) 901 return "invalid number"; 902 if (n > 0xFF) 903 return "out of range number"; 904 Val = n; 905 return StringRef(); 906 } 907 908 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *, 909 raw_ostream &Out) { 910 Out << Val; 911 } 912 913 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *, 914 uint16_t &Val) { 915 unsigned long long n; 916 if (getAsUnsignedInteger(Scalar, 0, n)) 917 return "invalid number"; 918 if (n > 0xFFFF) 919 return "out of range number"; 920 Val = n; 921 return StringRef(); 922 } 923 924 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *, 925 raw_ostream &Out) { 926 Out << Val; 927 } 928 929 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *, 930 uint32_t &Val) { 931 unsigned long long n; 932 if (getAsUnsignedInteger(Scalar, 0, n)) 933 return "invalid number"; 934 if (n > 0xFFFFFFFFUL) 935 return "out of range number"; 936 Val = n; 937 return StringRef(); 938 } 939 940 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *, 941 raw_ostream &Out) { 942 Out << Val; 943 } 944 945 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *, 946 uint64_t &Val) { 947 unsigned long long N; 948 if (getAsUnsignedInteger(Scalar, 0, N)) 949 return "invalid number"; 950 Val = N; 951 return StringRef(); 952 } 953 954 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) { 955 // use temp in32_t because ostream thinks int8_t is a character 956 int32_t Num = Val; 957 Out << Num; 958 } 959 960 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) { 961 long long N; 962 if (getAsSignedInteger(Scalar, 0, N)) 963 return "invalid number"; 964 if ((N > 127) || (N < -128)) 965 return "out of range number"; 966 Val = N; 967 return StringRef(); 968 } 969 970 void ScalarTraits<int16_t>::output(const int16_t &Val, void *, 971 raw_ostream &Out) { 972 Out << Val; 973 } 974 975 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) { 976 long long N; 977 if (getAsSignedInteger(Scalar, 0, N)) 978 return "invalid number"; 979 if ((N > INT16_MAX) || (N < INT16_MIN)) 980 return "out of range number"; 981 Val = N; 982 return StringRef(); 983 } 984 985 void ScalarTraits<int32_t>::output(const int32_t &Val, void *, 986 raw_ostream &Out) { 987 Out << Val; 988 } 989 990 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) { 991 long long N; 992 if (getAsSignedInteger(Scalar, 0, N)) 993 return "invalid number"; 994 if ((N > INT32_MAX) || (N < INT32_MIN)) 995 return "out of range number"; 996 Val = N; 997 return StringRef(); 998 } 999 1000 void ScalarTraits<int64_t>::output(const int64_t &Val, void *, 1001 raw_ostream &Out) { 1002 Out << Val; 1003 } 1004 1005 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) { 1006 long long N; 1007 if (getAsSignedInteger(Scalar, 0, N)) 1008 return "invalid number"; 1009 Val = N; 1010 return StringRef(); 1011 } 1012 1013 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) { 1014 Out << format("%g", Val); 1015 } 1016 1017 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) { 1018 if (to_float(Scalar, Val)) 1019 return StringRef(); 1020 return "invalid floating point number"; 1021 } 1022 1023 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) { 1024 Out << format("%g", Val); 1025 } 1026 1027 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) { 1028 if (to_float(Scalar, Val)) 1029 return StringRef(); 1030 return "invalid floating point number"; 1031 } 1032 1033 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) { 1034 uint8_t Num = Val; 1035 Out << format("0x%02X", Num); 1036 } 1037 1038 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) { 1039 unsigned long long n; 1040 if (getAsUnsignedInteger(Scalar, 0, n)) 1041 return "invalid hex8 number"; 1042 if (n > 0xFF) 1043 return "out of range hex8 number"; 1044 Val = n; 1045 return StringRef(); 1046 } 1047 1048 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) { 1049 uint16_t Num = Val; 1050 Out << format("0x%04X", Num); 1051 } 1052 1053 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) { 1054 unsigned long long n; 1055 if (getAsUnsignedInteger(Scalar, 0, n)) 1056 return "invalid hex16 number"; 1057 if (n > 0xFFFF) 1058 return "out of range hex16 number"; 1059 Val = n; 1060 return StringRef(); 1061 } 1062 1063 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) { 1064 uint32_t Num = Val; 1065 Out << format("0x%08X", Num); 1066 } 1067 1068 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) { 1069 unsigned long long n; 1070 if (getAsUnsignedInteger(Scalar, 0, n)) 1071 return "invalid hex32 number"; 1072 if (n > 0xFFFFFFFFUL) 1073 return "out of range hex32 number"; 1074 Val = n; 1075 return StringRef(); 1076 } 1077 1078 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) { 1079 uint64_t Num = Val; 1080 Out << format("0x%016llX", Num); 1081 } 1082 1083 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) { 1084 unsigned long long Num; 1085 if (getAsUnsignedInteger(Scalar, 0, Num)) 1086 return "invalid hex64 number"; 1087 Val = Num; 1088 return StringRef(); 1089 } 1090