1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/YAMLTraits.h" 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/StringExtras.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/ADT/Twine.h" 15 #include "llvm/Support/Casting.h" 16 #include "llvm/Support/Errc.h" 17 #include "llvm/Support/ErrorHandling.h" 18 #include "llvm/Support/Format.h" 19 #include "llvm/Support/LineIterator.h" 20 #include "llvm/Support/MemoryBuffer.h" 21 #include "llvm/Support/VersionTuple.h" 22 #include "llvm/Support/YAMLParser.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <cassert> 26 #include <cstdint> 27 #include <cstring> 28 #include <string> 29 #include <vector> 30 31 using namespace llvm; 32 using namespace yaml; 33 34 //===----------------------------------------------------------------------===// 35 // IO 36 //===----------------------------------------------------------------------===// 37 38 IO::IO(void *Context) : Ctxt(Context) {} 39 40 IO::~IO() = default; 41 42 void *IO::getContext() const { 43 return Ctxt; 44 } 45 46 void IO::setContext(void *Context) { 47 Ctxt = Context; 48 } 49 50 void IO::setAllowUnknownKeys(bool Allow) { 51 llvm_unreachable("Only supported for Input"); 52 } 53 54 //===----------------------------------------------------------------------===// 55 // Input 56 //===----------------------------------------------------------------------===// 57 58 Input::Input(StringRef InputContent, void *Ctxt, 59 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) 60 : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) { 61 if (DiagHandler) 62 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); 63 DocIterator = Strm->begin(); 64 } 65 66 Input::Input(MemoryBufferRef Input, void *Ctxt, 67 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) 68 : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) { 69 if (DiagHandler) 70 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); 71 DocIterator = Strm->begin(); 72 } 73 74 Input::~Input() = default; 75 76 std::error_code Input::error() { return EC; } 77 78 bool Input::outputting() const { 79 return false; 80 } 81 82 bool Input::setCurrentDocument() { 83 if (DocIterator != Strm->end()) { 84 Node *N = DocIterator->getRoot(); 85 if (!N) { 86 EC = make_error_code(errc::invalid_argument); 87 return false; 88 } 89 90 if (isa<NullNode>(N)) { 91 // Empty files are allowed and ignored 92 ++DocIterator; 93 return setCurrentDocument(); 94 } 95 releaseHNodeBuffers(); 96 TopNode = createHNodes(N); 97 CurrentNode = TopNode; 98 return true; 99 } 100 return false; 101 } 102 103 bool Input::nextDocument() { 104 return ++DocIterator != Strm->end(); 105 } 106 107 const Node *Input::getCurrentNode() const { 108 return CurrentNode ? CurrentNode->_node : nullptr; 109 } 110 111 bool Input::mapTag(StringRef Tag, bool Default) { 112 // CurrentNode can be null if setCurrentDocument() was unable to 113 // parse the document because it was invalid or empty. 114 if (!CurrentNode) 115 return false; 116 117 std::string foundTag = CurrentNode->_node->getVerbatimTag(); 118 if (foundTag.empty()) { 119 // If no tag found and 'Tag' is the default, say it was found. 120 return Default; 121 } 122 // Return true iff found tag matches supplied tag. 123 return Tag.equals(foundTag); 124 } 125 126 void Input::beginMapping() { 127 if (EC) 128 return; 129 // CurrentNode can be null if the document is empty. 130 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); 131 if (MN) { 132 MN->ValidKeys.clear(); 133 } 134 } 135 136 std::vector<StringRef> Input::keys() { 137 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); 138 std::vector<StringRef> Ret; 139 if (!MN) { 140 setError(CurrentNode, "not a mapping"); 141 return Ret; 142 } 143 for (auto &P : MN->Mapping) 144 Ret.push_back(P.first()); 145 return Ret; 146 } 147 148 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, 149 void *&SaveInfo) { 150 UseDefault = false; 151 if (EC) 152 return false; 153 154 // CurrentNode is null for empty documents, which is an error in case required 155 // nodes are present. 156 if (!CurrentNode) { 157 if (Required) 158 EC = make_error_code(errc::invalid_argument); 159 else 160 UseDefault = true; 161 return false; 162 } 163 164 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); 165 if (!MN) { 166 if (Required || !isa<EmptyHNode>(CurrentNode)) 167 setError(CurrentNode, "not a mapping"); 168 else 169 UseDefault = true; 170 return false; 171 } 172 MN->ValidKeys.push_back(Key); 173 HNode *Value = MN->Mapping[Key].first; 174 if (!Value) { 175 if (Required) 176 setError(CurrentNode, Twine("missing required key '") + Key + "'"); 177 else 178 UseDefault = true; 179 return false; 180 } 181 SaveInfo = CurrentNode; 182 CurrentNode = Value; 183 return true; 184 } 185 186 void Input::postflightKey(void *saveInfo) { 187 CurrentNode = reinterpret_cast<HNode *>(saveInfo); 188 } 189 190 void Input::endMapping() { 191 if (EC) 192 return; 193 // CurrentNode can be null if the document is empty. 194 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); 195 if (!MN) 196 return; 197 for (const auto &NN : MN->Mapping) { 198 if (!is_contained(MN->ValidKeys, NN.first())) { 199 const SMRange &ReportLoc = NN.second.second; 200 if (!AllowUnknownKeys) { 201 setError(ReportLoc, Twine("unknown key '") + NN.first() + "'"); 202 break; 203 } else 204 reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'"); 205 } 206 } 207 } 208 209 void Input::beginFlowMapping() { beginMapping(); } 210 211 void Input::endFlowMapping() { endMapping(); } 212 213 unsigned Input::beginSequence() { 214 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) 215 return SQ->Entries.size(); 216 if (isa<EmptyHNode>(CurrentNode)) 217 return 0; 218 // Treat case where there's a scalar "null" value as an empty sequence. 219 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 220 if (isNull(SN->value())) 221 return 0; 222 } 223 // Any other type of HNode is an error. 224 setError(CurrentNode, "not a sequence"); 225 return 0; 226 } 227 228 void Input::endSequence() { 229 } 230 231 bool Input::preflightElement(unsigned Index, void *&SaveInfo) { 232 if (EC) 233 return false; 234 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 235 SaveInfo = CurrentNode; 236 CurrentNode = SQ->Entries[Index]; 237 return true; 238 } 239 return false; 240 } 241 242 void Input::postflightElement(void *SaveInfo) { 243 CurrentNode = reinterpret_cast<HNode *>(SaveInfo); 244 } 245 246 unsigned Input::beginFlowSequence() { return beginSequence(); } 247 248 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { 249 if (EC) 250 return false; 251 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 252 SaveInfo = CurrentNode; 253 CurrentNode = SQ->Entries[index]; 254 return true; 255 } 256 return false; 257 } 258 259 void Input::postflightFlowElement(void *SaveInfo) { 260 CurrentNode = reinterpret_cast<HNode *>(SaveInfo); 261 } 262 263 void Input::endFlowSequence() { 264 } 265 266 void Input::beginEnumScalar() { 267 ScalarMatchFound = false; 268 } 269 270 bool Input::matchEnumScalar(const char *Str, bool) { 271 if (ScalarMatchFound) 272 return false; 273 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 274 if (SN->value().equals(Str)) { 275 ScalarMatchFound = true; 276 return true; 277 } 278 } 279 return false; 280 } 281 282 bool Input::matchEnumFallback() { 283 if (ScalarMatchFound) 284 return false; 285 ScalarMatchFound = true; 286 return true; 287 } 288 289 void Input::endEnumScalar() { 290 if (!ScalarMatchFound) { 291 setError(CurrentNode, "unknown enumerated scalar"); 292 } 293 } 294 295 bool Input::beginBitSetScalar(bool &DoClear) { 296 BitValuesUsed.clear(); 297 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 298 BitValuesUsed.resize(SQ->Entries.size()); 299 } else { 300 setError(CurrentNode, "expected sequence of bit values"); 301 } 302 DoClear = true; 303 return true; 304 } 305 306 bool Input::bitSetMatch(const char *Str, bool) { 307 if (EC) 308 return false; 309 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 310 unsigned Index = 0; 311 for (auto &N : SQ->Entries) { 312 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N)) { 313 if (SN->value().equals(Str)) { 314 BitValuesUsed[Index] = true; 315 return true; 316 } 317 } else { 318 setError(CurrentNode, "unexpected scalar in sequence of bit values"); 319 } 320 ++Index; 321 } 322 } else { 323 setError(CurrentNode, "expected sequence of bit values"); 324 } 325 return false; 326 } 327 328 void Input::endBitSetScalar() { 329 if (EC) 330 return; 331 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 332 assert(BitValuesUsed.size() == SQ->Entries.size()); 333 for (unsigned i = 0; i < SQ->Entries.size(); ++i) { 334 if (!BitValuesUsed[i]) { 335 setError(SQ->Entries[i], "unknown bit value"); 336 return; 337 } 338 } 339 } 340 } 341 342 void Input::scalarString(StringRef &S, QuotingType) { 343 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 344 S = SN->value(); 345 } else { 346 setError(CurrentNode, "unexpected scalar"); 347 } 348 } 349 350 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); } 351 352 void Input::scalarTag(std::string &Tag) { 353 Tag = CurrentNode->_node->getVerbatimTag(); 354 } 355 356 void Input::setError(HNode *hnode, const Twine &message) { 357 assert(hnode && "HNode must not be NULL"); 358 setError(hnode->_node, message); 359 } 360 361 NodeKind Input::getNodeKind() { 362 if (isa<ScalarHNode>(CurrentNode)) 363 return NodeKind::Scalar; 364 else if (isa<MapHNode>(CurrentNode)) 365 return NodeKind::Map; 366 else if (isa<SequenceHNode>(CurrentNode)) 367 return NodeKind::Sequence; 368 llvm_unreachable("Unsupported node kind"); 369 } 370 371 void Input::setError(Node *node, const Twine &message) { 372 Strm->printError(node, message); 373 EC = make_error_code(errc::invalid_argument); 374 } 375 376 void Input::setError(const SMRange &range, const Twine &message) { 377 Strm->printError(range, message); 378 EC = make_error_code(errc::invalid_argument); 379 } 380 381 void Input::reportWarning(HNode *hnode, const Twine &message) { 382 assert(hnode && "HNode must not be NULL"); 383 Strm->printError(hnode->_node, message, SourceMgr::DK_Warning); 384 } 385 386 void Input::reportWarning(Node *node, const Twine &message) { 387 Strm->printError(node, message, SourceMgr::DK_Warning); 388 } 389 390 void Input::reportWarning(const SMRange &range, const Twine &message) { 391 Strm->printError(range, message, SourceMgr::DK_Warning); 392 } 393 394 void Input::releaseHNodeBuffers() { 395 EmptyHNodeAllocator.DestroyAll(); 396 ScalarHNodeAllocator.DestroyAll(); 397 SequenceHNodeAllocator.DestroyAll(); 398 MapHNodeAllocator.DestroyAll(); 399 } 400 401 Input::HNode *Input::createHNodes(Node *N) { 402 SmallString<128> StringStorage; 403 switch (N->getType()) { 404 case Node::NK_Scalar: { 405 ScalarNode *SN = dyn_cast<ScalarNode>(N); 406 StringRef KeyStr = SN->getValue(StringStorage); 407 if (!StringStorage.empty()) { 408 // Copy string to permanent storage 409 KeyStr = StringStorage.str().copy(StringAllocator); 410 } 411 return new (ScalarHNodeAllocator.Allocate()) ScalarHNode(N, KeyStr); 412 } 413 case Node::NK_BlockScalar: { 414 BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N); 415 StringRef ValueCopy = BSN->getValue().copy(StringAllocator); 416 return new (ScalarHNodeAllocator.Allocate()) ScalarHNode(N, ValueCopy); 417 } 418 case Node::NK_Sequence: { 419 SequenceNode *SQ = dyn_cast<SequenceNode>(N); 420 auto SQHNode = new (SequenceHNodeAllocator.Allocate()) SequenceHNode(N); 421 for (Node &SN : *SQ) { 422 auto Entry = createHNodes(&SN); 423 if (EC) 424 break; 425 SQHNode->Entries.push_back(Entry); 426 } 427 return SQHNode; 428 } 429 case Node::NK_Mapping: { 430 MappingNode *Map = dyn_cast<MappingNode>(N); 431 auto mapHNode = new (MapHNodeAllocator.Allocate()) MapHNode(N); 432 for (KeyValueNode &KVN : *Map) { 433 Node *KeyNode = KVN.getKey(); 434 ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode); 435 Node *Value = KVN.getValue(); 436 if (!Key || !Value) { 437 if (!Key) 438 setError(KeyNode, "Map key must be a scalar"); 439 if (!Value) 440 setError(KeyNode, "Map value must not be empty"); 441 break; 442 } 443 StringStorage.clear(); 444 StringRef KeyStr = Key->getValue(StringStorage); 445 if (!StringStorage.empty()) { 446 // Copy string to permanent storage 447 KeyStr = StringStorage.str().copy(StringAllocator); 448 } 449 if (mapHNode->Mapping.count(KeyStr)) 450 // From YAML spec: "The content of a mapping node is an unordered set of 451 // key/value node pairs, with the restriction that each of the keys is 452 // unique." 453 setError(KeyNode, Twine("duplicated mapping key '") + KeyStr + "'"); 454 auto ValueHNode = createHNodes(Value); 455 if (EC) 456 break; 457 mapHNode->Mapping[KeyStr] = 458 std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange()); 459 } 460 return std::move(mapHNode); 461 } 462 case Node::NK_Null: 463 return new (EmptyHNodeAllocator.Allocate()) EmptyHNode(N); 464 default: 465 setError(N, "unknown node kind"); 466 return nullptr; 467 } 468 } 469 470 void Input::setError(const Twine &Message) { 471 setError(CurrentNode, Message); 472 } 473 474 void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; } 475 476 bool Input::canElideEmptySequence() { 477 return false; 478 } 479 480 //===----------------------------------------------------------------------===// 481 // Output 482 //===----------------------------------------------------------------------===// 483 484 Output::Output(raw_ostream &yout, void *context, int WrapColumn) 485 : IO(context), Out(yout), WrapColumn(WrapColumn) {} 486 487 Output::~Output() = default; 488 489 bool Output::outputting() const { 490 return true; 491 } 492 493 void Output::beginMapping() { 494 StateStack.push_back(inMapFirstKey); 495 PaddingBeforeContainer = Padding; 496 Padding = "\n"; 497 } 498 499 bool Output::mapTag(StringRef Tag, bool Use) { 500 if (Use) { 501 // If this tag is being written inside a sequence we should write the start 502 // of the sequence before writing the tag, otherwise the tag won't be 503 // attached to the element in the sequence, but rather the sequence itself. 504 bool SequenceElement = false; 505 if (StateStack.size() > 1) { 506 auto &E = StateStack[StateStack.size() - 2]; 507 SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E); 508 } 509 if (SequenceElement && StateStack.back() == inMapFirstKey) { 510 newLineCheck(); 511 } else { 512 output(" "); 513 } 514 output(Tag); 515 if (SequenceElement) { 516 // If we're writing the tag during the first element of a map, the tag 517 // takes the place of the first element in the sequence. 518 if (StateStack.back() == inMapFirstKey) { 519 StateStack.pop_back(); 520 StateStack.push_back(inMapOtherKey); 521 } 522 // Tags inside maps in sequences should act as keys in the map from a 523 // formatting perspective, so we always want a newline in a sequence. 524 Padding = "\n"; 525 } 526 } 527 return Use; 528 } 529 530 void Output::endMapping() { 531 // If we did not map anything, we should explicitly emit an empty map 532 if (StateStack.back() == inMapFirstKey) { 533 Padding = PaddingBeforeContainer; 534 newLineCheck(); 535 output("{}"); 536 Padding = "\n"; 537 } 538 StateStack.pop_back(); 539 } 540 541 std::vector<StringRef> Output::keys() { 542 report_fatal_error("invalid call"); 543 } 544 545 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, 546 bool &UseDefault, void *&SaveInfo) { 547 UseDefault = false; 548 SaveInfo = nullptr; 549 if (Required || !SameAsDefault || WriteDefaultValues) { 550 auto State = StateStack.back(); 551 if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) { 552 flowKey(Key); 553 } else { 554 newLineCheck(); 555 paddedKey(Key); 556 } 557 return true; 558 } 559 return false; 560 } 561 562 void Output::postflightKey(void *) { 563 if (StateStack.back() == inMapFirstKey) { 564 StateStack.pop_back(); 565 StateStack.push_back(inMapOtherKey); 566 } else if (StateStack.back() == inFlowMapFirstKey) { 567 StateStack.pop_back(); 568 StateStack.push_back(inFlowMapOtherKey); 569 } 570 } 571 572 void Output::beginFlowMapping() { 573 StateStack.push_back(inFlowMapFirstKey); 574 newLineCheck(); 575 ColumnAtMapFlowStart = Column; 576 output("{ "); 577 } 578 579 void Output::endFlowMapping() { 580 StateStack.pop_back(); 581 outputUpToEndOfLine(" }"); 582 } 583 584 void Output::beginDocuments() { 585 outputUpToEndOfLine("---"); 586 } 587 588 bool Output::preflightDocument(unsigned index) { 589 if (index > 0) 590 outputUpToEndOfLine("\n---"); 591 return true; 592 } 593 594 void Output::postflightDocument() { 595 } 596 597 void Output::endDocuments() { 598 output("\n...\n"); 599 } 600 601 unsigned Output::beginSequence() { 602 StateStack.push_back(inSeqFirstElement); 603 PaddingBeforeContainer = Padding; 604 Padding = "\n"; 605 return 0; 606 } 607 608 void Output::endSequence() { 609 // If we did not emit anything, we should explicitly emit an empty sequence 610 if (StateStack.back() == inSeqFirstElement) { 611 Padding = PaddingBeforeContainer; 612 newLineCheck(/*EmptySequence=*/true); 613 output("[]"); 614 Padding = "\n"; 615 } 616 StateStack.pop_back(); 617 } 618 619 bool Output::preflightElement(unsigned, void *&SaveInfo) { 620 SaveInfo = nullptr; 621 return true; 622 } 623 624 void Output::postflightElement(void *) { 625 if (StateStack.back() == inSeqFirstElement) { 626 StateStack.pop_back(); 627 StateStack.push_back(inSeqOtherElement); 628 } else if (StateStack.back() == inFlowSeqFirstElement) { 629 StateStack.pop_back(); 630 StateStack.push_back(inFlowSeqOtherElement); 631 } 632 } 633 634 unsigned Output::beginFlowSequence() { 635 StateStack.push_back(inFlowSeqFirstElement); 636 newLineCheck(); 637 ColumnAtFlowStart = Column; 638 output("[ "); 639 NeedFlowSequenceComma = false; 640 return 0; 641 } 642 643 void Output::endFlowSequence() { 644 StateStack.pop_back(); 645 outputUpToEndOfLine(" ]"); 646 } 647 648 bool Output::preflightFlowElement(unsigned, void *&SaveInfo) { 649 if (NeedFlowSequenceComma) 650 output(", "); 651 if (WrapColumn && Column > WrapColumn) { 652 output("\n"); 653 for (int i = 0; i < ColumnAtFlowStart; ++i) 654 output(" "); 655 Column = ColumnAtFlowStart; 656 output(" "); 657 } 658 SaveInfo = nullptr; 659 return true; 660 } 661 662 void Output::postflightFlowElement(void *) { 663 NeedFlowSequenceComma = true; 664 } 665 666 void Output::beginEnumScalar() { 667 EnumerationMatchFound = false; 668 } 669 670 bool Output::matchEnumScalar(const char *Str, bool Match) { 671 if (Match && !EnumerationMatchFound) { 672 newLineCheck(); 673 outputUpToEndOfLine(Str); 674 EnumerationMatchFound = true; 675 } 676 return false; 677 } 678 679 bool Output::matchEnumFallback() { 680 if (EnumerationMatchFound) 681 return false; 682 EnumerationMatchFound = true; 683 return true; 684 } 685 686 void Output::endEnumScalar() { 687 if (!EnumerationMatchFound) 688 llvm_unreachable("bad runtime enum value"); 689 } 690 691 bool Output::beginBitSetScalar(bool &DoClear) { 692 newLineCheck(); 693 output("[ "); 694 NeedBitValueComma = false; 695 DoClear = false; 696 return true; 697 } 698 699 bool Output::bitSetMatch(const char *Str, bool Matches) { 700 if (Matches) { 701 if (NeedBitValueComma) 702 output(", "); 703 output(Str); 704 NeedBitValueComma = true; 705 } 706 return false; 707 } 708 709 void Output::endBitSetScalar() { 710 outputUpToEndOfLine(" ]"); 711 } 712 713 void Output::scalarString(StringRef &S, QuotingType MustQuote) { 714 newLineCheck(); 715 if (S.empty()) { 716 // Print '' for the empty string because leaving the field empty is not 717 // allowed. 718 outputUpToEndOfLine("''"); 719 return; 720 } 721 if (MustQuote == QuotingType::None) { 722 // Only quote if we must. 723 outputUpToEndOfLine(S); 724 return; 725 } 726 727 const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\""; 728 output(Quote); // Starting quote. 729 730 // When using double-quoted strings (and only in that case), non-printable characters may be 731 // present, and will be escaped using a variety of unicode-scalar and special short-form 732 // escapes. This is handled in yaml::escape. 733 if (MustQuote == QuotingType::Double) { 734 output(yaml::escape(S, /* EscapePrintable= */ false)); 735 outputUpToEndOfLine(Quote); 736 return; 737 } 738 739 unsigned i = 0; 740 unsigned j = 0; 741 unsigned End = S.size(); 742 const char *Base = S.data(); 743 744 // When using single-quoted strings, any single quote ' must be doubled to be escaped. 745 while (j < End) { 746 if (S[j] == '\'') { // Escape quotes. 747 output(StringRef(&Base[i], j - i)); // "flush". 748 output(StringLiteral("''")); // Print it as '' 749 i = j + 1; 750 } 751 ++j; 752 } 753 output(StringRef(&Base[i], j - i)); 754 outputUpToEndOfLine(Quote); // Ending quote. 755 } 756 757 void Output::blockScalarString(StringRef &S) { 758 if (!StateStack.empty()) 759 newLineCheck(); 760 output(" |"); 761 outputNewLine(); 762 763 unsigned Indent = StateStack.empty() ? 1 : StateStack.size(); 764 765 auto Buffer = MemoryBuffer::getMemBuffer(S, "", false); 766 for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) { 767 for (unsigned I = 0; I < Indent; ++I) { 768 output(" "); 769 } 770 output(*Lines); 771 outputNewLine(); 772 } 773 } 774 775 void Output::scalarTag(std::string &Tag) { 776 if (Tag.empty()) 777 return; 778 newLineCheck(); 779 output(Tag); 780 output(" "); 781 } 782 783 void Output::setError(const Twine &message) { 784 } 785 786 bool Output::canElideEmptySequence() { 787 // Normally, with an optional key/value where the value is an empty sequence, 788 // the whole key/value can be not written. But, that produces wrong yaml 789 // if the key/value is the only thing in the map and the map is used in 790 // a sequence. This detects if the this sequence is the first key/value 791 // in map that itself is embedded in a sequence. 792 if (StateStack.size() < 2) 793 return true; 794 if (StateStack.back() != inMapFirstKey) 795 return true; 796 return !inSeqAnyElement(StateStack[StateStack.size() - 2]); 797 } 798 799 void Output::output(StringRef s) { 800 Column += s.size(); 801 Out << s; 802 } 803 804 void Output::outputUpToEndOfLine(StringRef s) { 805 output(s); 806 if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) && 807 !inFlowMapAnyKey(StateStack.back()))) 808 Padding = "\n"; 809 } 810 811 void Output::outputNewLine() { 812 Out << "\n"; 813 Column = 0; 814 } 815 816 // if seq at top, indent as if map, then add "- " 817 // if seq in middle, use "- " if firstKey, else use " " 818 // 819 820 void Output::newLineCheck(bool EmptySequence) { 821 if (Padding != "\n") { 822 output(Padding); 823 Padding = {}; 824 return; 825 } 826 outputNewLine(); 827 Padding = {}; 828 829 if (StateStack.size() == 0 || EmptySequence) 830 return; 831 832 unsigned Indent = StateStack.size() - 1; 833 bool OutputDash = false; 834 835 if (StateStack.back() == inSeqFirstElement || 836 StateStack.back() == inSeqOtherElement) { 837 OutputDash = true; 838 } else if ((StateStack.size() > 1) && 839 ((StateStack.back() == inMapFirstKey) || 840 inFlowSeqAnyElement(StateStack.back()) || 841 (StateStack.back() == inFlowMapFirstKey)) && 842 inSeqAnyElement(StateStack[StateStack.size() - 2])) { 843 --Indent; 844 OutputDash = true; 845 } 846 847 for (unsigned i = 0; i < Indent; ++i) { 848 output(" "); 849 } 850 if (OutputDash) { 851 output("- "); 852 } 853 } 854 855 void Output::paddedKey(StringRef key) { 856 output(key); 857 output(":"); 858 const char *spaces = " "; 859 if (key.size() < strlen(spaces)) 860 Padding = &spaces[key.size()]; 861 else 862 Padding = " "; 863 } 864 865 void Output::flowKey(StringRef Key) { 866 if (StateStack.back() == inFlowMapOtherKey) 867 output(", "); 868 if (WrapColumn && Column > WrapColumn) { 869 output("\n"); 870 for (int I = 0; I < ColumnAtMapFlowStart; ++I) 871 output(" "); 872 Column = ColumnAtMapFlowStart; 873 output(" "); 874 } 875 output(Key); 876 output(": "); 877 } 878 879 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); } 880 881 bool Output::inSeqAnyElement(InState State) { 882 return State == inSeqFirstElement || State == inSeqOtherElement; 883 } 884 885 bool Output::inFlowSeqAnyElement(InState State) { 886 return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement; 887 } 888 889 bool Output::inMapAnyKey(InState State) { 890 return State == inMapFirstKey || State == inMapOtherKey; 891 } 892 893 bool Output::inFlowMapAnyKey(InState State) { 894 return State == inFlowMapFirstKey || State == inFlowMapOtherKey; 895 } 896 897 //===----------------------------------------------------------------------===// 898 // traits for built-in types 899 //===----------------------------------------------------------------------===// 900 901 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) { 902 Out << (Val ? "true" : "false"); 903 } 904 905 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) { 906 if (std::optional<bool> Parsed = parseBool(Scalar)) { 907 Val = *Parsed; 908 return StringRef(); 909 } 910 return "invalid boolean"; 911 } 912 913 void ScalarTraits<StringRef>::output(const StringRef &Val, void *, 914 raw_ostream &Out) { 915 Out << Val; 916 } 917 918 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *, 919 StringRef &Val) { 920 Val = Scalar; 921 return StringRef(); 922 } 923 924 void ScalarTraits<std::string>::output(const std::string &Val, void *, 925 raw_ostream &Out) { 926 Out << Val; 927 } 928 929 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *, 930 std::string &Val) { 931 Val = Scalar.str(); 932 return StringRef(); 933 } 934 935 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *, 936 raw_ostream &Out) { 937 // use temp uin32_t because ostream thinks uint8_t is a character 938 uint32_t Num = Val; 939 Out << Num; 940 } 941 942 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) { 943 unsigned long long n; 944 if (getAsUnsignedInteger(Scalar, 0, n)) 945 return "invalid number"; 946 if (n > 0xFF) 947 return "out of range number"; 948 Val = n; 949 return StringRef(); 950 } 951 952 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *, 953 raw_ostream &Out) { 954 Out << Val; 955 } 956 957 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *, 958 uint16_t &Val) { 959 unsigned long long n; 960 if (getAsUnsignedInteger(Scalar, 0, n)) 961 return "invalid number"; 962 if (n > 0xFFFF) 963 return "out of range number"; 964 Val = n; 965 return StringRef(); 966 } 967 968 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *, 969 raw_ostream &Out) { 970 Out << Val; 971 } 972 973 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *, 974 uint32_t &Val) { 975 unsigned long long n; 976 if (getAsUnsignedInteger(Scalar, 0, n)) 977 return "invalid number"; 978 if (n > 0xFFFFFFFFUL) 979 return "out of range number"; 980 Val = n; 981 return StringRef(); 982 } 983 984 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *, 985 raw_ostream &Out) { 986 Out << Val; 987 } 988 989 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *, 990 uint64_t &Val) { 991 unsigned long long N; 992 if (getAsUnsignedInteger(Scalar, 0, N)) 993 return "invalid number"; 994 Val = N; 995 return StringRef(); 996 } 997 998 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) { 999 // use temp in32_t because ostream thinks int8_t is a character 1000 int32_t Num = Val; 1001 Out << Num; 1002 } 1003 1004 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) { 1005 long long N; 1006 if (getAsSignedInteger(Scalar, 0, N)) 1007 return "invalid number"; 1008 if ((N > 127) || (N < -128)) 1009 return "out of range number"; 1010 Val = N; 1011 return StringRef(); 1012 } 1013 1014 void ScalarTraits<int16_t>::output(const int16_t &Val, void *, 1015 raw_ostream &Out) { 1016 Out << Val; 1017 } 1018 1019 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) { 1020 long long N; 1021 if (getAsSignedInteger(Scalar, 0, N)) 1022 return "invalid number"; 1023 if ((N > INT16_MAX) || (N < INT16_MIN)) 1024 return "out of range number"; 1025 Val = N; 1026 return StringRef(); 1027 } 1028 1029 void ScalarTraits<int32_t>::output(const int32_t &Val, void *, 1030 raw_ostream &Out) { 1031 Out << Val; 1032 } 1033 1034 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) { 1035 long long N; 1036 if (getAsSignedInteger(Scalar, 0, N)) 1037 return "invalid number"; 1038 if ((N > INT32_MAX) || (N < INT32_MIN)) 1039 return "out of range number"; 1040 Val = N; 1041 return StringRef(); 1042 } 1043 1044 void ScalarTraits<int64_t>::output(const int64_t &Val, void *, 1045 raw_ostream &Out) { 1046 Out << Val; 1047 } 1048 1049 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) { 1050 long long N; 1051 if (getAsSignedInteger(Scalar, 0, N)) 1052 return "invalid number"; 1053 Val = N; 1054 return StringRef(); 1055 } 1056 1057 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) { 1058 Out << format("%g", Val); 1059 } 1060 1061 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) { 1062 if (to_float(Scalar, Val)) 1063 return StringRef(); 1064 return "invalid floating point number"; 1065 } 1066 1067 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) { 1068 Out << format("%g", Val); 1069 } 1070 1071 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) { 1072 if (to_float(Scalar, Val)) 1073 return StringRef(); 1074 return "invalid floating point number"; 1075 } 1076 1077 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) { 1078 Out << format("0x%" PRIX8, (uint8_t)Val); 1079 } 1080 1081 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) { 1082 unsigned long long n; 1083 if (getAsUnsignedInteger(Scalar, 0, n)) 1084 return "invalid hex8 number"; 1085 if (n > 0xFF) 1086 return "out of range hex8 number"; 1087 Val = n; 1088 return StringRef(); 1089 } 1090 1091 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) { 1092 Out << format("0x%" PRIX16, (uint16_t)Val); 1093 } 1094 1095 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) { 1096 unsigned long long n; 1097 if (getAsUnsignedInteger(Scalar, 0, n)) 1098 return "invalid hex16 number"; 1099 if (n > 0xFFFF) 1100 return "out of range hex16 number"; 1101 Val = n; 1102 return StringRef(); 1103 } 1104 1105 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) { 1106 Out << format("0x%" PRIX32, (uint32_t)Val); 1107 } 1108 1109 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) { 1110 unsigned long long n; 1111 if (getAsUnsignedInteger(Scalar, 0, n)) 1112 return "invalid hex32 number"; 1113 if (n > 0xFFFFFFFFUL) 1114 return "out of range hex32 number"; 1115 Val = n; 1116 return StringRef(); 1117 } 1118 1119 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) { 1120 Out << format("0x%" PRIX64, (uint64_t)Val); 1121 } 1122 1123 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) { 1124 unsigned long long Num; 1125 if (getAsUnsignedInteger(Scalar, 0, Num)) 1126 return "invalid hex64 number"; 1127 Val = Num; 1128 return StringRef(); 1129 } 1130 1131 void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *, 1132 llvm::raw_ostream &Out) { 1133 Out << Val.getAsString(); 1134 } 1135 1136 StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *, 1137 VersionTuple &Val) { 1138 if (Val.tryParse(Scalar)) 1139 return "invalid version format"; 1140 return StringRef(); 1141 } 1142