1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/YAMLTraits.h" 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/StringExtras.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/ADT/Twine.h" 15 #include "llvm/Support/Casting.h" 16 #include "llvm/Support/Errc.h" 17 #include "llvm/Support/ErrorHandling.h" 18 #include "llvm/Support/Format.h" 19 #include "llvm/Support/LineIterator.h" 20 #include "llvm/Support/MemoryBuffer.h" 21 #include "llvm/Support/Unicode.h" 22 #include "llvm/Support/YAMLParser.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <cassert> 26 #include <cstdint> 27 #include <cstdlib> 28 #include <cstring> 29 #include <string> 30 #include <vector> 31 32 using namespace llvm; 33 using namespace yaml; 34 35 //===----------------------------------------------------------------------===// 36 // IO 37 //===----------------------------------------------------------------------===// 38 39 IO::IO(void *Context) : Ctxt(Context) {} 40 41 IO::~IO() = default; 42 43 void *IO::getContext() const { 44 return Ctxt; 45 } 46 47 void IO::setContext(void *Context) { 48 Ctxt = Context; 49 } 50 51 //===----------------------------------------------------------------------===// 52 // Input 53 //===----------------------------------------------------------------------===// 54 55 Input::Input(StringRef InputContent, void *Ctxt, 56 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) 57 : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) { 58 if (DiagHandler) 59 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); 60 DocIterator = Strm->begin(); 61 } 62 63 Input::Input(MemoryBufferRef Input, void *Ctxt, 64 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) 65 : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) { 66 if (DiagHandler) 67 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); 68 DocIterator = Strm->begin(); 69 } 70 71 Input::~Input() = default; 72 73 std::error_code Input::error() { return EC; } 74 75 // Pin the vtables to this file. 76 void Input::HNode::anchor() {} 77 void Input::EmptyHNode::anchor() {} 78 void Input::ScalarHNode::anchor() {} 79 void Input::MapHNode::anchor() {} 80 void Input::SequenceHNode::anchor() {} 81 82 bool Input::outputting() const { 83 return false; 84 } 85 86 bool Input::setCurrentDocument() { 87 if (DocIterator != Strm->end()) { 88 Node *N = DocIterator->getRoot(); 89 if (!N) { 90 EC = make_error_code(errc::invalid_argument); 91 return false; 92 } 93 94 if (isa<NullNode>(N)) { 95 // Empty files are allowed and ignored 96 ++DocIterator; 97 return setCurrentDocument(); 98 } 99 TopNode = createHNodes(N); 100 CurrentNode = TopNode.get(); 101 return true; 102 } 103 return false; 104 } 105 106 bool Input::nextDocument() { 107 return ++DocIterator != Strm->end(); 108 } 109 110 const Node *Input::getCurrentNode() const { 111 return CurrentNode ? CurrentNode->_node : nullptr; 112 } 113 114 bool Input::mapTag(StringRef Tag, bool Default) { 115 // CurrentNode can be null if setCurrentDocument() was unable to 116 // parse the document because it was invalid or empty. 117 if (!CurrentNode) 118 return false; 119 120 std::string foundTag = CurrentNode->_node->getVerbatimTag(); 121 if (foundTag.empty()) { 122 // If no tag found and 'Tag' is the default, say it was found. 123 return Default; 124 } 125 // Return true iff found tag matches supplied tag. 126 return Tag.equals(foundTag); 127 } 128 129 void Input::beginMapping() { 130 if (EC) 131 return; 132 // CurrentNode can be null if the document is empty. 133 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); 134 if (MN) { 135 MN->ValidKeys.clear(); 136 } 137 } 138 139 std::vector<StringRef> Input::keys() { 140 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); 141 std::vector<StringRef> Ret; 142 if (!MN) { 143 setError(CurrentNode, "not a mapping"); 144 return Ret; 145 } 146 for (auto &P : MN->Mapping) 147 Ret.push_back(P.first()); 148 return Ret; 149 } 150 151 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, 152 void *&SaveInfo) { 153 UseDefault = false; 154 if (EC) 155 return false; 156 157 // CurrentNode is null for empty documents, which is an error in case required 158 // nodes are present. 159 if (!CurrentNode) { 160 if (Required) 161 EC = make_error_code(errc::invalid_argument); 162 return false; 163 } 164 165 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); 166 if (!MN) { 167 if (Required || !isa<EmptyHNode>(CurrentNode)) 168 setError(CurrentNode, "not a mapping"); 169 return false; 170 } 171 MN->ValidKeys.push_back(Key); 172 HNode *Value = MN->Mapping[Key].get(); 173 if (!Value) { 174 if (Required) 175 setError(CurrentNode, Twine("missing required key '") + Key + "'"); 176 else 177 UseDefault = true; 178 return false; 179 } 180 SaveInfo = CurrentNode; 181 CurrentNode = Value; 182 return true; 183 } 184 185 void Input::postflightKey(void *saveInfo) { 186 CurrentNode = reinterpret_cast<HNode *>(saveInfo); 187 } 188 189 void Input::endMapping() { 190 if (EC) 191 return; 192 // CurrentNode can be null if the document is empty. 193 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); 194 if (!MN) 195 return; 196 for (const auto &NN : MN->Mapping) { 197 if (!is_contained(MN->ValidKeys, NN.first())) { 198 setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'"); 199 break; 200 } 201 } 202 } 203 204 void Input::beginFlowMapping() { beginMapping(); } 205 206 void Input::endFlowMapping() { endMapping(); } 207 208 unsigned Input::beginSequence() { 209 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) 210 return SQ->Entries.size(); 211 if (isa<EmptyHNode>(CurrentNode)) 212 return 0; 213 // Treat case where there's a scalar "null" value as an empty sequence. 214 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 215 if (isNull(SN->value())) 216 return 0; 217 } 218 // Any other type of HNode is an error. 219 setError(CurrentNode, "not a sequence"); 220 return 0; 221 } 222 223 void Input::endSequence() { 224 } 225 226 bool Input::preflightElement(unsigned Index, void *&SaveInfo) { 227 if (EC) 228 return false; 229 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 230 SaveInfo = CurrentNode; 231 CurrentNode = SQ->Entries[Index].get(); 232 return true; 233 } 234 return false; 235 } 236 237 void Input::postflightElement(void *SaveInfo) { 238 CurrentNode = reinterpret_cast<HNode *>(SaveInfo); 239 } 240 241 unsigned Input::beginFlowSequence() { return beginSequence(); } 242 243 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { 244 if (EC) 245 return false; 246 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 247 SaveInfo = CurrentNode; 248 CurrentNode = SQ->Entries[index].get(); 249 return true; 250 } 251 return false; 252 } 253 254 void Input::postflightFlowElement(void *SaveInfo) { 255 CurrentNode = reinterpret_cast<HNode *>(SaveInfo); 256 } 257 258 void Input::endFlowSequence() { 259 } 260 261 void Input::beginEnumScalar() { 262 ScalarMatchFound = false; 263 } 264 265 bool Input::matchEnumScalar(const char *Str, bool) { 266 if (ScalarMatchFound) 267 return false; 268 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 269 if (SN->value().equals(Str)) { 270 ScalarMatchFound = true; 271 return true; 272 } 273 } 274 return false; 275 } 276 277 bool Input::matchEnumFallback() { 278 if (ScalarMatchFound) 279 return false; 280 ScalarMatchFound = true; 281 return true; 282 } 283 284 void Input::endEnumScalar() { 285 if (!ScalarMatchFound) { 286 setError(CurrentNode, "unknown enumerated scalar"); 287 } 288 } 289 290 bool Input::beginBitSetScalar(bool &DoClear) { 291 BitValuesUsed.clear(); 292 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 293 BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false); 294 } else { 295 setError(CurrentNode, "expected sequence of bit values"); 296 } 297 DoClear = true; 298 return true; 299 } 300 301 bool Input::bitSetMatch(const char *Str, bool) { 302 if (EC) 303 return false; 304 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 305 unsigned Index = 0; 306 for (auto &N : SQ->Entries) { 307 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) { 308 if (SN->value().equals(Str)) { 309 BitValuesUsed[Index] = true; 310 return true; 311 } 312 } else { 313 setError(CurrentNode, "unexpected scalar in sequence of bit values"); 314 } 315 ++Index; 316 } 317 } else { 318 setError(CurrentNode, "expected sequence of bit values"); 319 } 320 return false; 321 } 322 323 void Input::endBitSetScalar() { 324 if (EC) 325 return; 326 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { 327 assert(BitValuesUsed.size() == SQ->Entries.size()); 328 for (unsigned i = 0; i < SQ->Entries.size(); ++i) { 329 if (!BitValuesUsed[i]) { 330 setError(SQ->Entries[i].get(), "unknown bit value"); 331 return; 332 } 333 } 334 } 335 } 336 337 void Input::scalarString(StringRef &S, QuotingType) { 338 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { 339 S = SN->value(); 340 } else { 341 setError(CurrentNode, "unexpected scalar"); 342 } 343 } 344 345 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); } 346 347 void Input::scalarTag(std::string &Tag) { 348 Tag = CurrentNode->_node->getVerbatimTag(); 349 } 350 351 void Input::setError(HNode *hnode, const Twine &message) { 352 assert(hnode && "HNode must not be NULL"); 353 setError(hnode->_node, message); 354 } 355 356 NodeKind Input::getNodeKind() { 357 if (isa<ScalarHNode>(CurrentNode)) 358 return NodeKind::Scalar; 359 else if (isa<MapHNode>(CurrentNode)) 360 return NodeKind::Map; 361 else if (isa<SequenceHNode>(CurrentNode)) 362 return NodeKind::Sequence; 363 llvm_unreachable("Unsupported node kind"); 364 } 365 366 void Input::setError(Node *node, const Twine &message) { 367 Strm->printError(node, message); 368 EC = make_error_code(errc::invalid_argument); 369 } 370 371 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) { 372 SmallString<128> StringStorage; 373 if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) { 374 StringRef KeyStr = SN->getValue(StringStorage); 375 if (!StringStorage.empty()) { 376 // Copy string to permanent storage 377 KeyStr = StringStorage.str().copy(StringAllocator); 378 } 379 return std::make_unique<ScalarHNode>(N, KeyStr); 380 } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) { 381 StringRef ValueCopy = BSN->getValue().copy(StringAllocator); 382 return std::make_unique<ScalarHNode>(N, ValueCopy); 383 } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) { 384 auto SQHNode = std::make_unique<SequenceHNode>(N); 385 for (Node &SN : *SQ) { 386 auto Entry = createHNodes(&SN); 387 if (EC) 388 break; 389 SQHNode->Entries.push_back(std::move(Entry)); 390 } 391 return std::move(SQHNode); 392 } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) { 393 auto mapHNode = std::make_unique<MapHNode>(N); 394 for (KeyValueNode &KVN : *Map) { 395 Node *KeyNode = KVN.getKey(); 396 ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode); 397 Node *Value = KVN.getValue(); 398 if (!Key || !Value) { 399 if (!Key) 400 setError(KeyNode, "Map key must be a scalar"); 401 if (!Value) 402 setError(KeyNode, "Map value must not be empty"); 403 break; 404 } 405 StringStorage.clear(); 406 StringRef KeyStr = Key->getValue(StringStorage); 407 if (!StringStorage.empty()) { 408 // Copy string to permanent storage 409 KeyStr = StringStorage.str().copy(StringAllocator); 410 } 411 auto ValueHNode = createHNodes(Value); 412 if (EC) 413 break; 414 mapHNode->Mapping[KeyStr] = std::move(ValueHNode); 415 } 416 return std::move(mapHNode); 417 } else if (isa<NullNode>(N)) { 418 return std::make_unique<EmptyHNode>(N); 419 } else { 420 setError(N, "unknown node kind"); 421 return nullptr; 422 } 423 } 424 425 void Input::setError(const Twine &Message) { 426 setError(CurrentNode, Message); 427 } 428 429 bool Input::canElideEmptySequence() { 430 return false; 431 } 432 433 //===----------------------------------------------------------------------===// 434 // Output 435 //===----------------------------------------------------------------------===// 436 437 Output::Output(raw_ostream &yout, void *context, int WrapColumn) 438 : IO(context), Out(yout), WrapColumn(WrapColumn) {} 439 440 Output::~Output() = default; 441 442 bool Output::outputting() const { 443 return true; 444 } 445 446 void Output::beginMapping() { 447 StateStack.push_back(inMapFirstKey); 448 PaddingBeforeContainer = Padding; 449 Padding = "\n"; 450 } 451 452 bool Output::mapTag(StringRef Tag, bool Use) { 453 if (Use) { 454 // If this tag is being written inside a sequence we should write the start 455 // of the sequence before writing the tag, otherwise the tag won't be 456 // attached to the element in the sequence, but rather the sequence itself. 457 bool SequenceElement = false; 458 if (StateStack.size() > 1) { 459 auto &E = StateStack[StateStack.size() - 2]; 460 SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E); 461 } 462 if (SequenceElement && StateStack.back() == inMapFirstKey) { 463 newLineCheck(); 464 } else { 465 output(" "); 466 } 467 output(Tag); 468 if (SequenceElement) { 469 // If we're writing the tag during the first element of a map, the tag 470 // takes the place of the first element in the sequence. 471 if (StateStack.back() == inMapFirstKey) { 472 StateStack.pop_back(); 473 StateStack.push_back(inMapOtherKey); 474 } 475 // Tags inside maps in sequences should act as keys in the map from a 476 // formatting perspective, so we always want a newline in a sequence. 477 Padding = "\n"; 478 } 479 } 480 return Use; 481 } 482 483 void Output::endMapping() { 484 // If we did not map anything, we should explicitly emit an empty map 485 if (StateStack.back() == inMapFirstKey) { 486 Padding = PaddingBeforeContainer; 487 newLineCheck(); 488 output("{}"); 489 Padding = "\n"; 490 } 491 StateStack.pop_back(); 492 } 493 494 std::vector<StringRef> Output::keys() { 495 report_fatal_error("invalid call"); 496 } 497 498 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, 499 bool &UseDefault, void *&) { 500 UseDefault = false; 501 if (Required || !SameAsDefault || WriteDefaultValues) { 502 auto State = StateStack.back(); 503 if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) { 504 flowKey(Key); 505 } else { 506 newLineCheck(); 507 paddedKey(Key); 508 } 509 return true; 510 } 511 return false; 512 } 513 514 void Output::postflightKey(void *) { 515 if (StateStack.back() == inMapFirstKey) { 516 StateStack.pop_back(); 517 StateStack.push_back(inMapOtherKey); 518 } else if (StateStack.back() == inFlowMapFirstKey) { 519 StateStack.pop_back(); 520 StateStack.push_back(inFlowMapOtherKey); 521 } 522 } 523 524 void Output::beginFlowMapping() { 525 StateStack.push_back(inFlowMapFirstKey); 526 newLineCheck(); 527 ColumnAtMapFlowStart = Column; 528 output("{ "); 529 } 530 531 void Output::endFlowMapping() { 532 StateStack.pop_back(); 533 outputUpToEndOfLine(" }"); 534 } 535 536 void Output::beginDocuments() { 537 outputUpToEndOfLine("---"); 538 } 539 540 bool Output::preflightDocument(unsigned index) { 541 if (index > 0) 542 outputUpToEndOfLine("\n---"); 543 return true; 544 } 545 546 void Output::postflightDocument() { 547 } 548 549 void Output::endDocuments() { 550 output("\n...\n"); 551 } 552 553 unsigned Output::beginSequence() { 554 StateStack.push_back(inSeqFirstElement); 555 PaddingBeforeContainer = Padding; 556 Padding = "\n"; 557 return 0; 558 } 559 560 void Output::endSequence() { 561 // If we did not emit anything, we should explicitly emit an empty sequence 562 if (StateStack.back() == inSeqFirstElement) { 563 Padding = PaddingBeforeContainer; 564 newLineCheck(); 565 output("[]"); 566 Padding = "\n"; 567 } 568 StateStack.pop_back(); 569 } 570 571 bool Output::preflightElement(unsigned, void *&) { 572 return true; 573 } 574 575 void Output::postflightElement(void *) { 576 if (StateStack.back() == inSeqFirstElement) { 577 StateStack.pop_back(); 578 StateStack.push_back(inSeqOtherElement); 579 } else if (StateStack.back() == inFlowSeqFirstElement) { 580 StateStack.pop_back(); 581 StateStack.push_back(inFlowSeqOtherElement); 582 } 583 } 584 585 unsigned Output::beginFlowSequence() { 586 StateStack.push_back(inFlowSeqFirstElement); 587 newLineCheck(); 588 ColumnAtFlowStart = Column; 589 output("[ "); 590 NeedFlowSequenceComma = false; 591 return 0; 592 } 593 594 void Output::endFlowSequence() { 595 StateStack.pop_back(); 596 outputUpToEndOfLine(" ]"); 597 } 598 599 bool Output::preflightFlowElement(unsigned, void *&) { 600 if (NeedFlowSequenceComma) 601 output(", "); 602 if (WrapColumn && Column > WrapColumn) { 603 output("\n"); 604 for (int i = 0; i < ColumnAtFlowStart; ++i) 605 output(" "); 606 Column = ColumnAtFlowStart; 607 output(" "); 608 } 609 return true; 610 } 611 612 void Output::postflightFlowElement(void *) { 613 NeedFlowSequenceComma = true; 614 } 615 616 void Output::beginEnumScalar() { 617 EnumerationMatchFound = false; 618 } 619 620 bool Output::matchEnumScalar(const char *Str, bool Match) { 621 if (Match && !EnumerationMatchFound) { 622 newLineCheck(); 623 outputUpToEndOfLine(Str); 624 EnumerationMatchFound = true; 625 } 626 return false; 627 } 628 629 bool Output::matchEnumFallback() { 630 if (EnumerationMatchFound) 631 return false; 632 EnumerationMatchFound = true; 633 return true; 634 } 635 636 void Output::endEnumScalar() { 637 if (!EnumerationMatchFound) 638 llvm_unreachable("bad runtime enum value"); 639 } 640 641 bool Output::beginBitSetScalar(bool &DoClear) { 642 newLineCheck(); 643 output("[ "); 644 NeedBitValueComma = false; 645 DoClear = false; 646 return true; 647 } 648 649 bool Output::bitSetMatch(const char *Str, bool Matches) { 650 if (Matches) { 651 if (NeedBitValueComma) 652 output(", "); 653 output(Str); 654 NeedBitValueComma = true; 655 } 656 return false; 657 } 658 659 void Output::endBitSetScalar() { 660 outputUpToEndOfLine(" ]"); 661 } 662 663 void Output::scalarString(StringRef &S, QuotingType MustQuote) { 664 newLineCheck(); 665 if (S.empty()) { 666 // Print '' for the empty string because leaving the field empty is not 667 // allowed. 668 outputUpToEndOfLine("''"); 669 return; 670 } 671 if (MustQuote == QuotingType::None) { 672 // Only quote if we must. 673 outputUpToEndOfLine(S); 674 return; 675 } 676 677 const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\""; 678 output(Quote); // Starting quote. 679 680 // When using double-quoted strings (and only in that case), non-printable characters may be 681 // present, and will be escaped using a variety of unicode-scalar and special short-form 682 // escapes. This is handled in yaml::escape. 683 if (MustQuote == QuotingType::Double) { 684 output(yaml::escape(S, /* EscapePrintable= */ false)); 685 outputUpToEndOfLine(Quote); 686 return; 687 } 688 689 unsigned i = 0; 690 unsigned j = 0; 691 unsigned End = S.size(); 692 const char *Base = S.data(); 693 694 // When using single-quoted strings, any single quote ' must be doubled to be escaped. 695 while (j < End) { 696 if (S[j] == '\'') { // Escape quotes. 697 output(StringRef(&Base[i], j - i)); // "flush". 698 output(StringLiteral("''")); // Print it as '' 699 i = j + 1; 700 } 701 ++j; 702 } 703 output(StringRef(&Base[i], j - i)); 704 outputUpToEndOfLine(Quote); // Ending quote. 705 } 706 707 void Output::blockScalarString(StringRef &S) { 708 if (!StateStack.empty()) 709 newLineCheck(); 710 output(" |"); 711 outputNewLine(); 712 713 unsigned Indent = StateStack.empty() ? 1 : StateStack.size(); 714 715 auto Buffer = MemoryBuffer::getMemBuffer(S, "", false); 716 for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) { 717 for (unsigned I = 0; I < Indent; ++I) { 718 output(" "); 719 } 720 output(*Lines); 721 outputNewLine(); 722 } 723 } 724 725 void Output::scalarTag(std::string &Tag) { 726 if (Tag.empty()) 727 return; 728 newLineCheck(); 729 output(Tag); 730 output(" "); 731 } 732 733 void Output::setError(const Twine &message) { 734 } 735 736 bool Output::canElideEmptySequence() { 737 // Normally, with an optional key/value where the value is an empty sequence, 738 // the whole key/value can be not written. But, that produces wrong yaml 739 // if the key/value is the only thing in the map and the map is used in 740 // a sequence. This detects if the this sequence is the first key/value 741 // in map that itself is embedded in a sequnce. 742 if (StateStack.size() < 2) 743 return true; 744 if (StateStack.back() != inMapFirstKey) 745 return true; 746 return !inSeqAnyElement(StateStack[StateStack.size() - 2]); 747 } 748 749 void Output::output(StringRef s) { 750 Column += s.size(); 751 Out << s; 752 } 753 754 void Output::outputUpToEndOfLine(StringRef s) { 755 output(s); 756 if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) && 757 !inFlowMapAnyKey(StateStack.back()))) 758 Padding = "\n"; 759 } 760 761 void Output::outputNewLine() { 762 Out << "\n"; 763 Column = 0; 764 } 765 766 // if seq at top, indent as if map, then add "- " 767 // if seq in middle, use "- " if firstKey, else use " " 768 // 769 770 void Output::newLineCheck() { 771 if (Padding != "\n") { 772 output(Padding); 773 Padding = {}; 774 return; 775 } 776 outputNewLine(); 777 Padding = {}; 778 779 if (StateStack.size() == 0) 780 return; 781 782 unsigned Indent = StateStack.size() - 1; 783 bool OutputDash = false; 784 785 if (StateStack.back() == inSeqFirstElement || 786 StateStack.back() == inSeqOtherElement) { 787 OutputDash = true; 788 } else if ((StateStack.size() > 1) && 789 ((StateStack.back() == inMapFirstKey) || 790 inFlowSeqAnyElement(StateStack.back()) || 791 (StateStack.back() == inFlowMapFirstKey)) && 792 inSeqAnyElement(StateStack[StateStack.size() - 2])) { 793 --Indent; 794 OutputDash = true; 795 } 796 797 for (unsigned i = 0; i < Indent; ++i) { 798 output(" "); 799 } 800 if (OutputDash) { 801 output("- "); 802 } 803 804 } 805 806 void Output::paddedKey(StringRef key) { 807 output(key); 808 output(":"); 809 const char *spaces = " "; 810 if (key.size() < strlen(spaces)) 811 Padding = &spaces[key.size()]; 812 else 813 Padding = " "; 814 } 815 816 void Output::flowKey(StringRef Key) { 817 if (StateStack.back() == inFlowMapOtherKey) 818 output(", "); 819 if (WrapColumn && Column > WrapColumn) { 820 output("\n"); 821 for (int I = 0; I < ColumnAtMapFlowStart; ++I) 822 output(" "); 823 Column = ColumnAtMapFlowStart; 824 output(" "); 825 } 826 output(Key); 827 output(": "); 828 } 829 830 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); } 831 832 bool Output::inSeqAnyElement(InState State) { 833 return State == inSeqFirstElement || State == inSeqOtherElement; 834 } 835 836 bool Output::inFlowSeqAnyElement(InState State) { 837 return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement; 838 } 839 840 bool Output::inMapAnyKey(InState State) { 841 return State == inMapFirstKey || State == inMapOtherKey; 842 } 843 844 bool Output::inFlowMapAnyKey(InState State) { 845 return State == inFlowMapFirstKey || State == inFlowMapOtherKey; 846 } 847 848 //===----------------------------------------------------------------------===// 849 // traits for built-in types 850 //===----------------------------------------------------------------------===// 851 852 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) { 853 Out << (Val ? "true" : "false"); 854 } 855 856 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) { 857 if (Scalar.equals("true")) { 858 Val = true; 859 return StringRef(); 860 } else if (Scalar.equals("false")) { 861 Val = false; 862 return StringRef(); 863 } 864 return "invalid boolean"; 865 } 866 867 void ScalarTraits<StringRef>::output(const StringRef &Val, void *, 868 raw_ostream &Out) { 869 Out << Val; 870 } 871 872 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *, 873 StringRef &Val) { 874 Val = Scalar; 875 return StringRef(); 876 } 877 878 void ScalarTraits<std::string>::output(const std::string &Val, void *, 879 raw_ostream &Out) { 880 Out << Val; 881 } 882 883 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *, 884 std::string &Val) { 885 Val = Scalar.str(); 886 return StringRef(); 887 } 888 889 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *, 890 raw_ostream &Out) { 891 // use temp uin32_t because ostream thinks uint8_t is a character 892 uint32_t Num = Val; 893 Out << Num; 894 } 895 896 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) { 897 unsigned long long n; 898 if (getAsUnsignedInteger(Scalar, 0, n)) 899 return "invalid number"; 900 if (n > 0xFF) 901 return "out of range number"; 902 Val = n; 903 return StringRef(); 904 } 905 906 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *, 907 raw_ostream &Out) { 908 Out << Val; 909 } 910 911 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *, 912 uint16_t &Val) { 913 unsigned long long n; 914 if (getAsUnsignedInteger(Scalar, 0, n)) 915 return "invalid number"; 916 if (n > 0xFFFF) 917 return "out of range number"; 918 Val = n; 919 return StringRef(); 920 } 921 922 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *, 923 raw_ostream &Out) { 924 Out << Val; 925 } 926 927 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *, 928 uint32_t &Val) { 929 unsigned long long n; 930 if (getAsUnsignedInteger(Scalar, 0, n)) 931 return "invalid number"; 932 if (n > 0xFFFFFFFFUL) 933 return "out of range number"; 934 Val = n; 935 return StringRef(); 936 } 937 938 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *, 939 raw_ostream &Out) { 940 Out << Val; 941 } 942 943 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *, 944 uint64_t &Val) { 945 unsigned long long N; 946 if (getAsUnsignedInteger(Scalar, 0, N)) 947 return "invalid number"; 948 Val = N; 949 return StringRef(); 950 } 951 952 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) { 953 // use temp in32_t because ostream thinks int8_t is a character 954 int32_t Num = Val; 955 Out << Num; 956 } 957 958 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) { 959 long long N; 960 if (getAsSignedInteger(Scalar, 0, N)) 961 return "invalid number"; 962 if ((N > 127) || (N < -128)) 963 return "out of range number"; 964 Val = N; 965 return StringRef(); 966 } 967 968 void ScalarTraits<int16_t>::output(const int16_t &Val, void *, 969 raw_ostream &Out) { 970 Out << Val; 971 } 972 973 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) { 974 long long N; 975 if (getAsSignedInteger(Scalar, 0, N)) 976 return "invalid number"; 977 if ((N > INT16_MAX) || (N < INT16_MIN)) 978 return "out of range number"; 979 Val = N; 980 return StringRef(); 981 } 982 983 void ScalarTraits<int32_t>::output(const int32_t &Val, void *, 984 raw_ostream &Out) { 985 Out << Val; 986 } 987 988 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) { 989 long long N; 990 if (getAsSignedInteger(Scalar, 0, N)) 991 return "invalid number"; 992 if ((N > INT32_MAX) || (N < INT32_MIN)) 993 return "out of range number"; 994 Val = N; 995 return StringRef(); 996 } 997 998 void ScalarTraits<int64_t>::output(const int64_t &Val, void *, 999 raw_ostream &Out) { 1000 Out << Val; 1001 } 1002 1003 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) { 1004 long long N; 1005 if (getAsSignedInteger(Scalar, 0, N)) 1006 return "invalid number"; 1007 Val = N; 1008 return StringRef(); 1009 } 1010 1011 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) { 1012 Out << format("%g", Val); 1013 } 1014 1015 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) { 1016 if (to_float(Scalar, Val)) 1017 return StringRef(); 1018 return "invalid floating point number"; 1019 } 1020 1021 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) { 1022 Out << format("%g", Val); 1023 } 1024 1025 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) { 1026 if (to_float(Scalar, Val)) 1027 return StringRef(); 1028 return "invalid floating point number"; 1029 } 1030 1031 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) { 1032 uint8_t Num = Val; 1033 Out << format("0x%02X", Num); 1034 } 1035 1036 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) { 1037 unsigned long long n; 1038 if (getAsUnsignedInteger(Scalar, 0, n)) 1039 return "invalid hex8 number"; 1040 if (n > 0xFF) 1041 return "out of range hex8 number"; 1042 Val = n; 1043 return StringRef(); 1044 } 1045 1046 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) { 1047 uint16_t Num = Val; 1048 Out << format("0x%04X", Num); 1049 } 1050 1051 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) { 1052 unsigned long long n; 1053 if (getAsUnsignedInteger(Scalar, 0, n)) 1054 return "invalid hex16 number"; 1055 if (n > 0xFFFF) 1056 return "out of range hex16 number"; 1057 Val = n; 1058 return StringRef(); 1059 } 1060 1061 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) { 1062 uint32_t Num = Val; 1063 Out << format("0x%08X", Num); 1064 } 1065 1066 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) { 1067 unsigned long long n; 1068 if (getAsUnsignedInteger(Scalar, 0, n)) 1069 return "invalid hex32 number"; 1070 if (n > 0xFFFFFFFFUL) 1071 return "out of range hex32 number"; 1072 Val = n; 1073 return StringRef(); 1074 } 1075 1076 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) { 1077 uint64_t Num = Val; 1078 Out << format("0x%016llX", Num); 1079 } 1080 1081 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) { 1082 unsigned long long Num; 1083 if (getAsUnsignedInteger(Scalar, 0, Num)) 1084 return "invalid hex64 number"; 1085 Val = Num; 1086 return StringRef(); 1087 } 1088