xref: /freebsd/contrib/llvm-project/llvm/lib/Support/YAMLParser.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements a YAML parser.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/YAMLParser.h"
14 #include "llvm/ADT/AllocatorList.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/SMLoc.h"
27 #include "llvm/Support/SourceMgr.h"
28 #include "llvm/Support/Unicode.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <map>
35 #include <memory>
36 #include <string>
37 #include <system_error>
38 #include <utility>
39 
40 using namespace llvm;
41 using namespace yaml;
42 
43 enum UnicodeEncodingForm {
44   UEF_UTF32_LE, ///< UTF-32 Little Endian
45   UEF_UTF32_BE, ///< UTF-32 Big Endian
46   UEF_UTF16_LE, ///< UTF-16 Little Endian
47   UEF_UTF16_BE, ///< UTF-16 Big Endian
48   UEF_UTF8,     ///< UTF-8 or ascii.
49   UEF_Unknown   ///< Not a valid Unicode encoding.
50 };
51 
52 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
53 ///                it exists. Length is in {0, 2, 3, 4}.
54 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
55 
56 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
57 ///                      encoding form of \a Input.
58 ///
59 /// @param Input A string of length 0 or more.
60 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
61 ///          and how long the byte order mark is if one exists.
62 static EncodingInfo getUnicodeEncoding(StringRef Input) {
63   if (Input.empty())
64     return std::make_pair(UEF_Unknown, 0);
65 
66   switch (uint8_t(Input[0])) {
67   case 0x00:
68     if (Input.size() >= 4) {
69       if (  Input[1] == 0
70          && uint8_t(Input[2]) == 0xFE
71          && uint8_t(Input[3]) == 0xFF)
72         return std::make_pair(UEF_UTF32_BE, 4);
73       if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
74         return std::make_pair(UEF_UTF32_BE, 0);
75     }
76 
77     if (Input.size() >= 2 && Input[1] != 0)
78       return std::make_pair(UEF_UTF16_BE, 0);
79     return std::make_pair(UEF_Unknown, 0);
80   case 0xFF:
81     if (  Input.size() >= 4
82        && uint8_t(Input[1]) == 0xFE
83        && Input[2] == 0
84        && Input[3] == 0)
85       return std::make_pair(UEF_UTF32_LE, 4);
86 
87     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
88       return std::make_pair(UEF_UTF16_LE, 2);
89     return std::make_pair(UEF_Unknown, 0);
90   case 0xFE:
91     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
92       return std::make_pair(UEF_UTF16_BE, 2);
93     return std::make_pair(UEF_Unknown, 0);
94   case 0xEF:
95     if (  Input.size() >= 3
96        && uint8_t(Input[1]) == 0xBB
97        && uint8_t(Input[2]) == 0xBF)
98       return std::make_pair(UEF_UTF8, 3);
99     return std::make_pair(UEF_Unknown, 0);
100   }
101 
102   // It could still be utf-32 or utf-16.
103   if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
104     return std::make_pair(UEF_UTF32_LE, 0);
105 
106   if (Input.size() >= 2 && Input[1] == 0)
107     return std::make_pair(UEF_UTF16_LE, 0);
108 
109   return std::make_pair(UEF_UTF8, 0);
110 }
111 
112 /// Pin the vtables to this file.
113 void Node::anchor() {}
114 void NullNode::anchor() {}
115 void ScalarNode::anchor() {}
116 void BlockScalarNode::anchor() {}
117 void KeyValueNode::anchor() {}
118 void MappingNode::anchor() {}
119 void SequenceNode::anchor() {}
120 void AliasNode::anchor() {}
121 
122 namespace llvm {
123 namespace yaml {
124 
125 /// Token - A single YAML token.
126 struct Token {
127   enum TokenKind {
128     TK_Error, // Uninitialized token.
129     TK_StreamStart,
130     TK_StreamEnd,
131     TK_VersionDirective,
132     TK_TagDirective,
133     TK_DocumentStart,
134     TK_DocumentEnd,
135     TK_BlockEntry,
136     TK_BlockEnd,
137     TK_BlockSequenceStart,
138     TK_BlockMappingStart,
139     TK_FlowEntry,
140     TK_FlowSequenceStart,
141     TK_FlowSequenceEnd,
142     TK_FlowMappingStart,
143     TK_FlowMappingEnd,
144     TK_Key,
145     TK_Value,
146     TK_Scalar,
147     TK_BlockScalar,
148     TK_Alias,
149     TK_Anchor,
150     TK_Tag
151   } Kind = TK_Error;
152 
153   /// A string of length 0 or more whose begin() points to the logical location
154   /// of the token in the input.
155   StringRef Range;
156 
157   /// The value of a block scalar node.
158   std::string Value;
159 
160   Token() = default;
161 };
162 
163 } // end namespace yaml
164 } // end namespace llvm
165 
166 using TokenQueueT = BumpPtrList<Token>;
167 
168 namespace {
169 
170 /// This struct is used to track simple keys.
171 ///
172 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
173 /// which could legally be the start of a simple key. When peekNext is called,
174 /// if the Token To be returned is referenced by a SimpleKey, we continue
175 /// tokenizing until that potential simple key has either been found to not be
176 /// a simple key (we moved on to the next line or went further than 1024 chars).
177 /// Or when we run into a Value, and then insert a Key token (and possibly
178 /// others) before the SimpleKey's Tok.
179 struct SimpleKey {
180   TokenQueueT::iterator Tok;
181   unsigned Column = 0;
182   unsigned Line = 0;
183   unsigned FlowLevel = 0;
184   bool IsRequired = false;
185 
186   bool operator ==(const SimpleKey &Other) {
187     return Tok == Other.Tok;
188   }
189 };
190 
191 } // end anonymous namespace
192 
193 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit
194 ///        subsequence and the subsequence's length in code units (uint8_t).
195 ///        A length of 0 represents an error.
196 using UTF8Decoded = std::pair<uint32_t, unsigned>;
197 
198 static UTF8Decoded decodeUTF8(StringRef Range) {
199   StringRef::iterator Position= Range.begin();
200   StringRef::iterator End = Range.end();
201   // 1 byte: [0x00, 0x7f]
202   // Bit pattern: 0xxxxxxx
203   if ((*Position & 0x80) == 0) {
204      return std::make_pair(*Position, 1);
205   }
206   // 2 bytes: [0x80, 0x7ff]
207   // Bit pattern: 110xxxxx 10xxxxxx
208   if (Position + 1 != End &&
209       ((*Position & 0xE0) == 0xC0) &&
210       ((*(Position + 1) & 0xC0) == 0x80)) {
211     uint32_t codepoint = ((*Position & 0x1F) << 6) |
212                           (*(Position + 1) & 0x3F);
213     if (codepoint >= 0x80)
214       return std::make_pair(codepoint, 2);
215   }
216   // 3 bytes: [0x8000, 0xffff]
217   // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
218   if (Position + 2 != End &&
219       ((*Position & 0xF0) == 0xE0) &&
220       ((*(Position + 1) & 0xC0) == 0x80) &&
221       ((*(Position + 2) & 0xC0) == 0x80)) {
222     uint32_t codepoint = ((*Position & 0x0F) << 12) |
223                          ((*(Position + 1) & 0x3F) << 6) |
224                           (*(Position + 2) & 0x3F);
225     // Codepoints between 0xD800 and 0xDFFF are invalid, as
226     // they are high / low surrogate halves used by UTF-16.
227     if (codepoint >= 0x800 &&
228         (codepoint < 0xD800 || codepoint > 0xDFFF))
229       return std::make_pair(codepoint, 3);
230   }
231   // 4 bytes: [0x10000, 0x10FFFF]
232   // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
233   if (Position + 3 != End &&
234       ((*Position & 0xF8) == 0xF0) &&
235       ((*(Position + 1) & 0xC0) == 0x80) &&
236       ((*(Position + 2) & 0xC0) == 0x80) &&
237       ((*(Position + 3) & 0xC0) == 0x80)) {
238     uint32_t codepoint = ((*Position & 0x07) << 18) |
239                          ((*(Position + 1) & 0x3F) << 12) |
240                          ((*(Position + 2) & 0x3F) << 6) |
241                           (*(Position + 3) & 0x3F);
242     if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
243       return std::make_pair(codepoint, 4);
244   }
245   return std::make_pair(0, 0);
246 }
247 
248 namespace llvm {
249 namespace yaml {
250 
251 /// Scans YAML tokens from a MemoryBuffer.
252 class Scanner {
253 public:
254   Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
255           std::error_code *EC = nullptr);
256   Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
257           std::error_code *EC = nullptr);
258 
259   /// Parse the next token and return it without popping it.
260   Token &peekNext();
261 
262   /// Parse the next token and pop it from the queue.
263   Token getNext();
264 
265   void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
266                   ArrayRef<SMRange> Ranges = None) {
267     SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors);
268   }
269 
270   void setError(const Twine &Message, StringRef::iterator Position) {
271     if (Position >= End)
272       Position = End - 1;
273 
274     // propagate the error if possible
275     if (EC)
276       *EC = make_error_code(std::errc::invalid_argument);
277 
278     // Don't print out more errors after the first one we encounter. The rest
279     // are just the result of the first, and have no meaning.
280     if (!Failed)
281       printError(SMLoc::getFromPointer(Position), SourceMgr::DK_Error, Message);
282     Failed = true;
283   }
284 
285   /// Returns true if an error occurred while parsing.
286   bool failed() {
287     return Failed;
288   }
289 
290 private:
291   void init(MemoryBufferRef Buffer);
292 
293   StringRef currentInput() {
294     return StringRef(Current, End - Current);
295   }
296 
297   /// Decode a UTF-8 minimal well-formed code unit subsequence starting
298   ///        at \a Position.
299   ///
300   /// If the UTF-8 code units starting at Position do not form a well-formed
301   /// code unit subsequence, then the Unicode scalar value is 0, and the length
302   /// is 0.
303   UTF8Decoded decodeUTF8(StringRef::iterator Position) {
304     return ::decodeUTF8(StringRef(Position, End - Position));
305   }
306 
307   // The following functions are based on the gramar rules in the YAML spec. The
308   // style of the function names it meant to closely match how they are written
309   // in the spec. The number within the [] is the number of the grammar rule in
310   // the spec.
311   //
312   // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
313   //
314   // c-
315   //   A production starting and ending with a special character.
316   // b-
317   //   A production matching a single line break.
318   // nb-
319   //   A production starting and ending with a non-break character.
320   // s-
321   //   A production starting and ending with a white space character.
322   // ns-
323   //   A production starting and ending with a non-space character.
324   // l-
325   //   A production matching complete line(s).
326 
327   /// Skip a single nb-char[27] starting at Position.
328   ///
329   /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
330   ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
331   ///
332   /// @returns The code unit after the nb-char, or Position if it's not an
333   ///          nb-char.
334   StringRef::iterator skip_nb_char(StringRef::iterator Position);
335 
336   /// Skip a single b-break[28] starting at Position.
337   ///
338   /// A b-break is 0xD 0xA | 0xD | 0xA
339   ///
340   /// @returns The code unit after the b-break, or Position if it's not a
341   ///          b-break.
342   StringRef::iterator skip_b_break(StringRef::iterator Position);
343 
344   /// Skip a single s-space[31] starting at Position.
345   ///
346   /// An s-space is 0x20
347   ///
348   /// @returns The code unit after the s-space, or Position if it's not a
349   ///          s-space.
350   StringRef::iterator skip_s_space(StringRef::iterator Position);
351 
352   /// Skip a single s-white[33] starting at Position.
353   ///
354   /// A s-white is 0x20 | 0x9
355   ///
356   /// @returns The code unit after the s-white, or Position if it's not a
357   ///          s-white.
358   StringRef::iterator skip_s_white(StringRef::iterator Position);
359 
360   /// Skip a single ns-char[34] starting at Position.
361   ///
362   /// A ns-char is nb-char - s-white
363   ///
364   /// @returns The code unit after the ns-char, or Position if it's not a
365   ///          ns-char.
366   StringRef::iterator skip_ns_char(StringRef::iterator Position);
367 
368   using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
369 
370   /// Skip minimal well-formed code unit subsequences until Func
371   ///        returns its input.
372   ///
373   /// @returns The code unit after the last minimal well-formed code unit
374   ///          subsequence that Func accepted.
375   StringRef::iterator skip_while( SkipWhileFunc Func
376                                 , StringRef::iterator Position);
377 
378   /// Skip minimal well-formed code unit subsequences until Func returns its
379   /// input.
380   void advanceWhile(SkipWhileFunc Func);
381 
382   /// Scan ns-uri-char[39]s starting at Cur.
383   ///
384   /// This updates Cur and Column while scanning.
385   void scan_ns_uri_char();
386 
387   /// Consume a minimal well-formed code unit subsequence starting at
388   ///        \a Cur. Return false if it is not the same Unicode scalar value as
389   ///        \a Expected. This updates \a Column.
390   bool consume(uint32_t Expected);
391 
392   /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
393   void skip(uint32_t Distance);
394 
395   /// Return true if the minimal well-formed code unit subsequence at
396   ///        Pos is whitespace or a new line
397   bool isBlankOrBreak(StringRef::iterator Position);
398 
399   /// Consume a single b-break[28] if it's present at the current position.
400   ///
401   /// Return false if the code unit at the current position isn't a line break.
402   bool consumeLineBreakIfPresent();
403 
404   /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
405   void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
406                              , unsigned AtColumn
407                              , bool IsRequired);
408 
409   /// Remove simple keys that can no longer be valid simple keys.
410   ///
411   /// Invalid simple keys are not on the current line or are further than 1024
412   /// columns back.
413   void removeStaleSimpleKeyCandidates();
414 
415   /// Remove all simple keys on FlowLevel \a Level.
416   void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
417 
418   /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
419   ///        tokens if needed.
420   bool unrollIndent(int ToColumn);
421 
422   /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
423   ///        if needed.
424   bool rollIndent( int ToColumn
425                  , Token::TokenKind Kind
426                  , TokenQueueT::iterator InsertPoint);
427 
428   /// Skip a single-line comment when the comment starts at the current
429   /// position of the scanner.
430   void skipComment();
431 
432   /// Skip whitespace and comments until the start of the next token.
433   void scanToNextToken();
434 
435   /// Must be the first token generated.
436   bool scanStreamStart();
437 
438   /// Generate tokens needed to close out the stream.
439   bool scanStreamEnd();
440 
441   /// Scan a %BLAH directive.
442   bool scanDirective();
443 
444   /// Scan a ... or ---.
445   bool scanDocumentIndicator(bool IsStart);
446 
447   /// Scan a [ or { and generate the proper flow collection start token.
448   bool scanFlowCollectionStart(bool IsSequence);
449 
450   /// Scan a ] or } and generate the proper flow collection end token.
451   bool scanFlowCollectionEnd(bool IsSequence);
452 
453   /// Scan the , that separates entries in a flow collection.
454   bool scanFlowEntry();
455 
456   /// Scan the - that starts block sequence entries.
457   bool scanBlockEntry();
458 
459   /// Scan an explicit ? indicating a key.
460   bool scanKey();
461 
462   /// Scan an explicit : indicating a value.
463   bool scanValue();
464 
465   /// Scan a quoted scalar.
466   bool scanFlowScalar(bool IsDoubleQuoted);
467 
468   /// Scan an unquoted scalar.
469   bool scanPlainScalar();
470 
471   /// Scan an Alias or Anchor starting with * or &.
472   bool scanAliasOrAnchor(bool IsAlias);
473 
474   /// Scan a block scalar starting with | or >.
475   bool scanBlockScalar(bool IsLiteral);
476 
477   /// Scan a chomping indicator in a block scalar header.
478   char scanBlockChompingIndicator();
479 
480   /// Scan an indentation indicator in a block scalar header.
481   unsigned scanBlockIndentationIndicator();
482 
483   /// Scan a block scalar header.
484   ///
485   /// Return false if an error occurred.
486   bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
487                              bool &IsDone);
488 
489   /// Look for the indentation level of a block scalar.
490   ///
491   /// Return false if an error occurred.
492   bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
493                              unsigned &LineBreaks, bool &IsDone);
494 
495   /// Scan the indentation of a text line in a block scalar.
496   ///
497   /// Return false if an error occurred.
498   bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
499                              bool &IsDone);
500 
501   /// Scan a tag of the form !stuff.
502   bool scanTag();
503 
504   /// Dispatch to the next scanning function based on \a *Cur.
505   bool fetchMoreTokens();
506 
507   /// The SourceMgr used for diagnostics and buffer management.
508   SourceMgr &SM;
509 
510   /// The original input.
511   MemoryBufferRef InputBuffer;
512 
513   /// The current position of the scanner.
514   StringRef::iterator Current;
515 
516   /// The end of the input (one past the last character).
517   StringRef::iterator End;
518 
519   /// Current YAML indentation level in spaces.
520   int Indent;
521 
522   /// Current column number in Unicode code points.
523   unsigned Column;
524 
525   /// Current line number.
526   unsigned Line;
527 
528   /// How deep we are in flow style containers. 0 Means at block level.
529   unsigned FlowLevel;
530 
531   /// Are we at the start of the stream?
532   bool IsStartOfStream;
533 
534   /// Can the next token be the start of a simple key?
535   bool IsSimpleKeyAllowed;
536 
537   /// True if an error has occurred.
538   bool Failed;
539 
540   /// Should colors be used when printing out the diagnostic messages?
541   bool ShowColors;
542 
543   /// Queue of tokens. This is required to queue up tokens while looking
544   ///        for the end of a simple key. And for cases where a single character
545   ///        can produce multiple tokens (e.g. BlockEnd).
546   TokenQueueT TokenQueue;
547 
548   /// Indentation levels.
549   SmallVector<int, 4> Indents;
550 
551   /// Potential simple keys.
552   SmallVector<SimpleKey, 4> SimpleKeys;
553 
554   std::error_code *EC;
555 };
556 
557 } // end namespace yaml
558 } // end namespace llvm
559 
560 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
561 static void encodeUTF8( uint32_t UnicodeScalarValue
562                       , SmallVectorImpl<char> &Result) {
563   if (UnicodeScalarValue <= 0x7F) {
564     Result.push_back(UnicodeScalarValue & 0x7F);
565   } else if (UnicodeScalarValue <= 0x7FF) {
566     uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
567     uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
568     Result.push_back(FirstByte);
569     Result.push_back(SecondByte);
570   } else if (UnicodeScalarValue <= 0xFFFF) {
571     uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
572     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
573     uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
574     Result.push_back(FirstByte);
575     Result.push_back(SecondByte);
576     Result.push_back(ThirdByte);
577   } else if (UnicodeScalarValue <= 0x10FFFF) {
578     uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
579     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
580     uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
581     uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
582     Result.push_back(FirstByte);
583     Result.push_back(SecondByte);
584     Result.push_back(ThirdByte);
585     Result.push_back(FourthByte);
586   }
587 }
588 
589 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
590   SourceMgr SM;
591   Scanner scanner(Input, SM);
592   while (true) {
593     Token T = scanner.getNext();
594     switch (T.Kind) {
595     case Token::TK_StreamStart:
596       OS << "Stream-Start: ";
597       break;
598     case Token::TK_StreamEnd:
599       OS << "Stream-End: ";
600       break;
601     case Token::TK_VersionDirective:
602       OS << "Version-Directive: ";
603       break;
604     case Token::TK_TagDirective:
605       OS << "Tag-Directive: ";
606       break;
607     case Token::TK_DocumentStart:
608       OS << "Document-Start: ";
609       break;
610     case Token::TK_DocumentEnd:
611       OS << "Document-End: ";
612       break;
613     case Token::TK_BlockEntry:
614       OS << "Block-Entry: ";
615       break;
616     case Token::TK_BlockEnd:
617       OS << "Block-End: ";
618       break;
619     case Token::TK_BlockSequenceStart:
620       OS << "Block-Sequence-Start: ";
621       break;
622     case Token::TK_BlockMappingStart:
623       OS << "Block-Mapping-Start: ";
624       break;
625     case Token::TK_FlowEntry:
626       OS << "Flow-Entry: ";
627       break;
628     case Token::TK_FlowSequenceStart:
629       OS << "Flow-Sequence-Start: ";
630       break;
631     case Token::TK_FlowSequenceEnd:
632       OS << "Flow-Sequence-End: ";
633       break;
634     case Token::TK_FlowMappingStart:
635       OS << "Flow-Mapping-Start: ";
636       break;
637     case Token::TK_FlowMappingEnd:
638       OS << "Flow-Mapping-End: ";
639       break;
640     case Token::TK_Key:
641       OS << "Key: ";
642       break;
643     case Token::TK_Value:
644       OS << "Value: ";
645       break;
646     case Token::TK_Scalar:
647       OS << "Scalar: ";
648       break;
649     case Token::TK_BlockScalar:
650       OS << "Block Scalar: ";
651       break;
652     case Token::TK_Alias:
653       OS << "Alias: ";
654       break;
655     case Token::TK_Anchor:
656       OS << "Anchor: ";
657       break;
658     case Token::TK_Tag:
659       OS << "Tag: ";
660       break;
661     case Token::TK_Error:
662       break;
663     }
664     OS << T.Range << "\n";
665     if (T.Kind == Token::TK_StreamEnd)
666       break;
667     else if (T.Kind == Token::TK_Error)
668       return false;
669   }
670   return true;
671 }
672 
673 bool yaml::scanTokens(StringRef Input) {
674   SourceMgr SM;
675   Scanner scanner(Input, SM);
676   while (true) {
677     Token T = scanner.getNext();
678     if (T.Kind == Token::TK_StreamEnd)
679       break;
680     else if (T.Kind == Token::TK_Error)
681       return false;
682   }
683   return true;
684 }
685 
686 std::string yaml::escape(StringRef Input, bool EscapePrintable) {
687   std::string EscapedInput;
688   for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
689     if (*i == '\\')
690       EscapedInput += "\\\\";
691     else if (*i == '"')
692       EscapedInput += "\\\"";
693     else if (*i == 0)
694       EscapedInput += "\\0";
695     else if (*i == 0x07)
696       EscapedInput += "\\a";
697     else if (*i == 0x08)
698       EscapedInput += "\\b";
699     else if (*i == 0x09)
700       EscapedInput += "\\t";
701     else if (*i == 0x0A)
702       EscapedInput += "\\n";
703     else if (*i == 0x0B)
704       EscapedInput += "\\v";
705     else if (*i == 0x0C)
706       EscapedInput += "\\f";
707     else if (*i == 0x0D)
708       EscapedInput += "\\r";
709     else if (*i == 0x1B)
710       EscapedInput += "\\e";
711     else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
712       std::string HexStr = utohexstr(*i);
713       EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
714     } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
715       UTF8Decoded UnicodeScalarValue
716         = decodeUTF8(StringRef(i, Input.end() - i));
717       if (UnicodeScalarValue.second == 0) {
718         // Found invalid char.
719         SmallString<4> Val;
720         encodeUTF8(0xFFFD, Val);
721         EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
722         // FIXME: Error reporting.
723         return EscapedInput;
724       }
725       if (UnicodeScalarValue.first == 0x85)
726         EscapedInput += "\\N";
727       else if (UnicodeScalarValue.first == 0xA0)
728         EscapedInput += "\\_";
729       else if (UnicodeScalarValue.first == 0x2028)
730         EscapedInput += "\\L";
731       else if (UnicodeScalarValue.first == 0x2029)
732         EscapedInput += "\\P";
733       else if (!EscapePrintable &&
734                sys::unicode::isPrintable(UnicodeScalarValue.first))
735         EscapedInput += StringRef(i, UnicodeScalarValue.second);
736       else {
737         std::string HexStr = utohexstr(UnicodeScalarValue.first);
738         if (HexStr.size() <= 2)
739           EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
740         else if (HexStr.size() <= 4)
741           EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
742         else if (HexStr.size() <= 8)
743           EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
744       }
745       i += UnicodeScalarValue.second - 1;
746     } else
747       EscapedInput.push_back(*i);
748   }
749   return EscapedInput;
750 }
751 
752 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
753                  std::error_code *EC)
754     : SM(sm), ShowColors(ShowColors), EC(EC) {
755   init(MemoryBufferRef(Input, "YAML"));
756 }
757 
758 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
759                  std::error_code *EC)
760     : SM(SM_), ShowColors(ShowColors), EC(EC) {
761   init(Buffer);
762 }
763 
764 void Scanner::init(MemoryBufferRef Buffer) {
765   InputBuffer = Buffer;
766   Current = InputBuffer.getBufferStart();
767   End = InputBuffer.getBufferEnd();
768   Indent = -1;
769   Column = 0;
770   Line = 0;
771   FlowLevel = 0;
772   IsStartOfStream = true;
773   IsSimpleKeyAllowed = true;
774   Failed = false;
775   std::unique_ptr<MemoryBuffer> InputBufferOwner =
776       MemoryBuffer::getMemBuffer(Buffer);
777   SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
778 }
779 
780 Token &Scanner::peekNext() {
781   // If the current token is a possible simple key, keep parsing until we
782   // can confirm.
783   bool NeedMore = false;
784   while (true) {
785     if (TokenQueue.empty() || NeedMore) {
786       if (!fetchMoreTokens()) {
787         TokenQueue.clear();
788         SimpleKeys.clear();
789         TokenQueue.push_back(Token());
790         return TokenQueue.front();
791       }
792     }
793     assert(!TokenQueue.empty() &&
794             "fetchMoreTokens lied about getting tokens!");
795 
796     removeStaleSimpleKeyCandidates();
797     SimpleKey SK;
798     SK.Tok = TokenQueue.begin();
799     if (!is_contained(SimpleKeys, SK))
800       break;
801     else
802       NeedMore = true;
803   }
804   return TokenQueue.front();
805 }
806 
807 Token Scanner::getNext() {
808   Token Ret = peekNext();
809   // TokenQueue can be empty if there was an error getting the next token.
810   if (!TokenQueue.empty())
811     TokenQueue.pop_front();
812 
813   // There cannot be any referenced Token's if the TokenQueue is empty. So do a
814   // quick deallocation of them all.
815   if (TokenQueue.empty())
816     TokenQueue.resetAlloc();
817 
818   return Ret;
819 }
820 
821 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
822   if (Position == End)
823     return Position;
824   // Check 7 bit c-printable - b-char.
825   if (   *Position == 0x09
826       || (*Position >= 0x20 && *Position <= 0x7E))
827     return Position + 1;
828 
829   // Check for valid UTF-8.
830   if (uint8_t(*Position) & 0x80) {
831     UTF8Decoded u8d = decodeUTF8(Position);
832     if (   u8d.second != 0
833         && u8d.first != 0xFEFF
834         && ( u8d.first == 0x85
835           || ( u8d.first >= 0xA0
836             && u8d.first <= 0xD7FF)
837           || ( u8d.first >= 0xE000
838             && u8d.first <= 0xFFFD)
839           || ( u8d.first >= 0x10000
840             && u8d.first <= 0x10FFFF)))
841       return Position + u8d.second;
842   }
843   return Position;
844 }
845 
846 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
847   if (Position == End)
848     return Position;
849   if (*Position == 0x0D) {
850     if (Position + 1 != End && *(Position + 1) == 0x0A)
851       return Position + 2;
852     return Position + 1;
853   }
854 
855   if (*Position == 0x0A)
856     return Position + 1;
857   return Position;
858 }
859 
860 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
861   if (Position == End)
862     return Position;
863   if (*Position == ' ')
864     return Position + 1;
865   return Position;
866 }
867 
868 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
869   if (Position == End)
870     return Position;
871   if (*Position == ' ' || *Position == '\t')
872     return Position + 1;
873   return Position;
874 }
875 
876 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
877   if (Position == End)
878     return Position;
879   if (*Position == ' ' || *Position == '\t')
880     return Position;
881   return skip_nb_char(Position);
882 }
883 
884 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
885                                        , StringRef::iterator Position) {
886   while (true) {
887     StringRef::iterator i = (this->*Func)(Position);
888     if (i == Position)
889       break;
890     Position = i;
891   }
892   return Position;
893 }
894 
895 void Scanner::advanceWhile(SkipWhileFunc Func) {
896   auto Final = skip_while(Func, Current);
897   Column += Final - Current;
898   Current = Final;
899 }
900 
901 static bool is_ns_hex_digit(const char C) {
902   return    (C >= '0' && C <= '9')
903          || (C >= 'a' && C <= 'z')
904          || (C >= 'A' && C <= 'Z');
905 }
906 
907 static bool is_ns_word_char(const char C) {
908   return    C == '-'
909          || (C >= 'a' && C <= 'z')
910          || (C >= 'A' && C <= 'Z');
911 }
912 
913 void Scanner::scan_ns_uri_char() {
914   while (true) {
915     if (Current == End)
916       break;
917     if ((   *Current == '%'
918           && Current + 2 < End
919           && is_ns_hex_digit(*(Current + 1))
920           && is_ns_hex_digit(*(Current + 2)))
921         || is_ns_word_char(*Current)
922         || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
923           != StringRef::npos) {
924       ++Current;
925       ++Column;
926     } else
927       break;
928   }
929 }
930 
931 bool Scanner::consume(uint32_t Expected) {
932   if (Expected >= 0x80) {
933     setError("Cannot consume non-ascii characters", Current);
934     return false;
935   }
936   if (Current == End)
937     return false;
938   if (uint8_t(*Current) >= 0x80) {
939     setError("Cannot consume non-ascii characters", Current);
940     return false;
941   }
942   if (uint8_t(*Current) == Expected) {
943     ++Current;
944     ++Column;
945     return true;
946   }
947   return false;
948 }
949 
950 void Scanner::skip(uint32_t Distance) {
951   Current += Distance;
952   Column += Distance;
953   assert(Current <= End && "Skipped past the end");
954 }
955 
956 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
957   if (Position == End)
958     return false;
959   return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
960          *Position == '\n';
961 }
962 
963 bool Scanner::consumeLineBreakIfPresent() {
964   auto Next = skip_b_break(Current);
965   if (Next == Current)
966     return false;
967   Column = 0;
968   ++Line;
969   Current = Next;
970   return true;
971 }
972 
973 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
974                                     , unsigned AtColumn
975                                     , bool IsRequired) {
976   if (IsSimpleKeyAllowed) {
977     SimpleKey SK;
978     SK.Tok = Tok;
979     SK.Line = Line;
980     SK.Column = AtColumn;
981     SK.IsRequired = IsRequired;
982     SK.FlowLevel = FlowLevel;
983     SimpleKeys.push_back(SK);
984   }
985 }
986 
987 void Scanner::removeStaleSimpleKeyCandidates() {
988   for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
989                                             i != SimpleKeys.end();) {
990     if (i->Line != Line || i->Column + 1024 < Column) {
991       if (i->IsRequired)
992         setError( "Could not find expected : for simple key"
993                 , i->Tok->Range.begin());
994       i = SimpleKeys.erase(i);
995     } else
996       ++i;
997   }
998 }
999 
1000 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1001   if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1002     SimpleKeys.pop_back();
1003 }
1004 
1005 bool Scanner::unrollIndent(int ToColumn) {
1006   Token T;
1007   // Indentation is ignored in flow.
1008   if (FlowLevel != 0)
1009     return true;
1010 
1011   while (Indent > ToColumn) {
1012     T.Kind = Token::TK_BlockEnd;
1013     T.Range = StringRef(Current, 1);
1014     TokenQueue.push_back(T);
1015     Indent = Indents.pop_back_val();
1016   }
1017 
1018   return true;
1019 }
1020 
1021 bool Scanner::rollIndent( int ToColumn
1022                         , Token::TokenKind Kind
1023                         , TokenQueueT::iterator InsertPoint) {
1024   if (FlowLevel)
1025     return true;
1026   if (Indent < ToColumn) {
1027     Indents.push_back(Indent);
1028     Indent = ToColumn;
1029 
1030     Token T;
1031     T.Kind = Kind;
1032     T.Range = StringRef(Current, 0);
1033     TokenQueue.insert(InsertPoint, T);
1034   }
1035   return true;
1036 }
1037 
1038 void Scanner::skipComment() {
1039   if (*Current != '#')
1040     return;
1041   while (true) {
1042     // This may skip more than one byte, thus Column is only incremented
1043     // for code points.
1044     StringRef::iterator I = skip_nb_char(Current);
1045     if (I == Current)
1046       break;
1047     Current = I;
1048     ++Column;
1049   }
1050 }
1051 
1052 void Scanner::scanToNextToken() {
1053   while (true) {
1054     while (*Current == ' ' || *Current == '\t') {
1055       skip(1);
1056     }
1057 
1058     skipComment();
1059 
1060     // Skip EOL.
1061     StringRef::iterator i = skip_b_break(Current);
1062     if (i == Current)
1063       break;
1064     Current = i;
1065     ++Line;
1066     Column = 0;
1067     // New lines may start a simple key.
1068     if (!FlowLevel)
1069       IsSimpleKeyAllowed = true;
1070   }
1071 }
1072 
1073 bool Scanner::scanStreamStart() {
1074   IsStartOfStream = false;
1075 
1076   EncodingInfo EI = getUnicodeEncoding(currentInput());
1077 
1078   Token T;
1079   T.Kind = Token::TK_StreamStart;
1080   T.Range = StringRef(Current, EI.second);
1081   TokenQueue.push_back(T);
1082   Current += EI.second;
1083   return true;
1084 }
1085 
1086 bool Scanner::scanStreamEnd() {
1087   // Force an ending new line if one isn't present.
1088   if (Column != 0) {
1089     Column = 0;
1090     ++Line;
1091   }
1092 
1093   unrollIndent(-1);
1094   SimpleKeys.clear();
1095   IsSimpleKeyAllowed = false;
1096 
1097   Token T;
1098   T.Kind = Token::TK_StreamEnd;
1099   T.Range = StringRef(Current, 0);
1100   TokenQueue.push_back(T);
1101   return true;
1102 }
1103 
1104 bool Scanner::scanDirective() {
1105   // Reset the indentation level.
1106   unrollIndent(-1);
1107   SimpleKeys.clear();
1108   IsSimpleKeyAllowed = false;
1109 
1110   StringRef::iterator Start = Current;
1111   consume('%');
1112   StringRef::iterator NameStart = Current;
1113   Current = skip_while(&Scanner::skip_ns_char, Current);
1114   StringRef Name(NameStart, Current - NameStart);
1115   Current = skip_while(&Scanner::skip_s_white, Current);
1116 
1117   Token T;
1118   if (Name == "YAML") {
1119     Current = skip_while(&Scanner::skip_ns_char, Current);
1120     T.Kind = Token::TK_VersionDirective;
1121     T.Range = StringRef(Start, Current - Start);
1122     TokenQueue.push_back(T);
1123     return true;
1124   } else if(Name == "TAG") {
1125     Current = skip_while(&Scanner::skip_ns_char, Current);
1126     Current = skip_while(&Scanner::skip_s_white, Current);
1127     Current = skip_while(&Scanner::skip_ns_char, Current);
1128     T.Kind = Token::TK_TagDirective;
1129     T.Range = StringRef(Start, Current - Start);
1130     TokenQueue.push_back(T);
1131     return true;
1132   }
1133   return false;
1134 }
1135 
1136 bool Scanner::scanDocumentIndicator(bool IsStart) {
1137   unrollIndent(-1);
1138   SimpleKeys.clear();
1139   IsSimpleKeyAllowed = false;
1140 
1141   Token T;
1142   T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1143   T.Range = StringRef(Current, 3);
1144   skip(3);
1145   TokenQueue.push_back(T);
1146   return true;
1147 }
1148 
1149 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1150   Token T;
1151   T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1152                       : Token::TK_FlowMappingStart;
1153   T.Range = StringRef(Current, 1);
1154   skip(1);
1155   TokenQueue.push_back(T);
1156 
1157   // [ and { may begin a simple key.
1158   saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1159 
1160   // And may also be followed by a simple key.
1161   IsSimpleKeyAllowed = true;
1162   ++FlowLevel;
1163   return true;
1164 }
1165 
1166 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1167   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1168   IsSimpleKeyAllowed = false;
1169   Token T;
1170   T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1171                       : Token::TK_FlowMappingEnd;
1172   T.Range = StringRef(Current, 1);
1173   skip(1);
1174   TokenQueue.push_back(T);
1175   if (FlowLevel)
1176     --FlowLevel;
1177   return true;
1178 }
1179 
1180 bool Scanner::scanFlowEntry() {
1181   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1182   IsSimpleKeyAllowed = true;
1183   Token T;
1184   T.Kind = Token::TK_FlowEntry;
1185   T.Range = StringRef(Current, 1);
1186   skip(1);
1187   TokenQueue.push_back(T);
1188   return true;
1189 }
1190 
1191 bool Scanner::scanBlockEntry() {
1192   rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1193   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1194   IsSimpleKeyAllowed = true;
1195   Token T;
1196   T.Kind = Token::TK_BlockEntry;
1197   T.Range = StringRef(Current, 1);
1198   skip(1);
1199   TokenQueue.push_back(T);
1200   return true;
1201 }
1202 
1203 bool Scanner::scanKey() {
1204   if (!FlowLevel)
1205     rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1206 
1207   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1208   IsSimpleKeyAllowed = !FlowLevel;
1209 
1210   Token T;
1211   T.Kind = Token::TK_Key;
1212   T.Range = StringRef(Current, 1);
1213   skip(1);
1214   TokenQueue.push_back(T);
1215   return true;
1216 }
1217 
1218 bool Scanner::scanValue() {
1219   // If the previous token could have been a simple key, insert the key token
1220   // into the token queue.
1221   if (!SimpleKeys.empty()) {
1222     SimpleKey SK = SimpleKeys.pop_back_val();
1223     Token T;
1224     T.Kind = Token::TK_Key;
1225     T.Range = SK.Tok->Range;
1226     TokenQueueT::iterator i, e;
1227     for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1228       if (i == SK.Tok)
1229         break;
1230     }
1231     if (i == e) {
1232       Failed = true;
1233       return false;
1234     }
1235     i = TokenQueue.insert(i, T);
1236 
1237     // We may also need to add a Block-Mapping-Start token.
1238     rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1239 
1240     IsSimpleKeyAllowed = false;
1241   } else {
1242     if (!FlowLevel)
1243       rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1244     IsSimpleKeyAllowed = !FlowLevel;
1245   }
1246 
1247   Token T;
1248   T.Kind = Token::TK_Value;
1249   T.Range = StringRef(Current, 1);
1250   skip(1);
1251   TokenQueue.push_back(T);
1252   return true;
1253 }
1254 
1255 // Forbidding inlining improves performance by roughly 20%.
1256 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1257 LLVM_ATTRIBUTE_NOINLINE static bool
1258 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1259 
1260 // Returns whether a character at 'Position' was escaped with a leading '\'.
1261 // 'First' specifies the position of the first character in the string.
1262 static bool wasEscaped(StringRef::iterator First,
1263                        StringRef::iterator Position) {
1264   assert(Position - 1 >= First);
1265   StringRef::iterator I = Position - 1;
1266   // We calculate the number of consecutive '\'s before the current position
1267   // by iterating backwards through our string.
1268   while (I >= First && *I == '\\') --I;
1269   // (Position - 1 - I) now contains the number of '\'s before the current
1270   // position. If it is odd, the character at 'Position' was escaped.
1271   return (Position - 1 - I) % 2 == 1;
1272 }
1273 
1274 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1275   StringRef::iterator Start = Current;
1276   unsigned ColStart = Column;
1277   if (IsDoubleQuoted) {
1278     do {
1279       ++Current;
1280       while (Current != End && *Current != '"')
1281         ++Current;
1282       // Repeat until the previous character was not a '\' or was an escaped
1283       // backslash.
1284     } while (   Current != End
1285              && *(Current - 1) == '\\'
1286              && wasEscaped(Start + 1, Current));
1287   } else {
1288     skip(1);
1289     while (true) {
1290       // Skip a ' followed by another '.
1291       if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1292         skip(2);
1293         continue;
1294       } else if (*Current == '\'')
1295         break;
1296       StringRef::iterator i = skip_nb_char(Current);
1297       if (i == Current) {
1298         i = skip_b_break(Current);
1299         if (i == Current)
1300           break;
1301         Current = i;
1302         Column = 0;
1303         ++Line;
1304       } else {
1305         if (i == End)
1306           break;
1307         Current = i;
1308         ++Column;
1309       }
1310     }
1311   }
1312 
1313   if (Current == End) {
1314     setError("Expected quote at end of scalar", Current);
1315     return false;
1316   }
1317 
1318   skip(1); // Skip ending quote.
1319   Token T;
1320   T.Kind = Token::TK_Scalar;
1321   T.Range = StringRef(Start, Current - Start);
1322   TokenQueue.push_back(T);
1323 
1324   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1325 
1326   IsSimpleKeyAllowed = false;
1327 
1328   return true;
1329 }
1330 
1331 bool Scanner::scanPlainScalar() {
1332   StringRef::iterator Start = Current;
1333   unsigned ColStart = Column;
1334   unsigned LeadingBlanks = 0;
1335   assert(Indent >= -1 && "Indent must be >= -1 !");
1336   unsigned indent = static_cast<unsigned>(Indent + 1);
1337   while (true) {
1338     if (*Current == '#')
1339       break;
1340 
1341     while (!isBlankOrBreak(Current)) {
1342       if (  FlowLevel && *Current == ':'
1343           && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
1344         setError("Found unexpected ':' while scanning a plain scalar", Current);
1345         return false;
1346       }
1347 
1348       // Check for the end of the plain scalar.
1349       if (  (*Current == ':' && isBlankOrBreak(Current + 1))
1350           || (  FlowLevel
1351           && (StringRef(Current, 1).find_first_of(",:?[]{}")
1352               != StringRef::npos)))
1353         break;
1354 
1355       StringRef::iterator i = skip_nb_char(Current);
1356       if (i == Current)
1357         break;
1358       Current = i;
1359       ++Column;
1360     }
1361 
1362     // Are we at the end?
1363     if (!isBlankOrBreak(Current))
1364       break;
1365 
1366     // Eat blanks.
1367     StringRef::iterator Tmp = Current;
1368     while (isBlankOrBreak(Tmp)) {
1369       StringRef::iterator i = skip_s_white(Tmp);
1370       if (i != Tmp) {
1371         if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1372           setError("Found invalid tab character in indentation", Tmp);
1373           return false;
1374         }
1375         Tmp = i;
1376         ++Column;
1377       } else {
1378         i = skip_b_break(Tmp);
1379         if (!LeadingBlanks)
1380           LeadingBlanks = 1;
1381         Tmp = i;
1382         Column = 0;
1383         ++Line;
1384       }
1385     }
1386 
1387     if (!FlowLevel && Column < indent)
1388       break;
1389 
1390     Current = Tmp;
1391   }
1392   if (Start == Current) {
1393     setError("Got empty plain scalar", Start);
1394     return false;
1395   }
1396   Token T;
1397   T.Kind = Token::TK_Scalar;
1398   T.Range = StringRef(Start, Current - Start);
1399   TokenQueue.push_back(T);
1400 
1401   // Plain scalars can be simple keys.
1402   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1403 
1404   IsSimpleKeyAllowed = false;
1405 
1406   return true;
1407 }
1408 
1409 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1410   StringRef::iterator Start = Current;
1411   unsigned ColStart = Column;
1412   skip(1);
1413   while(true) {
1414     if (   *Current == '[' || *Current == ']'
1415         || *Current == '{' || *Current == '}'
1416         || *Current == ','
1417         || *Current == ':')
1418       break;
1419     StringRef::iterator i = skip_ns_char(Current);
1420     if (i == Current)
1421       break;
1422     Current = i;
1423     ++Column;
1424   }
1425 
1426   if (Start == Current) {
1427     setError("Got empty alias or anchor", Start);
1428     return false;
1429   }
1430 
1431   Token T;
1432   T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1433   T.Range = StringRef(Start, Current - Start);
1434   TokenQueue.push_back(T);
1435 
1436   // Alias and anchors can be simple keys.
1437   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1438 
1439   IsSimpleKeyAllowed = false;
1440 
1441   return true;
1442 }
1443 
1444 char Scanner::scanBlockChompingIndicator() {
1445   char Indicator = ' ';
1446   if (Current != End && (*Current == '+' || *Current == '-')) {
1447     Indicator = *Current;
1448     skip(1);
1449   }
1450   return Indicator;
1451 }
1452 
1453 /// Get the number of line breaks after chomping.
1454 ///
1455 /// Return the number of trailing line breaks to emit, depending on
1456 /// \p ChompingIndicator.
1457 static unsigned getChompedLineBreaks(char ChompingIndicator,
1458                                      unsigned LineBreaks, StringRef Str) {
1459   if (ChompingIndicator == '-') // Strip all line breaks.
1460     return 0;
1461   if (ChompingIndicator == '+') // Keep all line breaks.
1462     return LineBreaks;
1463   // Clip trailing lines.
1464   return Str.empty() ? 0 : 1;
1465 }
1466 
1467 unsigned Scanner::scanBlockIndentationIndicator() {
1468   unsigned Indent = 0;
1469   if (Current != End && (*Current >= '1' && *Current <= '9')) {
1470     Indent = unsigned(*Current - '0');
1471     skip(1);
1472   }
1473   return Indent;
1474 }
1475 
1476 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1477                                     unsigned &IndentIndicator, bool &IsDone) {
1478   auto Start = Current;
1479 
1480   ChompingIndicator = scanBlockChompingIndicator();
1481   IndentIndicator = scanBlockIndentationIndicator();
1482   // Check for the chomping indicator once again.
1483   if (ChompingIndicator == ' ')
1484     ChompingIndicator = scanBlockChompingIndicator();
1485   Current = skip_while(&Scanner::skip_s_white, Current);
1486   skipComment();
1487 
1488   if (Current == End) { // EOF, we have an empty scalar.
1489     Token T;
1490     T.Kind = Token::TK_BlockScalar;
1491     T.Range = StringRef(Start, Current - Start);
1492     TokenQueue.push_back(T);
1493     IsDone = true;
1494     return true;
1495   }
1496 
1497   if (!consumeLineBreakIfPresent()) {
1498     setError("Expected a line break after block scalar header", Current);
1499     return false;
1500   }
1501   return true;
1502 }
1503 
1504 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1505                                     unsigned BlockExitIndent,
1506                                     unsigned &LineBreaks, bool &IsDone) {
1507   unsigned MaxAllSpaceLineCharacters = 0;
1508   StringRef::iterator LongestAllSpaceLine;
1509 
1510   while (true) {
1511     advanceWhile(&Scanner::skip_s_space);
1512     if (skip_nb_char(Current) != Current) {
1513       // This line isn't empty, so try and find the indentation.
1514       if (Column <= BlockExitIndent) { // End of the block literal.
1515         IsDone = true;
1516         return true;
1517       }
1518       // We found the block's indentation.
1519       BlockIndent = Column;
1520       if (MaxAllSpaceLineCharacters > BlockIndent) {
1521         setError(
1522             "Leading all-spaces line must be smaller than the block indent",
1523             LongestAllSpaceLine);
1524         return false;
1525       }
1526       return true;
1527     }
1528     if (skip_b_break(Current) != Current &&
1529         Column > MaxAllSpaceLineCharacters) {
1530       // Record the longest all-space line in case it's longer than the
1531       // discovered block indent.
1532       MaxAllSpaceLineCharacters = Column;
1533       LongestAllSpaceLine = Current;
1534     }
1535 
1536     // Check for EOF.
1537     if (Current == End) {
1538       IsDone = true;
1539       return true;
1540     }
1541 
1542     if (!consumeLineBreakIfPresent()) {
1543       IsDone = true;
1544       return true;
1545     }
1546     ++LineBreaks;
1547   }
1548   return true;
1549 }
1550 
1551 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1552                                     unsigned BlockExitIndent, bool &IsDone) {
1553   // Skip the indentation.
1554   while (Column < BlockIndent) {
1555     auto I = skip_s_space(Current);
1556     if (I == Current)
1557       break;
1558     Current = I;
1559     ++Column;
1560   }
1561 
1562   if (skip_nb_char(Current) == Current)
1563     return true;
1564 
1565   if (Column <= BlockExitIndent) { // End of the block literal.
1566     IsDone = true;
1567     return true;
1568   }
1569 
1570   if (Column < BlockIndent) {
1571     if (Current != End && *Current == '#') { // Trailing comment.
1572       IsDone = true;
1573       return true;
1574     }
1575     setError("A text line is less indented than the block scalar", Current);
1576     return false;
1577   }
1578   return true; // A normal text line.
1579 }
1580 
1581 bool Scanner::scanBlockScalar(bool IsLiteral) {
1582   // Eat '|' or '>'
1583   assert(*Current == '|' || *Current == '>');
1584   skip(1);
1585 
1586   char ChompingIndicator;
1587   unsigned BlockIndent;
1588   bool IsDone = false;
1589   if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone))
1590     return false;
1591   if (IsDone)
1592     return true;
1593 
1594   auto Start = Current;
1595   unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1596   unsigned LineBreaks = 0;
1597   if (BlockIndent == 0) {
1598     if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1599                                IsDone))
1600       return false;
1601   }
1602 
1603   // Scan the block's scalars body.
1604   SmallString<256> Str;
1605   while (!IsDone) {
1606     if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1607       return false;
1608     if (IsDone)
1609       break;
1610 
1611     // Parse the current line.
1612     auto LineStart = Current;
1613     advanceWhile(&Scanner::skip_nb_char);
1614     if (LineStart != Current) {
1615       Str.append(LineBreaks, '\n');
1616       Str.append(StringRef(LineStart, Current - LineStart));
1617       LineBreaks = 0;
1618     }
1619 
1620     // Check for EOF.
1621     if (Current == End)
1622       break;
1623 
1624     if (!consumeLineBreakIfPresent())
1625       break;
1626     ++LineBreaks;
1627   }
1628 
1629   if (Current == End && !LineBreaks)
1630     // Ensure that there is at least one line break before the end of file.
1631     LineBreaks = 1;
1632   Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1633 
1634   // New lines may start a simple key.
1635   if (!FlowLevel)
1636     IsSimpleKeyAllowed = true;
1637 
1638   Token T;
1639   T.Kind = Token::TK_BlockScalar;
1640   T.Range = StringRef(Start, Current - Start);
1641   T.Value = std::string(Str);
1642   TokenQueue.push_back(T);
1643   return true;
1644 }
1645 
1646 bool Scanner::scanTag() {
1647   StringRef::iterator Start = Current;
1648   unsigned ColStart = Column;
1649   skip(1); // Eat !.
1650   if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1651   else if (*Current == '<') {
1652     skip(1);
1653     scan_ns_uri_char();
1654     if (!consume('>'))
1655       return false;
1656   } else {
1657     // FIXME: Actually parse the c-ns-shorthand-tag rule.
1658     Current = skip_while(&Scanner::skip_ns_char, Current);
1659   }
1660 
1661   Token T;
1662   T.Kind = Token::TK_Tag;
1663   T.Range = StringRef(Start, Current - Start);
1664   TokenQueue.push_back(T);
1665 
1666   // Tags can be simple keys.
1667   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1668 
1669   IsSimpleKeyAllowed = false;
1670 
1671   return true;
1672 }
1673 
1674 bool Scanner::fetchMoreTokens() {
1675   if (IsStartOfStream)
1676     return scanStreamStart();
1677 
1678   scanToNextToken();
1679 
1680   if (Current == End)
1681     return scanStreamEnd();
1682 
1683   removeStaleSimpleKeyCandidates();
1684 
1685   unrollIndent(Column);
1686 
1687   if (Column == 0 && *Current == '%')
1688     return scanDirective();
1689 
1690   if (Column == 0 && Current + 4 <= End
1691       && *Current == '-'
1692       && *(Current + 1) == '-'
1693       && *(Current + 2) == '-'
1694       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1695     return scanDocumentIndicator(true);
1696 
1697   if (Column == 0 && Current + 4 <= End
1698       && *Current == '.'
1699       && *(Current + 1) == '.'
1700       && *(Current + 2) == '.'
1701       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1702     return scanDocumentIndicator(false);
1703 
1704   if (*Current == '[')
1705     return scanFlowCollectionStart(true);
1706 
1707   if (*Current == '{')
1708     return scanFlowCollectionStart(false);
1709 
1710   if (*Current == ']')
1711     return scanFlowCollectionEnd(true);
1712 
1713   if (*Current == '}')
1714     return scanFlowCollectionEnd(false);
1715 
1716   if (*Current == ',')
1717     return scanFlowEntry();
1718 
1719   if (*Current == '-' && isBlankOrBreak(Current + 1))
1720     return scanBlockEntry();
1721 
1722   if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1723     return scanKey();
1724 
1725   if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1726     return scanValue();
1727 
1728   if (*Current == '*')
1729     return scanAliasOrAnchor(true);
1730 
1731   if (*Current == '&')
1732     return scanAliasOrAnchor(false);
1733 
1734   if (*Current == '!')
1735     return scanTag();
1736 
1737   if (*Current == '|' && !FlowLevel)
1738     return scanBlockScalar(true);
1739 
1740   if (*Current == '>' && !FlowLevel)
1741     return scanBlockScalar(false);
1742 
1743   if (*Current == '\'')
1744     return scanFlowScalar(false);
1745 
1746   if (*Current == '"')
1747     return scanFlowScalar(true);
1748 
1749   // Get a plain scalar.
1750   StringRef FirstChar(Current, 1);
1751   if (!(isBlankOrBreak(Current)
1752         || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1753       || (*Current == '-' && !isBlankOrBreak(Current + 1))
1754       || (!FlowLevel && (*Current == '?' || *Current == ':')
1755           && isBlankOrBreak(Current + 1))
1756       || (!FlowLevel && *Current == ':'
1757                       && Current + 2 < End
1758                       && *(Current + 1) == ':'
1759                       && !isBlankOrBreak(Current + 2)))
1760     return scanPlainScalar();
1761 
1762   setError("Unrecognized character while tokenizing.", Current);
1763   return false;
1764 }
1765 
1766 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1767                std::error_code *EC)
1768     : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {}
1769 
1770 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1771                std::error_code *EC)
1772     : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {}
1773 
1774 Stream::~Stream() = default;
1775 
1776 bool Stream::failed() { return scanner->failed(); }
1777 
1778 void Stream::printError(Node *N, const Twine &Msg) {
1779   SMRange Range = N ? N->getSourceRange() : SMRange();
1780   scanner->printError( Range.Start
1781                      , SourceMgr::DK_Error
1782                      , Msg
1783                      , Range);
1784 }
1785 
1786 document_iterator Stream::begin() {
1787   if (CurrentDoc)
1788     report_fatal_error("Can only iterate over the stream once");
1789 
1790   // Skip Stream-Start.
1791   scanner->getNext();
1792 
1793   CurrentDoc.reset(new Document(*this));
1794   return document_iterator(CurrentDoc);
1795 }
1796 
1797 document_iterator Stream::end() {
1798   return document_iterator();
1799 }
1800 
1801 void Stream::skip() {
1802   for (document_iterator i = begin(), e = end(); i != e; ++i)
1803     i->skip();
1804 }
1805 
1806 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1807            StringRef T)
1808     : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1809   SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1810   SourceRange = SMRange(Start, Start);
1811 }
1812 
1813 std::string Node::getVerbatimTag() const {
1814   StringRef Raw = getRawTag();
1815   if (!Raw.empty() && Raw != "!") {
1816     std::string Ret;
1817     if (Raw.find_last_of('!') == 0) {
1818       Ret = std::string(Doc->getTagMap().find("!")->second);
1819       Ret += Raw.substr(1);
1820       return Ret;
1821     } else if (Raw.startswith("!!")) {
1822       Ret = std::string(Doc->getTagMap().find("!!")->second);
1823       Ret += Raw.substr(2);
1824       return Ret;
1825     } else {
1826       StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1827       std::map<StringRef, StringRef>::const_iterator It =
1828           Doc->getTagMap().find(TagHandle);
1829       if (It != Doc->getTagMap().end())
1830         Ret = std::string(It->second);
1831       else {
1832         Token T;
1833         T.Kind = Token::TK_Tag;
1834         T.Range = TagHandle;
1835         setError(Twine("Unknown tag handle ") + TagHandle, T);
1836       }
1837       Ret += Raw.substr(Raw.find_last_of('!') + 1);
1838       return Ret;
1839     }
1840   }
1841 
1842   switch (getType()) {
1843   case NK_Null:
1844     return "tag:yaml.org,2002:null";
1845   case NK_Scalar:
1846   case NK_BlockScalar:
1847     // TODO: Tag resolution.
1848     return "tag:yaml.org,2002:str";
1849   case NK_Mapping:
1850     return "tag:yaml.org,2002:map";
1851   case NK_Sequence:
1852     return "tag:yaml.org,2002:seq";
1853   }
1854 
1855   return "";
1856 }
1857 
1858 Token &Node::peekNext() {
1859   return Doc->peekNext();
1860 }
1861 
1862 Token Node::getNext() {
1863   return Doc->getNext();
1864 }
1865 
1866 Node *Node::parseBlockNode() {
1867   return Doc->parseBlockNode();
1868 }
1869 
1870 BumpPtrAllocator &Node::getAllocator() {
1871   return Doc->NodeAllocator;
1872 }
1873 
1874 void Node::setError(const Twine &Msg, Token &Tok) const {
1875   Doc->setError(Msg, Tok);
1876 }
1877 
1878 bool Node::failed() const {
1879   return Doc->failed();
1880 }
1881 
1882 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1883   // TODO: Handle newlines properly. We need to remove leading whitespace.
1884   if (Value[0] == '"') { // Double quoted.
1885     // Pull off the leading and trailing "s.
1886     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1887     // Search for characters that would require unescaping the value.
1888     StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1889     if (i != StringRef::npos)
1890       return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1891     return UnquotedValue;
1892   } else if (Value[0] == '\'') { // Single quoted.
1893     // Pull off the leading and trailing 's.
1894     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1895     StringRef::size_type i = UnquotedValue.find('\'');
1896     if (i != StringRef::npos) {
1897       // We're going to need Storage.
1898       Storage.clear();
1899       Storage.reserve(UnquotedValue.size());
1900       for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1901         StringRef Valid(UnquotedValue.begin(), i);
1902         Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1903         Storage.push_back('\'');
1904         UnquotedValue = UnquotedValue.substr(i + 2);
1905       }
1906       Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1907       return StringRef(Storage.begin(), Storage.size());
1908     }
1909     return UnquotedValue;
1910   }
1911   // Plain or block.
1912   return Value.rtrim(' ');
1913 }
1914 
1915 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1916                                           , StringRef::size_type i
1917                                           , SmallVectorImpl<char> &Storage)
1918                                           const {
1919   // Use Storage to build proper value.
1920   Storage.clear();
1921   Storage.reserve(UnquotedValue.size());
1922   for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1923     // Insert all previous chars into Storage.
1924     StringRef Valid(UnquotedValue.begin(), i);
1925     Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1926     // Chop off inserted chars.
1927     UnquotedValue = UnquotedValue.substr(i);
1928 
1929     assert(!UnquotedValue.empty() && "Can't be empty!");
1930 
1931     // Parse escape or line break.
1932     switch (UnquotedValue[0]) {
1933     case '\r':
1934     case '\n':
1935       Storage.push_back('\n');
1936       if (   UnquotedValue.size() > 1
1937           && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1938         UnquotedValue = UnquotedValue.substr(1);
1939       UnquotedValue = UnquotedValue.substr(1);
1940       break;
1941     default:
1942       if (UnquotedValue.size() == 1) {
1943         Token T;
1944         T.Range = StringRef(UnquotedValue.begin(), 1);
1945         setError("Unrecognized escape code", T);
1946         return "";
1947       }
1948       UnquotedValue = UnquotedValue.substr(1);
1949       switch (UnquotedValue[0]) {
1950       default: {
1951           Token T;
1952           T.Range = StringRef(UnquotedValue.begin(), 1);
1953           setError("Unrecognized escape code", T);
1954           return "";
1955         }
1956       case '\r':
1957       case '\n':
1958         // Remove the new line.
1959         if (   UnquotedValue.size() > 1
1960             && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1961           UnquotedValue = UnquotedValue.substr(1);
1962         // If this was just a single byte newline, it will get skipped
1963         // below.
1964         break;
1965       case '0':
1966         Storage.push_back(0x00);
1967         break;
1968       case 'a':
1969         Storage.push_back(0x07);
1970         break;
1971       case 'b':
1972         Storage.push_back(0x08);
1973         break;
1974       case 't':
1975       case 0x09:
1976         Storage.push_back(0x09);
1977         break;
1978       case 'n':
1979         Storage.push_back(0x0A);
1980         break;
1981       case 'v':
1982         Storage.push_back(0x0B);
1983         break;
1984       case 'f':
1985         Storage.push_back(0x0C);
1986         break;
1987       case 'r':
1988         Storage.push_back(0x0D);
1989         break;
1990       case 'e':
1991         Storage.push_back(0x1B);
1992         break;
1993       case ' ':
1994         Storage.push_back(0x20);
1995         break;
1996       case '"':
1997         Storage.push_back(0x22);
1998         break;
1999       case '/':
2000         Storage.push_back(0x2F);
2001         break;
2002       case '\\':
2003         Storage.push_back(0x5C);
2004         break;
2005       case 'N':
2006         encodeUTF8(0x85, Storage);
2007         break;
2008       case '_':
2009         encodeUTF8(0xA0, Storage);
2010         break;
2011       case 'L':
2012         encodeUTF8(0x2028, Storage);
2013         break;
2014       case 'P':
2015         encodeUTF8(0x2029, Storage);
2016         break;
2017       case 'x': {
2018           if (UnquotedValue.size() < 3)
2019             // TODO: Report error.
2020             break;
2021           unsigned int UnicodeScalarValue;
2022           if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2023             // TODO: Report error.
2024             UnicodeScalarValue = 0xFFFD;
2025           encodeUTF8(UnicodeScalarValue, Storage);
2026           UnquotedValue = UnquotedValue.substr(2);
2027           break;
2028         }
2029       case 'u': {
2030           if (UnquotedValue.size() < 5)
2031             // TODO: Report error.
2032             break;
2033           unsigned int UnicodeScalarValue;
2034           if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2035             // TODO: Report error.
2036             UnicodeScalarValue = 0xFFFD;
2037           encodeUTF8(UnicodeScalarValue, Storage);
2038           UnquotedValue = UnquotedValue.substr(4);
2039           break;
2040         }
2041       case 'U': {
2042           if (UnquotedValue.size() < 9)
2043             // TODO: Report error.
2044             break;
2045           unsigned int UnicodeScalarValue;
2046           if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2047             // TODO: Report error.
2048             UnicodeScalarValue = 0xFFFD;
2049           encodeUTF8(UnicodeScalarValue, Storage);
2050           UnquotedValue = UnquotedValue.substr(8);
2051           break;
2052         }
2053       }
2054       UnquotedValue = UnquotedValue.substr(1);
2055     }
2056   }
2057   Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
2058   return StringRef(Storage.begin(), Storage.size());
2059 }
2060 
2061 Node *KeyValueNode::getKey() {
2062   if (Key)
2063     return Key;
2064   // Handle implicit null keys.
2065   {
2066     Token &t = peekNext();
2067     if (   t.Kind == Token::TK_BlockEnd
2068         || t.Kind == Token::TK_Value
2069         || t.Kind == Token::TK_Error) {
2070       return Key = new (getAllocator()) NullNode(Doc);
2071     }
2072     if (t.Kind == Token::TK_Key)
2073       getNext(); // skip TK_Key.
2074   }
2075 
2076   // Handle explicit null keys.
2077   Token &t = peekNext();
2078   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2079     return Key = new (getAllocator()) NullNode(Doc);
2080   }
2081 
2082   // We've got a normal key.
2083   return Key = parseBlockNode();
2084 }
2085 
2086 Node *KeyValueNode::getValue() {
2087   if (Value)
2088     return Value;
2089 
2090   if (Node* Key = getKey())
2091     Key->skip();
2092   else {
2093     setError("Null key in Key Value.", peekNext());
2094     return Value = new (getAllocator()) NullNode(Doc);
2095   }
2096 
2097   if (failed())
2098     return Value = new (getAllocator()) NullNode(Doc);
2099 
2100   // Handle implicit null values.
2101   {
2102     Token &t = peekNext();
2103     if (   t.Kind == Token::TK_BlockEnd
2104         || t.Kind == Token::TK_FlowMappingEnd
2105         || t.Kind == Token::TK_Key
2106         || t.Kind == Token::TK_FlowEntry
2107         || t.Kind == Token::TK_Error) {
2108       return Value = new (getAllocator()) NullNode(Doc);
2109     }
2110 
2111     if (t.Kind != Token::TK_Value) {
2112       setError("Unexpected token in Key Value.", t);
2113       return Value = new (getAllocator()) NullNode(Doc);
2114     }
2115     getNext(); // skip TK_Value.
2116   }
2117 
2118   // Handle explicit null values.
2119   Token &t = peekNext();
2120   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2121     return Value = new (getAllocator()) NullNode(Doc);
2122   }
2123 
2124   // We got a normal value.
2125   return Value = parseBlockNode();
2126 }
2127 
2128 void MappingNode::increment() {
2129   if (failed()) {
2130     IsAtEnd = true;
2131     CurrentEntry = nullptr;
2132     return;
2133   }
2134   if (CurrentEntry) {
2135     CurrentEntry->skip();
2136     if (Type == MT_Inline) {
2137       IsAtEnd = true;
2138       CurrentEntry = nullptr;
2139       return;
2140     }
2141   }
2142   Token T = peekNext();
2143   if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2144     // KeyValueNode eats the TK_Key. That way it can detect null keys.
2145     CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2146   } else if (Type == MT_Block) {
2147     switch (T.Kind) {
2148     case Token::TK_BlockEnd:
2149       getNext();
2150       IsAtEnd = true;
2151       CurrentEntry = nullptr;
2152       break;
2153     default:
2154       setError("Unexpected token. Expected Key or Block End", T);
2155       LLVM_FALLTHROUGH;
2156     case Token::TK_Error:
2157       IsAtEnd = true;
2158       CurrentEntry = nullptr;
2159     }
2160   } else {
2161     switch (T.Kind) {
2162     case Token::TK_FlowEntry:
2163       // Eat the flow entry and recurse.
2164       getNext();
2165       return increment();
2166     case Token::TK_FlowMappingEnd:
2167       getNext();
2168       LLVM_FALLTHROUGH;
2169     case Token::TK_Error:
2170       // Set this to end iterator.
2171       IsAtEnd = true;
2172       CurrentEntry = nullptr;
2173       break;
2174     default:
2175       setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2176                 "Mapping End."
2177               , T);
2178       IsAtEnd = true;
2179       CurrentEntry = nullptr;
2180     }
2181   }
2182 }
2183 
2184 void SequenceNode::increment() {
2185   if (failed()) {
2186     IsAtEnd = true;
2187     CurrentEntry = nullptr;
2188     return;
2189   }
2190   if (CurrentEntry)
2191     CurrentEntry->skip();
2192   Token T = peekNext();
2193   if (SeqType == ST_Block) {
2194     switch (T.Kind) {
2195     case Token::TK_BlockEntry:
2196       getNext();
2197       CurrentEntry = parseBlockNode();
2198       if (!CurrentEntry) { // An error occurred.
2199         IsAtEnd = true;
2200         CurrentEntry = nullptr;
2201       }
2202       break;
2203     case Token::TK_BlockEnd:
2204       getNext();
2205       IsAtEnd = true;
2206       CurrentEntry = nullptr;
2207       break;
2208     default:
2209       setError( "Unexpected token. Expected Block Entry or Block End."
2210               , T);
2211       LLVM_FALLTHROUGH;
2212     case Token::TK_Error:
2213       IsAtEnd = true;
2214       CurrentEntry = nullptr;
2215     }
2216   } else if (SeqType == ST_Indentless) {
2217     switch (T.Kind) {
2218     case Token::TK_BlockEntry:
2219       getNext();
2220       CurrentEntry = parseBlockNode();
2221       if (!CurrentEntry) { // An error occurred.
2222         IsAtEnd = true;
2223         CurrentEntry = nullptr;
2224       }
2225       break;
2226     default:
2227     case Token::TK_Error:
2228       IsAtEnd = true;
2229       CurrentEntry = nullptr;
2230     }
2231   } else if (SeqType == ST_Flow) {
2232     switch (T.Kind) {
2233     case Token::TK_FlowEntry:
2234       // Eat the flow entry and recurse.
2235       getNext();
2236       WasPreviousTokenFlowEntry = true;
2237       return increment();
2238     case Token::TK_FlowSequenceEnd:
2239       getNext();
2240       LLVM_FALLTHROUGH;
2241     case Token::TK_Error:
2242       // Set this to end iterator.
2243       IsAtEnd = true;
2244       CurrentEntry = nullptr;
2245       break;
2246     case Token::TK_StreamEnd:
2247     case Token::TK_DocumentEnd:
2248     case Token::TK_DocumentStart:
2249       setError("Could not find closing ]!", T);
2250       // Set this to end iterator.
2251       IsAtEnd = true;
2252       CurrentEntry = nullptr;
2253       break;
2254     default:
2255       if (!WasPreviousTokenFlowEntry) {
2256         setError("Expected , between entries!", T);
2257         IsAtEnd = true;
2258         CurrentEntry = nullptr;
2259         break;
2260       }
2261       // Otherwise it must be a flow entry.
2262       CurrentEntry = parseBlockNode();
2263       if (!CurrentEntry) {
2264         IsAtEnd = true;
2265       }
2266       WasPreviousTokenFlowEntry = false;
2267       break;
2268     }
2269   }
2270 }
2271 
2272 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2273   // Tag maps starts with two default mappings.
2274   TagMap["!"] = "!";
2275   TagMap["!!"] = "tag:yaml.org,2002:";
2276 
2277   if (parseDirectives())
2278     expectToken(Token::TK_DocumentStart);
2279   Token &T = peekNext();
2280   if (T.Kind == Token::TK_DocumentStart)
2281     getNext();
2282 }
2283 
2284 bool Document::skip()  {
2285   if (stream.scanner->failed())
2286     return false;
2287   if (!Root && !getRoot())
2288     return false;
2289   Root->skip();
2290   Token &T = peekNext();
2291   if (T.Kind == Token::TK_StreamEnd)
2292     return false;
2293   if (T.Kind == Token::TK_DocumentEnd) {
2294     getNext();
2295     return skip();
2296   }
2297   return true;
2298 }
2299 
2300 Token &Document::peekNext() {
2301   return stream.scanner->peekNext();
2302 }
2303 
2304 Token Document::getNext() {
2305   return stream.scanner->getNext();
2306 }
2307 
2308 void Document::setError(const Twine &Message, Token &Location) const {
2309   stream.scanner->setError(Message, Location.Range.begin());
2310 }
2311 
2312 bool Document::failed() const {
2313   return stream.scanner->failed();
2314 }
2315 
2316 Node *Document::parseBlockNode() {
2317   Token T = peekNext();
2318   // Handle properties.
2319   Token AnchorInfo;
2320   Token TagInfo;
2321 parse_property:
2322   switch (T.Kind) {
2323   case Token::TK_Alias:
2324     getNext();
2325     return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2326   case Token::TK_Anchor:
2327     if (AnchorInfo.Kind == Token::TK_Anchor) {
2328       setError("Already encountered an anchor for this node!", T);
2329       return nullptr;
2330     }
2331     AnchorInfo = getNext(); // Consume TK_Anchor.
2332     T = peekNext();
2333     goto parse_property;
2334   case Token::TK_Tag:
2335     if (TagInfo.Kind == Token::TK_Tag) {
2336       setError("Already encountered a tag for this node!", T);
2337       return nullptr;
2338     }
2339     TagInfo = getNext(); // Consume TK_Tag.
2340     T = peekNext();
2341     goto parse_property;
2342   default:
2343     break;
2344   }
2345 
2346   switch (T.Kind) {
2347   case Token::TK_BlockEntry:
2348     // We got an unindented BlockEntry sequence. This is not terminated with
2349     // a BlockEnd.
2350     // Don't eat the TK_BlockEntry, SequenceNode needs it.
2351     return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2352                                            , AnchorInfo.Range.substr(1)
2353                                            , TagInfo.Range
2354                                            , SequenceNode::ST_Indentless);
2355   case Token::TK_BlockSequenceStart:
2356     getNext();
2357     return new (NodeAllocator)
2358       SequenceNode( stream.CurrentDoc
2359                   , AnchorInfo.Range.substr(1)
2360                   , TagInfo.Range
2361                   , SequenceNode::ST_Block);
2362   case Token::TK_BlockMappingStart:
2363     getNext();
2364     return new (NodeAllocator)
2365       MappingNode( stream.CurrentDoc
2366                  , AnchorInfo.Range.substr(1)
2367                  , TagInfo.Range
2368                  , MappingNode::MT_Block);
2369   case Token::TK_FlowSequenceStart:
2370     getNext();
2371     return new (NodeAllocator)
2372       SequenceNode( stream.CurrentDoc
2373                   , AnchorInfo.Range.substr(1)
2374                   , TagInfo.Range
2375                   , SequenceNode::ST_Flow);
2376   case Token::TK_FlowMappingStart:
2377     getNext();
2378     return new (NodeAllocator)
2379       MappingNode( stream.CurrentDoc
2380                  , AnchorInfo.Range.substr(1)
2381                  , TagInfo.Range
2382                  , MappingNode::MT_Flow);
2383   case Token::TK_Scalar:
2384     getNext();
2385     return new (NodeAllocator)
2386       ScalarNode( stream.CurrentDoc
2387                 , AnchorInfo.Range.substr(1)
2388                 , TagInfo.Range
2389                 , T.Range);
2390   case Token::TK_BlockScalar: {
2391     getNext();
2392     StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2393     StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2394     return new (NodeAllocator)
2395         BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2396                         TagInfo.Range, StrCopy, T.Range);
2397   }
2398   case Token::TK_Key:
2399     // Don't eat the TK_Key, KeyValueNode expects it.
2400     return new (NodeAllocator)
2401       MappingNode( stream.CurrentDoc
2402                  , AnchorInfo.Range.substr(1)
2403                  , TagInfo.Range
2404                  , MappingNode::MT_Inline);
2405   case Token::TK_DocumentStart:
2406   case Token::TK_DocumentEnd:
2407   case Token::TK_StreamEnd:
2408   default:
2409     // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2410     //       !!null null.
2411     return new (NodeAllocator) NullNode(stream.CurrentDoc);
2412   case Token::TK_FlowMappingEnd:
2413   case Token::TK_FlowSequenceEnd:
2414   case Token::TK_FlowEntry: {
2415     if (Root && (isa<MappingNode>(Root) || isa<SequenceNode>(Root)))
2416       return new (NodeAllocator) NullNode(stream.CurrentDoc);
2417 
2418     setError("Unexpected token", T);
2419     return nullptr;
2420   }
2421   case Token::TK_Error:
2422     return nullptr;
2423   }
2424   llvm_unreachable("Control flow shouldn't reach here.");
2425   return nullptr;
2426 }
2427 
2428 bool Document::parseDirectives() {
2429   bool isDirective = false;
2430   while (true) {
2431     Token T = peekNext();
2432     if (T.Kind == Token::TK_TagDirective) {
2433       parseTAGDirective();
2434       isDirective = true;
2435     } else if (T.Kind == Token::TK_VersionDirective) {
2436       parseYAMLDirective();
2437       isDirective = true;
2438     } else
2439       break;
2440   }
2441   return isDirective;
2442 }
2443 
2444 void Document::parseYAMLDirective() {
2445   getNext(); // Eat %YAML <version>
2446 }
2447 
2448 void Document::parseTAGDirective() {
2449   Token Tag = getNext(); // %TAG <handle> <prefix>
2450   StringRef T = Tag.Range;
2451   // Strip %TAG
2452   T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2453   std::size_t HandleEnd = T.find_first_of(" \t");
2454   StringRef TagHandle = T.substr(0, HandleEnd);
2455   StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2456   TagMap[TagHandle] = TagPrefix;
2457 }
2458 
2459 bool Document::expectToken(int TK) {
2460   Token T = getNext();
2461   if (T.Kind != TK) {
2462     setError("Unexpected token", T);
2463     return false;
2464   }
2465   return true;
2466 }
2467