1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a YAML parser. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Support/YAMLParser.h" 14 #include "llvm/ADT/AllocatorList.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/Support/SMLoc.h" 27 #include "llvm/Support/SourceMgr.h" 28 #include "llvm/Support/Unicode.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <cstdint> 34 #include <map> 35 #include <memory> 36 #include <string> 37 #include <system_error> 38 #include <utility> 39 40 using namespace llvm; 41 using namespace yaml; 42 43 enum UnicodeEncodingForm { 44 UEF_UTF32_LE, ///< UTF-32 Little Endian 45 UEF_UTF32_BE, ///< UTF-32 Big Endian 46 UEF_UTF16_LE, ///< UTF-16 Little Endian 47 UEF_UTF16_BE, ///< UTF-16 Big Endian 48 UEF_UTF8, ///< UTF-8 or ascii. 49 UEF_Unknown ///< Not a valid Unicode encoding. 50 }; 51 52 /// EncodingInfo - Holds the encoding type and length of the byte order mark if 53 /// it exists. Length is in {0, 2, 3, 4}. 54 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>; 55 56 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode 57 /// encoding form of \a Input. 58 /// 59 /// @param Input A string of length 0 or more. 60 /// @returns An EncodingInfo indicating the Unicode encoding form of the input 61 /// and how long the byte order mark is if one exists. 62 static EncodingInfo getUnicodeEncoding(StringRef Input) { 63 if (Input.empty()) 64 return std::make_pair(UEF_Unknown, 0); 65 66 switch (uint8_t(Input[0])) { 67 case 0x00: 68 if (Input.size() >= 4) { 69 if ( Input[1] == 0 70 && uint8_t(Input[2]) == 0xFE 71 && uint8_t(Input[3]) == 0xFF) 72 return std::make_pair(UEF_UTF32_BE, 4); 73 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0) 74 return std::make_pair(UEF_UTF32_BE, 0); 75 } 76 77 if (Input.size() >= 2 && Input[1] != 0) 78 return std::make_pair(UEF_UTF16_BE, 0); 79 return std::make_pair(UEF_Unknown, 0); 80 case 0xFF: 81 if ( Input.size() >= 4 82 && uint8_t(Input[1]) == 0xFE 83 && Input[2] == 0 84 && Input[3] == 0) 85 return std::make_pair(UEF_UTF32_LE, 4); 86 87 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE) 88 return std::make_pair(UEF_UTF16_LE, 2); 89 return std::make_pair(UEF_Unknown, 0); 90 case 0xFE: 91 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF) 92 return std::make_pair(UEF_UTF16_BE, 2); 93 return std::make_pair(UEF_Unknown, 0); 94 case 0xEF: 95 if ( Input.size() >= 3 96 && uint8_t(Input[1]) == 0xBB 97 && uint8_t(Input[2]) == 0xBF) 98 return std::make_pair(UEF_UTF8, 3); 99 return std::make_pair(UEF_Unknown, 0); 100 } 101 102 // It could still be utf-32 or utf-16. 103 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0) 104 return std::make_pair(UEF_UTF32_LE, 0); 105 106 if (Input.size() >= 2 && Input[1] == 0) 107 return std::make_pair(UEF_UTF16_LE, 0); 108 109 return std::make_pair(UEF_UTF8, 0); 110 } 111 112 /// Pin the vtables to this file. 113 void Node::anchor() {} 114 void NullNode::anchor() {} 115 void ScalarNode::anchor() {} 116 void BlockScalarNode::anchor() {} 117 void KeyValueNode::anchor() {} 118 void MappingNode::anchor() {} 119 void SequenceNode::anchor() {} 120 void AliasNode::anchor() {} 121 122 namespace llvm { 123 namespace yaml { 124 125 /// Token - A single YAML token. 126 struct Token { 127 enum TokenKind { 128 TK_Error, // Uninitialized token. 129 TK_StreamStart, 130 TK_StreamEnd, 131 TK_VersionDirective, 132 TK_TagDirective, 133 TK_DocumentStart, 134 TK_DocumentEnd, 135 TK_BlockEntry, 136 TK_BlockEnd, 137 TK_BlockSequenceStart, 138 TK_BlockMappingStart, 139 TK_FlowEntry, 140 TK_FlowSequenceStart, 141 TK_FlowSequenceEnd, 142 TK_FlowMappingStart, 143 TK_FlowMappingEnd, 144 TK_Key, 145 TK_Value, 146 TK_Scalar, 147 TK_BlockScalar, 148 TK_Alias, 149 TK_Anchor, 150 TK_Tag 151 } Kind = TK_Error; 152 153 /// A string of length 0 or more whose begin() points to the logical location 154 /// of the token in the input. 155 StringRef Range; 156 157 /// The value of a block scalar node. 158 std::string Value; 159 160 Token() = default; 161 }; 162 163 } // end namespace yaml 164 } // end namespace llvm 165 166 using TokenQueueT = BumpPtrList<Token>; 167 168 namespace { 169 170 /// This struct is used to track simple keys. 171 /// 172 /// Simple keys are handled by creating an entry in SimpleKeys for each Token 173 /// which could legally be the start of a simple key. When peekNext is called, 174 /// if the Token To be returned is referenced by a SimpleKey, we continue 175 /// tokenizing until that potential simple key has either been found to not be 176 /// a simple key (we moved on to the next line or went further than 1024 chars). 177 /// Or when we run into a Value, and then insert a Key token (and possibly 178 /// others) before the SimpleKey's Tok. 179 struct SimpleKey { 180 TokenQueueT::iterator Tok; 181 unsigned Column; 182 unsigned Line; 183 unsigned FlowLevel; 184 bool IsRequired; 185 186 bool operator ==(const SimpleKey &Other) { 187 return Tok == Other.Tok; 188 } 189 }; 190 191 } // end anonymous namespace 192 193 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit 194 /// subsequence and the subsequence's length in code units (uint8_t). 195 /// A length of 0 represents an error. 196 using UTF8Decoded = std::pair<uint32_t, unsigned>; 197 198 static UTF8Decoded decodeUTF8(StringRef Range) { 199 StringRef::iterator Position= Range.begin(); 200 StringRef::iterator End = Range.end(); 201 // 1 byte: [0x00, 0x7f] 202 // Bit pattern: 0xxxxxxx 203 if ((*Position & 0x80) == 0) { 204 return std::make_pair(*Position, 1); 205 } 206 // 2 bytes: [0x80, 0x7ff] 207 // Bit pattern: 110xxxxx 10xxxxxx 208 if (Position + 1 != End && 209 ((*Position & 0xE0) == 0xC0) && 210 ((*(Position + 1) & 0xC0) == 0x80)) { 211 uint32_t codepoint = ((*Position & 0x1F) << 6) | 212 (*(Position + 1) & 0x3F); 213 if (codepoint >= 0x80) 214 return std::make_pair(codepoint, 2); 215 } 216 // 3 bytes: [0x8000, 0xffff] 217 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx 218 if (Position + 2 != End && 219 ((*Position & 0xF0) == 0xE0) && 220 ((*(Position + 1) & 0xC0) == 0x80) && 221 ((*(Position + 2) & 0xC0) == 0x80)) { 222 uint32_t codepoint = ((*Position & 0x0F) << 12) | 223 ((*(Position + 1) & 0x3F) << 6) | 224 (*(Position + 2) & 0x3F); 225 // Codepoints between 0xD800 and 0xDFFF are invalid, as 226 // they are high / low surrogate halves used by UTF-16. 227 if (codepoint >= 0x800 && 228 (codepoint < 0xD800 || codepoint > 0xDFFF)) 229 return std::make_pair(codepoint, 3); 230 } 231 // 4 bytes: [0x10000, 0x10FFFF] 232 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 233 if (Position + 3 != End && 234 ((*Position & 0xF8) == 0xF0) && 235 ((*(Position + 1) & 0xC0) == 0x80) && 236 ((*(Position + 2) & 0xC0) == 0x80) && 237 ((*(Position + 3) & 0xC0) == 0x80)) { 238 uint32_t codepoint = ((*Position & 0x07) << 18) | 239 ((*(Position + 1) & 0x3F) << 12) | 240 ((*(Position + 2) & 0x3F) << 6) | 241 (*(Position + 3) & 0x3F); 242 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF) 243 return std::make_pair(codepoint, 4); 244 } 245 return std::make_pair(0, 0); 246 } 247 248 namespace llvm { 249 namespace yaml { 250 251 /// Scans YAML tokens from a MemoryBuffer. 252 class Scanner { 253 public: 254 Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true, 255 std::error_code *EC = nullptr); 256 Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true, 257 std::error_code *EC = nullptr); 258 259 /// Parse the next token and return it without popping it. 260 Token &peekNext(); 261 262 /// Parse the next token and pop it from the queue. 263 Token getNext(); 264 265 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message, 266 ArrayRef<SMRange> Ranges = None) { 267 SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors); 268 } 269 270 void setError(const Twine &Message, StringRef::iterator Position) { 271 if (Current >= End) 272 Current = End - 1; 273 274 // propagate the error if possible 275 if (EC) 276 *EC = make_error_code(std::errc::invalid_argument); 277 278 // Don't print out more errors after the first one we encounter. The rest 279 // are just the result of the first, and have no meaning. 280 if (!Failed) 281 printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message); 282 Failed = true; 283 } 284 285 void setError(const Twine &Message) { 286 setError(Message, Current); 287 } 288 289 /// Returns true if an error occurred while parsing. 290 bool failed() { 291 return Failed; 292 } 293 294 private: 295 void init(MemoryBufferRef Buffer); 296 297 StringRef currentInput() { 298 return StringRef(Current, End - Current); 299 } 300 301 /// Decode a UTF-8 minimal well-formed code unit subsequence starting 302 /// at \a Position. 303 /// 304 /// If the UTF-8 code units starting at Position do not form a well-formed 305 /// code unit subsequence, then the Unicode scalar value is 0, and the length 306 /// is 0. 307 UTF8Decoded decodeUTF8(StringRef::iterator Position) { 308 return ::decodeUTF8(StringRef(Position, End - Position)); 309 } 310 311 // The following functions are based on the gramar rules in the YAML spec. The 312 // style of the function names it meant to closely match how they are written 313 // in the spec. The number within the [] is the number of the grammar rule in 314 // the spec. 315 // 316 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes. 317 // 318 // c- 319 // A production starting and ending with a special character. 320 // b- 321 // A production matching a single line break. 322 // nb- 323 // A production starting and ending with a non-break character. 324 // s- 325 // A production starting and ending with a white space character. 326 // ns- 327 // A production starting and ending with a non-space character. 328 // l- 329 // A production matching complete line(s). 330 331 /// Skip a single nb-char[27] starting at Position. 332 /// 333 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE] 334 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF] 335 /// 336 /// @returns The code unit after the nb-char, or Position if it's not an 337 /// nb-char. 338 StringRef::iterator skip_nb_char(StringRef::iterator Position); 339 340 /// Skip a single b-break[28] starting at Position. 341 /// 342 /// A b-break is 0xD 0xA | 0xD | 0xA 343 /// 344 /// @returns The code unit after the b-break, or Position if it's not a 345 /// b-break. 346 StringRef::iterator skip_b_break(StringRef::iterator Position); 347 348 /// Skip a single s-space[31] starting at Position. 349 /// 350 /// An s-space is 0x20 351 /// 352 /// @returns The code unit after the s-space, or Position if it's not a 353 /// s-space. 354 StringRef::iterator skip_s_space(StringRef::iterator Position); 355 356 /// Skip a single s-white[33] starting at Position. 357 /// 358 /// A s-white is 0x20 | 0x9 359 /// 360 /// @returns The code unit after the s-white, or Position if it's not a 361 /// s-white. 362 StringRef::iterator skip_s_white(StringRef::iterator Position); 363 364 /// Skip a single ns-char[34] starting at Position. 365 /// 366 /// A ns-char is nb-char - s-white 367 /// 368 /// @returns The code unit after the ns-char, or Position if it's not a 369 /// ns-char. 370 StringRef::iterator skip_ns_char(StringRef::iterator Position); 371 372 using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator); 373 374 /// Skip minimal well-formed code unit subsequences until Func 375 /// returns its input. 376 /// 377 /// @returns The code unit after the last minimal well-formed code unit 378 /// subsequence that Func accepted. 379 StringRef::iterator skip_while( SkipWhileFunc Func 380 , StringRef::iterator Position); 381 382 /// Skip minimal well-formed code unit subsequences until Func returns its 383 /// input. 384 void advanceWhile(SkipWhileFunc Func); 385 386 /// Scan ns-uri-char[39]s starting at Cur. 387 /// 388 /// This updates Cur and Column while scanning. 389 void scan_ns_uri_char(); 390 391 /// Consume a minimal well-formed code unit subsequence starting at 392 /// \a Cur. Return false if it is not the same Unicode scalar value as 393 /// \a Expected. This updates \a Column. 394 bool consume(uint32_t Expected); 395 396 /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column. 397 void skip(uint32_t Distance); 398 399 /// Return true if the minimal well-formed code unit subsequence at 400 /// Pos is whitespace or a new line 401 bool isBlankOrBreak(StringRef::iterator Position); 402 403 /// Consume a single b-break[28] if it's present at the current position. 404 /// 405 /// Return false if the code unit at the current position isn't a line break. 406 bool consumeLineBreakIfPresent(); 407 408 /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey. 409 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok 410 , unsigned AtColumn 411 , bool IsRequired); 412 413 /// Remove simple keys that can no longer be valid simple keys. 414 /// 415 /// Invalid simple keys are not on the current line or are further than 1024 416 /// columns back. 417 void removeStaleSimpleKeyCandidates(); 418 419 /// Remove all simple keys on FlowLevel \a Level. 420 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level); 421 422 /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd 423 /// tokens if needed. 424 bool unrollIndent(int ToColumn); 425 426 /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint 427 /// if needed. 428 bool rollIndent( int ToColumn 429 , Token::TokenKind Kind 430 , TokenQueueT::iterator InsertPoint); 431 432 /// Skip a single-line comment when the comment starts at the current 433 /// position of the scanner. 434 void skipComment(); 435 436 /// Skip whitespace and comments until the start of the next token. 437 void scanToNextToken(); 438 439 /// Must be the first token generated. 440 bool scanStreamStart(); 441 442 /// Generate tokens needed to close out the stream. 443 bool scanStreamEnd(); 444 445 /// Scan a %BLAH directive. 446 bool scanDirective(); 447 448 /// Scan a ... or ---. 449 bool scanDocumentIndicator(bool IsStart); 450 451 /// Scan a [ or { and generate the proper flow collection start token. 452 bool scanFlowCollectionStart(bool IsSequence); 453 454 /// Scan a ] or } and generate the proper flow collection end token. 455 bool scanFlowCollectionEnd(bool IsSequence); 456 457 /// Scan the , that separates entries in a flow collection. 458 bool scanFlowEntry(); 459 460 /// Scan the - that starts block sequence entries. 461 bool scanBlockEntry(); 462 463 /// Scan an explicit ? indicating a key. 464 bool scanKey(); 465 466 /// Scan an explicit : indicating a value. 467 bool scanValue(); 468 469 /// Scan a quoted scalar. 470 bool scanFlowScalar(bool IsDoubleQuoted); 471 472 /// Scan an unquoted scalar. 473 bool scanPlainScalar(); 474 475 /// Scan an Alias or Anchor starting with * or &. 476 bool scanAliasOrAnchor(bool IsAlias); 477 478 /// Scan a block scalar starting with | or >. 479 bool scanBlockScalar(bool IsLiteral); 480 481 /// Scan a chomping indicator in a block scalar header. 482 char scanBlockChompingIndicator(); 483 484 /// Scan an indentation indicator in a block scalar header. 485 unsigned scanBlockIndentationIndicator(); 486 487 /// Scan a block scalar header. 488 /// 489 /// Return false if an error occurred. 490 bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator, 491 bool &IsDone); 492 493 /// Look for the indentation level of a block scalar. 494 /// 495 /// Return false if an error occurred. 496 bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent, 497 unsigned &LineBreaks, bool &IsDone); 498 499 /// Scan the indentation of a text line in a block scalar. 500 /// 501 /// Return false if an error occurred. 502 bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent, 503 bool &IsDone); 504 505 /// Scan a tag of the form !stuff. 506 bool scanTag(); 507 508 /// Dispatch to the next scanning function based on \a *Cur. 509 bool fetchMoreTokens(); 510 511 /// The SourceMgr used for diagnostics and buffer management. 512 SourceMgr &SM; 513 514 /// The original input. 515 MemoryBufferRef InputBuffer; 516 517 /// The current position of the scanner. 518 StringRef::iterator Current; 519 520 /// The end of the input (one past the last character). 521 StringRef::iterator End; 522 523 /// Current YAML indentation level in spaces. 524 int Indent; 525 526 /// Current column number in Unicode code points. 527 unsigned Column; 528 529 /// Current line number. 530 unsigned Line; 531 532 /// How deep we are in flow style containers. 0 Means at block level. 533 unsigned FlowLevel; 534 535 /// Are we at the start of the stream? 536 bool IsStartOfStream; 537 538 /// Can the next token be the start of a simple key? 539 bool IsSimpleKeyAllowed; 540 541 /// True if an error has occurred. 542 bool Failed; 543 544 /// Should colors be used when printing out the diagnostic messages? 545 bool ShowColors; 546 547 /// Queue of tokens. This is required to queue up tokens while looking 548 /// for the end of a simple key. And for cases where a single character 549 /// can produce multiple tokens (e.g. BlockEnd). 550 TokenQueueT TokenQueue; 551 552 /// Indentation levels. 553 SmallVector<int, 4> Indents; 554 555 /// Potential simple keys. 556 SmallVector<SimpleKey, 4> SimpleKeys; 557 558 std::error_code *EC; 559 }; 560 561 } // end namespace yaml 562 } // end namespace llvm 563 564 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result. 565 static void encodeUTF8( uint32_t UnicodeScalarValue 566 , SmallVectorImpl<char> &Result) { 567 if (UnicodeScalarValue <= 0x7F) { 568 Result.push_back(UnicodeScalarValue & 0x7F); 569 } else if (UnicodeScalarValue <= 0x7FF) { 570 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6); 571 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F); 572 Result.push_back(FirstByte); 573 Result.push_back(SecondByte); 574 } else if (UnicodeScalarValue <= 0xFFFF) { 575 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12); 576 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6); 577 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F); 578 Result.push_back(FirstByte); 579 Result.push_back(SecondByte); 580 Result.push_back(ThirdByte); 581 } else if (UnicodeScalarValue <= 0x10FFFF) { 582 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18); 583 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12); 584 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6); 585 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F); 586 Result.push_back(FirstByte); 587 Result.push_back(SecondByte); 588 Result.push_back(ThirdByte); 589 Result.push_back(FourthByte); 590 } 591 } 592 593 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) { 594 SourceMgr SM; 595 Scanner scanner(Input, SM); 596 while (true) { 597 Token T = scanner.getNext(); 598 switch (T.Kind) { 599 case Token::TK_StreamStart: 600 OS << "Stream-Start: "; 601 break; 602 case Token::TK_StreamEnd: 603 OS << "Stream-End: "; 604 break; 605 case Token::TK_VersionDirective: 606 OS << "Version-Directive: "; 607 break; 608 case Token::TK_TagDirective: 609 OS << "Tag-Directive: "; 610 break; 611 case Token::TK_DocumentStart: 612 OS << "Document-Start: "; 613 break; 614 case Token::TK_DocumentEnd: 615 OS << "Document-End: "; 616 break; 617 case Token::TK_BlockEntry: 618 OS << "Block-Entry: "; 619 break; 620 case Token::TK_BlockEnd: 621 OS << "Block-End: "; 622 break; 623 case Token::TK_BlockSequenceStart: 624 OS << "Block-Sequence-Start: "; 625 break; 626 case Token::TK_BlockMappingStart: 627 OS << "Block-Mapping-Start: "; 628 break; 629 case Token::TK_FlowEntry: 630 OS << "Flow-Entry: "; 631 break; 632 case Token::TK_FlowSequenceStart: 633 OS << "Flow-Sequence-Start: "; 634 break; 635 case Token::TK_FlowSequenceEnd: 636 OS << "Flow-Sequence-End: "; 637 break; 638 case Token::TK_FlowMappingStart: 639 OS << "Flow-Mapping-Start: "; 640 break; 641 case Token::TK_FlowMappingEnd: 642 OS << "Flow-Mapping-End: "; 643 break; 644 case Token::TK_Key: 645 OS << "Key: "; 646 break; 647 case Token::TK_Value: 648 OS << "Value: "; 649 break; 650 case Token::TK_Scalar: 651 OS << "Scalar: "; 652 break; 653 case Token::TK_BlockScalar: 654 OS << "Block Scalar: "; 655 break; 656 case Token::TK_Alias: 657 OS << "Alias: "; 658 break; 659 case Token::TK_Anchor: 660 OS << "Anchor: "; 661 break; 662 case Token::TK_Tag: 663 OS << "Tag: "; 664 break; 665 case Token::TK_Error: 666 break; 667 } 668 OS << T.Range << "\n"; 669 if (T.Kind == Token::TK_StreamEnd) 670 break; 671 else if (T.Kind == Token::TK_Error) 672 return false; 673 } 674 return true; 675 } 676 677 bool yaml::scanTokens(StringRef Input) { 678 SourceMgr SM; 679 Scanner scanner(Input, SM); 680 while (true) { 681 Token T = scanner.getNext(); 682 if (T.Kind == Token::TK_StreamEnd) 683 break; 684 else if (T.Kind == Token::TK_Error) 685 return false; 686 } 687 return true; 688 } 689 690 std::string yaml::escape(StringRef Input, bool EscapePrintable) { 691 std::string EscapedInput; 692 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) { 693 if (*i == '\\') 694 EscapedInput += "\\\\"; 695 else if (*i == '"') 696 EscapedInput += "\\\""; 697 else if (*i == 0) 698 EscapedInput += "\\0"; 699 else if (*i == 0x07) 700 EscapedInput += "\\a"; 701 else if (*i == 0x08) 702 EscapedInput += "\\b"; 703 else if (*i == 0x09) 704 EscapedInput += "\\t"; 705 else if (*i == 0x0A) 706 EscapedInput += "\\n"; 707 else if (*i == 0x0B) 708 EscapedInput += "\\v"; 709 else if (*i == 0x0C) 710 EscapedInput += "\\f"; 711 else if (*i == 0x0D) 712 EscapedInput += "\\r"; 713 else if (*i == 0x1B) 714 EscapedInput += "\\e"; 715 else if ((unsigned char)*i < 0x20) { // Control characters not handled above. 716 std::string HexStr = utohexstr(*i); 717 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr; 718 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence. 719 UTF8Decoded UnicodeScalarValue 720 = decodeUTF8(StringRef(i, Input.end() - i)); 721 if (UnicodeScalarValue.second == 0) { 722 // Found invalid char. 723 SmallString<4> Val; 724 encodeUTF8(0xFFFD, Val); 725 EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end()); 726 // FIXME: Error reporting. 727 return EscapedInput; 728 } 729 if (UnicodeScalarValue.first == 0x85) 730 EscapedInput += "\\N"; 731 else if (UnicodeScalarValue.first == 0xA0) 732 EscapedInput += "\\_"; 733 else if (UnicodeScalarValue.first == 0x2028) 734 EscapedInput += "\\L"; 735 else if (UnicodeScalarValue.first == 0x2029) 736 EscapedInput += "\\P"; 737 else if (!EscapePrintable && 738 sys::unicode::isPrintable(UnicodeScalarValue.first)) 739 EscapedInput += StringRef(i, UnicodeScalarValue.second); 740 else { 741 std::string HexStr = utohexstr(UnicodeScalarValue.first); 742 if (HexStr.size() <= 2) 743 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr; 744 else if (HexStr.size() <= 4) 745 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr; 746 else if (HexStr.size() <= 8) 747 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr; 748 } 749 i += UnicodeScalarValue.second - 1; 750 } else 751 EscapedInput.push_back(*i); 752 } 753 return EscapedInput; 754 } 755 756 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors, 757 std::error_code *EC) 758 : SM(sm), ShowColors(ShowColors), EC(EC) { 759 init(MemoryBufferRef(Input, "YAML")); 760 } 761 762 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors, 763 std::error_code *EC) 764 : SM(SM_), ShowColors(ShowColors), EC(EC) { 765 init(Buffer); 766 } 767 768 void Scanner::init(MemoryBufferRef Buffer) { 769 InputBuffer = Buffer; 770 Current = InputBuffer.getBufferStart(); 771 End = InputBuffer.getBufferEnd(); 772 Indent = -1; 773 Column = 0; 774 Line = 0; 775 FlowLevel = 0; 776 IsStartOfStream = true; 777 IsSimpleKeyAllowed = true; 778 Failed = false; 779 std::unique_ptr<MemoryBuffer> InputBufferOwner = 780 MemoryBuffer::getMemBuffer(Buffer); 781 SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc()); 782 } 783 784 Token &Scanner::peekNext() { 785 // If the current token is a possible simple key, keep parsing until we 786 // can confirm. 787 bool NeedMore = false; 788 while (true) { 789 if (TokenQueue.empty() || NeedMore) { 790 if (!fetchMoreTokens()) { 791 TokenQueue.clear(); 792 TokenQueue.push_back(Token()); 793 return TokenQueue.front(); 794 } 795 } 796 assert(!TokenQueue.empty() && 797 "fetchMoreTokens lied about getting tokens!"); 798 799 removeStaleSimpleKeyCandidates(); 800 SimpleKey SK; 801 SK.Tok = TokenQueue.begin(); 802 if (!is_contained(SimpleKeys, SK)) 803 break; 804 else 805 NeedMore = true; 806 } 807 return TokenQueue.front(); 808 } 809 810 Token Scanner::getNext() { 811 Token Ret = peekNext(); 812 // TokenQueue can be empty if there was an error getting the next token. 813 if (!TokenQueue.empty()) 814 TokenQueue.pop_front(); 815 816 // There cannot be any referenced Token's if the TokenQueue is empty. So do a 817 // quick deallocation of them all. 818 if (TokenQueue.empty()) 819 TokenQueue.resetAlloc(); 820 821 return Ret; 822 } 823 824 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) { 825 if (Position == End) 826 return Position; 827 // Check 7 bit c-printable - b-char. 828 if ( *Position == 0x09 829 || (*Position >= 0x20 && *Position <= 0x7E)) 830 return Position + 1; 831 832 // Check for valid UTF-8. 833 if (uint8_t(*Position) & 0x80) { 834 UTF8Decoded u8d = decodeUTF8(Position); 835 if ( u8d.second != 0 836 && u8d.first != 0xFEFF 837 && ( u8d.first == 0x85 838 || ( u8d.first >= 0xA0 839 && u8d.first <= 0xD7FF) 840 || ( u8d.first >= 0xE000 841 && u8d.first <= 0xFFFD) 842 || ( u8d.first >= 0x10000 843 && u8d.first <= 0x10FFFF))) 844 return Position + u8d.second; 845 } 846 return Position; 847 } 848 849 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) { 850 if (Position == End) 851 return Position; 852 if (*Position == 0x0D) { 853 if (Position + 1 != End && *(Position + 1) == 0x0A) 854 return Position + 2; 855 return Position + 1; 856 } 857 858 if (*Position == 0x0A) 859 return Position + 1; 860 return Position; 861 } 862 863 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) { 864 if (Position == End) 865 return Position; 866 if (*Position == ' ') 867 return Position + 1; 868 return Position; 869 } 870 871 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) { 872 if (Position == End) 873 return Position; 874 if (*Position == ' ' || *Position == '\t') 875 return Position + 1; 876 return Position; 877 } 878 879 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) { 880 if (Position == End) 881 return Position; 882 if (*Position == ' ' || *Position == '\t') 883 return Position; 884 return skip_nb_char(Position); 885 } 886 887 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func 888 , StringRef::iterator Position) { 889 while (true) { 890 StringRef::iterator i = (this->*Func)(Position); 891 if (i == Position) 892 break; 893 Position = i; 894 } 895 return Position; 896 } 897 898 void Scanner::advanceWhile(SkipWhileFunc Func) { 899 auto Final = skip_while(Func, Current); 900 Column += Final - Current; 901 Current = Final; 902 } 903 904 static bool is_ns_hex_digit(const char C) { 905 return (C >= '0' && C <= '9') 906 || (C >= 'a' && C <= 'z') 907 || (C >= 'A' && C <= 'Z'); 908 } 909 910 static bool is_ns_word_char(const char C) { 911 return C == '-' 912 || (C >= 'a' && C <= 'z') 913 || (C >= 'A' && C <= 'Z'); 914 } 915 916 void Scanner::scan_ns_uri_char() { 917 while (true) { 918 if (Current == End) 919 break; 920 if (( *Current == '%' 921 && Current + 2 < End 922 && is_ns_hex_digit(*(Current + 1)) 923 && is_ns_hex_digit(*(Current + 2))) 924 || is_ns_word_char(*Current) 925 || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]") 926 != StringRef::npos) { 927 ++Current; 928 ++Column; 929 } else 930 break; 931 } 932 } 933 934 bool Scanner::consume(uint32_t Expected) { 935 if (Expected >= 0x80) 936 report_fatal_error("Not dealing with this yet"); 937 if (Current == End) 938 return false; 939 if (uint8_t(*Current) >= 0x80) 940 report_fatal_error("Not dealing with this yet"); 941 if (uint8_t(*Current) == Expected) { 942 ++Current; 943 ++Column; 944 return true; 945 } 946 return false; 947 } 948 949 void Scanner::skip(uint32_t Distance) { 950 Current += Distance; 951 Column += Distance; 952 assert(Current <= End && "Skipped past the end"); 953 } 954 955 bool Scanner::isBlankOrBreak(StringRef::iterator Position) { 956 if (Position == End) 957 return false; 958 return *Position == ' ' || *Position == '\t' || *Position == '\r' || 959 *Position == '\n'; 960 } 961 962 bool Scanner::consumeLineBreakIfPresent() { 963 auto Next = skip_b_break(Current); 964 if (Next == Current) 965 return false; 966 Column = 0; 967 ++Line; 968 Current = Next; 969 return true; 970 } 971 972 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok 973 , unsigned AtColumn 974 , bool IsRequired) { 975 if (IsSimpleKeyAllowed) { 976 SimpleKey SK; 977 SK.Tok = Tok; 978 SK.Line = Line; 979 SK.Column = AtColumn; 980 SK.IsRequired = IsRequired; 981 SK.FlowLevel = FlowLevel; 982 SimpleKeys.push_back(SK); 983 } 984 } 985 986 void Scanner::removeStaleSimpleKeyCandidates() { 987 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin(); 988 i != SimpleKeys.end();) { 989 if (i->Line != Line || i->Column + 1024 < Column) { 990 if (i->IsRequired) 991 setError( "Could not find expected : for simple key" 992 , i->Tok->Range.begin()); 993 i = SimpleKeys.erase(i); 994 } else 995 ++i; 996 } 997 } 998 999 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) { 1000 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level) 1001 SimpleKeys.pop_back(); 1002 } 1003 1004 bool Scanner::unrollIndent(int ToColumn) { 1005 Token T; 1006 // Indentation is ignored in flow. 1007 if (FlowLevel != 0) 1008 return true; 1009 1010 while (Indent > ToColumn) { 1011 T.Kind = Token::TK_BlockEnd; 1012 T.Range = StringRef(Current, 1); 1013 TokenQueue.push_back(T); 1014 Indent = Indents.pop_back_val(); 1015 } 1016 1017 return true; 1018 } 1019 1020 bool Scanner::rollIndent( int ToColumn 1021 , Token::TokenKind Kind 1022 , TokenQueueT::iterator InsertPoint) { 1023 if (FlowLevel) 1024 return true; 1025 if (Indent < ToColumn) { 1026 Indents.push_back(Indent); 1027 Indent = ToColumn; 1028 1029 Token T; 1030 T.Kind = Kind; 1031 T.Range = StringRef(Current, 0); 1032 TokenQueue.insert(InsertPoint, T); 1033 } 1034 return true; 1035 } 1036 1037 void Scanner::skipComment() { 1038 if (*Current != '#') 1039 return; 1040 while (true) { 1041 // This may skip more than one byte, thus Column is only incremented 1042 // for code points. 1043 StringRef::iterator I = skip_nb_char(Current); 1044 if (I == Current) 1045 break; 1046 Current = I; 1047 ++Column; 1048 } 1049 } 1050 1051 void Scanner::scanToNextToken() { 1052 while (true) { 1053 while (*Current == ' ' || *Current == '\t') { 1054 skip(1); 1055 } 1056 1057 skipComment(); 1058 1059 // Skip EOL. 1060 StringRef::iterator i = skip_b_break(Current); 1061 if (i == Current) 1062 break; 1063 Current = i; 1064 ++Line; 1065 Column = 0; 1066 // New lines may start a simple key. 1067 if (!FlowLevel) 1068 IsSimpleKeyAllowed = true; 1069 } 1070 } 1071 1072 bool Scanner::scanStreamStart() { 1073 IsStartOfStream = false; 1074 1075 EncodingInfo EI = getUnicodeEncoding(currentInput()); 1076 1077 Token T; 1078 T.Kind = Token::TK_StreamStart; 1079 T.Range = StringRef(Current, EI.second); 1080 TokenQueue.push_back(T); 1081 Current += EI.second; 1082 return true; 1083 } 1084 1085 bool Scanner::scanStreamEnd() { 1086 // Force an ending new line if one isn't present. 1087 if (Column != 0) { 1088 Column = 0; 1089 ++Line; 1090 } 1091 1092 unrollIndent(-1); 1093 SimpleKeys.clear(); 1094 IsSimpleKeyAllowed = false; 1095 1096 Token T; 1097 T.Kind = Token::TK_StreamEnd; 1098 T.Range = StringRef(Current, 0); 1099 TokenQueue.push_back(T); 1100 return true; 1101 } 1102 1103 bool Scanner::scanDirective() { 1104 // Reset the indentation level. 1105 unrollIndent(-1); 1106 SimpleKeys.clear(); 1107 IsSimpleKeyAllowed = false; 1108 1109 StringRef::iterator Start = Current; 1110 consume('%'); 1111 StringRef::iterator NameStart = Current; 1112 Current = skip_while(&Scanner::skip_ns_char, Current); 1113 StringRef Name(NameStart, Current - NameStart); 1114 Current = skip_while(&Scanner::skip_s_white, Current); 1115 1116 Token T; 1117 if (Name == "YAML") { 1118 Current = skip_while(&Scanner::skip_ns_char, Current); 1119 T.Kind = Token::TK_VersionDirective; 1120 T.Range = StringRef(Start, Current - Start); 1121 TokenQueue.push_back(T); 1122 return true; 1123 } else if(Name == "TAG") { 1124 Current = skip_while(&Scanner::skip_ns_char, Current); 1125 Current = skip_while(&Scanner::skip_s_white, Current); 1126 Current = skip_while(&Scanner::skip_ns_char, Current); 1127 T.Kind = Token::TK_TagDirective; 1128 T.Range = StringRef(Start, Current - Start); 1129 TokenQueue.push_back(T); 1130 return true; 1131 } 1132 return false; 1133 } 1134 1135 bool Scanner::scanDocumentIndicator(bool IsStart) { 1136 unrollIndent(-1); 1137 SimpleKeys.clear(); 1138 IsSimpleKeyAllowed = false; 1139 1140 Token T; 1141 T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd; 1142 T.Range = StringRef(Current, 3); 1143 skip(3); 1144 TokenQueue.push_back(T); 1145 return true; 1146 } 1147 1148 bool Scanner::scanFlowCollectionStart(bool IsSequence) { 1149 Token T; 1150 T.Kind = IsSequence ? Token::TK_FlowSequenceStart 1151 : Token::TK_FlowMappingStart; 1152 T.Range = StringRef(Current, 1); 1153 skip(1); 1154 TokenQueue.push_back(T); 1155 1156 // [ and { may begin a simple key. 1157 saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false); 1158 1159 // And may also be followed by a simple key. 1160 IsSimpleKeyAllowed = true; 1161 ++FlowLevel; 1162 return true; 1163 } 1164 1165 bool Scanner::scanFlowCollectionEnd(bool IsSequence) { 1166 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel); 1167 IsSimpleKeyAllowed = false; 1168 Token T; 1169 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd 1170 : Token::TK_FlowMappingEnd; 1171 T.Range = StringRef(Current, 1); 1172 skip(1); 1173 TokenQueue.push_back(T); 1174 if (FlowLevel) 1175 --FlowLevel; 1176 return true; 1177 } 1178 1179 bool Scanner::scanFlowEntry() { 1180 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel); 1181 IsSimpleKeyAllowed = true; 1182 Token T; 1183 T.Kind = Token::TK_FlowEntry; 1184 T.Range = StringRef(Current, 1); 1185 skip(1); 1186 TokenQueue.push_back(T); 1187 return true; 1188 } 1189 1190 bool Scanner::scanBlockEntry() { 1191 rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end()); 1192 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel); 1193 IsSimpleKeyAllowed = true; 1194 Token T; 1195 T.Kind = Token::TK_BlockEntry; 1196 T.Range = StringRef(Current, 1); 1197 skip(1); 1198 TokenQueue.push_back(T); 1199 return true; 1200 } 1201 1202 bool Scanner::scanKey() { 1203 if (!FlowLevel) 1204 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end()); 1205 1206 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel); 1207 IsSimpleKeyAllowed = !FlowLevel; 1208 1209 Token T; 1210 T.Kind = Token::TK_Key; 1211 T.Range = StringRef(Current, 1); 1212 skip(1); 1213 TokenQueue.push_back(T); 1214 return true; 1215 } 1216 1217 bool Scanner::scanValue() { 1218 // If the previous token could have been a simple key, insert the key token 1219 // into the token queue. 1220 if (!SimpleKeys.empty()) { 1221 SimpleKey SK = SimpleKeys.pop_back_val(); 1222 Token T; 1223 T.Kind = Token::TK_Key; 1224 T.Range = SK.Tok->Range; 1225 TokenQueueT::iterator i, e; 1226 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) { 1227 if (i == SK.Tok) 1228 break; 1229 } 1230 assert(i != e && "SimpleKey not in token queue!"); 1231 i = TokenQueue.insert(i, T); 1232 1233 // We may also need to add a Block-Mapping-Start token. 1234 rollIndent(SK.Column, Token::TK_BlockMappingStart, i); 1235 1236 IsSimpleKeyAllowed = false; 1237 } else { 1238 if (!FlowLevel) 1239 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end()); 1240 IsSimpleKeyAllowed = !FlowLevel; 1241 } 1242 1243 Token T; 1244 T.Kind = Token::TK_Value; 1245 T.Range = StringRef(Current, 1); 1246 skip(1); 1247 TokenQueue.push_back(T); 1248 return true; 1249 } 1250 1251 // Forbidding inlining improves performance by roughly 20%. 1252 // FIXME: Remove once llvm optimizes this to the faster version without hints. 1253 LLVM_ATTRIBUTE_NOINLINE static bool 1254 wasEscaped(StringRef::iterator First, StringRef::iterator Position); 1255 1256 // Returns whether a character at 'Position' was escaped with a leading '\'. 1257 // 'First' specifies the position of the first character in the string. 1258 static bool wasEscaped(StringRef::iterator First, 1259 StringRef::iterator Position) { 1260 assert(Position - 1 >= First); 1261 StringRef::iterator I = Position - 1; 1262 // We calculate the number of consecutive '\'s before the current position 1263 // by iterating backwards through our string. 1264 while (I >= First && *I == '\\') --I; 1265 // (Position - 1 - I) now contains the number of '\'s before the current 1266 // position. If it is odd, the character at 'Position' was escaped. 1267 return (Position - 1 - I) % 2 == 1; 1268 } 1269 1270 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) { 1271 StringRef::iterator Start = Current; 1272 unsigned ColStart = Column; 1273 if (IsDoubleQuoted) { 1274 do { 1275 ++Current; 1276 while (Current != End && *Current != '"') 1277 ++Current; 1278 // Repeat until the previous character was not a '\' or was an escaped 1279 // backslash. 1280 } while ( Current != End 1281 && *(Current - 1) == '\\' 1282 && wasEscaped(Start + 1, Current)); 1283 } else { 1284 skip(1); 1285 while (true) { 1286 // Skip a ' followed by another '. 1287 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') { 1288 skip(2); 1289 continue; 1290 } else if (*Current == '\'') 1291 break; 1292 StringRef::iterator i = skip_nb_char(Current); 1293 if (i == Current) { 1294 i = skip_b_break(Current); 1295 if (i == Current) 1296 break; 1297 Current = i; 1298 Column = 0; 1299 ++Line; 1300 } else { 1301 if (i == End) 1302 break; 1303 Current = i; 1304 ++Column; 1305 } 1306 } 1307 } 1308 1309 if (Current == End) { 1310 setError("Expected quote at end of scalar", Current); 1311 return false; 1312 } 1313 1314 skip(1); // Skip ending quote. 1315 Token T; 1316 T.Kind = Token::TK_Scalar; 1317 T.Range = StringRef(Start, Current - Start); 1318 TokenQueue.push_back(T); 1319 1320 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false); 1321 1322 IsSimpleKeyAllowed = false; 1323 1324 return true; 1325 } 1326 1327 bool Scanner::scanPlainScalar() { 1328 StringRef::iterator Start = Current; 1329 unsigned ColStart = Column; 1330 unsigned LeadingBlanks = 0; 1331 assert(Indent >= -1 && "Indent must be >= -1 !"); 1332 unsigned indent = static_cast<unsigned>(Indent + 1); 1333 while (true) { 1334 if (*Current == '#') 1335 break; 1336 1337 while (!isBlankOrBreak(Current)) { 1338 if ( FlowLevel && *Current == ':' 1339 && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) { 1340 setError("Found unexpected ':' while scanning a plain scalar", Current); 1341 return false; 1342 } 1343 1344 // Check for the end of the plain scalar. 1345 if ( (*Current == ':' && isBlankOrBreak(Current + 1)) 1346 || ( FlowLevel 1347 && (StringRef(Current, 1).find_first_of(",:?[]{}") 1348 != StringRef::npos))) 1349 break; 1350 1351 StringRef::iterator i = skip_nb_char(Current); 1352 if (i == Current) 1353 break; 1354 Current = i; 1355 ++Column; 1356 } 1357 1358 // Are we at the end? 1359 if (!isBlankOrBreak(Current)) 1360 break; 1361 1362 // Eat blanks. 1363 StringRef::iterator Tmp = Current; 1364 while (isBlankOrBreak(Tmp)) { 1365 StringRef::iterator i = skip_s_white(Tmp); 1366 if (i != Tmp) { 1367 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') { 1368 setError("Found invalid tab character in indentation", Tmp); 1369 return false; 1370 } 1371 Tmp = i; 1372 ++Column; 1373 } else { 1374 i = skip_b_break(Tmp); 1375 if (!LeadingBlanks) 1376 LeadingBlanks = 1; 1377 Tmp = i; 1378 Column = 0; 1379 ++Line; 1380 } 1381 } 1382 1383 if (!FlowLevel && Column < indent) 1384 break; 1385 1386 Current = Tmp; 1387 } 1388 if (Start == Current) { 1389 setError("Got empty plain scalar", Start); 1390 return false; 1391 } 1392 Token T; 1393 T.Kind = Token::TK_Scalar; 1394 T.Range = StringRef(Start, Current - Start); 1395 TokenQueue.push_back(T); 1396 1397 // Plain scalars can be simple keys. 1398 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false); 1399 1400 IsSimpleKeyAllowed = false; 1401 1402 return true; 1403 } 1404 1405 bool Scanner::scanAliasOrAnchor(bool IsAlias) { 1406 StringRef::iterator Start = Current; 1407 unsigned ColStart = Column; 1408 skip(1); 1409 while(true) { 1410 if ( *Current == '[' || *Current == ']' 1411 || *Current == '{' || *Current == '}' 1412 || *Current == ',' 1413 || *Current == ':') 1414 break; 1415 StringRef::iterator i = skip_ns_char(Current); 1416 if (i == Current) 1417 break; 1418 Current = i; 1419 ++Column; 1420 } 1421 1422 if (Start == Current) { 1423 setError("Got empty alias or anchor", Start); 1424 return false; 1425 } 1426 1427 Token T; 1428 T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor; 1429 T.Range = StringRef(Start, Current - Start); 1430 TokenQueue.push_back(T); 1431 1432 // Alias and anchors can be simple keys. 1433 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false); 1434 1435 IsSimpleKeyAllowed = false; 1436 1437 return true; 1438 } 1439 1440 char Scanner::scanBlockChompingIndicator() { 1441 char Indicator = ' '; 1442 if (Current != End && (*Current == '+' || *Current == '-')) { 1443 Indicator = *Current; 1444 skip(1); 1445 } 1446 return Indicator; 1447 } 1448 1449 /// Get the number of line breaks after chomping. 1450 /// 1451 /// Return the number of trailing line breaks to emit, depending on 1452 /// \p ChompingIndicator. 1453 static unsigned getChompedLineBreaks(char ChompingIndicator, 1454 unsigned LineBreaks, StringRef Str) { 1455 if (ChompingIndicator == '-') // Strip all line breaks. 1456 return 0; 1457 if (ChompingIndicator == '+') // Keep all line breaks. 1458 return LineBreaks; 1459 // Clip trailing lines. 1460 return Str.empty() ? 0 : 1; 1461 } 1462 1463 unsigned Scanner::scanBlockIndentationIndicator() { 1464 unsigned Indent = 0; 1465 if (Current != End && (*Current >= '1' && *Current <= '9')) { 1466 Indent = unsigned(*Current - '0'); 1467 skip(1); 1468 } 1469 return Indent; 1470 } 1471 1472 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator, 1473 unsigned &IndentIndicator, bool &IsDone) { 1474 auto Start = Current; 1475 1476 ChompingIndicator = scanBlockChompingIndicator(); 1477 IndentIndicator = scanBlockIndentationIndicator(); 1478 // Check for the chomping indicator once again. 1479 if (ChompingIndicator == ' ') 1480 ChompingIndicator = scanBlockChompingIndicator(); 1481 Current = skip_while(&Scanner::skip_s_white, Current); 1482 skipComment(); 1483 1484 if (Current == End) { // EOF, we have an empty scalar. 1485 Token T; 1486 T.Kind = Token::TK_BlockScalar; 1487 T.Range = StringRef(Start, Current - Start); 1488 TokenQueue.push_back(T); 1489 IsDone = true; 1490 return true; 1491 } 1492 1493 if (!consumeLineBreakIfPresent()) { 1494 setError("Expected a line break after block scalar header", Current); 1495 return false; 1496 } 1497 return true; 1498 } 1499 1500 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent, 1501 unsigned BlockExitIndent, 1502 unsigned &LineBreaks, bool &IsDone) { 1503 unsigned MaxAllSpaceLineCharacters = 0; 1504 StringRef::iterator LongestAllSpaceLine; 1505 1506 while (true) { 1507 advanceWhile(&Scanner::skip_s_space); 1508 if (skip_nb_char(Current) != Current) { 1509 // This line isn't empty, so try and find the indentation. 1510 if (Column <= BlockExitIndent) { // End of the block literal. 1511 IsDone = true; 1512 return true; 1513 } 1514 // We found the block's indentation. 1515 BlockIndent = Column; 1516 if (MaxAllSpaceLineCharacters > BlockIndent) { 1517 setError( 1518 "Leading all-spaces line must be smaller than the block indent", 1519 LongestAllSpaceLine); 1520 return false; 1521 } 1522 return true; 1523 } 1524 if (skip_b_break(Current) != Current && 1525 Column > MaxAllSpaceLineCharacters) { 1526 // Record the longest all-space line in case it's longer than the 1527 // discovered block indent. 1528 MaxAllSpaceLineCharacters = Column; 1529 LongestAllSpaceLine = Current; 1530 } 1531 1532 // Check for EOF. 1533 if (Current == End) { 1534 IsDone = true; 1535 return true; 1536 } 1537 1538 if (!consumeLineBreakIfPresent()) { 1539 IsDone = true; 1540 return true; 1541 } 1542 ++LineBreaks; 1543 } 1544 return true; 1545 } 1546 1547 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent, 1548 unsigned BlockExitIndent, bool &IsDone) { 1549 // Skip the indentation. 1550 while (Column < BlockIndent) { 1551 auto I = skip_s_space(Current); 1552 if (I == Current) 1553 break; 1554 Current = I; 1555 ++Column; 1556 } 1557 1558 if (skip_nb_char(Current) == Current) 1559 return true; 1560 1561 if (Column <= BlockExitIndent) { // End of the block literal. 1562 IsDone = true; 1563 return true; 1564 } 1565 1566 if (Column < BlockIndent) { 1567 if (Current != End && *Current == '#') { // Trailing comment. 1568 IsDone = true; 1569 return true; 1570 } 1571 setError("A text line is less indented than the block scalar", Current); 1572 return false; 1573 } 1574 return true; // A normal text line. 1575 } 1576 1577 bool Scanner::scanBlockScalar(bool IsLiteral) { 1578 // Eat '|' or '>' 1579 assert(*Current == '|' || *Current == '>'); 1580 skip(1); 1581 1582 char ChompingIndicator; 1583 unsigned BlockIndent; 1584 bool IsDone = false; 1585 if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone)) 1586 return false; 1587 if (IsDone) 1588 return true; 1589 1590 auto Start = Current; 1591 unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent; 1592 unsigned LineBreaks = 0; 1593 if (BlockIndent == 0) { 1594 if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks, 1595 IsDone)) 1596 return false; 1597 } 1598 1599 // Scan the block's scalars body. 1600 SmallString<256> Str; 1601 while (!IsDone) { 1602 if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone)) 1603 return false; 1604 if (IsDone) 1605 break; 1606 1607 // Parse the current line. 1608 auto LineStart = Current; 1609 advanceWhile(&Scanner::skip_nb_char); 1610 if (LineStart != Current) { 1611 Str.append(LineBreaks, '\n'); 1612 Str.append(StringRef(LineStart, Current - LineStart)); 1613 LineBreaks = 0; 1614 } 1615 1616 // Check for EOF. 1617 if (Current == End) 1618 break; 1619 1620 if (!consumeLineBreakIfPresent()) 1621 break; 1622 ++LineBreaks; 1623 } 1624 1625 if (Current == End && !LineBreaks) 1626 // Ensure that there is at least one line break before the end of file. 1627 LineBreaks = 1; 1628 Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n'); 1629 1630 // New lines may start a simple key. 1631 if (!FlowLevel) 1632 IsSimpleKeyAllowed = true; 1633 1634 Token T; 1635 T.Kind = Token::TK_BlockScalar; 1636 T.Range = StringRef(Start, Current - Start); 1637 T.Value = Str.str().str(); 1638 TokenQueue.push_back(T); 1639 return true; 1640 } 1641 1642 bool Scanner::scanTag() { 1643 StringRef::iterator Start = Current; 1644 unsigned ColStart = Column; 1645 skip(1); // Eat !. 1646 if (Current == End || isBlankOrBreak(Current)); // An empty tag. 1647 else if (*Current == '<') { 1648 skip(1); 1649 scan_ns_uri_char(); 1650 if (!consume('>')) 1651 return false; 1652 } else { 1653 // FIXME: Actually parse the c-ns-shorthand-tag rule. 1654 Current = skip_while(&Scanner::skip_ns_char, Current); 1655 } 1656 1657 Token T; 1658 T.Kind = Token::TK_Tag; 1659 T.Range = StringRef(Start, Current - Start); 1660 TokenQueue.push_back(T); 1661 1662 // Tags can be simple keys. 1663 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false); 1664 1665 IsSimpleKeyAllowed = false; 1666 1667 return true; 1668 } 1669 1670 bool Scanner::fetchMoreTokens() { 1671 if (IsStartOfStream) 1672 return scanStreamStart(); 1673 1674 scanToNextToken(); 1675 1676 if (Current == End) 1677 return scanStreamEnd(); 1678 1679 removeStaleSimpleKeyCandidates(); 1680 1681 unrollIndent(Column); 1682 1683 if (Column == 0 && *Current == '%') 1684 return scanDirective(); 1685 1686 if (Column == 0 && Current + 4 <= End 1687 && *Current == '-' 1688 && *(Current + 1) == '-' 1689 && *(Current + 2) == '-' 1690 && (Current + 3 == End || isBlankOrBreak(Current + 3))) 1691 return scanDocumentIndicator(true); 1692 1693 if (Column == 0 && Current + 4 <= End 1694 && *Current == '.' 1695 && *(Current + 1) == '.' 1696 && *(Current + 2) == '.' 1697 && (Current + 3 == End || isBlankOrBreak(Current + 3))) 1698 return scanDocumentIndicator(false); 1699 1700 if (*Current == '[') 1701 return scanFlowCollectionStart(true); 1702 1703 if (*Current == '{') 1704 return scanFlowCollectionStart(false); 1705 1706 if (*Current == ']') 1707 return scanFlowCollectionEnd(true); 1708 1709 if (*Current == '}') 1710 return scanFlowCollectionEnd(false); 1711 1712 if (*Current == ',') 1713 return scanFlowEntry(); 1714 1715 if (*Current == '-' && isBlankOrBreak(Current + 1)) 1716 return scanBlockEntry(); 1717 1718 if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1))) 1719 return scanKey(); 1720 1721 if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1))) 1722 return scanValue(); 1723 1724 if (*Current == '*') 1725 return scanAliasOrAnchor(true); 1726 1727 if (*Current == '&') 1728 return scanAliasOrAnchor(false); 1729 1730 if (*Current == '!') 1731 return scanTag(); 1732 1733 if (*Current == '|' && !FlowLevel) 1734 return scanBlockScalar(true); 1735 1736 if (*Current == '>' && !FlowLevel) 1737 return scanBlockScalar(false); 1738 1739 if (*Current == '\'') 1740 return scanFlowScalar(false); 1741 1742 if (*Current == '"') 1743 return scanFlowScalar(true); 1744 1745 // Get a plain scalar. 1746 StringRef FirstChar(Current, 1); 1747 if (!(isBlankOrBreak(Current) 1748 || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos) 1749 || (*Current == '-' && !isBlankOrBreak(Current + 1)) 1750 || (!FlowLevel && (*Current == '?' || *Current == ':') 1751 && isBlankOrBreak(Current + 1)) 1752 || (!FlowLevel && *Current == ':' 1753 && Current + 2 < End 1754 && *(Current + 1) == ':' 1755 && !isBlankOrBreak(Current + 2))) 1756 return scanPlainScalar(); 1757 1758 setError("Unrecognized character while tokenizing."); 1759 return false; 1760 } 1761 1762 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors, 1763 std::error_code *EC) 1764 : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {} 1765 1766 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors, 1767 std::error_code *EC) 1768 : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {} 1769 1770 Stream::~Stream() = default; 1771 1772 bool Stream::failed() { return scanner->failed(); } 1773 1774 void Stream::printError(Node *N, const Twine &Msg) { 1775 scanner->printError( N->getSourceRange().Start 1776 , SourceMgr::DK_Error 1777 , Msg 1778 , N->getSourceRange()); 1779 } 1780 1781 document_iterator Stream::begin() { 1782 if (CurrentDoc) 1783 report_fatal_error("Can only iterate over the stream once"); 1784 1785 // Skip Stream-Start. 1786 scanner->getNext(); 1787 1788 CurrentDoc.reset(new Document(*this)); 1789 return document_iterator(CurrentDoc); 1790 } 1791 1792 document_iterator Stream::end() { 1793 return document_iterator(); 1794 } 1795 1796 void Stream::skip() { 1797 for (document_iterator i = begin(), e = end(); i != e; ++i) 1798 i->skip(); 1799 } 1800 1801 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A, 1802 StringRef T) 1803 : Doc(D), TypeID(Type), Anchor(A), Tag(T) { 1804 SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin()); 1805 SourceRange = SMRange(Start, Start); 1806 } 1807 1808 std::string Node::getVerbatimTag() const { 1809 StringRef Raw = getRawTag(); 1810 if (!Raw.empty() && Raw != "!") { 1811 std::string Ret; 1812 if (Raw.find_last_of('!') == 0) { 1813 Ret = Doc->getTagMap().find("!")->second; 1814 Ret += Raw.substr(1); 1815 return Ret; 1816 } else if (Raw.startswith("!!")) { 1817 Ret = Doc->getTagMap().find("!!")->second; 1818 Ret += Raw.substr(2); 1819 return Ret; 1820 } else { 1821 StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1); 1822 std::map<StringRef, StringRef>::const_iterator It = 1823 Doc->getTagMap().find(TagHandle); 1824 if (It != Doc->getTagMap().end()) 1825 Ret = It->second; 1826 else { 1827 Token T; 1828 T.Kind = Token::TK_Tag; 1829 T.Range = TagHandle; 1830 setError(Twine("Unknown tag handle ") + TagHandle, T); 1831 } 1832 Ret += Raw.substr(Raw.find_last_of('!') + 1); 1833 return Ret; 1834 } 1835 } 1836 1837 switch (getType()) { 1838 case NK_Null: 1839 return "tag:yaml.org,2002:null"; 1840 case NK_Scalar: 1841 case NK_BlockScalar: 1842 // TODO: Tag resolution. 1843 return "tag:yaml.org,2002:str"; 1844 case NK_Mapping: 1845 return "tag:yaml.org,2002:map"; 1846 case NK_Sequence: 1847 return "tag:yaml.org,2002:seq"; 1848 } 1849 1850 return ""; 1851 } 1852 1853 Token &Node::peekNext() { 1854 return Doc->peekNext(); 1855 } 1856 1857 Token Node::getNext() { 1858 return Doc->getNext(); 1859 } 1860 1861 Node *Node::parseBlockNode() { 1862 return Doc->parseBlockNode(); 1863 } 1864 1865 BumpPtrAllocator &Node::getAllocator() { 1866 return Doc->NodeAllocator; 1867 } 1868 1869 void Node::setError(const Twine &Msg, Token &Tok) const { 1870 Doc->setError(Msg, Tok); 1871 } 1872 1873 bool Node::failed() const { 1874 return Doc->failed(); 1875 } 1876 1877 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const { 1878 // TODO: Handle newlines properly. We need to remove leading whitespace. 1879 if (Value[0] == '"') { // Double quoted. 1880 // Pull off the leading and trailing "s. 1881 StringRef UnquotedValue = Value.substr(1, Value.size() - 2); 1882 // Search for characters that would require unescaping the value. 1883 StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n"); 1884 if (i != StringRef::npos) 1885 return unescapeDoubleQuoted(UnquotedValue, i, Storage); 1886 return UnquotedValue; 1887 } else if (Value[0] == '\'') { // Single quoted. 1888 // Pull off the leading and trailing 's. 1889 StringRef UnquotedValue = Value.substr(1, Value.size() - 2); 1890 StringRef::size_type i = UnquotedValue.find('\''); 1891 if (i != StringRef::npos) { 1892 // We're going to need Storage. 1893 Storage.clear(); 1894 Storage.reserve(UnquotedValue.size()); 1895 for (; i != StringRef::npos; i = UnquotedValue.find('\'')) { 1896 StringRef Valid(UnquotedValue.begin(), i); 1897 Storage.insert(Storage.end(), Valid.begin(), Valid.end()); 1898 Storage.push_back('\''); 1899 UnquotedValue = UnquotedValue.substr(i + 2); 1900 } 1901 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end()); 1902 return StringRef(Storage.begin(), Storage.size()); 1903 } 1904 return UnquotedValue; 1905 } 1906 // Plain or block. 1907 return Value.rtrim(' '); 1908 } 1909 1910 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue 1911 , StringRef::size_type i 1912 , SmallVectorImpl<char> &Storage) 1913 const { 1914 // Use Storage to build proper value. 1915 Storage.clear(); 1916 Storage.reserve(UnquotedValue.size()); 1917 for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) { 1918 // Insert all previous chars into Storage. 1919 StringRef Valid(UnquotedValue.begin(), i); 1920 Storage.insert(Storage.end(), Valid.begin(), Valid.end()); 1921 // Chop off inserted chars. 1922 UnquotedValue = UnquotedValue.substr(i); 1923 1924 assert(!UnquotedValue.empty() && "Can't be empty!"); 1925 1926 // Parse escape or line break. 1927 switch (UnquotedValue[0]) { 1928 case '\r': 1929 case '\n': 1930 Storage.push_back('\n'); 1931 if ( UnquotedValue.size() > 1 1932 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n')) 1933 UnquotedValue = UnquotedValue.substr(1); 1934 UnquotedValue = UnquotedValue.substr(1); 1935 break; 1936 default: 1937 if (UnquotedValue.size() == 1) 1938 // TODO: Report error. 1939 break; 1940 UnquotedValue = UnquotedValue.substr(1); 1941 switch (UnquotedValue[0]) { 1942 default: { 1943 Token T; 1944 T.Range = StringRef(UnquotedValue.begin(), 1); 1945 setError("Unrecognized escape code!", T); 1946 return ""; 1947 } 1948 case '\r': 1949 case '\n': 1950 // Remove the new line. 1951 if ( UnquotedValue.size() > 1 1952 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n')) 1953 UnquotedValue = UnquotedValue.substr(1); 1954 // If this was just a single byte newline, it will get skipped 1955 // below. 1956 break; 1957 case '0': 1958 Storage.push_back(0x00); 1959 break; 1960 case 'a': 1961 Storage.push_back(0x07); 1962 break; 1963 case 'b': 1964 Storage.push_back(0x08); 1965 break; 1966 case 't': 1967 case 0x09: 1968 Storage.push_back(0x09); 1969 break; 1970 case 'n': 1971 Storage.push_back(0x0A); 1972 break; 1973 case 'v': 1974 Storage.push_back(0x0B); 1975 break; 1976 case 'f': 1977 Storage.push_back(0x0C); 1978 break; 1979 case 'r': 1980 Storage.push_back(0x0D); 1981 break; 1982 case 'e': 1983 Storage.push_back(0x1B); 1984 break; 1985 case ' ': 1986 Storage.push_back(0x20); 1987 break; 1988 case '"': 1989 Storage.push_back(0x22); 1990 break; 1991 case '/': 1992 Storage.push_back(0x2F); 1993 break; 1994 case '\\': 1995 Storage.push_back(0x5C); 1996 break; 1997 case 'N': 1998 encodeUTF8(0x85, Storage); 1999 break; 2000 case '_': 2001 encodeUTF8(0xA0, Storage); 2002 break; 2003 case 'L': 2004 encodeUTF8(0x2028, Storage); 2005 break; 2006 case 'P': 2007 encodeUTF8(0x2029, Storage); 2008 break; 2009 case 'x': { 2010 if (UnquotedValue.size() < 3) 2011 // TODO: Report error. 2012 break; 2013 unsigned int UnicodeScalarValue; 2014 if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue)) 2015 // TODO: Report error. 2016 UnicodeScalarValue = 0xFFFD; 2017 encodeUTF8(UnicodeScalarValue, Storage); 2018 UnquotedValue = UnquotedValue.substr(2); 2019 break; 2020 } 2021 case 'u': { 2022 if (UnquotedValue.size() < 5) 2023 // TODO: Report error. 2024 break; 2025 unsigned int UnicodeScalarValue; 2026 if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue)) 2027 // TODO: Report error. 2028 UnicodeScalarValue = 0xFFFD; 2029 encodeUTF8(UnicodeScalarValue, Storage); 2030 UnquotedValue = UnquotedValue.substr(4); 2031 break; 2032 } 2033 case 'U': { 2034 if (UnquotedValue.size() < 9) 2035 // TODO: Report error. 2036 break; 2037 unsigned int UnicodeScalarValue; 2038 if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue)) 2039 // TODO: Report error. 2040 UnicodeScalarValue = 0xFFFD; 2041 encodeUTF8(UnicodeScalarValue, Storage); 2042 UnquotedValue = UnquotedValue.substr(8); 2043 break; 2044 } 2045 } 2046 UnquotedValue = UnquotedValue.substr(1); 2047 } 2048 } 2049 Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end()); 2050 return StringRef(Storage.begin(), Storage.size()); 2051 } 2052 2053 Node *KeyValueNode::getKey() { 2054 if (Key) 2055 return Key; 2056 // Handle implicit null keys. 2057 { 2058 Token &t = peekNext(); 2059 if ( t.Kind == Token::TK_BlockEnd 2060 || t.Kind == Token::TK_Value 2061 || t.Kind == Token::TK_Error) { 2062 return Key = new (getAllocator()) NullNode(Doc); 2063 } 2064 if (t.Kind == Token::TK_Key) 2065 getNext(); // skip TK_Key. 2066 } 2067 2068 // Handle explicit null keys. 2069 Token &t = peekNext(); 2070 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) { 2071 return Key = new (getAllocator()) NullNode(Doc); 2072 } 2073 2074 // We've got a normal key. 2075 return Key = parseBlockNode(); 2076 } 2077 2078 Node *KeyValueNode::getValue() { 2079 if (Value) 2080 return Value; 2081 getKey()->skip(); 2082 if (failed()) 2083 return Value = new (getAllocator()) NullNode(Doc); 2084 2085 // Handle implicit null values. 2086 { 2087 Token &t = peekNext(); 2088 if ( t.Kind == Token::TK_BlockEnd 2089 || t.Kind == Token::TK_FlowMappingEnd 2090 || t.Kind == Token::TK_Key 2091 || t.Kind == Token::TK_FlowEntry 2092 || t.Kind == Token::TK_Error) { 2093 return Value = new (getAllocator()) NullNode(Doc); 2094 } 2095 2096 if (t.Kind != Token::TK_Value) { 2097 setError("Unexpected token in Key Value.", t); 2098 return Value = new (getAllocator()) NullNode(Doc); 2099 } 2100 getNext(); // skip TK_Value. 2101 } 2102 2103 // Handle explicit null values. 2104 Token &t = peekNext(); 2105 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) { 2106 return Value = new (getAllocator()) NullNode(Doc); 2107 } 2108 2109 // We got a normal value. 2110 return Value = parseBlockNode(); 2111 } 2112 2113 void MappingNode::increment() { 2114 if (failed()) { 2115 IsAtEnd = true; 2116 CurrentEntry = nullptr; 2117 return; 2118 } 2119 if (CurrentEntry) { 2120 CurrentEntry->skip(); 2121 if (Type == MT_Inline) { 2122 IsAtEnd = true; 2123 CurrentEntry = nullptr; 2124 return; 2125 } 2126 } 2127 Token T = peekNext(); 2128 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) { 2129 // KeyValueNode eats the TK_Key. That way it can detect null keys. 2130 CurrentEntry = new (getAllocator()) KeyValueNode(Doc); 2131 } else if (Type == MT_Block) { 2132 switch (T.Kind) { 2133 case Token::TK_BlockEnd: 2134 getNext(); 2135 IsAtEnd = true; 2136 CurrentEntry = nullptr; 2137 break; 2138 default: 2139 setError("Unexpected token. Expected Key or Block End", T); 2140 LLVM_FALLTHROUGH; 2141 case Token::TK_Error: 2142 IsAtEnd = true; 2143 CurrentEntry = nullptr; 2144 } 2145 } else { 2146 switch (T.Kind) { 2147 case Token::TK_FlowEntry: 2148 // Eat the flow entry and recurse. 2149 getNext(); 2150 return increment(); 2151 case Token::TK_FlowMappingEnd: 2152 getNext(); 2153 LLVM_FALLTHROUGH; 2154 case Token::TK_Error: 2155 // Set this to end iterator. 2156 IsAtEnd = true; 2157 CurrentEntry = nullptr; 2158 break; 2159 default: 2160 setError( "Unexpected token. Expected Key, Flow Entry, or Flow " 2161 "Mapping End." 2162 , T); 2163 IsAtEnd = true; 2164 CurrentEntry = nullptr; 2165 } 2166 } 2167 } 2168 2169 void SequenceNode::increment() { 2170 if (failed()) { 2171 IsAtEnd = true; 2172 CurrentEntry = nullptr; 2173 return; 2174 } 2175 if (CurrentEntry) 2176 CurrentEntry->skip(); 2177 Token T = peekNext(); 2178 if (SeqType == ST_Block) { 2179 switch (T.Kind) { 2180 case Token::TK_BlockEntry: 2181 getNext(); 2182 CurrentEntry = parseBlockNode(); 2183 if (!CurrentEntry) { // An error occurred. 2184 IsAtEnd = true; 2185 CurrentEntry = nullptr; 2186 } 2187 break; 2188 case Token::TK_BlockEnd: 2189 getNext(); 2190 IsAtEnd = true; 2191 CurrentEntry = nullptr; 2192 break; 2193 default: 2194 setError( "Unexpected token. Expected Block Entry or Block End." 2195 , T); 2196 LLVM_FALLTHROUGH; 2197 case Token::TK_Error: 2198 IsAtEnd = true; 2199 CurrentEntry = nullptr; 2200 } 2201 } else if (SeqType == ST_Indentless) { 2202 switch (T.Kind) { 2203 case Token::TK_BlockEntry: 2204 getNext(); 2205 CurrentEntry = parseBlockNode(); 2206 if (!CurrentEntry) { // An error occurred. 2207 IsAtEnd = true; 2208 CurrentEntry = nullptr; 2209 } 2210 break; 2211 default: 2212 case Token::TK_Error: 2213 IsAtEnd = true; 2214 CurrentEntry = nullptr; 2215 } 2216 } else if (SeqType == ST_Flow) { 2217 switch (T.Kind) { 2218 case Token::TK_FlowEntry: 2219 // Eat the flow entry and recurse. 2220 getNext(); 2221 WasPreviousTokenFlowEntry = true; 2222 return increment(); 2223 case Token::TK_FlowSequenceEnd: 2224 getNext(); 2225 LLVM_FALLTHROUGH; 2226 case Token::TK_Error: 2227 // Set this to end iterator. 2228 IsAtEnd = true; 2229 CurrentEntry = nullptr; 2230 break; 2231 case Token::TK_StreamEnd: 2232 case Token::TK_DocumentEnd: 2233 case Token::TK_DocumentStart: 2234 setError("Could not find closing ]!", T); 2235 // Set this to end iterator. 2236 IsAtEnd = true; 2237 CurrentEntry = nullptr; 2238 break; 2239 default: 2240 if (!WasPreviousTokenFlowEntry) { 2241 setError("Expected , between entries!", T); 2242 IsAtEnd = true; 2243 CurrentEntry = nullptr; 2244 break; 2245 } 2246 // Otherwise it must be a flow entry. 2247 CurrentEntry = parseBlockNode(); 2248 if (!CurrentEntry) { 2249 IsAtEnd = true; 2250 } 2251 WasPreviousTokenFlowEntry = false; 2252 break; 2253 } 2254 } 2255 } 2256 2257 Document::Document(Stream &S) : stream(S), Root(nullptr) { 2258 // Tag maps starts with two default mappings. 2259 TagMap["!"] = "!"; 2260 TagMap["!!"] = "tag:yaml.org,2002:"; 2261 2262 if (parseDirectives()) 2263 expectToken(Token::TK_DocumentStart); 2264 Token &T = peekNext(); 2265 if (T.Kind == Token::TK_DocumentStart) 2266 getNext(); 2267 } 2268 2269 bool Document::skip() { 2270 if (stream.scanner->failed()) 2271 return false; 2272 if (!Root) 2273 getRoot(); 2274 Root->skip(); 2275 Token &T = peekNext(); 2276 if (T.Kind == Token::TK_StreamEnd) 2277 return false; 2278 if (T.Kind == Token::TK_DocumentEnd) { 2279 getNext(); 2280 return skip(); 2281 } 2282 return true; 2283 } 2284 2285 Token &Document::peekNext() { 2286 return stream.scanner->peekNext(); 2287 } 2288 2289 Token Document::getNext() { 2290 return stream.scanner->getNext(); 2291 } 2292 2293 void Document::setError(const Twine &Message, Token &Location) const { 2294 stream.scanner->setError(Message, Location.Range.begin()); 2295 } 2296 2297 bool Document::failed() const { 2298 return stream.scanner->failed(); 2299 } 2300 2301 Node *Document::parseBlockNode() { 2302 Token T = peekNext(); 2303 // Handle properties. 2304 Token AnchorInfo; 2305 Token TagInfo; 2306 parse_property: 2307 switch (T.Kind) { 2308 case Token::TK_Alias: 2309 getNext(); 2310 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1)); 2311 case Token::TK_Anchor: 2312 if (AnchorInfo.Kind == Token::TK_Anchor) { 2313 setError("Already encountered an anchor for this node!", T); 2314 return nullptr; 2315 } 2316 AnchorInfo = getNext(); // Consume TK_Anchor. 2317 T = peekNext(); 2318 goto parse_property; 2319 case Token::TK_Tag: 2320 if (TagInfo.Kind == Token::TK_Tag) { 2321 setError("Already encountered a tag for this node!", T); 2322 return nullptr; 2323 } 2324 TagInfo = getNext(); // Consume TK_Tag. 2325 T = peekNext(); 2326 goto parse_property; 2327 default: 2328 break; 2329 } 2330 2331 switch (T.Kind) { 2332 case Token::TK_BlockEntry: 2333 // We got an unindented BlockEntry sequence. This is not terminated with 2334 // a BlockEnd. 2335 // Don't eat the TK_BlockEntry, SequenceNode needs it. 2336 return new (NodeAllocator) SequenceNode( stream.CurrentDoc 2337 , AnchorInfo.Range.substr(1) 2338 , TagInfo.Range 2339 , SequenceNode::ST_Indentless); 2340 case Token::TK_BlockSequenceStart: 2341 getNext(); 2342 return new (NodeAllocator) 2343 SequenceNode( stream.CurrentDoc 2344 , AnchorInfo.Range.substr(1) 2345 , TagInfo.Range 2346 , SequenceNode::ST_Block); 2347 case Token::TK_BlockMappingStart: 2348 getNext(); 2349 return new (NodeAllocator) 2350 MappingNode( stream.CurrentDoc 2351 , AnchorInfo.Range.substr(1) 2352 , TagInfo.Range 2353 , MappingNode::MT_Block); 2354 case Token::TK_FlowSequenceStart: 2355 getNext(); 2356 return new (NodeAllocator) 2357 SequenceNode( stream.CurrentDoc 2358 , AnchorInfo.Range.substr(1) 2359 , TagInfo.Range 2360 , SequenceNode::ST_Flow); 2361 case Token::TK_FlowMappingStart: 2362 getNext(); 2363 return new (NodeAllocator) 2364 MappingNode( stream.CurrentDoc 2365 , AnchorInfo.Range.substr(1) 2366 , TagInfo.Range 2367 , MappingNode::MT_Flow); 2368 case Token::TK_Scalar: 2369 getNext(); 2370 return new (NodeAllocator) 2371 ScalarNode( stream.CurrentDoc 2372 , AnchorInfo.Range.substr(1) 2373 , TagInfo.Range 2374 , T.Range); 2375 case Token::TK_BlockScalar: { 2376 getNext(); 2377 StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1); 2378 StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back(); 2379 return new (NodeAllocator) 2380 BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1), 2381 TagInfo.Range, StrCopy, T.Range); 2382 } 2383 case Token::TK_Key: 2384 // Don't eat the TK_Key, KeyValueNode expects it. 2385 return new (NodeAllocator) 2386 MappingNode( stream.CurrentDoc 2387 , AnchorInfo.Range.substr(1) 2388 , TagInfo.Range 2389 , MappingNode::MT_Inline); 2390 case Token::TK_DocumentStart: 2391 case Token::TK_DocumentEnd: 2392 case Token::TK_StreamEnd: 2393 default: 2394 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not 2395 // !!null null. 2396 return new (NodeAllocator) NullNode(stream.CurrentDoc); 2397 case Token::TK_Error: 2398 return nullptr; 2399 } 2400 llvm_unreachable("Control flow shouldn't reach here."); 2401 return nullptr; 2402 } 2403 2404 bool Document::parseDirectives() { 2405 bool isDirective = false; 2406 while (true) { 2407 Token T = peekNext(); 2408 if (T.Kind == Token::TK_TagDirective) { 2409 parseTAGDirective(); 2410 isDirective = true; 2411 } else if (T.Kind == Token::TK_VersionDirective) { 2412 parseYAMLDirective(); 2413 isDirective = true; 2414 } else 2415 break; 2416 } 2417 return isDirective; 2418 } 2419 2420 void Document::parseYAMLDirective() { 2421 getNext(); // Eat %YAML <version> 2422 } 2423 2424 void Document::parseTAGDirective() { 2425 Token Tag = getNext(); // %TAG <handle> <prefix> 2426 StringRef T = Tag.Range; 2427 // Strip %TAG 2428 T = T.substr(T.find_first_of(" \t")).ltrim(" \t"); 2429 std::size_t HandleEnd = T.find_first_of(" \t"); 2430 StringRef TagHandle = T.substr(0, HandleEnd); 2431 StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t"); 2432 TagMap[TagHandle] = TagPrefix; 2433 } 2434 2435 bool Document::expectToken(int TK) { 2436 Token T = getNext(); 2437 if (T.Kind != TK) { 2438 setError("Unexpected token", T); 2439 return false; 2440 } 2441 return true; 2442 } 2443