1 //===- VirtualFileSystem.cpp - Virtual File System Layer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the VirtualFileSystem interface. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Support/VirtualFileSystem.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/IntrusiveRefCntPtr.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/Chrono.h" 29 #include "llvm/Support/Compiler.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/Errc.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ErrorOr.h" 34 #include "llvm/Support/FileSystem.h" 35 #include "llvm/Support/FileSystem/UniqueID.h" 36 #include "llvm/Support/MemoryBuffer.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Support/SMLoc.h" 39 #include "llvm/Support/SourceMgr.h" 40 #include "llvm/Support/YAMLParser.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <atomic> 44 #include <cassert> 45 #include <cstdint> 46 #include <iterator> 47 #include <limits> 48 #include <memory> 49 #include <string> 50 #include <system_error> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 using namespace llvm::vfs; 56 57 using llvm::sys::fs::file_t; 58 using llvm::sys::fs::file_status; 59 using llvm::sys::fs::file_type; 60 using llvm::sys::fs::kInvalidFile; 61 using llvm::sys::fs::perms; 62 using llvm::sys::fs::UniqueID; 63 64 Status::Status(const file_status &Status) 65 : UID(Status.getUniqueID()), MTime(Status.getLastModificationTime()), 66 User(Status.getUser()), Group(Status.getGroup()), Size(Status.getSize()), 67 Type(Status.type()), Perms(Status.permissions()) {} 68 69 Status::Status(const Twine &Name, UniqueID UID, sys::TimePoint<> MTime, 70 uint32_t User, uint32_t Group, uint64_t Size, file_type Type, 71 perms Perms) 72 : Name(Name.str()), UID(UID), MTime(MTime), User(User), Group(Group), 73 Size(Size), Type(Type), Perms(Perms) {} 74 75 Status Status::copyWithNewSize(const Status &In, uint64_t NewSize) { 76 return Status(In.getName(), In.getUniqueID(), In.getLastModificationTime(), 77 In.getUser(), In.getGroup(), NewSize, In.getType(), 78 In.getPermissions()); 79 } 80 81 Status Status::copyWithNewName(const Status &In, const Twine &NewName) { 82 return Status(NewName, In.getUniqueID(), In.getLastModificationTime(), 83 In.getUser(), In.getGroup(), In.getSize(), In.getType(), 84 In.getPermissions()); 85 } 86 87 Status Status::copyWithNewName(const file_status &In, const Twine &NewName) { 88 return Status(NewName, In.getUniqueID(), In.getLastModificationTime(), 89 In.getUser(), In.getGroup(), In.getSize(), In.type(), 90 In.permissions()); 91 } 92 93 bool Status::equivalent(const Status &Other) const { 94 assert(isStatusKnown() && Other.isStatusKnown()); 95 return getUniqueID() == Other.getUniqueID(); 96 } 97 98 bool Status::isDirectory() const { return Type == file_type::directory_file; } 99 100 bool Status::isRegularFile() const { return Type == file_type::regular_file; } 101 102 bool Status::isOther() const { 103 return exists() && !isRegularFile() && !isDirectory() && !isSymlink(); 104 } 105 106 bool Status::isSymlink() const { return Type == file_type::symlink_file; } 107 108 bool Status::isStatusKnown() const { return Type != file_type::status_error; } 109 110 bool Status::exists() const { 111 return isStatusKnown() && Type != file_type::file_not_found; 112 } 113 114 File::~File() = default; 115 116 FileSystem::~FileSystem() = default; 117 118 ErrorOr<std::unique_ptr<MemoryBuffer>> 119 FileSystem::getBufferForFile(const llvm::Twine &Name, int64_t FileSize, 120 bool RequiresNullTerminator, bool IsVolatile) { 121 auto F = openFileForRead(Name); 122 if (!F) 123 return F.getError(); 124 125 return (*F)->getBuffer(Name, FileSize, RequiresNullTerminator, IsVolatile); 126 } 127 128 std::error_code FileSystem::makeAbsolute(SmallVectorImpl<char> &Path) const { 129 if (llvm::sys::path::is_absolute(Path)) 130 return {}; 131 132 auto WorkingDir = getCurrentWorkingDirectory(); 133 if (!WorkingDir) 134 return WorkingDir.getError(); 135 136 llvm::sys::fs::make_absolute(WorkingDir.get(), Path); 137 return {}; 138 } 139 140 std::error_code FileSystem::getRealPath(const Twine &Path, 141 SmallVectorImpl<char> &Output) const { 142 return errc::operation_not_permitted; 143 } 144 145 std::error_code FileSystem::isLocal(const Twine &Path, bool &Result) { 146 return errc::operation_not_permitted; 147 } 148 149 bool FileSystem::exists(const Twine &Path) { 150 auto Status = status(Path); 151 return Status && Status->exists(); 152 } 153 154 #ifndef NDEBUG 155 static bool isTraversalComponent(StringRef Component) { 156 return Component.equals("..") || Component.equals("."); 157 } 158 159 static bool pathHasTraversal(StringRef Path) { 160 using namespace llvm::sys; 161 162 for (StringRef Comp : llvm::make_range(path::begin(Path), path::end(Path))) 163 if (isTraversalComponent(Comp)) 164 return true; 165 return false; 166 } 167 #endif 168 169 //===-----------------------------------------------------------------------===/ 170 // RealFileSystem implementation 171 //===-----------------------------------------------------------------------===/ 172 173 namespace { 174 175 /// Wrapper around a raw file descriptor. 176 class RealFile : public File { 177 friend class RealFileSystem; 178 179 file_t FD; 180 Status S; 181 std::string RealName; 182 183 RealFile(file_t RawFD, StringRef NewName, StringRef NewRealPathName) 184 : FD(RawFD), S(NewName, {}, {}, {}, {}, {}, 185 llvm::sys::fs::file_type::status_error, {}), 186 RealName(NewRealPathName.str()) { 187 assert(FD != kInvalidFile && "Invalid or inactive file descriptor"); 188 } 189 190 public: 191 ~RealFile() override; 192 193 ErrorOr<Status> status() override; 194 ErrorOr<std::string> getName() override; 195 ErrorOr<std::unique_ptr<MemoryBuffer>> getBuffer(const Twine &Name, 196 int64_t FileSize, 197 bool RequiresNullTerminator, 198 bool IsVolatile) override; 199 std::error_code close() override; 200 void setPath(const Twine &Path) override; 201 }; 202 203 } // namespace 204 205 RealFile::~RealFile() { close(); } 206 207 ErrorOr<Status> RealFile::status() { 208 assert(FD != kInvalidFile && "cannot stat closed file"); 209 if (!S.isStatusKnown()) { 210 file_status RealStatus; 211 if (std::error_code EC = sys::fs::status(FD, RealStatus)) 212 return EC; 213 S = Status::copyWithNewName(RealStatus, S.getName()); 214 } 215 return S; 216 } 217 218 ErrorOr<std::string> RealFile::getName() { 219 return RealName.empty() ? S.getName().str() : RealName; 220 } 221 222 ErrorOr<std::unique_ptr<MemoryBuffer>> 223 RealFile::getBuffer(const Twine &Name, int64_t FileSize, 224 bool RequiresNullTerminator, bool IsVolatile) { 225 assert(FD != kInvalidFile && "cannot get buffer for closed file"); 226 return MemoryBuffer::getOpenFile(FD, Name, FileSize, RequiresNullTerminator, 227 IsVolatile); 228 } 229 230 std::error_code RealFile::close() { 231 std::error_code EC = sys::fs::closeFile(FD); 232 FD = kInvalidFile; 233 return EC; 234 } 235 236 void RealFile::setPath(const Twine &Path) { 237 RealName = Path.str(); 238 if (auto Status = status()) 239 S = Status.get().copyWithNewName(Status.get(), Path); 240 } 241 242 namespace { 243 244 /// A file system according to your operating system. 245 /// This may be linked to the process's working directory, or maintain its own. 246 /// 247 /// Currently, its own working directory is emulated by storing the path and 248 /// sending absolute paths to llvm::sys::fs:: functions. 249 /// A more principled approach would be to push this down a level, modelling 250 /// the working dir as an llvm::sys::fs::WorkingDir or similar. 251 /// This would enable the use of openat()-style functions on some platforms. 252 class RealFileSystem : public FileSystem { 253 public: 254 explicit RealFileSystem(bool LinkCWDToProcess) { 255 if (!LinkCWDToProcess) { 256 SmallString<128> PWD, RealPWD; 257 if (llvm::sys::fs::current_path(PWD)) 258 return; // Awful, but nothing to do here. 259 if (llvm::sys::fs::real_path(PWD, RealPWD)) 260 WD = {PWD, PWD}; 261 else 262 WD = {PWD, RealPWD}; 263 } 264 } 265 266 ErrorOr<Status> status(const Twine &Path) override; 267 ErrorOr<std::unique_ptr<File>> openFileForRead(const Twine &Path) override; 268 directory_iterator dir_begin(const Twine &Dir, std::error_code &EC) override; 269 270 llvm::ErrorOr<std::string> getCurrentWorkingDirectory() const override; 271 std::error_code setCurrentWorkingDirectory(const Twine &Path) override; 272 std::error_code isLocal(const Twine &Path, bool &Result) override; 273 std::error_code getRealPath(const Twine &Path, 274 SmallVectorImpl<char> &Output) const override; 275 276 private: 277 // If this FS has its own working dir, use it to make Path absolute. 278 // The returned twine is safe to use as long as both Storage and Path live. 279 Twine adjustPath(const Twine &Path, SmallVectorImpl<char> &Storage) const { 280 if (!WD) 281 return Path; 282 Path.toVector(Storage); 283 sys::fs::make_absolute(WD->Resolved, Storage); 284 return Storage; 285 } 286 287 struct WorkingDirectory { 288 // The current working directory, without symlinks resolved. (echo $PWD). 289 SmallString<128> Specified; 290 // The current working directory, with links resolved. (readlink .). 291 SmallString<128> Resolved; 292 }; 293 Optional<WorkingDirectory> WD; 294 }; 295 296 } // namespace 297 298 ErrorOr<Status> RealFileSystem::status(const Twine &Path) { 299 SmallString<256> Storage; 300 sys::fs::file_status RealStatus; 301 if (std::error_code EC = 302 sys::fs::status(adjustPath(Path, Storage), RealStatus)) 303 return EC; 304 return Status::copyWithNewName(RealStatus, Path); 305 } 306 307 ErrorOr<std::unique_ptr<File>> 308 RealFileSystem::openFileForRead(const Twine &Name) { 309 SmallString<256> RealName, Storage; 310 Expected<file_t> FDOrErr = sys::fs::openNativeFileForRead( 311 adjustPath(Name, Storage), sys::fs::OF_None, &RealName); 312 if (!FDOrErr) 313 return errorToErrorCode(FDOrErr.takeError()); 314 return std::unique_ptr<File>( 315 new RealFile(*FDOrErr, Name.str(), RealName.str())); 316 } 317 318 llvm::ErrorOr<std::string> RealFileSystem::getCurrentWorkingDirectory() const { 319 if (WD) 320 return std::string(WD->Specified.str()); 321 322 SmallString<128> Dir; 323 if (std::error_code EC = llvm::sys::fs::current_path(Dir)) 324 return EC; 325 return std::string(Dir.str()); 326 } 327 328 std::error_code RealFileSystem::setCurrentWorkingDirectory(const Twine &Path) { 329 if (!WD) 330 return llvm::sys::fs::set_current_path(Path); 331 332 SmallString<128> Absolute, Resolved, Storage; 333 adjustPath(Path, Storage).toVector(Absolute); 334 bool IsDir; 335 if (auto Err = llvm::sys::fs::is_directory(Absolute, IsDir)) 336 return Err; 337 if (!IsDir) 338 return std::make_error_code(std::errc::not_a_directory); 339 if (auto Err = llvm::sys::fs::real_path(Absolute, Resolved)) 340 return Err; 341 WD = {Absolute, Resolved}; 342 return std::error_code(); 343 } 344 345 std::error_code RealFileSystem::isLocal(const Twine &Path, bool &Result) { 346 SmallString<256> Storage; 347 return llvm::sys::fs::is_local(adjustPath(Path, Storage), Result); 348 } 349 350 std::error_code 351 RealFileSystem::getRealPath(const Twine &Path, 352 SmallVectorImpl<char> &Output) const { 353 SmallString<256> Storage; 354 return llvm::sys::fs::real_path(adjustPath(Path, Storage), Output); 355 } 356 357 IntrusiveRefCntPtr<FileSystem> vfs::getRealFileSystem() { 358 static IntrusiveRefCntPtr<FileSystem> FS(new RealFileSystem(true)); 359 return FS; 360 } 361 362 std::unique_ptr<FileSystem> vfs::createPhysicalFileSystem() { 363 return std::make_unique<RealFileSystem>(false); 364 } 365 366 namespace { 367 368 class RealFSDirIter : public llvm::vfs::detail::DirIterImpl { 369 llvm::sys::fs::directory_iterator Iter; 370 371 public: 372 RealFSDirIter(const Twine &Path, std::error_code &EC) : Iter(Path, EC) { 373 if (Iter != llvm::sys::fs::directory_iterator()) 374 CurrentEntry = directory_entry(Iter->path(), Iter->type()); 375 } 376 377 std::error_code increment() override { 378 std::error_code EC; 379 Iter.increment(EC); 380 CurrentEntry = (Iter == llvm::sys::fs::directory_iterator()) 381 ? directory_entry() 382 : directory_entry(Iter->path(), Iter->type()); 383 return EC; 384 } 385 }; 386 387 } // namespace 388 389 directory_iterator RealFileSystem::dir_begin(const Twine &Dir, 390 std::error_code &EC) { 391 SmallString<128> Storage; 392 return directory_iterator( 393 std::make_shared<RealFSDirIter>(adjustPath(Dir, Storage), EC)); 394 } 395 396 //===-----------------------------------------------------------------------===/ 397 // OverlayFileSystem implementation 398 //===-----------------------------------------------------------------------===/ 399 400 OverlayFileSystem::OverlayFileSystem(IntrusiveRefCntPtr<FileSystem> BaseFS) { 401 FSList.push_back(std::move(BaseFS)); 402 } 403 404 void OverlayFileSystem::pushOverlay(IntrusiveRefCntPtr<FileSystem> FS) { 405 FSList.push_back(FS); 406 // Synchronize added file systems by duplicating the working directory from 407 // the first one in the list. 408 FS->setCurrentWorkingDirectory(getCurrentWorkingDirectory().get()); 409 } 410 411 ErrorOr<Status> OverlayFileSystem::status(const Twine &Path) { 412 // FIXME: handle symlinks that cross file systems 413 for (iterator I = overlays_begin(), E = overlays_end(); I != E; ++I) { 414 ErrorOr<Status> Status = (*I)->status(Path); 415 if (Status || Status.getError() != llvm::errc::no_such_file_or_directory) 416 return Status; 417 } 418 return make_error_code(llvm::errc::no_such_file_or_directory); 419 } 420 421 ErrorOr<std::unique_ptr<File>> 422 OverlayFileSystem::openFileForRead(const llvm::Twine &Path) { 423 // FIXME: handle symlinks that cross file systems 424 for (iterator I = overlays_begin(), E = overlays_end(); I != E; ++I) { 425 auto Result = (*I)->openFileForRead(Path); 426 if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) 427 return Result; 428 } 429 return make_error_code(llvm::errc::no_such_file_or_directory); 430 } 431 432 llvm::ErrorOr<std::string> 433 OverlayFileSystem::getCurrentWorkingDirectory() const { 434 // All file systems are synchronized, just take the first working directory. 435 return FSList.front()->getCurrentWorkingDirectory(); 436 } 437 438 std::error_code 439 OverlayFileSystem::setCurrentWorkingDirectory(const Twine &Path) { 440 for (auto &FS : FSList) 441 if (std::error_code EC = FS->setCurrentWorkingDirectory(Path)) 442 return EC; 443 return {}; 444 } 445 446 std::error_code OverlayFileSystem::isLocal(const Twine &Path, bool &Result) { 447 for (auto &FS : FSList) 448 if (FS->exists(Path)) 449 return FS->isLocal(Path, Result); 450 return errc::no_such_file_or_directory; 451 } 452 453 std::error_code 454 OverlayFileSystem::getRealPath(const Twine &Path, 455 SmallVectorImpl<char> &Output) const { 456 for (const auto &FS : FSList) 457 if (FS->exists(Path)) 458 return FS->getRealPath(Path, Output); 459 return errc::no_such_file_or_directory; 460 } 461 462 llvm::vfs::detail::DirIterImpl::~DirIterImpl() = default; 463 464 namespace { 465 466 /// Combines and deduplicates directory entries across multiple file systems. 467 class CombiningDirIterImpl : public llvm::vfs::detail::DirIterImpl { 468 using FileSystemPtr = llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem>; 469 470 /// File systems to check for entries in. Processed in reverse order. 471 SmallVector<FileSystemPtr, 8> FSList; 472 /// The directory iterator for the current filesystem. 473 directory_iterator CurrentDirIter; 474 /// The path of the directory to iterate the entries of. 475 std::string DirPath; 476 /// The set of names already returned as entries. 477 llvm::StringSet<> SeenNames; 478 479 /// Sets \c CurrentDirIter to an iterator of \c DirPath in the next file 480 /// system in the list, or leaves it as is (at its end position) if we've 481 /// already gone through them all. 482 std::error_code incrementFS() { 483 while (!FSList.empty()) { 484 std::error_code EC; 485 CurrentDirIter = FSList.back()->dir_begin(DirPath, EC); 486 FSList.pop_back(); 487 if (EC && EC != errc::no_such_file_or_directory) 488 return EC; 489 if (CurrentDirIter != directory_iterator()) 490 break; // found 491 } 492 return {}; 493 } 494 495 std::error_code incrementDirIter(bool IsFirstTime) { 496 assert((IsFirstTime || CurrentDirIter != directory_iterator()) && 497 "incrementing past end"); 498 std::error_code EC; 499 if (!IsFirstTime) 500 CurrentDirIter.increment(EC); 501 if (!EC && CurrentDirIter == directory_iterator()) 502 EC = incrementFS(); 503 return EC; 504 } 505 506 std::error_code incrementImpl(bool IsFirstTime) { 507 while (true) { 508 std::error_code EC = incrementDirIter(IsFirstTime); 509 if (EC || CurrentDirIter == directory_iterator()) { 510 CurrentEntry = directory_entry(); 511 return EC; 512 } 513 CurrentEntry = *CurrentDirIter; 514 StringRef Name = llvm::sys::path::filename(CurrentEntry.path()); 515 if (SeenNames.insert(Name).second) 516 return EC; // name not seen before 517 } 518 llvm_unreachable("returned above"); 519 } 520 521 public: 522 CombiningDirIterImpl(ArrayRef<FileSystemPtr> FileSystems, std::string Dir, 523 std::error_code &EC) 524 : FSList(FileSystems.begin(), FileSystems.end()), 525 DirPath(std::move(Dir)) { 526 if (!FSList.empty()) { 527 CurrentDirIter = FSList.back()->dir_begin(DirPath, EC); 528 FSList.pop_back(); 529 if (!EC || EC == errc::no_such_file_or_directory) 530 EC = incrementImpl(true); 531 } 532 } 533 534 CombiningDirIterImpl(directory_iterator FirstIter, FileSystemPtr Fallback, 535 std::string FallbackDir, std::error_code &EC) 536 : FSList({Fallback}), CurrentDirIter(FirstIter), 537 DirPath(std::move(FallbackDir)) { 538 if (!EC || EC == errc::no_such_file_or_directory) 539 EC = incrementImpl(true); 540 } 541 542 std::error_code increment() override { return incrementImpl(false); } 543 }; 544 545 } // namespace 546 547 directory_iterator OverlayFileSystem::dir_begin(const Twine &Dir, 548 std::error_code &EC) { 549 return directory_iterator( 550 std::make_shared<CombiningDirIterImpl>(FSList, Dir.str(), EC)); 551 } 552 553 void ProxyFileSystem::anchor() {} 554 555 namespace llvm { 556 namespace vfs { 557 558 namespace detail { 559 560 enum InMemoryNodeKind { IME_File, IME_Directory, IME_HardLink }; 561 562 /// The in memory file system is a tree of Nodes. Every node can either be a 563 /// file , hardlink or a directory. 564 class InMemoryNode { 565 InMemoryNodeKind Kind; 566 std::string FileName; 567 568 public: 569 InMemoryNode(llvm::StringRef FileName, InMemoryNodeKind Kind) 570 : Kind(Kind), FileName(std::string(llvm::sys::path::filename(FileName))) { 571 } 572 virtual ~InMemoryNode() = default; 573 574 /// Return the \p Status for this node. \p RequestedName should be the name 575 /// through which the caller referred to this node. It will override 576 /// \p Status::Name in the return value, to mimic the behavior of \p RealFile. 577 virtual Status getStatus(const Twine &RequestedName) const = 0; 578 579 /// Get the filename of this node (the name without the directory part). 580 StringRef getFileName() const { return FileName; } 581 InMemoryNodeKind getKind() const { return Kind; } 582 virtual std::string toString(unsigned Indent) const = 0; 583 }; 584 585 class InMemoryFile : public InMemoryNode { 586 Status Stat; 587 std::unique_ptr<llvm::MemoryBuffer> Buffer; 588 589 public: 590 InMemoryFile(Status Stat, std::unique_ptr<llvm::MemoryBuffer> Buffer) 591 : InMemoryNode(Stat.getName(), IME_File), Stat(std::move(Stat)), 592 Buffer(std::move(Buffer)) {} 593 594 Status getStatus(const Twine &RequestedName) const override { 595 return Status::copyWithNewName(Stat, RequestedName); 596 } 597 llvm::MemoryBuffer *getBuffer() const { return Buffer.get(); } 598 599 std::string toString(unsigned Indent) const override { 600 return (std::string(Indent, ' ') + Stat.getName() + "\n").str(); 601 } 602 603 static bool classof(const InMemoryNode *N) { 604 return N->getKind() == IME_File; 605 } 606 }; 607 608 namespace { 609 610 class InMemoryHardLink : public InMemoryNode { 611 const InMemoryFile &ResolvedFile; 612 613 public: 614 InMemoryHardLink(StringRef Path, const InMemoryFile &ResolvedFile) 615 : InMemoryNode(Path, IME_HardLink), ResolvedFile(ResolvedFile) {} 616 const InMemoryFile &getResolvedFile() const { return ResolvedFile; } 617 618 Status getStatus(const Twine &RequestedName) const override { 619 return ResolvedFile.getStatus(RequestedName); 620 } 621 622 std::string toString(unsigned Indent) const override { 623 return std::string(Indent, ' ') + "HardLink to -> " + 624 ResolvedFile.toString(0); 625 } 626 627 static bool classof(const InMemoryNode *N) { 628 return N->getKind() == IME_HardLink; 629 } 630 }; 631 632 /// Adapt a InMemoryFile for VFS' File interface. The goal is to make 633 /// \p InMemoryFileAdaptor mimic as much as possible the behavior of 634 /// \p RealFile. 635 class InMemoryFileAdaptor : public File { 636 const InMemoryFile &Node; 637 /// The name to use when returning a Status for this file. 638 std::string RequestedName; 639 640 public: 641 explicit InMemoryFileAdaptor(const InMemoryFile &Node, 642 std::string RequestedName) 643 : Node(Node), RequestedName(std::move(RequestedName)) {} 644 645 llvm::ErrorOr<Status> status() override { 646 return Node.getStatus(RequestedName); 647 } 648 649 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> 650 getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, 651 bool IsVolatile) override { 652 llvm::MemoryBuffer *Buf = Node.getBuffer(); 653 return llvm::MemoryBuffer::getMemBuffer( 654 Buf->getBuffer(), Buf->getBufferIdentifier(), RequiresNullTerminator); 655 } 656 657 std::error_code close() override { return {}; } 658 659 void setPath(const Twine &Path) override { RequestedName = Path.str(); } 660 }; 661 } // namespace 662 663 class InMemoryDirectory : public InMemoryNode { 664 Status Stat; 665 llvm::StringMap<std::unique_ptr<InMemoryNode>> Entries; 666 667 public: 668 InMemoryDirectory(Status Stat) 669 : InMemoryNode(Stat.getName(), IME_Directory), Stat(std::move(Stat)) {} 670 671 /// Return the \p Status for this node. \p RequestedName should be the name 672 /// through which the caller referred to this node. It will override 673 /// \p Status::Name in the return value, to mimic the behavior of \p RealFile. 674 Status getStatus(const Twine &RequestedName) const override { 675 return Status::copyWithNewName(Stat, RequestedName); 676 } 677 678 UniqueID getUniqueID() const { return Stat.getUniqueID(); } 679 680 InMemoryNode *getChild(StringRef Name) { 681 auto I = Entries.find(Name); 682 if (I != Entries.end()) 683 return I->second.get(); 684 return nullptr; 685 } 686 687 InMemoryNode *addChild(StringRef Name, std::unique_ptr<InMemoryNode> Child) { 688 return Entries.insert(make_pair(Name, std::move(Child))) 689 .first->second.get(); 690 } 691 692 using const_iterator = decltype(Entries)::const_iterator; 693 694 const_iterator begin() const { return Entries.begin(); } 695 const_iterator end() const { return Entries.end(); } 696 697 std::string toString(unsigned Indent) const override { 698 std::string Result = 699 (std::string(Indent, ' ') + Stat.getName() + "\n").str(); 700 for (const auto &Entry : Entries) 701 Result += Entry.second->toString(Indent + 2); 702 return Result; 703 } 704 705 static bool classof(const InMemoryNode *N) { 706 return N->getKind() == IME_Directory; 707 } 708 }; 709 710 } // namespace detail 711 712 // The UniqueID of in-memory files is derived from path and content. 713 // This avoids difficulties in creating exactly equivalent in-memory FSes, 714 // as often needed in multithreaded programs. 715 static sys::fs::UniqueID getUniqueID(hash_code Hash) { 716 return sys::fs::UniqueID(std::numeric_limits<uint64_t>::max(), 717 uint64_t(size_t(Hash))); 718 } 719 static sys::fs::UniqueID getFileID(sys::fs::UniqueID Parent, 720 llvm::StringRef Name, 721 llvm::StringRef Contents) { 722 return getUniqueID(llvm::hash_combine(Parent.getFile(), Name, Contents)); 723 } 724 static sys::fs::UniqueID getDirectoryID(sys::fs::UniqueID Parent, 725 llvm::StringRef Name) { 726 return getUniqueID(llvm::hash_combine(Parent.getFile(), Name)); 727 } 728 729 Status detail::NewInMemoryNodeInfo::makeStatus() const { 730 UniqueID UID = 731 (Type == sys::fs::file_type::directory_file) 732 ? getDirectoryID(DirUID, Name) 733 : getFileID(DirUID, Name, Buffer ? Buffer->getBuffer() : ""); 734 735 return Status(Path, UID, llvm::sys::toTimePoint(ModificationTime), User, 736 Group, Buffer ? Buffer->getBufferSize() : 0, Type, Perms); 737 } 738 739 InMemoryFileSystem::InMemoryFileSystem(bool UseNormalizedPaths) 740 : Root(new detail::InMemoryDirectory( 741 Status("", getDirectoryID(llvm::sys::fs::UniqueID(), ""), 742 llvm::sys::TimePoint<>(), 0, 0, 0, 743 llvm::sys::fs::file_type::directory_file, 744 llvm::sys::fs::perms::all_all))), 745 UseNormalizedPaths(UseNormalizedPaths) {} 746 747 InMemoryFileSystem::~InMemoryFileSystem() = default; 748 749 std::string InMemoryFileSystem::toString() const { 750 return Root->toString(/*Indent=*/0); 751 } 752 753 bool InMemoryFileSystem::addFile(const Twine &P, time_t ModificationTime, 754 std::unique_ptr<llvm::MemoryBuffer> Buffer, 755 Optional<uint32_t> User, 756 Optional<uint32_t> Group, 757 Optional<llvm::sys::fs::file_type> Type, 758 Optional<llvm::sys::fs::perms> Perms, 759 MakeNodeFn MakeNode) { 760 SmallString<128> Path; 761 P.toVector(Path); 762 763 // Fix up relative paths. This just prepends the current working directory. 764 std::error_code EC = makeAbsolute(Path); 765 assert(!EC); 766 (void)EC; 767 768 if (useNormalizedPaths()) 769 llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); 770 771 if (Path.empty()) 772 return false; 773 774 detail::InMemoryDirectory *Dir = Root.get(); 775 auto I = llvm::sys::path::begin(Path), E = sys::path::end(Path); 776 const auto ResolvedUser = User.getValueOr(0); 777 const auto ResolvedGroup = Group.getValueOr(0); 778 const auto ResolvedType = Type.getValueOr(sys::fs::file_type::regular_file); 779 const auto ResolvedPerms = Perms.getValueOr(sys::fs::all_all); 780 // Any intermediate directories we create should be accessible by 781 // the owner, even if Perms says otherwise for the final path. 782 const auto NewDirectoryPerms = ResolvedPerms | sys::fs::owner_all; 783 while (true) { 784 StringRef Name = *I; 785 detail::InMemoryNode *Node = Dir->getChild(Name); 786 ++I; 787 if (!Node) { 788 if (I == E) { 789 // End of the path. 790 Dir->addChild( 791 Name, MakeNode({Dir->getUniqueID(), Path, Name, ModificationTime, 792 std::move(Buffer), ResolvedUser, ResolvedGroup, 793 ResolvedType, ResolvedPerms})); 794 return true; 795 } 796 797 // Create a new directory. Use the path up to here. 798 Status Stat( 799 StringRef(Path.str().begin(), Name.end() - Path.str().begin()), 800 getDirectoryID(Dir->getUniqueID(), Name), 801 llvm::sys::toTimePoint(ModificationTime), ResolvedUser, ResolvedGroup, 802 0, sys::fs::file_type::directory_file, NewDirectoryPerms); 803 Dir = cast<detail::InMemoryDirectory>(Dir->addChild( 804 Name, std::make_unique<detail::InMemoryDirectory>(std::move(Stat)))); 805 continue; 806 } 807 808 if (auto *NewDir = dyn_cast<detail::InMemoryDirectory>(Node)) { 809 Dir = NewDir; 810 } else { 811 assert((isa<detail::InMemoryFile>(Node) || 812 isa<detail::InMemoryHardLink>(Node)) && 813 "Must be either file, hardlink or directory!"); 814 815 // Trying to insert a directory in place of a file. 816 if (I != E) 817 return false; 818 819 // Return false only if the new file is different from the existing one. 820 if (auto Link = dyn_cast<detail::InMemoryHardLink>(Node)) { 821 return Link->getResolvedFile().getBuffer()->getBuffer() == 822 Buffer->getBuffer(); 823 } 824 return cast<detail::InMemoryFile>(Node)->getBuffer()->getBuffer() == 825 Buffer->getBuffer(); 826 } 827 } 828 } 829 830 bool InMemoryFileSystem::addFile(const Twine &P, time_t ModificationTime, 831 std::unique_ptr<llvm::MemoryBuffer> Buffer, 832 Optional<uint32_t> User, 833 Optional<uint32_t> Group, 834 Optional<llvm::sys::fs::file_type> Type, 835 Optional<llvm::sys::fs::perms> Perms) { 836 return addFile(P, ModificationTime, std::move(Buffer), User, Group, Type, 837 Perms, 838 [](detail::NewInMemoryNodeInfo NNI) 839 -> std::unique_ptr<detail::InMemoryNode> { 840 Status Stat = NNI.makeStatus(); 841 if (Stat.getType() == sys::fs::file_type::directory_file) 842 return std::make_unique<detail::InMemoryDirectory>(Stat); 843 return std::make_unique<detail::InMemoryFile>( 844 Stat, std::move(NNI.Buffer)); 845 }); 846 } 847 848 bool InMemoryFileSystem::addFileNoOwn(const Twine &P, time_t ModificationTime, 849 const llvm::MemoryBufferRef &Buffer, 850 Optional<uint32_t> User, 851 Optional<uint32_t> Group, 852 Optional<llvm::sys::fs::file_type> Type, 853 Optional<llvm::sys::fs::perms> Perms) { 854 return addFile(P, ModificationTime, llvm::MemoryBuffer::getMemBuffer(Buffer), 855 std::move(User), std::move(Group), std::move(Type), 856 std::move(Perms), 857 [](detail::NewInMemoryNodeInfo NNI) 858 -> std::unique_ptr<detail::InMemoryNode> { 859 Status Stat = NNI.makeStatus(); 860 if (Stat.getType() == sys::fs::file_type::directory_file) 861 return std::make_unique<detail::InMemoryDirectory>(Stat); 862 return std::make_unique<detail::InMemoryFile>( 863 Stat, std::move(NNI.Buffer)); 864 }); 865 } 866 867 static ErrorOr<const detail::InMemoryNode *> 868 lookupInMemoryNode(const InMemoryFileSystem &FS, detail::InMemoryDirectory *Dir, 869 const Twine &P) { 870 SmallString<128> Path; 871 P.toVector(Path); 872 873 // Fix up relative paths. This just prepends the current working directory. 874 std::error_code EC = FS.makeAbsolute(Path); 875 assert(!EC); 876 (void)EC; 877 878 if (FS.useNormalizedPaths()) 879 llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); 880 881 if (Path.empty()) 882 return Dir; 883 884 auto I = llvm::sys::path::begin(Path), E = llvm::sys::path::end(Path); 885 while (true) { 886 detail::InMemoryNode *Node = Dir->getChild(*I); 887 ++I; 888 if (!Node) 889 return errc::no_such_file_or_directory; 890 891 // Return the file if it's at the end of the path. 892 if (auto File = dyn_cast<detail::InMemoryFile>(Node)) { 893 if (I == E) 894 return File; 895 return errc::no_such_file_or_directory; 896 } 897 898 // If Node is HardLink then return the resolved file. 899 if (auto File = dyn_cast<detail::InMemoryHardLink>(Node)) { 900 if (I == E) 901 return &File->getResolvedFile(); 902 return errc::no_such_file_or_directory; 903 } 904 // Traverse directories. 905 Dir = cast<detail::InMemoryDirectory>(Node); 906 if (I == E) 907 return Dir; 908 } 909 } 910 911 bool InMemoryFileSystem::addHardLink(const Twine &FromPath, 912 const Twine &ToPath) { 913 auto FromNode = lookupInMemoryNode(*this, Root.get(), FromPath); 914 auto ToNode = lookupInMemoryNode(*this, Root.get(), ToPath); 915 // FromPath must not have been added before. ToPath must have been added 916 // before. Resolved ToPath must be a File. 917 if (!ToNode || FromNode || !isa<detail::InMemoryFile>(*ToNode)) 918 return false; 919 return addFile(FromPath, 0, nullptr, None, None, None, None, 920 [&](detail::NewInMemoryNodeInfo NNI) { 921 return std::make_unique<detail::InMemoryHardLink>( 922 NNI.Path.str(), *cast<detail::InMemoryFile>(*ToNode)); 923 }); 924 } 925 926 llvm::ErrorOr<Status> InMemoryFileSystem::status(const Twine &Path) { 927 auto Node = lookupInMemoryNode(*this, Root.get(), Path); 928 if (Node) 929 return (*Node)->getStatus(Path); 930 return Node.getError(); 931 } 932 933 llvm::ErrorOr<std::unique_ptr<File>> 934 InMemoryFileSystem::openFileForRead(const Twine &Path) { 935 auto Node = lookupInMemoryNode(*this, Root.get(), Path); 936 if (!Node) 937 return Node.getError(); 938 939 // When we have a file provide a heap-allocated wrapper for the memory buffer 940 // to match the ownership semantics for File. 941 if (auto *F = dyn_cast<detail::InMemoryFile>(*Node)) 942 return std::unique_ptr<File>( 943 new detail::InMemoryFileAdaptor(*F, Path.str())); 944 945 // FIXME: errc::not_a_file? 946 return make_error_code(llvm::errc::invalid_argument); 947 } 948 949 namespace { 950 951 /// Adaptor from InMemoryDir::iterator to directory_iterator. 952 class InMemoryDirIterator : public llvm::vfs::detail::DirIterImpl { 953 detail::InMemoryDirectory::const_iterator I; 954 detail::InMemoryDirectory::const_iterator E; 955 std::string RequestedDirName; 956 957 void setCurrentEntry() { 958 if (I != E) { 959 SmallString<256> Path(RequestedDirName); 960 llvm::sys::path::append(Path, I->second->getFileName()); 961 sys::fs::file_type Type = sys::fs::file_type::type_unknown; 962 switch (I->second->getKind()) { 963 case detail::IME_File: 964 case detail::IME_HardLink: 965 Type = sys::fs::file_type::regular_file; 966 break; 967 case detail::IME_Directory: 968 Type = sys::fs::file_type::directory_file; 969 break; 970 } 971 CurrentEntry = directory_entry(std::string(Path.str()), Type); 972 } else { 973 // When we're at the end, make CurrentEntry invalid and DirIterImpl will 974 // do the rest. 975 CurrentEntry = directory_entry(); 976 } 977 } 978 979 public: 980 InMemoryDirIterator() = default; 981 982 explicit InMemoryDirIterator(const detail::InMemoryDirectory &Dir, 983 std::string RequestedDirName) 984 : I(Dir.begin()), E(Dir.end()), 985 RequestedDirName(std::move(RequestedDirName)) { 986 setCurrentEntry(); 987 } 988 989 std::error_code increment() override { 990 ++I; 991 setCurrentEntry(); 992 return {}; 993 } 994 }; 995 996 } // namespace 997 998 directory_iterator InMemoryFileSystem::dir_begin(const Twine &Dir, 999 std::error_code &EC) { 1000 auto Node = lookupInMemoryNode(*this, Root.get(), Dir); 1001 if (!Node) { 1002 EC = Node.getError(); 1003 return directory_iterator(std::make_shared<InMemoryDirIterator>()); 1004 } 1005 1006 if (auto *DirNode = dyn_cast<detail::InMemoryDirectory>(*Node)) 1007 return directory_iterator( 1008 std::make_shared<InMemoryDirIterator>(*DirNode, Dir.str())); 1009 1010 EC = make_error_code(llvm::errc::not_a_directory); 1011 return directory_iterator(std::make_shared<InMemoryDirIterator>()); 1012 } 1013 1014 std::error_code InMemoryFileSystem::setCurrentWorkingDirectory(const Twine &P) { 1015 SmallString<128> Path; 1016 P.toVector(Path); 1017 1018 // Fix up relative paths. This just prepends the current working directory. 1019 std::error_code EC = makeAbsolute(Path); 1020 assert(!EC); 1021 (void)EC; 1022 1023 if (useNormalizedPaths()) 1024 llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); 1025 1026 if (!Path.empty()) 1027 WorkingDirectory = std::string(Path.str()); 1028 return {}; 1029 } 1030 1031 std::error_code 1032 InMemoryFileSystem::getRealPath(const Twine &Path, 1033 SmallVectorImpl<char> &Output) const { 1034 auto CWD = getCurrentWorkingDirectory(); 1035 if (!CWD || CWD->empty()) 1036 return errc::operation_not_permitted; 1037 Path.toVector(Output); 1038 if (auto EC = makeAbsolute(Output)) 1039 return EC; 1040 llvm::sys::path::remove_dots(Output, /*remove_dot_dot=*/true); 1041 return {}; 1042 } 1043 1044 std::error_code InMemoryFileSystem::isLocal(const Twine &Path, bool &Result) { 1045 Result = false; 1046 return {}; 1047 } 1048 1049 } // namespace vfs 1050 } // namespace llvm 1051 1052 //===-----------------------------------------------------------------------===/ 1053 // RedirectingFileSystem implementation 1054 //===-----------------------------------------------------------------------===/ 1055 1056 namespace { 1057 1058 static llvm::sys::path::Style getExistingStyle(llvm::StringRef Path) { 1059 // Detect the path style in use by checking the first separator. 1060 llvm::sys::path::Style style = llvm::sys::path::Style::native; 1061 const size_t n = Path.find_first_of("/\\"); 1062 // Can't distinguish between posix and windows_slash here. 1063 if (n != static_cast<size_t>(-1)) 1064 style = (Path[n] == '/') ? llvm::sys::path::Style::posix 1065 : llvm::sys::path::Style::windows_backslash; 1066 return style; 1067 } 1068 1069 /// Removes leading "./" as well as path components like ".." and ".". 1070 static llvm::SmallString<256> canonicalize(llvm::StringRef Path) { 1071 // First detect the path style in use by checking the first separator. 1072 llvm::sys::path::Style style = getExistingStyle(Path); 1073 1074 // Now remove the dots. Explicitly specifying the path style prevents the 1075 // direction of the slashes from changing. 1076 llvm::SmallString<256> result = 1077 llvm::sys::path::remove_leading_dotslash(Path, style); 1078 llvm::sys::path::remove_dots(result, /*remove_dot_dot=*/true, style); 1079 return result; 1080 } 1081 1082 } // anonymous namespace 1083 1084 1085 RedirectingFileSystem::RedirectingFileSystem(IntrusiveRefCntPtr<FileSystem> FS) 1086 : ExternalFS(std::move(FS)) { 1087 if (ExternalFS) 1088 if (auto ExternalWorkingDirectory = 1089 ExternalFS->getCurrentWorkingDirectory()) { 1090 WorkingDirectory = *ExternalWorkingDirectory; 1091 } 1092 } 1093 1094 /// Directory iterator implementation for \c RedirectingFileSystem's 1095 /// directory entries. 1096 class llvm::vfs::RedirectingFSDirIterImpl 1097 : public llvm::vfs::detail::DirIterImpl { 1098 std::string Dir; 1099 RedirectingFileSystem::DirectoryEntry::iterator Current, End; 1100 1101 std::error_code incrementImpl(bool IsFirstTime) { 1102 assert((IsFirstTime || Current != End) && "cannot iterate past end"); 1103 if (!IsFirstTime) 1104 ++Current; 1105 if (Current != End) { 1106 SmallString<128> PathStr(Dir); 1107 llvm::sys::path::append(PathStr, (*Current)->getName()); 1108 sys::fs::file_type Type = sys::fs::file_type::type_unknown; 1109 switch ((*Current)->getKind()) { 1110 case RedirectingFileSystem::EK_Directory: 1111 LLVM_FALLTHROUGH; 1112 case RedirectingFileSystem::EK_DirectoryRemap: 1113 Type = sys::fs::file_type::directory_file; 1114 break; 1115 case RedirectingFileSystem::EK_File: 1116 Type = sys::fs::file_type::regular_file; 1117 break; 1118 } 1119 CurrentEntry = directory_entry(std::string(PathStr.str()), Type); 1120 } else { 1121 CurrentEntry = directory_entry(); 1122 } 1123 return {}; 1124 }; 1125 1126 public: 1127 RedirectingFSDirIterImpl( 1128 const Twine &Path, RedirectingFileSystem::DirectoryEntry::iterator Begin, 1129 RedirectingFileSystem::DirectoryEntry::iterator End, std::error_code &EC) 1130 : Dir(Path.str()), Current(Begin), End(End) { 1131 EC = incrementImpl(/*IsFirstTime=*/true); 1132 } 1133 1134 std::error_code increment() override { 1135 return incrementImpl(/*IsFirstTime=*/false); 1136 } 1137 }; 1138 1139 namespace { 1140 /// Directory iterator implementation for \c RedirectingFileSystem's 1141 /// directory remap entries that maps the paths reported by the external 1142 /// file system's directory iterator back to the virtual directory's path. 1143 class RedirectingFSDirRemapIterImpl : public llvm::vfs::detail::DirIterImpl { 1144 std::string Dir; 1145 llvm::sys::path::Style DirStyle; 1146 llvm::vfs::directory_iterator ExternalIter; 1147 1148 public: 1149 RedirectingFSDirRemapIterImpl(std::string DirPath, 1150 llvm::vfs::directory_iterator ExtIter) 1151 : Dir(std::move(DirPath)), DirStyle(getExistingStyle(Dir)), 1152 ExternalIter(ExtIter) { 1153 if (ExternalIter != llvm::vfs::directory_iterator()) 1154 setCurrentEntry(); 1155 } 1156 1157 void setCurrentEntry() { 1158 StringRef ExternalPath = ExternalIter->path(); 1159 llvm::sys::path::Style ExternalStyle = getExistingStyle(ExternalPath); 1160 StringRef File = llvm::sys::path::filename(ExternalPath, ExternalStyle); 1161 1162 SmallString<128> NewPath(Dir); 1163 llvm::sys::path::append(NewPath, DirStyle, File); 1164 1165 CurrentEntry = directory_entry(std::string(NewPath), ExternalIter->type()); 1166 } 1167 1168 std::error_code increment() override { 1169 std::error_code EC; 1170 ExternalIter.increment(EC); 1171 if (!EC && ExternalIter != llvm::vfs::directory_iterator()) 1172 setCurrentEntry(); 1173 else 1174 CurrentEntry = directory_entry(); 1175 return EC; 1176 } 1177 }; 1178 } // namespace 1179 1180 llvm::ErrorOr<std::string> 1181 RedirectingFileSystem::getCurrentWorkingDirectory() const { 1182 return WorkingDirectory; 1183 } 1184 1185 std::error_code 1186 RedirectingFileSystem::setCurrentWorkingDirectory(const Twine &Path) { 1187 // Don't change the working directory if the path doesn't exist. 1188 if (!exists(Path)) 1189 return errc::no_such_file_or_directory; 1190 1191 SmallString<128> AbsolutePath; 1192 Path.toVector(AbsolutePath); 1193 if (std::error_code EC = makeAbsolute(AbsolutePath)) 1194 return EC; 1195 WorkingDirectory = std::string(AbsolutePath.str()); 1196 return {}; 1197 } 1198 1199 std::error_code RedirectingFileSystem::isLocal(const Twine &Path_, 1200 bool &Result) { 1201 SmallString<256> Path; 1202 Path_.toVector(Path); 1203 1204 if (std::error_code EC = makeCanonical(Path)) 1205 return {}; 1206 1207 return ExternalFS->isLocal(Path, Result); 1208 } 1209 1210 std::error_code RedirectingFileSystem::makeAbsolute(SmallVectorImpl<char> &Path) const { 1211 // is_absolute(..., Style::windows_*) accepts paths with both slash types. 1212 if (llvm::sys::path::is_absolute(Path, llvm::sys::path::Style::posix) || 1213 llvm::sys::path::is_absolute(Path, 1214 llvm::sys::path::Style::windows_backslash)) 1215 return {}; 1216 1217 auto WorkingDir = getCurrentWorkingDirectory(); 1218 if (!WorkingDir) 1219 return WorkingDir.getError(); 1220 1221 // We can't use sys::fs::make_absolute because that assumes the path style 1222 // is native and there is no way to override that. Since we know WorkingDir 1223 // is absolute, we can use it to determine which style we actually have and 1224 // append Path ourselves. 1225 sys::path::Style style = sys::path::Style::windows_backslash; 1226 if (sys::path::is_absolute(WorkingDir.get(), sys::path::Style::posix)) { 1227 style = sys::path::Style::posix; 1228 } else { 1229 // Distinguish between windows_backslash and windows_slash; getExistingStyle 1230 // returns posix for a path with windows_slash. 1231 if (getExistingStyle(WorkingDir.get()) != 1232 sys::path::Style::windows_backslash) 1233 style = sys::path::Style::windows_slash; 1234 } 1235 1236 std::string Result = WorkingDir.get(); 1237 StringRef Dir(Result); 1238 if (!Dir.endswith(sys::path::get_separator(style))) { 1239 Result += sys::path::get_separator(style); 1240 } 1241 Result.append(Path.data(), Path.size()); 1242 Path.assign(Result.begin(), Result.end()); 1243 1244 return {}; 1245 } 1246 1247 directory_iterator RedirectingFileSystem::dir_begin(const Twine &Dir, 1248 std::error_code &EC) { 1249 SmallString<256> Path; 1250 Dir.toVector(Path); 1251 1252 EC = makeCanonical(Path); 1253 if (EC) 1254 return {}; 1255 1256 ErrorOr<RedirectingFileSystem::LookupResult> Result = lookupPath(Path); 1257 if (!Result) { 1258 EC = Result.getError(); 1259 if (shouldFallBackToExternalFS(EC)) 1260 return ExternalFS->dir_begin(Path, EC); 1261 return {}; 1262 } 1263 1264 // Use status to make sure the path exists and refers to a directory. 1265 ErrorOr<Status> S = status(Path, Dir, *Result); 1266 if (!S) { 1267 if (shouldFallBackToExternalFS(S.getError(), Result->E)) 1268 return ExternalFS->dir_begin(Dir, EC); 1269 EC = S.getError(); 1270 return {}; 1271 } 1272 if (!S->isDirectory()) { 1273 EC = std::error_code(static_cast<int>(errc::not_a_directory), 1274 std::system_category()); 1275 return {}; 1276 } 1277 1278 // Create the appropriate directory iterator based on whether we found a 1279 // DirectoryRemapEntry or DirectoryEntry. 1280 directory_iterator DirIter; 1281 if (auto ExtRedirect = Result->getExternalRedirect()) { 1282 auto RE = cast<RedirectingFileSystem::RemapEntry>(Result->E); 1283 DirIter = ExternalFS->dir_begin(*ExtRedirect, EC); 1284 1285 if (!RE->useExternalName(UseExternalNames)) { 1286 // Update the paths in the results to use the virtual directory's path. 1287 DirIter = 1288 directory_iterator(std::make_shared<RedirectingFSDirRemapIterImpl>( 1289 std::string(Path), DirIter)); 1290 } 1291 } else { 1292 auto DE = cast<DirectoryEntry>(Result->E); 1293 DirIter = directory_iterator(std::make_shared<RedirectingFSDirIterImpl>( 1294 Path, DE->contents_begin(), DE->contents_end(), EC)); 1295 } 1296 1297 if (!shouldUseExternalFS()) 1298 return DirIter; 1299 return directory_iterator(std::make_shared<CombiningDirIterImpl>( 1300 DirIter, ExternalFS, std::string(Path), EC)); 1301 } 1302 1303 void RedirectingFileSystem::setExternalContentsPrefixDir(StringRef PrefixDir) { 1304 ExternalContentsPrefixDir = PrefixDir.str(); 1305 } 1306 1307 StringRef RedirectingFileSystem::getExternalContentsPrefixDir() const { 1308 return ExternalContentsPrefixDir; 1309 } 1310 1311 void RedirectingFileSystem::setFallthrough(bool Fallthrough) { 1312 IsFallthrough = Fallthrough; 1313 } 1314 1315 std::vector<StringRef> RedirectingFileSystem::getRoots() const { 1316 std::vector<StringRef> R; 1317 for (const auto &Root : Roots) 1318 R.push_back(Root->getName()); 1319 return R; 1320 } 1321 1322 void RedirectingFileSystem::dump(raw_ostream &OS) const { 1323 for (const auto &Root : Roots) 1324 dumpEntry(OS, Root.get()); 1325 } 1326 1327 void RedirectingFileSystem::dumpEntry(raw_ostream &OS, 1328 RedirectingFileSystem::Entry *E, 1329 int NumSpaces) const { 1330 StringRef Name = E->getName(); 1331 for (int i = 0, e = NumSpaces; i < e; ++i) 1332 OS << " "; 1333 OS << "'" << Name.str().c_str() << "'" 1334 << "\n"; 1335 1336 if (E->getKind() == RedirectingFileSystem::EK_Directory) { 1337 auto *DE = dyn_cast<RedirectingFileSystem::DirectoryEntry>(E); 1338 assert(DE && "Should be a directory"); 1339 1340 for (std::unique_ptr<Entry> &SubEntry : 1341 llvm::make_range(DE->contents_begin(), DE->contents_end())) 1342 dumpEntry(OS, SubEntry.get(), NumSpaces + 2); 1343 } 1344 } 1345 1346 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1347 LLVM_DUMP_METHOD void RedirectingFileSystem::dump() const { dump(dbgs()); } 1348 #endif 1349 1350 /// A helper class to hold the common YAML parsing state. 1351 class llvm::vfs::RedirectingFileSystemParser { 1352 yaml::Stream &Stream; 1353 1354 void error(yaml::Node *N, const Twine &Msg) { Stream.printError(N, Msg); } 1355 1356 // false on error 1357 bool parseScalarString(yaml::Node *N, StringRef &Result, 1358 SmallVectorImpl<char> &Storage) { 1359 const auto *S = dyn_cast<yaml::ScalarNode>(N); 1360 1361 if (!S) { 1362 error(N, "expected string"); 1363 return false; 1364 } 1365 Result = S->getValue(Storage); 1366 return true; 1367 } 1368 1369 // false on error 1370 bool parseScalarBool(yaml::Node *N, bool &Result) { 1371 SmallString<5> Storage; 1372 StringRef Value; 1373 if (!parseScalarString(N, Value, Storage)) 1374 return false; 1375 1376 if (Value.equals_insensitive("true") || Value.equals_insensitive("on") || 1377 Value.equals_insensitive("yes") || Value == "1") { 1378 Result = true; 1379 return true; 1380 } else if (Value.equals_insensitive("false") || 1381 Value.equals_insensitive("off") || 1382 Value.equals_insensitive("no") || Value == "0") { 1383 Result = false; 1384 return true; 1385 } 1386 1387 error(N, "expected boolean value"); 1388 return false; 1389 } 1390 1391 struct KeyStatus { 1392 bool Required; 1393 bool Seen = false; 1394 1395 KeyStatus(bool Required = false) : Required(Required) {} 1396 }; 1397 1398 using KeyStatusPair = std::pair<StringRef, KeyStatus>; 1399 1400 // false on error 1401 bool checkDuplicateOrUnknownKey(yaml::Node *KeyNode, StringRef Key, 1402 DenseMap<StringRef, KeyStatus> &Keys) { 1403 if (!Keys.count(Key)) { 1404 error(KeyNode, "unknown key"); 1405 return false; 1406 } 1407 KeyStatus &S = Keys[Key]; 1408 if (S.Seen) { 1409 error(KeyNode, Twine("duplicate key '") + Key + "'"); 1410 return false; 1411 } 1412 S.Seen = true; 1413 return true; 1414 } 1415 1416 // false on error 1417 bool checkMissingKeys(yaml::Node *Obj, DenseMap<StringRef, KeyStatus> &Keys) { 1418 for (const auto &I : Keys) { 1419 if (I.second.Required && !I.second.Seen) { 1420 error(Obj, Twine("missing key '") + I.first + "'"); 1421 return false; 1422 } 1423 } 1424 return true; 1425 } 1426 1427 public: 1428 static RedirectingFileSystem::Entry * 1429 lookupOrCreateEntry(RedirectingFileSystem *FS, StringRef Name, 1430 RedirectingFileSystem::Entry *ParentEntry = nullptr) { 1431 if (!ParentEntry) { // Look for a existent root 1432 for (const auto &Root : FS->Roots) { 1433 if (Name.equals(Root->getName())) { 1434 ParentEntry = Root.get(); 1435 return ParentEntry; 1436 } 1437 } 1438 } else { // Advance to the next component 1439 auto *DE = dyn_cast<RedirectingFileSystem::DirectoryEntry>(ParentEntry); 1440 for (std::unique_ptr<RedirectingFileSystem::Entry> &Content : 1441 llvm::make_range(DE->contents_begin(), DE->contents_end())) { 1442 auto *DirContent = 1443 dyn_cast<RedirectingFileSystem::DirectoryEntry>(Content.get()); 1444 if (DirContent && Name.equals(Content->getName())) 1445 return DirContent; 1446 } 1447 } 1448 1449 // ... or create a new one 1450 std::unique_ptr<RedirectingFileSystem::Entry> E = 1451 std::make_unique<RedirectingFileSystem::DirectoryEntry>( 1452 Name, Status("", getNextVirtualUniqueID(), 1453 std::chrono::system_clock::now(), 0, 0, 0, 1454 file_type::directory_file, sys::fs::all_all)); 1455 1456 if (!ParentEntry) { // Add a new root to the overlay 1457 FS->Roots.push_back(std::move(E)); 1458 ParentEntry = FS->Roots.back().get(); 1459 return ParentEntry; 1460 } 1461 1462 auto *DE = cast<RedirectingFileSystem::DirectoryEntry>(ParentEntry); 1463 DE->addContent(std::move(E)); 1464 return DE->getLastContent(); 1465 } 1466 1467 private: 1468 void uniqueOverlayTree(RedirectingFileSystem *FS, 1469 RedirectingFileSystem::Entry *SrcE, 1470 RedirectingFileSystem::Entry *NewParentE = nullptr) { 1471 StringRef Name = SrcE->getName(); 1472 switch (SrcE->getKind()) { 1473 case RedirectingFileSystem::EK_Directory: { 1474 auto *DE = cast<RedirectingFileSystem::DirectoryEntry>(SrcE); 1475 // Empty directories could be present in the YAML as a way to 1476 // describe a file for a current directory after some of its subdir 1477 // is parsed. This only leads to redundant walks, ignore it. 1478 if (!Name.empty()) 1479 NewParentE = lookupOrCreateEntry(FS, Name, NewParentE); 1480 for (std::unique_ptr<RedirectingFileSystem::Entry> &SubEntry : 1481 llvm::make_range(DE->contents_begin(), DE->contents_end())) 1482 uniqueOverlayTree(FS, SubEntry.get(), NewParentE); 1483 break; 1484 } 1485 case RedirectingFileSystem::EK_DirectoryRemap: { 1486 assert(NewParentE && "Parent entry must exist"); 1487 auto *DR = cast<RedirectingFileSystem::DirectoryRemapEntry>(SrcE); 1488 auto *DE = cast<RedirectingFileSystem::DirectoryEntry>(NewParentE); 1489 DE->addContent( 1490 std::make_unique<RedirectingFileSystem::DirectoryRemapEntry>( 1491 Name, DR->getExternalContentsPath(), DR->getUseName())); 1492 break; 1493 } 1494 case RedirectingFileSystem::EK_File: { 1495 assert(NewParentE && "Parent entry must exist"); 1496 auto *FE = cast<RedirectingFileSystem::FileEntry>(SrcE); 1497 auto *DE = cast<RedirectingFileSystem::DirectoryEntry>(NewParentE); 1498 DE->addContent(std::make_unique<RedirectingFileSystem::FileEntry>( 1499 Name, FE->getExternalContentsPath(), FE->getUseName())); 1500 break; 1501 } 1502 } 1503 } 1504 1505 std::unique_ptr<RedirectingFileSystem::Entry> 1506 parseEntry(yaml::Node *N, RedirectingFileSystem *FS, bool IsRootEntry) { 1507 auto *M = dyn_cast<yaml::MappingNode>(N); 1508 if (!M) { 1509 error(N, "expected mapping node for file or directory entry"); 1510 return nullptr; 1511 } 1512 1513 KeyStatusPair Fields[] = { 1514 KeyStatusPair("name", true), 1515 KeyStatusPair("type", true), 1516 KeyStatusPair("contents", false), 1517 KeyStatusPair("external-contents", false), 1518 KeyStatusPair("use-external-name", false), 1519 }; 1520 1521 DenseMap<StringRef, KeyStatus> Keys(std::begin(Fields), std::end(Fields)); 1522 1523 enum { CF_NotSet, CF_List, CF_External } ContentsField = CF_NotSet; 1524 std::vector<std::unique_ptr<RedirectingFileSystem::Entry>> 1525 EntryArrayContents; 1526 SmallString<256> ExternalContentsPath; 1527 SmallString<256> Name; 1528 yaml::Node *NameValueNode = nullptr; 1529 auto UseExternalName = RedirectingFileSystem::NK_NotSet; 1530 RedirectingFileSystem::EntryKind Kind; 1531 1532 for (auto &I : *M) { 1533 StringRef Key; 1534 // Reuse the buffer for key and value, since we don't look at key after 1535 // parsing value. 1536 SmallString<256> Buffer; 1537 if (!parseScalarString(I.getKey(), Key, Buffer)) 1538 return nullptr; 1539 1540 if (!checkDuplicateOrUnknownKey(I.getKey(), Key, Keys)) 1541 return nullptr; 1542 1543 StringRef Value; 1544 if (Key == "name") { 1545 if (!parseScalarString(I.getValue(), Value, Buffer)) 1546 return nullptr; 1547 1548 NameValueNode = I.getValue(); 1549 // Guarantee that old YAML files containing paths with ".." and "." 1550 // are properly canonicalized before read into the VFS. 1551 Name = canonicalize(Value).str(); 1552 } else if (Key == "type") { 1553 if (!parseScalarString(I.getValue(), Value, Buffer)) 1554 return nullptr; 1555 if (Value == "file") 1556 Kind = RedirectingFileSystem::EK_File; 1557 else if (Value == "directory") 1558 Kind = RedirectingFileSystem::EK_Directory; 1559 else if (Value == "directory-remap") 1560 Kind = RedirectingFileSystem::EK_DirectoryRemap; 1561 else { 1562 error(I.getValue(), "unknown value for 'type'"); 1563 return nullptr; 1564 } 1565 } else if (Key == "contents") { 1566 if (ContentsField != CF_NotSet) { 1567 error(I.getKey(), 1568 "entry already has 'contents' or 'external-contents'"); 1569 return nullptr; 1570 } 1571 ContentsField = CF_List; 1572 auto *Contents = dyn_cast<yaml::SequenceNode>(I.getValue()); 1573 if (!Contents) { 1574 // FIXME: this is only for directories, what about files? 1575 error(I.getValue(), "expected array"); 1576 return nullptr; 1577 } 1578 1579 for (auto &I : *Contents) { 1580 if (std::unique_ptr<RedirectingFileSystem::Entry> E = 1581 parseEntry(&I, FS, /*IsRootEntry*/ false)) 1582 EntryArrayContents.push_back(std::move(E)); 1583 else 1584 return nullptr; 1585 } 1586 } else if (Key == "external-contents") { 1587 if (ContentsField != CF_NotSet) { 1588 error(I.getKey(), 1589 "entry already has 'contents' or 'external-contents'"); 1590 return nullptr; 1591 } 1592 ContentsField = CF_External; 1593 if (!parseScalarString(I.getValue(), Value, Buffer)) 1594 return nullptr; 1595 1596 SmallString<256> FullPath; 1597 if (FS->IsRelativeOverlay) { 1598 FullPath = FS->getExternalContentsPrefixDir(); 1599 assert(!FullPath.empty() && 1600 "External contents prefix directory must exist"); 1601 llvm::sys::path::append(FullPath, Value); 1602 } else { 1603 FullPath = Value; 1604 } 1605 1606 // Guarantee that old YAML files containing paths with ".." and "." 1607 // are properly canonicalized before read into the VFS. 1608 FullPath = canonicalize(FullPath); 1609 ExternalContentsPath = FullPath.str(); 1610 } else if (Key == "use-external-name") { 1611 bool Val; 1612 if (!parseScalarBool(I.getValue(), Val)) 1613 return nullptr; 1614 UseExternalName = Val ? RedirectingFileSystem::NK_External 1615 : RedirectingFileSystem::NK_Virtual; 1616 } else { 1617 llvm_unreachable("key missing from Keys"); 1618 } 1619 } 1620 1621 if (Stream.failed()) 1622 return nullptr; 1623 1624 // check for missing keys 1625 if (ContentsField == CF_NotSet) { 1626 error(N, "missing key 'contents' or 'external-contents'"); 1627 return nullptr; 1628 } 1629 if (!checkMissingKeys(N, Keys)) 1630 return nullptr; 1631 1632 // check invalid configuration 1633 if (Kind == RedirectingFileSystem::EK_Directory && 1634 UseExternalName != RedirectingFileSystem::NK_NotSet) { 1635 error(N, "'use-external-name' is not supported for 'directory' entries"); 1636 return nullptr; 1637 } 1638 1639 if (Kind == RedirectingFileSystem::EK_DirectoryRemap && 1640 ContentsField == CF_List) { 1641 error(N, "'contents' is not supported for 'directory-remap' entries"); 1642 return nullptr; 1643 } 1644 1645 sys::path::Style path_style = sys::path::Style::native; 1646 if (IsRootEntry) { 1647 // VFS root entries may be in either Posix or Windows style. Figure out 1648 // which style we have, and use it consistently. 1649 if (sys::path::is_absolute(Name, sys::path::Style::posix)) { 1650 path_style = sys::path::Style::posix; 1651 } else if (sys::path::is_absolute(Name, 1652 sys::path::Style::windows_backslash)) { 1653 path_style = sys::path::Style::windows_backslash; 1654 } else { 1655 // Relative VFS root entries are made absolute to the current working 1656 // directory, then we can determine the path style from that. 1657 auto EC = sys::fs::make_absolute(Name); 1658 if (EC) { 1659 assert(NameValueNode && "Name presence should be checked earlier"); 1660 error( 1661 NameValueNode, 1662 "entry with relative path at the root level is not discoverable"); 1663 return nullptr; 1664 } 1665 path_style = sys::path::is_absolute(Name, sys::path::Style::posix) 1666 ? sys::path::Style::posix 1667 : sys::path::Style::windows_backslash; 1668 } 1669 } 1670 1671 // Remove trailing slash(es), being careful not to remove the root path 1672 StringRef Trimmed = Name; 1673 size_t RootPathLen = sys::path::root_path(Trimmed, path_style).size(); 1674 while (Trimmed.size() > RootPathLen && 1675 sys::path::is_separator(Trimmed.back(), path_style)) 1676 Trimmed = Trimmed.slice(0, Trimmed.size() - 1); 1677 1678 // Get the last component 1679 StringRef LastComponent = sys::path::filename(Trimmed, path_style); 1680 1681 std::unique_ptr<RedirectingFileSystem::Entry> Result; 1682 switch (Kind) { 1683 case RedirectingFileSystem::EK_File: 1684 Result = std::make_unique<RedirectingFileSystem::FileEntry>( 1685 LastComponent, std::move(ExternalContentsPath), UseExternalName); 1686 break; 1687 case RedirectingFileSystem::EK_DirectoryRemap: 1688 Result = std::make_unique<RedirectingFileSystem::DirectoryRemapEntry>( 1689 LastComponent, std::move(ExternalContentsPath), UseExternalName); 1690 break; 1691 case RedirectingFileSystem::EK_Directory: 1692 Result = std::make_unique<RedirectingFileSystem::DirectoryEntry>( 1693 LastComponent, std::move(EntryArrayContents), 1694 Status("", getNextVirtualUniqueID(), std::chrono::system_clock::now(), 1695 0, 0, 0, file_type::directory_file, sys::fs::all_all)); 1696 break; 1697 } 1698 1699 StringRef Parent = sys::path::parent_path(Trimmed, path_style); 1700 if (Parent.empty()) 1701 return Result; 1702 1703 // if 'name' contains multiple components, create implicit directory entries 1704 for (sys::path::reverse_iterator I = sys::path::rbegin(Parent, path_style), 1705 E = sys::path::rend(Parent); 1706 I != E; ++I) { 1707 std::vector<std::unique_ptr<RedirectingFileSystem::Entry>> Entries; 1708 Entries.push_back(std::move(Result)); 1709 Result = std::make_unique<RedirectingFileSystem::DirectoryEntry>( 1710 *I, std::move(Entries), 1711 Status("", getNextVirtualUniqueID(), std::chrono::system_clock::now(), 1712 0, 0, 0, file_type::directory_file, sys::fs::all_all)); 1713 } 1714 return Result; 1715 } 1716 1717 public: 1718 RedirectingFileSystemParser(yaml::Stream &S) : Stream(S) {} 1719 1720 // false on error 1721 bool parse(yaml::Node *Root, RedirectingFileSystem *FS) { 1722 auto *Top = dyn_cast<yaml::MappingNode>(Root); 1723 if (!Top) { 1724 error(Root, "expected mapping node"); 1725 return false; 1726 } 1727 1728 KeyStatusPair Fields[] = { 1729 KeyStatusPair("version", true), 1730 KeyStatusPair("case-sensitive", false), 1731 KeyStatusPair("use-external-names", false), 1732 KeyStatusPair("overlay-relative", false), 1733 KeyStatusPair("fallthrough", false), 1734 KeyStatusPair("roots", true), 1735 }; 1736 1737 DenseMap<StringRef, KeyStatus> Keys(std::begin(Fields), std::end(Fields)); 1738 std::vector<std::unique_ptr<RedirectingFileSystem::Entry>> RootEntries; 1739 1740 // Parse configuration and 'roots' 1741 for (auto &I : *Top) { 1742 SmallString<10> KeyBuffer; 1743 StringRef Key; 1744 if (!parseScalarString(I.getKey(), Key, KeyBuffer)) 1745 return false; 1746 1747 if (!checkDuplicateOrUnknownKey(I.getKey(), Key, Keys)) 1748 return false; 1749 1750 if (Key == "roots") { 1751 auto *Roots = dyn_cast<yaml::SequenceNode>(I.getValue()); 1752 if (!Roots) { 1753 error(I.getValue(), "expected array"); 1754 return false; 1755 } 1756 1757 for (auto &I : *Roots) { 1758 if (std::unique_ptr<RedirectingFileSystem::Entry> E = 1759 parseEntry(&I, FS, /*IsRootEntry*/ true)) 1760 RootEntries.push_back(std::move(E)); 1761 else 1762 return false; 1763 } 1764 } else if (Key == "version") { 1765 StringRef VersionString; 1766 SmallString<4> Storage; 1767 if (!parseScalarString(I.getValue(), VersionString, Storage)) 1768 return false; 1769 int Version; 1770 if (VersionString.getAsInteger<int>(10, Version)) { 1771 error(I.getValue(), "expected integer"); 1772 return false; 1773 } 1774 if (Version < 0) { 1775 error(I.getValue(), "invalid version number"); 1776 return false; 1777 } 1778 if (Version != 0) { 1779 error(I.getValue(), "version mismatch, expected 0"); 1780 return false; 1781 } 1782 } else if (Key == "case-sensitive") { 1783 if (!parseScalarBool(I.getValue(), FS->CaseSensitive)) 1784 return false; 1785 } else if (Key == "overlay-relative") { 1786 if (!parseScalarBool(I.getValue(), FS->IsRelativeOverlay)) 1787 return false; 1788 } else if (Key == "use-external-names") { 1789 if (!parseScalarBool(I.getValue(), FS->UseExternalNames)) 1790 return false; 1791 } else if (Key == "fallthrough") { 1792 if (!parseScalarBool(I.getValue(), FS->IsFallthrough)) 1793 return false; 1794 } else { 1795 llvm_unreachable("key missing from Keys"); 1796 } 1797 } 1798 1799 if (Stream.failed()) 1800 return false; 1801 1802 if (!checkMissingKeys(Top, Keys)) 1803 return false; 1804 1805 // Now that we sucessefully parsed the YAML file, canonicalize the internal 1806 // representation to a proper directory tree so that we can search faster 1807 // inside the VFS. 1808 for (auto &E : RootEntries) 1809 uniqueOverlayTree(FS, E.get()); 1810 1811 return true; 1812 } 1813 }; 1814 1815 std::unique_ptr<RedirectingFileSystem> 1816 RedirectingFileSystem::create(std::unique_ptr<MemoryBuffer> Buffer, 1817 SourceMgr::DiagHandlerTy DiagHandler, 1818 StringRef YAMLFilePath, void *DiagContext, 1819 IntrusiveRefCntPtr<FileSystem> ExternalFS) { 1820 SourceMgr SM; 1821 yaml::Stream Stream(Buffer->getMemBufferRef(), SM); 1822 1823 SM.setDiagHandler(DiagHandler, DiagContext); 1824 yaml::document_iterator DI = Stream.begin(); 1825 yaml::Node *Root = DI->getRoot(); 1826 if (DI == Stream.end() || !Root) { 1827 SM.PrintMessage(SMLoc(), SourceMgr::DK_Error, "expected root node"); 1828 return nullptr; 1829 } 1830 1831 RedirectingFileSystemParser P(Stream); 1832 1833 std::unique_ptr<RedirectingFileSystem> FS( 1834 new RedirectingFileSystem(ExternalFS)); 1835 1836 if (!YAMLFilePath.empty()) { 1837 // Use the YAML path from -ivfsoverlay to compute the dir to be prefixed 1838 // to each 'external-contents' path. 1839 // 1840 // Example: 1841 // -ivfsoverlay dummy.cache/vfs/vfs.yaml 1842 // yields: 1843 // FS->ExternalContentsPrefixDir => /<absolute_path_to>/dummy.cache/vfs 1844 // 1845 SmallString<256> OverlayAbsDir = sys::path::parent_path(YAMLFilePath); 1846 std::error_code EC = llvm::sys::fs::make_absolute(OverlayAbsDir); 1847 assert(!EC && "Overlay dir final path must be absolute"); 1848 (void)EC; 1849 FS->setExternalContentsPrefixDir(OverlayAbsDir); 1850 } 1851 1852 if (!P.parse(Root, FS.get())) 1853 return nullptr; 1854 1855 return FS; 1856 } 1857 1858 std::unique_ptr<RedirectingFileSystem> RedirectingFileSystem::create( 1859 ArrayRef<std::pair<std::string, std::string>> RemappedFiles, 1860 bool UseExternalNames, FileSystem &ExternalFS) { 1861 std::unique_ptr<RedirectingFileSystem> FS( 1862 new RedirectingFileSystem(&ExternalFS)); 1863 FS->UseExternalNames = UseExternalNames; 1864 1865 StringMap<RedirectingFileSystem::Entry *> Entries; 1866 1867 for (auto &Mapping : llvm::reverse(RemappedFiles)) { 1868 SmallString<128> From = StringRef(Mapping.first); 1869 SmallString<128> To = StringRef(Mapping.second); 1870 { 1871 auto EC = ExternalFS.makeAbsolute(From); 1872 (void)EC; 1873 assert(!EC && "Could not make absolute path"); 1874 } 1875 1876 // Check if we've already mapped this file. The first one we see (in the 1877 // reverse iteration) wins. 1878 RedirectingFileSystem::Entry *&ToEntry = Entries[From]; 1879 if (ToEntry) 1880 continue; 1881 1882 // Add parent directories. 1883 RedirectingFileSystem::Entry *Parent = nullptr; 1884 StringRef FromDirectory = llvm::sys::path::parent_path(From); 1885 for (auto I = llvm::sys::path::begin(FromDirectory), 1886 E = llvm::sys::path::end(FromDirectory); 1887 I != E; ++I) { 1888 Parent = RedirectingFileSystemParser::lookupOrCreateEntry(FS.get(), *I, 1889 Parent); 1890 } 1891 assert(Parent && "File without a directory?"); 1892 { 1893 auto EC = ExternalFS.makeAbsolute(To); 1894 (void)EC; 1895 assert(!EC && "Could not make absolute path"); 1896 } 1897 1898 // Add the file. 1899 auto NewFile = std::make_unique<RedirectingFileSystem::FileEntry>( 1900 llvm::sys::path::filename(From), To, 1901 UseExternalNames ? RedirectingFileSystem::NK_External 1902 : RedirectingFileSystem::NK_Virtual); 1903 ToEntry = NewFile.get(); 1904 cast<RedirectingFileSystem::DirectoryEntry>(Parent)->addContent( 1905 std::move(NewFile)); 1906 } 1907 1908 return FS; 1909 } 1910 1911 RedirectingFileSystem::LookupResult::LookupResult( 1912 Entry *E, sys::path::const_iterator Start, sys::path::const_iterator End) 1913 : E(E) { 1914 assert(E != nullptr); 1915 // If the matched entry is a DirectoryRemapEntry, set ExternalRedirect to the 1916 // path of the directory it maps to in the external file system plus any 1917 // remaining path components in the provided iterator. 1918 if (auto *DRE = dyn_cast<RedirectingFileSystem::DirectoryRemapEntry>(E)) { 1919 SmallString<256> Redirect(DRE->getExternalContentsPath()); 1920 sys::path::append(Redirect, Start, End, 1921 getExistingStyle(DRE->getExternalContentsPath())); 1922 ExternalRedirect = std::string(Redirect); 1923 } 1924 } 1925 1926 bool RedirectingFileSystem::shouldFallBackToExternalFS( 1927 std::error_code EC, RedirectingFileSystem::Entry *E) const { 1928 if (E && !isa<RedirectingFileSystem::DirectoryRemapEntry>(E)) 1929 return false; 1930 return shouldUseExternalFS() && EC == llvm::errc::no_such_file_or_directory; 1931 } 1932 1933 std::error_code 1934 RedirectingFileSystem::makeCanonical(SmallVectorImpl<char> &Path) const { 1935 if (std::error_code EC = makeAbsolute(Path)) 1936 return EC; 1937 1938 llvm::SmallString<256> CanonicalPath = 1939 canonicalize(StringRef(Path.data(), Path.size())); 1940 if (CanonicalPath.empty()) 1941 return make_error_code(llvm::errc::invalid_argument); 1942 1943 Path.assign(CanonicalPath.begin(), CanonicalPath.end()); 1944 return {}; 1945 } 1946 1947 ErrorOr<RedirectingFileSystem::LookupResult> 1948 RedirectingFileSystem::lookupPath(StringRef Path) const { 1949 sys::path::const_iterator Start = sys::path::begin(Path); 1950 sys::path::const_iterator End = sys::path::end(Path); 1951 for (const auto &Root : Roots) { 1952 ErrorOr<RedirectingFileSystem::LookupResult> Result = 1953 lookupPathImpl(Start, End, Root.get()); 1954 if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) 1955 return Result; 1956 } 1957 return make_error_code(llvm::errc::no_such_file_or_directory); 1958 } 1959 1960 ErrorOr<RedirectingFileSystem::LookupResult> 1961 RedirectingFileSystem::lookupPathImpl( 1962 sys::path::const_iterator Start, sys::path::const_iterator End, 1963 RedirectingFileSystem::Entry *From) const { 1964 assert(!isTraversalComponent(*Start) && 1965 !isTraversalComponent(From->getName()) && 1966 "Paths should not contain traversal components"); 1967 1968 StringRef FromName = From->getName(); 1969 1970 // Forward the search to the next component in case this is an empty one. 1971 if (!FromName.empty()) { 1972 if (!pathComponentMatches(*Start, FromName)) 1973 return make_error_code(llvm::errc::no_such_file_or_directory); 1974 1975 ++Start; 1976 1977 if (Start == End) { 1978 // Match! 1979 return LookupResult(From, Start, End); 1980 } 1981 } 1982 1983 if (isa<RedirectingFileSystem::FileEntry>(From)) 1984 return make_error_code(llvm::errc::not_a_directory); 1985 1986 if (isa<RedirectingFileSystem::DirectoryRemapEntry>(From)) 1987 return LookupResult(From, Start, End); 1988 1989 auto *DE = cast<RedirectingFileSystem::DirectoryEntry>(From); 1990 for (const std::unique_ptr<RedirectingFileSystem::Entry> &DirEntry : 1991 llvm::make_range(DE->contents_begin(), DE->contents_end())) { 1992 ErrorOr<RedirectingFileSystem::LookupResult> Result = 1993 lookupPathImpl(Start, End, DirEntry.get()); 1994 if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) 1995 return Result; 1996 } 1997 1998 return make_error_code(llvm::errc::no_such_file_or_directory); 1999 } 2000 2001 static Status getRedirectedFileStatus(const Twine &OriginalPath, 2002 bool UseExternalNames, 2003 Status ExternalStatus) { 2004 Status S = ExternalStatus; 2005 if (!UseExternalNames) 2006 S = Status::copyWithNewName(S, OriginalPath); 2007 S.IsVFSMapped = true; 2008 return S; 2009 } 2010 2011 ErrorOr<Status> RedirectingFileSystem::status( 2012 const Twine &CanonicalPath, const Twine &OriginalPath, 2013 const RedirectingFileSystem::LookupResult &Result) { 2014 if (Optional<StringRef> ExtRedirect = Result.getExternalRedirect()) { 2015 SmallString<256> CanonicalRemappedPath((*ExtRedirect).str()); 2016 if (std::error_code EC = makeCanonical(CanonicalRemappedPath)) 2017 return EC; 2018 2019 ErrorOr<Status> S = ExternalFS->status(CanonicalRemappedPath); 2020 if (!S) 2021 return S; 2022 S = Status::copyWithNewName(*S, *ExtRedirect); 2023 auto *RE = cast<RedirectingFileSystem::RemapEntry>(Result.E); 2024 return getRedirectedFileStatus(OriginalPath, 2025 RE->useExternalName(UseExternalNames), *S); 2026 } 2027 2028 auto *DE = cast<RedirectingFileSystem::DirectoryEntry>(Result.E); 2029 return Status::copyWithNewName(DE->getStatus(), CanonicalPath); 2030 } 2031 2032 ErrorOr<Status> 2033 RedirectingFileSystem::getExternalStatus(const Twine &CanonicalPath, 2034 const Twine &OriginalPath) const { 2035 if (auto Result = ExternalFS->status(CanonicalPath)) { 2036 return Result.get().copyWithNewName(Result.get(), OriginalPath); 2037 } else { 2038 return Result.getError(); 2039 } 2040 } 2041 2042 ErrorOr<Status> RedirectingFileSystem::status(const Twine &OriginalPath) { 2043 SmallString<256> CanonicalPath; 2044 OriginalPath.toVector(CanonicalPath); 2045 2046 if (std::error_code EC = makeCanonical(CanonicalPath)) 2047 return EC; 2048 2049 ErrorOr<RedirectingFileSystem::LookupResult> Result = 2050 lookupPath(CanonicalPath); 2051 if (!Result) { 2052 if (shouldFallBackToExternalFS(Result.getError())) { 2053 return getExternalStatus(CanonicalPath, OriginalPath); 2054 } 2055 return Result.getError(); 2056 } 2057 2058 ErrorOr<Status> S = status(CanonicalPath, OriginalPath, *Result); 2059 if (!S && shouldFallBackToExternalFS(S.getError(), Result->E)) { 2060 return getExternalStatus(CanonicalPath, OriginalPath); 2061 } 2062 2063 return S; 2064 } 2065 2066 namespace { 2067 2068 /// Provide a file wrapper with an overriden status. 2069 class FileWithFixedStatus : public File { 2070 std::unique_ptr<File> InnerFile; 2071 Status S; 2072 2073 public: 2074 FileWithFixedStatus(std::unique_ptr<File> InnerFile, Status S) 2075 : InnerFile(std::move(InnerFile)), S(std::move(S)) {} 2076 2077 ErrorOr<Status> status() override { return S; } 2078 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> 2079 2080 getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, 2081 bool IsVolatile) override { 2082 return InnerFile->getBuffer(Name, FileSize, RequiresNullTerminator, 2083 IsVolatile); 2084 } 2085 2086 std::error_code close() override { return InnerFile->close(); } 2087 2088 void setPath(const Twine &Path) override { S = S.copyWithNewName(S, Path); } 2089 }; 2090 2091 } // namespace 2092 2093 ErrorOr<std::unique_ptr<File>> 2094 File::getWithPath(ErrorOr<std::unique_ptr<File>> Result, const Twine &P) { 2095 if (!Result) 2096 return Result; 2097 2098 ErrorOr<std::unique_ptr<File>> F = std::move(*Result); 2099 auto Name = F->get()->getName(); 2100 if (Name && Name.get() != P.str()) 2101 F->get()->setPath(P); 2102 return F; 2103 } 2104 2105 ErrorOr<std::unique_ptr<File>> 2106 RedirectingFileSystem::openFileForRead(const Twine &OriginalPath) { 2107 SmallString<256> CanonicalPath; 2108 OriginalPath.toVector(CanonicalPath); 2109 2110 if (std::error_code EC = makeCanonical(CanonicalPath)) 2111 return EC; 2112 2113 ErrorOr<RedirectingFileSystem::LookupResult> Result = 2114 lookupPath(CanonicalPath); 2115 if (!Result) { 2116 if (shouldFallBackToExternalFS(Result.getError())) 2117 return File::getWithPath(ExternalFS->openFileForRead(CanonicalPath), 2118 OriginalPath); 2119 2120 return Result.getError(); 2121 } 2122 2123 if (!Result->getExternalRedirect()) // FIXME: errc::not_a_file? 2124 return make_error_code(llvm::errc::invalid_argument); 2125 2126 StringRef ExtRedirect = *Result->getExternalRedirect(); 2127 SmallString<256> CanonicalRemappedPath(ExtRedirect.str()); 2128 if (std::error_code EC = makeCanonical(CanonicalRemappedPath)) 2129 return EC; 2130 2131 auto *RE = cast<RedirectingFileSystem::RemapEntry>(Result->E); 2132 2133 auto ExternalFile = File::getWithPath( 2134 ExternalFS->openFileForRead(CanonicalRemappedPath), ExtRedirect); 2135 if (!ExternalFile) { 2136 if (shouldFallBackToExternalFS(ExternalFile.getError(), Result->E)) 2137 return File::getWithPath(ExternalFS->openFileForRead(CanonicalPath), 2138 OriginalPath); 2139 return ExternalFile; 2140 } 2141 2142 auto ExternalStatus = (*ExternalFile)->status(); 2143 if (!ExternalStatus) 2144 return ExternalStatus.getError(); 2145 2146 // FIXME: Update the status with the name and VFSMapped. 2147 Status S = getRedirectedFileStatus( 2148 OriginalPath, RE->useExternalName(UseExternalNames), *ExternalStatus); 2149 return std::unique_ptr<File>( 2150 std::make_unique<FileWithFixedStatus>(std::move(*ExternalFile), S)); 2151 } 2152 2153 std::error_code 2154 RedirectingFileSystem::getRealPath(const Twine &Path_, 2155 SmallVectorImpl<char> &Output) const { 2156 SmallString<256> Path; 2157 Path_.toVector(Path); 2158 2159 if (std::error_code EC = makeCanonical(Path)) 2160 return EC; 2161 2162 ErrorOr<RedirectingFileSystem::LookupResult> Result = lookupPath(Path); 2163 if (!Result) { 2164 if (shouldFallBackToExternalFS(Result.getError())) 2165 return ExternalFS->getRealPath(Path, Output); 2166 return Result.getError(); 2167 } 2168 2169 // If we found FileEntry or DirectoryRemapEntry, look up the mapped 2170 // path in the external file system. 2171 if (auto ExtRedirect = Result->getExternalRedirect()) { 2172 auto P = ExternalFS->getRealPath(*ExtRedirect, Output); 2173 if (!P && shouldFallBackToExternalFS(P, Result->E)) { 2174 return ExternalFS->getRealPath(Path, Output); 2175 } 2176 return P; 2177 } 2178 2179 // If we found a DirectoryEntry, still fall back to ExternalFS if allowed, 2180 // because directories don't have a single external contents path. 2181 return shouldUseExternalFS() ? ExternalFS->getRealPath(Path, Output) 2182 : llvm::errc::invalid_argument; 2183 } 2184 2185 std::unique_ptr<FileSystem> 2186 vfs::getVFSFromYAML(std::unique_ptr<MemoryBuffer> Buffer, 2187 SourceMgr::DiagHandlerTy DiagHandler, 2188 StringRef YAMLFilePath, void *DiagContext, 2189 IntrusiveRefCntPtr<FileSystem> ExternalFS) { 2190 return RedirectingFileSystem::create(std::move(Buffer), DiagHandler, 2191 YAMLFilePath, DiagContext, 2192 std::move(ExternalFS)); 2193 } 2194 2195 static void getVFSEntries(RedirectingFileSystem::Entry *SrcE, 2196 SmallVectorImpl<StringRef> &Path, 2197 SmallVectorImpl<YAMLVFSEntry> &Entries) { 2198 auto Kind = SrcE->getKind(); 2199 if (Kind == RedirectingFileSystem::EK_Directory) { 2200 auto *DE = dyn_cast<RedirectingFileSystem::DirectoryEntry>(SrcE); 2201 assert(DE && "Must be a directory"); 2202 for (std::unique_ptr<RedirectingFileSystem::Entry> &SubEntry : 2203 llvm::make_range(DE->contents_begin(), DE->contents_end())) { 2204 Path.push_back(SubEntry->getName()); 2205 getVFSEntries(SubEntry.get(), Path, Entries); 2206 Path.pop_back(); 2207 } 2208 return; 2209 } 2210 2211 if (Kind == RedirectingFileSystem::EK_DirectoryRemap) { 2212 auto *DR = dyn_cast<RedirectingFileSystem::DirectoryRemapEntry>(SrcE); 2213 assert(DR && "Must be a directory remap"); 2214 SmallString<128> VPath; 2215 for (auto &Comp : Path) 2216 llvm::sys::path::append(VPath, Comp); 2217 Entries.push_back( 2218 YAMLVFSEntry(VPath.c_str(), DR->getExternalContentsPath())); 2219 return; 2220 } 2221 2222 assert(Kind == RedirectingFileSystem::EK_File && "Must be a EK_File"); 2223 auto *FE = dyn_cast<RedirectingFileSystem::FileEntry>(SrcE); 2224 assert(FE && "Must be a file"); 2225 SmallString<128> VPath; 2226 for (auto &Comp : Path) 2227 llvm::sys::path::append(VPath, Comp); 2228 Entries.push_back(YAMLVFSEntry(VPath.c_str(), FE->getExternalContentsPath())); 2229 } 2230 2231 void vfs::collectVFSFromYAML(std::unique_ptr<MemoryBuffer> Buffer, 2232 SourceMgr::DiagHandlerTy DiagHandler, 2233 StringRef YAMLFilePath, 2234 SmallVectorImpl<YAMLVFSEntry> &CollectedEntries, 2235 void *DiagContext, 2236 IntrusiveRefCntPtr<FileSystem> ExternalFS) { 2237 std::unique_ptr<RedirectingFileSystem> VFS = RedirectingFileSystem::create( 2238 std::move(Buffer), DiagHandler, YAMLFilePath, DiagContext, 2239 std::move(ExternalFS)); 2240 if (!VFS) 2241 return; 2242 ErrorOr<RedirectingFileSystem::LookupResult> RootResult = 2243 VFS->lookupPath("/"); 2244 if (!RootResult) 2245 return; 2246 SmallVector<StringRef, 8> Components; 2247 Components.push_back("/"); 2248 getVFSEntries(RootResult->E, Components, CollectedEntries); 2249 } 2250 2251 UniqueID vfs::getNextVirtualUniqueID() { 2252 static std::atomic<unsigned> UID; 2253 unsigned ID = ++UID; 2254 // The following assumes that uint64_t max will never collide with a real 2255 // dev_t value from the OS. 2256 return UniqueID(std::numeric_limits<uint64_t>::max(), ID); 2257 } 2258 2259 void YAMLVFSWriter::addEntry(StringRef VirtualPath, StringRef RealPath, 2260 bool IsDirectory) { 2261 assert(sys::path::is_absolute(VirtualPath) && "virtual path not absolute"); 2262 assert(sys::path::is_absolute(RealPath) && "real path not absolute"); 2263 assert(!pathHasTraversal(VirtualPath) && "path traversal is not supported"); 2264 Mappings.emplace_back(VirtualPath, RealPath, IsDirectory); 2265 } 2266 2267 void YAMLVFSWriter::addFileMapping(StringRef VirtualPath, StringRef RealPath) { 2268 addEntry(VirtualPath, RealPath, /*IsDirectory=*/false); 2269 } 2270 2271 void YAMLVFSWriter::addDirectoryMapping(StringRef VirtualPath, 2272 StringRef RealPath) { 2273 addEntry(VirtualPath, RealPath, /*IsDirectory=*/true); 2274 } 2275 2276 namespace { 2277 2278 class JSONWriter { 2279 llvm::raw_ostream &OS; 2280 SmallVector<StringRef, 16> DirStack; 2281 2282 unsigned getDirIndent() { return 4 * DirStack.size(); } 2283 unsigned getFileIndent() { return 4 * (DirStack.size() + 1); } 2284 bool containedIn(StringRef Parent, StringRef Path); 2285 StringRef containedPart(StringRef Parent, StringRef Path); 2286 void startDirectory(StringRef Path); 2287 void endDirectory(); 2288 void writeEntry(StringRef VPath, StringRef RPath); 2289 2290 public: 2291 JSONWriter(llvm::raw_ostream &OS) : OS(OS) {} 2292 2293 void write(ArrayRef<YAMLVFSEntry> Entries, Optional<bool> UseExternalNames, 2294 Optional<bool> IsCaseSensitive, Optional<bool> IsOverlayRelative, 2295 StringRef OverlayDir); 2296 }; 2297 2298 } // namespace 2299 2300 bool JSONWriter::containedIn(StringRef Parent, StringRef Path) { 2301 using namespace llvm::sys; 2302 2303 // Compare each path component. 2304 auto IParent = path::begin(Parent), EParent = path::end(Parent); 2305 for (auto IChild = path::begin(Path), EChild = path::end(Path); 2306 IParent != EParent && IChild != EChild; ++IParent, ++IChild) { 2307 if (*IParent != *IChild) 2308 return false; 2309 } 2310 // Have we exhausted the parent path? 2311 return IParent == EParent; 2312 } 2313 2314 StringRef JSONWriter::containedPart(StringRef Parent, StringRef Path) { 2315 assert(!Parent.empty()); 2316 assert(containedIn(Parent, Path)); 2317 return Path.slice(Parent.size() + 1, StringRef::npos); 2318 } 2319 2320 void JSONWriter::startDirectory(StringRef Path) { 2321 StringRef Name = 2322 DirStack.empty() ? Path : containedPart(DirStack.back(), Path); 2323 DirStack.push_back(Path); 2324 unsigned Indent = getDirIndent(); 2325 OS.indent(Indent) << "{\n"; 2326 OS.indent(Indent + 2) << "'type': 'directory',\n"; 2327 OS.indent(Indent + 2) << "'name': \"" << llvm::yaml::escape(Name) << "\",\n"; 2328 OS.indent(Indent + 2) << "'contents': [\n"; 2329 } 2330 2331 void JSONWriter::endDirectory() { 2332 unsigned Indent = getDirIndent(); 2333 OS.indent(Indent + 2) << "]\n"; 2334 OS.indent(Indent) << "}"; 2335 2336 DirStack.pop_back(); 2337 } 2338 2339 void JSONWriter::writeEntry(StringRef VPath, StringRef RPath) { 2340 unsigned Indent = getFileIndent(); 2341 OS.indent(Indent) << "{\n"; 2342 OS.indent(Indent + 2) << "'type': 'file',\n"; 2343 OS.indent(Indent + 2) << "'name': \"" << llvm::yaml::escape(VPath) << "\",\n"; 2344 OS.indent(Indent + 2) << "'external-contents': \"" 2345 << llvm::yaml::escape(RPath) << "\"\n"; 2346 OS.indent(Indent) << "}"; 2347 } 2348 2349 void JSONWriter::write(ArrayRef<YAMLVFSEntry> Entries, 2350 Optional<bool> UseExternalNames, 2351 Optional<bool> IsCaseSensitive, 2352 Optional<bool> IsOverlayRelative, 2353 StringRef OverlayDir) { 2354 using namespace llvm::sys; 2355 2356 OS << "{\n" 2357 " 'version': 0,\n"; 2358 if (IsCaseSensitive.hasValue()) 2359 OS << " 'case-sensitive': '" 2360 << (IsCaseSensitive.getValue() ? "true" : "false") << "',\n"; 2361 if (UseExternalNames.hasValue()) 2362 OS << " 'use-external-names': '" 2363 << (UseExternalNames.getValue() ? "true" : "false") << "',\n"; 2364 bool UseOverlayRelative = false; 2365 if (IsOverlayRelative.hasValue()) { 2366 UseOverlayRelative = IsOverlayRelative.getValue(); 2367 OS << " 'overlay-relative': '" << (UseOverlayRelative ? "true" : "false") 2368 << "',\n"; 2369 } 2370 OS << " 'roots': [\n"; 2371 2372 if (!Entries.empty()) { 2373 const YAMLVFSEntry &Entry = Entries.front(); 2374 2375 startDirectory( 2376 Entry.IsDirectory ? Entry.VPath : path::parent_path(Entry.VPath) 2377 ); 2378 2379 StringRef RPath = Entry.RPath; 2380 if (UseOverlayRelative) { 2381 unsigned OverlayDirLen = OverlayDir.size(); 2382 assert(RPath.substr(0, OverlayDirLen) == OverlayDir && 2383 "Overlay dir must be contained in RPath"); 2384 RPath = RPath.slice(OverlayDirLen, RPath.size()); 2385 } 2386 2387 bool IsCurrentDirEmpty = true; 2388 if (!Entry.IsDirectory) { 2389 writeEntry(path::filename(Entry.VPath), RPath); 2390 IsCurrentDirEmpty = false; 2391 } 2392 2393 for (const auto &Entry : Entries.slice(1)) { 2394 StringRef Dir = 2395 Entry.IsDirectory ? Entry.VPath : path::parent_path(Entry.VPath); 2396 if (Dir == DirStack.back()) { 2397 if (!IsCurrentDirEmpty) { 2398 OS << ",\n"; 2399 } 2400 } else { 2401 bool IsDirPoppedFromStack = false; 2402 while (!DirStack.empty() && !containedIn(DirStack.back(), Dir)) { 2403 OS << "\n"; 2404 endDirectory(); 2405 IsDirPoppedFromStack = true; 2406 } 2407 if (IsDirPoppedFromStack || !IsCurrentDirEmpty) { 2408 OS << ",\n"; 2409 } 2410 startDirectory(Dir); 2411 IsCurrentDirEmpty = true; 2412 } 2413 StringRef RPath = Entry.RPath; 2414 if (UseOverlayRelative) { 2415 unsigned OverlayDirLen = OverlayDir.size(); 2416 assert(RPath.substr(0, OverlayDirLen) == OverlayDir && 2417 "Overlay dir must be contained in RPath"); 2418 RPath = RPath.slice(OverlayDirLen, RPath.size()); 2419 } 2420 if (!Entry.IsDirectory) { 2421 writeEntry(path::filename(Entry.VPath), RPath); 2422 IsCurrentDirEmpty = false; 2423 } 2424 } 2425 2426 while (!DirStack.empty()) { 2427 OS << "\n"; 2428 endDirectory(); 2429 } 2430 OS << "\n"; 2431 } 2432 2433 OS << " ]\n" 2434 << "}\n"; 2435 } 2436 2437 void YAMLVFSWriter::write(llvm::raw_ostream &OS) { 2438 llvm::sort(Mappings, [](const YAMLVFSEntry &LHS, const YAMLVFSEntry &RHS) { 2439 return LHS.VPath < RHS.VPath; 2440 }); 2441 2442 JSONWriter(OS).write(Mappings, UseExternalNames, IsCaseSensitive, 2443 IsOverlayRelative, OverlayDir); 2444 } 2445 2446 vfs::recursive_directory_iterator::recursive_directory_iterator( 2447 FileSystem &FS_, const Twine &Path, std::error_code &EC) 2448 : FS(&FS_) { 2449 directory_iterator I = FS->dir_begin(Path, EC); 2450 if (I != directory_iterator()) { 2451 State = std::make_shared<detail::RecDirIterState>(); 2452 State->Stack.push(I); 2453 } 2454 } 2455 2456 vfs::recursive_directory_iterator & 2457 recursive_directory_iterator::increment(std::error_code &EC) { 2458 assert(FS && State && !State->Stack.empty() && "incrementing past end"); 2459 assert(!State->Stack.top()->path().empty() && "non-canonical end iterator"); 2460 vfs::directory_iterator End; 2461 2462 if (State->HasNoPushRequest) 2463 State->HasNoPushRequest = false; 2464 else { 2465 if (State->Stack.top()->type() == sys::fs::file_type::directory_file) { 2466 vfs::directory_iterator I = FS->dir_begin(State->Stack.top()->path(), EC); 2467 if (I != End) { 2468 State->Stack.push(I); 2469 return *this; 2470 } 2471 } 2472 } 2473 2474 while (!State->Stack.empty() && State->Stack.top().increment(EC) == End) 2475 State->Stack.pop(); 2476 2477 if (State->Stack.empty()) 2478 State.reset(); // end iterator 2479 2480 return *this; 2481 } 2482