1//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines some helpful functions for dealing with the possibility of 10// Unix signals occurring while your program is running. 11// 12//===----------------------------------------------------------------------===// 13// 14// This file is extremely careful to only do signal-safe things while in a 15// signal handler. In particular, memory allocation and acquiring a mutex 16// while in a signal handler should never occur. ManagedStatic isn't usable from 17// a signal handler for 2 reasons: 18// 19// 1. Creating a new one allocates. 20// 2. The signal handler could fire while llvm_shutdown is being processed, in 21// which case the ManagedStatic is in an unknown state because it could 22// already have been destroyed, or be in the process of being destroyed. 23// 24// Modifying the behavior of the signal handlers (such as registering new ones) 25// can acquire a mutex, but all this guarantees is that the signal handler 26// behavior is only modified by one thread at a time. A signal handler can still 27// fire while this occurs! 28// 29// Adding work to a signal handler requires lock-freedom (and assume atomics are 30// always lock-free) because the signal handler could fire while new work is 31// being added. 32// 33//===----------------------------------------------------------------------===// 34 35#include "Unix.h" 36#include "llvm/ADT/STLExtras.h" 37#include "llvm/Config/config.h" 38#include "llvm/Demangle/Demangle.h" 39#include "llvm/Support/ExitCodes.h" 40#include "llvm/Support/FileSystem.h" 41#include "llvm/Support/FileUtilities.h" 42#include "llvm/Support/Format.h" 43#include "llvm/Support/MemoryBuffer.h" 44#include "llvm/Support/Mutex.h" 45#include "llvm/Support/Program.h" 46#include "llvm/Support/SaveAndRestore.h" 47#include "llvm/Support/raw_ostream.h" 48#include <algorithm> 49#include <string> 50#ifdef HAVE_BACKTRACE 51# include BACKTRACE_HEADER // For backtrace(). 52#endif 53#if HAVE_SIGNAL_H 54#include <signal.h> 55#endif 56#if HAVE_SYS_STAT_H 57#include <sys/stat.h> 58#endif 59#if HAVE_DLFCN_H 60#include <dlfcn.h> 61#endif 62#if HAVE_MACH_MACH_H 63#include <mach/mach.h> 64#endif 65#if HAVE_LINK_H 66#include <link.h> 67#endif 68#ifdef HAVE__UNWIND_BACKTRACE 69// FIXME: We should be able to use <unwind.h> for any target that has an 70// _Unwind_Backtrace function, but on FreeBSD the configure test passes 71// despite the function not existing, and on Android, <unwind.h> conflicts 72// with <link.h>. 73#ifdef __GLIBC__ 74#include <unwind.h> 75#else 76#undef HAVE__UNWIND_BACKTRACE 77#endif 78#endif 79 80using namespace llvm; 81 82static RETSIGTYPE SignalHandler(int Sig); // defined below. 83static RETSIGTYPE InfoSignalHandler(int Sig); // defined below. 84 85using SignalHandlerFunctionType = void (*)(); 86/// The function to call if ctrl-c is pressed. 87static std::atomic<SignalHandlerFunctionType> InterruptFunction = 88 ATOMIC_VAR_INIT(nullptr); 89static std::atomic<SignalHandlerFunctionType> InfoSignalFunction = 90 ATOMIC_VAR_INIT(nullptr); 91/// The function to call on SIGPIPE (one-time use only). 92static std::atomic<SignalHandlerFunctionType> OneShotPipeSignalFunction = 93 ATOMIC_VAR_INIT(nullptr); 94 95namespace { 96/// Signal-safe removal of files. 97/// Inserting and erasing from the list isn't signal-safe, but removal of files 98/// themselves is signal-safe. Memory is freed when the head is freed, deletion 99/// is therefore not signal-safe either. 100class FileToRemoveList { 101 std::atomic<char *> Filename = ATOMIC_VAR_INIT(nullptr); 102 std::atomic<FileToRemoveList *> Next = ATOMIC_VAR_INIT(nullptr); 103 104 FileToRemoveList() = default; 105 // Not signal-safe. 106 FileToRemoveList(const std::string &str) : Filename(strdup(str.c_str())) {} 107 108public: 109 // Not signal-safe. 110 ~FileToRemoveList() { 111 if (FileToRemoveList *N = Next.exchange(nullptr)) 112 delete N; 113 if (char *F = Filename.exchange(nullptr)) 114 free(F); 115 } 116 117 // Not signal-safe. 118 static void insert(std::atomic<FileToRemoveList *> &Head, 119 const std::string &Filename) { 120 // Insert the new file at the end of the list. 121 FileToRemoveList *NewHead = new FileToRemoveList(Filename); 122 std::atomic<FileToRemoveList *> *InsertionPoint = &Head; 123 FileToRemoveList *OldHead = nullptr; 124 while (!InsertionPoint->compare_exchange_strong(OldHead, NewHead)) { 125 InsertionPoint = &OldHead->Next; 126 OldHead = nullptr; 127 } 128 } 129 130 // Not signal-safe. 131 static void erase(std::atomic<FileToRemoveList *> &Head, 132 const std::string &Filename) { 133 // Use a lock to avoid concurrent erase: the comparison would access 134 // free'd memory. 135 static ManagedStatic<sys::SmartMutex<true>> Lock; 136 sys::SmartScopedLock<true> Writer(*Lock); 137 138 for (FileToRemoveList *Current = Head.load(); Current; 139 Current = Current->Next.load()) { 140 if (char *OldFilename = Current->Filename.load()) { 141 if (OldFilename != Filename) 142 continue; 143 // Leave an empty filename. 144 OldFilename = Current->Filename.exchange(nullptr); 145 // The filename might have become null between the time we 146 // compared it and we exchanged it. 147 if (OldFilename) 148 free(OldFilename); 149 } 150 } 151 } 152 153 // Signal-safe. 154 static void removeAllFiles(std::atomic<FileToRemoveList *> &Head) { 155 // If cleanup were to occur while we're removing files we'd have a bad time. 156 // Make sure we're OK by preventing cleanup from doing anything while we're 157 // removing files. If cleanup races with us and we win we'll have a leak, 158 // but we won't crash. 159 FileToRemoveList *OldHead = Head.exchange(nullptr); 160 161 for (FileToRemoveList *currentFile = OldHead; currentFile; 162 currentFile = currentFile->Next.load()) { 163 // If erasing was occuring while we're trying to remove files we'd look 164 // at free'd data. Take away the path and put it back when done. 165 if (char *path = currentFile->Filename.exchange(nullptr)) { 166 // Get the status so we can determine if it's a file or directory. If we 167 // can't stat the file, ignore it. 168 struct stat buf; 169 if (stat(path, &buf) != 0) 170 continue; 171 172 // If this is not a regular file, ignore it. We want to prevent removal 173 // of special files like /dev/null, even if the compiler is being run 174 // with the super-user permissions. 175 if (!S_ISREG(buf.st_mode)) 176 continue; 177 178 // Otherwise, remove the file. We ignore any errors here as there is 179 // nothing else we can do. 180 unlink(path); 181 182 // We're done removing the file, erasing can safely proceed. 183 currentFile->Filename.exchange(path); 184 } 185 } 186 187 // We're done removing files, cleanup can safely proceed. 188 Head.exchange(OldHead); 189 } 190}; 191static std::atomic<FileToRemoveList *> FilesToRemove = ATOMIC_VAR_INIT(nullptr); 192 193/// Clean up the list in a signal-friendly manner. 194/// Recall that signals can fire during llvm_shutdown. If this occurs we should 195/// either clean something up or nothing at all, but we shouldn't crash! 196struct FilesToRemoveCleanup { 197 // Not signal-safe. 198 ~FilesToRemoveCleanup() { 199 FileToRemoveList *Head = FilesToRemove.exchange(nullptr); 200 if (Head) 201 delete Head; 202 } 203}; 204} // namespace 205 206static StringRef Argv0; 207 208/// Signals that represent requested termination. There's no bug or failure, or 209/// if there is, it's not our direct responsibility. For whatever reason, our 210/// continued execution is no longer desirable. 211static const int IntSigs[] = { 212 SIGHUP, SIGINT, SIGTERM, SIGUSR2 213}; 214 215/// Signals that represent that we have a bug, and our prompt termination has 216/// been ordered. 217static const int KillSigs[] = { 218 SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGQUIT 219#ifdef SIGSYS 220 , SIGSYS 221#endif 222#ifdef SIGXCPU 223 , SIGXCPU 224#endif 225#ifdef SIGXFSZ 226 , SIGXFSZ 227#endif 228#ifdef SIGEMT 229 , SIGEMT 230#endif 231}; 232 233/// Signals that represent requests for status. 234static const int InfoSigs[] = { 235 SIGUSR1 236#ifdef SIGINFO 237 , SIGINFO 238#endif 239}; 240 241static const size_t NumSigs = 242 array_lengthof(IntSigs) + array_lengthof(KillSigs) + 243 array_lengthof(InfoSigs) + 1 /* SIGPIPE */; 244 245 246static std::atomic<unsigned> NumRegisteredSignals = ATOMIC_VAR_INIT(0); 247static struct { 248 struct sigaction SA; 249 int SigNo; 250} RegisteredSignalInfo[NumSigs]; 251 252#if defined(HAVE_SIGALTSTACK) 253// Hold onto both the old and new alternate signal stack so that it's not 254// reported as a leak. We don't make any attempt to remove our alt signal 255// stack if we remove our signal handlers; that can't be done reliably if 256// someone else is also trying to do the same thing. 257static stack_t OldAltStack; 258static void* NewAltStackPointer; 259 260static void CreateSigAltStack() { 261 const size_t AltStackSize = MINSIGSTKSZ + 64 * 1024; 262 263 // If we're executing on the alternate stack, or we already have an alternate 264 // signal stack that we're happy with, there's nothing for us to do. Don't 265 // reduce the size, some other part of the process might need a larger stack 266 // than we do. 267 if (sigaltstack(nullptr, &OldAltStack) != 0 || 268 OldAltStack.ss_flags & SS_ONSTACK || 269 (OldAltStack.ss_sp && OldAltStack.ss_size >= AltStackSize)) 270 return; 271 272 stack_t AltStack = {}; 273 AltStack.ss_sp = static_cast<char *>(safe_malloc(AltStackSize)); 274 NewAltStackPointer = AltStack.ss_sp; // Save to avoid reporting a leak. 275 AltStack.ss_size = AltStackSize; 276 if (sigaltstack(&AltStack, &OldAltStack) != 0) 277 free(AltStack.ss_sp); 278} 279#else 280static void CreateSigAltStack() {} 281#endif 282 283static void RegisterHandlers() { // Not signal-safe. 284 // The mutex prevents other threads from registering handlers while we're 285 // doing it. We also have to protect the handlers and their count because 286 // a signal handler could fire while we're registeting handlers. 287 static ManagedStatic<sys::SmartMutex<true>> SignalHandlerRegistrationMutex; 288 sys::SmartScopedLock<true> Guard(*SignalHandlerRegistrationMutex); 289 290 // If the handlers are already registered, we're done. 291 if (NumRegisteredSignals.load() != 0) 292 return; 293 294 // Create an alternate stack for signal handling. This is necessary for us to 295 // be able to reliably handle signals due to stack overflow. 296 CreateSigAltStack(); 297 298 enum class SignalKind { IsKill, IsInfo }; 299 auto registerHandler = [&](int Signal, SignalKind Kind) { 300 unsigned Index = NumRegisteredSignals.load(); 301 assert(Index < array_lengthof(RegisteredSignalInfo) && 302 "Out of space for signal handlers!"); 303 304 struct sigaction NewHandler; 305 306 switch (Kind) { 307 case SignalKind::IsKill: 308 NewHandler.sa_handler = SignalHandler; 309 NewHandler.sa_flags = SA_NODEFER | SA_RESETHAND | SA_ONSTACK; 310 break; 311 case SignalKind::IsInfo: 312 NewHandler.sa_handler = InfoSignalHandler; 313 NewHandler.sa_flags = SA_ONSTACK; 314 break; 315 } 316 sigemptyset(&NewHandler.sa_mask); 317 318 // Install the new handler, save the old one in RegisteredSignalInfo. 319 sigaction(Signal, &NewHandler, &RegisteredSignalInfo[Index].SA); 320 RegisteredSignalInfo[Index].SigNo = Signal; 321 ++NumRegisteredSignals; 322 }; 323 324 for (auto S : IntSigs) 325 registerHandler(S, SignalKind::IsKill); 326 for (auto S : KillSigs) 327 registerHandler(S, SignalKind::IsKill); 328 if (OneShotPipeSignalFunction) 329 registerHandler(SIGPIPE, SignalKind::IsKill); 330 for (auto S : InfoSigs) 331 registerHandler(S, SignalKind::IsInfo); 332} 333 334void sys::unregisterHandlers() { 335 // Restore all of the signal handlers to how they were before we showed up. 336 for (unsigned i = 0, e = NumRegisteredSignals.load(); i != e; ++i) { 337 sigaction(RegisteredSignalInfo[i].SigNo, 338 &RegisteredSignalInfo[i].SA, nullptr); 339 --NumRegisteredSignals; 340 } 341} 342 343/// Process the FilesToRemove list. 344static void RemoveFilesToRemove() { 345 FileToRemoveList::removeAllFiles(FilesToRemove); 346} 347 348void sys::CleanupOnSignal(uintptr_t Context) { 349 int Sig = (int)Context; 350 351 if (llvm::is_contained(InfoSigs, Sig)) { 352 InfoSignalHandler(Sig); 353 return; 354 } 355 356 RemoveFilesToRemove(); 357 358 if (llvm::is_contained(IntSigs, Sig) || Sig == SIGPIPE) 359 return; 360 361 llvm::sys::RunSignalHandlers(); 362} 363 364// The signal handler that runs. 365static RETSIGTYPE SignalHandler(int Sig) { 366 // Restore the signal behavior to default, so that the program actually 367 // crashes when we return and the signal reissues. This also ensures that if 368 // we crash in our signal handler that the program will terminate immediately 369 // instead of recursing in the signal handler. 370 sys::unregisterHandlers(); 371 372 // Unmask all potentially blocked kill signals. 373 sigset_t SigMask; 374 sigfillset(&SigMask); 375 sigprocmask(SIG_UNBLOCK, &SigMask, nullptr); 376 377 { 378 RemoveFilesToRemove(); 379 380 if (Sig == SIGPIPE) 381 if (auto OldOneShotPipeFunction = 382 OneShotPipeSignalFunction.exchange(nullptr)) 383 return OldOneShotPipeFunction(); 384 385 bool IsIntSig = llvm::is_contained(IntSigs, Sig); 386 if (IsIntSig) 387 if (auto OldInterruptFunction = InterruptFunction.exchange(nullptr)) 388 return OldInterruptFunction(); 389 390 if (Sig == SIGPIPE || IsIntSig) { 391 raise(Sig); // Execute the default handler. 392 return; 393 } 394 } 395 396 // Otherwise if it is a fault (like SEGV) run any handler. 397 llvm::sys::RunSignalHandlers(); 398 399#ifdef __s390__ 400 // On S/390, certain signals are delivered with PSW Address pointing to 401 // *after* the faulting instruction. Simply returning from the signal 402 // handler would continue execution after that point, instead of 403 // re-raising the signal. Raise the signal manually in those cases. 404 if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP) 405 raise(Sig); 406#endif 407} 408 409static RETSIGTYPE InfoSignalHandler(int Sig) { 410 SaveAndRestore<int> SaveErrnoDuringASignalHandler(errno); 411 if (SignalHandlerFunctionType CurrentInfoFunction = InfoSignalFunction) 412 CurrentInfoFunction(); 413} 414 415void llvm::sys::RunInterruptHandlers() { 416 RemoveFilesToRemove(); 417} 418 419void llvm::sys::SetInterruptFunction(void (*IF)()) { 420 InterruptFunction.exchange(IF); 421 RegisterHandlers(); 422} 423 424void llvm::sys::SetInfoSignalFunction(void (*Handler)()) { 425 InfoSignalFunction.exchange(Handler); 426 RegisterHandlers(); 427} 428 429void llvm::sys::SetOneShotPipeSignalFunction(void (*Handler)()) { 430 OneShotPipeSignalFunction.exchange(Handler); 431 RegisterHandlers(); 432} 433 434void llvm::sys::DefaultOneShotPipeSignalHandler() { 435 // Send a special return code that drivers can check for, from sysexits.h. 436 exit(EX_IOERR); 437} 438 439// The public API 440bool llvm::sys::RemoveFileOnSignal(StringRef Filename, 441 std::string* ErrMsg) { 442 // Ensure that cleanup will occur as soon as one file is added. 443 static ManagedStatic<FilesToRemoveCleanup> FilesToRemoveCleanup; 444 *FilesToRemoveCleanup; 445 FileToRemoveList::insert(FilesToRemove, Filename.str()); 446 RegisterHandlers(); 447 return false; 448} 449 450// The public API 451void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) { 452 FileToRemoveList::erase(FilesToRemove, Filename.str()); 453} 454 455/// Add a function to be called when a signal is delivered to the process. The 456/// handler can have a cookie passed to it to identify what instance of the 457/// handler it is. 458void llvm::sys::AddSignalHandler(sys::SignalHandlerCallback FnPtr, 459 void *Cookie) { // Signal-safe. 460 insertSignalHandler(FnPtr, Cookie); 461 RegisterHandlers(); 462} 463 464#if defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && HAVE_LINK_H && \ 465 (defined(__linux__) || defined(__FreeBSD__) || \ 466 defined(__FreeBSD_kernel__) || defined(__NetBSD__)) 467struct DlIteratePhdrData { 468 void **StackTrace; 469 int depth; 470 bool first; 471 const char **modules; 472 intptr_t *offsets; 473 const char *main_exec_name; 474}; 475 476static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) { 477 DlIteratePhdrData *data = (DlIteratePhdrData*)arg; 478 const char *name = data->first ? data->main_exec_name : info->dlpi_name; 479 data->first = false; 480 for (int i = 0; i < info->dlpi_phnum; i++) { 481 const auto *phdr = &info->dlpi_phdr[i]; 482 if (phdr->p_type != PT_LOAD) 483 continue; 484 intptr_t beg = info->dlpi_addr + phdr->p_vaddr; 485 intptr_t end = beg + phdr->p_memsz; 486 for (int j = 0; j < data->depth; j++) { 487 if (data->modules[j]) 488 continue; 489 intptr_t addr = (intptr_t)data->StackTrace[j]; 490 if (beg <= addr && addr < end) { 491 data->modules[j] = name; 492 data->offsets[j] = addr - info->dlpi_addr; 493 } 494 } 495 } 496 return 0; 497} 498 499/// If this is an ELF platform, we can find all loaded modules and their virtual 500/// addresses with dl_iterate_phdr. 501static bool findModulesAndOffsets(void **StackTrace, int Depth, 502 const char **Modules, intptr_t *Offsets, 503 const char *MainExecutableName, 504 StringSaver &StrPool) { 505 DlIteratePhdrData data = {StackTrace, Depth, true, 506 Modules, Offsets, MainExecutableName}; 507 dl_iterate_phdr(dl_iterate_phdr_cb, &data); 508 return true; 509} 510#else 511/// This platform does not have dl_iterate_phdr, so we do not yet know how to 512/// find all loaded DSOs. 513static bool findModulesAndOffsets(void **StackTrace, int Depth, 514 const char **Modules, intptr_t *Offsets, 515 const char *MainExecutableName, 516 StringSaver &StrPool) { 517 return false; 518} 519#endif // defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && ... 520 521#if ENABLE_BACKTRACES && defined(HAVE__UNWIND_BACKTRACE) 522static int unwindBacktrace(void **StackTrace, int MaxEntries) { 523 if (MaxEntries < 0) 524 return 0; 525 526 // Skip the first frame ('unwindBacktrace' itself). 527 int Entries = -1; 528 529 auto HandleFrame = [&](_Unwind_Context *Context) -> _Unwind_Reason_Code { 530 // Apparently we need to detect reaching the end of the stack ourselves. 531 void *IP = (void *)_Unwind_GetIP(Context); 532 if (!IP) 533 return _URC_END_OF_STACK; 534 535 assert(Entries < MaxEntries && "recursively called after END_OF_STACK?"); 536 if (Entries >= 0) 537 StackTrace[Entries] = IP; 538 539 if (++Entries == MaxEntries) 540 return _URC_END_OF_STACK; 541 return _URC_NO_REASON; 542 }; 543 544 _Unwind_Backtrace( 545 [](_Unwind_Context *Context, void *Handler) { 546 return (*static_cast<decltype(HandleFrame) *>(Handler))(Context); 547 }, 548 static_cast<void *>(&HandleFrame)); 549 return std::max(Entries, 0); 550} 551#endif 552 553// In the case of a program crash or fault, print out a stack trace so that the 554// user has an indication of why and where we died. 555// 556// On glibc systems we have the 'backtrace' function, which works nicely, but 557// doesn't demangle symbols. 558void llvm::sys::PrintStackTrace(raw_ostream &OS, int Depth) { 559#if ENABLE_BACKTRACES 560 static void *StackTrace[256]; 561 int depth = 0; 562#if defined(HAVE_BACKTRACE) 563 // Use backtrace() to output a backtrace on Linux systems with glibc. 564 if (!depth) 565 depth = backtrace(StackTrace, static_cast<int>(array_lengthof(StackTrace))); 566#endif 567#if defined(HAVE__UNWIND_BACKTRACE) 568 // Try _Unwind_Backtrace() if backtrace() failed. 569 if (!depth) 570 depth = unwindBacktrace(StackTrace, 571 static_cast<int>(array_lengthof(StackTrace))); 572#endif 573 if (!depth) 574 return; 575 // If "Depth" is not provided by the caller, use the return value of 576 // backtrace() for printing a symbolized stack trace. 577 if (!Depth) 578 Depth = depth; 579 if (printSymbolizedStackTrace(Argv0, StackTrace, Depth, OS)) 580 return; 581 OS << "Stack dump without symbol names (ensure you have llvm-symbolizer in " 582 "your PATH or set the environment var `LLVM_SYMBOLIZER_PATH` to point " 583 "to it):\n"; 584#if HAVE_DLFCN_H && HAVE_DLADDR 585 int width = 0; 586 for (int i = 0; i < depth; ++i) { 587 Dl_info dlinfo; 588 dladdr(StackTrace[i], &dlinfo); 589 const char* name = strrchr(dlinfo.dli_fname, '/'); 590 591 int nwidth; 592 if (!name) nwidth = strlen(dlinfo.dli_fname); 593 else nwidth = strlen(name) - 1; 594 595 if (nwidth > width) width = nwidth; 596 } 597 598 for (int i = 0; i < depth; ++i) { 599 Dl_info dlinfo; 600 dladdr(StackTrace[i], &dlinfo); 601 602 OS << format("%-2d", i); 603 604 const char* name = strrchr(dlinfo.dli_fname, '/'); 605 if (!name) OS << format(" %-*s", width, dlinfo.dli_fname); 606 else OS << format(" %-*s", width, name+1); 607 608 OS << format(" %#0*lx", (int)(sizeof(void*) * 2) + 2, 609 (unsigned long)StackTrace[i]); 610 611 if (dlinfo.dli_sname != nullptr) { 612 OS << ' '; 613 int res; 614 char* d = itaniumDemangle(dlinfo.dli_sname, nullptr, nullptr, &res); 615 if (!d) OS << dlinfo.dli_sname; 616 else OS << d; 617 free(d); 618 619 OS << format(" + %tu", (static_cast<const char*>(StackTrace[i])- 620 static_cast<const char*>(dlinfo.dli_saddr))); 621 } 622 OS << '\n'; 623 } 624#elif defined(HAVE_BACKTRACE) 625 backtrace_symbols_fd(StackTrace, Depth, STDERR_FILENO); 626#endif 627#endif 628} 629 630static void PrintStackTraceSignalHandler(void *) { 631 sys::PrintStackTrace(llvm::errs()); 632} 633 634void llvm::sys::DisableSystemDialogsOnCrash() {} 635 636/// When an error signal (such as SIGABRT or SIGSEGV) is delivered to the 637/// process, print a stack trace and then exit. 638void llvm::sys::PrintStackTraceOnErrorSignal(StringRef Argv0, 639 bool DisableCrashReporting) { 640 ::Argv0 = Argv0; 641 642 AddSignalHandler(PrintStackTraceSignalHandler, nullptr); 643 644#if defined(__APPLE__) && ENABLE_CRASH_OVERRIDES 645 // Environment variable to disable any kind of crash dialog. 646 if (DisableCrashReporting || getenv("LLVM_DISABLE_CRASH_REPORT")) { 647 mach_port_t self = mach_task_self(); 648 649 exception_mask_t mask = EXC_MASK_CRASH; 650 651 kern_return_t ret = task_set_exception_ports(self, 652 mask, 653 MACH_PORT_NULL, 654 EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES, 655 THREAD_STATE_NONE); 656 (void)ret; 657 } 658#endif 659} 660