xref: /freebsd/contrib/llvm-project/llvm/lib/Support/ThreadPool.cpp (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 //==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a crude C++11 based thread pool.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/ThreadPool.h"
14 
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/Support/Threading.h"
17 #include "llvm/Support/raw_ostream.h"
18 
19 using namespace llvm;
20 
21 #if LLVM_ENABLE_THREADS
22 
23 // Default to hardware_concurrency
24 ThreadPool::ThreadPool() : ThreadPool(hardware_concurrency()) {}
25 
26 ThreadPool::ThreadPool(unsigned ThreadCount)
27     : ActiveThreads(0), EnableFlag(true) {
28   // Create ThreadCount threads that will loop forever, wait on QueueCondition
29   // for tasks to be queued or the Pool to be destroyed.
30   Threads.reserve(ThreadCount);
31   for (unsigned ThreadID = 0; ThreadID < ThreadCount; ++ThreadID) {
32     Threads.emplace_back([&] {
33       while (true) {
34         PackagedTaskTy Task;
35         {
36           std::unique_lock<std::mutex> LockGuard(QueueLock);
37           // Wait for tasks to be pushed in the queue
38           QueueCondition.wait(LockGuard,
39                               [&] { return !EnableFlag || !Tasks.empty(); });
40           // Exit condition
41           if (!EnableFlag && Tasks.empty())
42             return;
43           // Yeah, we have a task, grab it and release the lock on the queue
44 
45           // We first need to signal that we are active before popping the queue
46           // in order for wait() to properly detect that even if the queue is
47           // empty, there is still a task in flight.
48           {
49             std::unique_lock<std::mutex> LockGuard(CompletionLock);
50             ++ActiveThreads;
51           }
52           Task = std::move(Tasks.front());
53           Tasks.pop();
54         }
55         // Run the task we just grabbed
56         Task();
57 
58         {
59           // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait()
60           std::unique_lock<std::mutex> LockGuard(CompletionLock);
61           --ActiveThreads;
62         }
63 
64         // Notify task completion, in case someone waits on ThreadPool::wait()
65         CompletionCondition.notify_all();
66       }
67     });
68   }
69 }
70 
71 void ThreadPool::wait() {
72   // Wait for all threads to complete and the queue to be empty
73   std::unique_lock<std::mutex> LockGuard(CompletionLock);
74   // The order of the checks for ActiveThreads and Tasks.empty() matters because
75   // any active threads might be modifying the Tasks queue, and this would be a
76   // race.
77   CompletionCondition.wait(LockGuard,
78                            [&] { return !ActiveThreads && Tasks.empty(); });
79 }
80 
81 std::shared_future<void> ThreadPool::asyncImpl(TaskTy Task) {
82   /// Wrap the Task in a packaged_task to return a future object.
83   PackagedTaskTy PackagedTask(std::move(Task));
84   auto Future = PackagedTask.get_future();
85   {
86     // Lock the queue and push the new task
87     std::unique_lock<std::mutex> LockGuard(QueueLock);
88 
89     // Don't allow enqueueing after disabling the pool
90     assert(EnableFlag && "Queuing a thread during ThreadPool destruction");
91 
92     Tasks.push(std::move(PackagedTask));
93   }
94   QueueCondition.notify_one();
95   return Future.share();
96 }
97 
98 // The destructor joins all threads, waiting for completion.
99 ThreadPool::~ThreadPool() {
100   {
101     std::unique_lock<std::mutex> LockGuard(QueueLock);
102     EnableFlag = false;
103   }
104   QueueCondition.notify_all();
105   for (auto &Worker : Threads)
106     Worker.join();
107 }
108 
109 #else // LLVM_ENABLE_THREADS Disabled
110 
111 ThreadPool::ThreadPool() : ThreadPool(0) {}
112 
113 // No threads are launched, issue a warning if ThreadCount is not 0
114 ThreadPool::ThreadPool(unsigned ThreadCount)
115     : ActiveThreads(0) {
116   if (ThreadCount) {
117     errs() << "Warning: request a ThreadPool with " << ThreadCount
118            << " threads, but LLVM_ENABLE_THREADS has been turned off\n";
119   }
120 }
121 
122 void ThreadPool::wait() {
123   // Sequential implementation running the tasks
124   while (!Tasks.empty()) {
125     auto Task = std::move(Tasks.front());
126     Tasks.pop();
127     Task();
128   }
129 }
130 
131 std::shared_future<void> ThreadPool::asyncImpl(TaskTy Task) {
132   // Get a Future with launch::deferred execution using std::async
133   auto Future = std::async(std::launch::deferred, std::move(Task)).share();
134   // Wrap the future so that both ThreadPool::wait() can operate and the
135   // returned future can be sync'ed on.
136   PackagedTaskTy PackagedTask([Future]() { Future.get(); });
137   Tasks.push(std::move(PackagedTask));
138   return Future;
139 }
140 
141 ThreadPool::~ThreadPool() {
142   wait();
143 }
144 
145 #endif
146