xref: /freebsd/contrib/llvm-project/llvm/lib/Support/StringRef.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/edit_distance.h"
15 #include <bitset>
16 
17 using namespace llvm;
18 
19 // MSVC emits references to this into the translation units which reference it.
20 #ifndef _MSC_VER
21 const size_t StringRef::npos;
22 #endif
23 
24 // strncasecmp() is not available on non-POSIX systems, so define an
25 // alternative function here.
26 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
27   for (size_t I = 0; I < Length; ++I) {
28     unsigned char LHC = toLower(LHS[I]);
29     unsigned char RHC = toLower(RHS[I]);
30     if (LHC != RHC)
31       return LHC < RHC ? -1 : 1;
32   }
33   return 0;
34 }
35 
36 /// compare_lower - Compare strings, ignoring case.
37 int StringRef::compare_lower(StringRef RHS) const {
38   if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
39     return Res;
40   if (Length == RHS.Length)
41     return 0;
42   return Length < RHS.Length ? -1 : 1;
43 }
44 
45 /// Check if this string starts with the given \p Prefix, ignoring case.
46 bool StringRef::startswith_lower(StringRef Prefix) const {
47   return Length >= Prefix.Length &&
48       ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
49 }
50 
51 /// Check if this string ends with the given \p Suffix, ignoring case.
52 bool StringRef::endswith_lower(StringRef Suffix) const {
53   return Length >= Suffix.Length &&
54       ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
55 }
56 
57 size_t StringRef::find_lower(char C, size_t From) const {
58   char L = toLower(C);
59   return find_if([L](char D) { return toLower(D) == L; }, From);
60 }
61 
62 /// compare_numeric - Compare strings, handle embedded numbers.
63 int StringRef::compare_numeric(StringRef RHS) const {
64   for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
65     // Check for sequences of digits.
66     if (isDigit(Data[I]) && isDigit(RHS.Data[I])) {
67       // The longer sequence of numbers is considered larger.
68       // This doesn't really handle prefixed zeros well.
69       size_t J;
70       for (J = I + 1; J != E + 1; ++J) {
71         bool ld = J < Length && isDigit(Data[J]);
72         bool rd = J < RHS.Length && isDigit(RHS.Data[J]);
73         if (ld != rd)
74           return rd ? -1 : 1;
75         if (!rd)
76           break;
77       }
78       // The two number sequences have the same length (J-I), just memcmp them.
79       if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
80         return Res < 0 ? -1 : 1;
81       // Identical number sequences, continue search after the numbers.
82       I = J - 1;
83       continue;
84     }
85     if (Data[I] != RHS.Data[I])
86       return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
87   }
88   if (Length == RHS.Length)
89     return 0;
90   return Length < RHS.Length ? -1 : 1;
91 }
92 
93 // Compute the edit distance between the two given strings.
94 unsigned StringRef::edit_distance(llvm::StringRef Other,
95                                   bool AllowReplacements,
96                                   unsigned MaxEditDistance) const {
97   return llvm::ComputeEditDistance(
98       makeArrayRef(data(), size()),
99       makeArrayRef(Other.data(), Other.size()),
100       AllowReplacements, MaxEditDistance);
101 }
102 
103 //===----------------------------------------------------------------------===//
104 // String Operations
105 //===----------------------------------------------------------------------===//
106 
107 std::string StringRef::lower() const {
108   std::string Result(size(), char());
109   for (size_type i = 0, e = size(); i != e; ++i) {
110     Result[i] = toLower(Data[i]);
111   }
112   return Result;
113 }
114 
115 std::string StringRef::upper() const {
116   std::string Result(size(), char());
117   for (size_type i = 0, e = size(); i != e; ++i) {
118     Result[i] = toUpper(Data[i]);
119   }
120   return Result;
121 }
122 
123 //===----------------------------------------------------------------------===//
124 // String Searching
125 //===----------------------------------------------------------------------===//
126 
127 
128 /// find - Search for the first string \arg Str in the string.
129 ///
130 /// \return - The index of the first occurrence of \arg Str, or npos if not
131 /// found.
132 size_t StringRef::find(StringRef Str, size_t From) const {
133   if (From > Length)
134     return npos;
135 
136   const char *Start = Data + From;
137   size_t Size = Length - From;
138 
139   const char *Needle = Str.data();
140   size_t N = Str.size();
141   if (N == 0)
142     return From;
143   if (Size < N)
144     return npos;
145   if (N == 1) {
146     const char *Ptr = (const char *)::memchr(Start, Needle[0], Size);
147     return Ptr == nullptr ? npos : Ptr - Data;
148   }
149 
150   const char *Stop = Start + (Size - N + 1);
151 
152   // For short haystacks or unsupported needles fall back to the naive algorithm
153   if (Size < 16 || N > 255) {
154     do {
155       if (std::memcmp(Start, Needle, N) == 0)
156         return Start - Data;
157       ++Start;
158     } while (Start < Stop);
159     return npos;
160   }
161 
162   // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
163   uint8_t BadCharSkip[256];
164   std::memset(BadCharSkip, N, 256);
165   for (unsigned i = 0; i != N-1; ++i)
166     BadCharSkip[(uint8_t)Str[i]] = N-1-i;
167 
168   do {
169     uint8_t Last = Start[N - 1];
170     if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1]))
171       if (std::memcmp(Start, Needle, N - 1) == 0)
172         return Start - Data;
173 
174     // Otherwise skip the appropriate number of bytes.
175     Start += BadCharSkip[Last];
176   } while (Start < Stop);
177 
178   return npos;
179 }
180 
181 size_t StringRef::find_lower(StringRef Str, size_t From) const {
182   StringRef This = substr(From);
183   while (This.size() >= Str.size()) {
184     if (This.startswith_lower(Str))
185       return From;
186     This = This.drop_front();
187     ++From;
188   }
189   return npos;
190 }
191 
192 size_t StringRef::rfind_lower(char C, size_t From) const {
193   From = std::min(From, Length);
194   size_t i = From;
195   while (i != 0) {
196     --i;
197     if (toLower(Data[i]) == toLower(C))
198       return i;
199   }
200   return npos;
201 }
202 
203 /// rfind - Search for the last string \arg Str in the string.
204 ///
205 /// \return - The index of the last occurrence of \arg Str, or npos if not
206 /// found.
207 size_t StringRef::rfind(StringRef Str) const {
208   size_t N = Str.size();
209   if (N > Length)
210     return npos;
211   for (size_t i = Length - N + 1, e = 0; i != e;) {
212     --i;
213     if (substr(i, N).equals(Str))
214       return i;
215   }
216   return npos;
217 }
218 
219 size_t StringRef::rfind_lower(StringRef Str) const {
220   size_t N = Str.size();
221   if (N > Length)
222     return npos;
223   for (size_t i = Length - N + 1, e = 0; i != e;) {
224     --i;
225     if (substr(i, N).equals_lower(Str))
226       return i;
227   }
228   return npos;
229 }
230 
231 /// find_first_of - Find the first character in the string that is in \arg
232 /// Chars, or npos if not found.
233 ///
234 /// Note: O(size() + Chars.size())
235 StringRef::size_type StringRef::find_first_of(StringRef Chars,
236                                               size_t From) const {
237   std::bitset<1 << CHAR_BIT> CharBits;
238   for (size_type i = 0; i != Chars.size(); ++i)
239     CharBits.set((unsigned char)Chars[i]);
240 
241   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
242     if (CharBits.test((unsigned char)Data[i]))
243       return i;
244   return npos;
245 }
246 
247 /// find_first_not_of - Find the first character in the string that is not
248 /// \arg C or npos if not found.
249 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
250   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
251     if (Data[i] != C)
252       return i;
253   return npos;
254 }
255 
256 /// find_first_not_of - Find the first character in the string that is not
257 /// in the string \arg Chars, or npos if not found.
258 ///
259 /// Note: O(size() + Chars.size())
260 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
261                                                   size_t From) const {
262   std::bitset<1 << CHAR_BIT> CharBits;
263   for (size_type i = 0; i != Chars.size(); ++i)
264     CharBits.set((unsigned char)Chars[i]);
265 
266   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
267     if (!CharBits.test((unsigned char)Data[i]))
268       return i;
269   return npos;
270 }
271 
272 /// find_last_of - Find the last character in the string that is in \arg C,
273 /// or npos if not found.
274 ///
275 /// Note: O(size() + Chars.size())
276 StringRef::size_type StringRef::find_last_of(StringRef Chars,
277                                              size_t From) const {
278   std::bitset<1 << CHAR_BIT> CharBits;
279   for (size_type i = 0; i != Chars.size(); ++i)
280     CharBits.set((unsigned char)Chars[i]);
281 
282   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
283     if (CharBits.test((unsigned char)Data[i]))
284       return i;
285   return npos;
286 }
287 
288 /// find_last_not_of - Find the last character in the string that is not
289 /// \arg C, or npos if not found.
290 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
291   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
292     if (Data[i] != C)
293       return i;
294   return npos;
295 }
296 
297 /// find_last_not_of - Find the last character in the string that is not in
298 /// \arg Chars, or npos if not found.
299 ///
300 /// Note: O(size() + Chars.size())
301 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
302                                                  size_t From) const {
303   std::bitset<1 << CHAR_BIT> CharBits;
304   for (size_type i = 0, e = Chars.size(); i != e; ++i)
305     CharBits.set((unsigned char)Chars[i]);
306 
307   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
308     if (!CharBits.test((unsigned char)Data[i]))
309       return i;
310   return npos;
311 }
312 
313 void StringRef::split(SmallVectorImpl<StringRef> &A,
314                       StringRef Separator, int MaxSplit,
315                       bool KeepEmpty) const {
316   StringRef S = *this;
317 
318   // Count down from MaxSplit. When MaxSplit is -1, this will just split
319   // "forever". This doesn't support splitting more than 2^31 times
320   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
321   // but that seems unlikely to be useful.
322   while (MaxSplit-- != 0) {
323     size_t Idx = S.find(Separator);
324     if (Idx == npos)
325       break;
326 
327     // Push this split.
328     if (KeepEmpty || Idx > 0)
329       A.push_back(S.slice(0, Idx));
330 
331     // Jump forward.
332     S = S.slice(Idx + Separator.size(), npos);
333   }
334 
335   // Push the tail.
336   if (KeepEmpty || !S.empty())
337     A.push_back(S);
338 }
339 
340 void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
341                       int MaxSplit, bool KeepEmpty) const {
342   StringRef S = *this;
343 
344   // Count down from MaxSplit. When MaxSplit is -1, this will just split
345   // "forever". This doesn't support splitting more than 2^31 times
346   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
347   // but that seems unlikely to be useful.
348   while (MaxSplit-- != 0) {
349     size_t Idx = S.find(Separator);
350     if (Idx == npos)
351       break;
352 
353     // Push this split.
354     if (KeepEmpty || Idx > 0)
355       A.push_back(S.slice(0, Idx));
356 
357     // Jump forward.
358     S = S.slice(Idx + 1, npos);
359   }
360 
361   // Push the tail.
362   if (KeepEmpty || !S.empty())
363     A.push_back(S);
364 }
365 
366 //===----------------------------------------------------------------------===//
367 // Helpful Algorithms
368 //===----------------------------------------------------------------------===//
369 
370 /// count - Return the number of non-overlapped occurrences of \arg Str in
371 /// the string.
372 size_t StringRef::count(StringRef Str) const {
373   size_t Count = 0;
374   size_t N = Str.size();
375   if (N > Length)
376     return 0;
377   for (size_t i = 0, e = Length - N + 1; i != e; ++i)
378     if (substr(i, N).equals(Str))
379       ++Count;
380   return Count;
381 }
382 
383 static unsigned GetAutoSenseRadix(StringRef &Str) {
384   if (Str.empty())
385     return 10;
386 
387   if (Str.startswith("0x") || Str.startswith("0X")) {
388     Str = Str.substr(2);
389     return 16;
390   }
391 
392   if (Str.startswith("0b") || Str.startswith("0B")) {
393     Str = Str.substr(2);
394     return 2;
395   }
396 
397   if (Str.startswith("0o")) {
398     Str = Str.substr(2);
399     return 8;
400   }
401 
402   if (Str[0] == '0' && Str.size() > 1 && isDigit(Str[1])) {
403     Str = Str.substr(1);
404     return 8;
405   }
406 
407   return 10;
408 }
409 
410 bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix,
411                                   unsigned long long &Result) {
412   // Autosense radix if not specified.
413   if (Radix == 0)
414     Radix = GetAutoSenseRadix(Str);
415 
416   // Empty strings (after the radix autosense) are invalid.
417   if (Str.empty()) return true;
418 
419   // Parse all the bytes of the string given this radix.  Watch for overflow.
420   StringRef Str2 = Str;
421   Result = 0;
422   while (!Str2.empty()) {
423     unsigned CharVal;
424     if (Str2[0] >= '0' && Str2[0] <= '9')
425       CharVal = Str2[0] - '0';
426     else if (Str2[0] >= 'a' && Str2[0] <= 'z')
427       CharVal = Str2[0] - 'a' + 10;
428     else if (Str2[0] >= 'A' && Str2[0] <= 'Z')
429       CharVal = Str2[0] - 'A' + 10;
430     else
431       break;
432 
433     // If the parsed value is larger than the integer radix, we cannot
434     // consume any more characters.
435     if (CharVal >= Radix)
436       break;
437 
438     // Add in this character.
439     unsigned long long PrevResult = Result;
440     Result = Result * Radix + CharVal;
441 
442     // Check for overflow by shifting back and seeing if bits were lost.
443     if (Result / Radix < PrevResult)
444       return true;
445 
446     Str2 = Str2.substr(1);
447   }
448 
449   // We consider the operation a failure if no characters were consumed
450   // successfully.
451   if (Str.size() == Str2.size())
452     return true;
453 
454   Str = Str2;
455   return false;
456 }
457 
458 bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix,
459                                 long long &Result) {
460   unsigned long long ULLVal;
461 
462   // Handle positive strings first.
463   if (Str.empty() || Str.front() != '-') {
464     if (consumeUnsignedInteger(Str, Radix, ULLVal) ||
465         // Check for value so large it overflows a signed value.
466         (long long)ULLVal < 0)
467       return true;
468     Result = ULLVal;
469     return false;
470   }
471 
472   // Get the positive part of the value.
473   StringRef Str2 = Str.drop_front(1);
474   if (consumeUnsignedInteger(Str2, Radix, ULLVal) ||
475       // Reject values so large they'd overflow as negative signed, but allow
476       // "-0".  This negates the unsigned so that the negative isn't undefined
477       // on signed overflow.
478       (long long)-ULLVal > 0)
479     return true;
480 
481   Str = Str2;
482   Result = -ULLVal;
483   return false;
484 }
485 
486 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
487 /// sequence of radix up to 36 to an unsigned long long value.
488 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
489                                 unsigned long long &Result) {
490   if (consumeUnsignedInteger(Str, Radix, Result))
491     return true;
492 
493   // For getAsUnsignedInteger, we require the whole string to be consumed or
494   // else we consider it a failure.
495   return !Str.empty();
496 }
497 
498 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
499                               long long &Result) {
500   if (consumeSignedInteger(Str, Radix, Result))
501     return true;
502 
503   // For getAsSignedInteger, we require the whole string to be consumed or else
504   // we consider it a failure.
505   return !Str.empty();
506 }
507 
508 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
509   StringRef Str = *this;
510 
511   // Autosense radix if not specified.
512   if (Radix == 0)
513     Radix = GetAutoSenseRadix(Str);
514 
515   assert(Radix > 1 && Radix <= 36);
516 
517   // Empty strings (after the radix autosense) are invalid.
518   if (Str.empty()) return true;
519 
520   // Skip leading zeroes.  This can be a significant improvement if
521   // it means we don't need > 64 bits.
522   while (!Str.empty() && Str.front() == '0')
523     Str = Str.substr(1);
524 
525   // If it was nothing but zeroes....
526   if (Str.empty()) {
527     Result = APInt(64, 0);
528     return false;
529   }
530 
531   // (Over-)estimate the required number of bits.
532   unsigned Log2Radix = 0;
533   while ((1U << Log2Radix) < Radix) Log2Radix++;
534   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
535 
536   unsigned BitWidth = Log2Radix * Str.size();
537   if (BitWidth < Result.getBitWidth())
538     BitWidth = Result.getBitWidth(); // don't shrink the result
539   else if (BitWidth > Result.getBitWidth())
540     Result = Result.zext(BitWidth);
541 
542   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
543   if (!IsPowerOf2Radix) {
544     // These must have the same bit-width as Result.
545     RadixAP = APInt(BitWidth, Radix);
546     CharAP = APInt(BitWidth, 0);
547   }
548 
549   // Parse all the bytes of the string given this radix.
550   Result = 0;
551   while (!Str.empty()) {
552     unsigned CharVal;
553     if (Str[0] >= '0' && Str[0] <= '9')
554       CharVal = Str[0]-'0';
555     else if (Str[0] >= 'a' && Str[0] <= 'z')
556       CharVal = Str[0]-'a'+10;
557     else if (Str[0] >= 'A' && Str[0] <= 'Z')
558       CharVal = Str[0]-'A'+10;
559     else
560       return true;
561 
562     // If the parsed value is larger than the integer radix, the string is
563     // invalid.
564     if (CharVal >= Radix)
565       return true;
566 
567     // Add in this character.
568     if (IsPowerOf2Radix) {
569       Result <<= Log2Radix;
570       Result |= CharVal;
571     } else {
572       Result *= RadixAP;
573       CharAP = CharVal;
574       Result += CharAP;
575     }
576 
577     Str = Str.substr(1);
578   }
579 
580   return false;
581 }
582 
583 bool StringRef::getAsDouble(double &Result, bool AllowInexact) const {
584   APFloat F(0.0);
585   APFloat::opStatus Status =
586       F.convertFromString(*this, APFloat::rmNearestTiesToEven);
587   if (Status != APFloat::opOK) {
588     if (!AllowInexact || !(Status & APFloat::opInexact))
589       return true;
590   }
591 
592   Result = F.convertToDouble();
593   return false;
594 }
595 
596 // Implementation of StringRef hashing.
597 hash_code llvm::hash_value(StringRef S) {
598   return hash_combine_range(S.begin(), S.end());
599 }
600