xref: /freebsd/contrib/llvm-project/llvm/lib/Support/StringRef.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/edit_distance.h"
15 #include "llvm/Support/Error.h"
16 #include <bitset>
17 
18 using namespace llvm;
19 
20 // MSVC emits references to this into the translation units which reference it.
21 #ifndef _MSC_VER
22 const size_t StringRef::npos;
23 #endif
24 
25 // strncasecmp() is not available on non-POSIX systems, so define an
26 // alternative function here.
27 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
28   for (size_t I = 0; I < Length; ++I) {
29     unsigned char LHC = toLower(LHS[I]);
30     unsigned char RHC = toLower(RHS[I]);
31     if (LHC != RHC)
32       return LHC < RHC ? -1 : 1;
33   }
34   return 0;
35 }
36 
37 /// compare_lower - Compare strings, ignoring case.
38 int StringRef::compare_lower(StringRef RHS) const {
39   if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
40     return Res;
41   if (Length == RHS.Length)
42     return 0;
43   return Length < RHS.Length ? -1 : 1;
44 }
45 
46 /// Check if this string starts with the given \p Prefix, ignoring case.
47 bool StringRef::startswith_lower(StringRef Prefix) const {
48   return Length >= Prefix.Length &&
49       ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
50 }
51 
52 /// Check if this string ends with the given \p Suffix, ignoring case.
53 bool StringRef::endswith_lower(StringRef Suffix) const {
54   return Length >= Suffix.Length &&
55       ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
56 }
57 
58 size_t StringRef::find_lower(char C, size_t From) const {
59   char L = toLower(C);
60   return find_if([L](char D) { return toLower(D) == L; }, From);
61 }
62 
63 /// compare_numeric - Compare strings, handle embedded numbers.
64 int StringRef::compare_numeric(StringRef RHS) const {
65   for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
66     // Check for sequences of digits.
67     if (isDigit(Data[I]) && isDigit(RHS.Data[I])) {
68       // The longer sequence of numbers is considered larger.
69       // This doesn't really handle prefixed zeros well.
70       size_t J;
71       for (J = I + 1; J != E + 1; ++J) {
72         bool ld = J < Length && isDigit(Data[J]);
73         bool rd = J < RHS.Length && isDigit(RHS.Data[J]);
74         if (ld != rd)
75           return rd ? -1 : 1;
76         if (!rd)
77           break;
78       }
79       // The two number sequences have the same length (J-I), just memcmp them.
80       if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
81         return Res < 0 ? -1 : 1;
82       // Identical number sequences, continue search after the numbers.
83       I = J - 1;
84       continue;
85     }
86     if (Data[I] != RHS.Data[I])
87       return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
88   }
89   if (Length == RHS.Length)
90     return 0;
91   return Length < RHS.Length ? -1 : 1;
92 }
93 
94 // Compute the edit distance between the two given strings.
95 unsigned StringRef::edit_distance(llvm::StringRef Other,
96                                   bool AllowReplacements,
97                                   unsigned MaxEditDistance) const {
98   return llvm::ComputeEditDistance(
99       makeArrayRef(data(), size()),
100       makeArrayRef(Other.data(), Other.size()),
101       AllowReplacements, MaxEditDistance);
102 }
103 
104 //===----------------------------------------------------------------------===//
105 // String Operations
106 //===----------------------------------------------------------------------===//
107 
108 std::string StringRef::lower() const {
109   std::string Result(size(), char());
110   for (size_type i = 0, e = size(); i != e; ++i) {
111     Result[i] = toLower(Data[i]);
112   }
113   return Result;
114 }
115 
116 std::string StringRef::upper() const {
117   std::string Result(size(), char());
118   for (size_type i = 0, e = size(); i != e; ++i) {
119     Result[i] = toUpper(Data[i]);
120   }
121   return Result;
122 }
123 
124 //===----------------------------------------------------------------------===//
125 // String Searching
126 //===----------------------------------------------------------------------===//
127 
128 
129 /// find - Search for the first string \arg Str in the string.
130 ///
131 /// \return - The index of the first occurrence of \arg Str, or npos if not
132 /// found.
133 size_t StringRef::find(StringRef Str, size_t From) const {
134   if (From > Length)
135     return npos;
136 
137   const char *Start = Data + From;
138   size_t Size = Length - From;
139 
140   const char *Needle = Str.data();
141   size_t N = Str.size();
142   if (N == 0)
143     return From;
144   if (Size < N)
145     return npos;
146   if (N == 1) {
147     const char *Ptr = (const char *)::memchr(Start, Needle[0], Size);
148     return Ptr == nullptr ? npos : Ptr - Data;
149   }
150 
151   const char *Stop = Start + (Size - N + 1);
152 
153   // For short haystacks or unsupported needles fall back to the naive algorithm
154   if (Size < 16 || N > 255) {
155     do {
156       if (std::memcmp(Start, Needle, N) == 0)
157         return Start - Data;
158       ++Start;
159     } while (Start < Stop);
160     return npos;
161   }
162 
163   // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
164   uint8_t BadCharSkip[256];
165   std::memset(BadCharSkip, N, 256);
166   for (unsigned i = 0; i != N-1; ++i)
167     BadCharSkip[(uint8_t)Str[i]] = N-1-i;
168 
169   do {
170     uint8_t Last = Start[N - 1];
171     if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1]))
172       if (std::memcmp(Start, Needle, N - 1) == 0)
173         return Start - Data;
174 
175     // Otherwise skip the appropriate number of bytes.
176     Start += BadCharSkip[Last];
177   } while (Start < Stop);
178 
179   return npos;
180 }
181 
182 size_t StringRef::find_lower(StringRef Str, size_t From) const {
183   StringRef This = substr(From);
184   while (This.size() >= Str.size()) {
185     if (This.startswith_lower(Str))
186       return From;
187     This = This.drop_front();
188     ++From;
189   }
190   return npos;
191 }
192 
193 size_t StringRef::rfind_lower(char C, size_t From) const {
194   From = std::min(From, Length);
195   size_t i = From;
196   while (i != 0) {
197     --i;
198     if (toLower(Data[i]) == toLower(C))
199       return i;
200   }
201   return npos;
202 }
203 
204 /// rfind - Search for the last string \arg Str in the string.
205 ///
206 /// \return - The index of the last occurrence of \arg Str, or npos if not
207 /// found.
208 size_t StringRef::rfind(StringRef Str) const {
209   size_t N = Str.size();
210   if (N > Length)
211     return npos;
212   for (size_t i = Length - N + 1, e = 0; i != e;) {
213     --i;
214     if (substr(i, N).equals(Str))
215       return i;
216   }
217   return npos;
218 }
219 
220 size_t StringRef::rfind_lower(StringRef Str) const {
221   size_t N = Str.size();
222   if (N > Length)
223     return npos;
224   for (size_t i = Length - N + 1, e = 0; i != e;) {
225     --i;
226     if (substr(i, N).equals_lower(Str))
227       return i;
228   }
229   return npos;
230 }
231 
232 /// find_first_of - Find the first character in the string that is in \arg
233 /// Chars, or npos if not found.
234 ///
235 /// Note: O(size() + Chars.size())
236 StringRef::size_type StringRef::find_first_of(StringRef Chars,
237                                               size_t From) const {
238   std::bitset<1 << CHAR_BIT> CharBits;
239   for (size_type i = 0; i != Chars.size(); ++i)
240     CharBits.set((unsigned char)Chars[i]);
241 
242   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
243     if (CharBits.test((unsigned char)Data[i]))
244       return i;
245   return npos;
246 }
247 
248 /// find_first_not_of - Find the first character in the string that is not
249 /// \arg C or npos if not found.
250 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
251   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
252     if (Data[i] != C)
253       return i;
254   return npos;
255 }
256 
257 /// find_first_not_of - Find the first character in the string that is not
258 /// in the string \arg Chars, or npos if not found.
259 ///
260 /// Note: O(size() + Chars.size())
261 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
262                                                   size_t From) const {
263   std::bitset<1 << CHAR_BIT> CharBits;
264   for (size_type i = 0; i != Chars.size(); ++i)
265     CharBits.set((unsigned char)Chars[i]);
266 
267   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
268     if (!CharBits.test((unsigned char)Data[i]))
269       return i;
270   return npos;
271 }
272 
273 /// find_last_of - Find the last character in the string that is in \arg C,
274 /// or npos if not found.
275 ///
276 /// Note: O(size() + Chars.size())
277 StringRef::size_type StringRef::find_last_of(StringRef Chars,
278                                              size_t From) const {
279   std::bitset<1 << CHAR_BIT> CharBits;
280   for (size_type i = 0; i != Chars.size(); ++i)
281     CharBits.set((unsigned char)Chars[i]);
282 
283   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
284     if (CharBits.test((unsigned char)Data[i]))
285       return i;
286   return npos;
287 }
288 
289 /// find_last_not_of - Find the last character in the string that is not
290 /// \arg C, or npos if not found.
291 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
292   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
293     if (Data[i] != C)
294       return i;
295   return npos;
296 }
297 
298 /// find_last_not_of - Find the last character in the string that is not in
299 /// \arg Chars, or npos if not found.
300 ///
301 /// Note: O(size() + Chars.size())
302 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
303                                                  size_t From) const {
304   std::bitset<1 << CHAR_BIT> CharBits;
305   for (size_type i = 0, e = Chars.size(); i != e; ++i)
306     CharBits.set((unsigned char)Chars[i]);
307 
308   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
309     if (!CharBits.test((unsigned char)Data[i]))
310       return i;
311   return npos;
312 }
313 
314 void StringRef::split(SmallVectorImpl<StringRef> &A,
315                       StringRef Separator, int MaxSplit,
316                       bool KeepEmpty) const {
317   StringRef S = *this;
318 
319   // Count down from MaxSplit. When MaxSplit is -1, this will just split
320   // "forever". This doesn't support splitting more than 2^31 times
321   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
322   // but that seems unlikely to be useful.
323   while (MaxSplit-- != 0) {
324     size_t Idx = S.find(Separator);
325     if (Idx == npos)
326       break;
327 
328     // Push this split.
329     if (KeepEmpty || Idx > 0)
330       A.push_back(S.slice(0, Idx));
331 
332     // Jump forward.
333     S = S.slice(Idx + Separator.size(), npos);
334   }
335 
336   // Push the tail.
337   if (KeepEmpty || !S.empty())
338     A.push_back(S);
339 }
340 
341 void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
342                       int MaxSplit, bool KeepEmpty) const {
343   StringRef S = *this;
344 
345   // Count down from MaxSplit. When MaxSplit is -1, this will just split
346   // "forever". This doesn't support splitting more than 2^31 times
347   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
348   // but that seems unlikely to be useful.
349   while (MaxSplit-- != 0) {
350     size_t Idx = S.find(Separator);
351     if (Idx == npos)
352       break;
353 
354     // Push this split.
355     if (KeepEmpty || Idx > 0)
356       A.push_back(S.slice(0, Idx));
357 
358     // Jump forward.
359     S = S.slice(Idx + 1, npos);
360   }
361 
362   // Push the tail.
363   if (KeepEmpty || !S.empty())
364     A.push_back(S);
365 }
366 
367 //===----------------------------------------------------------------------===//
368 // Helpful Algorithms
369 //===----------------------------------------------------------------------===//
370 
371 /// count - Return the number of non-overlapped occurrences of \arg Str in
372 /// the string.
373 size_t StringRef::count(StringRef Str) const {
374   size_t Count = 0;
375   size_t N = Str.size();
376   if (!N || N > Length)
377     return 0;
378   for (size_t i = 0, e = Length - N + 1; i < e;) {
379     if (substr(i, N).equals(Str)) {
380       ++Count;
381       i += N;
382     }
383     else
384       ++i;
385   }
386   return Count;
387 }
388 
389 static unsigned GetAutoSenseRadix(StringRef &Str) {
390   if (Str.empty())
391     return 10;
392 
393   if (Str.startswith("0x") || Str.startswith("0X")) {
394     Str = Str.substr(2);
395     return 16;
396   }
397 
398   if (Str.startswith("0b") || Str.startswith("0B")) {
399     Str = Str.substr(2);
400     return 2;
401   }
402 
403   if (Str.startswith("0o")) {
404     Str = Str.substr(2);
405     return 8;
406   }
407 
408   if (Str[0] == '0' && Str.size() > 1 && isDigit(Str[1])) {
409     Str = Str.substr(1);
410     return 8;
411   }
412 
413   return 10;
414 }
415 
416 bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix,
417                                   unsigned long long &Result) {
418   // Autosense radix if not specified.
419   if (Radix == 0)
420     Radix = GetAutoSenseRadix(Str);
421 
422   // Empty strings (after the radix autosense) are invalid.
423   if (Str.empty()) return true;
424 
425   // Parse all the bytes of the string given this radix.  Watch for overflow.
426   StringRef Str2 = Str;
427   Result = 0;
428   while (!Str2.empty()) {
429     unsigned CharVal;
430     if (Str2[0] >= '0' && Str2[0] <= '9')
431       CharVal = Str2[0] - '0';
432     else if (Str2[0] >= 'a' && Str2[0] <= 'z')
433       CharVal = Str2[0] - 'a' + 10;
434     else if (Str2[0] >= 'A' && Str2[0] <= 'Z')
435       CharVal = Str2[0] - 'A' + 10;
436     else
437       break;
438 
439     // If the parsed value is larger than the integer radix, we cannot
440     // consume any more characters.
441     if (CharVal >= Radix)
442       break;
443 
444     // Add in this character.
445     unsigned long long PrevResult = Result;
446     Result = Result * Radix + CharVal;
447 
448     // Check for overflow by shifting back and seeing if bits were lost.
449     if (Result / Radix < PrevResult)
450       return true;
451 
452     Str2 = Str2.substr(1);
453   }
454 
455   // We consider the operation a failure if no characters were consumed
456   // successfully.
457   if (Str.size() == Str2.size())
458     return true;
459 
460   Str = Str2;
461   return false;
462 }
463 
464 bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix,
465                                 long long &Result) {
466   unsigned long long ULLVal;
467 
468   // Handle positive strings first.
469   if (Str.empty() || Str.front() != '-') {
470     if (consumeUnsignedInteger(Str, Radix, ULLVal) ||
471         // Check for value so large it overflows a signed value.
472         (long long)ULLVal < 0)
473       return true;
474     Result = ULLVal;
475     return false;
476   }
477 
478   // Get the positive part of the value.
479   StringRef Str2 = Str.drop_front(1);
480   if (consumeUnsignedInteger(Str2, Radix, ULLVal) ||
481       // Reject values so large they'd overflow as negative signed, but allow
482       // "-0".  This negates the unsigned so that the negative isn't undefined
483       // on signed overflow.
484       (long long)-ULLVal > 0)
485     return true;
486 
487   Str = Str2;
488   Result = -ULLVal;
489   return false;
490 }
491 
492 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
493 /// sequence of radix up to 36 to an unsigned long long value.
494 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
495                                 unsigned long long &Result) {
496   if (consumeUnsignedInteger(Str, Radix, Result))
497     return true;
498 
499   // For getAsUnsignedInteger, we require the whole string to be consumed or
500   // else we consider it a failure.
501   return !Str.empty();
502 }
503 
504 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
505                               long long &Result) {
506   if (consumeSignedInteger(Str, Radix, Result))
507     return true;
508 
509   // For getAsSignedInteger, we require the whole string to be consumed or else
510   // we consider it a failure.
511   return !Str.empty();
512 }
513 
514 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
515   StringRef Str = *this;
516 
517   // Autosense radix if not specified.
518   if (Radix == 0)
519     Radix = GetAutoSenseRadix(Str);
520 
521   assert(Radix > 1 && Radix <= 36);
522 
523   // Empty strings (after the radix autosense) are invalid.
524   if (Str.empty()) return true;
525 
526   // Skip leading zeroes.  This can be a significant improvement if
527   // it means we don't need > 64 bits.
528   while (!Str.empty() && Str.front() == '0')
529     Str = Str.substr(1);
530 
531   // If it was nothing but zeroes....
532   if (Str.empty()) {
533     Result = APInt(64, 0);
534     return false;
535   }
536 
537   // (Over-)estimate the required number of bits.
538   unsigned Log2Radix = 0;
539   while ((1U << Log2Radix) < Radix) Log2Radix++;
540   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
541 
542   unsigned BitWidth = Log2Radix * Str.size();
543   if (BitWidth < Result.getBitWidth())
544     BitWidth = Result.getBitWidth(); // don't shrink the result
545   else if (BitWidth > Result.getBitWidth())
546     Result = Result.zext(BitWidth);
547 
548   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
549   if (!IsPowerOf2Radix) {
550     // These must have the same bit-width as Result.
551     RadixAP = APInt(BitWidth, Radix);
552     CharAP = APInt(BitWidth, 0);
553   }
554 
555   // Parse all the bytes of the string given this radix.
556   Result = 0;
557   while (!Str.empty()) {
558     unsigned CharVal;
559     if (Str[0] >= '0' && Str[0] <= '9')
560       CharVal = Str[0]-'0';
561     else if (Str[0] >= 'a' && Str[0] <= 'z')
562       CharVal = Str[0]-'a'+10;
563     else if (Str[0] >= 'A' && Str[0] <= 'Z')
564       CharVal = Str[0]-'A'+10;
565     else
566       return true;
567 
568     // If the parsed value is larger than the integer radix, the string is
569     // invalid.
570     if (CharVal >= Radix)
571       return true;
572 
573     // Add in this character.
574     if (IsPowerOf2Radix) {
575       Result <<= Log2Radix;
576       Result |= CharVal;
577     } else {
578       Result *= RadixAP;
579       CharAP = CharVal;
580       Result += CharAP;
581     }
582 
583     Str = Str.substr(1);
584   }
585 
586   return false;
587 }
588 
589 bool StringRef::getAsDouble(double &Result, bool AllowInexact) const {
590   APFloat F(0.0);
591   auto StatusOrErr = F.convertFromString(*this, APFloat::rmNearestTiesToEven);
592   if (errorToBool(StatusOrErr.takeError()))
593     return true;
594 
595   APFloat::opStatus Status = *StatusOrErr;
596   if (Status != APFloat::opOK) {
597     if (!AllowInexact || !(Status & APFloat::opInexact))
598       return true;
599   }
600 
601   Result = F.convertToDouble();
602   return false;
603 }
604 
605 // Implementation of StringRef hashing.
606 hash_code llvm::hash_value(StringRef S) {
607   return hash_combine_range(S.begin(), S.end());
608 }
609