1 //===--- StringMap.cpp - String Hash table map implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the StringMap class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/StringMap.h" 14 #include "llvm/ADT/StringExtras.h" 15 #include "llvm/Support/Compiler.h" 16 #include "llvm/Support/DJB.h" 17 #include "llvm/Support/MathExtras.h" 18 #include <cassert> 19 20 using namespace llvm; 21 22 /// Returns the number of buckets to allocate to ensure that the DenseMap can 23 /// accommodate \p NumEntries without need to grow(). 24 static unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { 25 // Ensure that "NumEntries * 4 < NumBuckets * 3" 26 if (NumEntries == 0) 27 return 0; 28 // +1 is required because of the strict equality. 29 // For example if NumEntries is 48, we need to return 401. 30 return NextPowerOf2(NumEntries * 4 / 3 + 1); 31 } 32 33 StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) { 34 ItemSize = itemSize; 35 36 // If a size is specified, initialize the table with that many buckets. 37 if (InitSize) { 38 // The table will grow when the number of entries reach 3/4 of the number of 39 // buckets. To guarantee that "InitSize" number of entries can be inserted 40 // in the table without growing, we allocate just what is needed here. 41 init(getMinBucketToReserveForEntries(InitSize)); 42 return; 43 } 44 45 // Otherwise, initialize it with zero buckets to avoid the allocation. 46 TheTable = nullptr; 47 NumBuckets = 0; 48 NumItems = 0; 49 NumTombstones = 0; 50 } 51 52 void StringMapImpl::init(unsigned InitSize) { 53 assert((InitSize & (InitSize-1)) == 0 && 54 "Init Size must be a power of 2 or zero!"); 55 56 unsigned NewNumBuckets = InitSize ? InitSize : 16; 57 NumItems = 0; 58 NumTombstones = 0; 59 60 TheTable = static_cast<StringMapEntryBase **>( 61 safe_calloc(NewNumBuckets+1, 62 sizeof(StringMapEntryBase **) + sizeof(unsigned))); 63 64 // Set the member only if TheTable was successfully allocated 65 NumBuckets = NewNumBuckets; 66 67 // Allocate one extra bucket, set it to look filled so the iterators stop at 68 // end. 69 TheTable[NumBuckets] = (StringMapEntryBase*)2; 70 } 71 72 /// LookupBucketFor - Look up the bucket that the specified string should end 73 /// up in. If it already exists as a key in the map, the Item pointer for the 74 /// specified bucket will be non-null. Otherwise, it will be null. In either 75 /// case, the FullHashValue field of the bucket will be set to the hash value 76 /// of the string. 77 unsigned StringMapImpl::LookupBucketFor(StringRef Name) { 78 unsigned HTSize = NumBuckets; 79 if (HTSize == 0) { // Hash table unallocated so far? 80 init(16); 81 HTSize = NumBuckets; 82 } 83 unsigned FullHashValue = djbHash(Name, 0); 84 unsigned BucketNo = FullHashValue & (HTSize-1); 85 unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); 86 87 unsigned ProbeAmt = 1; 88 int FirstTombstone = -1; 89 while (true) { 90 StringMapEntryBase *BucketItem = TheTable[BucketNo]; 91 // If we found an empty bucket, this key isn't in the table yet, return it. 92 if (LLVM_LIKELY(!BucketItem)) { 93 // If we found a tombstone, we want to reuse the tombstone instead of an 94 // empty bucket. This reduces probing. 95 if (FirstTombstone != -1) { 96 HashTable[FirstTombstone] = FullHashValue; 97 return FirstTombstone; 98 } 99 100 HashTable[BucketNo] = FullHashValue; 101 return BucketNo; 102 } 103 104 if (BucketItem == getTombstoneVal()) { 105 // Skip over tombstones. However, remember the first one we see. 106 if (FirstTombstone == -1) FirstTombstone = BucketNo; 107 } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { 108 // If the full hash value matches, check deeply for a match. The common 109 // case here is that we are only looking at the buckets (for item info 110 // being non-null and for the full hash value) not at the items. This 111 // is important for cache locality. 112 113 // Do the comparison like this because Name isn't necessarily 114 // null-terminated! 115 char *ItemStr = (char*)BucketItem+ItemSize; 116 if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) { 117 // We found a match! 118 return BucketNo; 119 } 120 } 121 122 // Okay, we didn't find the item. Probe to the next bucket. 123 BucketNo = (BucketNo+ProbeAmt) & (HTSize-1); 124 125 // Use quadratic probing, it has fewer clumping artifacts than linear 126 // probing and has good cache behavior in the common case. 127 ++ProbeAmt; 128 } 129 } 130 131 /// FindKey - Look up the bucket that contains the specified key. If it exists 132 /// in the map, return the bucket number of the key. Otherwise return -1. 133 /// This does not modify the map. 134 int StringMapImpl::FindKey(StringRef Key) const { 135 unsigned HTSize = NumBuckets; 136 if (HTSize == 0) return -1; // Really empty table? 137 unsigned FullHashValue = djbHash(Key, 0); 138 unsigned BucketNo = FullHashValue & (HTSize-1); 139 unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); 140 141 unsigned ProbeAmt = 1; 142 while (true) { 143 StringMapEntryBase *BucketItem = TheTable[BucketNo]; 144 // If we found an empty bucket, this key isn't in the table yet, return. 145 if (LLVM_LIKELY(!BucketItem)) 146 return -1; 147 148 if (BucketItem == getTombstoneVal()) { 149 // Ignore tombstones. 150 } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { 151 // If the full hash value matches, check deeply for a match. The common 152 // case here is that we are only looking at the buckets (for item info 153 // being non-null and for the full hash value) not at the items. This 154 // is important for cache locality. 155 156 // Do the comparison like this because NameStart isn't necessarily 157 // null-terminated! 158 char *ItemStr = (char*)BucketItem+ItemSize; 159 if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) { 160 // We found a match! 161 return BucketNo; 162 } 163 } 164 165 // Okay, we didn't find the item. Probe to the next bucket. 166 BucketNo = (BucketNo+ProbeAmt) & (HTSize-1); 167 168 // Use quadratic probing, it has fewer clumping artifacts than linear 169 // probing and has good cache behavior in the common case. 170 ++ProbeAmt; 171 } 172 } 173 174 /// RemoveKey - Remove the specified StringMapEntry from the table, but do not 175 /// delete it. This aborts if the value isn't in the table. 176 void StringMapImpl::RemoveKey(StringMapEntryBase *V) { 177 const char *VStr = (char*)V + ItemSize; 178 StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength())); 179 (void)V2; 180 assert(V == V2 && "Didn't find key?"); 181 } 182 183 /// RemoveKey - Remove the StringMapEntry for the specified key from the 184 /// table, returning it. If the key is not in the table, this returns null. 185 StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) { 186 int Bucket = FindKey(Key); 187 if (Bucket == -1) return nullptr; 188 189 StringMapEntryBase *Result = TheTable[Bucket]; 190 TheTable[Bucket] = getTombstoneVal(); 191 --NumItems; 192 ++NumTombstones; 193 assert(NumItems + NumTombstones <= NumBuckets); 194 195 return Result; 196 } 197 198 /// RehashTable - Grow the table, redistributing values into the buckets with 199 /// the appropriate mod-of-hashtable-size. 200 unsigned StringMapImpl::RehashTable(unsigned BucketNo) { 201 unsigned NewSize; 202 unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); 203 204 // If the hash table is now more than 3/4 full, or if fewer than 1/8 of 205 // the buckets are empty (meaning that many are filled with tombstones), 206 // grow/rehash the table. 207 if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) { 208 NewSize = NumBuckets*2; 209 } else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <= 210 NumBuckets / 8)) { 211 NewSize = NumBuckets; 212 } else { 213 return BucketNo; 214 } 215 216 unsigned NewBucketNo = BucketNo; 217 // Allocate one extra bucket which will always be non-empty. This allows the 218 // iterators to stop at end. 219 auto NewTableArray = static_cast<StringMapEntryBase **>( 220 safe_calloc(NewSize+1, sizeof(StringMapEntryBase *) + sizeof(unsigned))); 221 222 unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1); 223 NewTableArray[NewSize] = (StringMapEntryBase*)2; 224 225 // Rehash all the items into their new buckets. Luckily :) we already have 226 // the hash values available, so we don't have to rehash any strings. 227 for (unsigned I = 0, E = NumBuckets; I != E; ++I) { 228 StringMapEntryBase *Bucket = TheTable[I]; 229 if (Bucket && Bucket != getTombstoneVal()) { 230 // Fast case, bucket available. 231 unsigned FullHash = HashTable[I]; 232 unsigned NewBucket = FullHash & (NewSize-1); 233 if (!NewTableArray[NewBucket]) { 234 NewTableArray[FullHash & (NewSize-1)] = Bucket; 235 NewHashArray[FullHash & (NewSize-1)] = FullHash; 236 if (I == BucketNo) 237 NewBucketNo = NewBucket; 238 continue; 239 } 240 241 // Otherwise probe for a spot. 242 unsigned ProbeSize = 1; 243 do { 244 NewBucket = (NewBucket + ProbeSize++) & (NewSize-1); 245 } while (NewTableArray[NewBucket]); 246 247 // Finally found a slot. Fill it in. 248 NewTableArray[NewBucket] = Bucket; 249 NewHashArray[NewBucket] = FullHash; 250 if (I == BucketNo) 251 NewBucketNo = NewBucket; 252 } 253 } 254 255 free(TheTable); 256 257 TheTable = NewTableArray; 258 NumBuckets = NewSize; 259 NumTombstones = 0; 260 return NewBucketNo; 261 } 262