xref: /freebsd/contrib/llvm-project/llvm/lib/Support/Parallel.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- llvm/Support/Parallel.cpp - Parallel algorithms --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Support/Parallel.h"
10 #include "llvm/Config/llvm-config.h"
11 #include "llvm/Support/ManagedStatic.h"
12 #include "llvm/Support/Threading.h"
13 
14 #include <atomic>
15 #include <future>
16 #include <thread>
17 #include <vector>
18 
19 llvm::ThreadPoolStrategy llvm::parallel::strategy;
20 
21 namespace llvm {
22 namespace parallel {
23 #if LLVM_ENABLE_THREADS
24 
25 #ifdef _WIN32
26 static thread_local unsigned threadIndex = UINT_MAX;
27 
28 unsigned getThreadIndex() { GET_THREAD_INDEX_IMPL; }
29 #else
30 thread_local unsigned threadIndex = UINT_MAX;
31 #endif
32 
33 namespace detail {
34 
35 namespace {
36 
37 /// An abstract class that takes closures and runs them asynchronously.
38 class Executor {
39 public:
40   virtual ~Executor() = default;
41   virtual void add(std::function<void()> func) = 0;
42   virtual size_t getThreadCount() const = 0;
43 
44   static Executor *getDefaultExecutor();
45 };
46 
47 /// An implementation of an Executor that runs closures on a thread pool
48 ///   in filo order.
49 class ThreadPoolExecutor : public Executor {
50 public:
51   explicit ThreadPoolExecutor(ThreadPoolStrategy S = hardware_concurrency()) {
52     ThreadCount = S.compute_thread_count();
53     // Spawn all but one of the threads in another thread as spawning threads
54     // can take a while.
55     Threads.reserve(ThreadCount);
56     Threads.resize(1);
57     std::lock_guard<std::mutex> Lock(Mutex);
58     // Use operator[] before creating the thread to avoid data race in .size()
59     // in 'safe libc++' mode.
60     auto &Thread0 = Threads[0];
61     Thread0 = std::thread([this, S] {
62       for (unsigned I = 1; I < ThreadCount; ++I) {
63         Threads.emplace_back([=] { work(S, I); });
64         if (Stop)
65           break;
66       }
67       ThreadsCreated.set_value();
68       work(S, 0);
69     });
70   }
71 
72   void stop() {
73     {
74       std::lock_guard<std::mutex> Lock(Mutex);
75       if (Stop)
76         return;
77       Stop = true;
78     }
79     Cond.notify_all();
80     ThreadsCreated.get_future().wait();
81   }
82 
83   ~ThreadPoolExecutor() override {
84     stop();
85     std::thread::id CurrentThreadId = std::this_thread::get_id();
86     for (std::thread &T : Threads)
87       if (T.get_id() == CurrentThreadId)
88         T.detach();
89       else
90         T.join();
91   }
92 
93   struct Creator {
94     static void *call() { return new ThreadPoolExecutor(strategy); }
95   };
96   struct Deleter {
97     static void call(void *Ptr) { ((ThreadPoolExecutor *)Ptr)->stop(); }
98   };
99 
100   void add(std::function<void()> F) override {
101     {
102       std::lock_guard<std::mutex> Lock(Mutex);
103       WorkStack.push_back(std::move(F));
104     }
105     Cond.notify_one();
106   }
107 
108   size_t getThreadCount() const override { return ThreadCount; }
109 
110 private:
111   void work(ThreadPoolStrategy S, unsigned ThreadID) {
112     threadIndex = ThreadID;
113     S.apply_thread_strategy(ThreadID);
114     while (true) {
115       std::unique_lock<std::mutex> Lock(Mutex);
116       Cond.wait(Lock, [&] { return Stop || !WorkStack.empty(); });
117       if (Stop)
118         break;
119       auto Task = std::move(WorkStack.back());
120       WorkStack.pop_back();
121       Lock.unlock();
122       Task();
123     }
124   }
125 
126   std::atomic<bool> Stop{false};
127   std::vector<std::function<void()>> WorkStack;
128   std::mutex Mutex;
129   std::condition_variable Cond;
130   std::promise<void> ThreadsCreated;
131   std::vector<std::thread> Threads;
132   unsigned ThreadCount;
133 };
134 
135 Executor *Executor::getDefaultExecutor() {
136   // The ManagedStatic enables the ThreadPoolExecutor to be stopped via
137   // llvm_shutdown() which allows a "clean" fast exit, e.g. via _exit(). This
138   // stops the thread pool and waits for any worker thread creation to complete
139   // but does not wait for the threads to finish. The wait for worker thread
140   // creation to complete is important as it prevents intermittent crashes on
141   // Windows due to a race condition between thread creation and process exit.
142   //
143   // The ThreadPoolExecutor will only be destroyed when the static unique_ptr to
144   // it is destroyed, i.e. in a normal full exit. The ThreadPoolExecutor
145   // destructor ensures it has been stopped and waits for worker threads to
146   // finish. The wait is important as it prevents intermittent crashes on
147   // Windows when the process is doing a full exit.
148   //
149   // The Windows crashes appear to only occur with the MSVC static runtimes and
150   // are more frequent with the debug static runtime.
151   //
152   // This also prevents intermittent deadlocks on exit with the MinGW runtime.
153 
154   static ManagedStatic<ThreadPoolExecutor, ThreadPoolExecutor::Creator,
155                        ThreadPoolExecutor::Deleter>
156       ManagedExec;
157   static std::unique_ptr<ThreadPoolExecutor> Exec(&(*ManagedExec));
158   return Exec.get();
159 }
160 } // namespace
161 } // namespace detail
162 
163 size_t getThreadCount() {
164   return detail::Executor::getDefaultExecutor()->getThreadCount();
165 }
166 #endif
167 
168 // Latch::sync() called by the dtor may cause one thread to block. If is a dead
169 // lock if all threads in the default executor are blocked. To prevent the dead
170 // lock, only allow the root TaskGroup to run tasks parallelly. In the scenario
171 // of nested parallel_for_each(), only the outermost one runs parallelly.
172 TaskGroup::TaskGroup()
173 #if LLVM_ENABLE_THREADS
174     : Parallel((parallel::strategy.ThreadsRequested != 1) &&
175                (threadIndex == UINT_MAX)) {}
176 #else
177     : Parallel(false) {}
178 #endif
179 TaskGroup::~TaskGroup() {
180   // We must ensure that all the workloads have finished before decrementing the
181   // instances count.
182   L.sync();
183 }
184 
185 void TaskGroup::spawn(std::function<void()> F) {
186 #if LLVM_ENABLE_THREADS
187   if (Parallel) {
188     L.inc();
189     detail::Executor::getDefaultExecutor()->add([&, F = std::move(F)] {
190       F();
191       L.dec();
192     });
193     return;
194   }
195 #endif
196   F();
197 }
198 
199 } // namespace parallel
200 } // namespace llvm
201 
202 void llvm::parallelFor(size_t Begin, size_t End,
203                        llvm::function_ref<void(size_t)> Fn) {
204 #if LLVM_ENABLE_THREADS
205   if (parallel::strategy.ThreadsRequested != 1) {
206     auto NumItems = End - Begin;
207     // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
208     // overhead on large inputs.
209     auto TaskSize = NumItems / parallel::detail::MaxTasksPerGroup;
210     if (TaskSize == 0)
211       TaskSize = 1;
212 
213     parallel::TaskGroup TG;
214     for (; Begin + TaskSize < End; Begin += TaskSize) {
215       TG.spawn([=, &Fn] {
216         for (size_t I = Begin, E = Begin + TaskSize; I != E; ++I)
217           Fn(I);
218       });
219     }
220     if (Begin != End) {
221       TG.spawn([=, &Fn] {
222         for (size_t I = Begin; I != End; ++I)
223           Fn(I);
224       });
225     }
226     return;
227   }
228 #endif
229 
230   for (; Begin != End; ++Begin)
231     Fn(Begin);
232 }
233