xref: /freebsd/contrib/llvm-project/llvm/lib/Support/OptimizedStructLayout.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the performOptimizedStructLayout interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/OptimizedStructLayout.h"
14 #include <optional>
15 
16 using namespace llvm;
17 
18 using Field = OptimizedStructLayoutField;
19 
20 #ifndef NDEBUG
21 static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size,
22                              Align MaxAlign) {
23   uint64_t LastEnd = 0;
24   Align ComputedMaxAlign;
25   for (auto &Field : Fields) {
26     assert(Field.hasFixedOffset() &&
27            "didn't assign a fixed offset to field");
28     assert(isAligned(Field.Alignment, Field.Offset) &&
29            "didn't assign a correctly-aligned offset to field");
30     assert(Field.Offset >= LastEnd &&
31            "didn't assign offsets in ascending order");
32     LastEnd = Field.getEndOffset();
33     assert(Field.Alignment <= MaxAlign &&
34            "didn't compute MaxAlign correctly");
35     ComputedMaxAlign = std::max(Field.Alignment, MaxAlign);
36   }
37   assert(LastEnd == Size && "didn't compute LastEnd correctly");
38   assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly");
39 }
40 #endif
41 
42 std::pair<uint64_t, Align>
43 llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) {
44 #ifndef NDEBUG
45   // Do some simple precondition checks.
46   {
47     bool InFixedPrefix = true;
48     size_t LastEnd = 0;
49     for (auto &Field : Fields) {
50       assert(Field.Size > 0 && "field of zero size");
51       if (Field.hasFixedOffset()) {
52         assert(InFixedPrefix &&
53                "fixed-offset fields are not a strict prefix of array");
54         assert(LastEnd <= Field.Offset &&
55                "fixed-offset fields overlap or are not in order");
56         LastEnd = Field.getEndOffset();
57         assert(LastEnd > Field.Offset &&
58                "overflow in fixed-offset end offset");
59       } else {
60         InFixedPrefix = false;
61       }
62     }
63   }
64 #endif
65 
66   // Do an initial pass over the fields.
67   Align MaxAlign;
68 
69   // Find the first flexible-offset field, tracking MaxAlign.
70   auto FirstFlexible = Fields.begin(), E = Fields.end();
71   while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) {
72     MaxAlign = std::max(MaxAlign, FirstFlexible->Alignment);
73     ++FirstFlexible;
74   }
75 
76   // If there are no flexible fields, we're done.
77   if (FirstFlexible == E) {
78     uint64_t Size = 0;
79     if (!Fields.empty())
80       Size = Fields.back().getEndOffset();
81 
82 #ifndef NDEBUG
83     checkValidLayout(Fields, Size, MaxAlign);
84 #endif
85     return std::make_pair(Size, MaxAlign);
86   }
87 
88   // Walk over the flexible-offset fields, tracking MaxAlign and
89   // assigning them a unique number in order of their appearance.
90   // We'll use this unique number in the comparison below so that
91   // we can use array_pod_sort, which isn't stable.  We won't use it
92   // past that point.
93   {
94     uintptr_t UniqueNumber = 0;
95     for (auto I = FirstFlexible; I != E; ++I) {
96       I->Scratch = reinterpret_cast<void*>(UniqueNumber++);
97       MaxAlign = std::max(MaxAlign, I->Alignment);
98     }
99   }
100 
101   // Sort the flexible elements in order of decreasing alignment,
102   // then decreasing size, and then the original order as recorded
103   // in Scratch.  The decreasing-size aspect of this is only really
104   // important if we get into the gap-filling stage below, but it
105   // doesn't hurt here.
106   array_pod_sort(FirstFlexible, E,
107                  [](const Field *lhs, const Field *rhs) -> int {
108     // Decreasing alignment.
109     if (lhs->Alignment != rhs->Alignment)
110       return (lhs->Alignment < rhs->Alignment ? 1 : -1);
111 
112     // Decreasing size.
113     if (lhs->Size != rhs->Size)
114       return (lhs->Size < rhs->Size ? 1 : -1);
115 
116     // Original order.
117     auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch);
118     auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch);
119     if (lhsNumber != rhsNumber)
120       return (lhsNumber < rhsNumber ? -1 : 1);
121 
122     return 0;
123   });
124 
125   // Do a quick check for whether that sort alone has given us a perfect
126   // layout with no interior padding.  This is very common: if the
127   // fixed-layout fields have no interior padding, and they end at a
128   // sufficiently-aligned offset for all the flexible-layout fields,
129   // and the flexible-layout fields all have sizes that are multiples
130   // of their alignment, then this will reliably trigger.
131   {
132     bool HasPadding = false;
133     uint64_t LastEnd = 0;
134 
135     // Walk the fixed-offset fields.
136     for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
137       assert(I->hasFixedOffset());
138       if (LastEnd != I->Offset) {
139         HasPadding = true;
140         break;
141       }
142       LastEnd = I->getEndOffset();
143     }
144 
145     // Walk the flexible-offset fields, optimistically assigning fixed
146     // offsets.  Note that we maintain a strict division between the
147     // fixed-offset and flexible-offset fields, so if we end up
148     // discovering padding later in this loop, we can just abandon this
149     // work and we'll ignore the offsets we already assigned.
150     if (!HasPadding) {
151       for (auto I = FirstFlexible; I != E; ++I) {
152         auto Offset = alignTo(LastEnd, I->Alignment);
153         if (LastEnd != Offset) {
154           HasPadding = true;
155           break;
156         }
157         I->Offset = Offset;
158         LastEnd = I->getEndOffset();
159       }
160     }
161 
162     // If we already have a perfect layout, we're done.
163     if (!HasPadding) {
164 #ifndef NDEBUG
165       checkValidLayout(Fields, LastEnd, MaxAlign);
166 #endif
167       return std::make_pair(LastEnd, MaxAlign);
168     }
169   }
170 
171   // The algorithm sketch at this point is as follows.
172   //
173   // Consider the padding gaps between fixed-offset fields in ascending
174   // order.  Let LastEnd be the offset of the first byte following the
175   // field before the gap, or 0 if the gap is at the beginning of the
176   // structure.  Find the "best" flexible-offset field according to the
177   // criteria below.  If no such field exists, proceed to the next gap.
178   // Otherwise, add the field at the first properly-aligned offset for
179   // that field that is >= LastEnd, then update LastEnd and repeat in
180   // order to fill any remaining gap following that field.
181   //
182   // Next, let LastEnd to be the offset of the first byte following the
183   // last fixed-offset field, or 0 if there are no fixed-offset fields.
184   // While there are flexible-offset fields remaining, find the "best"
185   // flexible-offset field according to the criteria below, add it at
186   // the first properly-aligned offset for that field that is >= LastEnd,
187   // and update LastEnd to the first byte following the field.
188   //
189   // The "best" field is chosen by the following criteria, considered
190   // strictly in order:
191   //
192   // - When filling a gap betweeen fields, the field must fit.
193   // - A field is preferred if it requires less padding following LastEnd.
194   // - A field is preferred if it is more aligned.
195   // - A field is preferred if it is larger.
196   // - A field is preferred if it appeared earlier in the initial order.
197   //
198   // Minimizing leading padding is a greedy attempt to avoid padding
199   // entirely.  Preferring more-aligned fields is an attempt to eliminate
200   // stricter constraints earlier, with the idea that weaker alignment
201   // constraints may be resolvable with less padding elsewhere.  These
202   // These two rules are sufficient to ensure that we get the optimal
203   // layout in the "C-style" case.  Preferring larger fields tends to take
204   // better advantage of large gaps and may be more likely to have a size
205   // that's a multiple of a useful alignment.  Preferring the initial
206   // order may help somewhat with locality but is mostly just a way of
207   // ensuring deterministic output.
208   //
209   // Note that this algorithm does not guarantee a minimal layout.  Picking
210   // a larger object greedily may leave a gap that cannot be filled as
211   // efficiently.  Unfortunately, solving this perfectly is an NP-complete
212   // problem (by reduction from bin-packing: let B_i be the bin sizes and
213   // O_j be the object sizes; add fixed-offset fields such that the gaps
214   // between them have size B_i, and add flexible-offset fields with
215   // alignment 1 and size O_j; if the layout size is equal to the end of
216   // the last fixed-layout field, the objects fit in the bins; note that
217   // this doesn't even require the complexity of alignment).
218 
219   // The implementation below is essentially just an optimized version of
220   // scanning the list of remaining fields looking for the best, which
221   // would be O(n^2).  In the worst case, it doesn't improve on that.
222   // However, in practice it'll just scan the array of alignment bins
223   // and consider the first few elements from one or two bins.  The
224   // number of bins is bounded by a small constant: alignments are powers
225   // of two that are vanishingly unlikely to be over 64 and fairly unlikely
226   // to be over 8.  And multiple elements only need to be considered when
227   // filling a gap between fixed-offset fields, which doesn't happen very
228   // often.  We could use a data structure within bins that optimizes for
229   // finding the best-sized match, but it would require allocating memory
230   // and copying data, so it's unlikely to be worthwhile.
231 
232 
233   // Start by organizing the flexible-offset fields into bins according to
234   // their alignment.  We expect a small enough number of bins that we
235   // don't care about the asymptotic costs of walking this.
236   struct AlignmentQueue {
237     /// The minimum size of anything currently in this queue.
238     uint64_t MinSize;
239 
240     /// The head of the queue.  A singly-linked list.  The order here should
241     /// be consistent with the earlier sort, i.e. the elements should be
242     /// monotonically descending in size and otherwise in the original order.
243     ///
244     /// We remove the queue from the array as soon as this is empty.
245     OptimizedStructLayoutField *Head;
246 
247     /// The alignment requirement of the queue.
248     Align Alignment;
249 
250     static Field *getNext(Field *Cur) {
251       return static_cast<Field *>(Cur->Scratch);
252     }
253   };
254   SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment;
255   for (auto I = FirstFlexible; I != E; ) {
256     auto Head = I;
257     auto Alignment = I->Alignment;
258 
259     uint64_t MinSize = I->Size;
260     auto LastInQueue = I;
261     for (++I; I != E && I->Alignment == Alignment; ++I) {
262       LastInQueue->Scratch = I;
263       LastInQueue = I;
264       MinSize = std::min(MinSize, I->Size);
265     }
266     LastInQueue->Scratch = nullptr;
267 
268     FlexibleFieldsByAlignment.push_back({MinSize, Head, Alignment});
269   }
270 
271 #ifndef NDEBUG
272   // Verify that we set the queues up correctly.
273   auto checkQueues = [&]{
274     bool FirstQueue = true;
275     Align LastQueueAlignment;
276     for (auto &Queue : FlexibleFieldsByAlignment) {
277       assert((FirstQueue || Queue.Alignment < LastQueueAlignment) &&
278              "bins not in order of descending alignment");
279       LastQueueAlignment = Queue.Alignment;
280       FirstQueue = false;
281 
282       assert(Queue.Head && "queue was empty");
283       uint64_t LastSize = ~(uint64_t)0;
284       for (auto I = Queue.Head; I; I = Queue.getNext(I)) {
285         assert(I->Alignment == Queue.Alignment && "bad field in queue");
286         assert(I->Size <= LastSize && "queue not in descending size order");
287         LastSize = I->Size;
288       }
289     }
290   };
291   checkQueues();
292 #endif
293 
294   /// Helper function to remove a field from a queue.
295   auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) {
296     assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur);
297 
298     // If we're removing Cur from a non-initial position, splice it out
299     // of the linked list.
300     if (Last) {
301       Last->Scratch = Cur->Scratch;
302 
303       // If Cur was the last field in the list, we need to update MinSize.
304       // We can just use the last field's size because the list is in
305       // descending order of size.
306       if (!Cur->Scratch)
307         Queue->MinSize = Last->Size;
308 
309     // Otherwise, replace the head.
310     } else {
311       if (auto NewHead = Queue->getNext(Cur))
312         Queue->Head = NewHead;
313 
314       // If we just emptied the queue, destroy its bin.
315       else
316         FlexibleFieldsByAlignment.erase(Queue);
317     }
318   };
319 
320   // Do layout into a local array.  Doing this in-place on Fields is
321   // not really feasible.
322   SmallVector<Field, 16> Layout;
323   Layout.reserve(Fields.size());
324 
325   // The offset that we're currently looking to insert at (or after).
326   uint64_t LastEnd = 0;
327 
328   // Helper function to splice Cur out of the given queue and add it
329   // to the layout at the given offset.
330   auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur,
331                          uint64_t Offset) -> bool {
332     assert(Offset == alignTo(LastEnd, Cur->Alignment));
333 
334     // Splice out.  This potentially invalidates Queue.
335     spliceFromQueue(Queue, Last, Cur);
336 
337     // Add Cur to the layout.
338     Layout.push_back(*Cur);
339     Layout.back().Offset = Offset;
340     LastEnd = Layout.back().getEndOffset();
341 
342     // Always return true so that we can be tail-called.
343     return true;
344   };
345 
346   // Helper function to try to find a field in the given queue that'll
347   // fit starting at StartOffset but before EndOffset (if present).
348   // Note that this never fails if EndOffset is not provided.
349   auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue, uint64_t StartOffset,
350                                    std::optional<uint64_t> EndOffset) -> bool {
351     assert(Queue->Head);
352     assert(StartOffset == alignTo(LastEnd, Queue->Alignment));
353     assert(!EndOffset || StartOffset < *EndOffset);
354 
355     // Figure out the maximum size that a field can be, and ignore this
356     // queue if there's nothing in it that small.
357     auto MaxViableSize =
358       (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0);
359     if (Queue->MinSize > MaxViableSize)
360       return false;
361 
362     // Find the matching field.  Note that this should always find
363     // something because of the MinSize check above.
364     for (Field *Cur = Queue->Head, *Last = nullptr; true;
365            Last = Cur, Cur = Queue->getNext(Cur)) {
366       assert(Cur && "didn't find a match in queue despite its MinSize");
367       if (Cur->Size <= MaxViableSize)
368         return addToLayout(Queue, Last, Cur, StartOffset);
369     }
370 
371     llvm_unreachable("didn't find a match in queue despite its MinSize");
372   };
373 
374   // Helper function to find the "best" flexible-offset field according
375   // to the criteria described above.
376   auto tryAddBestField = [&](std::optional<uint64_t> BeforeOffset) -> bool {
377     assert(!BeforeOffset || LastEnd < *BeforeOffset);
378     auto QueueB = FlexibleFieldsByAlignment.begin();
379     auto QueueE = FlexibleFieldsByAlignment.end();
380 
381     // Start by looking for the most-aligned queue that doesn't need any
382     // leading padding after LastEnd.
383     auto FirstQueueToSearch = QueueB;
384     for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) {
385       if (isAligned(FirstQueueToSearch->Alignment, LastEnd))
386         break;
387     }
388 
389     uint64_t Offset = LastEnd;
390     while (true) {
391       // Invariant: all of the queues in [FirstQueueToSearch, QueueE)
392       // require the same initial padding offset.
393 
394       // Search those queues in descending order of alignment for a
395       // satisfactory field.
396       for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) {
397         if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset))
398           return true;
399       }
400 
401       // Okay, we don't need to scan those again.
402       QueueE = FirstQueueToSearch;
403 
404       // If we started from the first queue, we're done.
405       if (FirstQueueToSearch == QueueB)
406         return false;
407 
408       // Otherwise, scan backwards to find the most-aligned queue that
409       // still has minimal leading padding after LastEnd.  If that
410       // minimal padding is already at or past the end point, we're done.
411       --FirstQueueToSearch;
412       Offset = alignTo(LastEnd, FirstQueueToSearch->Alignment);
413       if (BeforeOffset && Offset >= *BeforeOffset)
414         return false;
415       while (FirstQueueToSearch != QueueB &&
416              Offset == alignTo(LastEnd, FirstQueueToSearch[-1].Alignment))
417         --FirstQueueToSearch;
418     }
419   };
420 
421   // Phase 1: fill the gaps between fixed-offset fields with the best
422   // flexible-offset field that fits.
423   for (auto I = Fields.begin(); I != FirstFlexible; ++I) {
424     assert(LastEnd <= I->Offset);
425     while (LastEnd != I->Offset) {
426       if (!tryAddBestField(I->Offset))
427         break;
428     }
429     Layout.push_back(*I);
430     LastEnd = I->getEndOffset();
431   }
432 
433 #ifndef NDEBUG
434   checkQueues();
435 #endif
436 
437   // Phase 2: repeatedly add the best flexible-offset field until
438   // they're all gone.
439   while (!FlexibleFieldsByAlignment.empty()) {
440     bool Success = tryAddBestField(std::nullopt);
441     assert(Success && "didn't find a field with no fixed limit?");
442     (void) Success;
443   }
444 
445   // Copy the layout back into place.
446   assert(Layout.size() == Fields.size());
447   memcpy(Fields.data(), Layout.data(),
448          Fields.size() * sizeof(OptimizedStructLayoutField));
449 
450 #ifndef NDEBUG
451   // Make a final check that the layout is valid.
452   checkValidLayout(Fields, LastEnd, MaxAlign);
453 #endif
454 
455   return std::make_pair(LastEnd, MaxAlign);
456 }
457