1 //===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the performOptimizedStructLayout interface. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Support/OptimizedStructLayout.h" 14 #include <optional> 15 16 using namespace llvm; 17 18 using Field = OptimizedStructLayoutField; 19 20 #ifndef NDEBUG 21 static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size, 22 Align MaxAlign) { 23 uint64_t LastEnd = 0; 24 Align ComputedMaxAlign; 25 for (auto &Field : Fields) { 26 assert(Field.hasFixedOffset() && 27 "didn't assign a fixed offset to field"); 28 assert(isAligned(Field.Alignment, Field.Offset) && 29 "didn't assign a correctly-aligned offset to field"); 30 assert(Field.Offset >= LastEnd && 31 "didn't assign offsets in ascending order"); 32 LastEnd = Field.getEndOffset(); 33 assert(Field.Alignment <= MaxAlign && 34 "didn't compute MaxAlign correctly"); 35 ComputedMaxAlign = std::max(Field.Alignment, MaxAlign); 36 } 37 assert(LastEnd == Size && "didn't compute LastEnd correctly"); 38 assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly"); 39 } 40 #endif 41 42 std::pair<uint64_t, Align> 43 llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) { 44 #ifndef NDEBUG 45 // Do some simple precondition checks. 46 { 47 bool InFixedPrefix = true; 48 size_t LastEnd = 0; 49 for (auto &Field : Fields) { 50 assert(Field.Size > 0 && "field of zero size"); 51 if (Field.hasFixedOffset()) { 52 assert(InFixedPrefix && 53 "fixed-offset fields are not a strict prefix of array"); 54 assert(LastEnd <= Field.Offset && 55 "fixed-offset fields overlap or are not in order"); 56 LastEnd = Field.getEndOffset(); 57 assert(LastEnd > Field.Offset && 58 "overflow in fixed-offset end offset"); 59 } else { 60 InFixedPrefix = false; 61 } 62 } 63 } 64 #endif 65 66 // Do an initial pass over the fields. 67 Align MaxAlign; 68 69 // Find the first flexible-offset field, tracking MaxAlign. 70 auto FirstFlexible = Fields.begin(), E = Fields.end(); 71 while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) { 72 MaxAlign = std::max(MaxAlign, FirstFlexible->Alignment); 73 ++FirstFlexible; 74 } 75 76 // If there are no flexible fields, we're done. 77 if (FirstFlexible == E) { 78 uint64_t Size = 0; 79 if (!Fields.empty()) 80 Size = Fields.back().getEndOffset(); 81 82 #ifndef NDEBUG 83 checkValidLayout(Fields, Size, MaxAlign); 84 #endif 85 return std::make_pair(Size, MaxAlign); 86 } 87 88 // Walk over the flexible-offset fields, tracking MaxAlign and 89 // assigning them a unique number in order of their appearance. 90 // We'll use this unique number in the comparison below so that 91 // we can use array_pod_sort, which isn't stable. We won't use it 92 // past that point. 93 { 94 uintptr_t UniqueNumber = 0; 95 for (auto I = FirstFlexible; I != E; ++I) { 96 I->Scratch = reinterpret_cast<void*>(UniqueNumber++); 97 MaxAlign = std::max(MaxAlign, I->Alignment); 98 } 99 } 100 101 // Sort the flexible elements in order of decreasing alignment, 102 // then decreasing size, and then the original order as recorded 103 // in Scratch. The decreasing-size aspect of this is only really 104 // important if we get into the gap-filling stage below, but it 105 // doesn't hurt here. 106 array_pod_sort(FirstFlexible, E, 107 [](const Field *lhs, const Field *rhs) -> int { 108 // Decreasing alignment. 109 if (lhs->Alignment != rhs->Alignment) 110 return (lhs->Alignment < rhs->Alignment ? 1 : -1); 111 112 // Decreasing size. 113 if (lhs->Size != rhs->Size) 114 return (lhs->Size < rhs->Size ? 1 : -1); 115 116 // Original order. 117 auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch); 118 auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch); 119 if (lhsNumber != rhsNumber) 120 return (lhsNumber < rhsNumber ? -1 : 1); 121 122 return 0; 123 }); 124 125 // Do a quick check for whether that sort alone has given us a perfect 126 // layout with no interior padding. This is very common: if the 127 // fixed-layout fields have no interior padding, and they end at a 128 // sufficiently-aligned offset for all the flexible-layout fields, 129 // and the flexible-layout fields all have sizes that are multiples 130 // of their alignment, then this will reliably trigger. 131 { 132 bool HasPadding = false; 133 uint64_t LastEnd = 0; 134 135 // Walk the fixed-offset fields. 136 for (auto I = Fields.begin(); I != FirstFlexible; ++I) { 137 assert(I->hasFixedOffset()); 138 if (LastEnd != I->Offset) { 139 HasPadding = true; 140 break; 141 } 142 LastEnd = I->getEndOffset(); 143 } 144 145 // Walk the flexible-offset fields, optimistically assigning fixed 146 // offsets. Note that we maintain a strict division between the 147 // fixed-offset and flexible-offset fields, so if we end up 148 // discovering padding later in this loop, we can just abandon this 149 // work and we'll ignore the offsets we already assigned. 150 if (!HasPadding) { 151 for (auto I = FirstFlexible; I != E; ++I) { 152 auto Offset = alignTo(LastEnd, I->Alignment); 153 if (LastEnd != Offset) { 154 HasPadding = true; 155 break; 156 } 157 I->Offset = Offset; 158 LastEnd = I->getEndOffset(); 159 } 160 } 161 162 // If we already have a perfect layout, we're done. 163 if (!HasPadding) { 164 #ifndef NDEBUG 165 checkValidLayout(Fields, LastEnd, MaxAlign); 166 #endif 167 return std::make_pair(LastEnd, MaxAlign); 168 } 169 } 170 171 // The algorithm sketch at this point is as follows. 172 // 173 // Consider the padding gaps between fixed-offset fields in ascending 174 // order. Let LastEnd be the offset of the first byte following the 175 // field before the gap, or 0 if the gap is at the beginning of the 176 // structure. Find the "best" flexible-offset field according to the 177 // criteria below. If no such field exists, proceed to the next gap. 178 // Otherwise, add the field at the first properly-aligned offset for 179 // that field that is >= LastEnd, then update LastEnd and repeat in 180 // order to fill any remaining gap following that field. 181 // 182 // Next, let LastEnd to be the offset of the first byte following the 183 // last fixed-offset field, or 0 if there are no fixed-offset fields. 184 // While there are flexible-offset fields remaining, find the "best" 185 // flexible-offset field according to the criteria below, add it at 186 // the first properly-aligned offset for that field that is >= LastEnd, 187 // and update LastEnd to the first byte following the field. 188 // 189 // The "best" field is chosen by the following criteria, considered 190 // strictly in order: 191 // 192 // - When filling a gap betweeen fields, the field must fit. 193 // - A field is preferred if it requires less padding following LastEnd. 194 // - A field is preferred if it is more aligned. 195 // - A field is preferred if it is larger. 196 // - A field is preferred if it appeared earlier in the initial order. 197 // 198 // Minimizing leading padding is a greedy attempt to avoid padding 199 // entirely. Preferring more-aligned fields is an attempt to eliminate 200 // stricter constraints earlier, with the idea that weaker alignment 201 // constraints may be resolvable with less padding elsewhere. These 202 // These two rules are sufficient to ensure that we get the optimal 203 // layout in the "C-style" case. Preferring larger fields tends to take 204 // better advantage of large gaps and may be more likely to have a size 205 // that's a multiple of a useful alignment. Preferring the initial 206 // order may help somewhat with locality but is mostly just a way of 207 // ensuring deterministic output. 208 // 209 // Note that this algorithm does not guarantee a minimal layout. Picking 210 // a larger object greedily may leave a gap that cannot be filled as 211 // efficiently. Unfortunately, solving this perfectly is an NP-complete 212 // problem (by reduction from bin-packing: let B_i be the bin sizes and 213 // O_j be the object sizes; add fixed-offset fields such that the gaps 214 // between them have size B_i, and add flexible-offset fields with 215 // alignment 1 and size O_j; if the layout size is equal to the end of 216 // the last fixed-layout field, the objects fit in the bins; note that 217 // this doesn't even require the complexity of alignment). 218 219 // The implementation below is essentially just an optimized version of 220 // scanning the list of remaining fields looking for the best, which 221 // would be O(n^2). In the worst case, it doesn't improve on that. 222 // However, in practice it'll just scan the array of alignment bins 223 // and consider the first few elements from one or two bins. The 224 // number of bins is bounded by a small constant: alignments are powers 225 // of two that are vanishingly unlikely to be over 64 and fairly unlikely 226 // to be over 8. And multiple elements only need to be considered when 227 // filling a gap between fixed-offset fields, which doesn't happen very 228 // often. We could use a data structure within bins that optimizes for 229 // finding the best-sized match, but it would require allocating memory 230 // and copying data, so it's unlikely to be worthwhile. 231 232 233 // Start by organizing the flexible-offset fields into bins according to 234 // their alignment. We expect a small enough number of bins that we 235 // don't care about the asymptotic costs of walking this. 236 struct AlignmentQueue { 237 /// The minimum size of anything currently in this queue. 238 uint64_t MinSize; 239 240 /// The head of the queue. A singly-linked list. The order here should 241 /// be consistent with the earlier sort, i.e. the elements should be 242 /// monotonically descending in size and otherwise in the original order. 243 /// 244 /// We remove the queue from the array as soon as this is empty. 245 OptimizedStructLayoutField *Head; 246 247 /// The alignment requirement of the queue. 248 Align Alignment; 249 250 static Field *getNext(Field *Cur) { 251 return static_cast<Field *>(Cur->Scratch); 252 } 253 }; 254 SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment; 255 for (auto I = FirstFlexible; I != E; ) { 256 auto Head = I; 257 auto Alignment = I->Alignment; 258 259 uint64_t MinSize = I->Size; 260 auto LastInQueue = I; 261 for (++I; I != E && I->Alignment == Alignment; ++I) { 262 LastInQueue->Scratch = I; 263 LastInQueue = I; 264 MinSize = std::min(MinSize, I->Size); 265 } 266 LastInQueue->Scratch = nullptr; 267 268 FlexibleFieldsByAlignment.push_back({MinSize, Head, Alignment}); 269 } 270 271 #ifndef NDEBUG 272 // Verify that we set the queues up correctly. 273 auto checkQueues = [&]{ 274 bool FirstQueue = true; 275 Align LastQueueAlignment; 276 for (auto &Queue : FlexibleFieldsByAlignment) { 277 assert((FirstQueue || Queue.Alignment < LastQueueAlignment) && 278 "bins not in order of descending alignment"); 279 LastQueueAlignment = Queue.Alignment; 280 FirstQueue = false; 281 282 assert(Queue.Head && "queue was empty"); 283 uint64_t LastSize = ~(uint64_t)0; 284 for (auto I = Queue.Head; I; I = Queue.getNext(I)) { 285 assert(I->Alignment == Queue.Alignment && "bad field in queue"); 286 assert(I->Size <= LastSize && "queue not in descending size order"); 287 LastSize = I->Size; 288 } 289 } 290 }; 291 checkQueues(); 292 #endif 293 294 /// Helper function to remove a field from a queue. 295 auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) { 296 assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur); 297 298 // If we're removing Cur from a non-initial position, splice it out 299 // of the linked list. 300 if (Last) { 301 Last->Scratch = Cur->Scratch; 302 303 // If Cur was the last field in the list, we need to update MinSize. 304 // We can just use the last field's size because the list is in 305 // descending order of size. 306 if (!Cur->Scratch) 307 Queue->MinSize = Last->Size; 308 309 // Otherwise, replace the head. 310 } else { 311 if (auto NewHead = Queue->getNext(Cur)) 312 Queue->Head = NewHead; 313 314 // If we just emptied the queue, destroy its bin. 315 else 316 FlexibleFieldsByAlignment.erase(Queue); 317 } 318 }; 319 320 // Do layout into a local array. Doing this in-place on Fields is 321 // not really feasible. 322 SmallVector<Field, 16> Layout; 323 Layout.reserve(Fields.size()); 324 325 // The offset that we're currently looking to insert at (or after). 326 uint64_t LastEnd = 0; 327 328 // Helper function to splice Cur out of the given queue and add it 329 // to the layout at the given offset. 330 auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur, 331 uint64_t Offset) -> bool { 332 assert(Offset == alignTo(LastEnd, Cur->Alignment)); 333 334 // Splice out. This potentially invalidates Queue. 335 spliceFromQueue(Queue, Last, Cur); 336 337 // Add Cur to the layout. 338 Layout.push_back(*Cur); 339 Layout.back().Offset = Offset; 340 LastEnd = Layout.back().getEndOffset(); 341 342 // Always return true so that we can be tail-called. 343 return true; 344 }; 345 346 // Helper function to try to find a field in the given queue that'll 347 // fit starting at StartOffset but before EndOffset (if present). 348 // Note that this never fails if EndOffset is not provided. 349 auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue, uint64_t StartOffset, 350 std::optional<uint64_t> EndOffset) -> bool { 351 assert(Queue->Head); 352 assert(StartOffset == alignTo(LastEnd, Queue->Alignment)); 353 assert(!EndOffset || StartOffset < *EndOffset); 354 355 // Figure out the maximum size that a field can be, and ignore this 356 // queue if there's nothing in it that small. 357 auto MaxViableSize = 358 (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0); 359 if (Queue->MinSize > MaxViableSize) 360 return false; 361 362 // Find the matching field. Note that this should always find 363 // something because of the MinSize check above. 364 for (Field *Cur = Queue->Head, *Last = nullptr; true; 365 Last = Cur, Cur = Queue->getNext(Cur)) { 366 assert(Cur && "didn't find a match in queue despite its MinSize"); 367 if (Cur->Size <= MaxViableSize) 368 return addToLayout(Queue, Last, Cur, StartOffset); 369 } 370 371 llvm_unreachable("didn't find a match in queue despite its MinSize"); 372 }; 373 374 // Helper function to find the "best" flexible-offset field according 375 // to the criteria described above. 376 auto tryAddBestField = [&](std::optional<uint64_t> BeforeOffset) -> bool { 377 assert(!BeforeOffset || LastEnd < *BeforeOffset); 378 auto QueueB = FlexibleFieldsByAlignment.begin(); 379 auto QueueE = FlexibleFieldsByAlignment.end(); 380 381 // Start by looking for the most-aligned queue that doesn't need any 382 // leading padding after LastEnd. 383 auto FirstQueueToSearch = QueueB; 384 for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) { 385 if (isAligned(FirstQueueToSearch->Alignment, LastEnd)) 386 break; 387 } 388 389 uint64_t Offset = LastEnd; 390 while (true) { 391 // Invariant: all of the queues in [FirstQueueToSearch, QueueE) 392 // require the same initial padding offset. 393 394 // Search those queues in descending order of alignment for a 395 // satisfactory field. 396 for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) { 397 if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset)) 398 return true; 399 } 400 401 // Okay, we don't need to scan those again. 402 QueueE = FirstQueueToSearch; 403 404 // If we started from the first queue, we're done. 405 if (FirstQueueToSearch == QueueB) 406 return false; 407 408 // Otherwise, scan backwards to find the most-aligned queue that 409 // still has minimal leading padding after LastEnd. If that 410 // minimal padding is already at or past the end point, we're done. 411 --FirstQueueToSearch; 412 Offset = alignTo(LastEnd, FirstQueueToSearch->Alignment); 413 if (BeforeOffset && Offset >= *BeforeOffset) 414 return false; 415 while (FirstQueueToSearch != QueueB && 416 Offset == alignTo(LastEnd, FirstQueueToSearch[-1].Alignment)) 417 --FirstQueueToSearch; 418 } 419 }; 420 421 // Phase 1: fill the gaps between fixed-offset fields with the best 422 // flexible-offset field that fits. 423 for (auto I = Fields.begin(); I != FirstFlexible; ++I) { 424 assert(LastEnd <= I->Offset); 425 while (LastEnd != I->Offset) { 426 if (!tryAddBestField(I->Offset)) 427 break; 428 } 429 Layout.push_back(*I); 430 LastEnd = I->getEndOffset(); 431 } 432 433 #ifndef NDEBUG 434 checkQueues(); 435 #endif 436 437 // Phase 2: repeatedly add the best flexible-offset field until 438 // they're all gone. 439 while (!FlexibleFieldsByAlignment.empty()) { 440 bool Success = tryAddBestField(std::nullopt); 441 assert(Success && "didn't find a field with no fixed limit?"); 442 (void) Success; 443 } 444 445 // Copy the layout back into place. 446 assert(Layout.size() == Fields.size()); 447 memcpy(Fields.data(), Layout.data(), 448 Fields.size() * sizeof(OptimizedStructLayoutField)); 449 450 #ifndef NDEBUG 451 // Make a final check that the layout is valid. 452 checkValidLayout(Fields, LastEnd, MaxAlign); 453 #endif 454 455 return std::make_pair(LastEnd, MaxAlign); 456 } 457